Sample records for segmented solid rocket

  1. KENNEDY SPACE CENTER, FLA. - Seen from below and through a solid rocket booster segment mockup, Jeff Thon, an SRB mechanic with United Space Alliance, tests the feasibility of a vertical solid rocket booster propellant grain inspection technique. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Seen from below and through a solid rocket booster segment mockup, Jeff Thon, an SRB mechanic with United Space Alliance, tests the feasibility of a vertical solid rocket booster propellant grain inspection technique. The inspection of segments is required as part of safety analysis.

  2. A Review of Large Solid Rocket Motor Free Field Acoustics, Part I

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Kenny, Robert Jeremy

    2011-01-01

    At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years

  3. General view in the transfer aisle of the Vehicle Assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center looking at one of a pair of Aft Center Segments of the Solid Rocket Motor of the Solid Rocket Booster awaiting hoisting and mating to the Solid Rocket Booster's Aft Segment on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  5. General view of a Solid Rocket Motor Forward Segment in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Solid Rocket Motor Forward Segment in the process of being offloaded from it's railcar inside the Rotation Processing and Surge Facility at Kennedy Space Center. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. General view of the Aft Skirt Assembly and the Aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Aft Skirt Assembly and the Aft Solid Rocket Motor Segment mated together in the Vehicle Assembly Building at Kennedy Space Center and being prepared for mounting onto the Mobile Launch Platform and mating with the other Solid Rocket Booster segments. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. General view of the Aft Solid Rocket Motor Segment mated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Aft Solid Rocket Motor Segment mated with the Aft Skirt Assembly and External Tank Attach Ring in the Rotation Processing and Surge Facility at Kennedy Space Center and awaiting transfer to the Vehicle Assembly Building where it will be mounted onto the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. Five-Segment Reusable Solid Rocket Booster Upgrade

    NASA Technical Reports Server (NTRS)

    Sauvageau, Don

    1999-01-01

    The Five Segment Reusable Solid Rocket Booster (RSRB) feasibility status is presented in viewgraph form. The Five Segment Booster (FSB) objective is to provide a low cost, low risk approach to increase reliability and safety of the Shuttle system. Topics include: booster upgrade requirements; design summary; reliability issues; booster trajectories; launch site assessment; and enhanced abort modes.

  10. KSC-07pd1206

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments roll to the Rotation, Processing and Surge Facility in Kennedy Space Center's Launch Complex 39 Area. The main facility is used for solid rocket motor receiving, rotation and inspection, and supports aft booster buildup. When live solid rocket motor segments arrive at the processing facility, they are positioned under one of the cranes. Handling slings are then attached to and remove the railcar cover. The segment is inspected while it remains horizontal. The two overhead cranes hoist the segment, rotate it to a vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  11. KSC-07pd1210

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments deliver their cargo to the Rotation, Processing and Surge Facility (RPSF) in Kennedy Space Center's Launch Complex 39 Area. The RPSF is used for solid rocket motor receiving, rotation and inspection, and supports aft booster buildup. When live solid rocket motor segments arrive at the processing facility, they are positioned under one of the cranes. Handling slings are then attached to and remove the railcar cover. The segment is inspected while it remains horizontal. The two overhead cranes hoist the segment, rotate it to a vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  12. KSC-07pd1208

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments roll past the Vehicle Assembly Building to the Rotation, Processing and Surge Facility (RPSF) in Kennedy Space Center's Launch Complex 39 Area. The RPSF is used for solid rocket motor receiving, rotation and inspection, and supports aft booster buildup. When live solid rocket motor segments arrive at the processing facility, they are positioned under one of the cranes. Handling slings are then attached to and remove the railcar cover. The segment is inspected while it remains horizontal. The two overhead cranes hoist the segment, rotate it to a vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  13. KSC-07pd1211

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- The final rail car carrying solid rocket booster motor segments moves its cargo into the Rotation, Processing and Surge Facility (RPSF) in Kennedy Space Center's Launch Complex 39 Area. The RPSF is used for solid rocket motor receiving, rotation and inspection, and supports aft booster buildup. When live solid rocket motor segments arrive at the processing facility, they are positioned under one of the cranes. Handling slings are then attached to and remove the railcar cover. The segment is inspected while it remains horizontal. The two overhead cranes hoist the segment, rotate it to a vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  14. KSC-07pd1167

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- Solid rocket motor segments and two aft exit cone segments arrive by rail at NASA's Kennedy Space Center. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  15. KSC-07pd1162

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- Solid rocket motor segments and two aft exit cone segments arrive by rail at NASA's Kennedy Space Center. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd1168

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- Solid rocket motor segments and two aft exit cone segments arrive by rail at NASA's Kennedy Space Center. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  17. KSC-07pd1207

    NASA Image and Video Library

    2007-05-15

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments roll to the Rotation, Processing and Surge Facility (RPSF) in Kennedy Space Center's Launch Complex 39 Area. In the background, at left, is the Vehicle Assembly Building. The RPSF is used for solid rocket motor receiving, rotation and inspection, and supports aft booster buildup. When live solid rocket motor segments arrive at the processing facility, they are positioned under one of the cranes. Handling slings are then attached to and remove the railcar cover. The segment is inspected while it remains horizontal. The two overhead cranes hoist the segment, rotate it to a vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  18. KSC-07pd1164

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- This young alligator approaches the railroad tracks where the train carrying solid rocket booster motor segments is approaching Kennedy Space Center. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd1165

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- This young alligator climbs on the railroad tracks where the train carrying solid rocket booster motor segments is approaching Kennedy Space Center. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/Kim Shiflett

  20. General view in the transfer aisle of the Vehicle Assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center looking at one of a pair of Forward Segments of the Solid Rocket Motor of the Solid Rocket Booster awaiting hoisting and mating to the Solid Rocket Booster assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. General view in the transfer aisle of the Vehicle Assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center looking at one of a pair of Forward Center Segments of the Solid Rocket Motor of the Solid Rocket Booster awaiting hoisting and mating to the Solid Rocket Booster assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  3. KSC-07pd1171

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments cross a road on Kennedy Space Center. These cars are headed for the SRB Assembly and Refurbishment Facility. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  4. KSC-07pd1170

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments cross a road on Kennedy Space Center. These cars are headed for the SRB Assembly and Refurbishment Facility. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  5. KSC-07pd1169

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments cross a road on Kennedy Space Center. These cars are headed for the SRB Assembly and Refurbishment Facility. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  6. KENNEDY SPACE CENTER, FLA. - Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  7. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt sitting on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center while being prepared for mating with the Frustum-Nose Cap Assembly and the Forward Rocket Motor Segment. The prominent feature in this view is the electrical, data, telemetry and safety systems terminal which connects to the Aft Skirt Assembly systems via the Systems Tunnel that runs the length of the Rocket Motor. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Draft environmental impact statement: Space Shuttle Advanced Solid Rocket Motor Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site.

  9. KSC-07pd1044

    NASA Image and Video Library

    2007-05-02

    KENNEDY SPACE CENTER, FLA. -- A train carrying space shuttle reusable solid rocket motor segments from the ATK Launch Systems manufacturing site in Brigham City,Utah, to NASA’s Kennedy Space Center in Florida was derailed May 2. At the site of the train mishap involving eight NASA solid rocket booster segment cars, a handling fixture has been attached to a box car being used as a spacer between the segment cars so that it can be removed from the rails. The solid rocket booster cars can be seen behind it. The train was traveling over the Meridian & Bigbee railroad near Pennington, Ala., at the time of the mishap.. The hardware was intended for use on shuttle Discovery's STS-120 mission in October and shuttle Atlantis's STS-122 mission in December. These segments are interchangeable, and ATK Launch Systems has replacement units that could be used for the shuttle flights, if necessary.

  10. KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, tests a technique for vertical solid rocket booster propellant grain inspection. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, tests a technique for vertical solid rocket booster propellant grain inspection. The inspection of segments is required as part of safety analysis.

  11. Space Shuttle Project

    NASA Image and Video Library

    1977-11-18

    This photograph shows Solid Rocket Booster segments undergoing stacking operations in Marshall Space Flight Center's Building 4707. The Solid Rocket Boosters were designed in-house at the Marshall Center with the Thiokol Corporation as the prime contractor.

  12. KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  13. KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  14. KENNEDY SPACE CENTER, FLA. - An engine pulls the container enclosing a segment of a solid rocket booster from the Rotation Processing and Surge Facility. The container will join others on the main track for a trip to Utah where the segments will undergo firing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - An engine pulls the container enclosing a segment of a solid rocket booster from the Rotation Processing and Surge Facility. The container will join others on the main track for a trip to Utah where the segments will undergo firing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  15. KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, is fitted with a harness to test a vertical solid rocket booster propellant grain inspection technique. Thon will be lowered inside a mockup of two segments of the SRBs. The inspection of segments is required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - Jeff Thon, an SRB mechanic with United Space Alliance, is fitted with a harness to test a vertical solid rocket booster propellant grain inspection technique. Thon will be lowered inside a mockup of two segments of the SRBs. The inspection of segments is required as part of safety analysis.

  16. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  17. Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Graves, Stan R.; McCool, Alex (Technical Monitor)

    2001-01-01

    An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).

  18. A Review of ETM-03 (A Five Segment Shuttle RSRM Configuration) Ballistic Performance

    NASA Technical Reports Server (NTRS)

    McMillin, J. E.; Furfaro, J. A.

    2004-01-01

    Marshall Space Flight Center and ATK Thiokol Propulsion worked together on the engineering design of a five-segment Engineering Test Motor (ETM-03), the world's largest segmented solid rocket motor. The data from ETM-03's static test have helped to provide a better understanding of the Reusable Solid Rocket Motor's (RSRM's) margins and the techniques and models used to simulate solid rocket motor performance. The enhanced performance of ETM-03 was achieved primarily by the addition of a RSRM center segment. Added motor performance was also achieved with a nozzle throat diameter increase and the incorporation of an Extended Aft Exit Cone (EAEC). Performance parameters such as web time, action time, head-end pressure, web time average pressure, maximum thrust, mass flow rate, centerline Mach number, pressure and thrust integrals were all increased over RSRM. In some cases, the performance increases were substantial. Overall, the measured data were exceptionally close to the pretest predictions.

  19. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt sitting on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center while being prepared for mating with the Frustum-Nose Cap Assembly and the Forward Rocket Motor Segment. The prominent feature in this view is the Forward Thrust Attach Fitting which mates up with the Forward Thrust Attach Fitting of the External Tank (ET) at the ends of the SRB Beam that runs through the ET's Inter Tank Assembly. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  1. Space Shuttle solid rocket motor exposure monitoring

    NASA Technical Reports Server (NTRS)

    Brown, S. W.

    1993-01-01

    During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

  2. Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.

  3. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    Shown is an illustration of the Ares I concept. The first stage will be a single, five-segment solid rocket booster derived from the space shuttle programs reusable solid rocket motor. The first stage is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama for NASA's Constellation program.

  4. KENNEDY SPACE CENTER, FLA. - At the Rotation, Processing and Surge Facility stand a mockup of two segments of a solid rocket booster (SRB) being used to test the feasibility of a vertical SRB propellant grain inspection, required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - At the Rotation, Processing and Surge Facility stand a mockup of two segments of a solid rocket booster (SRB) being used to test the feasibility of a vertical SRB propellant grain inspection, required as part of safety analysis.

  5. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    To predict pressure-time and thrust-time behavior of solid rocket motors, a one-dimensional numerical model is developed. The ignition phase of solid rocket motors (time less than 0.4 sec) depends critically on complex interactions among many elements, such as rocket geometry, heat and mass transfer, flow development, and chemical reactions. The present model solves the mass, momentum, and energy equations governing the transfer processes in the rocket chamber as well as the attached converging-diverging nozzle. A qualitative agreement with the SRM test data in terms of head-end pressure gradient and the total thrust build-up is obtained. Numerical results show that the burning rate in the star-segmented head-end section and the erosive burning are two important parameters in the ignition transient of the solid rocket motor (SRM).

  6. Modal survey of the space shuttle solid rocket motor using multiple input methods

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Hunt, David L.; Jensen, Brent M.; Mason, Donald R.

    1987-01-01

    The ability to accurately characterize propellant in a finite element model is a concern of engineers tasked with studying the dynamic response of the Space Shuttle Solid Rocket Motor (SRM). THe uncertainties arising from propellant characterization through specimem testing led to the decision to perform a model survey and model correlation of a single segment of the Shuttle SRM. Multiple input methods were used to excite and define case/propellant modes of both an inert segment and, later, a live propellant segment. These tests were successful at defining highly damped, flexible modes, several pairs of which occured with frequency spacing of less than two percent.

  7. Infrared Imagery of Solid Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  8. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  9. Advanced Solid Rocket Motor case design status

    NASA Technical Reports Server (NTRS)

    Palmer, G. L.; Cash, S. F.; Beck, J. P.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) case design aimed at achieving a safer and more reliable solid rocket motor for the Space Shuttle system is considered. The ASRM case has a 150.0 inch diameter, three equal length segment, and 9Ni-4CO-0.3C steel alloy. The major design features include bolted casebolted case joints which close during pressurization, plasma arc welded factory joints, integral stiffener for splash down and recovery, and integral External Tank attachment rings. Each mechanical joint has redundant and verifiable o-ring seals.

  10. Enhanced Large Solid Rocket Motor Understanding Through Performance Margin Testing: RSRM Five-Segment Engineering Test Motor (ETM-3)

    NASA Technical Reports Server (NTRS)

    Huppi, Hal; Tobias, Mark; Seiler, James

    2003-01-01

    The Five-Segment Engineering Test Motor (ETM-3) is an extended length reusable solid rocket motor (RSRM) intended to increase motor performance and internal environments above the current four-segment RSRM flight motor. The principal purpose of ETM-3 is to provide a test article for RSRM component margin testing. As the RSRM and Space Shuttle in general continue to age, replacing obsolete materials becomes an ever-increasing issue. Having a five-segment motor that provides environments in excess of normal opera- tion allows a mechanism to subject replacement materials to a more severe environment than experienced in flight. Additionally, ETM-3 offers a second design data point from which to develop and/or validate analytical models that currently have some level of empiricism associated with them. These enhanced models have the potential to further the understanding of RSRM motor performance and solid rocket motor (SRM) propulsion in general. Furthermore, these data could be leveraged to support a five-segment booster (FSB) development program should the Space Shuttle program choose to pursue this option for abort mode enhancements during the ascent phase. A tertiary goal of ETM-3 is to challenge both the ATK Thiokol Propulsion and NASA MSFC technical personnel through the design and analysis of a large solid rocket motor without the benefit of a well-established performance database such as the RSRM. The end result of this undertaking will be a more competent and experienced workforce for both organizations. Of particular interest are the motor design characteristics and the systems engineering approach used to conduct a complex yet successful large motor static test. These aspects of ETM-3 and more will be summarized.

