Science.gov

Sample records for segmented thin microstrip

  1. Electrical behavior of a 31-cm, thin-film YBaCuO superconducting microstrip

    SciTech Connect

    Hornak, L.A.; Hatamian, M.; Tewksbury, S.K.; Burkhardt, E.G.; Howard, R.E.; Mankiewich, P.M.; Straughn, B.L. ); Brandle, C.D. )

    1989-11-15

    Electrical time domain measurements and transmission response measurements were made using a 31-cm-long, YBaCuO superconducting thin-film microstrip line and a YBaCuO ground plane, each on separate 1-cm LaGaO{sub 3} substrates, with a 125-{mu}m sapphire substrate serving as the dielectric insulator. Degradation of the performance of the line for currents up to the critical-current density and for magnetic fields moderately above the lower critical magnetic field {ital H}{sub {ital C}1} were evaluated in a variety of simple measurements. In addition, an evaluation of an optically switched segment of a superconducting microstrip line on a zirconia substrate is described. Direct evaluations of pulse distortion are not possible for these long serpentine lines on small substrates due to electromagnetic coupling between adjacent line segments. However, this coupling gives rise to distinctive transmission responses which may aid the evaluation of line performance.

  2. Characterization of Thin Film Microstrip Lines on Polyimide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1998-01-01

    This paper presents an in depth characterization of thin film microstrip (TFMS) lines fabricated on Dupont PI-2611 polyimide. Measured attenuation and effective dielectric constant is presented for TFMS lines with thicknesses from 2.45-7.4 microns and line widths from 5-34.4 microns over the frequency range of 1-110 GHz. The attenuation is separated into conductor and dielectric losses to determine the loss tangent of Dupont PI-2611 polyimide over the microwave frequency range. In addition, the measured characteristics are compared to closed form equations for a and eff from the literature. Based on the comparisons, recommendations for the best dosed form design equations for TFMS are made.

  3. Characterization of Thin Film Microstrip Lines on Polyimide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1998-01-01

    This paper presents an in depth characterization of thin film microstrip (TFMS) lines fabricated on Dupont PI-2611 polyimide. Measured attenuation and effective dielectric constant is presented for TFMS lines with thicknesses from 2.45-7.4 microns and line widths from 5-34.4 microns over the frequency range of 1-110 GHz. The attenuation is separated into conductor and dielectric losses to determine the loss tangent of Dupont PI-2611 polyimide over the microwave frequency range. In addition, the measured characteristics are compared to closed form equations for a and eff from the literature. Based on the comparisons, recommendations for the best dosed form design equations for TFMS are made.

  4. Low Loss, Finite Width Ground Plane, Thin Film Microstrip Lines on Si Wafers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Margomenos, Alexandros; Katehi, Linda P. B.

    1999-01-01

    Si RFICs on standard, 2 Omega-cm. Si wafers require novel transmission lines to reduce the loss caused by the resistive substrate. One such transmission line is commonly called Thin Film Microstrip (TFMS), which is created by depositing a metallic ground plane, thin insulating layers, and the microstrip lines on the Si wafer. Thus, the electric fields are isolated from the Si wafer. In this paper, it is shown through experimental results that the ground plane of TFMS may be finite width and comparable to the strip width in size while still achieving low loss on 2 Omega-cm Si. Measured effective permittivity shows that the field interaction with the Si wafer is small.

  5. Digital Processing and Segmentation of Breast Microcalcifications Images Obtained by a Si Microstrips Detector: Preliminary Results

    SciTech Connect

    Diaz, Claudia C.; Angulo, Abril A.

    2007-02-09

    We present the preliminary results of digital processing and segmentation of breast microcalcifications images. They were obtained using a Bede X ray tube with Cu anode, which was fixed at 20 kV and 1 mA. Different biopsies were scanned using a 128 Si microstrips detector. Total scanning resulted in a data matrix, which corresponded with the image of each biopsy. We manipulated the contrast of the images using histograms and filters in the frequency domain in Matlab. Then we intended to investigate about different contour models for the segmentation of microcalcifications boundaries, which were based on the contrast and shape of the image. These algorithms could be applied to mammographic images, which may be obtained by digital mammography or digitizing conventional mammograms.

  6. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  7. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-07-15

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In{sub 2}O{sub 3} and Sn targets. The deposited ITO films show a typical value of electrical resistivity ({approx}10{sup -4} {Omega} m) and sheet resistance can be controlled in the range of 20-230 {Omega} by variation in film thickness. Microstrip line with characteristic impedance of 50 {Omega} was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S{sub 11}) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S{sub 21}) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 {Omega}. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  8. Aperture-coupled thin-membrane microstrip array antenna for beam scanning application

    NASA Technical Reports Server (NTRS)

    Huang, John; Sadowy, Gregory; Derksen, Chuck; Del Castillo, Linda; Smith, Phil; Hoffman, Jim; Hatake, Toshiro; Moussessian, Alina

    2005-01-01

    A microstrip array using aperture-slot-coupling technique with very thin membranes has been developed at the L-band frequency for beam scanning application. This technology-demonstration array with 4 x 2 elements achieved a relatively wide bandwidth of 100 MHz (8%) and +/-45(deg) beam scan. Very narrow coupling slots were used with each having an aspect ratio of 160 (conventional slot aspect ratio is between 10 to 30) for coupling through very thin membrane (0.05mm thickness). This thin-membrane aperture-coupling technique allows the array antenna elements to be more easily integrated with transmit/receive amplifier (T/R) and phase shifter modules. This paper addresses only the radiator portion of the array. The array and active components will be presented in a separate pape.

  9. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    SciTech Connect

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH{sub 4} (10%) and He-C{sub 2}H{sub 6} (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C{sub 2}H{sub 6} (50%) and Ar-C{sub 2}H{sub 6}(50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability.

  10. Conduction noise attenuation by Fe{sub 3}O{sub 4} thin films attached on microstrip line

    SciTech Connect

    Kim, Sun-Tae; Ryu, Gi-Bong; Kim, Sung-Soo

    2006-04-15

    Fe{sub 3}O{sub 4} thin films are prepared by reactive sputtering and their magnetic, electric, and noise absorbing properties are investigated with the aim of thin film noise absorbers in gigahertz frequencies. Fe{sub 3}O{sub 4} thin films were deposited on the glass substrate by reactive sputtering. It is found that the precise control of the oxygen partial pressure is the most critical to obtain the single-phase Fe{sub 3}O{sub 4} thin film. The vibrating sample magnetometer measurement indicates that the saturation magnetization is 400 emu/cm{sup 3} and the coercive force is about 200 Oe. A microstrip line (with a characteristic impedance of 50 {omega}) was used for the measurement of noise attenuation. Attaching the thin film on the microstrip line, the S{sub 11} parameter is increased from -60 dB (without a film) to about -15 dB (with a film). The S{sub 21} parameter is reduced to about -3 dB (about 50% in power) in the frequency range of 1-6 GHz, which is due to the magnetic loss of the Fe{sub 3}O{sub 4} films. Power absorption (defined by the ratio of power loss to input power) increases with frequency and saturates to maximum value (about 0.5) in the frequency region of 4-6 GHz. It can thus be suggested that the Fe{sub 3}O{sub 4} thin film is one of the high potential materials for noise suppressors in gigahertz frequencies.

  11. Tunable Microstrip Filters Using Selectively Etched Ferroelectric Thin-Film Varactors for Coupling

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Subramanyam, Guru; Miranda, Felix A.

    2006-01-01

    We report on the use of patterned ferroelectric films to fabricate proof of concept tunable one-pole microstrip filters with excellent transmission and mismatch/reflection properties at frequencies up to 24 GHz. By controlling the electric field distribution within the coupling region between the resonator and input/output lines, sufficiently high loaded and unloaded Q values are maintained so as to be useful for microstrip filter design, with low mismatch loss. In the 23 - 24 GHz region, the filter was tunable over a 100 MHz range, the loaded and unloaded Q values were 29 and 68, respectively, and the reflection losses were below -16 dB, which demonstrates the suitability of these films for practical microwave applications.

  12. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  13. The microstrip proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.

    1992-01-01

    Microstrip detectors in which the usual discrete anode and cathode wires are replaced by conducting strips on an insulating or partially insulating substrate are fabricated using integrated circuit-type photolithographic techniques and hence offer very high spatial accuracy and uniformity, together with the capability of producing extremely fine electrode structures. Microstrip proportional counters have now been variously reported having an energy resolution of better than 11 percent FWHM at 5.9 keV. They have been fabricated with anode bars down to 2 microns and on a variety of substrate materials including thin films which can be molded to different shapes. This review will examine the development of the microstrip detector with emphasis on the qualities which make this detector particularly interesting for use in astronomy.

  14. The local segmental dynamics of polymer thin films

    NASA Astrophysics Data System (ADS)

    Roland, C. M.; Casalini, Riccardo; Prevosto, Daniele; Labardi, Massimiliano; Zhu, Lei; Baer, Eric

    The local segmental dynamics of poly(methyl methacrylate) (PMMA) in multi-layered films with polycarbonate was investigated using dielectric spectroscopy. The segmental relaxation time decreased with layer thickness down to 4 nm. However, two measures of the cooperativity of the dynamics, the breadth of the relaxation dispersion and the dynamic correlation volume, were unaffected by the film thickness. This absence of an effect of geometric confinement on the cooperativity, even when the confinement length scale approaches the correlation length scale, requires an asymmetric correlation volume; i.e., correlating regions having a string-like nature. To further probe the effect of layering on the segmental dynamics, we measured the segmental dynamics of poly(vinylacetate) thin films in contact with variously an aluminum interface, an incompatible polymer, and air (free surface). From local dielectric relaxation measurements using an AFM tip, the dynamics were observed to be faster in all thin film configurations compared to the bulk. However, no differences were observed for the various interfaces; capping the thin films with a rigid material accelerated the segmental motions equivalently to that for an air interface. This insensitivity of the dynamics to the nature of the interface affords a means to engineer thin films while maintaining desired mechanical properties. Work at NRL supported by the Office of Naval Research.

  15. Thin membranes of new hard/soft segment copolymers

    SciTech Connect

    Ho, W.S.; Sartori, G.; Thaler, W.A.

    1996-12-31

    Thin membranes of new hard/soft segment copolymers have been synthesized for the separation of aromatics from saturates through high temperature pervaporation. In the membranes, hard segments provide temperature stability and solvent resistance, while soft segments govern aromatic/saturate selectivity and flux. We have synthesized new chlorinated polyurethane/polyester and polyimide/polyester copolymers. Based on a polyimide copolymer membrane, a new technology has been developed recently to separate heavy catalytically cracked naphtha into an aromatics-rich permeate and an aromatics-lean retentate.

  16. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  17. Microwave microstrip resonator measurements of Y1Ba2Cu3O(7-x) and Bi2Sr2Ca1Cu2O(8-y) thin films

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Christopher L.; Wosik, Jaroslaw; Davis, Matthew; Wolfe, J. C.

    1989-01-01

    Radio frequency (RF) surface resistance measurement experiments on high T(sub c) thin films were performed. The method uses a microstrip resonator comprising a top gold conductor strip, an alumina dielectric layer, and a separate superconductivity ground plane. The surface resistance of the superconducting ground plane can be determined, with reference to a gold calibration standard, from the measured quality factor of the half-wave resonator. Initial results near 7 GHz over the temperature range from 25 to 300 K are presented for YBa2Cu3O(7-x) and Bi2Sr2CaCu2O(8-y) thin film samples deposited by an electron beam flash evaporation process. The RF surface resistance at 25 K for both materials in these samples was found to be near 25 milliohms.

  18. Segmentation of thin structures in volumetric medical images.

    PubMed

    Holtzman-Gazit, Michal; Kimmel, Ron; Peled, Nathan; Goldsher, Dorith

    2006-02-01

    We present a new segmentation method for extracting thin structures embedded in three-dimensional medical images based on modern variational principles. We demonstrate the importance of the edge alignment and homogeneity terms in the segmentation of blood vessels and vascular trees. For that goal, the Chan-Vese minimal variance method is combined with the boundary alignment, and the geodesic active surface models. An efficient numerical scheme is proposed. In order to simultaneously detect a number of different objects in the image, a hierarchal approach is applied.

  19. Thinning and line segmentation by line-following techniques

    NASA Astrophysics Data System (ADS)

    Larmagnac, Jean-Pierre

    1998-04-01

    A method for segmentation of elongated shapes is presented, including two stages: (1) Thinning of elongated shapes into chain coded lines. (2) Extraction of the main features. Thinning process: a square perimeter is developed around each current pixel, initially at level 255, belonging to a line being extracted. THe size of the square is progressively increased until one or more stick(s), frames by background pixels, appear(s) on the perimeter. From the beginning and the final indices of each stick we deduce the Freeman code leading to the following pixel on the line. Generally, two sticks are present on the square perimeter. One corresponds to the backward direction. To discard the non valid stick, each new detected pixel is marked by lowering its value by one shift right. In presence of a fork, or crossing point, there are more than one valid stick: The closest direction to the previous one is chosen; the current pixel is marked and stored in a list of branching points, for later processing. Filtering and segmentation: median filtering of extended codes, obtained from the corrected sums of 4 consecutive Freeman's codes allows to eliminate much of the quantization noise, without altering significant direction changes, and to segment the line into straight segments, arcs and corners.

  20. A short-circuited coplanar waveguide to measure the permeability of magnetic thin films: Comparison with short-circuited microstrip line.

    PubMed

    Wei, Jinwu; Feng, Hongmei; Zhu, Zengtai; Liu, Qingfang; Wang, Jianbo

    2015-11-01

    A short-circuited coplanar waveguide jig was proposed due to its simple structure and potential applications, which was successfully used to measure the permeability spectra of magnetic thin film. The result obtained from the coplanar waveguide (CPW) jig exhibits typical ferromagnetic resonance spectra, which can be well fitted by a trade-off equation because the measured permeability spectra have a bit of asymmetry because of the special intensity distribution of the microwave magnetic field in the CPW. In order to confirm the availability of the shorted CPW jig, a previous short-circuited microstrip line jig was used to measure the permeability spectra of the same sample. The dynamic permeability results obtained by using different jigs are commendably consistent, and the accurate and valid results are also confirmed by using the vector network analyzer ferromagnetic resonance method.

  1. Coating Thin Mirror Segments for Lightweight X-ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  2. Nonlinearity of superconducting transmission line and microstrip resonator

    SciTech Connect

    Vendik, O.G.; Vendik, I.B.; Samoilova, T.B.

    1997-02-01

    The simplest model of nonlinear response of a superconducting thin film is used for modeling the nonlinear phenomena in a superconducting transmission line and a microstrip resonator. The specified characteristic power of the transmission line is suggested to use as a fitting parameter for numerical description of the microstrip line nonlinearity at microwaves. Quantitative agreement of simulated and experimental data has been obtained for the incident power dependent transmission coefficient of a microstrip line section and a high quality microstrip resonator. Numerical results have also been obtained for the power of the third harmonic radiated from the nonlinear resonator.

  3. Flexible microstrip antennas

    NASA Astrophysics Data System (ADS)

    Cano Barrera, Camilo Antonio

    2013-05-01

    Actually the technological community has an interest in developing flexible circuits and antennas with particular characteristics e.g. robust, flexible, lightweight load-bearing, economical and efficient antennas for integrated millimeter wave systems. Microstrip antennas are an excellent solution because those have all the characteristics before mentioned, but they have the problem of being rigid antennas and this makes impossible that those antennas can be use in portable devices. A practical solution is developing flexible microstrip antennas that can be integrated to different devices. One axis of work is the analysis of the electromagnetic field to the microstrip antennas using Bessel function and after generalize for application inflexible microstrip antennas.

  4. A Novel K-Band Tunable Microstrip Bandpass Filter Using a Thin Film HTS/Ferroelectric/ Dielectric Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; VanKeuls, F.; Miranda, F. A.

    1998-01-01

    We report on YBCO/strontium titanate (STO) thin film K-band tunable bandpass filters on lanthanum aluminate substrates. The 2 pole filters were designed for a center frequency of 19 GHz and 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO (epsilon-rSTO). Center frequency shifts greater than 2 GHz were obtained at a 400V bipolar dc bias at temperatures below 77K, with minimum degradation in the insertion loss of the filters.

  5. Soft microstrip with integral ground plane aids in supercomponent integration

    NASA Astrophysics Data System (ADS)

    Faulkner, J.; Klein, G.; Sacks, F.; Woermbke, J.

    1983-11-01

    Initial 1950s microstrip circuits were based on printed circuit board technology. Problems related to very high dielectric losses and loose mechanical tolerances, led toward the use of stable ceramic materials as microstrip substrates, with subsequent development of the associated thick- and thin-film processes. In 1976, in response to the relatively high cost of ceramic substrate-based microstrip circuit technology and difficulties caused by substrate size restrictions, an American company initiated a program to develop a new class of substrate, specifically designed for lower cost large microstrip circuits. The utilization of clad soft microstrip (CSM) was found to offer numerous advantages relative to ceramic substrates. Attention is given to the properties of various dielectric substrate materials, the embedding functions, aspects of isolation enhancement, and applications of CSM.

  6. Pleural effusion segmentation in thin-slice CT

    NASA Astrophysics Data System (ADS)

    Donohue, Rory; Shearer, Andrew; Bruzzi, John; Khosa, Huma

    2009-02-01

    A pleural effusion is excess fluid that collects in the pleural cavity, the fluid-filled space that surrounds the lungs. Surplus amounts of such fluid can impair breathing by limiting the expansion of the lungs during inhalation. Measuring the fluid volume is indicative of the effectiveness of any treatment but, due to the similarity to surround regions, fragments of collapsed lung present and topological changes; accurate quantification of the effusion volume is a difficult imaging problem. A novel code is presented which performs conditional region growth to accurately segment the effusion shape across a dataset. We demonstrate the applicability of our technique in the segmentation of pleural effusion and pulmonary masses.

  7. Precise Alignment and Permanent Mounting of Thin and Lightweight X-ray Segments

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; Chan, Kai-Wing; Hong, Melinda N.; Mazzarella, James R.; McClelland, Ryan S.; Norman, Michael J.; Saha, Timo T.; Zhang, William W.

    2012-01-01

    To provide observations to support current research efforts in high energy astrophysics. future X-ray telescope designs must provide matching or better angular resolution while significantly increasing the total collecting area. In such a design the permanent mounting of thin and lightweight segments is critical to the overall performance of the complete X-ray optic assembly. The thin and lightweight segments used in the assemhly of the modules are desigued to maintain and/or exceed the resolution of existing X-ray telescopes while providing a substantial increase in collecting area. Such thin and delicate X-ray segments are easily distorted and yet must be aligned to the arcsecond level and retain accurate alignment for many years. The Next Generation X-ray Optic (NGXO) group at NASA Goddard Space Flight Center has designed, assembled. and implemented new hardware and procedures mth the short term goal of aligning three pairs of X-ray segments in a technology demonstration module while maintaining 10 arcsec alignment through environmental testing as part of the eventual design and construction of a full sized module capable of housing hundreds of X-ray segments. The recent attempts at multiple segment pair alignment and permanent mounting is described along with an overview of the procedure used. A look into what the next year mll bring for the alignment and permanent segment mounting effort illustrates some of the challenges left to overcome before an attempt to populate a full sized module can begin.

  8. The opto-mechanical performance prediction of thin mirror segments for E-ELT

    NASA Astrophysics Data System (ADS)

    Nijenhuis, Jan; Braam, Ben; Hamelinck, Roger

    2016-07-01

    The mirror segments for the E-ELT and TLT are nearly equal in size and shape (hexagonal, 1.2 m over flat sides). They are very thin (about 50 mm) compared to their size. Supporting these mirrors and obtaining high optical performance is a challenge from design and manufacturing point of view. TNO has designed and build (together with VDL-ETG) three identical prototypes for supporting the mirror segments of the E-ELT. These mirror segments vary in size. Hence the gravity induced deformation of the mirror segments will vary from mirror to mirror segment when no measures are taken. The paper will concentrate on the design and analysis of the design features within the support structure to minimize the mirror deformation due to gravity. These features concern passive and active means to influence the mirror segment shape and to compensate for deformation differences.

  9. Coarse alignment of thin-shell, segmented mirrors for Wolter-I telescopes

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin D.; Hertz, Edward; Marquez, Vanessa; McMuldroch, Stuart; Reid, Paul B.; Allured, Ryan

    2015-09-01

    The alignment of thin-shell, segmented mirrors for Wolter-I telescopes frequently involves the use of a Hartmann test. In order to get optical throughput in the Hartmann test, the mirrors must first be coarsely aligned to one another and to the metrology system. In the past, the coarse alignment of these mirrors at the Smithsonian Astrophysical Observatory has largely relied upon component machine tolerances and contact measurements with a coordinate measurement machine (CMM). This process takes time and does not produce reliable nor repeatable results. Thus, methods were developed to allow for the quick and reliable coarse alignment of thin- shell, segmented mirrors at their final locations in the mirror assembly. We present the coarse alignment system developed at the Smithsonian Astrophysical Observatory and its use in the alignment of thin-shell, segmented mirrors for the adjustable X-ray optics program.

  10. Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.

    2011-01-01

    The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.

  11. A switchable microstrip antenna

    NASA Astrophysics Data System (ADS)

    Khitrov, Iu. A.

    1992-03-01

    A switchable microstrip antenna is proposed which maintains nondirected radiation in the horizontal plane for all combinations of states of the switched elements. Theoretical and experimental results of studies of the directivity characteristics are presented.

  12. A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering

    NASA Astrophysics Data System (ADS)

    Izadi, Hossein; Sadri, Javad; Mehran, Nosrat-Agha

    2015-08-01

    Mineral segmentation in thin sections is a challenging, popular, and important research topic in computational geology, mineralogy, and mining engineering. Mineral segmentation in thin sections containing altered minerals, in which there are no evident and close boundaries, is a rather complex process. Most of the thin sections created in industries include altered minerals. However, intelligent mineral segmentation in thin sections containing altered minerals has not been widely investigated in the literature, and the current state of the art algorithms are not able to accurately segment minerals in such thin sections. In this paper, a novel method based on incremental learning for clustering pixels is proposed in order to segment index minerals in both thin sections with and without altered minerals. Our algorithm uses 12 color features that are extracted from thin section images. These features include red, green, blue, hue, saturation and intensity, under plane and cross polarized lights in maximum intensity situation. The proposed method has been tested on 155 igneous samples and the overall accuracy of 92.15% and 85.24% has been obtained for thin sections without altered minerals and thin sections containing altered minerals, respectively. Experimental results indicate that the proposed method outperforms the results of other similar methods in the literature, especially for segmenting thin sections containing altered minerals. The proposed algorithm could be applied in applications which require a real time segmentation or efficient identification map such as petroleum geology, petrography and NASA Mars explorations.

  13. Room Temperature Thin Film Ba(x)Sr(1-x)TiO3 Ku-Band Coupled MicrostripPhase Shifters: Effects of Film Thickness, Doping, Annealing and Substrate Choice

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Mueller, C. H.; Miranda, F. A.; Romanofsky, R. R.; Canedy, C. L.; Aggarwal, S.; Venkatesan, T.; Ramesh, R.; Horwitz, S.; Chang, W.

    1999-01-01

    We report on measurements taken on over twenty Ku-band coupled microstrip phase shifters (CMPS) using thin ferroelectric films of Ba(x)Sr(1-x)TiO3. This CMPS design is a recent innovation designed to take advantage of the high tunability and tolerate the high dielectric constant of ferroelectric films at Ku- and K-band frequencies. These devices are envisioned as a component in low-cost steerable beam phased area antennas, Comparisons are made between devices with differing film thickness, annealed vs unannealed, Mn-doped vs. undoped, and also substrates of LaAlO3 and MgO. A comparison between the CMPS structure and a CPW phase shifter was also made oil the same ferroelectric film.

  14. Flexible Microstrip Circuits for Superconducting Electronics

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  15. Microstrip antenna on tunable substrate

    NASA Astrophysics Data System (ADS)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  16. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy.

    PubMed

    Meng, Xian Song; Zhu, Guang; Wang, Zhong Lin

    2014-06-11

    Collecting and converting energy from ambient air flow promise to be a viable approach in developing self-powered autonomous electronics. Here, we report an effective and robust triboelectric generator that consists of an undulating thin-film membrane and an array of segmented fine-sized electrode pairs on a single substrate. Sequential processes of contact electrification and electrostatic induction generate alternating flows of free electrons when the membrane interacts with ambient air flow. Based on an optimum rational design, the segmented electrodes play an essential role in boosting the output current, leading to an enhancement of over 500% compared to the structure without the segmentation. The thin-film based generator can simultaneously and continuously light up tens of commercial light-emitting diodes. Moreover, it possesses exceptional durability, providing constant electric output after millions of operation cycles. This work offers a truly practical solution that opens the avenue to take advantage of wind energy by using the triboelectric effect.

  17. Superconducting Microstrip Antennas: An Experimental Comparison of Two Feeding Methods

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.; Claspy, Paul C.; Bhasin, Kul B.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTSs) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. Two methods for feeding HTS microstrip antennas at K- and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gas-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals

  18. Superconducting microstrip antennas - An experimental comparison of two feeding methods

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Bhasin, Kul B.; Claspy, Paul C.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTSs) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. Two methods for feeding HTS microstrip antennas at K- and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals.

  19. Superconducting microstrip antennas - An experimental comparison of two feeding methods

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Bhasin, Kul B.; Claspy, Paul C.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTSs) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. Two methods for feeding HTS microstrip antennas at K- and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals.

  20. Superconducting Microstrip Antennas: An Experimental Comparison of Two Feeding Methods

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.; Claspy, Paul C.; Bhasin, Kul B.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTSs) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. Two methods for feeding HTS microstrip antennas at K- and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gas-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals

  1. Superconducting microstrip antennas: An experimental comparison of two feeding methods

    SciTech Connect

    Richard, M.A.; Claspy, P.C. ); Bhasin, K.B. . Lewis Research Center)

    1993-07-01

    The recent discovery of high-temperature superconductors (HTS's) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. In this paper, two methods for feeding HTS microstrip antennas at K and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals.

  2. Segmental and local dynamics of stacked thin films of poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuhiko; Fukao, Koji

    2014-02-01

    The glass transition temperature and the dynamics of the α and β processes have been investigated using differential scanning calorimetry and dielectric relaxation spectroscopy during successive annealing processes above the glass transition temperature for stacked thin films of poly(methyl methacrylate) (PMMA) of various thicknesses. The glass transition temperature and the dynamics of the α process (segmental motion) of as-stacked PMMA thin films exhibit thin-film-like behavior, insofar as the glass transition temperature is depressed and the dynamics of the α process are faster than those of the bulk system. Annealing at high temperature causes the glass transition temperature to increase from the reduced value and causes the dynamics of the α process to become slower approaching those of the bulk. Contrary to the segmental motion, the relaxation time of the β process (local motion) of the stacked PMMA thin films is almost equal to that of the bulk PMMA and is unaffected by the annealing process. However, the relaxation strengths of both the α process and β process show a strong correlation between each other. The sum of the relaxation strengths remains almost unchanged, while the individual relaxation strengths change during the annealing process. The fragility index of the stacked PMMA thin films increases with annealing, which suggests that the glassy state of the stacked thin films changes from strong to fragile.

  3. Segmented polynomial taper equation incorporating years since thinning for loblolly pine plantations

    Treesearch

    A. Gordon Holley; Thomas B. Lynch; Charles T. Stiff; William Stansfield

    2010-01-01

    Data from 108 trees felled from 16 loblolly pine stands owned by Temple-Inland Forest Products Corp. were used to determine effects of years since thinning (YST) on stem taper using the Max–Burkhart type segmented polynomial taper model. Sample tree YST ranged from two to nine years prior to destructive sampling. In an effort to equalize sample sizes, tree data were...

  4. Dynamic origin of segment magnetization reversal in thin-film Penrose tilings

    NASA Astrophysics Data System (ADS)

    Montoncello, F.; Giovannini, L.; Farmer, B.; De Long, L.

    2017-02-01

    We investigate the low-frequency spin wave dynamics involved in the magnetization reversal of a Penrose P2 tiling using the dynamical matrix method. This system consists of a two-dimensional, connected wire network of elongated thin-film segments, whose complete reversal occurs as a cascade of successive local segment reversals. Using soft mode theory, we interpret the reversal of an individual segment as a first order magnetic transition, in which magnetization curve of the system suffers a small discontinuity. Near this discontinuity a specific mode of the spin wave spectrum goes soft (i.e., its frequency goes to zero), triggering a local instability of the magnetization. We show that this mode is localized, and is at the origin of the local reversal. We discuss the correlation of the mode spatial profile with the ;reversal mechanism;, which is the passage of a domain wall through the segment. This process differs from reversal in periodic square or honeycomb artificial spin ices, where a cascade of reversing segments (e.g., ;Dirac string;) follows an extended (though irregular) path across the sample; here the spatial distribution of successive segment reversals is discontinuous, but strictly associated with the area where a soft mode is localized. The migration of the localization area across the P2 tiling (during reversal in decreasing applied fields) depends on changes in the internal effective field map. We discuss these results in the context of spin wave localization due to the unique topology of the P2 tiling.

  5. The microstrip SQUID amplifier

    NASA Astrophysics Data System (ADS)

    Therrien, Roy

    A Superconducting Quantum Interference Devices (SQUIDS) can operate at frequencies up to several GHz and can be cooled to less than 100 mK. Such characteristics make the SQUID---a flux-to-voltage transducer---an excellent candidate for use as a low-noise rf amplifier. Coupling of input signals of frequencies larger than 200 MHz, however, has been limited by the parasitic capacitance between the input coil and SQUID body. We present experimental observations of a do SQUID-based rf amplifier which circumvents this problem by incorporating the input coil as a microstrip resonator. The microstrip input configuration uses the capacitance and inductance of the input coil to form a resonant cavity capable of operating up to several GHz. The input signal is applied between the SQUID body and one end of the input coil, while the other end of the coil is left open. We present data from microstrip SQUID amplifiers with gains of up to 22 dB at 900 MHz. In order to understand the gain and input impedance of the microstrip SQUID in greater detail, we made and studied a 1:190 scale analog patterned on a double-sided printed circuit board consisting of copper deposited on a kapton sheet. The measured input impedance of the analog SQUID is successfully modeled by describing the microstrip input as a low-loss transmission line. When operated with the slit in the copper washer ground plane shorted, the input coil behaves exactly like a linear resonator with the resonant frequency given by f = 1/2ℓ(L 0C0)1/2, where L0 and C0 are the inductance and capacitance per unit length and ℓ is the coil length. With the slit in the washer left open, the inductance of the input coil is significantly altered in a manner partially consistent with the Ketchen-Jaycox model in which the reflected inductance of the input coil is Li = n2L, where L is the inductance of the washer loop and n is the number of turns in the coil. We present input impedance measurements on microstrip SQUIDs cooled to 4

  6. A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.

    2016-01-01

    A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.

  7. A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.

    2016-01-01

    A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.

  8. Coupled, Simultaneous Displacement and Dealloying Reactions into Fe-Ni-Co Nanowires for Thinning Nanowire Segments.

    PubMed

    Geng, Xiaohua; Podlaha, Elizabeth J

    2016-12-14

    A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H(+)), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.

  9. Analysis of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1984-01-01

    The problem of microstrip antennas covered by a dielectric substrate is formulated in terms of coupled integro-differential equations with the current distribution on the conducting patch as an unknown quantity. The Galerkin method is used to solve for the unknown patch current. Using the present formulation, the radiation pattern, the resonant frequency, and the bandwidth of a rectangular microstrip antenna are computed. Design data for a rectangular microstrip antenna are also presented.

  10. Microstrip Patch Antenna And Method

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor)

    2001-01-01

    Method and apparatus are provided for a microstrip feeder structure for supplying properly phased signals to each radiator element in a microstrip antenna array that may be utilized for radiating circularly polarized electromagnetic waves. In one disclosed embodiment. the microstrip feeder structure includes a plurality of microstrip sections many or all of which preferably have an electrical length substantially equal to one-quarter wavelength at the antenna operating frequency. The feeder structure provides a low loss feed structure that may be duplicated multiple times through a set of rotations and translations to provide a radiating array of the desired size.

  11. Ultra-compact microwave filters using kinetic inductance microstrip

    SciTech Connect

    Pond, J.M.; Carroll, K.R.; Cukauskas, E.J. )

    1991-03-01

    This paper reports on multi-pole microwave filters designed and fabricated using microstrip transmission line sections which consist of two very thin films of sputtered niobium nitride (NbN) separated by another very thin film of sputtered Si. Since the thicknesses of all three films are much less than the superconducting penetration depth, the kinetic inductance is significantly greater than the magnetic inductance. As a result, the phase velocity of a microstrip transmission line is much less than the free space speed of light. Since resonant structures are reduced in size proportionately, the size and weight of microstrip circuits can be greatly reduced. Prototype filters consisting of four open circuit half-wavelength microstrip stubs separated by full-wavelength microstrip sections have been measured. The circuits are connected to 34 mil diameter coaxial cable via an intermediate coplanar waveguide section. Passbands of 4 GHz separated by 3 GHz reject bands have been measured in a structure which occupies less than 0.5 cm{sup 2} including the coplanar waveguide transitions. Higher-order passbands, although possessing an increased insertion loss, maintain filter passband characteristics through 20.0 GHz.

  12. Microstrip transmission line tapers on ferrites

    SciTech Connect

    Albuquerque, M.R.; dAssuncao, A.G.; Lima, F.

    1997-04-01

    The spectral domain approach is employed to perform a theoretical investigation of tapered microstrip lines on magnetized ferrite substrates. A linear variation of the conducting strip width along the direction of propagation is considered. The analysis takes into account the effects of the applied dc magnetic bias field in the transmission characteristics of these structures. The properties of the taper are determined by a model based on a segmentation of the considered line into uniform microstrip line subsections. Normalized phase constants and characteristic impedances are obtained by using the Hertz vector potentials method and Galerkin numerical technique. Numerical results are presented to show the taper input parameters as a function of the load impedance, geometrical dimensions, operating frequency, and ferrite parameters, considering the orientation and magnitude changes of the biasing magnetic-field {bold H}{sub 0}. The results agree fairly well with those available in the literature for tapered microstrip lines on isotropic dielectric substrates. {copyright} {ital 1997 American Institute of Physics.}

  13. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  14. Microstrip Yagi array for MSAT vehicle antenna application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur; Pozar, David

    1990-01-01

    A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.

  15. A 32 GHz microstrip array antenna for microspacecraft application

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1994-01-01

    JPL/NASA is currently developing microspacecraft systems for future deep space applications. One of the frequency bands being investigated for microspacecraft is the Ka-band (32 GHz), which can be used with smaller equipment and provides a larger bandwidth. This article describes the successful development of a circularly polarized microstrip array with 28 dBic of gain at 32 GHz. This antenna, which is thin, flat, and small, can be surface-mounted onto the microspacecraft and, hence, takes very little volume and mass of the spacecraft. The challenges in developing this antenna are minimizing the microstrip antenna's insertion loss and maintaining a reasonable frequency bandwidth.

  16. Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop

    PubMed Central

    Urity, Vinoo B.; Issaian, Tadeh; Braun, Eldon J.; Dantzler, William H.

    2012-01-01

    We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH2O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 μm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 μm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 μm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat. PMID:22237592

  17. Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.

    PubMed

    Urity, Vinoo B; Issaian, Tadeh; Braun, Eldon J; Dantzler, William H; Pannabecker, Thomas L

    2012-03-15

    We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH(2)O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 μm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 μm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 μm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat.

  18. Gas microstrip detectors on resistive plastic substrates

    SciTech Connect

    Dixit, M.S.; Oakham, F.G.; Armitage, J.C.

    1993-12-31

    Plastics are desirable as substrates for gas microstrip detectors (GMDs) because of their flexibility, low density and long radiation length. GMDs have been fabricated on white Tedlar which has bulk electrical conductivity and ion-implanted Upilex which has a thin electrically conductive layer on the surface of an insulator. The effect of back plane voltage on the gain of such GMDs is investigated. Three 200 {mu}m pitch, ion-implanted Upilex GMDs were recently tested in a high intensity beam at CERN. The anode signals were read out using fast, low noise, high gain amplifiers. Preliminary results of the test are presented.

  19. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.

    1984-01-01

    The physical layout of the array elements and the proximity of the microstrip feed network makes the input impedance and radiation pattern values dependent upon the effects of mutual coupling, feedline discontinuities and feed point location. The extent of these dependences was assessed and a number of single patch and module structures were constructed and measured at an operating frequency of approximately 4.0 GHz. The empirical results were compared with the ones which were theoretically predicted by the cavity model of thin microstrip antennas. Each element was modelled as an independent radiating patch and each microstrip feedline as an independent, quasi-TEM transmission line. The effects of the feedline discontinuities are approximated by lumped L-C circuit models.

  20. Using sputter coated glass to stabilize microstrip gas chambers

    DOEpatents

    Gong, Wen G.

    1997-01-01

    By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.

  1. Microstrip reflectarray antenna for the SCANSCAT radar application

    NASA Technical Reports Server (NTRS)

    Huang, John

    1990-01-01

    This publication presents an antenna system that has been proposed as one of the candidates for the SCANSCAT (Scanned Scatterometer) radar application. It is the mechanically steered planar microstrip reflectarray. Due to its thin, lightweight structure, the antenna's mechanical rotation will impose minimum angular momentum for the spacecraft. Since no power-dividing circuitry is needed for its many radiating microstrip patches, this electrically large array antenna demonstrates excellent power efficiency. In addition, this fairly new antenna concept can provide many significant advantages over a conventional parabolic reflector. The basic formulation for the radiation fields of the microstrip reflectarray is presented. This formulation is based on the array theory augmented by the Uniform Geometrical Theory of Diffraction (UTD). A computer code for analyzing the microstrip reflectarray's performances, such as far-field patterns, efficiency, etc., is also listed in this report. It is proposed here that a breadboard unit of this microstrip reflectarray should be constructed and tested in the future to validate the calculated performance. The antenna concept presented here can also be applied in many other types of radars where a large array antenna is needed.

  2. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  3. In situ validation of segmented SAR satellite scenes of young Arctic thin landfast sea ice

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Negrel, J.; Doulgeris, A. P.; Akbari, V.; Lauknes, T. R.; Rouyet, L.; Storvold, R.

    2016-12-01

    The use of satellite remote sensing techniques for the observation and monitoring of the polar regions has increased in recent years due to the ability to cover larger areas than can be covered by ground measurements, However, in situ data remain mandatory for the validation of such data. In April 2016 an Arctic fieldwork campaign was conducted at Kongsfjorden, Svalbard. Ground measurements from this campaign are used together with satellite data acquisitions to improve identification of young sea ice types from satellite data. This work was carried out in combination with Norwegian Polar Institute's long-term monitoring of Svalbard fast ice, and with partner institutes in the Center for Integrated Remote Sensing and Forecasting for Arctic operations (CIRFA). Thin ice types are generally more difficult to investigate than thicker ice, because ice of only a few centimetres thickness does not allow scientists to stand and work on it. Identifying it on radar scenes will make it easier to study and monitor. Four high resolution 25 km x 25 km Radarsat-2 quad-pol scenes were obtained, coincident in space and time with the in situ measurements. The field teams used a variety of methods, including ice thickness transects, ice salinity measurements, ground-based radar imaging from the coast and UAV-based photography, to identify the different thin ice types, their location and evolution in time. Sampling of the thinnest ice types was managed from a small boat. In addition, iceberg positions were recorded with GPS and photographed to enable us to quantify their contribution to the radar response. Thin ice from 0.02 to 0.18 m thickness was sampled on in a total nine ice stations. The ice had no or only a thin snow layer. The GPS positions and tracks and ice characteristics are then compared to the Radarsat-2 scenes, and the radar responses of the different thin ice types in the quad-pol scenes are identified. The first segmentation results of the scenes present a good

  4. Rectangular Microstrip Radiator for a Multielement Local Hyperthermia Applicator.

    NASA Astrophysics Data System (ADS)

    Underwood, Harold Roger

    1990-11-01

    Advances in printed circuit technology facilitate the design of thin, conformable, microstrip patch antenna arrays. Such multielement microwave antenna arrays can be advantageous for controlled heating of superficial malignancies during cancer therapy. This thesis reports a theoretical analysis and design verification of the rectangular microstrip radiator for a hyperthermia applicator. Applicability of a cavity model approach for predicting near field patterns of a probe fed microstrip patch radiating in a lossy homogeneous medium is analyzed throughout a step-by-step development based on electromagnetic principles. A modal expansion technique and length correction factor slightly improve this model. Limitations of the simplifying assumptions and approximations in this model are tested by comparing numerical results of a single patch radiating in water with the measured results from an electric field probe. The measurement probe is an encapsulated miniature dipole designed for microwave transparent nonperturbing electric field measurement in biomedical media. Results show that safe and efficient performance of a microstrip patch as a biomedical radiator can be enhanced by a thin superstrate cover layer. Linear array patterns indicate that amplitude and phase variations can compensate for mutual coupling effects to adjust beam width and smoothness necessary in controlled hyperthermia heating.

  5. Front-Side Microstrip Line Feeding a Raised Antenna Patch

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Hoppe, Daniel

    2005-01-01

    An improved design concept for a printed-circuit patch antenna and the transmission line that feeds the patch calls for (1) a microstrip transmission line on the front (radiative) side of a printed-circuit board based on a thin, high-permittivity dielectric substrate; (2) using the conductor covering the back side of the circuit board as a common ground plane for both the microstrip line and the antenna patch; (3) supporting the antenna patch in front of the circuit board on a much thicker, lower-permittivity dielectric spacer layer; and (4) connecting the microstrip transmission line to the patch by use of a thin wire or narrow ribbon that extends through the thickness of the spacer and is oriented perpendicularly to the circuit-board plane. The thickness of the substrate is typically chosen so that a microstrip transmission line of practical width has an impedance between 50 and 100 ohms. The advantages of this design concept are best understood in the context of the disadvantages of prior design concepts, as explained

  6. Dielectric loss in microstrip lines

    NASA Technical Reports Server (NTRS)

    Simpson, T. L.; Tseng, B.

    1976-01-01

    A technique is presented for calculating dielectric loss in microstrip lines. Numerical results for several different substrates are included. These are compared with other available results and experimental data.