  11. PHOTOGRAPHER: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and

    NASA Technical Reports Server (NTRS)

    1980-01-01

    PHOTOGRAPHER: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  12. Photographer: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photographer: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  13. KSC-07pd3457

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- Workers oversee the placement of a solid rocket booster segment onto a railroad car at the railroad yard at NASA's Kennedy Space Center. The spent segment is part of the booster used to launch space shuttle Discovery in October. The segment will be placed on the car and covered for the long trip back to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused after each launch. After hydrolasing the interior of each segment, they are placed on flatbed trucks. The individual booster segments are transferred to a railhead located at the railroad yard at NASA's Kennedy Space Center. The long train of segments is part of the twin solid rocket boosters used to launch space shuttle Discovery in October. The NASA Railroad locomotive backs up the rail cars and the segment is lowered onto the car. The covered segments are moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Amanda Diller

  14. Solid rocket booster performance evaluation model. Volume 3: Sample case. [propellant combustion simulation/internal ballistics

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solid rocket booster performance evaluation model (SRB-11) is used to predict internal ballistics in a sample motor. This motor contains a five segmented grain. The first segment has a 14 pointed star configuration with a web which wraps partially around the forward dome. The other segments are circular in cross-section and are tapered along the interior burning surface. Two of the segments are inhibited on the forward face. The nozzle is not assumed to be submerged. The performance prediction is broken into two simulation parts: the delivered end item specific impulse and the propellant properties which are required as inputs for the internal ballistics module are determined; and the internal ballistics for the entire burn duration of the motor are simulated.

  15. Introduction to Solid Rocket Propulsion

    DTIC Science & Technology

    2004-01-01

    totally valid. Fluid-“ structure ” coupling: structure is understood here as the assembly of all the solid parts of the motor: restrictors, grain, case...Conference and Exhibit, San Diego, CA, July 12, 1995. ASSM/POP Program [10] Fonctionnement des moteurs à propergol solide segmentés pour lanceurs ...spatiaux, Colloque CNES/ONERA, Châtillon, FR, Dec. 8-9, 1992. [11] Fonctionnement des moteurs à propergol solide segmentés pour lanceurs spatiaux

  16. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  17. Five-Segment Solid Rocket Motor Development Status

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  18. KSC-04PD-0137

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  19. Ultrasonic method for inspection of the propellant grain in the space shuttle solid rocket booster

    NASA Astrophysics Data System (ADS)

    Doyle, T. E.; Degtyar, A. D.; Sorensen, K. P.; Kelso, M. J.; Berger, T. A.

    2000-05-01

    Defects in solid rocket propellant may affect the safe operation of a space launch vehicle. The Space Shuttle reusable solid rocket motor (RSRM) is therefore routinely inspected with radiography for voids, cracks, and inclusions. Ultrasonic methods can be used to supplement radiography when an indication is difficult to interpret due to the projection geometry or low contrast. Such a method was developed to inspect a local region of propellant in an RSRM forward segment for a suspect inclusion. The method used a through-transmission approach, with a stationary transmitter on the propellant grain inside the segment and a receiving transducer scanned over the case surface. Low frequency (⩽250 kHz) pulses were propagated through 10-12 inches of propellant, 0.5 inches of NBR insulation, and 0.5 inches of steel case. Through-transmission images were constructed using time-of-flight analysis of the waveforms. The ultrasonic inspections supported results from extended radiographic studies, showing that the indication was not an inclusion but an artifact resulting from liner thickness variations and a low X-ray projection angle in the segment's dome region. This work demonstrated the feasibility of using ultrasonics for inspection of propellant grain in steel-cased rocket motors.

  20. Closeup view of the External Tank and Solid Rocket Boosters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the External Tank and Solid Rocket Boosters at the Launch Pad at Kennedy Space Center. Note the Hydrogen Vent Arm extending out from the Fixed Service Structure at attached to the Intertank segment of the External Tank. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. KSC-04PD-0139

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  2. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, talks with a reporter about the booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  3. KSC-04PD-0136

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. An engine pulls the container enclosing a segment of a solid rocket booster from the Rotation Processing and Surge Facility. The container will join others on the main track for a trip to Utah where the segments will undergo firing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  4. SRB Safety Analysis

    NASA Image and Video Library

    2003-09-11

    Jeff Thon, an SRB mechanic with United Space Alliance, is lowered into a mockup of a segment of a solid rocket booster. He is testing a technique for vertical SRB propellant grain inspection. The inspection of segments is required as part of safety analysis.

  5. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, explains the various test stands and how they will be used to prepare booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  6. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  7. KSC-08pd1859

    NASA Image and Video Library

    2008-07-01

    CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, a crane is lowered over the aft skirt for the Ares 1-X rocket. The segment is being lifted into a machine shop work stand for drilling modifications. The modifications will prepare it for the installation of the auxiliary power unit controller, the reduced-rate gyro unit, the booster decelerator motors and the booster tumble motors. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. Ares I-X is a test rocket. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-1806

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A worker on Freedom Star, one of NASA's solid rocket booster retrieval ships, manipulates a crane to recover the left solid rocket booster from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. KSC-08pd1093

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker maneuvers a panel to build another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd1096

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers line up the new equipment cabinets. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd1090

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, cabinets are being erected to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd1094

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd1091

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  14. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media view a forward skirt that will be used on a solid rocket booster for NASA’s Space Launch System (SLS) rocket. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. Rick Serfozo, Orbital ATK Florida site director, talks to the media. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  15. KSC-08pd1186

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- Vibration and laser testing is being conducted on Ares I-X segments at NASA's Kennedy Space Center. Here, technicians in the Vehicle Assembly Building configure the Inert Solid Rocket Motor Segment with an accelerometer to collect test data. Photo credit: NASA/Dimitri Gerondidakis

  16. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  17. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  18. KSC-08pd3245

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Workers lift the Ares IX upper stage segments’ ballast assemblies off a truck in high bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd3247

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Workers position Ares IX upper stage segments’ ballast assemblies along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd3243

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - One of five trucks transporting the Ares IX upper stage segments’ ballast assemblies arrives at the Vehicle Assembly Building at NASA’s Kennedy Space, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd3244

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies are offloaded from one of five trucks which delivered them to the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd3246

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Workers lower an Ares IX upper stage segments’ ballast assembly onto the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd3249

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd3248

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  5. KSC-08pd3250

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  6. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media view the right-hand aft skirt that will be used on a solid rocket booster for NASA’s Space Launch System (SLS) rocket. Orbital ATK is contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. At far right, in the royal blue shirt, Rick Serfozo, Orbital ATK Florida site director, talks to the media. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  7. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph a frustrum that will be stacked atop a forward skirt for one of NASA’s Space Launch System (SLS) solid rocket boosters. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft on deep-space missions and the journey to Mars.

  8. KSC-08pd1095

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, the number of new equipment cabinets increases as workers put the elements together. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd1088

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- A near-empty Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center is ready for the installation of racks of equipment. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd1092

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker holds on to a cabinet being put together to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd1089

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, panels stretch across the floor in preparation for erecting equipment racks. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  12. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  13. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the RPSF. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  14. KSC-08pd1188

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- Vibration and laser testing is being conducted on Ares I-X segments at NASA's Kennedy Space Center. This is an overall view of the modal testing setup using the Inert Solid Rocket Motor Segment and Laser Vibrometer in high bay 4 of the Vehicle Assembly building. Photo credit: NASA/Dimitri Gerondidakis

  15. Recovery of piece of the aft center segment tang joint of SRB

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A 4000 pound, 11' x 20' piece of the aft center segment tang joint of the Shuttle Challenger's right-hand solid rocket booster is off loaded from the Stena Workhorse after its recovery on April 13, 1986. The burned out area is 15' x 28'.

  16. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph the process as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  17. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media watch as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  18. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses included three-dimensional models of the RSRM and FSM aft motors with four-degree vectored nozzles.

  19. KSC-07pd1163

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- This young alligator crosses a road near the railroad tracks where the train carrying solid rocket booster motor segments approaches Kennedy Space Center. Photo credit: NASA/George Shelton

  20. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as two cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System (SLS) rocket into the vertical position inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. The pathfinder booster segment will be moved to the other end of the RPSF and secured on a test stand. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  1. Study of solid rocket motors for a space shuttle booster. Appendix C: Recovery and reuse 120-inch diameter solid rocket motor boosters

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A baseline for a space shuttle configuration utilizing four parallel-burn 120-in. diameter SRMS is presented. Topics discussed include parachute system sequence, recovery system development profile, parachute container, and segment and closure recovery operations. A cost analysis for recovery of the SRM stage is presented. It is concluded that from the standpoint of minimum cost and development, parachutes are the best means of achieving SRM recovery. Major SRM components can be reused safely.

  2. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  3. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, conracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  4. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, approaches the raised span of the NASA railroad bridge to continue over the Indian River north of Kennedy Space Center with two containers on railcars for storage at the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  5. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard near the center. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  6. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, continues along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  7. SRB Stack Training

    NASA Image and Video Library

    2018-01-30

    Crane operators and ground support personnel practice lifting and stacking mock-ups of solid rocket booster (SRB) segments in High Bay 4 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The training will help workers prepare for SRB stacking operations for the agency's Space Launch System SLS) rocket. The SLS will launch the Orion spacecraft on its first integrated flight, Exploration Mission-1.

  8. ASRM case insulation design and development

    NASA Astrophysics Data System (ADS)

    Bell, Matthew S.; Tam, William F. S.

    1992-10-01

    This paper describes the achievements made on the Advanced Solid Rocket Motor (ASRM) case insulation design and development program. The ASRM case insulation system described herein protects the metal case and joints from direct radiation and hot gas impingement. Critical failure of solid rocket systems is often traceable to failure of the insulation design. The wide ranging accomplishments included the development of a nonasbestos insulation material for ASRM that replaced the existing Redesigned Solid Rocket Motor (RSRM) asbestos-filled nitrile butadiene rubber (NBR) along with a performance gain of 300 pounds, and improved reliability of all the insulation joint designs, i.e., segmented case joint, case-to-nozzle and case-to-igniter joint. The insulation process development program included the internal stripwinding process. This process advancement allowed Aerojet to match to exceed the capability of other propulsion companies.

  9. Characterization of welded HP 9-4-30 steel for the advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Watt, George William

    1990-01-01

    Solid rocket motor case materials must be high-strength, high-toughness, weldable alloys. The Advanced Solid Rocket Motor (ASRM) cases currently being developed will be made from a 9Ni-4Co quench and temper steel called HP 9-4-30. These ultra high-strength steels must be carefully processed to give a very clean material and a fine grained microstructure, which insures excellent ductility and toughness. The HP 9-4-30 steels are vacuum arc remelted and carbon deoxidized to give the cleanliness required. The ASRM case material will be formed into rings and then welded together to form the case segments. Welding is the desired joining technique because it results in a lower weight than other joining techniques. The mechanical and corrosion properties of the weld region material were fully studied.

  10. ASRM case insulation design and development

    NASA Technical Reports Server (NTRS)

    Bell, Matthew S.; Tam, William F. S.

    1992-01-01

    This paper describes the achievements made on the Advanced Solid Rocket Motor (ASRM) case insulation design and development program. The ASRM case insulation system described herein protects the metal case and joints from direct radiation and hot gas impingement. Critical failure of solid rocket systems is often traceable to failure of the insulation design. The wide ranging accomplishments included the development of a nonasbestos insulation material for ASRM that replaced the existing Redesigned Solid Rocket Motor (RSRM) asbestos-filled nitrile butadiene rubber (NBR) along with a performance gain of 300 pounds, and improved reliability of all the insulation joint designs, i.e., segmented case joint, case-to-nozzle and case-to-igniter joint. The insulation process development program included the internal stripwinding process. This process advancement allowed Aerojet to match to exceed the capability of other propulsion companies.

  11. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as a crane is used to move one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket to a test stand in the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  12. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    NASA Astrophysics Data System (ADS)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  13. View of the O-ring in the top of the aft segment of the right SRB

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a close-out photograph of the O-ring in the top of the aft segment of the right solid rocket booster (SRB) flown on Space Shuttle mission 51-L. The photograph was released following a hearing on the accident (10163); Close-out photograph of the top of the aft segment of the right SRB flown on Space Shuttle mission 51-L (10164).

  14. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Inside the RPSF, engineers and technicians with Jacobs Engineering on the Test and Operations Support Contract, explain the various test stands. In the far corner is one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  15. Robotic NDE inspection of advanced solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Mcneelege, Glenn E.; Sarantos, Chris

    1994-01-01

    The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.

  16. Thermal Barrier/Seal for Extreme Temperature Applications

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Phelps, Jack; Bauer, Paul; Bond, Bruce; McCool, Alex (Technical Monitor)

    2002-01-01

    Large solid rocket motors, as found on the Space Shuttle, are fabricated in segments for manufacturing considerations, bolted together, and sealed using conventional Viton O-ring seals. Similarly the nine large solid rocket motor nozzles are assembled from several different segments, bolted together, and sealed at six joint locations using conventional O-ring seals. The 5500 F combustion gases are generally kept a safe distance away from the seals by thick layers of phenolic or rubber insulation. Joint-fill compounds, including RTV (room temperature vulcanized compound) and polysulfide filler, are used to fill the joints in the insulation to prevent a direct flow-path to the O-rings. Normally these two stages of protection are enough to prevent a direct flow-path of the 900-psi hot gases from reaching the temperature-sensitive O-ring seals. However, in the current design 1 out of 15 Space Shuttle solid rocket motors experience hot gas effects on the Joint 6 wiper (sacrificial) O-rings. Also worrisome is the fact that joints have experienced heat effects on materials between the RTV and the O-rings, and in two cases O-rings have experienced heat effects. These conditions lead to extensive reviews of the post-flight conditions as part of the effort to monitor flight safety. We have developed a braided carbon fiber thermal barrier to replace the joint fill compounds in the Space Shuttle solid rocket motor nozzles to reduce the incoming 5500 F combustion gas temperature and permit only cool (approximately 100 F) gas to reach the temperature-sensitive O-ring seals. Implementation of this thermal barrier provides more robust, consistent operation with shorter turn around times between Shuttle launches.

  17. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.

  18. ARC-1980-AC80-0107-2

    NASA Image and Video Library

    1980-02-06

    The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  19. ARC-1980-AC80-0107-3

    NASA Image and Video Library

    1980-02-06

    The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  20. Closeup view of an External Tank (ET) Attach Ring undergoing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of an External Tank (ET) Attach Ring undergoing preparations in the Processing Building of the Rotation Processing and Surge Facility at Kennedy Space Center. After preparations are complete the ET Attach Ring will be mated to the top of the Aft Motor Segment. The most prominent features in this view are the ET/Solid Rocket Booster Struts in the center and left in the view and the Aft Integrated Electronics Assembly located on the right side if the ring in this view. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  2. KSC-2011-1878

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  3. KSC-2011-1848

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, tows the left spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  4. KSC-2011-1873

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  5. KSC-2011-1879

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  6. KSC-2011-1832

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, are pulling the parachute from the left spent booster out of the Atlantic Ocean. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  7. KSC-2011-1874

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  8. KSC-2011-1877

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  9. KSC-2011-1815

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, recover the left spent booster nose cap from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  10. KSC-2011-1849

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, reaches Port Canaveral, Florida with the left spent booster from space shuttle Discovery's final launch, in tow. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  11. KSC-2011-1831

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, have attached a line, held up by flotation devices, between the left spent booster parachute and the ship. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  12. Estimation of Coriolis Force and Torque Acting on Ares-1

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan M.; Kulikov, Igor K.; Smelyanskiy, Vadim; Luchinsky, Dmitry; Orr, Jeb

    2011-01-01

    A document describes work on the origin of Coriolis force and estimating Coriolis force and torque applied to the Ares-1 vehicle during its ascent, based on an internal ballistics model for a multi-segmented solid rocket booster (SRB).