  7. Control of Reversible Self-Bending Behavior in Responsive Janus Microstrips.

    PubMed

    Oh, Myung Seok; Song, Young Shin; Kim, Cheolgyu; Kim, Jongmin; You, Jae Bem; Kim, Taek-Soo; Lee, Chang-Soo; Im, Sung Gap

    2016-04-06

    Here, we demonstrate a simple method to systematically control the responsive self-bending behavior of Janus hydrogel microstrips consisting of a polymeric bilayer with a high modulus contrast. The Janus hydrogel microstrips could be easily fabricated by a simple micromolding technique combined with an initiated chemical vapor deposition (iCVD) coating, providing high flexibility in controlling the physical and chemical properties of the microstrips. The fabricated Janus hydrogel microstrip is composed of a soft, pH-responsive polymer hydrogel layer laminated with a highly cross-linked, rigid thin film, generating a geometric anisotropy at a micron scale. The large difference in the elastic moduli between the two layers of the Janus microstrips leads to a self-bending behavior in response to the pH change. More specifically, the impact of the physical and chemical properties of the microstrip on the self-bending phenomena was systematically investigated by changing the thickness and composition of two layers of the microstrip, which renders high controllability in bending of the microstrips. The curvature of the Janus microstrips, formed by self-bending, highly depends on the applied acidity. A reversible, responsive self-bending/unbending exhibits a perfect resilience pattern with repeated changes in pH for 5 cycles. We envision that the Janus microstrips can be engineered to form complex 3D microstructures applicable to various fields such as soft robotics, scaffolds, and drug delivery. The reliable responsive behaviors obtained from the systematic investigation will provide critical information in bridging the gap between the theoretical mechanical analysis and the chemical properties to achieve micron-scale soft robotics.

  8. Improved Gain Microstrip Patch Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...Distribution A An antenna for mounting on a ground plane includes a dielectric substrate for mounting on the ground plane. A conductive patch...GAIN MICROSTRIP PATCH ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or for the

  9. Composite arrays of superconducting microstrip line resonators

    SciTech Connect

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  10. The Alternating Surface Segmented Lap Joint: a Design for Thin Highly Loaded Joints

    NASA Technical Reports Server (NTRS)

    Watkins, V. E., Jr.; Firth, G. C.

    1985-01-01

    The combination of thin airfoil sections and high aerodynamic loads on many wind tunnel models presents a major problem for attachment of flap elements. Conventional methods of attaching fixed control elements such as lap and tongue-in-groove joints are not rigid enough to provide surface continuity required in high Reynolds number research. For the extreme cases, the solution has been to fabricate separate wings for each flap setting with the flap element being and integral part of the wing. Here an attractive solution to this problem, the alternating surface segmented lap joint, is discussed. This joint provides increased rigidity and lower stress levels than conventional joints. Additionally, attachment fastener loading is low and the joint can be designed to accommodate high shear levels due to bending without the use of dowel pins.

  11. Segments.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Presents a market taxonomy for higher education, including what it reveals about the structure of the market, the model's technical attributes, and its capacity to explain pricing behavior. Details the identification of the principle seams separating one market segment from another and how student aspirations help to organize the market, making…

  12. Evaluation of advanced automatic PET segmentation methods using nonspherical thin-wall inserts

    SciTech Connect

    Berthon, B. Marshall, C.; Evans, M.; Spezi, E.

    2014-02-15

    Purpose: The use of positron emission tomography (PET) within radiotherapy treatment planning requires the availability of reliable and accurate segmentation tools. PET automatic segmentation (PET-AS) methods have been recommended for the delineation of tumors, but there is still a lack of thorough validation and cross-comparison of such methods using clinically relevant data. In particular, studies validating PET segmentation tools mainly use phantoms with thick plastic walls inserts of simple spherical geometry and have not specifically investigated the effect of the target object geometry on the delineation accuracy. Our work therefore aimed at generating clinically realistic data using nonspherical thin-wall plastic inserts, for the evaluation and comparison of a set of eight promising PET-AS approaches. Methods: Sixteen nonspherical inserts were manufactured with a plastic wall of 0.18 mm and scanned within a custom plastic phantom. These included ellipsoids and toroids derived with different volumes, as well as tubes, pear- and drop-shaped inserts with different aspect ratios. A set of six spheres of volumes ranging from 0.5 to 102 ml was used for a baseline study. A selection of eight PET-AS methods, written in house, was applied to the images obtained. The methods represented promising segmentation approaches such as adaptive iterative thresholding, region-growing, clustering and gradient-based schemes. The delineation accuracy was measured in terms of overlap with the computed tomography reference contour, using the dice similarity coefficient (DSC), and error in dimensions. Results: The delineation accuracy was lower for nonspherical inserts than for spheres of the same volume in 88% cases. Slice-by-slice gradient-based methods, showed particularly lower DSC for tori (DSC < 0.5), caused by a failure to recover the object geometry. The region-growing method reached high levels of accuracy for most inserts (DSC > 0.76 except for tori) but showed the largest

  13. High Performance Circularly Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  14. (abstract) Microstrip Reflectarray and its Applications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1997-01-01

    The microstrip reflectarray antenna, being in the form of a flat reflector, has recently been investigated by several antenna researchers. To demonstrate that such an antenna can be developed with relatively large electrical aperture, a half-meter-diameter microstrip array has been designed and constructed at 32 GHz with circular polarization. It is believed that this is the largest microstrip reflectarray ever built.

  15. Thermal imaging of hot spots in nanostructured microstripes

    NASA Astrophysics Data System (ADS)

    Saïdi, E.; Lesueur, J.; Aigouy, L.; Labéguerie-Egéa, J.; Mortier, M.

    2010-03-01

    By scanning thermal microscopy, we study the behavior of nanostructured metallic microstripes heated by Joule effect. Regularly spaced indentations have been made along the thin film stripe in order to create hot spots. For the designed stripe geometry, we observe that heat remains confined in the wire and in particular at shrinkage points within ~1μm2. Thermal maps have been obtained with a good lateral resolution (< 300nm) and a good temperature sensitivity (~1K).

  16. Feasibility Study of Optically Transparent Microstrip Patch Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1997-01-01

    The paper presents a feasibility study on optically transparent patch antennas with microstrip line and probe feeds. The two antennas operate at 2.3 GHz and 19.5 GHz respectively. They are constructed from a thin sheet of clear polyester with an AgHT-8 optically transparent conductive coating. The experimental results show good radiation patterns and input impedance match. The antennas have potential applications in mobile wireless communications.

  17. Feasibility Study of Optically Transparent Microstrip Patch Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1997-01-01

    The paper presents a feasibility study on optically transparent patch antennas with microstrip line and probe feeds. The two antennas operate at 2.3 GHz and 19.5 GHz respectively. They are constructed from a thin sheet of clear polyester with an AgHT-8 optically transparent conductive coating. The experimental results show good radiation patterns and input impedance match. The antennas have potential applications in mobile wireless communications.

  18. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-05

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10{sup −4} Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  19. Evaluation of Semi-automatic Segmentation Methods for Persistent Ground Glass Nodules on Thin-Section CT Scans

    PubMed Central

    Kim, Young Jae; Lee, Seung Hyun; Park, Chang Min

    2016-01-01

    Objectives This work was a comparative study that aimed to find a proper method for accurately segmenting persistent ground glass nodules (GGN) in thin-section computed tomography (CT) images after detecting them. Methods To do this, we first applied five types of semi-automatic segmentation methods (i.e., level-set-based active contour model, localized region-based active contour model, seeded region growing, K-means clustering, and fuzzy C-means clustering) to preprocessed GGN images, respectively. Then, to measure the similarities, we calculated the Dice coefficient of the segmented area using each semiautomatic method with the result of the manually segmented area by two radiologists. Results Comparison experiments were performed using 40 persistent GGNs. In our experiment, the mean Dice coefficient for each semiautomatic segmentation tool with manually segmented area was 0.808 for the level-set-based active contour model, 0.8001 for the localized region-based active contour model, 0.629 for seeded region growing, 0.7953 for K-means clustering, and 0.7999 for fuzzy C-means clustering, respectively. Conclusions The level-set-based active contour model algorithm showed the best performance, which was most similar to the result of manual segmentation by two radiologists. From the differentiation between the normal parenchyma and the nodule, it was also the most efficient. Effective segmentation methods will be essential for the development of computer-aided diagnosis systems for more accurate early diagnosis and prognosis of lung cancer in thin-section CT images. PMID:27895963

  20. Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT.

    PubMed

    Korfiatis, P; Skiadopoulos, S; Sakellaropoulos, P; Kalogeropoulou, C; Costaridou, L

    2007-12-01

    The first step in lung analysis by CT is the identification of the lung border. To deal with the increased number of sections per scan in thin-slice multidetector CT, it has been crucial to develop accurate and automated lung segmentation algorithms. In this study, an automated method for lung segmentation of thin-slice CT data is presented. The method exploits the advantages of a two-dimensional wavelet edge-highlighting step in lung border delineation. Lung volume segmentation is achieved with three-dimensional (3D) grey level thresholding, using a minimum error technique. 3D thresholding, combined with the wavelet pre-processing step, successfully deals with lung border segmentation challenges, such as anterior or posterior junction lines and juxtapleural nodules. Finally, to deal with mediastinum border under-segmentation, 3D morphological closing with a spherical structural element is applied. The performance of the proposed method is quantitatively assessed on a dataset originating from the Lung Imaging Database Consortium (LIDC) by comparing automatically derived borders with the manually traced ones. Segmentation performance, averaged over left and right lung volumes, for lung volume overlap is 0.983+/-0.008, whereas for shape differentiation in terms of mean distance it is 0.770+/-0.251 mm (root mean square distance is 0.520+/-0.008 mm; maximum distance is 3.327+/-1.637 mm). The effect of the wavelet pre-processing step was assessed by comparing the proposed method with the 3D thresholding technique (applied on original volume data). This yielded statistically significant differences for all segmentation metrics (p<0.01). Results demonstrate an accurate method that could be used as a first step in computer lung analysis by CT.

  1. The Millimeter-Wave Properties of Superconducting Microstrip Lines

    NASA Technical Reports Server (NTRS)

    Vayonakis, A.; Luo, C.; Leduc, H. G.; Schoelkopf, R.; Zmuidzinas, J.

    2002-01-01

    We have developed a novel technique for making high quality measurements of the millimeter-wave properties of superconducting thin-film microstrip transmission lines. Our experimental technique currently covers the 75-100 GHz band. The method is based on standing wave resonances in an open ended transmission line. We obtain information on the phase velocity and loss of the microstrip. Our data for Nb/SiO/Nb lines, taken at 4.2 K and 1.6 K, can be explained by a single set of physical parameters. Our preliminary conclusion is that the loss is dominated by the SiO dielectric, with a temperature-independent loss tangent of 5.3 +/- 0.5 x 10(exp -3) for our samples.

  2. Transparent graphene microstrip filters for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  3. Wideband Microstrip Antenna-Feeding Array

    NASA Technical Reports Server (NTRS)

    Huang, John

    1990-01-01

    Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.

  4. Planar microstrip YAGI antenna array

    NASA Astrophysics Data System (ADS)

    Huang, John

    1993-06-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  5. Planar microstrip YAGI antenna array

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1993-01-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  6. Conformal microstrip arrays on cylinders

    NASA Astrophysics Data System (ADS)

    Ashkenazy, J.; Shtrikman, S.; Treves, D.

    1988-04-01

    Design and measured results for two X-band conformal microstrip arrays are presented. The two 4 x 4 arrays are built on the surface of a cylinder of small radius. They differ by the orientation of small radius. They differ by the orientation of the elements relative to the cylinder axis. The measured directivities and radiation patterns are in reasonable agreement with theoretical predictions.

  7. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  8. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  9. A study of microstrip array antennas with the feed network

    NASA Astrophysics Data System (ADS)

    Levine, Ely; Malamud, Gabi; Shtrikman, Shmuel; Treves, David

    1989-04-01

    The radiation and losses in microstrip antennas with a corporate feed network are studied. A surface current approach is applied in which the electrical currents in the feed lines are modeled as ideal transmission lines. The free-space radiation and the surface-wave excitation of typical segments in printed feed networks are studied. A four-element array antenna with its printed feed network is analyzed, and predicted radiation patterns, directivity, and gain are presented and compared with experimental results. The gain and directivity of large arrays of 16, 64, 256, and 1024 elements are calculated, and measurements in the frequency range of 10 to 35 GHz are reported.

  10. A microstrip detector with delay line readout

    SciTech Connect

    Barbosa, A.F. , BP 220, 38043 Grenoble CNPq Riekel, C.; Wattecamps, P. , BP 220, 38043 Grenoble )

    1992-01-01

    Principal limitations of position sensitive gasfilled detectors for x-ray synchrotron radiation applications are the counting rate and the positional resolution. Improvements in both areas are expected with microstrip technology. First results of a linear position sensitive microstrip detector with delay line readout are shown, and the possibility to achieve two-dimensional localization is evaluated.

  11. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi

    2014-02-15

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni{sub 80}Fe{sub 20}) thin film strip sputtered onto SiO{sub 2} substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  12. Note: electrical detection and quantification of Spin Rectification Effect enabled by shorted microstrip transmission line technique.

    PubMed

    Soh, Wee Tee; Peng, Bin; Chai, Guozhi; Ong, C K

    2014-02-01

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni80Fe20) thin film strip sputtered onto SiO2 substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  13. Several Microstrip-Based Conductor/Thin Film Ferroelectric Phase Shifter Designs Using (YBa2Cu3O(7 - Delta), Au)/SrTiO3/LaAlO3 Structures

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Miranda, F. A.

    1998-01-01

    We have designed, fabricated, and tested several novel microstrip-base YBa2Cu3O7-delta/SrTiO3/LaAlO3 (YBCO/STO/LAO) and Au/SrTiO3ALO3 (Au/STO/LAO) phase shifters. The first design consists of eight coupled microstrip phase shifters (CMPS) in series. This design using YBCO achieved a relative insertion phase shift (Delta f) of 484 degrees with a figure of merit of 80 degrees/dB at Vdc = 375 V, 16 GHz, and 40 K. A Delta f of 290 degrees was observed while maintaining the insertion loss below 4.5 dB. At 77 K, a Delta of 420 degrees was obtained for this phase shifter at the same bias and frequency. Both results correspond to an effective coupling length of 0.33 cm. A second compact design, consisting of an Au meander line and a CMPS section was also tested. Of the two samples tested, the best showed a figure of merit of 43 degrees/dB with Delta f = 290 degrees and 6.8 dB loss, at 40 K, 10 GHz and 400 V. Experimental and modeling results on these circuits will be discussed in the context of potential applications.

  14. Adaptive Neuro-Fuzzy Inference System for Computing the Resonant Frequency of Circular Microstrip Antennas

    DTIC Science & Technology

    2004-11-01

    Use of Artificial Neural Networks,” Microwave and Optical Technology Letters, Vol.14, pp. 89-93, 1997. [41] S. Sagiroglu, K. Guney, and M. Erler ...Computer-Aided Engineering, Vol. 8, pp. 270- 277, 1998. [42] S. Sagiroglu, K. Guney, and M. Erler , “Calculation of Bandwidth for Electrically Thin and...S. Sagiroglu, and M. Erler , “Neural Computation of Resonant Frequency of Electrically Thin and Thick Rectangular Microstrip Antennas,” IEE. Proc

  15. D0 silicon microstrip tracker

    SciTech Connect

    Burdin, Sergey

    2005-11-01

    The D0 Run II silicon microstrip tracker (SMT) has 3 square meters of Si area. There are 792,576 channels read out by 6192 SVXIIe chips on 912 read out modules. The SMT provides track and vertex reconstruction capabilities over the full pseudorapidity coverage of the D0 detector. The full detector has been running successfully since April 2002. This presentation covers the experience in commissioning and operating, the recent electronics upgrade which improved stability of the SMT and estimates of the radiation damage.

  16. Inflatable Microstrip Reflectarray Antennas At X and Ka-Band Frequencies

    NASA Technical Reports Server (NTRS)

    Huang, John; Feria, Alfonso

    1998-01-01

    Introduction: Inflatable antenna technology is being developed by JPL/NASA to enable the capabilities of low mass, high packaging efficiency, and low-cost deployment for future spacecraft high-gain and large aperture antennas. One of the technologies being considered [11 is the inflatable microstrip reflectarray. A conventional inflatable parabolic reflector antenna will offer similar advantages with the added capability of wide electrical bandwidth. However, it suffers from the difficulty of maintaining its required large, thin, and curved-parabolic surface in the space environment. Since the microstrip reflectarray has the "natural" flat reflecting surface, it is much easier to maintain the required surface tolerance using an inflatable structure. This is the primary reason, despite its narrow bandwidth characteristic, that the inflatable microstrip reflectarray is being studied. This article discusses an already-developed one-meter X-band inflatable microstrip reflectarray and a three-meter Ka-band inflatable microstrip reflectarray which is currently under development. Both antennas' RF structures are designed at JPL and their mechanical inflatable structures are designed and manufactured at ILC Dover, Inc.

  17. Evaluation of an algorithm for semiautomated segmentation of thin tissue layers in high-frequency ultrasound images.

    PubMed

    Qiu, Qiang; Dunmore-Buyze, Joy; Boughner, Derek R; Lacefield, James C

    2006-02-01

    An algorithm consisting of speckle reduction by median filtering, contrast enhancement using top- and bottom-hat morphological filters, and segmentation with a discrete dynamic contour (DDC) model was implemented for nondestructive measurements of soft tissue layer thickness. Algorithm performance was evaluated by segmenting simulated images of three-layer phantoms and high-frequency (40 MHz) ultrasound images of porcine aortic valve cusps in vitro. The simulations demonstrated the necessity of the median and morphological filtering steps and enabled testing of user-specified parameters of the morphological filters and DDC model. In the experiments, six cusps were imaged in coronary perfusion solution (CPS) then in distilled water to test the algorithm's sensitivity to changes in the dimensions of thin tissue layers. Significant increases in the thickness of the fibrosa, spongiosa, and ventricularis layers, by 53.5% (p < 0.001), 88.5% (p < 0.001), and 35.1% (p = 0.033), respectively, were observed when the specimens were submerged in water. The intraobserver coefficient of variation of repeated thickness estimates ranged from 0.044 for the fibrosa in water to 0.164 for the spongiosa in CPS. Segmentation accuracy and variability depended on the thickness and contrast of the layers, but the modest variability provides confidence in the thickness measurements.

  18. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy.

    PubMed

    Zhang, X; Ugurbil, K; Chen, W

    2001-09-01

    A new type of high-frequency RF surface coil was developed for in vivo proton or other nuclei NMR applications at 7T. This is a purely distributed-element and transmission line design. The coil consists of a thin strip conductor (copper or silver) and a ground plane separated by a low-loss dielectric material with a thickness (H). Due to its specific semi-open transmission line structure, substantial electromagnetic energy is stored in the dielectric material between the thin conductor and the ground plane, which results in a reduced radiation loss and a reduced perturbation of sample loading to the RF coil compared to conventional surface coils. The coil is characterized by a high Q factor, no RF shielding, small physical coil size, lower cost, and easy fabrication. A brief theoretical description of the microstrip RF coil is given that can be used to guide the coil designs. A set of gradient-recalled echo images were acquired by using the single- and two-turn microstrip RF surface coils from both phantom and human brain at 7T, which show good penetration and sensitivity. The two-turn coil design significantly improves the B1 symmetry as predicted by the microstrip theory. The optimum H for microstrip surface coils is approximately 7 mm. This coil geometry yields a B1 penetration similar to that of conventional surface coils. SNR comparison was made between the microstrip coil and conventional surface coils with and without RF shielding. The results reveal that the novel surface coil design based on the microstrip concept makes very high-field MRI/MRS more convenient and efficient in research and future clinics.

  19. Microstrip Antennas with Broadband Integrated Phase Shifting

    NASA Technical Reports Server (NTRS)

    Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)

    2001-01-01

    The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.

  20. Microstrip Antenna Arrays on Multilayer LCP Substrates

    NASA Technical Reports Server (NTRS)

    Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin

    2007-01-01

    A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the

  1. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  2. The Microstrip DC SQUID Amplifier

    NASA Astrophysics Data System (ADS)

    Mück, Michael

    2000-03-01

    We have developed an extremely sensitive rf amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra low temperatures (300 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal between the two ends of the coil, it is connected between the SQUID washer and one end of the coil; the other end is left open. Such amplifiers have gains of 20 dB or more at frequencies up to 1.5 GHz. The resonant nature of the input circuit limits the -3 dB bandwidth of the amplifier to at most 100 MHz. The resonant frequency of the microstrip can be tuned, however, by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between 0.5 K ± 0.3 K at a resonant frequency of 80 MHz and 1.6 K ± 1.2 K at 1 GHz. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of 100 mK ± 20 mK was achieved at 90 MHz, and of about 120 ± 100 mK at 440 MHz. The gain of the SQUID amplifier is sensitive to changes of the static magnetic flux through the SQUID. In order to prevent low frequency magnetic noise from changing the amplifier gain, we developed a directly coupled flux-locked loop which stabilizes the static flux bias of the SQUID. Finally, although the maximum output voltage of the SQUID amplifier is relatively small, two-tone intermodulation measurements show an intermodulation-free dynamic range of nearly 50 dB in a bandwidth of

  3. Microstrip proportional counter development at MSFC

    NASA Technical Reports Server (NTRS)

    Fulton, M. A.; Kolodziejczak, J. J.; Ramsey, B. D.

    1992-01-01

    Microstrip detectors are an exciting new development in proportional counter design fabricated using integrated circuit-type photolithography techniques; they therefore offer very high spatial accuracy and uniformity. A development program is underway at NASA-Marshall to produce large-area microstrips for use in an X-ray detector balloon flight program and to investigate the general performance limits of these new devices. Microstrips tested so far have been fabricated both in-house using standard photolithographic techniques and by an outside contractor using electron beam technology. Various substrate materials have been tested along with different electrode configurations. The distributions of pickup on subdivided cathodes on both top and bottom surfaces of the microstrips are also being investigated for use as two-dimensional imaging detectors. Data from these tests in the development of a large-area device will be presented.

  4. Design of microstrip components by computer

    NASA Technical Reports Server (NTRS)

    Cisco, T. C.

    1972-01-01

    Development of computer programs for component analysis and design aids used in production of microstrip components is discussed. System includes designs for couplers, filters, circulators, transformers, power splitters, diode switches, and attenuators.

  5. Analysis of Stub Loaded Microstrip Patch Antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1997-01-01

    A microstrip patch antenna fed by a coaxial probe and reactively loaded by a open circuited microstrip line has been used previously to produce circular polarization[ l] and also as a building block for a series fed microstrip patch array [2]. Rectangular and circular patch antennas loaded with a microstrip stub were previously analyzed using the generalized Thevenin theorem [2,3]. In the Thevenin theorem approach, the mutual coupling between the patch current and the surface current on the stub was not taken into account. Also, the Thevenin theorem approach neglects continuity of current at the patch-stub junction. The approach in this present paper includes the coupling between the patch and stub currents as well as continuity at the patch-stub junction.

  6. Terahertz wave spectrum analysis of microstrip structure

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Terahertz wave is a kind of electromagnetic wave ranging from 0.1~10THz, between microwave and infrared, which occupies a special place in the electromagnetic spectrum. Terahertz radiation has a strong penetration for many media materials and nonpolar substance, for example, dielectric material, plastic, paper carton and cloth. In recent years, researchers around the world have paid great attention on terahertz technology, such as safety inspection, chemical biology, medical diagnosis and terahertz wave imaging, etc. Transmission properties of two-dimensional metal microstrip structures in the terahertz regime are presented and tested. Resonant terahertz transmission was demonstrated in four different arrays of subwavelength microstrip structure patterned on semiconductor. The effects of microstrip microstrip structure shape were investigated by using terahertz time-domain spectroscopy system. The resonant terahertz transmission has center frequency of 2.05 THz, transmission of 70%.

  7. Terahertz wave spectrum analysis of microstrip structure

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2011-11-01

    Terahertz wave is a kind of electromagnetic wave ranging from 0.1~10THz, between microwave and infrared, which occupies a special place in the electromagnetic spectrum. Terahertz radiation has a strong penetration for many media materials and nonpolar substance, for example, dielectric material, plastic, paper carton and cloth. In recent years, researchers around the world have paid great attention on terahertz technology, such as safety inspection, chemical biology, medical diagnosis and terahertz wave imaging, etc. Transmission properties of two-dimensional metal microstrip structures in the terahertz regime are presented and tested. Resonant terahertz transmission was demonstrated in four different arrays of subwavelength microstrip structure patterned on semiconductor. The effects of microstrip microstrip structure shape were investigated by using terahertz time-domain spectroscopy system. The resonant terahertz transmission has center frequency of 2.05 THz, transmission of 70%.

  8. Microstrip monopulse antenna for land mobile communications

    NASA Technical Reports Server (NTRS)

    Garcia, Q.; Martin, C.; Delvalle, J. C.; Jongejans, A.; Rinous, P.; Travers, M. N.

    1993-01-01

    Low cost is one of the main requirements in a communication system suitable for mass production, as it is the case for satellite land mobile communications. Microstrip technology fulfills this requirement which must be supported by a low cost tracking system design. The tradeoff led us to a prototype antenna composed of microstrip patches based on electromechanical closed-loop principle; the design and the results obtained are described.

  9. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies

    NASA Astrophysics Data System (ADS)

    Richard, Mark A.

    1993-03-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  10. Analysis of microstrip antennas using magnetic substrates

    NASA Astrophysics Data System (ADS)

    Vakati, Venkata Jagadish Prasad

    The substrate materials play a major role in the design, production and, most importantly, the performance of the Microstrip antennas. The main goal of this thesis lies in performing a comprehensive and exhaustive study as well as an analysis of how magnetic substrates affect the performance indices of the Microstrip antennas. This project takes into consideration the fact that study of magnetic materials as substrates is a relatively uncharted territory and that a few studies into this field have shown many potential facts. This project narrows the antenna under study to a rectangular Microstrip antenna, due to both the simplicity and the versatility of this structure and the scalability of the study. The project was performed using simulation of Microstrip antenna in CST Microwave Studio with magnetic substrates, over a range of mur, and recording the performance indices of the antenna. The performance indices that were considered for the study were Directivity, Efficiency, Gain, Bandwidth, Resonant frequency and VSWR. The method followed in this study can be easily scaled further to accommodate more performance indices, if needed. The observations were later used to draw practical inferences. Also as an extension, wide band 2x2 Microstrip antenna is designed with an additional degree of freedom where changing the feed distance can cover different bands in GSM frequency.

  11. A Microstrip Reflect Array Using Crossed Dipoles

    NASA Technical Reports Server (NTRS)

    Pozar, David M.; Targonski, Stephen D.

    1998-01-01

    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  12. Characterization of microstrip fixtures, a broadband model for a microstrip connector

    NASA Astrophysics Data System (ADS)

    Filipsson, G.

    1983-09-01

    In order to improve the accuracy of measurements on microstrip components, a model for the connector was developed. Model element values were optimized to fit measured data. All S-parameters agree very well with the measured results up to 15 GHz. The measured device consisted of a 1 in. 500 hm microstrip transmission line between 2 connectors. Model predictions of behavior of a small gap in the line agree well with measurements. Results concerning a Lange coupler mounted in a microstrip fixture and the modeling of beam lead pin diodes are presented.

  13. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  14. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    NASA Technical Reports Server (NTRS)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  15. Low Loss Superconducting Microstrip Development at Argonne National Lab

    SciTech Connect

    Chang, C. L.; Ade, P. A. R.; Ahmed, Z.; Allen, S. W.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Cho, H. M.; Ciocys, S. T.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Ding, J.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Li, D.; McDonald, M.; Meyer, S. S.; Montgomery, J.; Myers, M.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada Arbelaez, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Simard, G.; Smecher, G.; Sayre, J. T.; Shirokoff, E.; Stark, A. A.; Story, K.; Suzuki, A.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Wang, G.; Yefremenko, V.; Yoon, K. W.

    2014-11-20

    Low loss superconducting microstrip is an essential component in realizing 100 kilo-pixel multichroic cosmic microwave background detector arrays. In this paper, we have been developing a low loss microstrip by understanding and controlling the loss mechanisms. We present the fabrication of the superconducting microstrip, the loss measurements at a few GHz frequencies using half-wavelength resonators, and the loss measurements at 220 GHz frequencies with the superconducting microstrip coupled to slot antennas at one end and to TES detectors at the other end. Finally, the measured loss tangent of the microstrip made of sputtered Nb and SiOx is 1-2e-3.

  16. Swept frequency technique for dispersion measurement of microstrip lines

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    1987-01-01

    Microstrip lines used in microwave integrated circuits are dispersive. Because a microstrip line is an open structure, the dispersion can not be derived with pure TEM, TE, or TM mode analysis. Dispersion analysis has commonly been done using a spectral domain approach, and dispersion measurement has been made with high Q microstrip ring resonators. Since the dispersion of a microstrip line is fully characterized by the frequency dependent phase velocity of the line, dispersion measurement of microstrip lines requires the measurement of the line wavelength as a function of frequency. In this paper, a swept frequency technique for dispersion measurement is described.

  17. Microstrip antennas and arrays on chiral substrates

    NASA Astrophysics Data System (ADS)

    Pozar, David M.

    1992-10-01

    Results are presented for isolated microstrip antennas and infinite arrays of microstrip antennas printed on chiral substrates, computed from full-wave spectral domain moment method solutions. Data for resonant length, impedance, directivity, efficiency, cross-polarization level, and scan performance are given, and compared to results obtained for a dielectric substrate of the same thickness and permittivity. It is concluded that, from the point of view of antenna characteristics, there does not seem to be any advantage to using chiral antenna substrates, while there are disadvantages in terms of increased cross-pol levels and losses due to surface wave excitation.

  18. Frequency scanning microstrip antenna (S-band)

    NASA Astrophysics Data System (ADS)

    Jayachandran, M.; Gupta, S. C.

    1983-10-01

    A frequency-scanning microstrip antenna using microstrip radiating resonators is described. The resonators are cascade-coupled. The experimental results in the S-band are in good agreement with the theory, showing that it is possible to scan the main lobe at an angle of + or - 30 deg by variation of frequency of + or - 125 MHz, where 3-dB beam width is less than 30 deg. Directivity of 12.8 dB and gain of 8.5 dB were observed.

  19. Strip and microstrip line periodic heterogeneities

    NASA Astrophysics Data System (ADS)

    Lerer, A. M.; Lerer, B. M.; Ryazanov, V. D.; Sledkov, V. A.

    1985-04-01

    A quasistatic method is described for analyzing periodic heterogeneities in single and coupled strip lines and microstrip lines. An ALGOL program on a BESM-6 computer calculated the running inductance and capacitance, wave impedances and delay coefficients for single and coupled strip lines and microstrip lines with periodic heterogeneities of arbitrary form. The analyzed quantities are investigated as a function of distance (from side shield to the strip), number of terms in the series and number of approximated functions. The method demonstrates good convergence and requires little machine time and results were verified experimentally.

  20. Multilayer Microstrip Slot And Dipole Array Antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N.

    1994-01-01

    Multilayer antenna structure contains interleaved linear subarrays of microstrip dipole and slot radiating antenna elements to provide compact, dual-band antenna. Structure also contains associated microstrip transmission lines, plus high-power amplifiers for transmission and low-noise amplifiers for reception. Overall function is to transmit in horizontal polarization at frequency of 29.634 GHz and receive in vertical polarization at 19.914 GHz, in direction 44 degrees from broadside to antenna. Antenna structure is part of apparatus described in "Steerable K/Ka-band Antenna for Land-Mobile Satellite Applications," NPO-18772.

  1. Propagation characteristics of superconducting microstrip lines

    SciTech Connect

    Mao, S.G.; Ke, J.Y.; Chen, C.H.

    1996-01-01

    The modified spectral-domain approach is applied to study the propagation characteristics of high temperature superconducting microstrip lines whose signal strip and ground plane are of arbitrary thickness. In this study, numerical results for effective dielectric constant, attenuation constant, and strip current distribution are presented to discuss the effects due to frequency, temperature, strip thickness, and substrate loss tangent. In particular, the conductor and dielectric attenuation constants of superconducting microstrip line are depicted separately to discuss the mechanism of the line losses. A comparison with published theoretical and experimental results is also included to check the accuracy of the new approach`s results.

  2. Simple analysis and design of annular ring microstrip antennas

    NASA Astrophysics Data System (ADS)

    El-Khamy, S. E.; El-Awadi, R. M.; El-Sharrawy, E.-B. A.

    1986-06-01

    A simple analysis of thin annular-ring microstrip antennas (AR-MSA), along with a design technique that yields the optimum ring dimensions which maximizes the radiation efficiency and the bandwidth, is presented in this paper. Using the cavity model, exact closed form solutions for the radiation fields are derived. The antenna fields distribution, resonance dimensions, radiation patterns, directivity, radiation conductance, quality factor and bandwidth are investigated for the different TMnm modes. AR-MSAs operated at the high order TMn2 modes are found to have better radiation properties and broader bandwidths than the corresponding disk-MSAs. A design table for the optimum ring dimensions for different types of the dielectric substrate material is also given in the paper.

  3. Miniaturized high-temperature superconductor microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Chaloupka, Heinz; Piel, Helmut; Pischke, Arndt; Klein, Norbert; Peiniger, Michael; Splitt, Georg

    1991-09-01

    Experimental as well as computational results are presented for 2.4 GHz microstrip antennas which are miniaturized (total length, 6 mm) by both a new, stepped impedance patch shape and a relatively high substrate permittivity. The antennas investigated were fabricated from YBa2Cu3O(7-delta) thin films epitaxially grown on single-crystalline LaAlO3 substrates by pulsed excimer laser ablation or by high-pressure oxygen DC sputtering and, for comparison, from copper on the same substrate material. It is shown that the radiation efficiency of this antenna structure is only about 1 percent to 6 percent for copper at 77 K but is increased to values between 35 percent and 65 percent for HTS films. From experimental investigations of the power dependence of the antenna gain at 77 K, nonlinearities, especially a sharp drop at a current density of about 2 x 10 to the 6th A/sq cm, were observed.

  4. Research and analysis of patch shape on microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Ji, Ai-guo; Wang, Peng

    2017-01-01

    The shape of the radiating patch in the microstrip patch antenna is one of the many factors that affect the performance of the microstrip antenna.In this paper, on the premise of center frequency of 2.45 GHz, rectangular, circular and triangular microstrip patch antennas are designed and simulated respectively.The simulation results of the three microstrip patch antenna are analyzed, such as feed point position, return loss and radiation patterns.The influence of the shape of the radiation patch on the impedance bandwidth, gain and directivity of microstrip antennas is discussed.The simulation results show that the comprehensive performance of rectangular microstrip patch antenna is better than the other two, the comprehensive performance of triangular microstrip patch antenna is poor.

  5. Effect of I-shaped metamaterial on microstrip antenna

    NASA Astrophysics Data System (ADS)

    Wang, JiJun; Gong, LeiLei; Zhang, YanRong

    2015-05-01

    In this paper, a near-zero-index metamaterial is proposed by the composite I-shaped unit cell and the refraction index of this metamaterial is close to zero from 6.12GHz to 6.19 GHz. To study the characteristics and application of this near-zero-index metamaterial, especially the ability of focusing energy, a microstrip antenna is designed. According to the formulations for designing microstrip patch antenna, the conventional microstrip antenna, which resonance at 6.19GHz, is designed and optimized. This metamaterial is placed right above the conventional microstrip antenna and this system is tested by the finite element method (FEM). Simulation results show that the maximum radiation gain in H-plane of the microstrip antenna with this near-zero-index metamaterial is 9.24dB, while the maximum radiation gain in H-plane of the conventional microstrip antenna is 2.63dB, improving about 6.61dB than conventional microstrip antenna; the maximum radiation gain in E-plane of the microstrip antenna with this near-zero-index metamaterial is 9.24dB, while the maximum radiation gain in E-plane of the conventional microstrip antenna is 5.12dB, improving about 4.12dB than conventional microstrip antenna. Simulation results also show that the directivity of the microstrip antenna with this near-zero-index metamaterial is much higher, compared with the conventional microstrip antenna. Radiation gain at other frequencies, from 6.12GHz to 6.19GHz, is also obtained, the value is much higher than the conventional microstrip antenna at the corresponding frequency. The results indicate that near-zero-index metamaterials can improve the radiation gain and the directivity of the conventional microstrip antenna.

  6. Microstrip antenna arrays with parasitic elements

    NASA Technical Reports Server (NTRS)

    Lee, Kai-Fong

    1996-01-01

    This research was concerned with using parasitic elements to improve the bandwidth, gain and axial ratio characteristics of microstrip antennas and arrays. Significant improvements in these characteristics were obtained using stacked and coplanar parasitic elements. Details of the results are described in a total of 16 journal and 17 conference papers. These are listed in Section four of this report.

  7. Coplanar waveguide feed for microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Williams, J. T.

    1992-01-01

    A coplanar waveguide (CPW) loop is shown to be an effective low VSWR feed for microstrip antennas. The low VSWR transition between the CPW and the antenna is obtained without the use of a matching circuit, and it is relatively insensitive to the position of the antenna and the feed.

  8. Rectangular microstrip antenna on a ferrite substrate

    NASA Astrophysics Data System (ADS)

    Das, S.; Chowdhury, S. K.

    1982-05-01

    The bandwidth and radiation characteristics of a simple quarter wave microstrip antenna on a typical ferrite substrate are measured and compared with the theoretical results in the lower range of ultrahigh frequency (UHF). A method has also been discussed for impedance matching of the antenna to the feed line.

  9. Slotline fed microstrip antenna array modules

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.; Oberhart, M. L.; Brenneman, J. S.; Aoyagi, P.; Moore, J.; Lee, R. Q. H.

    1988-01-01

    A feed network comprised of a combination of coplanar waveguide and slot transmission line is described for use in an array module of four microstrip elements. Examples of the module incorporating such networks are presented as well as experimentally obtained impedance and radiation characteristics.

  10. Numerical simulation of characteristics of near-field microstrip probe having pyramidal shape.

    PubMed

    Lapchuk, Anatoly S; Yun, Sang-Kyeong; Yurlov, Victor; Song, Jong-Hyeong; An, Seungdo; Nevirkovets, Ivan

    2007-08-01

    A pyramid-type microstrip probe (PTMP) with metal tips is proposed for scanning near-field microscopes to obtain high spatial resolution of a few nanometers and high optical efficiency. Properties of an ordinary PTMP and the PTMP with a single metal tip are investigated by using a rigorous finite-integral technique simulation (MICROWAVE STUDIO package) and analyzing characteristics of working modes of the probe. Numerical simulation has demonstrated that an ordinary PTMP and the PTMT with a single metal tip exhibit large far- and near-transmission coefficients, field enhancement, and high spatial resolution. These high parameters imply that both types of microstrip probe may be utilized for optical and magnetic data storage, nanolithography, and other types of nanotechnology that use light for modification of a thin surface layer.

  11. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  12. Coupling Between Microstrip Lines and Finite Ground Coplanar Lines Embedded in Polyimide Layers for 3D-MMICs on Silicon

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Bushyager, N.; Papapolymerou, J.; Tentzeris, E. M.; Laskar, J.

    2002-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/mm-wave integrated circuits on CMOS (low resistivity) Si wafers. It is expected that these circuits will replace the ones fabricated on GaAs and reduce the overall system cost. However, the closely spaced transmission lines that are required for a high-density circuit environment are susceptible to high levels of cross-coupling, which degrades the overall circuit performance. In this paper, theoretical and experimental results on coupling and ways to reduce it are presented for two types of transmission lines: a) the microstrip line and b) the Finite Ground Coplanar (FGC) line. For microstrip lines it is shown that a fence of metalized via-holes can significantly reduce coupling, especially in the case when both lines are on the same polyimide layer or when the shielding structure extends through several polyimide layers. For closely spaced microstrip lines, coupling is lower for a metal filled trench shield than a via-hole fence. Coupling amongst microstrip lines is dependent on the ratio of line separation to polyimide thickness and is primarily due to magnetic fields. For FGC lines it is shown that they have in general low coupling that can be reduced significantly when there is even a small gap between the ground planes of each line. FGC lines have approximately 8 dB lower coupling than coupled coplanar waveguides (CPW). In addition, forward and backward characteristics of the FGC lines do not resemble those of other transmission lines such as microstrip. Therefore, the coupling mechanism of the FGC lines is different compared to thin film microstrip lines.

  13. Directive properties analysis of the circular microstrip antenna

    NASA Astrophysics Data System (ADS)

    Katulski, Ryszard J.

    The effect of mode type on the directive properties of a circular microstrip antenna are investigated by means of numerical modeling in which a cavity model of the antenna is used. The structure and the cavity model principles are described. Numerical investigations of the directive properties of a single microstrip antenna element and the microstrip antenna array for dominant and higher modes of the antenna excitation are presented. Radiation pattern shapes of the circular microstrip antenna and the antenna array indicate that the antenna tends to receive the undesirable signals.

  14. Input impedance of arbitrarily shaped microstrip antennas

    NASA Astrophysics Data System (ADS)

    Pichon, P.; Mosig, J.; Papiernik, A.

    1988-09-01

    The paper deals with the analysis of arbitrarily shaped microstrip antennas. A powerful and flexible technique is obtained by combining a mixed potential integral equation, successfully used for rectangular patches, with a method of moments, using a division of the patch into triangular cells and overlapping basis functions, defined over cell couples. The resulting computer algorithm is validated by comparing its predictions with the measurements obtained from an equilateral triangular patch.

  15. Mutual Coupling Analysis for Conformal Microstrip Antennas.

    DTIC Science & Technology

    1984-12-01

    coated cylinder. Certain orthogonality properties of the cylindrical vector wave functions [ 15 ] are established in this chapter. The dielectric coated...forms of orthogonal properties of these vector - wave functions have previously been investigated by Stratton [ 15 ] who used a mixed domain of (p,O,X...based upon appropriate Green’s functions are employed to rigorously treat the mutual coupling of microstrip patches on 1) an infinite grounded dielectric

  16. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  17. Radiation and scattering from loaded microstrip antennas over a wide bandwidth

    NASA Technical Reports Server (NTRS)

    Forrai, D. P.; Newman, E. H.

    1988-01-01

    The integral equation and moment method solution is developed for two different antennas in the presence of an infinite grounded dielectric substrate. The first antenna is a rectangular microstrip patch antenna. This antenna is analyzed for excitation by an incident plane wave in free space and a vertical filament of uniform current in the dielectric. This antenna can be loaded by a lumped impedance in a vertical filament of uniform current extending from the patch through the dielectric to the ground plane. The radar cross section of the microstrip antenna is found from the plane wave excitation and shows good agreement to measurement for both an unloaded and loaded antenna. The input impedance is found from the current filament excitation. This is compared to the measured input impedance of a coaxially fed microstrip antenna and shows good agreement for both unloaded and loaded antennas when the dielectric substrate is much less than a wavelength. The second antenna is a vertical thin wire extending from the ground plane into or through the dielectric substrate. The mutual impedance between two imbedded monopoles is compared to a previous calculation.

  18. GaAs IMPATT diodes for microstrip circuit applications.

    NASA Technical Reports Server (NTRS)

    Wisseman, W. R.; Tserng, H. Q.; Shaw, D. W.; Mcquiddy, D. N.