  13. Environmental impact statement Space Shuttle advanced solid rocket motor program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  14. KSC00pp1030

    NASA Image and Video Library

    2000-07-22

    The railroad tracks are under repair at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  15. KSC-00pp1031

    NASA Image and Video Library

    2000-07-27

    Railroad track repairs have been completed at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  16. KSC-00pp1029

    NASA Image and Video Library

    2000-07-22

    The railroad tracks are under repair at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  17. KSC-00pp1032

    NASA Image and Video Library

    2000-07-27

    Railroad track repairs have been completed at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  18. KSC-00pp1030

    NASA Image and Video Library

    2000-07-22

    The railroad tracks are under repair at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  19. KSC00pp1031

    NASA Image and Video Library

    2000-07-27

    Railroad track repairs have been completed at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  20. KSC00pp1032

    NASA Image and Video Library

    2000-07-27

    Railroad track repairs have been completed at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  1. KSC00pp1029

    NASA Image and Video Library

    2000-07-22

    The railroad tracks are under repair at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18

  2. Qualification of the RSRM case membrane case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor (RSRM) case membrane case-to-insulation bondline inspection was performed. Testing was performed at M-67, the Thiokol Corp. RSRM Assembly Facility. The purpose of the inspection was to verify the integrity of the case membrane case-to-insulation bondline. The case membrane scanner was calibrated on the redesigned solid rocket motor case segment calibration standard, which had an intentional 1.0 by 1.0 in. case-to-insulation unbond. The case membrane scanner was then used to scan a 20 by 20 in. membrane area of the case segment. Calibration of the scanner was then rechecked on the calibration standard to ensure that the calibration settings did not change during the case membrane scan. This procedure was successfully performed five times to qualify the unbond detection capability of the case membrane scanner.

  3. Structural analysis of a bolted joint concept for the space shuttle's solid rocket motor casing

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Stalnaker, Winifred A.

    1987-01-01

    The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints joining together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was made at NASA Langley Research Center to design an alternative concept for mating the casing segments. A bolted flange joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading conditions analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages making the bolted joint an attractive alternative.

  4. Vortex Shedding Inside a Baffled Air Duct

    NASA Technical Reports Server (NTRS)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  5. KSC-2011-1871

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members and divers in skiffs from Liberty Star, one of NASA's solid rocket booster retrieval ships, are prepared to retrieve the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  6. KSC-2011-1869

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, use skiffs to approach the right spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's final launch. Divers are already in the water. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  7. KSC-2011-1817

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  8. KSC-2011-1809

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris is steering Freedom Star, one of NASA's solid rocket booster retrieval ships in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. KSC-2011-1822

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a skiff to approach the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  10. KSC-2011-1910

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-1813

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crew member from Freedom Star, one of NASA's solid rocket booster retrieval ships, throws a tow line into the Atlantic Ocean in order to capture the left spent booster nose cap after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  12. KSC-2011-1814

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, prepare to recover the left spent booster nose cap from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  13. KSC-2011-1825

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, inspect the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  14. KSC-2011-1918

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch hangs in a hoisting device at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  15. KSC-2011-1808

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris is steering Freedom Star, one of NASA's solid rocket booster retrieval ships in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  16. KSC-2011-1833

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves a spent booster nose cap from the from out of the Atlantic Ocean and onto the deck after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  17. KSC-2011-1909

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is moved into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  18. KSC-2011-1864

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, uses a crane to haul the right booster nose cap out of the Atlantic Ocean that splashed down after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  19. KSC-2011-1921

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, accompany the left spent booster, used during space shuttle Discovery's final launch, into the building for processing. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  20. KSC-2011-1868

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The sun dawns over the Atlantic Ocean and Liberty Star, one of NASA's solid rocket booster retrieval ships, stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  1. KSC-2011-1862

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members on Liberty Star, one of NASA's solid rocket booster retrieval ships, use a crane to haul the parachute from the right spent booster onto the ship after it splashed down in the Atlantic Ocean after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  2. KSC-2011-1912

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  3. KSC-2011-1870

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Liberty Star, one of NASA's solid rocket booster retrieval ships, attach a tow rope to the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  4. KSC-2011-1823

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a skiff to approach the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  5. KSC-2011-1834

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The massive parachute from the left spent booster is rolled up on the deck of Freedom Star, one of NASA's solid rocket booster retrieval ships, after recovery from the Atlantic Ocean and will be returned to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  6. KSC-2011-1856

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Captain Bren Wade is steering Liberty Star, one of NASA's solid rocket booster retrieval ships in the direction of the right spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  7. KSC-2011-1866

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, work on the parachute from the right spent booster nose cap that splashed down in the Atlantic Ocean after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  8. KSC-2011-1863

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, uses a crane to haul the right booster nose cap out of the Atlantic Ocean that splashed down after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  9. KSC-2011-1820

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members on Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  10. KSC-2011-1867

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Dusk descends on the Freedom Star, one of NASA's solid rocket booster retrieval ships stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  11. KSC-2011-1855

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A crane and a skiff await Liberty Star, one of NASA's solid rocket booster retrieval ships, to reach the splash-down area where the right spent booster from Discovery's final launch has landed. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  12. KSC-2011-1819

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves the left spent booster nose cap from the Atlantic Ocean and onto the deck after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  13. KSC-2011-1818

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves the left spent booster nose cap from the Atlantic Ocean and onto the deck after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  14. KSC-2011-1816

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  15. KSC-2011-1824

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, approach and inspect the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  16. KSC-2011-1807

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- The nose cap and the top of a spent booster can be seen bobbing in the Atlantic Ocean, waiting to be recovered by the crew members of Freedom Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  17. KSC-2011-1805

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Part of a spent booster is seen in the background bobbing in the Atlantic Ocean as deck hands on Freedom Star, one of NASA's solid rocket booster retrieval vessel prepare to recover it after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  18. KSC-2011-1835

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster nose cap from space shuttle Discovery's final launch is secured to a pallet on Freedom Star, one of NASA's solid rocket booster retrieval ships and will be returned to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  19. KSC-2011-1875

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, monitors the progress as the massive parachute from the right spent booster from space shuttle Discovery's final launch is hauled on board. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  20. KSC-2011-1861

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A nose cap from the right spent booster can be seen bobbing in the Atlantic Ocean, waiting to be recovered by the crew members of Liberty Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  1. KSC-2011-1913

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- Workers in a small raft, guide the left spent booster used during space shuttle Discovery's final launch into position in a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  2. KSC-2011-1812

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- After splashing down, the nose cap of the left spent booster bobs in the Atlantic Ocean as Freedom Star, one of NASA's solid rocket booster retrieval ships makes its way closer for recovery following space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  3. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.

  4. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    The right-hand aft skirt, one part of the aft booster assembly for NASA’s Space Launch System solid rocket boosters, is in view in a processing cell inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  5. US Rocket Propulsion Industrial Base Health Metrics

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1987-07-01

    A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at the Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1987-07-01

    A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at thw Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.

  8. KSC-2009-2206

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – ATK and NASA officials accompanied the Florida East Coast Railroad train carrying the booster segments for the Ares I-X test rocket on its route to NASA's Kennedy Space Center in Florida from Jacksonville, Fla. Seen here in the passenger car are, from left NASA KSC Shuttle Launch Director Mike Leinbach, a Florida East Coast Railroad representative, ATK Ares I First Stage program Director Fred Brasfield, a Florida East Coast Railroad representative, ATK Vice President Space Launch Systems Charlie Precourt, a Florida East Coast Railroad representative, and NASA Marshall Space Flight Center Reusable Solid Rocket Booster Integration Lead Roy Worthy. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  9. The railroad tracks are being repaired at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The railroad tracks are under repair at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18.

  10. Improved Net-Level Filling And Finishing Of Large Castings

    NASA Technical Reports Server (NTRS)

    Johnson, Erik P.; Brown, Richard F.

    1995-01-01

    Improved method of vacuum casting of large, generally cylindrical objects to net sizes and shapes reduces amount of direct manual labor by workers in proximity to cast material. Original application for which method devised is fabrication of solid rocket-motor segments containing solid propellant, wherein need to minimize exposure of workers to propellant material being cast. Improved method adaptable to other applications involving large castings of toxic, flammable, or otherwise hazardous materials.

  11. KSC-08pd4064

    NASA Image and Video Library

    2008-12-17

    CAPE CANAVERAL, Fla. -- A solid rocket booster, or SRB, segment from the STS-126 launch is lowered onto a rail car at the NASA Railroad yard at NASA's Kennedy Space Center. The segment will be taken to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused for another launch. After the segments are hydrolased inside, they are placed on flatbed trucks and transferred to the NASA Railroad yard. The NASA Railroad locomotive backs up the rail cars and the segments are lowered onto the car. After being covered for the trip, the segments will be moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Kim Shiflett

  12. Tool Measures Depths of Defects on a Case Tang Joint

    NASA Technical Reports Server (NTRS)

    Ream, M. Bryan; Montgomery, Ronald B.; Mecham, Brent A.; Keirstead, Bums W.

    2005-01-01

    A special-purpose tool has been developed for measuring the depths of defects on an O-ring seal surface. The surface lies in a specially shaped ringlike fitting, called a capture feature tang, located on an end of a cylindrical segment of a case that contains a solid-fuel booster rocket motor for launching a space shuttle. The capture feature tang is a part of a tang-and-clevis, O-ring joint between the case segment and a similar, adjacent cylindrical case segment. When the segments are joined, the tang makes an interference fit with the clevis and squeezes the O-ring at the side of the gap.

  13. KSC-2011-1847

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, monitor the progress of the left spent booster from space shuttle Discovery's final launch, as it is towed toward the vessel for its return trip to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  14. KSC-2011-1886

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star tows a booster to the dock at Hangar AF on Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  15. KSC-2011-1826

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, make their way back to the vessel after inspecting the left spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  16. KSC-2011-1850

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, is docked at Port Canaveral, Florida. The left spent booster from space shuttle Discovery's final launch is being positioned along side the vessel before continuing on to Hangar AF at Cape Canaveral Air Force Station. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  17. KSC-2011-1803

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Rubber bumpers are stowed on the deck of Freedom Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  18. KSC-2011-1811

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, has sailed to a position in the Atlantic Ocean to recover the left spent booster after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  19. KSC-2011-1859

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- The right spent booster from shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean. Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, will recover the parachute and tow the booster back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  20. KSC-2011-1842

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on Freedom Star, one of NASA's solid rocket booster retrieval ships, monitor the progress of the left spent booster from space shuttle Discovery's final launch, as it is elevated out of the water so it can float horizontally for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  1. KSC-2011-1802

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A flotation device is secured to the railing of Freedom Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  2. KSC-2011-1857

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Liberty Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  3. KSC-2011-1804

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  4. KSC-2011-1865

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, have recovered and secured the right spent booster nose cap to a pallet on the ship's deck that was recovered from the Atlantic Ocean after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  5. KSC-2011-1828

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- This image taken from the bow of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows crew members in a skiff attaching flotation devices, or buoys, to the parachute lines from the left spent booster from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  6. KSC-2011-1854

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A flotation device is secured to the railing of Liberty Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  7. KSC-2011-1858

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  8. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  9. Study of solid rocket motors for a space shuttle booster. Appendix D: Recovery and reuse 156-inch diameter solid rocket motor booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The baseline for a space shuttle configuration utilizing two parallel-burn, 156-in.-diameter SRMs with three segments and techroll seal movable nozzles is presented. The concept and general economic benefits of SRM recovery are equally valid for the series-burn SRMs, provided that those SRMs are also designed for the same strength, stiffness, segmentation, and interchangeability as the present design, and that those SRMs are also recovered as individual units. Feasibility studies were initiated to investigate SRM recoverability. These studies were based upon recovery of the SRM boosters for the Titan 3C. Ground rules precluded SRM modification that required significant changes in motor qualification or schedule. Even with this restriction, the study determined that the recoverable booster concept was completely feasible, both technically and economically. Parachute recovery has been selected as the best method, principally because it can accomplish the task with a minimum development cost and time to achieve operational recovery status. This system affords the highest probability for achieving large cost reductions.

  10. NASTRAN cyclic symmetry capability. [application to solid rocket propellant grains and space antennas

    NASA Technical Reports Server (NTRS)

    Macneal, R. H.; Harder, R. L.; Mason, J. B.

    1973-01-01

    A development for NASTRAN which facilitates the analysis of structures made up of identical segments symmetrically arranged with respect to an axis is described. The key operation in the method is the transformation of the degrees of freedom for the structure into uncoupled symmetrical components, thereby greatly reducing the number of equations which are solved simultaneously. A further reduction occurs if each segment has a plane of reflective symmetry. The only required assumption is that the problem be linear. The capability, as developed, will be available in level 16 of NASTRAN for static stress analysis, steady state heat transfer analysis, and vibration analysis. The paper includes a discussion of the theory, a brief description of the data supplied by the user, and the results obtained for two example problems. The first problem concerns the acoustic modes of a long prismatic cavity imbedded in the propellant grain of a solid rocket motor. The second problem involves the deformations of a large space antenna. The latter example is the first application of the NASTRAN Cyclic Symmetry capability to a really large problem.

  11. KSC-08pd4063

    NASA Image and Video Library

    2008-12-17

    CAPE CANAVERAL, Fla. -- A solid rocket booster, or SRB, segment from the STS-126 launch is being lifted from a transporter to transfer it to a rail car at the NASA Railroad yard at NASA's Kennedy Space Center. The segment will be taken to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused for another launch. After the segments are hydrolased inside, they are placed on flatbed trucks and transferred to the NASA Railroad yard. The NASA Railroad locomotive backs up the rail cars and the segments are lowered onto the car. After being covered for the trip, the segments will be moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Kim Shiflett

  12. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  13. KSC-2011-1841

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster from space shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean as air is pumped into it to lift it out of the water so it can float horizontally for towing back to Port Canaveral, Florida by Freedom Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  14. KSC-2011-1894

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  15. KSC-2011-1891

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  16. KSC-2011-1860

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members of Liberty Star, one of NASA's solid rocket booster retrieval ships, hold on tightly to handle grips as the swells of the Atlantic Ocean cause the vessel to pitch and roll while heading toward the recovery area where the right spent booster splashed down after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  17. KSC-2011-1845

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster from space shuttle Discovery's final launch is seen floating on the water's surface while pumps on Freedom Star, one of NASA's solid rocket booster retrieval ships, push debris and water out of the booster, replacing with air to facilitate floating for its return to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  18. KSC-2011-1898

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- At the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is moved to a tracked dolly for processing. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  19. KSC-2011-1843

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, look back at the vessel toward the left spent booster nose cap, which was recovered from the Atlantic Ocean and now secured on the deck for delivery back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  20. KSC-2011-1882

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, passes through Port Canaveral on its journey to Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  1. KSC-2011-1892

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  2. SLS Resource Reel Aug 2016 orig

    NASA Image and Video Library

    2016-07-04

    Space Launch System Resource Reel Description: This video includes launch animation of NASA’s Space Launch System (SLS), as well as work taking place across NASA centers and the country to build and test the various components that make up the rocket including: the 5-segment solid rocket boosters, the RS-25 rocket engines, the massive tanks that make up the Core Stage of the rocket that fuels the RS-25 engines, and upper portions of the rocket that connect the interim cryogenic propulsion stage to the Orion spacecraft. SLS, is an advanced launch vehicle for a new era of exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in the agency’s Orion spacecraft on missions to an asteroid and eventually to Mars, while opening new possibilities for other payloads including robotic scientific missions to places like Mars, Saturn and Jupiter. Graphic Information: PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov

  3. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-09-09

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  4. Illustration of Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  5. Evaluation of EDR-3 vibration, shock, temperature, and humidity recording unit

    NASA Technical Reports Server (NTRS)

    Rees, Kevin G.; Mondale, C. F.

    1990-01-01

    The purpose of this evaluation was to determine if the self-contained, off-the-shelf, Environmental Data Recorder 3 (EDR-3) could be qualified to monitor shock, vibration, and temperature during rail transportation of space shuttle solid rocket components. The evaluation testing started in November 1989 and continued until June 1990. Two EDR-3 units were used to monitor both on- and off-plant shipments of shuttle components. In addition, extensive testing was performed at Thiokol's Vibration Test facility, T-53. Testing demonstrated that the EDR-3 is capable of successfully monitoring actual shipments of solid rocket hardware. Thiokol metrology has verified the accuracy of temperature monitoring. In addition, calibrated shock/vibration testing demonstrated that the EDR-3 does accurately record acceleration. It is recommended that the vendor modify the EDR-3 data recovery system to allow remote communication via a 30-foot cable. This would permit communication with the unit mounted on a case segment after a rail car cover is installed. The vendor will make this change and produce a new model, designated EDR-3-10. It is further recommended that Thiokol qualify the EDR-3-10 for transportation monitoring of redesigned solid rocket motor (RSRM) components.

  6. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines nears the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the VAB, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  7. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  8. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs up inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  9. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs in to the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  10. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  11. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  12. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    New service platforms for NASA's Space Launch System booster engines, secured on two flatbed trucks, are on their way to the agency's Kennedy Space Center in Florida. They are being transported from fabricator Met-Con Inc. in Cocoa, Florida. The platforms will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  13. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    One of two new work platforms for NASA's Space Launch System booster engines is secured on dunnage inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  14. Illustration of Ares I During Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  15. No damage to rail cars or SRB segments in derailment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After being involved in a minor derailment incident during a routine movement on the tracks, rail cars carrying solid rocket booster segments sit idle. The rail cars were being moved as part of a standard operation to '''order''' the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area.

  16. KSC-08pd4062

    NASA Image and Video Library

    2008-12-17

    CAPE CANAVERAL, Fla. -- Solid rocket booster, or SRB, segments from the STS-126 launch are being taken to the NASA Railroad yard at NASA's Kennedy Space Center. There they will be transferred to a rail car and taken to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused for another launch. After the segments are hydrolased inside, they are placed on flatbed trucks and transferred to the NASA Railroad yard. The NASA Railroad locomotive backs up the rail cars and the segments are lowered onto the car. After being covered for the trip, the segments will be moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Kim Shiflett

  17. KSC00pp0939

    NASA Image and Video Library

    2000-07-20

    After being involved in a minor derailment incident during a routine movement on the tracks, rail cars carrying solid rocket booster segments sit idle. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area

  18. KSC-00pp0939

    NASA Image and Video Library

    2000-07-20

    After being involved in a minor derailment incident during a routine movement on the tracks, rail cars carrying solid rocket booster segments sit idle. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area

  19. Coupled CFD-Thermal Analysis of Erosion Patterns Resulting from Nozzle Wedgeouts on the SRTMV-N2

    NASA Technical Reports Server (NTRS)

    Ables, Catherine; Davis, Philip

    2014-01-01

    The objective of this analysis was to study the effects of the erosion patterns from the introduction of nozzle flaws machined into the nozzle of the SRTMV-N2 (Solid Rocket Test Motor V Nozzle 2). The SRTMV-N2 motor was a single segment static subscale solid rocket motor used to further develop the RSRMV (Redesigned Solid Rocket Motor V Segment). Two flaws or "wedgeouts" were placed in the nozzle inlet parallel to the ply angles of that section to study erosion effects. One wedgeout was placed in the nose cap region and the other placed in the inlet ring on the opposite side of the bondline, separated 180 degrees circumferentially. A coupled CFD (Computational Fluid Analysis)-thermal iterative analytical approach was utilized at the wedgeouts to analyze the erosion profile during the burn time. The iterative CFD thermal approach was applied at five second intervals throughout the motor burn. The coupled fluid thermal boundary conditions were derived from a steady state CFD solution at the beginning of the interval. The derived heat fluxes were then applied along the surface and a transient thermal solution was developed to characterize the material response over the specified interval. Eroded profiles of each of the nozzle's wedgeouts and the original contour were created at each of the specified intervals. The final iteration of the erosion profile showed that both wedgeouts were "washedout," indicating that the erosion profile of the wedgeout had rejoined the original eroded contour, leaving no trace of the wedgeouts post fire. This analytical assessment agreed with post-fire observations made of the SRTMV-N2 wedgeouts, which noted a smooth eroded contour.

  20. History of Solid Rockets

    NASA Technical Reports Server (NTRS)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  1. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  2. KSC-2011-5476

    NASA Image and Video Library

    2011-07-11

    CAPE CANAVERAL, Fla. – Liberty Star, one of NASA’s solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis’ final launch, to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff, and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight, STS-135, at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Photo credit: NASA/Kim Shiflett

  3. Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Sulyma, Peter

    2008-01-01

    The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

  4. KSC-2011-1838

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, waits for crew members near the left spent booster bobbing in the Atlantic Ocean to attach a hose between it and the vessel that will facilitate debris and water clearing and the pumping in of air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  5. KSC-2011-1830

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Captain Michael Nicholas mans the helm of Freedom Star, one of NASA's solid rocket booster retrieval ships, while John Fischbeck, Manager of Vessel Operations and Senior SRB Retrieval Supervisor, and Walt Adams, SRB Retrieval and Dive Supervisor, assist. The ship's crew members are recovering the left spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  6. KSC-2011-1880

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, is docked in Port Canaveral in Florida before continuing on to Hangar AF at Cape Canaveral Air Force Station. A cruise ship is seen in the background. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  7. KSC-2011-1837

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, approach the left spent booster bobbing in the Atlantic Ocean to attach a hose that will facilitate debris and water clearing and the pumping in of air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  8. KSC-2011-1881

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, is docked in Port Canaveral in Florida before continuing on to Hangar AF at Cape Canaveral Air Force Station. A cruise ship is seen in the background. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-1810

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris works at the chart table on the bridge at night under a red light so as not to compromise night vision on Freedom Star, one of NASA's solid rocket booster retrieval ships plotting a course in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  10. KSC-2011-1890

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star leaves the dock at Hangar AF at Cape Canaveral Air Force Station and heads back to its home base at the Turn Basin at NASA's Kennedy Space Center in Florida. The ship recently retrieved a booster that was used during space shuttle Discovery's STS-133 launch from Kennedy's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  11. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  12. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    NASA Technical Reports Server (NTRS)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large hardware segments. The reusable solid rocket motor achieved significant reliability via process control, ground test programs, and postflight assessment. Process control is mandatory for a solid rocket motor as an acceptance test of the delivered product is not feasible. Process control included process failure modes and effects analysis, statistical process control, witness panels, and process product integrity audits. Material controls and inspections were maintained throughout the sub tier vendors. Material fingerprinting was employed to assess any drift in delivered material properties. The RSRM maintained both full scale and sub-scale test articles. These enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. These unique challenges, features of the reusable solid rocket motor, materials and manufacturing issues, and design improvements will be discussed in the paper.

  13. KSC-2009-4610

    NASA Image and Video Library

    2009-08-12

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3, the Ares I-X rocket is being assembled on the mobile launcher platform. Super Stack 4 has just been mated to Super Stack 3 on top. Five super stacks make up the upper stage that will be integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-4609

    NASA Image and Video Library

    2009-08-12

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3, the Ares I-X rocket is being assembled on the mobile launcher platform. Super Stack 4 has just been mated to Super Stack 3 on top. Five super stacks make up the upper stage that will be integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Jack Pfaller

  15. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, has arrived at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be stored in the VAB and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  16. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines has been offloaded from a flatbed truck and is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  17. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the Vehicle Assembly Building, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  18. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines makes its way along the NASA Causeway to the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  19. History of Solid Rockets

    NASA Technical Reports Server (NTRS)

    Green, Becky; Hales, Christy

    2017-01-01

    Solid rockets were created by accident and their design and uses have evolved over time. Solid rockets are more simple and reliable than liquid rockets, but they have reduced performance capability. All solid rockets have a similar set of failure modes.

  20. No damage to rail cars or SRB segments in derailment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    One of two solid rocket booster rail cars is off the track after being involved in a minor derailment incident during a routine movement on the tracks. The rail cars were being moved as part of a standard operation to '''order''' the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area.

  1. KSC-2011-1836

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are large pumping machines that will be attached to the booster by a hose that will blow out debris and water and then pump in air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  2. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    NASA Technical Reports Server (NTRS)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  3. Verification of spatial and temporal pressure distributions in segmented solid rocket motors

    NASA Technical Reports Server (NTRS)

    Salita, Mark

    1989-01-01

    A wide variety of analytical tools are in use today to predict the history and spatial distributions of pressure in the combustion chambers of solid rocket motors (SRMs). Experimental and analytical methods are presented here that allow the verification of many of these predictions. These methods are applied to the redesigned space shuttle booster (RSRM). Girth strain-gage data is compared to the predictions of various one-dimensional quasisteady analyses in order to verify the axial drop in motor static pressure during ignition transients as well as quasisteady motor operation. The results of previous modeling of radial flows in the bore, slots, and around grain overhangs are supported by approximate analytical and empirical techniques presented here. The predictions of circumferential flows induced by inhibitor asymmetries, nozzle vectoring, and propellant slump are compared to each other and to subscale cold air and water tunnel measurements to ascertain their validity.

  4. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  5. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    NASA Technical Reports Server (NTRS)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  6. KSC-2009-2211

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The booster segments for the Ares I-X test rocket were delivered to NASA's Kennedy Space Center in Florida by the Florida East Coast Railroad and the NASA Railroad. Accompanying the train on its route from Jacksonville, Fla., were NASA and ATK officials. Standing here, from left, are ATK Ares I Flight Tests Program Director Joe Oliva, ATK Ares I-X Florida Program Manager Russ Page, NASA Ares Program Manager Steve Cook, ATK Deputy Site Director in Florida Ted Shaffner, NASA KSC Ares I-X Deputy Mission Manager Jon Cowart, ATK Vice President of Space Launch Propulson Cary Ralston, ATK Ares I First Stage program Director Fred Brasfield, ATK Vice President Space Launch Systems Charlie Precourt, ATK Ares I Flight Tests Deputy Program Director Kathy Philpot, NASA Marshall Space Flight Center Reusable Solid Rocket Booster Integration Lead Roy Worthy, ATK Florida Site Director Bob Herman, NASA Res First Stage Project Manager Alex Priskos and NASA KSC Shuttle Launch Director Mike Leinbach. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  7. PRESIDENTIAL COMMISSION - STS-33/51L - KSC

    NASA Image and Video Library

    1986-03-07

    S86-28889 (14 Feb. 1986) --- Kennedy Space Center Director Richard Smith points out a portion of a solid rocket booster segment to astronaut Sally Ride and to the chairman of the Presidential Commission on the Space Shuttle Challenger Accident, William P. Rogers. The commission was taken to various booster storage and handling facilities at KSC on Feb. 14, 1986 as part of the failure investigation. Photo credit: NASA

  8. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  9. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  10. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the Vehicle Assembly Building (VAB), in view in the distance, at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the VAB, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  11. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    NASA Astrophysics Data System (ADS)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development.The present study is useful for driving future investigation and testing of paraffin-based fuels as solid fuels for hybrid propulsion technology, taking into account the needs of industrial applications of this technology.

  12. Illustration of Ares I Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  13. A Coupling Analysis Approach to Capture Unexpected Behaviors in Ares 1

    NASA Astrophysics Data System (ADS)

    Kis, David

    Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process. Preliminary corrections ensure no unanticipated behaviors arise during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can effect solid rocket motors in adverse ways. Within the Ares 1 rocket, unexpected vibrations deemed potentially harmful to future crew were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. This research proposes the use of a coupling strength analysis during the design and development phase to identify potential unanticipated behaviors such as thrust oscillation. Once these behaviors and couplings are identified then a value function, based on research in Value Driven Design, is proposed to evaluate mitigation strategies and their impact on system value. The results from this study showcase a strong coupling interaction from structural displacement back onto the fluid flow of the Ares 1 that was previously deemed inconsequential. These findings show that the use of a coupling strength analysis can aid engineers and managers in identifying unanticipated behaviors and then rank order their importance based on the impact they have on value.

  14. Aerodynamic characteristics of a 142-inch diameter solid rocket booster, configuration 139 (SA2FA/SA2FB)

    NASA Technical Reports Server (NTRS)

    Radford, W. D.; Johnson, J. D.

    1974-01-01

    Tests of a 2.112 percent scale model of the space shuttle solid rocket booster model were conducted in a transonic pressure tunnel. Tests were conducted at Mach numbers ranging from 0.4 to 1.2, angles of attack from minus one degree to plus 181 degrees, and Reynolds numbers from 0.6 million to 6.1 million per foot. The model configurations investigated were as follows: (1) solid rocket booster without external protuberances, (2) solid rocket booster with an electrical tunnel and a solid rocket booster/external tank thrust attachment structure, and (3) solid rocket booster with two body strakes.

  15. KSC-00pp0934

    NASA Image and Video Library

    2000-07-20

    One of two solid rocket booster rail cars is off the track after being involved in a minor derailment incident during a routine movement on the tracks. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area

  16. KSC00pp0934

    NASA Image and Video Library

    2000-07-20

    One of two solid rocket booster rail cars is off the track after being involved in a minor derailment incident during a routine movement on the tracks. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area

  17. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    This photograph shows stacking of the left side of the solid rocket booster (SRB) segments in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). Staging shown here are the aft skirt, aft segment, and aft center segment. The SRB was attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT is to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.

  18. KSC-04PD-2561

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers monitor the movement of a Solid Rocket Booster (SRB) aft center segment as it is lowered toward an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.