    1972-01-01

    GaAs IMPATT diodes with plated heat sinks are shown to be particularly well suited for microstrip circuit applications. Details of materials growth and device fabrication procedures are given, and experimental results are presented for a GaAs IMPATT microstrip oscillator operating at X band.

  19. GaAs IMPATT diodes for microstrip circuit applications.

    NASA Technical Reports Server (NTRS)

    Wisseman, W. R.; Tserng, H. Q.; Shaw, D. W.; Mcquiddy, D. N.

    1972-01-01

    GaAs IMPATT diodes with plated heat sinks are shown to be particularly well suited for microstrip circuit applications. Details of materials growth and device fabrication procedures are given, and experimental results are presented for a GaAs IMPATT microstrip oscillator operating at X band.

  20. Microstrip Dipoles for EHF and Millimeter Wave Applications.

    DTIC Science & Technology

    1986-08-26

    in the areas of: (a) Substrate- superstrate effects on printed circuit antennas (b) Mo- deling electromingnetically coupled microstrip dipoles in a...0067. The research performed during the duration of this grant has made an impact in the areas of: (a) Substrate- superstrate effects on printed...circuit antennas (b) Modeling electromagnetically coupled microstrip dipoles in a substrate- superstrate configuration (c) Modeling Mcrostrip Discontinuities

  1. Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2000-01-01

    The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.

  2. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  3. Microstrip antenna gain enhancement with metamaterial radome

    NASA Astrophysics Data System (ADS)

    Attachi, S.; Saleh, C.; Bouzouad, M.

    2017-01-01

    In this work, a high gain patch antenna using multilayer FSS radome is proposed for millimeter-wave applications. The antenna operating frequency is 43.5 GHz. The antenna/radome system consists of one, two, three, or four layers of metasurfaces placed in the near-field region of a microstrip patch antenna. The antenna/radome system gain is improved by 9 dBi compared to the patch antenna alone, and the radiation pattern half-power beamwidth is reduces to 20° in both E- and H-planes.

  4. Design of microstrip components by computer

    NASA Technical Reports Server (NTRS)

    Cisco, T. C.

    1972-01-01

    A number of computer programs are presented for use in the synthesis of microwave components in microstrip geometries. The programs compute the electrical and dimensional parameters required to synthesize couplers, filters, circulators, transformers, power splitters, diode switches, multipliers, diode attenuators and phase shifters. Additional programs are included to analyze and optimize cascaded transmission lines and lumped element networks, to analyze and synthesize Chebyshev and Butterworth filter prototypes, and to compute mixer intermodulation products. The programs are written in FORTRAN and the emphasis of the study is placed on the use of these programs and not on the theoretical aspects of the structures.

  5. Microstrip Yagi Antenna with Dual Aperture-Coupled Feed

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald; Venkatesan, Jaikrishna

    2008-01-01

    A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.

  6. Swept frequency technique for dispersion measurement of microstrip lines

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.

    1986-01-01

    Microstrip lines used in microwave integrated circuits are dispersive. Because a microstrip line is an open structure, the dispersion can not be derived with pure TEM, TE, or TM mode analysis. Dispersion analysis has commonly been done using a spectral domain approach, and dispersion measurement has been made with high Q microstrip ring resonators. Since the dispersion of a microstrip line is fully characterized by the frequency dependent phase velocity of the line, dispersion measurement of microstrip lines requires the measurement of the line wavelength as a function of frequency. In this paper, a swept frequency technique for dispersion measurement is described. The measurement was made using an automatic network analyzer with the microstrip line terminated in a short circuit. Experimental data for two microstrip lines on 10 and 30 mil Cuflon substrates were recorded over a frequency range of 2 to 20 GHz. Agreement with theoretical results computed by the spectral domain approach is good. Possible sources of error for the discrepancy are discussed.

  7. Input Impedance of the Microstrip SQUID Amplifier

    NASA Astrophysics Data System (ADS)

    Kinion, Darin; Clarke, John

    2008-03-01

    We present measurements of the complex scattering parameters of microstrip SQUID amplifiers (MSA) cooled to 4.2 K. The input of the MSA is a microstrip transmission line in the shape of a square spiral coil surrounding the hole in the SQUID washer that serves as the ground plane. The input impedance is found by measuring the reverse scattering parameter (S11) and is described well by a low-loss transmission line model. We map the low-loss transmission line model into an equivalent parallel RLC circuit in which a resistance R, inductance L, and capacitance C are calculated from the resonant frequency, characteristic impedance and attenuation factor. Using this equivalent RLC circuit, we model the MSA and input network with a lumped circuit model that accurately predicts the observed gain given by the forward scattering parameter (S21). We will summarize results for different coil geometries and terminations as well as SQUID bias conditions. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

  8. Analysis and Synthesis of Microstrip Antennas Including Mutual Coupling

    DTIC Science & Technology

    1988-09-01

    E N 11. TITLE (/b*I* Secwfty OuodlCaUOn~) Analysis and Synthesis of Microstrip Antennas Including Mutual Coupling 12. PERSONAL AUTHOR(S) K~oichiro...GROUP SUB-GROUP Array Antennas, Microstrip Antennas, Array Analysis, Array Synthesis, Array Theory, Microwave Network Analysi! 19. ABSTRACT (Continue...VIRGI-J~NIA TECH ANALYSIS AND SYNTHESIS OF [. MICROSTRIP ANTENNAS INCLUDING MUTUAL COUPLING o0000 0 0 a o 0 0 0 0 0 o 0 00 0 00 o00000 0o000 0 0 0 a 0 0 0o

  9. Analysis of a digital microstrip optical switch: a novel method.

    PubMed

    Al-Ruwaihi, K M; Hindy, M A

    1997-02-20

    A time domain analysis of an optically controlled digital microstrip switch for microwave integrated circuits on Si substrates is studied. A new model for high-frequency pulse propagation on a microstrip optical switch for different optical parameters is presented. A frequency-dependent macromodel for a microstrip line with a gap is implemented in Spice 3, taking into consideration high-frequency pulse dispersion, conductor and dielectric losses, metallization thickness, gap length, and different optical parameters such as optical energy, surface recombination velocities, and diffusion of generated carriers. In addition, the developed model has been used to optimize the switching frequency, gap length, level of optical power, and suitable substrate material parameters.

  10. Analysis of a microstrip reflectarray antenna for microspacecraft applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1995-01-01

    A microstrip reflectarray is a flat reflector antenna that can be mounted conformally onto a spacecraft's outside structure without consuming a significant amount of spacecraft volume and mass. For large apertures (2 m or larger), the antenna's reflecting surface, being flat, can be more easily and reliably deployed than a curved parabolic reflector. This article presents the study results on a microstrip reflect-array with circular polarization. Its efficiency and bandwidth characteristics are analyzed. Numerous advantages of this antenna system are discussed. Three new concepts using this microstrip reflectarray are also proposed.

  11. D0 layer 0 innermost layer of silicon microstrip tracker

    SciTech Connect

    Hanagaki, K.; /Fermilab

    2006-01-01

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  12. Shielded microstrip array for 7T human MR imaging.

    PubMed

    Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang

    2010-01-01

    The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.

  13. Microstrip Gas Chambers on glass and ceramic substrates

    SciTech Connect

    Gong, W.G.; Wieman, H.; Harris, J.W.; Mitchell, J.T.; Hong, W.S.; Perez-Mendez, V.

    1993-11-01

    We report developments of Microstrip Gas Chambers (MSGC) fabricated on glass and ceramic substrates with various resistivities. Low resistivity of the substrate is found to be critical for achieving stable operation of microstrip gas chambers. The microstrip pattern consists of 10 {mu}m wide anodes and 90 {mu}m wide cathodes with a 200 {mu}m anode-to-anode pitch. High-quality microstrips are fabricated using the dry etch after UV-photolithography. Our chambers are tested in an Ar(90)-CH{sub 4}(10) gas mixture at atmospheric pressure with a 100 {mu}Ci {sup 55}Fe source. An energy resolution (FWHM) of 15% has been achieved for 6 keV soft X-rays. At a rate of 5 {times} 10{sup 4} photons/sec/mm{sup 2}, gas gains are stable within a few percents. Long-term tests of gain stability and rate capability are yet to be pursued.

  14. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.

    1986-01-01

    In February, an initial computer program to be used in analyzing the four-element array module was completed. This program performs the analysis of modules composed of four rectangular patches which are corporately fed by a microstrip line network terminated in four identical load impedances. Currently, a rigorous full-wave analysis of various types of microstrip line feed structures and patches is being performed. These tests include the microstrip line feed between layers of different electrical parameters. A method of moments was implemented for the case of a single dielectric layer and microstrip line fed rectangular patches in which the primary source is assumed to be a magnetic current ribbon across the line some distance from the patch. Measured values are compared with those computed by the program.

  15. Compact Magic-T using microstrip-slotline transitions

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Doiron, Terence (Inventor); Moseley, Samuel H. (Inventor)

    2010-01-01

    The design of a compact low-loss Magic-T is described. The planar Magic-T incorporates a compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The Magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has low in-band insertion loss, and small in-band phase and amplitude imbalance.

  16. Comparative Study of Microstrip Patch Antenna Feed Network (PREPRINT)

    DTIC Science & Technology

    2014-10-09

    patch antenna can achieve a gain of 9dB. Simply a patch can be seen as a pair of imaginary dipoles in parallel separated by the width of the patch. The...Comparative Study of Microstrip Patch Antenna Feed Network Behnam Jamali School of Electrical & Electronic Engineering The University of Adelaide...paper presents a comparative study of patch antenna feed structures. That includes microstrip line feed, inset feed, coaxial feed, aperture coupled

  17. Gas microstrip detectors based on flexible printed circuit

    SciTech Connect

    Salomon, M.; Crowe, K.; Faszer, W.; Lindsay, P.; Curran Maier, J.M.

    1995-09-01

    Microstrip Gas Detectors (MSGC`s) were introduced some years ago as position sensitive detectors capable of operating at very high rates. The authors have studied the properties of a new type of Gas Microstrip Counter built using flexible printed circuit technology. They describe the manufacturing procedures, the assembly of the device, as well as its operation under a variety of conditions, gases and types of radiation. They also describe two new passivation materials, tantalum and niobium, which produce effective surfaces.

  18. Scattering from arbitrarily shaped microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.

    1992-01-01

    The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.

  19. Two-port circularly polarized microstrip antennas

    NASA Astrophysics Data System (ADS)

    Wang, B. F.

    A circularly polarized (CP) two-port microstrip antenna simultaneously operated at two CP states is investigated. The CP bandwidth of this antenna is increased by 0.35 percent to about 5 percent, almost 14 times wider than that of a single port patch. The antenna directivity due to the loss in the load is reduced by about 3 dB. Such a tradeoff should make the antenna much more useful for transmitting or receiving simultaneously two CP waves of opposite senses. The crosstalk between the two ports depends on the purity of the CP and is about -19 dB for axial ratios equal to 2 dB and -14 dB for axial ratio equal to 3 dB. A method for improving the isolation between the two antenna ports is discussed.

  20. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  1. Tunable microstrip SQUID amplifiers for the Gen 2 Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hilton, Gene; Clarke, John; ADMX Collaboration

    2016-03-01

    We present a series of tunable microstrip SQUID (Superconducting Quantum Interference Device) amplifiers (MSAs) for installation in ADMX. The axion dark matter candidate is detected via Primakoff conversion to a microwave photon in a high-Q (~100,000) tunable microwave cavity cooled with a dilution refrigerator in a 7-tesla magnetic field. The microwave photon frequency ν is a function of the unknown axion mass, so both the cavity and amplifier must be scanned over a wide frequency range. An MSA is a linear, phase-preserving amplifier consisting of a square washer loop, fabricated from a thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis. The input is coupled via a microstrip made from a square Nb coil deposited over the washer with an intervening insulating layer. Tunability is achieved by terminating the microstrip with GaAs varactors that operate below 100 mK. By varying the varactor capacitance with a bias voltage, the resonant frequency is varied by up to a factor of 2. We demonstrate several devices operating below 100 mK, matched to the discrete operating bands of ADMX at frequencies ranging from 560 MHz to 1 GHz. The MSAs exhibit gains exceeding 20 dB and the associated noise temperatures, measured with a hot/cold load, approach the standard quantum limit (hν/kB) . Supported by DOE Grants DE - FG02 - 97ER41029, DE - FG02 - 96ER40956, DE - AC52 - 07NA27344, DE - AC03 - 76SF00098, and the Livermore LDRD program.

  2. Finite Difference Time Domain (FDTD) Analysis of a Leaky Traveling Wave Microstrip Antenna

    DTIC Science & Technology

    2007-11-02

    aviobj = avifile([name,’.avi’],’ fps ’,12,’quality’,100); end; %*********************************************************************** % FREQUENCY...Joachim and Rolf H. Jansen . “Spectral Domain Investigation of Surface Wave Excitation and Radiation by Microstrip Lines and Microstrip Disk Resonators

  3. A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.

    1993-01-01

    A 10 GHz hybrid Y-Ba-Cu-O / GaAs microwave oscillator proximity coupled to a circular microstrip antenna was designed, fabricated and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBa2Cu3O(7-x) superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 4 increasing to a maximum of 87.4 percent at 30 K.

  4. A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.

    1993-01-01

    A 10 GHz hybrid YBCO/GaAs microwave oscillator proximity coupled to a circular microstrip antenna has been designed, fabricated, and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBCO superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 K, increasing to a maximum of 87.4 percent at 30 K.

  5. Moment method analysis of microstrip antennas over a wide frequency range

    NASA Technical Reports Server (NTRS)

    Kwan, B. W.; Newman, E. H.

    1985-01-01

    Expressions for the self and mutual impedance between microstrip antenna modes on a grounded dielectric slab are presented. The mutual impedance between the microstrip modes and a vertical current filament in the dielectric is also presented. These are the quantities required in a method of moments analysis of the microstrip antenna. Entire domain expansion modes, suitable for representing the microstrip current over a broad frequency range, are used. Efficient methods for the evaluation of the mutual impedance elements are described.

  6. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.

    1993-01-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  7. The superconducting quantum interference device microstrip amplifier: Computer models

    SciTech Connect

    Mu''ck, Michael; Clarke, John

    2000-12-01

    Computer models are presented for a microstrip amplifier based on a dc superconducting quantum interference device (SQUID). In this device, the signal is applied between one end of the spiral input coil and the square washer on which it is deposited. The amplifier exhibits substantial power gain when the signal frequency is such that a half wavelength is approximately equal to the length of the microstrip formed by the coil and the groundplane. The resonant frequency is lowered significantly by the inductance of the square washer transformed into the input coil; this reduction is consistent with predictions of a simple model and with analog simulations. With the washer grounded, the gain of the amplifier peaks at a frequency that is lowered from the unloaded resonant frequency by the damping of the resistance associated with the source. The position and magnitude of the peak are in good agreement with both a lumped circuit model and with a model representing the microstrip as a transmission line. When the counter electrode of the SQUID is grounded and the washer floats, feedback from the output of the SQUID to the input via the capacitance of the microstrip plays a major role and is well described by simulations using the transmission line model. Measurements of the input impedance of the microstrip amplifier show that the return loss can be positive or negative, depending on the sign of the feedback and whether the frequency is above or below the resonant frequency. This behavior is in good accord with simulations.

  8. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  9. High-power microstrip RF switch

    NASA Technical Reports Server (NTRS)

    Choi, S. D.

    1971-01-01

    A microstrip-type single-pole double-throw (SPDT) switch whose RF and bias portions contain only a metallized alumina substrate and two PIN diodes has been developed. A technique developed to eliminate the dc blocking capacitors needed for biasing the diodes is described. These capacitors are extra components and could lower the reliability significantly. An SPDT switch fabricated on a 5.08 x 5.08 x 0.127-cm (2 x 2 x 0.050-in.) substrate has demonstrated an RF power-handling capability greater than 50 W at S-band. The insertion loss is less than 0.25 db and the input-to-off port isolation is greater than 36 db over a bandwidth larger than 30 MHz. The input voltage standing-wave ratio is lower than 1.07 over the same bandwidth. Theoretical development of the switch characteristics and experimental results, which are in good agreement with theory, are presented.

  10. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  11. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    PubMed

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

  12. Broadband Uniplanar Microstrip to Slot-Line Transitions

    NASA Technical Reports Server (NTRS)

    Dib, Nihad I.; Simons, Rainee N.; Katehi, Linda P. B.

    1995-01-01

    New in line uniplanar microstrip-to-slotline transitions for MIC/MMIC and phased array slotline antenna applications are described. Such transactions are compact and suitable to be used in an open environment or inside a package or a multichip module. The transitions share the concept of using a balun which consists of two microstrip lines connected to a slotline through a pair of coupled microstrips. The transitions are studied theoretically using the finite difference time domain (FDTD) technique and measured experimentally using an HP8510C Network Analyzer. For a back-to-back configuration, an insertion loss of less than 1.3 dB per transition is achieved over a 40% 3-dB bandwidth with a minimum of 0.6 dB at the design frequency.

  13. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  14. Resonance of a rectangular microstrip patch on a uniaxial substrate

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Lu; Row, Jeen-Sheen; Kuo, Chih-Wen; Huang, Kuang-Chih

    1993-04-01

    Effects of uniaxial anisotropy in the substrate on the complex resonant frequency of the microstrip patch antenna are investigated in terms of an integral equation formulation. The complex resonant frequency of the microstrip patch antenna is calculated by using Galerkin's method in solving the integral equation. The sinusoidal functions are selected as the basis functions, which show fast numerical convergence. Numerical results also indicate that both the resonant frequency and the half-power bandwidth are increased due to the positive uniaxial anisotropy and, on the other hand, decreased due to the negative uniaxial anisotropy.

  15. Characterization of microstrip discontinuities in the time and frequency domains

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Mittra, R.

    1985-01-01

    A number of impedance transitions and interconnections to a microstrip were designed and investigated. The double-step discontinuity on a microstrip was studied in detail, and a procedure was developed to design these structures. Their response was determined by making measurements in both the frequency and time domains in a consistent and repeatable manner. The time-domain presentation of the data was the most useful feature of the measuring system. All undesirable signal components were filtered out through the use of gating functions. Theoretically computed results were verified experimentally.

  16. Attenuation characteristics of monolayer graphene by Pi- and T-networks modeling of multilayer microstrip line

    NASA Astrophysics Data System (ADS)

    Sharma, Pulkit; Pratap Singh, Sumit; Patel, Kamlesh

    2017-09-01

    The impedances of Pi- and T- networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges. With graphene on glass and graphene on quartz loadings, the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling. This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz. A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz. The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.

  17. Very Long Microstrip Array Feeds of a Membrane Reflector for the Advanced Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Huang, John; Rahmat-Samii, Yahya; Durden, Stephen L.; Im, Eastwood

    2005-01-01

    Very long microstrip arrays have been developed at the Ku- and Ka-band frequencies. Each array having an electrical length of about 110 free-space wavelengths is used to feed a deployable thin-membrane cylindrical reflector for a spaceborne precipitation radar application. These arrays, designed for 0(deg) and 30(deg) beam directions, achieved peak sidelobes of -20 dB and average sidelobes below -30 dB with peak cross-pol levels below -20 dB. Several unique challenges were encountered during the development of these very long arrays, such as the strong coupling between very long power divider lines, the strong leakage radiation from the lengthy transmission lines, and the lack of computer analysis capability of these electrically large arrays.

  18. Very Long Microstrip Array Feeds of a Membrane Reflector for the Advanced Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Huang, John; Rahmat-Samii, Yahya; Durden, Stephen L.; Im, Eastwood

    2005-01-01

    Very long microstrip arrays have been developed at the Ku- and Ka-band frequencies. Each array having an electrical length of about 110 free-space wavelengths is used to feed a deployable thin-membrane cylindrical reflector for a spaceborne precipitation radar application. These arrays, designed for 0(deg) and 30(deg) beam directions, achieved peak sidelobes of -20 dB and average sidelobes below -30 dB with peak cross-pol levels below -20 dB. Several unique challenges were encountered during the development of these very long arrays, such as the strong coupling between very long power divider lines, the strong leakage radiation from the lengthy transmission lines, and the lack of computer analysis capability of these electrically large arrays.

  19. TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.

  20. Spectroscopic properties of poly(9,9‐dioctylfluorene) thin films possessing varied fractions of β‐phase chain segments: enhanced photoluminescence efficiency via conformation structuring

    PubMed Central

    Perevedentsev, Aleksandr; Chander, Nathan; Kim, Ji‐Seon

    2016-01-01

    ABSTRACT Poly(9,9‐dioctylfluorene) (PFO) is a widely studied blue‐emitting conjugated polymer, the optoelectronic properties of which are strongly affected by the presence of a well‐defined chain‐extended “β‐phase” conformational isomer. In this study, optical and Raman spectroscopy are used to systematically investigate the properties of PFO thin films featuring a varied fraction of β‐phase chain segments. Results show that the photoluminescence quantum efficiency (PLQE) of PFO films is highly sensitive to both the β‐phase fraction and the method by which it was induced. Notably, a PLQE of ∼69% is measured for PFO films possessing a ∼6% β‐phase fraction induced by immersion in solvent/nonsolvent mixtures; this value is substantially higher than the average PLQE of ∼55% recorded for other β‐phase films. Furthermore, a linear relationship is observed between the intensity ratios of selected Raman peaks and the β‐phase fraction determined by commonly used absorption calibrations, suggesting that Raman spectroscopy can be used as an alternative means to quantify the β‐phase fraction. As a specific example, spatial Raman mapping is used to image a mm‐scale β‐phase stripe patterned in a glassy PFO film, with the extracted β‐phase fraction showing excellent agreement with the results of optical spectroscopy. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1995–2006

  1. Resistively Loaded Microstrip-Patch Antenna

    NASA Technical Reports Server (NTRS)

    Bailey, Marion C.