  19. KSC-04PD-2562

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers check the alignment of a Solid Rocket Booster (SRB) aft center segment as it is lowered toward an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.

  20. KSC-04PD-2565

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers check the alignment of a Solid Rocket Booster (SRB) aft center segment which has been lowered onto an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.

  1. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  2. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  3. Evidence of erosive burning in shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Martin, C. L.

    1983-01-01

    Known models of Shuttle Solid Rocket Motor (SRM) performance have failed to produce pressure-time traces which accurately matched actual motor performance, especially during the first 5 seconds after ignition and during the last quarter of web burn time. Efforts to compensate for these differences in model reconstruction and actual performance resulted in resorting to the use of a Burning Anomaly Rate Function (BARF). It was suspected that propellant erosive burning was primarily responsible for the variation of model from actual results. The three dimensional Hercules Grain Design and Internal Ballistics Evaluation Program was made operational and slightly modified and an extensive trial and error effort was begun to test the hypothesis of erosive burning as an explanation of the burning anomaly. It was found that introduction of erosive burning (using Green's erosive burning equation) over portions of the aft segment grain and above a threshold gas Mach number did, in fact, give excellent agreement with the actual motor trace.

  4. Experimental investigation of solid rocket motors for small sounding rockets

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  5. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  6. On the history of the development of solid-propellant rockets in the Soviet Union

    NASA Technical Reports Server (NTRS)

    Pobedonostsev, Y. A.

    1977-01-01

    Pre-World War II Soviet solid-propellant rocket technology is reviewed. Research and development regarding solid composite preparations of pyroxyline TNT powder is described, as well as early work on rocket loading calculations, problems of flight stability, and aircraft rocket launching and ground rocket launching capabilities.

  7. Quantity Distance for the Kennedy Space Center Vehicle Assembly Building for Solid Propellant Fueled Launchers

    NASA Technical Reports Server (NTRS)

    Stover, Steven; Diebler, Corey; Frazier, Wayne

    2006-01-01

    The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.

  8. Environmental Monitoring of a Titan 34D 5 1/2 Segment Solid Rocket Motor Static Firing.

    DTIC Science & Technology

    1988-03-01

    concentrations. The sampling scheme called for three near - field sampling sites (AFAL Experimental Areas 1-90, 1-100, and the Receiving, Inspection and Storage...regeneration from acidic rainout. 4. Field -testing the Aerospace and AFESC/LLNL experimental HCI monitors. The firing was first attempted on 4 June...was designed to take advantage of the specified wind corridor, and provided for both near - field and far- field sampling of ground-level HCI

  9. Study of solid rocket motor for space shuttle booster, volume 2, book 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.

  10. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  11. Measuring System Value in the Ares 1 Rocket Using an Uncertainty-Based Coupling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Wenger, Christopher

    Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process to ensure no unanticipated behaviors or unintended consequences arise in the system during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger than anticipated vibrations were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. Upon investigation engineers found the root cause to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design Optimization to identify the major impacts that caused the Thrust Oscillation event in the Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty based optimization technique is used to identify the likelihood of occurrence for these strong or weak interactions to take place.

  12. Ares I-X: On the Threshold of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce

    2009-01-01

    Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.

  13. Application of X-ray television image system to observation in solid rocket motor

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Ito, K.; Tanemura, T.; Shimizu, M.; Godai, T.

    The X-ray television image system is used to observe the solid propellant burning surface during rocket motor operation as well as to inspect defects in solid rocket motors in a real time manner. This system can test 200 mm diameter dummy propellant rocket motors with under 2 percent discriminative capacity. Viewing of a 50 mm diameter internal-burning rocket motor, propellant burning surface time transition and propellant burning process of the surroundings of artificial defects were satisfactorily observed. The system was demonstrated to be effective for nondestructive testing and combustion research of solid rocket motors.

  14. Marshall Space Flight Center Autumn 2005

    NASA Technical Reports Server (NTRS)

    Allen, Mike; Clar, Harry E.

    2006-01-01

    The East Test Area at Marshall Space Flight Center has five major test stands, each of which has two or more test positions, not counting the SSME and RD-180 engine test facilities in the West Test Area. These research and development facilities are capable of testing high pressure pumps, both fuel and oxidizer, injectors, chambers and sea-level engine assemblies, as well as simulating deep space environments in the 12, 15 and 20 foot vacuum chambers. Liquid propellant capabilities are high pressure hydrogen (liquid and gas), methane (liquid and gas), and RP-1 and high pressure LOX. Solid propellant capability includes thrust measurement and firing capability up to 1/6 scale Shuttle SRB segment. In the past six months MSFC supported multiple space access and exploration programs in the previous six months. Major programs were Space Exploration, Shuttle External Tank research, Reusable Solid Rocket Motor (RSRM) development, as well as research programs for NASA and other customers. At Test Stand 115 monopropellant ignition testing was conducted on one position. At the second position multiple ignition/variable burn time cycles were conducted on Vacuum Plasma Spatter (VPS) coated injectors. Each injector received fifty cycles; the propellants were LOX Hydrogen and the ignition source was TEA. Following completion of the monopropellant test series the stand was reconfigured to support ignition testing on a LOX Methane injector system. At TS 116 a thrust stand used to test Booster Separation Motors from the Shuttle SRB system was disassembled and moved from Chemical Systems Division s Coyote Canyon plant to MSFC. The stand was reassembled and readied for BSM testing. Also, a series of tests was run on a Pratt & Whitney Rocketdyne Low Element Density (LED) injector engine. The propellants for this engine are LOX and LH2. At TS 300 the 20 foot vacuum chamber was configured to support hydrogen testing in the Multipurpose Hydrogen Test Bed (MHTB) test article. This testing, which went 24/7 for fourteen consecutive days, demonstrated long duration storage methods intended to minimize losses of propellant in support of the Space Exploration Initiative. The facility is being converted to support similar research using liquid methane. The 12 foot chamber at TS 300 was used to create ascent profiles (both heat and altitude effects) for foam panel testing in support of the Shuttle External Tank program. At TS 500, one position was in build-up to support ATK Thiokol research into the gas dynamics associated with high pressure flow across the propellant joint in segmented solid rocket motors. The testing involves flowing high pressure gas through a 24 motor case. Initial tests will be conducted with simulated aluminum grain, followed by tests using actual propellant. The second position at TS 500 has been in build-up for testing a LOX methane thruster manufactured by KT Engineering. At the Solid Propulsion Test Area (SPTA), the first dual segment 24 solid rocket motor was fired for ATK Thiokol in support of the RSRM program. A new axial thrust measurement stand was designed and fabricated for this testing. Real Time Radiography (RTR) will be deployed to examine nozzle erosion on the next dual segment motor.

  15. Fault Diagnostics and Prognostics for Large Segmented SRMs

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.; Timucin, Dogan A.; Uckun, Serdar; Hayashida, Ben; Watson, Michael; McMillin, Joshua; Shook, David; Johnson, Mont; hide

    2009-01-01

    We report progress in development of the fault diagnostic and prognostic (FD&P) system for large segmented solid rocket motors (SRMs). The model includes the following main components: (i) 1D dynamical model of internal ballistics of SRMs; (ii) surface regression model for the propellant taking into account erosive burning; (iii) model of the propellant geometry; (iv) model of the nozzle ablation; (v) model of a hole burning through in the SRM steel case. The model is verified by comparison of the spatially resolved time traces of the flow parameters obtained in simulations with the results of the simulations obtained using high-fidelity 2D FLUENT model (developed by the third party). To develop FD&P system of a case breach fault for a large segmented rocket we notice [1] that the stationary zero-dimensional approximation for the nozzle stagnation pressure is surprisingly accurate even when stagnation pressure varies significantly in time during burning tail-off. This was also found to be true for the case breach fault [2]. These results allow us to use the FD&P developed in our earlier research [3]-[6] by substituting head stagnation pressure with nozzle stagnation pressure. The axial corrections to the value of the side thrust due to the mass addition are taken into account by solving a system of ODEs in spatial dimension.

  16. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  17. Model Validation of an RSRM Transporter Through Full-scale Operational and Modal Testing

    NASA Technical Reports Server (NTRS)

    Brillhart, Ralph; Davis, Joshua; Allred, Bradley

    2009-01-01

    The Reusable Solid Rocket Motor (RSRM) segments, which are part of the current Space Shuttle system and will provide the first stage of the Ares launch vehicle, must be transported from their manufacturing facility in Promontory, Utah, to a railhead in Corinne, Utah. This approximately 25-mile trip on secondary paved roads is accomplished using a special transporter system which lifts and conveys each individual segment. ATK Launch Systems (ATK) has recently obtained a new set of these transporters from Scheuerle, a company in Germany. The transporter is a 96-wheel, dual tractor vehicle that supports the payload via a hydraulic suspension. Since this system is a different design than was previously used, computer modeling with validation via test is required to ensure that the environment to which the segment is exposed is not too severe for this space-critical hardware. Accurate prediction of the loads imparted to the rocket motor is essential in order to prevent damage to the segment. To develop and validate a finite element model capable of such accurate predictions, ATA Engineering, Inc., teamed with ATK to perform a modal survey of the transport system, including a forward RSRM segment. A set of electrodynamic shakers was placed around the transporter at locations capable of exciting the transporter vehicle dynamics. Forces from the shakers with varying phase combinations were applied using sinusoidal sweep excitation. The relative phase of the shaker forcing functions was adjusted to match the shape characteristics of each of several target modes, thereby customizing each sweep run for exciting a particular mode. The resulting frequency response functions (FRF) from this series of sine sweeps allowed identification of all target modes and other higher-order modes, allowing good comparison to the finite element model. Furthermore, the survey-derived modal frequencies were correlated with peak frequencies observed during road-going operating tests. This correlation enabled verification of the most significant modes contributing to real-world loading of the motor segment under transport. After traditional model updating, dynamic simulation of the transportation environment was compared to the measured operating data to provided further validation of the analysis model. KEYWORDS Validation, correlation, modal test, rocket motor, transporter

  18. KSC-02pd1285

    NASA Image and Video Library

    2002-09-05

    KENNEDY SPACE CENTER, FLA. -- After lifting to vertical, the orbiter Atlantis is moved toward the solid rocket booster and external tank below, on top of the Mobile Launcher Platform, for mating before rollout to the launch pad for mission STS-112. Launch is scheduled no earlier than Oct. 2 for the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  19. KSC-02pd1286

    NASA Image and Video Library

    2002-09-05

    KENNEDY SPACE CENTER, FLA. - Suspended from an overhead crane, the orbiter Atlantis is lowered toward the solid rocket booster and external tank below, on top of the Mobile Launcher Platform, for mating before rollout to the launch pad for mission STS-112. Launch is scheduled no earlier than Oct. 2 for the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  20. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  1. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. In this view the access panel on the Forward Skirt is removed and you can see a small portion of the interior of the Forward Skirt. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Closeup view of the Solid Rocket Booster Frustum and Nose ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster Frustum and Nose Cap assembly undergoing preparations and close-out procedures in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The Nose Cap contains the Pilot and Drogue Chutes and the Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.

  4. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  5. Experimental investigation of a solid rocket combustion simulator

    NASA Technical Reports Server (NTRS)

    Frederick, Robert A., Jr.

    1991-01-01

    The response of solid rocket motor materials to high-temperature corrosive gases is usually accomplished by testing the materials in a subscale solid rocket motor. While this imposes the proper thermal and chemical environment, a solid rocket motor does not provide practical features that would enhance systematic evaluations such as: the ability to throttle for margin testing, on/off capability, low test cost, and a low-hazards test article. Solid Rocket Combustion Simulators (SRCS) are being evaluated by NASA to test solid rocket nozzle materials and incorporate these essential practical features into the testing of rocket materials. The SRCS is designed to generate the thermochemical environment of a solid rocket. It uses hybrid rocket motor technology in which gaseous oxygen (Gox) is injected into a chamber containing a solid fuel grain. Specific chemicals are injected in the aft mixing chamber so that the gases entering the test section match the temperature and a non-dimensional erosion factor B' to insure similarity with a solid motor. Because the oxygen flow can be controlled, this approach allows margin testing, the ability to throttle, and an on/off capability. The fuel grains are inert which makes the test article very safe to handle. The objective of this work was to establish the baseline operating characteristics of a Labscale Solid Rocket Combustion Simulator (LSRCS). This included establishing the baseline burning rates of plexiglass fuels and the evaluation of a combustion instability for hydroxy-terminated polybutadyene (HTPB) propellants. The scope of the project included: (1) activation of MSFC Labscale Hybrid Combustion Simulator; (2) testing of plexiglass fuel at Gox ranges from 0.025 to 0.200 lb/s; (3) burning HTPB fuels at a Gox rate of 0.200 lb/s using four different mixing chamber configurations; and (4) evaluating the fuel regression and chamber pressure responses of each firing.

  6. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  7. Development of a new generation solid rocket motor ignition computer code

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  8. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    A United Launch Alliance (ULA) technician inspects the solid rocket motor for the ULA Atlas V rocket on its transporter near the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The solid rocket motor will be lifted and mated to the rocket in preparation for the launch of NOAA's Geostationary Operational Environmental Satellite (GOES-R) this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  9. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  10. General view of a fully assembled Solid Rocket Booster sitting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a fully assembled Solid Rocket Booster sitting atop the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    As early as September 1972, the Marshall Space Flight Center arnounced plans for a series of 20 water-entry simulation tests with a solid-fueled rocket casing assembly. The tests would provide valuable data for assessment of solid rocket booster parachute water recovery and aid in preliminary solid rocket motor design.

  12. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.

  13. Study of solid rocket motor for a space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study of solid rocket motors for a space shuttle booster was directed toward definition of a parallel-burn shuttle booster using two 156-in.-dia solid rocket motors. The study effort was organized into the following major task areas: system studies, preliminary design, program planning, and program costing.

  14. Dynamic characterization of solid rockets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

  15. General view of a Solid Rocket Motor Nozzle in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Solid Rocket Motor Nozzle in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center, being prepared to be mated with the Aft Skirt. In this view you can see the attach brackets where the Thrust Vector Control System actuators connect to the nozzle which can swivel the nozzle up to 3.5 degrees to redirect the thrust to steer and maintain the Shuttle's programmed trajectory. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The prominent feature in this view is the Forward Thrust Attach Fitting which mates up with the Forward Thrust Attach Fitting of the External Tank (ET) at the ends of the SRB Beam that runs through the ET's Inter Tank Assembly. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Closeup view of the Solid Rocket Booster (SRB) Nose Caps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Nose Caps mounted on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center as they are being prepared for attachment to the SRB Frustum. The Nose Cap contains the Pilot and Drogue Chutes that are deployed prior to the main chutes as the SRBs descend to a splashdown in the Atlantic Ocean where they are recovered refurbished and reused. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  19. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  20. Design of a Six Degree of Freedom Thrust Sensor for a Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    McGehee, Tripp

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spatial dimensions. The current design mounts the rocket in a rigid cage and connects the cage to a solid table by six sensor legs. The legs utilize strain gauges and a Wheatstone bridge to produce a voltage proportional to the force on the leg. A detailed description of the cage design and the design process will be given.

  1. KSC-07pd1450

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  2. Probabilistic failure assessment with application to solid rocket motors

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Davidson, Barry D.; Moore, Nicholas R.

    1990-01-01

    A quantitative methodology is being developed for assessment of risk of failure of solid rocket motors. This probabilistic methodology employs best available engineering models and available information in a stochastic framework. The framework accounts for incomplete knowledge of governing parameters, intrinsic variability, and failure model specification error. Earlier case studies have been conducted on several failure modes of the Space Shuttle Main Engine. Work in progress on application of this probabilistic approach to large solid rocket boosters such as the Advanced Solid Rocket Motor for the Space Shuttle is described. Failure due to debonding has been selected as the first case study for large solid rocket motors (SRMs) since it accounts for a significant number of historical SRM failures. Impact of incomplete knowledge of governing parameters and failure model specification errors is expected to be important.

  3. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were developed. The first and second stages of 1 and 0.8 m dia respectively used low carbon steel casing and PBAN propellant. The first stage used segmented construction with a total propellant weight of 8600 kg. The second stage employed about 3 tonnes of the same propellant. The third and fourth stages were of GFRP construction and employed respectively 1100 and 275 kg of CTPB type propellants. Nozzle expansion ratios upto 30 were employed and delivered vacuum lsp of 2766 Ns/kg realized. The fourth stage motor was subsequently used as the apogee motor for orbit injection of India's first geosynchronous satellite—APPLE. All these motors have been flight proven a number of times. Further design improvements have been incorporated and these motors continue to be in use. Starting in 1984 design for a large booster was undertaken. This booster employs a nominal propellant weight of 125 tonne in a 2.8 m dia casing. The motor is expected to be qualified for flight test in 1989. Side by side a high performance motor housing nearly 7 tonnes of propellant in composite casing of 2 m dia and having flex nozzle control system is also under development for upper stage application. Details of the development of the motors, their leading specifications and performance are described.

  4. Delta II JPSS-1 Solid Rocket Motor Hoist and Mate

    NASA Image and Video Library

    2016-07-19

    The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. Technicians and engineers lift and mate the solid rocket motor to a Delta II rocket in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  5. Delta II JPSS-1 Solid Rocket Motor (SRM) Installation

    NASA Image and Video Library

    2017-04-04

    The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. Technicians and engineers lift and mate the solid rocket motor to a Delta II rocket in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  6. Closeup view of the Solid Rocket Booster Frustum and Nose ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster Frustum and Nose Cap assembly undergoing preparations and assembly procedures in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The Nose Cap contains the Pilot and Drogue Chutes and the Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. In this view the assembly is rotated so that the four Separation Motors are in view and aligned with the approximate centerline of the image. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Assessment of tbe Performance of Ablative Insulators Under Realistic Solid Rocket Motor Operating Conditions (a Doctoral Dissertation)

    NASA Technical Reports Server (NTRS)

    Martin, Heath Thomas

    2013-01-01

    Ablative insulators are used in the interior surfaces of solid rocket motors to prevent the mechanical structure of the rocket from failing due to intense heating by the high-temperature solid-propellant combustion products. The complexity of the ablation process underscores the need for ablative material response data procured from a realistic solid rocket motor environment, where all of the potential contributions to material degradation are present and in their appropriate proportions. For this purpose, the present study examines ablative material behavior in a laboratory-scale solid rocket motor. The test apparatus includes a planar, two-dimensional flow channel in which flat ablative material samples are installed downstream of an aluminized solid propellant grain and imaged via real-time X-ray radiography. In this way, the in-situ transient thermal response of an ablator to all of the thermal, chemical, and mechanical erosion mechanisms present in a solid rocket environment can be observed and recorded. The ablative material is instrumented with multiple micro-thermocouples, so that in-depth temperature histories are known. Both total heat flux and thermal radiation flux gauges have been designed, fabricated, and tested to characterize the thermal environment to which the ablative material samples are exposed. These tests not only allow different ablative materials to be compared in a realistic solid rocket motor environment but also improve the understanding of the mechanisms that influence the erosion behavior of a given ablative material.

  8. Complex Burn Region Module (CBRM) update

    NASA Technical Reports Server (NTRS)

    Adams, Carl L.; Jenkins, Billy

    1991-01-01

    Presented here is a Complex Burn Region Module (CBRM) update for the Solid Rocket Internal Ballistics Module (SRIBM) Program for the Advanced Solid Rocket Motor (ASRM) design/performance assessments. The goal was to develop an improved version of the solid rocket internal ballistics module program that contains a diversified complex region model for motor grain design, performance prediction, and evaluation.

  9. Solid rocket motor certification to meet space shuttle requirements from challenge to achievement

    NASA Technical Reports Server (NTRS)

    Miller, J. Q.; Kilminster, J. C.

    1985-01-01

    Three solid rocket motor (SRM) design requirements for the Space Shuttle were discussed. No existing solid rocket motor experience was available for the requirement for a thrust-time trace, twenty uses for the principle hardware, and a moveable nozzle with an 8 deg. omnivaxial vectoring capability. The solutions to these problems are presented.

  10. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  11. A system level model for preliminary design of a space propulsion solid rocket motor

    NASA Astrophysics Data System (ADS)

    Schumacher, Daniel M.

    Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.

  12. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  13. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2014-01-01

    This paper makes no attempt to comprehensively review erosive burning models or the data collected in pursuit of them; the interested reader could begin with Landsbaum for a historical summary. However, a discussion and comparison to recent work by McDonald and Rettenmaier and Heister will be included, along with data generated by Strand, et. al. Suffice it to say that the search for a way to predict erosive burning in any size motor with formulas cleanly applicable to a typical 1D ballistics analysis has been long thwarted. Some models were based on testing that failed to adequately simulate the solid rocket motor environment. In most cases, no real-time burn rate measurement was available. Two popular models, even when calibrated to recent motor-like real-time burn rate data obtained by Furfaro, were shown by McMillin to be inadequate at modeling erosive burning in the Space Shuttle Reusable Solid Rocket Motor (RSRM), the Space Launch Systems' Five-Segment RSRM (RSRMV), and the five-segment Engineering Test Motor (ETM)-3. Subsequently to the data cited from Strand and Furfaro, additional motors of the same kind as Furfaro's were tested with RSRMV propellant, utilizing 7 segments per motor and 3 throat sizes. By measuring propellant web thickness with ultrasonic gages, the burn rate was determined at cross-flow Mach numbers up to Mach 0.8. Furthermore, because of the different throat sizes in otherwise identical motors, this provides a unique look at the effect of pressure and base burn rate on the erosive response. Figure 1 shows example of the data pertaining to the high Mach motor, where the port area is initially less than the throat area. The burn rate data was processed using a smoothing method developed to reduce the noise without too severely introducing end effects that limit the range of useful data. Then, an empirical ballistics scheme was used to estimate the flow condition based on the burn rate measurements and pressure measured between each segment.

  14. Past and Present Large Solid Rocket Motor Test Capabilities

    NASA Technical Reports Server (NTRS)

    Kowalski, Robert R.; Owen, David B., II

    2011-01-01

    A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.

  15. KSC-2011-5495

    NASA Image and Video Library

    2011-07-11

    CAPE CANAVERAL, Fla. – A frustum from one of space shuttle Atlantis' two spent solid rocket boosters is lowered toward the dock at Hangar AF at Cape Canaveral Air Force Station in Florida to begin the safing process. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by the booster retrieval ships Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-5496

    NASA Image and Video Library

    2011-07-11

    CAPE CANAVERAL, Fla. – At Hangar AF at Cape Canaveral Air Force Station in Florida, a booster retrieval ship delivers a frustum from one of space shuttle Atlantis' spent solid rocket boosters, beginning the safing process. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by the booster retrieval ships Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  17. Qualification Status of Non-Asbestos Internal Insulation in the Reusable Solid Rocket Motor Program

    NASA Technical Reports Server (NTRS)

    Clayton, Louie

    2011-01-01

    This paper provides a status of the qualification efforts associated with NASA's RSRMV non-asbestos internal insulation program. For many years, NASA has been actively engaged in removal of asbestos from the shuttle RSRM motors due to occupation health concerns where technicians are working with an EPA banned material. Careful laboratory and subscale testing has lead to the downselect of a organic fiber known as Polybenzimidazol to replace the asbestos fiber filler in the existing synthetic rubber copolymer Nitrile Butadiene - now named PBI/NBR. Manufacturing, processing, and layup of the new material has been a challenge due to the differences in the baseline shuttle RSRM internal insulator properties and PBI/NBR material properties. For this study, data gathering and reduction procedures for thermal and chemical property characterization for the new candidate material are discussed. Difficulties with test procedures, implementation of properties into the Charring Material Ablator (CMA) codes, and results correlation with static motor fire data are provided. After two successful five segment motor firings using the PBI/NBR insulator, performance results for the new material look good and the material should eventually be qualified for man rated use in large solid rocket motor applications.

  18. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  19. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  20. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility to have a representative in Firing Room 2 at KSC in case of potential motor problems. However, the last time ATK was responsible for a space shuttle launch slip was 1989. During launch, engineers were also stationed in Promontory on teleconference with counterparts at KSC in the event their support was required.

  1. Hybrid rockets - Combining the best of liquids and solids

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.; Goldberg, Ben E.; Estey, Paul N.; Wiley, Dan R.

    1992-01-01

    Hybrid rockets employing liquid oxidizer and solid fuel grain answers to cost, safety, reliability, and environmental impact concerns that have become as prominent as performance in recent years. The oxidizer-free grain has limited sensitivity to grain anomalies, such as bond-line separations, which can cause catastrophic failures in solid rocket motors. An account is presently given of the development effort associated with the AMROC commercial hybrid booster and component testing efforts at NASA-Marshall. These hybrid rockets can be fired, terminated, inspected, evaluated, and restarted for additional testing.

  2. Space shuttle propulsion systems

    NASA Technical Reports Server (NTRS)

    Bardos, Russell

    1991-01-01

    This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.

  3. Analyses of Noise from Reusable Solid Rocket Motor (RSRM) Firings

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Kenny, R. Jeremy; Jerome, Trevor W.; Neilsen, Tracianne B.; Hobbs, Christopher M.; James, Michael M.

    2012-01-01

    NASA s Space Launch Vehicle (SLS) program has chosen the Reusable Solid Rocket Motor V (RSRMV) as the booster system for initial flights. Lift off acoustics continue to be a consideration in overall vehicle vibroacoustic evaluations and launch pad modifications. Work started with the Ares program to understand solid rocket noise mechanisms is continuing through SLS program in conjunction with BYU/Blue Ridge Research Consulting.

  4. KSC-07pd1449

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Columns of fire flow from the solid rocket boosters launching Space Shuttle Atlantis on mission STS-117 while masses of smoke and steam billow across Launch Pad 39A. Atlantis passes the fixed service structure at left, topped by the 80-foot-tall lightning mast. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  5. KSC-07pp1467

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- With solid rocket boosters firing, Space Shuttle Atlantis leaps toward the heavens in a near-perfect launch on mission STS-117 to the International Space Station. The clouds of smoke and steam roll across Launch Pad 39A and surround the rotating service structure at left. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Jerry Cannon & Mike Kerley

  6. Pegasus - Winged workhorse

    NASA Astrophysics Data System (ADS)

    Furniss, Tim

    1988-08-01

    DARPA has initiated the development of a three-stage, solid-propellant air-launched booster for the lofting of small military satellites, or 'lightsats'. This vehicle, designated 'Pegasus', will because of its substantial endoatmospheric mission segment serve as a testbed for the validation of the CFD codes used by NASA as analytical tools in the design of the National Aerospace Plane. The three rocket stages are novel designs, incorporating such features as three-dimensionally woven carbon-carbon integral throat inserts and carbon-phenolic nozzles. The aircraft that will take Pegasus to launch altitude will be the B-52 previously used to launch the X-15.

  7. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  8. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.

  9. On the nature of the fragment environment created by the range destruction or random failure of solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Eck, M.; Mukunda, M.

    1988-01-01

    Given here are predictions of fragment velocities and azimuths resulting from the Space Transportation System Solid Rocket Motor range destruct, or random failure occurring at any time during the 120 seconds of Solid Rocket Motor burn. Results obtained using the analytical methods described showed good agreement between predictions and observations for two specific events. It was shown that these methods have good potential for use in predicting the fragmentation process of a number of generically similar casing systems. It was concluded that coupled Eulerian-Lagrangian calculational methods of the type described here provide a powerful tool for predicting Solid Rocket Motor response.

  10. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  11. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    NASA Astrophysics Data System (ADS)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  12. Analysis of the measured effects of the principal exhaust effluents from solid rocket motors

    NASA Technical Reports Server (NTRS)

    Dawbarn, R.; Kinslow, M.; Watson, D. J.

    1980-01-01

    The feasibility of conducting environmental chamber tests using a small rocket motor to study the physical processes which occur when the exhaust products from solid motors mix with the ambient atmosphere was investigated. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. Several types of instruments for measuring HCl concentrations were evaluated. Under some conditions it was noted that acid aerosols were formed in the ground cloud. These droplets condensed on Al2O3 nuclei and were associated with the rocket exhaust cooling during the period of plume rise to stabilization. Outdoor firings of the solid rocket motors of a 6.4 percent scaled model of the space shuttle were monitored to study the interaction of the exhaust effluents with vegetation downwind of the test site. Data concerning aluminum oxide particles produced by solid rocket motors were evaluated.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1989-06-03

    The Marshall Space Flight Center (MSFC) engineers test fired a 26-foot long, 100,000-pound-thrust solid rocket motor for 30 seconds at the MSFC east test area, the first test firing of the Modified NASA Motor (M-NASA Motor). The M-NASA Motor was fired in a newly constructed stand. The motor is 48-inches in diameter and was loaded with two propellant cartridges weighing a total of approximately 12,000 pounds. The purpose of the test was to learn more about solid rocket motor insulation and nozzle materials and to provide young engineers additional hands-on expertise in solid rocket motor technology. The test is a part of NASA's Solid Propulsion Integrity Program, that is to provide NASA engineers with the techniques, engineering tools, and computer programs to be able to better design, build, and verify solid rocket motors.

  14. Comparisons Between Stability Prediction and Measurements for the Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.; Kenny, R. Jeremy

    2010-01-01

    The Space Transportation System has used the solid rocket boosters for lift-off and ascent propulsion over the history of the program. Part of the structural loads assessment of the assembled vehicle is the contribution due to solid rocket booster thrust oscillations. These thrust oscillations are a consequence of internal motor pressure oscillations active during operation. Understanding of these pressure oscillations is key to predicting the subsequent thrust oscillations and vehicle loading. The pressure oscillation characteristics of the Reusable Solid Rocket Motor (RSRM) design are reviewed in this work. Dynamic pressure data from the static test and flight history are shown, with emphasis on amplitude, frequency, and timing of the oscillations. Physical mechanisms that cause these oscillations are described by comparing data observations to predictions made by the Solid Stability Prediction (SSP) code.