    1993-01-01

    Strips of thin resistive material added near two edges of conventional micro-strip-patch antenna. Bandwidth doubled by simple modification. Optimum bandwidth performance obtained by adjustment of shapes, resistances, and locations of resistive strips.

  2. Analysis of microstrip dipoles and slots transversely coupled to a microstrip line using the FDTD method

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.

    1993-01-01

    Printed dipole elements and their complement, linear slots, are elementary radiators that have found use in low-profile antenna arrays. Low-profile antenna arrays, in addition to their small size and low weight characteristics, offer the potential advantage of low-cost, high-volume production with easy integration with active integrated circuit components. The design of such arrays requires that the radiation and impedance characteristics of the radiating elements be known. The FDTD (Finite-Difference Time-Domain) method is a general, straight-forward implementation of Maxwell's equations and offers a relatively simple way of analyzing both printed dipole and slot elements. Investigated in this work is the application of the FDTD method to the analysis of printed dipole and slot elements transversely coupled to an infinite transmission line in a multilayered configuration. Such dipole and slot elements may be used in dipole and slot series-fed-type linear arrays, where element offsets and interelement line lengths are used to obtain the desired amplitude distribution and beam direction, respectively. The design of such arrays is achieved using transmission line theory with equivalent circuit models for the radiating elements. In an equivalent circuit model, the dipole represents a shunt impedance to the transmission line, where the impedance is a function of dipole offset, length, and width. Similarly, the slot represents a series impedance to the transmission line. The FDTD method is applied to single dipole and slot elements transversely coupled to an infinite microstrip line using a fixed rectangular grid with Mur's second order absorbing boundary conditions. Frequency-dependent circuit and scattering parameters are obtained by saving desired time-domain quantities and using the Fourier transform. A Gaussian pulse excitation is applied to the microstrip transmission line, where the resulting reflected signal due to the presence of the radiating element is used

  3. Parallel and series FED microstrip array with high efficiency and low cross polarization

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1995-01-01

    A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.

  4. A Low Loss Microstrip Antenna for Radiometric Applications

    NASA Technical Reports Server (NTRS)

    Wahid, Parveen

    2000-01-01

    The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.

  5. A user's manual for the Loaded Microstrip Antenna Code (LMAC)

    NASA Technical Reports Server (NTRS)

    Forrai, D. P.; Newman, E. H.

    1988-01-01

    The use of the Loaded Microstrip Antenna Code is described. The geometry of this antenna is shown and its dimensions are described in terms of the program outputs. The READ statements for the inputs are detailed and typical values are given where applicable. The inputs of four example problems are displayed with the corresponding output of the code given in the appendices.

  6. A volume microstrip RF coil for MRI microscopy.

    PubMed

    Jasiński, Krzysztof; Młynarczyk, Anna; Latta, Peter; Volotovskyy, Vyacheslav; Węglarz, Władyslaw P; Tomanek, Bogusław

    2012-01-01

    Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B(1) field distribution and high signal-to-noise ratio (SNR). We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective. Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B(1) and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm × 24 μm.

  7. Full W-band Microstrip Fed Vivaldi Antenna

    NASA Astrophysics Data System (ADS)

    Rebollo, Ainara; Gonzalo, Ramón; Ederra, Iñigo

    2016-08-01

    A full W-band Vivaldi antenna is proposed. The selected feeding technique implements a broadband slotline to microstrip transition which allows obtaining return loss higher than 10 dB in the full W-band. The proposed configuration is compatible with standard manufacturing techniques such as photo-lithography or laser milling.

  8. Extended analysis of closed-ring microstrip antenna

    NASA Astrophysics Data System (ADS)

    Sultan, M. A.

    1989-02-01

    Gauss' hypergeometric function and Euler's transformation are employed to analyze the radiation characteristics of a closed-ring microstrip antenna. The method takes into account ohmic and dielectric losses, and it is used to determine relations between efficiency and bandwidth. It is found that at higher frequencies, narrower ring structures can have small Q-factors, high gain, and large bandwidth.

  9. Use of microstrip patch antennas in grain permittivity measurement

    USGS Publications Warehouse

    El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.

    2003-01-01

    In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.

  10. Microstrip-Transmission-Line Shock-Front Sensor

    NASA Technical Reports Server (NTRS)

    Leiweke, Robert J.; Smith, William C.

    1993-01-01

    Microstrip-transmission-line sensor measures velocities of low-overpressure shock fronts and offers dynamic range needed for measurements both far from and near explosions. Fabricated easily, relatively inexpensive, and repaired in field. In addition, basic geometry modified easily, as needed.

  11. Electrical parameters of bone substrate in microstrip line configuration.

    PubMed

    Ray, S; Behari, J

    1988-03-01

    Techniques of microstrip line are extended to study the dielectric properties of bone at 4.5 GHz. The method is based on time domain technique and is applicable to higher frequency ranges where other conventional methods of dielectric measurements are not suitable. It is found that this method serves well for the determination of dielectric constants of bone in two orthogonal directions.

  12. Coplanar waveguide aperture-coupled microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1992-01-01

    The performance characteristics of a coplanar waveguide (CPW) aperture-coupled microstrip patch antenna was investigated experimentally. A grounded CPW with a series gap in the center strip conductor was used to couple microwave power to the antenna through an aperture in the common ground plane. Results indicate good coupling efficiency and confirms the feasibility of this feeding technique.

  13. Stripline/Microstrip Transition in Multilayer Circuit Board

    NASA Technical Reports Server (NTRS)

    Epp, Larry; Khan, Abdur

    2005-01-01

    A stripline-to-microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz). The transition is designed to satisfy the following requirements in addition to the basic coupling requirement described above: (1) The transition must traverse multiple layers, including intermediate layers that contain DC circuitry. (2) The transition must work at a frequency of 32 GHz with low loss and low reflection. (3) The power delivered by the transition to top-layer microstrip must be split equally in opposite directions along the microstrip. Referring to the figure, this amounts to a requirement that when power is supplied to input port 1, equal amounts of power flow through output ports 2 and 3. (4) The signal-line via that is necessarily a part of such a transition must not be what is known in the art as a blind via; that is, it must span the entire thickness of the circuit board.

  14. Magic-T Junction using Microstrip/Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence

    2008-01-01

    An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances

  15. Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrates

    NASA Astrophysics Data System (ADS)

    Pozar, David M.

    1992-09-01

    Radiation and scattering characteristics of microstrip antennas and arrays printed on ferrite substrates with a normal magnetic bias field are described. The extra degree of freedom offered by the biased ferrite can be used to obtain a number of novel characteristics, including switchable and tunable circularly polarized radiation from a microstrip antenna having a single feed point, dynamic wide-angle impedance matching for phased arrays of microstrip antennas, and a switchable radar cross section (RCS) reduction technique for microstrip antennas. Results are obtained from full-wave moment method solutions for single microstrip antennas and infinite arrays of microstrip antennas. A cavity model solution for a circular patch antenna on a biased ferrite substrate is also presented, to aid in understanding the operation of these antennas.

  16. Reconfigurable Antennas - Monolithic Microwave Integrated Circuits with Feeding Networks for Microstrip Antennas

    DTIC Science & Technology

    1989-08-01

    Fig. 2.11 Exrperimzental- E-plane radiation pattrn of the microstrip antena with and without amplifier. 109 2.4 Summary A qualitative discussion on...biasing. This implied that the array must be proximity fed (no direct physical connection) using a corporate microstrip or coplanar line feed. As an...NETWORKS FOR MICROSTRIP ANTENNAS University of Illinois Y.T. Lo, S.L. Chuang, P. Aoyagi APPROVED FOR PUBUC RELEASE; DISTRIBUTION UNUMITED. OTIC *%, ji-ri, 1

  17. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  18. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  19. Sub-terahertz and terahertz microstrip resonant-tunneling-diode oscillators

    SciTech Connect

    Feiginov, Michael

    2015-09-21

    We present a theoretical analysis of traveling-wave microstrip resonant-tunneling-diode (RTD) oscillators. Such oscillators are similar to terahertz (THz) quantum-cascade lasers (QCLs) with a metal-metal waveguide and with just the active part of a single QCL period (an RTD) as their active core. Assuming realistic parameters of RTDs, we show that the microstrip RTD oscillators should be working at sub-THz and THz frequencies. Contrary to the contemporary THz QCLs, RTD microstrips are room-temperature oscillators. The major loss- and gain-enhancement mechanisms in RTD microstrips are identified.

  20. ALIBAVA Silicon Microstrip Readout System for Educational Purposes

    NASA Astrophysics Data System (ADS)

    Bernabeu, J.; Casse, G.; Garcia, C.; Greenall, A.; Lacasta, C.; Lozano, M.; Pellegrini, G.; Rodriguez, J.; Marti-Garcia, S.; Ullan, M.

    2016-04-01

    The ALIBAVA is a compact and portable system for characterization of silicon microstrip radiation detectors. Actually, the ALIBAVA system is conceived to easily characterize multichannel semiconductor detectors, providing high sensitivity to low signals and high speed. The front-end electronics is based on a low noise ASIC with 128 input channels. Beyond its scientific and sensor R&D applications, the system can also be used in instrumentation lectures at the university teaching laboratories. New features of the system makes it more suitable for its handling by undergraduate and postgraduate students, who will greatly benefit in their instruction by using this system to learn about the properties of microstrip sensors and signal formation in those devices.

  1. Empirical expressions for the input impedance of rectangular microstrip antennas

    NASA Astrophysics Data System (ADS)

    Deb, D.; Gupta, A.; Das, S.; Palit, D.; Bhattacharjee, A. K.

    1991-05-01

    Closed-form expressions are derived for the input impedance of half-wavelength rectangular microstrip antennas fed by a coaxial line at the center of one of the radiating edges and open-circuited at one of the ends. The input impedance is almost unaffected by the location of the feed point when fed at different points on the radiating edges; hence the closed-form expressions are valid for any half-wavelength rectangular microstrip antenna fed at any point on any one of the radiating edges. It is shown that this method can be employed by practically any antenna designer without any background in this area and that the computation time is negligibly small.

  2. Microstrip patch antenna receiving array operating in the Ku band

    NASA Technical Reports Server (NTRS)

    Walcher, Douglas A.

    1996-01-01

    Microstrip patch antennas were first investigated from the idea that it would be highly advantageous to fabricate radiating elements (antennas) on the same dielectric substrate as RF circuitry and transmission lines. Other advantages were soon discovered to be its lightweight, low profile, conformability to shaped surfaces, and low manufacturing costs. Unfortunately, these same patches continually exhibit narrow bandwidths, wide beamwidths, and low antenna gain. This thesis will present the design and experimental results of a microstrip patch antenna receiving array operating in the Ku band. An antenna array will be designed in an attempt to improve its performance over a single patch. Most Ku band information signals are either wide band television images or narrow band data and voice channels. An attempt to improve the gain of the array by introducing parasitic patches on top of the array will also be presented in this thesis.

  3. A design concept for an MMIC microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    1986-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  4. A design concept for an MMIC microstrip phased array

    NASA Astrophysics Data System (ADS)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  5. Fabrication and characterization of BYCO microstrip delay lines

    SciTech Connect

    Traek, E.K.; Hobenwarter, G.K.G.; Madhavrao, L.R.; Patt, R.; Drake, R.E.; Radparvar, M. )

    1991-03-01

    The authors have fabricated and characterized microstrip delay lines with YBCO films as the material for the strip and polished bulk copper for the ground pane. The film-carrying LaAlO{sub 3} substrate is flipped over the copper ground plane and separated from it by a polyamide laminate and acts as the microstrip dielectric. Linewidths are varied from 100 to 600 {mu}m, total length from 10 to 65 cm. Two winding shapes are evaluated, concentric circular and serpentine. For a total geometric length of 60 cm, a TDR-measured delay of 5 nanoseconds is obtained with a line impedance of 50 {omega}. This paper discusses the design constraints, fabrication and properties of these lines and the issues involved in obtaining long delays.

  6. Cast segment evaluation

    NASA Technical Reports Server (NTRS)

    Diem, H. G.; Studhalter, W. R.

    1971-01-01

    Evaluation program to determine feasibility of fabricating segmented rocket engine thrust chambers using low cost, lightweight castings extends state of the art in areas of casting size and complexity, and in ability to provide thin sections and narrow, deep, cooling channels. Related developments are discussed.

  7. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  8. Resonance in a cylindrical wraparound microstrip structure with superstrate

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Lu; Tsai, Ruenn-Bo; Row, Jeen-Sheen

    1994-06-01

    Analysis of the resonance problem of a cylindrical wrap-around microstrip structure with superstrate is presented. In this study the rigorous full-wave formulation and Galerkin's method are used. The numerical convergence for the selected sinusoidal basis functions with edge singularity is also discussed. Numerical results of the superstrate loading effects on the real and imaginary parts of complex resonant frequency of the structures as a radiator and as a resonator are calculated and analyzed.

  9. Analysis of cylindrical arrays of microstrip rectangular patches

    NASA Astrophysics Data System (ADS)

    da Silva, C. M.; Lumini, F.; Lacava, J. C. D.; Richards, F. P.

    1991-04-01

    A model for analysis of the radiation characteristics of cylindrical arrays of microstrip rectangular patches is presented. The model is based on the Green function for the multilayered structure calculated in the Fourier domain. The fields radiated by the array are calculated through an asymptotic expression obtained by the application of the stationary phase method. Radiation characteristics such as the directivity function, the ripple and the crosspolarization level are discussed for arrays excited in the TM(01) mode.

  10. A new model for broadband waveguide to microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1986-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  11. Shaped beam synthesis with series-fed microstrip patch arrays

    NASA Astrophysics Data System (ADS)

    Strickland, P. C.

    A numerical optimization procedure to minimize the phase-error and temperature sensitivity of series-fed microstrip patch arrays is described and demonstrated. By varying feed line impedance while keeping patch width constant, arrays can be designed to produce shaped beams which do not degrade off the H-plane boresight. Typical results are presented graphically, and the applicability of the arrays produced to the design of a microwave-landing-system azimuth antenna is indicated.

  12. The D0 silicon micro-strip tracker

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D0 silicon micro-strip tracker (SMT) is part of the D0 upgrade for the Tevatron RunII at Fermilab. The detector has been running successfully since the start of the RunII physics data taking. The tracking and vertexing performance match the expectation from Monte-Carlo studies. An additional inner layer (Layer0) of silicon sensors at R = 1.6cm will be installed in 2005.

  13. Infinite Phased Array of Microstrip Dipoles in Two Layers

    DTIC Science & Technology

    1989-01-01

    Green’s function appropriate to the two-layer substrate- superstrate structure was used in the formulation of the method of moMents - (continued on back) 20...analysis is presented for an infinite phased array of microstrip dipoles embedded within a two layer substrate structure (sub- strate- superstrate ...characterization of input impedance as a function of phase scan angle. Results for several sub- strate- superstrate structures illustrate the utility of the single

  14. High performance millimeter-wave microstrip circulators and isolators

    NASA Technical Reports Server (NTRS)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  15. Radial microstrip slotline feed network for circular mobile communications array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.

    1994-01-01

    In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.

  16. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Qu, Peng; Shen, Gary X

    2007-04-01

    Microstrip transmission-line loop arrays have been recently proposed for parallel imaging at ultrahigh fields due to their advantages in element decoupling and to their increased coil quality factor. In the microstrip loop array design, interconnecting capacitors become necessary to further improve the decoupling between the adjacent elements when nonoverlapped loops are placed densely. However, at ultrahigh fields, the capacitance required for sufficient decoupling is very small. Hence, the isolations between the elements are usually not optimized and the array is extremely sensitive to the load. In this study, a theoretical model is developed to analyze the capacitive decoupling circuit. Then, a novel tunable loop microstrip (TLM) array that can accommodate capacitive decoupling more easily at ultrahigh fields is proposed. As an example, a four-element TLM array is constructed at 7 T. In this array, the decoupling capacitance is increased to a more reasonable value. Isolation between the adjacent elements is better than -37 dB with the load. The performance of this TLM array is also demonstrated by MRI experiments.

  17. High performance millimeter-wave microstrip circulators and isolators

    NASA Astrophysics Data System (ADS)

    Shih, Ming; Pan, J. J.

    1990-02-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  18. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.

    PubMed

    Stauffer, P R; Rossetto, F; Leoncini, M; Gentilli, G B

    1998-05-01

    The finite difference time domain (FDTD) method has been used to calculate electromagnetic radiation patterns from 915-MHz dual concentric conductor (DCC) microwave antennas that are constructed from thin and flexible printed circuit board (PCB) materials. Radiated field distributions are calculated in homogeneous lossy muscle tissue loads located under variable thickness coupling bolus layers. This effort extends the results of previous investigations to consider more realistic applicator configurations with smaller 2-cm-square apertures and different coupling bolus materials and thicknesses, as well as various spacings of multiple-element arrays. Results are given for practical applicator designs with microstrip feedlines etched on the backside of the PCB antenna array instead of previously tested bulky coaxial-cable feedline connections to each radiating aperture. The results demonstrate that for an optimum coupling bolus thickness of 2.5-5 mm, the thin, flexible, and lightweight DCC antennas produce effective heating to the periphery of each aperture to a depth of approximately 1 cm, and may be combined into arrays for uniform heating of large area superficial tissue regions with the 50% power deposition contour conforming closely to the outer perimeter of the array.

  19. Measured and computed performance of a microstrip filter composed of semi-insulating GaAs on a fused quartz substrate

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Dengler, Robert J.; Oswald, John E.; Sheen, David M.; Ali, Sami M.

    1991-01-01

    The performance of a microstrip hammerhead filter that has been fabricated on an electrically thin layer of semiinsulating GaAs backed by a fused quartz substrate was measured and compared to results of a three-dimensional finite-difference time-domain (FD-TD) program used to calculate the response of the filter both with and without the GaAs layer. The program, presented by Sheen et al. (1990), discretizes the entire structure and then simulates the propagation of a Gaussian pulse through the filter. The microstrip filter is intended for applications involving ultrathin lifted-off or etched-back GaAs containing both active devices and passive microstrip circuitry backed by a much thicker mechanically rigid low-loss, low-dielectric-constant substrate. The low-pass characteristics of the hammerhead filter with the intermediate GaAs layer are compared with those of the same filter on quartz alone. Both the measured and computed data show a significant shift in cutoff frequency (about 10 percent at the 3 dB points) for a GaAs layer that is 0.007 wavelengths thick at 4 GHz.

  20. Measured and computed performance of a microstrip filter composed of semi-insulating GaAs on a fused quartz substrate

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Dengler, Robert J.; Oswald, John E.; Sheen, David M.; Ali, Sami M.

    1991-01-01

    The performance of a microstrip hammerhead filter that has been fabricated on an electrically thin layer of semiinsulating GaAs backed by a fused quartz substrate was measured and compared to results of a three-dimensional finite-difference time-domain (FD-TD) program used to calculate the response of the filter both with and without the GaAs layer. The program, presented by Sheen et al. (1990), discretizes the entire structure and then simulates the propagation of a Gaussian pulse through the filter. The microstrip filter is intended for applications involving ultrathin lifted-off or etched-back GaAs containing both active devices and passive microstrip circuitry backed by a much thicker mechanically rigid low-loss, low-dielectric-constant substrate. The low-pass characteristics of the hammerhead filter with the intermediate GaAs layer are compared with those of the same filter on quartz alone. Both the measured and computed data show a significant shift in cutoff frequency (about 10 percent at the 3 dB points) for a GaAs layer that is 0.007 wavelengths thick at 4 GHz.

  1. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  2. Neural Networks for the Calculation of Bandwidth of Rectangular Microstrip Antennas

    DTIC Science & Technology

    2003-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014210 TITLE: Neural Networks for the Calculation of Bandwidth of...NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS NEURAL NETWORKS FOR THE CALCULATION OF BANDWIDTH OF RECTANGULAR MICROSTRIP... NEURAL NETWORKS FOR BANDWIDTH CALCULATION OF MICROSTRIP ANTENNAS 111 learning algorithms, conjugate gradient of Fletcher- Reeves (CGFR) [53], Levenberg

  3. Broadband infrared electro-optic modulator having a buried microstrip network

    NASA Technical Reports Server (NTRS)

    Cheo, Peter K. (Inventor); Gilden, Meyer (Inventor)

    1987-01-01

    A microwave infrared modulator having a novel three dimensional structure is presented. The modulator includes a waveguide and metal base with a dielectric wafer buried therebetween. The buried wafer allows for conventional microstrip structures to be employed with larger microstrip electrode dimensions than would otherwise be possible.

  4. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons.

    PubMed

    Wu, Jin Jei; Hou, Da Jun; Liu, Kexin; Shen, Linfang; Tsai, Chi An; Wu, Chien Jang; Tsai, Dichi; Yang, Tzong-Jer

    2014-11-03

    We apply the concept of spoof surface plasmon polaritons (SPPs) to the design of differential microstrip lines by introducing periodic subwavelength corrugations on their edges. The dispersion relation and field distribution of those lines are analyzed numerically. And then through designing practical coupling circuits, we found that compared with conventional differential microstrip lines, the electromagnetic field can be strongly confined inside the grooves of the corrugated microstrip lines, so the crosstalk between the differential pair and the adjacent microstrip lines is greatly reduced, and the conversion from the differential signal to the common mode signal can also be effectively suppressed. The propagation length of those lines is also very long in a wide band. Moreover, the experimental results in time domain demonstrate those lines perform very well in high-speed circuit. Therefore, those novel kinds of spoof SPPs based differential microstrip lines can be widely utilized in high-density microwave circuits and guarantee signal integrity in high-speed systems.