  15. Model of lidar range-Doppler signatures of solid rocket fuel plumes

    NASA Astrophysics Data System (ADS)

    Bankman, Isaac N.; Giles, John W.; Chan, Stephen C.; Reed, Robert A.

    2004-09-01

    The analysis of particles produced by solid rocket motor fuels relates to two types of studies: the effect of these particles on the Earth's ozone layer, and the dynamic flight behavior of solid fuel boosters used by the NASA Space Shuttle. Since laser backscatter depends on the particle size and concentration, a lidar system can be used to analyze the particle distributions inside a solid rocket plume in flight. We present an analytical model that simulates the lidar returns from solid rocket plumes including effects of beam profile, spot size, polarization and sensing geometry. The backscatter and extinction coefficients of alumina particles are computed with the T-matrix method that can address non-spherical particles. The outputs of the model include time-resolved return pulses and range-Doppler signatures. Presented examples illustrate the effects of sensing geometry.

  16. Repeated Failures: What We Haven’t Learned About Complex Systems

    DTIC Science & Technology

    2010-11-01

    Computer (OBC) ordered full nozzle deflection for both solid rocket motors and the Vulcain at approximately T +39 seconds. This was based on data...Workmanship/QC: .. Deficiencies in CM design, workmanship and quality control UNCLASSIFIED What h8PPIIDIItl: • Failure of Solid Rocket Motor ...SAM) field joint allowed hot gases to impinge on External Tank (ET) and lower struts ( aft attach points between ET and Solid Rocket Booster (SRB

  17. Closeup view of the Solid Rocket Booster (SRB) Frustum mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Frustum mounted on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center as it is being prepared to be mated with the Nose Cap and Forward Skirt. The Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. The Separation Motors burn for one second to ensure the SRBs drift away from the External Tank and Orbiter at separation. The three main parachutes are deployed to reduce speed as the SRBs descend to a splashdown in the Atlantic Ocean where they are recovered refurbished and reused. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  19. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  20. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor is lifted on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  1. 24 Inch Reusable Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special 'solvent-spirning' process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  2. Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications

    DTIC Science & Technology

    2010-06-01

    considered: I. Boost/Sustain/Boost. Simulating a tactical solid rocket motor profile with another boost at the end to demonstrate a "throttle up", this...of tactical solid rocket motors were tested with 75%, 50%, and lower sustain-to- boost chamber pressure ratios with rapid throttle-up achieved... solid rocket motors were tested with 75%, 50%, and lower sustain-to-boost chamber pressure ratios with rapid throttle-up achieved following the sustain

  3. Solid Propellant Nonlinear Constitutive Theory Extension

    DTIC Science & Technology

    1984-01-01

    Force Rocket Propulsion Laboratory, June 1979. Farris, R. J., Hermann , I. R., Hutchinson, J. R., and Schapery, R. A., "Development of a Solid Rocket...Effect of Stretching on the Properties of Rubber," J. Rub. Res., 16, 275-289, 1947. 28. Oberth , A. E., and Brenner, R. S., "Tear Phenomena Around...34Development of a Solid Rocket Propellant Nonlinear Viscoelastic Constitutive Theory," AFRPL-TR-73-50, June 1973. 30. Hermann , L. R., and Peterson, F. E., "A

  4. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  5. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less

  6. Around Marshall

    NASA Image and Video Library

    2006-07-14

    A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.

  7. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Preparations are underway to lift the solid rocket motor up from its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  9. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  10. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  11. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  12. A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification

    NASA Technical Reports Server (NTRS)

    Fries, K. L.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.

  13. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  14. Hybrid propulsion technology program: Phase 1, volume 4

    NASA Technical Reports Server (NTRS)

    Claflin, S. E.; Beckman, A. W.

    1989-01-01

    The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.

  15. Technical report analysis and design: Study of solid rocket motors for a space shuttle booster, volume 2, book 1, supplement 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and design effort was conducted as part of the study of solid rocket motor for a space shuttle booster. The 156-inch-diameter, parallel burn solid rocket motor was selected as its baseline because it is transportable and is the most cost-effective, reliable system that has been developed and demonstrated. The basic approach was to concentrate on the selected baseline design, and to draw from the baseline sufficient data to describe the alternate approaches also studied. The following conclusions were reached with respect to technical feasibility of the use of solid rocket booster motors for the space shuttle vehicle: (1) The 156-inch, parallel-burn baseline SRM design meets NASA's study requirements while incorporating conservative safety factors. (2) The solid rocket motor booster represents a cost-effective approach. (3) Baseline costs are conservative and are based on a demonstrated design. (4) Recovery and reuse are feasible and offer substantial cost savings. (5) Abort can be accomplished successfully. (6) Ecological effects are acceptable.

  16. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  17. KSC-07pp1456

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Moments after liftoff, Space Shuttle Atlantis rises on columns of fire from the solid rocket boosters to leap into the sky and a rendezvous with the International Space Station on mission STS-117. Below Atlantis is the mobile launcher platform. At upper left is the fixed service structure with the 80-foot-tall lightning mast on top. Liftoff of Atlantis was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo Credit: NASA/Sandra Joseph and Robert Murray

  18. KSC-07pp1468

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. At left is the fixed service structure with the 80-foot-tall lightning mast on top. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Tony Gray & Don Kight

  19. KSC-07pd1451

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. At right is the water tank that provides the deluge over the mobile launcher platform for sound suppression during liftoff. Liftoff was on-time at 7:38:04 p.m. EDT.The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews

  20. KSC-07pp1465

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. At left is the fixed service structure with the 80-foot-tall lightning mast on top. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo Credit: NASA/Tony Gray & Don Kight

  1. On use of hybrid rocket propulsion for suborbital vehicles

    NASA Astrophysics Data System (ADS)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  2. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  3. The space shuttle advanced solid rocket motor: Quality control and testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Congressional committees that authorize the activities of NASA requested that the National Research Council (NRC) review the testing and quality assurance programs for the Advanced Solid Rocket Motor (ASRM) program. The proposed ASRM design incorporates numerous features that are significant departures from the Redesigned Solid Rocket Motor (RSRM). The NRC review concentrated mainly on these features. Primary among these are the steel case material, welding rather than pinning of case factory joints, a bolted field joint designed to close upon firing the rocket, continuous mixing and casting of the solid propellant in place of the current batch processes, use of asbestos-free insulation, and a lightweight nozzle. The committee's assessment of these and other features of the ASRM are presented in terms of their potential impact on flight safety.

  4. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view forward booster segments (painted green) for NASA’s Space Launch System rocket boosters inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  5. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  6. Space shuttle solid rocket booster recovery system definition, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The performance requirements, preliminary designs, and development program plans for an airborne recovery system for the space shuttle solid rocket booster are discussed. The analyses performed during the study phase of the program are presented. The basic considerations which established the system configuration are defined. A Monte Carlo statistical technique using random sampling of the probability distribution for the critical water impact parameters was used to determine the failure probability of each solid rocket booster component as functions of impact velocity and component strength capability.

  7. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. Why Major Programs Need Innovation Support Labs: An Example from the Space Shuttle Launch Program at KSC

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Starr, Stanley O.; Stevenson, G.; Rivera, Jorge E.; Sullivan, Steven J.

    2011-01-01

    For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems.

  9. KSC-07pd0290

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis, on top of its transporter, heads for the Vehicle Assembly Building after leaving the Orbiter Processing Facility. First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd0288

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- In dawn's early light, the orbiter Atlantis (left), on top of its transporter, heads for the Vehicle Assembly Building (right). First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0291

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis, on top of its transporter, turns toward the Vehicle Assembly Building after leaving the Orbiter Processing Facility. First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  12. Ares V and RS-68B

    NASA Technical Reports Server (NTRS)

    Creech, Steve; Taylor, Jim; Bellamy, Scott; Kuck, Fritz

    2008-01-01

    Ares V is the heavy lift vehicle NASA is designing for lunar and other space missions. It has significantly more lift capability than the Saturn V vehicle used for the Apollo missions to the moon. Ares V is powered by two recoverable 5.5 segment solid rocket boosters and six RS-68B engines on the core stage. The upper stage, designated as the Earth Departure Stage, is powered by a single J-2X engine. This paper provides an overview of the Ares V vehicle and the RS-68B engine, an upgrade to the Pratt & Whitney Rocketdyne RS-68 engine developed for the Delta IV vehicle.

  13. KSC-2009-4444

    NASA Image and Video Library

    2009-08-04

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3 at NASA's Kennedy Space Center in Florida, a crane lowers Super Stack 2, part of the Ares I-X upper stage, for integration with Super Stack 1. The upper stage comprises five super stacks, which are integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Tim Jacobs

  14. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-12-05

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  15. Illustration of Ares V Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  16. Model of the Ares V Launch System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  17. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  18. The development of H-II rocket solid rocket booster thrust vector control system

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Fukushima, Yukio; Kazama, Hiroo; Asai, Tatsuro; Okaya, Shunichi; Watanabe, Yasushi; Muramatsu, Shoji

    The development of the thrust-vector-control (TVC) system for the two solid rocket boosters (SRBs) of the H-II rocket, which was started in 1984 and completed in 1989, is described. Special attention is given to the system's design, the trade-off studies, and the evaluation of the SRB-TVC system performance, as well as to problems that occurred in the course of the system's development and to the countermeasures that were taken. Schematic diagrams are presented for the H-II rocket, the SRB, and the SRB-TVC system configurations.

  19. Space Shuttle Project

    NASA Image and Video Library

    1978-01-18

    Pictured is an early testing of the Solid Rocket Motor (SRM) at the Thiokol facility in Utah. The SRMs later became known as Solid Rocket Boosters (SRBs) as they were more frequently used on the Space Shuttles.

  20. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  1. Engineers demonstrate the pocket rocket

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Part of Stennis Space Center's mission with its traveling exhibits is to educate the younger generation on how propulsion systems work. A popular tool is the 'pocket rocket,' which demonstrates how a hybrid rocket works. A hybrid rocket is a cross breed between a solid fuel rocket and a liquid fuel rocket.

  2. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  3. Viscoelastic propellant effects on Space Shuttle Dynamics

    NASA Technical Reports Server (NTRS)

    Bugg, F.

    1981-01-01

    The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.

  4. Hybrid rocket motor testing at Nammo Raufoss A/S

    NASA Astrophysics Data System (ADS)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  5. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    NASA Technical Reports Server (NTRS)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  6. Solid Rocket Booster Separation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Quick Time movie shows the Space Shuttle Solid Rocket Booster (SRB) separation from the external tank (ET). After separation, the boosters fall to the ocean from which they are retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  7. Analytical investigation of solid rocket nozzle failure

    NASA Technical Reports Server (NTRS)

    Mccoy, K. E.; Hester, J.

    1985-01-01

    On April 5, 1983, an Inertial Upper Stage (IUS) spacecraft experienced loss of control during the burn of the second of two solid rocket motors. The anomaly investigation showed the cause to be a malfunction of the solid rocket motor. This paper presents a description of the IUS system, a failure analysis summary, an account of the thermal testing and computer modeling done at Marshall Space Flight Center, a comparison of analysis results with thermal data obtained from motor static tests, and describes some of the design enhancement incorporated to prevent recurrence of the anomaly.

  8. Solid rocket motors for the Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1972-01-01

    The evolution of the space shuttle booster system is reviewed from its initial concepts based on liquid-propellant reusable boosters to the final selection of recoverable, solid-fuel rocket motors. The rationale associated with each of the several major decisions in the evolution process is discussed. It is shown that the external tank orbiter configuration emerging from the latest studies takes maximum advantage of the solid rocket motor development experience and promises to be the optimum configuration for fulfilling the paramount shuttle program requirements of minimum total development risk within acceptable costs.

  9. Artist's Concept- Ares I On Launchpad 39B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  10. Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a test of the TEM-13 solid rocket motor at the ATK test facility in Utah in support of the Ares/CLV first stage. This image is extracted from high definition video and is the highest resolution available.

  11. Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellaton/Ares project. This image is extracted from a high definition video file and is the highest resolution available.

  12. Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available.

  13. Solid rocket booster performance evaluation model. Volume 4: Program listing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    All subprograms or routines associated with the solid rocket booster performance evaluation model are indexed in this computer listing. An alphanumeric list of each routine in the index is provided in a table of contents.

  14. Closeup view of the Solid Rocket Booster (SRB) Frustum mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Frustum mounted on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center as it is being prepared to be mated with the Nose Cap and Forward Skirt. The Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. The Separation Motors burn for one second to ensure the SRBs drift away from the External Tank and Orbiter at separation. The three main parachutes are deployed to reduce speed as the SRBs descend to a splashdown in the Atlantic Ocean where they are recovered refurbished and reused. In this view the assembly is rotated so that the four Separation Motors are in view and aligned with the approximate centerline of the image. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between themore » two.« less

  16. Technology for low cost solid rocket boosters.

    NASA Technical Reports Server (NTRS)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1989-01-20

    This photograph shows a static firing test of the Solid Rocket Qualification Motor-8 (QM-8) at the Morton Thiokol Test Site in Wasatch, Utah. The twin solid rocket boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special "solvent-spirning" process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  19. Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate

    NASA Image and Video Library

    2016-07-19

    At Vandenberg Air Force Base in California, a solid rocket motor is attached to a United Launch Alliance Delta II rocket at Space Launch Complex 2. Preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  20. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  1. Block 2 Solid Rocket Motor (SRM) conceptual design study. Volume 1: Appendices

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The design studies task implements the primary objective of developing a Block II Solid Rocket Motor (SRM) design offering improved flight safety and reliability. The SRM literature was reviewed. The Preliminary Development and Validation Plan is presented.

  2. STS-55 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

  3. A study of performance and cost improvement potential of the 120 inch (3.05 m) diameter solid rocket motor. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Backlund, S. J.; Rossen, J. N.

    1971-01-01

    A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.

  4. Solid Rocket Boosters Separation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This view, taken by a motion picture tracking camera for the STS-3 mission, shows both left and right solid rocket boosters (SRB's) at the moment of separation from the external tank (ET). After impact to the ocean, they were retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  5. Development and evaluation of an ablative closeout material for solid rocket booster thermal protection system

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1979-01-01

    A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.

  6. Study of solid rocket motors for a space shuttle booster. Appendix E: Environmental impact statement, solid rocket motor, space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the combustion products resulting from the solid propellant rocket engines of the space shuttle booster is presented. Calculation of the degree of pollution indicates that the only potentially harmful pollutants, carbon monoxide and hydrochloric acid, will be too diluted to constitute a hazard. The mass of products ejected during a launch within the troposphere is insignificant in terms of similar materials that enter the atmosphere from other sources. Noise pollution will not exceed that obtained from the Saturn 5 launch vehicle.

  7. SRB Environment Evaluation and Analysis. Volume 3: ASRB Plume Induced Environments

    NASA Technical Reports Server (NTRS)

    Bender, R. L.; Brown, J. R.; Reardon, J. E.; Everson, J.; Coons, L. W.; Stuckey, C. I.; Fulton, M. S.