  5. Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting

    2011-01-01

    The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum

  6. MEMS-based electrostatically tunable microstrip patch antenna using flexible polyimide film

    NASA Astrophysics Data System (ADS)

    Goteti, Raghav Venkat; Ramadoss, Ramesh

    2005-05-01

    This paper reports a MEMS-based electrostatically tunable microstrip patch antenna fabricated using printed circuit processing techniques. The microstrip patch is patterned on the top side of the flexible kapton polyimide film, which is suspended above the fixed ground plane using a spacer. The air gap between the microstrip patch and the ground plane is decreased by applying a DC bias voltage between the patch and the ground plane. A decrease in air gap increases the effective permittivity of the antenna resulting in a downward shift in the resonant frequency. The microstrip patch is excited by a slot in the ground plane, which is inductively coupled by a coplanar waveguide (CPW) feed line. A 6 mm x 6 mm microstrip patch antenna tunable from 18.34 GHz at 0 V to 17.95 GHz at 268 V (with a tuning range of 390 MHz) is discussed.

  7. Design of multi-band microstrip polygonal contour filter for microwaves

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan; Vizireanu, Radu; Fratu, Octavian; Halunga, Simona; Barca, Cristian; Mara, Constantin

    2016-12-01

    The rapid growth of wireless communications requires a new generation of multifunction devices operating simultaneously under multiple communication standards, in several bands, small, robust and low cost. Microstrip technology can provide these features. An original topological structure is presented in this paper. It integrates several microstrip lines and lumped components in an asymmetric network, and has three ports. A lot of resonance frequencies occur as a result of combination between normal and degenerate propagation modes. Dual-band and three-bands can be selected, depending on the ports used. The originality of this work is to investigate a pentagonal pattern microstrip and introduces two types of perturbations given by two capacitors and a microstrip line section between the corners of the pentagon. The electric field patterns and insertion loss are calculated and provide the possibility of implementing microstrip and larger flexibility for choosing different frequency bands for wireless applications.

  8. Broadband microstrip antenna with a hairpin bandpass filter

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Voloshin, A. S.; Morozov, N. V.; Galeev, R. G.

    2015-03-01

    A new design for a broadband microstrip antenna is proposed, the working band of which is broadened using a bandpass filter based on two hairpin resonators electromagnetically coupled with a half-wave radiating resonator with a rectangular strip conductor. It is shown that the operating frequency range of this antenna is significantly extended as compared with that of analogous antennas, while its directivity and polarization diagrams remain highly stable within this range, which makes this design promising for applications. Operability of the antenna is demonstrated using its operating prototype. The measured characteristics of the antenna prototype agree well with the calculated data.

  9. Superstrate effects on slot-coupled microstrip antennas

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Hsiu; Hsu, Powen

    1991-09-01

    An analysis for studying the superstrate (cover) effects on the slot-coupled microstrip antennas is presented. The approach is based on the reciprocity theorem and uses the grounded double- and single-layer dielectric slab Green's functions in a moment method solution for the unknown slot fields and patch currents. From these fields and currents, various characteristics of the antenna can be extracted, such as the radiation efficiency, directivity, input impedance, and resonant frequency. Numerical calculations showing superstrate effects on these antenna characteristics are presented. The input matches obtained from proper adjustment of the slot and patch dimensions are discussed.

  10. A high gain microstrip array adopting EMC dipoles

    NASA Astrophysics Data System (ADS)

    Russo, P.; Ruggieri, M.

    1988-10-01

    The design and operation of microstrip antenna arrays based on commercial feed boards and electromagnetically coupled (EMC) dipoles are described and illustrated with extensive drawings, graphs, and diagrams. The analysis of the radiating element and feeder network is outlined, and a 4 x 1 H-plane array and a 4 x 4 array operating at 11.7-12.5 GHz in linear or circular polarization are characterized in detail. With uniform illumination the latter array had directivity 21.75-22.08 db, gain 20.85-21.27 dB, voltage/standing-wave ratio 1.35-1.55:1, and efficiency 79-85 percent.

  11. Analysis of annular microstrip antennas for hyperthermic applicators

    NASA Astrophysics Data System (ADS)

    Alanen, E.

    1988-01-01

    An annular microstrip antenna in contact with the skin is analyzed by using the exact image principle. The antenna is designed primarily for measurements of temperature profiles in the breast and hence to detect cancer. The current distribution on the strip is solved from the electric field integral equation. The Galerkin's method is applied with continuous trigonometrical basis functions and the consequent nearfield distributions for different antennas are plotted. The dependence of the focus size on the radius of the antenna is calculated. Also, it is shown that the focus can be reduced by using two annular rings together.

  12. Scanning thermal imaging of an electrically excited aluminum microstripe

    NASA Astrophysics Data System (ADS)

    Samson, Benjamin; Aigouy, Lionel; Latempa, Rossella; Tessier, Gilles; Aprili, Marco; Mortier, Michel; Lesueur, Jérôme; Fournier, Danièle

    2007-07-01

    We study the Joule heating of a 1.25 μm wide aluminum microstripe excited by an electrical current. The temperature changes are measured with a scanning thermal microscope that uses a small fluorescent particle as a sensor. The lateral resolution observed for this sample is better than 300 nm. We have compared the temperature distribution in the stripe with a simple analytical model of heat propagation in the wire and the substrate. A good qualitative agreement is observed, although the measured temperature is much smaller than the estimated one, showing that the heat transfer between the hot wire and the fluorescent probe is not fully efficient.

  13. Broadband vertical interconnects using slot-coupled shielded microstrip lines

    NASA Technical Reports Server (NTRS)

    Vandenberg, Norman L.; Katehi, Linda P. B.

    1992-01-01

    A full-wave space-domain integral equation analysis of aperture coupled shielded microstrip lines is presented based on the Equivalence Principle. The formulation includes the capability to model multilayered substrates through the derivation of the associated dyadic Green's functions which represent the layers through impedance boundary conditions. The method of moments is used to solve for the line currents and slot voltage with even and odd mode excitations which are then interpreted through transmission line analysis to determine the two-port scattering parameters. A parametric study together with experimental data is presented which demonstrates the behavior of the coupler and the accuracy of the technique.

  14. Microstripes for transport and separation of magnetic particles

    PubMed Central

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled selective manipulation and separation of magnetically labelled species. PMID:22655020

  15. Microstrip technology and its application to phased array compensation

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.; Daniels, W. D.

    1972-01-01

    A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.

  16. Holographic tracking of quantized intra-film segments during interferometric laser processing of SiOx thin films(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ho, Stephen; Domke, Matthias; Huber, Heinz P.; Herman, Peter P.

    2017-03-01

    Interferometric femtosecond laser processing of thin dielectric films has recently opened the novel approach for quantized nanostructuring from inside the film, driven by the rapid formation of periodic thin nanoscale plasma disks of 20 to 45 nm width, separated on half-wavelength, λ/2nfilm, spacing (refractive index, nfilm). The nano-disk explosions enable intra-film cleaving of subwavelength cavities at single or multiple periodic depths, enabling the formation of intra-film blisters with nanocavities and the digital ejection at fractional film depths with quantized-depth thickness defined by the laser wavelength. For this paper, the physical mechanisms and ablation dynamics underlying the intra-film cleavage of SiOx thin films were investigated by laser pump-probe microscopy with high temporal dynamic range recorded in a wide time-frame between 100 fs and 10 μs. The long time scales revealed a new observation method as Newton's Rings (observed < 50 ns) gave way to holographic recording (> 50 ns) of the laser-ablated film fragments. For the first time to our knowledge, the holographic tracking reveals the clustering of large mechanically ejected nano-film planes into distinct speed groups according to the multiple of λ/2nfilm in the film. The observation verifies a new `quantized' form of photo-mechanical laser "lift-off".

  17. Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing

    PubMed Central

    García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario

    2017-01-01

    Electromagnetic radiation is energy that interacts with matter. The interaction process is of great importance to the sensing applications that characterize material media. Parameters like constant dielectric represent matter characteristics and they are identified using emission, interaction and reception of electromagnetic radiation in adapted environmental conditions. How the electromagnetic wave responds when it interacts with the material media depends on the range of frequency used and the medium parameters. Different disciplines use this interaction and provides non-intrusive applications with clear benefits, remote sensing, earth sciences (geology, atmosphere, hydrosphere), biological or medical disciplines use this interaction and provides non-intrusive applications with clear benefits. Electromagnetic waves are transmitted and analyzed in the receiver to determine the interaction produced. In this work a method based in differential measurement technique is proposed as a novel way of detecting and characterizing electromagnetic matter characteristics using sensors based on a microstrip patch. The experimental results, based on simulations, show that it is possible to obtain benefits from the behavior of the wave-medium interaction using differential measurement on reception of electromagnetic waves at different frequencies or environmental conditions. Differential method introduce advantages in measure processes and promote new sensors development. A new microstrip sensor that uses differential time measures is proposed to show the possibilities of this method. PMID:28718804

  18. Broadband Microstrip-to-Coplanar Strip Double-Y Balun

    NASA Technical Reports Server (NTRS)

    Venkatesan, Jaikrishna

    2008-01-01

    A new version of the double-Y balun, transitioning from an unbalanced microstrip to a balanced coplanar strip (CPS) line, has been designed to feed a complementary spiral antenna with an input impedance of 100 Omega. The new double-Y balun transitions from a microstrip line with truncated ground plane to a CPS line. The balun does not employ CPW lines; hence, CPW bridges are not required at the junction. In addition, the balun does not exhibit CPW parasitic resonances, thereby improving passband performance. The new version of the double-Y balun is designed to feed a complementary spiral antenna. Panels on the right illustrate an expanded view of the balun junction. Preliminary voltage standing-wave ratio (VSWR) and insertion loss data are illustrated. Measured data were compared with numerical results computed using Momentum. It is seen that the balun exhibits a VSWR of less than 1.5 from 400 MHz to 8 GHz and a VSWR of less than 1.8 up to 13 GHz. The VSWR can be reduced further by reducing reflections from the balun junction and load resistor. Also, the balun is seen to exhibit an insertion loss of less than 1.5 dB up to 12 GHz. Further work involves characterizing the balun's performance when feeding a complementary spiral antenna.

  19. Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing.

    PubMed

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario

    2017-07-18

    Electromagnetic radiation is energy that interacts with matter. The interaction process is of great importance to the sensing applications that characterize material media. Parameters like constant dielectric represent matter characteristics and they are identified using emission, interaction and reception of electromagnetic radiation in adapted environmental conditions. How the electromagnetic wave responds when it interacts with the material media depends on the range of frequency used and the medium parameters. Different disciplines use this interaction and provides non-intrusive applications with clear benefits, remote sensing, earth sciences (geology, atmosphere, hydrosphere), biological or medical disciplines use this interaction and provides non-intrusive applications with clear benefits. Electromagnetic waves are transmitted and analyzed in the receiver to determine the interaction produced. In this work a method based in differential measurement technique is proposed as a novel way of detecting and characterizing electromagnetic matter characteristics using sensors based on a microstrip patch. The experimental results, based on simulations, show that it is possible to obtain benefits from the behavior of the wave-medium interaction using differential measurement on reception of electromagnetic waves at different frequencies or environmental conditions. Differential method introduce advantages in measure processes and promote new sensors development. A new microstrip sensor that uses differential time measures is proposed to show the possibilities of this method.

  20. p-Bulk silicon microstrip sensors and irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Terada, S.; Kohriki, T.; Ikegami, Y.; Hara, K.; Inoue, K.; Mochizuki, A.; Yamamura, K.; Sato, K.

    2007-09-01

    Anticipating the requirement for highly radiation-tolerant silicon microstrip sensors suitable for the SLHC application, we have fabricated n-in-p microstrip sensors in p-FZ and p-MCZ industrial wafers which we then irradiated with 70 MeV protons. Studies were made of the leakage current, onset of microdischarge, body capacitance, charge collection efficiency, and n-strip isolation at the fluences of nil, 0.7×10 14, and 7×10 14 1-MeV neutrons equivalent (neq)/cm 2. The bias and edge structure achieved holding the bias voltages up to 1000 V. The full depletion voltages were about 160, 250, and 600 V in the p-FZ and 1190, 500, and 840 V in the p-MCZ at nil, low, and high fluences, respectively. The radiation damage helped to reduce the density of electron accumulation layer. The strip isolation in the p-MCZ sensors was found to be much better than in the p-FZ sensors; even the no-isolation structure isolated the strips at nil fluence at bias voltage above 50 V. The lower density of electron accumulation layer in the p-MCZ could be attributed to an order less interface trap density in the <1 0 0> surface than that of <1 1 1>, the negative potential in the inter-strip region by the bias voltage, and the possible effect of high oxygen content in the MCZ bulk.

  1. Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Sathi, V.; Ghobadi, Ch.; Nourinia, J.

    2008-10-01

    Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.

  2. Strip defect recognition in electrical tests of silicon microstrip sensors

    NASA Astrophysics Data System (ADS)

    Valentan, Manfred

    2017-02-01

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the "typical value". To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these "would-be" values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  3. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    NASA Technical Reports Server (NTRS)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects

  4. A Study of Loaded Microstrip Antennas and Their Applications to Arrays

    DTIC Science & Technology

    1989-03-01

    impedance variatio. and magnetic current distribu- tion of the single loaded microstrip antena Patch size 6 x 4 crn , load position (2.25 0.95) feed...RADC-TR-89-10 Final Technical Report March 1999J9 A STUDY OF LOADED MICROSTRIP 0 ANTENNAS AND THEIR APPLICATIONS oo TO ARRAYS𔃻" N University of...if necessary and ,denr, by block number) FIELD GROUP SUB-GROUP Dynamic Impedance Tuning 17 09 Microstrip Elements 20 14 Phased Arrays 19 ABSTRACT

  5. Characteristics of millimeter wave microstrip antennas with left-handed materials substrates

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Xie, Yong-Jun; Wang, Peng; Li, Lei

    2006-08-01

    Millimeter wave microstrip antennas with left-handed materials substrates are studied with method of moments. Discrete complex image method is extended to the computation of Green's function in microstrip circuits with left-handed materials substrates. It is shown that this kind of antennas will achieve similar radiation patterns to the ones of conventional millimeter wave microstrip antennas in some cases, and can obtain radiation patterns characteristic of narrow main lobes with low elevation angles in other cases. Potential applications for directive antennas with these unusual radiation patterns of this kind of antennas are proposed.

  6. Ultra-Wideband Fermi Antenna Using Microstrip-to-CPS Balun

    NASA Astrophysics Data System (ADS)

    Woo, Dong-Sik; Kim, Young-Gon; Cho, Young-Ki; Kim, Kang Wook

    A new design and experimental results of a microstrip-fed ultra-wideband Fermi antenna at millimeter-wave frequencies are presented. By utilizing a new microstrip-to-CPS balun (or transition), which provides wider bandwidth than conventional planar balun, the design of microstrip-fed Fermi antenna is greatly simplified. The proposed Fermi antenna demonstrates ultra-wideband performance for the frequency range of 23 to over 58GHz with the antenna gain of 12 to 14dBi and low sidelobe levels. This design yields highly effective solutions to various millimeter-wave phased-arrays and imaging systems.

  7. Theoretical and Experimental Study of Microstrip-to-Slot Line Uniplanar Transition

    NASA Technical Reports Server (NTRS)

    Yook, Jong-Gwan; Dib, Nihad I.; Katehi, Linda P. B.; Simons, Rainee N.; Taub, Susan R.

    1994-01-01

    Recent advances in MMCI technology make it possible to construct transitions from CPW-to-microstrip with via hole, microstrip-to-slot line and microshield line-to-CPW all of which have potential applications in the feed network of antennas. In this study we investigate the characteristics of the microstrip-to-slot line uniplanar transition using the finite element methods (FEM) and finite difference time domain (FDTD) techniques, and compared the theoretical results with the measurements. In both cases, the results agree with the measurements within a few percent.

  8. Computational design of miniaturized microstrip antenna for satellite communications in the S and C bands

    NASA Astrophysics Data System (ADS)

    Marulanda Bernal, Jose Ignacio; Campo Caicedo, Damian Andres

    2014-05-01

    This paper presents computational models of microstrip antennas using the software CST. The main objective of this paper is to evaluate an alternative way to miniaturize dimensions of microstrip antennas. In order to this, a coating made of ceramic with high dielectric constant was considered for two different cases. Scattering parameters (S11) and radiation patterns were obtained for both structures and compared with standard microstrip antennas for S and C bands. Finally, the results show the possibility of reducing the dimensions by 22% to 31% and demonstrate the feasibility for the implementation and development of these antennas.

  9. Design of a low-loss series-fed microstrip array antenna

    NASA Technical Reports Server (NTRS)

    Mahbub, M. R.; Christodoulou. C. G.; Bailey, M. C.

    1998-01-01

    The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The array antenna is composed of two sub arrays. Each sub array consists of an equal number of microstrip patches all connected together through a series microstrip line. The first element of each sub array is coaxially fed but 180 degree out of phase. This approach ensures a symmetric radiation pattern. The design approach, is accomplished using the IE3D code that utilizes the method of moments. All experimental and simulated data are presented and discussed.

  10. Ultra-Thin Silicon Chips for Submillimeter-Wave Applications

    NASA Astrophysics Data System (ADS)

    Bass, R. B.; Schultz, J. C.; Lichtenberger, A. W.; Weikle, R. M.; Pan, S.-K.; Bryerton, E.; Walker, C. K.; Kooi, Jacob

    We present a process for fabricating ultra-thin silicon chips for submillimeter-wave mixing applications using SOI (Silicon On Insulator) wafers. Such chips allow the profile of the mixer substrate to be minimized within the microstrip channel, thereby simplifying RF design considerations and minimizing machining constraints. The chips feature gold beam leads, RF filter structures, and hot-electron bolometers as the non-linear element. We designed a prototype receiver to demonstrate the feasibility of the ultra-thin silicon chip technology. The receiver has a center frequency of 585GHz and accommodates both diffusion-cooled and phonon-cooled hot-electron bolometer mixers fabricated atop an ultra-thin silicon chip. The chip fits within the microstrip channel of a split-block horn antenna. Protruding from the sides and ends of the silicon chip are thick gold beam leads, which provide electrical and thermal contact between the chip and the waveguide block. In addition, the beam leads provide mechanical support to the chip, allowing the chip to be suspended within the middle of the microstrip channel between the two block halves. Ultra-thin silicon chips with beam leads will facilitate the construction of large format spectroscopic imaging arrays. Such arrays would contain an assembly of individual chips, each featuring a single nonlinear mixing element. The chips could be added, removed of replaced without disturbing the rest of the elements within the array. There are myriad potentials for such systems, examples include atmospheric research, astrophysics, and security systems.

  11. Analysis of a cylindrical-rectangular microstrip structure with an airgap

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Lu; Cheng, Yuan-Tung; Row, Jeen-Sheen

    1994-06-01

    The resonance problem of the cylindrical-rectangular microstrip structure with an airgap between the substrate layer and the ground conducting cylinder is studied by using a rigorous full-wave approach and a moment method calculation.

  12. Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Singh, G.

    2010-01-01

    The effects of 2-D electromagnetic crystal substrate on the performance of a rectangular microstrip patch antennas at THz frequencies is simulated. Electromagnetic crystal substrate is used to obtain extremely broad-bandwidth with multi-frequency band operation of the proposed microstrip antennas. Multi-frequency band microstrip patch antennas are used in modern communication systems in order to enhance their capacity through frequency reuse. The simulated 10 dB impedance bandwidth of the rectangular patch microstrip antenna is 34.3% at THz frequency (0.6-0.95 THz). The radiation efficiency, gain and directivity of the proposed antenna are presented at different THz frequencies. The simulation has been performed using CST Microwave Studio, which is a commercially available electromagnetic simulator based on finite integral technique.

  13. Bandwidth Study of Microstrip Reflectarray And A Novel Phased Reflectarray Concept

    NASA Technical Reports Server (NTRS)

    Huang, John

    1995-01-01

    A microstrip reflectarray [1,2] is a flat reflector antenna that can be conformally mounted onto its supporting structure without consuming a significant amount of real estate and without adding significant mass.

  14. New simple feed network for an array module of four microstrip elements

    NASA Technical Reports Server (NTRS)

    Oberhart, M. L.; Lo, Y. T.; Lee, R. Q. H.

    1987-01-01

    A simple microstripline feed network for an array module comprising four microstrip elements is described. The advantages and disadvantages of the network are discussed as well as a theoretical explanation for the radiation characteristics of array modules using the network.

  15. Active Segmentation

    PubMed Central

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach. PMID:20686671

  16. EVENT SEGMENTATION

    PubMed Central

    Zacks, Jeffrey M.; Swallow, Khena M.