    1991-01-01

    Contract NAS8-37891 was expanded in late 1989 to initiate analysis of Shuttle plume induced environments as a result of the substitution of the Advanced Solid Rocket Booster (ASRB) for the Redesigned Solid Rocket Booster (RSRB). To support this analysis, REMTECH became involved in subscale and full-scale solid rocket motor test programs which further expanded the scope of work. Later contract modifications included additional tasks to produce initial design cycle environments and to specify development flight instrumentation. Volume 3 of the final report describes these analyses and contains a summary of reports resulting from various studies.

  8. Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Fariz, A.; Sasongko, R. A.; Poetro, R. E.

    2018-04-01

    The effect of solid rocket motor specifications, i.e. specific impulse and mass flow rate, and coast time on the thrust profile of three stages small launch vehicle is studied. Solid rocket motor specifications are collected from various small launch vehicle that had ever been in operation phase, and also from previous study. Comparison of orbital parameters shows that the radius of apocenter targeted can be approached using one combination of solid rocket motor specifications and appropriate coast time. However, the launch vehicle designed is failed to achieve the targeted orbit nor injecting the satellite to any orbit.

  9. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  10. KSC-07pd0287

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis , on top of its transporter, turns the corner from the Orbiter Processing Facility on its way to the Vehicle Assembly Building. First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0292

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis, on top of its transporter, rolls toward the door of the Vehicle Assembly Building after leaving the Orbiter Processing Facility. First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0289

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis, on top of its transporter, heads for the Vehicle Assembly Building (behind it) after leaving the Orbiter Processing Facility. First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0293

    NASA Image and Video Library

    2007-02-07

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis, on top of its transporter, enters the transfer aisle of the Vehicle Assembly Building after the short trip from the Orbiter Processing Facility. First motion out of OPF was at 6:19 a.m. EST. Once in the VAB, Atlantis will be lifted into high bay 1 and mated with the external tank and solid rocket boosters already in place on the mobile launcher platform. The rollover signals the start of the journey to the launch pad for liftoff on mission STS-117 targeted for March 15. The mission is the 21st to the International Space Station and will deliver the S3/S4 starboard truss segments. Photo credit: NASA/Kim Shiflett

  14. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  15. Results of tests on a specimen of the SRB aft skirt heat shield curtain in the MSFC LRLF

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1980-01-01

    A full scale segment of the actual Solid Rocket Booster aft skirt heat shield curtain was tested in the Large Radiant Lamp Facility (LRLF) at Marshall Space Flight Center. The curtain was mounted in the horizontal position in the same manner as it is to be mounted on the SRB. A shaker rig was designed and used to provide a motion of the curtain, simulating that to be caused in flight by vehicle acoustics. Thermocouples were used to monitor curtain materials temperatures. Both ascent and reentry heat loads were applied to the test specimen. All aspects of the test setup performed as expected, and the test was declared successful.

  16. Space Shuttle Project

    NASA Image and Video Library

    1998-03-24

    The roman candle effect as seen in this picture represents the testing of a solid rocket booster (SRB) for unexplained corrosion conditions (EUCC) which have occurred on the nozzles of redesigned solid rocket motors (RSRM). The motor being tested in this photo is a 48 M-NASA motor.

  17. 76 FR 51459 - Office of Commercial Space Transportation (AST); Notice of Availability of the Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... five solid-propellant strap-on rocket motors to the Atlas V launch vehicle and larger solid- propellant strap-on rocket motors on the Delta IV vehicle. The FAA participated as a cooperating agency in...

  18. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  19. Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate

    NASA Image and Video Library

    2016-07-19

    At Vandenberg Air Force Base in California, a solid rocket motor is lifted at Space Launch Complex 2 to be attached to a United Launch Alliance Delta II rocket. Preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  20. Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate

    NASA Image and Video Library

    2016-07-19

    At Vandenberg Air Force Base in California, technicians inspect a solid rocket motor at Space Launch Complex 2 as it is attached to a United Launch Alliance Delta II rocket. Preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  1. KSC-2011-5507

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. - Liberty Star, one of NASA's solid rocket booster retrieval ships, maneuvers the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-5518

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-5508

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, maneuvers the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-5515

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  5. KSC-2011-5368

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-5512

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – The right spent booster from space shuttle Atlantis' final launch is towed by the Liberty Star, one of NASA's solid rocket booster retrieval ships to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-5505

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  8. KSC-2011-5511

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – The right spent booster from space shuttle Atlantis' final launch is towed by the Liberty Star, one of NASA's solid rocket booster retrieval ships to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  9. KSC-2011-5517

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-5369

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-5519

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-5506

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-5365

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-5516

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-5366

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-2212

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The NASA Railroad makes the exchange with the Florida East Coast Railway cars carrying the booster segments for the Ares I-X test rocket. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  17. KSC-2013-4438

    NASA Image and Video Library

    2013-12-19

    VANDENBERG AIR FORCE BASE, Calif. -- A solid rocket rocket motor is maneuvered toward the open high bay door of the Solid Rocket Motor Processing Facility at Vandenberg Air Force Base in California. The motor will be attached to the United Launch Alliance Delta II rocket slated to launch NASA's Orbiting Carbon Observatory-2, or OCO-2, spacecraft in July 2014. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. Photo credit: NASA/Randy Beaudoin

  18. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  19. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  20. KSC-07pp1466

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. At left is the fixed service structure with the 80-foot-tall lightning mast on top. At right is the 290-foot-high water tower that supplies the water for sound suppression. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Tony Gray & Don Kight

  1. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    NASA Astrophysics Data System (ADS)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  2. Measuring Fluctuating Pressure Levels and Vibration Response in a Jet Plume

    NASA Technical Reports Server (NTRS)

    Osterholt, Douglas J.; Knox, Douglas M.

    2011-01-01

    The characterization of loads due to solid rocket motor plume impingement allows for moreaccurate analyses of components subjected to such an environment. Typically, test verification of predicted loads due to these conditions is widely overlooked or unsuccessful. ATA Engineering, Inc., performed testing during a solid rocket motor firing to obtain acceleration and pressure responses in the hydrodynamic field surrounding the jet plume. The test environment necessitated a robust design to facilitate measurements being made in close proximity to the jet plume. This paper presents the process of designing a test fixture and an instrumentation package that could withstand the solid rocket plume environment and protect the required instrumentation.

  3. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    NASA Technical Reports Server (NTRS)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  4. Reduced hazard chemicals for solid rocket motor production

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1995-01-01

    During the last three years. the NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. NASA Marshall Space Flight Center (MSFC) and Thiokol Corporation have worked with other industry representatives and the U.S. Environmental Protection Agency (EPA) to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem-solving combined with a creative synthesis of new approaches to attack this challenge.

  5. Orion EM-1 Forward Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2017-08-30

    The Exploration Mission-1 (EM-1) left-hand forward skirt for NASA's Space Launch System (SLS) solid rocket boosters arrives inside the high bay at the Booster Fabrication Facility (BFF) at NASA's Kennedy Space Center in Florida. In the BFF, the forward skirt will be inspected and prepared for use on the left-hand solid rocket booster for EM-1. NASA's Orion spacecraft will fly atop the SLS rocket on its first uncrewed flight test.

  6. SRB-3D Solid Rocket Booster performance prediction program. Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The programmer's manual for the Modified Solid Rocket Booster Performance Prediction Program (SRB-3D) describes the major control routines of SRB-3D, followed by a super index listing of the program and a cross-reference of the program variables.

  7. Space Shuttle Propulsion System Reliability

    NASA Technical Reports Server (NTRS)

    Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David

    2011-01-01

    This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.

  8. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  9. 76 FR 51459 - Office of Commercial Space Transportation (AST); Notice of Availability of the Record of Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... impacts of up to five solid-propellant strap-on rocket motors (SRMs) on the Atlas V medium lift vehicle... Proposed Action in the 2000 SEIS, up to five solid- propellant strap-on rocket motors (SRMs) would be added...

  10. Shuttle Propulsion Overview - The Design Challenges

    NASA Technical Reports Server (NTRS)

    Owen, James W.

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.

  11. Introduction to the problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Solid propellant rockets were used extensively in space missions ranging from large boosters to orbit-raising upper stages. The smaller motors find exclusive use in various earth-based applications. The advantage of the solids include simplicity, readiness, volumetric efficiency, and storability. Important recent progress in related fields (combustion, rheology, micro-instrumentation/diagnostics, and chaos theory) can be applied to solid rockets to derive maximum advantage and avoid waste. Main objectives of research in solid propellants include: to identify critical parameters, to establish specification rules, and to develop quantitative criteria.

  12. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  13. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1977-12-01

    The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  15. Solid Rocket Booster Structural Test Article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  16. Solid rocket technology advancements for space tug and IUS applications

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  17. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  18. 7. Credit BG. View looking west into small solid rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Credit BG. View looking west into small solid rocket motor testing bay of Test Stand 'E' (Building 4259/E-60). Motors are mounted on steel table and fired horizontally toward the east. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA

  19. Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.

  20. Solid rocket booster thermal radiation model. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Lee, A. L.

    1976-01-01

    A user's manual was prepared for the computer program of a solid rocket booster (SRB) thermal radiation model. The following information was included: (1) structure of the program, (2) input information required, (3) examples of input cards and output printout, (4) program characteristics, and (5) program listing.

  1. Study of solid rocket motors for a space shuttle booster. Appendix B: Prime item development specification

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The specifications for the performance, design, development, and test requirements of the P2-156, S3-156, and S6-120 space shuttle booster solid rocket motors are presented. The applicable documents which form a part of the specifications are listed.

  2. Solid rocket booster thermal protection system materials development. [space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1978-01-01

    A complete run log of all tests conducted in the NASA-MSFC hot gas test facility during the development of materials for the space shuttle solid rocket booster thermal protection system are presented. Lists of technical reports and drawings generated under the contract are included.

  3. SRB-3D Solid Rocket Booster performance prediction program. Volume 2: Sample case

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The sample case presented in this volume is an asymmetrical eight sector thermal gradient performance prediction for the solid rocket motor. This motor is the TC-227A-75 grain design and the initial grain geometry is assumed to be symmetrical about the motors longitudinal axis.

  4. ADAPTATION OF A TECHNIQUE FOR PREDICTING LARGE SOLID ROCKET MOTOR SPECIFIC IMPULSE FROM DATA OBTAINED IN MICROMOTORS.

    DTIC Science & Technology

    Laboratory. The purpose of this technique is to predict specific impulse in large solid rocket motors based on data obtained in micromotors . As little as 2...concerning performance of a propellant in a large solid motor. Predictions, based on data obtained in micromotors , were within 0.6% of the delivered impulse in 6-pound motors and 70-pound BATES motors. (Author)

  5. KSC-2013-4437

    NASA Image and Video Library

    2013-12-19

    VANDENBERG AIR FORCE BASE, Calif. -- A solid rocket rocket motor is hauled away from its delivery truck and toward the open high bay door of the Solid Rocket Motor Processing Facility at Vandenberg Air Force Base in California. The motor will be attached to the United Launch Alliance Delta II rocket slated to launch NASA's Orbiting Carbon Observatory-2, or OCO-2, spacecraft in July 2014. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. Photo credit: NASA/Randy Beaudoin

  6. EELV Booster Assist Options for CEV

    NASA Technical Reports Server (NTRS)

    McNeal, Curtis, Jr.

    2005-01-01

    Medium lift EELVs may still play a role in manned space flight. To be considered for manned flight, medium lift EELVs must address the short comings in their current boost assist motors. Two options exist: redesign and requalify the solid rocket motors. Replace solid rocket motors (SRMs) with hybrid rocket motors. Hybrid rocket motors are an attractive alternative. They are safer than SRMs. The TRL's Lockheed Martin Small Launch Vehicle booster development substantially lowers the development risk, cost risk, and the schedule risk for developing hybrid boost assist for EELVs. Hybrid boosters testability offsets SRMs higher inherent reliability.Hybrid booster development and recurring costs are lower than SRMs. Performance gains are readily achieved.

  7. KSC-2009-2209

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – – The NASA Railroad (right) is ready for the exchange of the Florida East Coast Railway cars carrying the booster segments for the Ares I-X test rocket. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  8. KSC-2209-2205

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad (left). The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-2203

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-2208

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The NASA Railroad (right) is ready for the exchange of the Florida East Coast Railway cars carrying the booster segments for the Ares I-X test rocket. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  11. KSC-2009-2204

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-2201

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The Florida East Coast Railway train arrives at the Jay Jay Rail Yard with the booster segments for the Ares I-X test rocket for interchange with the NASA Railroad. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett

  13. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    NASA Astrophysics Data System (ADS)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  14. Orion EM-1 Forward Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2017-08-30

    The Exploration Mission-1 (EM-1) left-hand forward skirt for NASA's Space Launch System (SLS) solid rocket boosters arrives at the entrance to the high bay at the Booster Fabrication Facility (BFF) at NASA's Kennedy Space Center in Florida. In the BFF, the forward skirt will be inspected and prepared for use on the left-hand solid rocket booster for EM-1. NASA's Orion spacecraft will fly atop the SLS rocket on its first uncrewed flight test.

  15. Orion EM-1 Forward Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2017-08-30

    The Exploration Mission-1 (EM-1) left-hand forward skirt for NASA's Space Launch System (SLS) solid rocket boosters arrives at the Booster Fabrication Facility (BFF) at NASA's Kennedy Space Center in Florida from Hangar AE at Cape Canaveral Air Force Station. In the BFF, the forward skirt will be inspected and prepared for use on the left-hand solid rocket booster for EM-1. NASA's Orion spacecraft will fly atop the SLS rocket on its first uncrewed flight test.

  16. Orion EM-1 Forward Skirt Transport from Hangar AF to BFF

    NASA Image and Video Library

    2017-08-30

    The Exploration Mission-1 (EM-1) left-hand forward skirt for NASA's Space Launch System (SLS) solid rocket boosters is transported by truck to the Booster Fabrication Facility (BFF) at NASA's Kennedy Space Center in Florida from Hangar AE at Cape Canaveral Air Force Station. In the BFF, the forward skirt will be inspected and prepared for use on the left-hand solid rocket booster for EM-1. NASA's Orion spacecraft will fly atop the SLS rocket on its first uncrewed flight test.

  17. Ionic Fluorine Chemistry.

    DTIC Science & Technology

    SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS

  18. Around Marshall

    NASA Image and Video Library

    2002-10-01

    This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.

  19. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  20. Spacecraft boost and abort guidance and control systems requirement study, boost dynamics and control analysis study. Exhibit A: Boost dynamics and control anlaysis

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Price, J. B.; Lemon, R. S.

    1972-01-01

    The simulation developments for use in dynamics and control analysis during boost from liftoff to orbit insertion are reported. Also included are wind response studies of the NR-GD 161B/B9T delta wing booster/delta wing orbiter configuration, the MSC 036B/280 inch solid rocket motor configuration, the MSC 040A/L0X-propane liquid injection TVC configuration, the MSC 040C/dual solid rocket motor configuration, and the MSC 049/solid rocket motor configuration. All of the latest math models (rigid and flexible body) developed for the MSC/GD Space Shuttle Functional Simulator, are included.

Top