    2012-01-01

    One way to understand something is to break it up into parts. New research indicates that segmenting ongoing activity into meaningful events is a core component of ongoing perception, with consequences for memory and learning. Behavioral and neuroimaging data suggest that event segmentation is automatic and that people spontaneously segment activity into hierarchically organized parts and sub-parts. This segmentation depends on the bottom-up processing of sensory features such as movement, and on the top-down processing of conceptual features such as actors’ goals. How people segment activity affects what they remember later; as a result, those who identify appropriate event boundaries during perception tend to remember more and learn more proficiently. PMID:22468032

  17. Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling

    SciTech Connect

    Kinion, D; Clarke, J

    2008-01-24

    The scattering parameters of an amplifier based on a dc Superconducting QUantum Interference Device (SQUID) are directly measured at 4.2 K. The results can be described using an equivalent circuit model of the fundamental resonance of the microstrip resonator which forms the input of the amplifier. The circuit model is used to determine the series capacitance required for critical coupling of the microstrip to the input circuit.

  18. Microstrip superconducting quantum interference device amplifier: Operation in higher-order modes

    NASA Astrophysics Data System (ADS)

    Mück, Michael; Schmidt, Bernd; Clarke, John

    2017-07-01

    DC Superconducting Quantum Interference Devices (SQUIDs) are widely used to amplify low-level, radio frequency (rf) electrical signals. SQUID amplifiers offer low noise, high gain, and low power dissipation. One method of implementing a SQUID rf amplifier for frequencies from a few hundred megahertz to several gigahertz is to operate the integrated input coil on top of the SQUID washer as a microstrip resonator. This is achieved by applying the input signal between one end of the coil and the SQUID washer, which acts as a groundplane; the other end of the coil is left open. Substantial levels of gain can be achieved from the microstrip SQUID amplifier for a signal frequency at the fundamental resonant frequency of the microstrip, at which the length of the microstrip is equal to one-half wavelength, λ/2. Since the length of the microstrip has to be made shorter for higher frequencies, however, the mutual inductance between a SQUID with a given geometry and the microstrip—and thus the gain—decreases with increasing frequency. We show that a significantly enhanced gain can be achieved by operating the microstrip resonator in higher-order modes, for example, with a microstrip length of 3λ/2 or 5λ/2, provided the winding sense of the microstrip for each consecutive λ/2 section is reversed. For a 4λ/2 resonator, we demonstrate a gain of 24 dB at 2.6 GHz, an increase in gain of about 10 dB compared to a λ/2 resonator on a SQUID of the same geometry and characteristics.

  19. Design aspects and comparison between high T(sub c) superconducting coplanar waveguide and microstrip line

    NASA Technical Reports Server (NTRS)

    Kong, K. S.; Bhasin, K. B.; Itoh, T.

    1991-01-01

    The high T sub c superconducting microstrip line and coplanar waveguide are compared in terms of the loss characteristics and the design aspects. The quality factor Q values for each structure are compared in respect to the same characteristic impedance with the comparable dimensions of the center conductor of the coplanar waveguide and the strip of the microstrip line. Also, the advantages and disadvantages for each structure are discussed in respect to passive microwave circuit applications.

  20. Design aspects and comparison between high Tc superconducting coplanar waveguide and microstrip line

    NASA Technical Reports Server (NTRS)

    Kong, K. S.; Bhasin, K. B.; Itoh, T.

    1991-01-01

    The high T sub c superconducting microstrip line and coplanar waveguide are compared in terms of the loss characteristics and the design aspects. The quality factor Q values for each structure are compared in respect to the same characteristic impedance with the comparable dimensions of the center conductor of the coplanar waveguide and the strip of the microstrip line. Also, the advantages and disadvantages for each structure are discussed in respect to passive microwave circuit applications.

  1. Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Basis functions were studied and identified that provide efficient and accurate solutions for the induced patch currents and the reflection phase in microstrip reflect arrays. The integral equation of an infinite array of microstrip elements in the form of patches or crossed dipoles excited by a uniform plane wave is solved by the method-of-moments. Efficient choices of entire domain basis functions that yield accurate results have been described.

  2. Full wave characterization of microstrip open end discontinuities patterned on anisotropic substrates using potential theory

    NASA Technical Reports Server (NTRS)

    Toncich, S. S.; Collin, R. E.; Bhasin, K. B.

    1993-01-01

    A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.

  3. Apparatus and Method for Improving the Gain and Bandwidth of a Microstrip Patch Antenna

    DTIC Science & Technology

    2013-09-30

    highly anisotropic superstrate is formed and positioned at a predetermined spacing away from the ground plane side of the microstrip patch antenna. A...cover layer can be mounted over the highly anisotropic superstrate . The highly anisotropic superstrate can includes a plurality of conductive strips...highly Attorney Docket No. 101925 4 of 11 anisotropic superstrate having a predetermined resonance placed at a specific spacing above said microstrip

  4. Microstrip disk antennas. I - Efficiency of space wave launching.

    NASA Astrophysics Data System (ADS)

    de Assis Fonseca, S. B.; Giarola, A. J.

    1984-06-01

    The behavior of space, surface and leaky waves in microstrip antennas and the effects on the efficiency of space wave launching are studied theoretically, along with the effects of the physical characteristics of the dielectric layer over the antenna ground plane. Since the waves are excited in an antenna substrate, the radiated fields are expressed in terms of the cavity model with magnetic sidewalls and dyadic Green's function in stratified media. The contributions of space and surface waves are quantified and efficiency and directivity values are determined as functions of the antenna dimensions. Truncations in the dielectric are shown to cause undulations in the antenna radiation patterns, arising from the interference of space wave fields with fields produced when the surface wave is incident in the truncation region. Truncating the dielectric as far as possible from the antenna elements and implementing lower dielectric values in the disk radius ratios and the dielectric relative to the permittivities could reduce the interference problem.

  5. Micro-strip metal detector for the beam profile monitoring

    NASA Astrophysics Data System (ADS)

    Pugatch, V.; Borysova, M.; Mykhailenko, A.; Fedorovitch, O.; Pylypchenko, Y.; Perevertaylo, V.; Franz, H.; Wittenburg, K.; Schmelling, M.; Bauer, C.

    2007-10-01

    The Micro-strip Metal Detector (MMD) design and production technology, readout electronics as well as areas of applications are described. The MMD was designed for beam profile monitoring of charged particle and synchrotron radiation beams. Using photolithography and plasma-chemistry etching technologies we succeeded in creating detectors with a metal strip's thickness of less than 2 μm and without any other materials in the working area. The principle of operation is based on the Secondary Electron Emission (SEE). The results obtained with the MMD at the monochromatic synchrotron radiation beam at HASYLAB (DESY) are also presented. The current version of the MMD allows measuring a beam profile and position with an accuracy of 20 μm.

  6. Dispersion in Nb microstrip transmission lines at submillimeter wave frequencies

    NASA Technical Reports Server (NTRS)

    Javadi, H. H. S.; Mcgrath, W. R.; Bumble, B.; Leduc, H. G.

    1992-01-01

    We have measured the effects of dispersion on the resonant mode frequencies of open-ended Nb-SiO(x)-Nb microstrip transmission lines over a frequency range from 50 to 800 GHz. Submicron Nb/Al-AlOx/Nb Josephson junctions were used as both voltage-controlled oscillators and detectors to sample the high order modes of the resonators. The resonator modes are equally spaced up to about 550 GHz where the mode spacing start to decrease gradually to a minimum above the gap frequency of about 700 GHz and then increases. Results are in good agreement with the expected theoretical behavior based on the Mattis-Bardeen conductivity of the superconductor line.

  7. Resonance in cylindrical-rectangular and wraparound microstrip structures

    NASA Technical Reports Server (NTRS)

    Ali, Sami M.; Kong, Jin AU; Habashy, Tarek M.; Kiang, Jean-Fu

    1989-01-01

    A rigorous analysis of the resonance frequency problem of both the cylindrical-rectangular and the wraparound microstrip structure is presented. The problem is formulated in terms of a set of vector integral equations. Using Galerkin's method to solve the integral equations, the complex resonance frequencies are studied with sinusoidal basis functions which incorporate the edge singularity. The complex resonance frequencies are computed using a perturbation approach. Modes suitable for resonator or antenna applications are investigated. The edge singularity of the patch current is shown to have no significant effect on the accuracy of the results. It is shown that the HE10 modes of the cylindrical-rectangular and wraparound patches are more appropriate for resonator applications. The HE01 and TE01 modes of the cylindrical-rectangular and wraparound patches, respectively, are efficient radiating modes.

  8. SPICE analysis of signal propagation in Si microstrip detectors

    SciTech Connect

    Bacchetta, N.; Bisello, D. |; Candelori, A.; Paccagnella, A. |; Spada, M.; Vanzi, M.

    1995-08-01

    The main DC and AC characteristics of AC-coupled polysilicon-biased silicon microstrip detectors have been measured in order to determine the set of SPICE parameters of these devices based on a RC network. For this purpose each strip has been divided in 200 unit cells and simulations with 5 and 9 strips have been performed. The model is capable of calculating the interstrip and coupling impedance and phase angle in good agreement with experimental results up to a frequency of 1 MHz. The electrical propagation of a current signal simulating the charge pulse of an ionizing particle along the strips has been studied. The role of the input characteristics of the read-out electronics on the detector output signals has been addressed. The signal propagation has been studied also for anomalous working conditions of the detector, such as a strip with a break in the Al film, or disconnected from the read-out electronics.

  9. A microstrip tunable negative refractive index metamaterial and phase shifter

    NASA Astrophysics Data System (ADS)

    He, P.; Gao, J.; Marinis, C. T.; Parimi, P. V.; Vittoria, C.; Harris, V. G.

    2008-11-01

    A tunable negative refractive index metamaterial and miniature phase shifter have been designed and fabricated in a microstrip configuration for applications in radio frequency integrated circuits. The metamaterial consists of plasmonic copper wires and yttrium iron garnet slabs having a low insertion loss of 5dB at the center of the transmission band. The yttrium iron garnet material enables the magnetic field tuning of the negative refractive index in a dynamic frequency band from 7.0to11.0GHz. The insertion phase can be tuned by 45° continuously by varying the bias field from 3.8to4.6kOe at 9.0GHz.

  10. Analysis of finite phased arrays of circular microstrip patches

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Bailey, Marion C.

    1989-01-01

    A method is presented for analyzing a finite planar array of circular microstrip patches fed by coaxial probes. The self- and mutual impedances between array elements are calculated using the method of moments with the dyadic Green's function for a dielectric layer on a ground plane. The patch circuits are determined by using the reaction integral equation. The active input impedance as well as the active element pattern of the array are computed from a knowledge of the resultant patch currents. The calculated results for two-element and eight-element linear arrays are in good agreement with experimental data. The active reflection coefficient and element pattern for the center and edge elements of a two-dimensional array as a function of scan angle are also presented.

  11. Ka-band MMIC microstrip array for high rate communications

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Raquet, C. A.; Tolleson, J. B.; Sanzgiri, S. M.

    1991-01-01

    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules.

  12. Decentralized adaptive control designs and microstrip antennas for smart structures

    NASA Astrophysics Data System (ADS)

    Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.

    1996-05-01

    Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.

  13. Analysis of microstrip patch antennas with nonzero surface resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G.; Bailey, M. C.

    1993-01-01

    The scattering properties of a microstrip patch antenna with nonzero surface impedance are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry by using Galerkin's technique with subdomain piecewise linear basis functions. The integral equation includes a resistive boundary condition on the surface of the patch. The incident field on the patch is expressed as a function of incidence angle. The resulting system of equations is then solved for the unknown current modes on the patch, and the radar cross section is calculated for a given scattering angle. Theoretical results in the form of radar cross section as a function of frequency are compared with results measured at the NASA Langley Research Center.

  14. Shear sensing based on a microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Mohammad, I.; Huang, H.

    2012-10-01

    A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.

  15. Dispersion in Nb microstrip transmission lines at submillimeter wave frequencies

    NASA Technical Reports Server (NTRS)

    Javadi, H. H. S.; Mcgrath, W. R.; Bumble, B.; Leduc, H. G.

    1992-01-01

    We have measured the effects of dispersion on the resonant mode frequencies of open-ended Nb-SiO(x)-Nb microstrip transmission lines over a frequency range from 50 to 800 GHz. Submicron Nb/Al-AlOx/Nb Josephson junctions were used as both voltage-controlled oscillators and detectors to sample the high order modes of the resonators. The resonator modes are equally spaced up to about 550 GHz where the mode spacing start to decrease gradually to a minimum above the gap frequency of about 700 GHz and then increases. Results are in good agreement with the expected theoretical behavior based on the Mattis-Bardeen conductivity of the superconductor line.

  16. FILTSoft: A computational tool for microstrip planar filter design

    NASA Astrophysics Data System (ADS)

    Elsayed, M. H.; Abidin, Z. Z.; Dahlan, S. H.; Cholan N., A.; Ngu, Xavier T. I.; Majid, H. A.

    2017-09-01

    Filters are key component of any communication system to control spectrum and suppress interferences. Designing a filter involves long process as well as good understanding of the basic hardware technology. Hence this paper introduces an automated design tool based on Matlab-GUI, called the FILTSoft (acronym for Filter Design Software) to ease the process. FILTSoft is a user friendly filter design tool to aid, guide and expedite calculations from lumped elements level to microstrip structure. Users just have to provide the required filter specifications as well as the material description. FILTSoft will calculate and display the lumped element details, the planar filter structure, and the expected filter's response. An example of a lowpass filter design was calculated using FILTSoft and the results were validated through prototype measurement for comparison purposes.

  17. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, R. Q.

    1984-01-01

    The work on rectangular microstrip antennas for dual frequency operation is reported on. The principle of this approach is based on the excitation of a patch for two or more different modes which correspond to different frequencies. However, for a given geometry, the modal frequencies have a fixed relationship; therefore, the usefulness of such a design is greatly limited. In this study three different methods have been contrived to control the frequency ratio over a wide range. First, as found prevously, if shorting pins are inserted at certain locations in the patch, the low frequency can be raised substantially. Second, if slots are cut in the patch, the high frequency can be lowered considerably. By using both techniques, the two frequency ratio can be varied approximately from 3 to 1.3. After that, the addition of more pins or slots becomes ineffective.

  18. The silicon microstrip sensors of the ATLAS semiconductor tracker

    SciTech Connect

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  19. Effect of U-Slot Length Variations on the Performance of Stacked Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Yadahalli, Ravi M.; Usha, K. K.; Ayachit, N. H.; Vani, R. M.; Fatima, Sara F.; Hunagund, P. V.

    2007-07-01

    Antenna miniaturization plays an important role in the design of modern personal wireless systems. Several minimization techniques have been known for a long time. The mail minimization tools are loading the antenna with lumped elements, high permittivity dielectric materials or conducting additions; using a ground plane with short circuits and optimizing the geometry. In this paper, a compact stacked microstrip antenna with loaded U-slot on the driven (lower) patch and probe feed structure is proposed. The purpose of this paper is to study the variations of a U-slot length with the parameters of stacked microstrip antenna such as input impedance, bandwidth and resonant frequency etc. The paper emphasizes the significant change observed in the performance of compact stacked microstrip antenna. Earlier work has utilized a U-slot on the planar microstrip antenna and the effect of slot width on performance of microstrip antenna is studied. The software package IE3D® version 11.5 was used to simulate the antenna structures. The simulation results show that, the size reduction is achieved by inserting U-slot in the radiating element. Further, it is observed from the simulation that maximum overall impedance bandwidth is achieved for width of U-slot LS = 22 mm, which is 277.78 MHz. This developed microstrip antenna is small enough to be easily accommodated in wireless applications.

  20. Frequency Dependent Characteristic Impedance, Attenuation, and OHMIC Loss of Microstrip, Based upon Numerical Calculations of Effective Inductance,

    DTIC Science & Technology

    1981-08-01

    IMPEDANCE, ATTENUATION, AND OHMIC LOSS OF MICROSTRIP, BASED UPON NUMERICAL CALCULATIONS OF EFFECTIVE INDUCTANCE by P. J. McConnell R. L. Brooke DTIC... LOSS OF MICROSTRIP, BASED UPON NUMERICAL CALCULATIONS OF EFFECTIVE INDUCTANCE 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) 8. CONTRACT OR GRANT...transverse magnetic field of uniform microstrip transmission lines. Line loss and frequency are included in the solution as necessary to produce accurate

  1. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  2. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Ball, K.; Casse, G.; Chmill, V.; Forshaw, D.; Hadfield, K.; Pritchard, A.; Pool, P.; Tsurin, I.

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their products meet all the stringent technical requirements. A semiconductor company with very widespread experience of producing science grade CCDs (including deep depletion devices) has adapted their CCD process to fabricate for the first time several wafers of pixel and micro-strip radiation hard sensors, suitable for future high energy physics experiments. The results of the pre-irradiation characterization of devices fabricated with different processing parameters and the measurements of charge collection properties after different hadron irradiation doses up to those anticipated for the (larger area) outer pixel layers at the high-luminosity LHC (HL-LHC) are presented and compared with results from more established particle physics suppliers.

  3. Utilization of amorphous silicon carbide (a-Si:C:H) as a resistive layer in gas microstrip detectors

    SciTech Connect

    Hong, W.S.; Cho, H.S.; Perez-Mendez, V.; Gong, W.G.

    1995-04-01

    Thin semiconducting films of hydrogenated amorphous silicon (a-Si:H) and its carbon alloy (a-Si:C:H) were applied to gas microstrip detectors in order to control gain instabilities due to charges on the substrate. Thin ({approximately}100nm) layers of a-Si:H or p-doped a-Si:C:H were placed either over or under the electrodes using the plasma enhanced chemical vapor deposition (PECVD) technique to provide the substrate with a suitable surface conductivity. By changing the carbon content and boron doping density, the sheet resistance of the a-Si:C:H coating could be successfully controlled in the range of 10{sup 12} {approximately} 10{sup 17} {Omega}/{four_gradient}, and the light sensitivity, which causes the resistivity to vary with ambient light conditions, was minimized. An avalanche gain of 5000 and energy resolution of 20% FWHM were achieved and the gain remained constant over a week of operation. A-Si:C:H film is an attractive alternative to ion-implanted or semiconducting glass due to the wide range of resistivities possible and the feasibility of making deposits over a large area at low cost.

  4. Receive Mode Analysis and Design of Microstrip Reflectarrays

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed

  5. Design of an inductively decoupled microstrip array at 9.4 T.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Qu, Peng; Shen, Gary X

    2006-09-01

    By independent control of the phases and amplitudes of its elements, the microstrip transmission-line array can mitigate sample-induced RF non-uniformities, and has been widely used as the transceiver in parallel imaging applications. One major challenge in implementing the microstrip array is the reduction of mutual coupling among individual elements. The low-input impedance preamplifier is commonly used for the decoupling purpose. However, it is impractical in the transceiver array design. Although interconnecting capacitors can be utilized to reduce the mutual coupling, they only efficiently work for the neighbor elements. In addition, this approach is impractical at fields higher than 300 MHz, in which the required decoupling capacitance is commonly less than 0.5 pF. We propose a novel decoupling approach by using decoupling inductors in this study. Due to the fact that the decoupling inductance is independent of the resonant frequency, the microstrip arrays can be well decoupled at ultra-high fields. To verify the proposed approach, an eight-channel microstrip array is fabricated and tested at 9.4 T. For this prototype, couplings between elements are significantly reduced by using the interconnecting inductors. The phantom experiment shows that the inductively decoupled microstrip array has good parallel imaging performance.

  6. Fabrication of microstrip transmission line by high-T sub c superconducting materials

    SciTech Connect

    Morisue, M.; Asahina, J.; Lin, W.; Yo, K.; Komine, N. )

    1991-03-01

    This paper reports on high-Tc ceramic (YBCO) superconducting microstrip transmission lines fabricated on MgO and SrTiOs substrates by a sputtering technique as well as a screen printed method. Sputtering conditions for preparation of microstrip lines are described and properties of the sputter-deposited films are discussed. The characteristic impedance of the microstrip line was measured by a digitizing oscilloscope to compare with the specifications. A satisfactory agreement is obtained with theoretical results at both room and low temperatures. In order to investigate the properties of the fabricated microstrip transmission line, the propagation constraints, mainly the attenuation and the phase constant, were measured for a sinusoidal wave with the frequencies from 10 MHz to 26.5 GHz, in comparison with those of Al microstrip line fabricated on the MgO substrate. The results show that the attenuation of YBCO transmission line at 4.2K was about the order of 10{sup 2} dB/cm, a limit of the experimental equipment, for the frequency up to 10 GHz.

  7. Agile radiation pattern control of metamaterial microstrip antenna

    NASA Astrophysics Data System (ADS)

    Bensafieddine, D.; Attachi, S.; Chaker, S. M.; Laamari, M.; Bouzouad, M.

    2017-01-01

    We are interested in this work, with the antenna radiation pattern agility. The aim is to control the radiation pattern using an agile metamaterial lens. This latter is based on an agile metamaterial. For this purpose we design an agile metamaterial unit cell which can flip between two different behaviors. The first one corresponds to an effective medium with a refractive index close to zero and the second one corresponds to an effective medium having a refractive index greater than unity. This agile lens is used to enhance a microstrip antenna gain and control its radiation pattern. The maximum realized gain obtained is up to 12 dB. The radiation pattern main lobe can be rotated from -47° to 47° in the E-plane and from -33° to 33° in the H-plane. We obtain also a main lobe beam width of 32° in the E-plane and 46° in the H-plane.

  8. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  9. Planar FET oscillators using periodic microstrip patch antennas

    NASA Astrophysics Data System (ADS)

    Birkeland, Joel; Itoh, Tatsuo

    1989-08-01

    An integrated oscillator/antenna is presented that uses a single microstrip leaky-wave structure as both the resonant and the radiating element. This resonant antenna is connected to a GaAs metal-semiconductor field-effect transistor which acts as the negative resistance element in the oscillator circuit. This type of oscillator is similar in its operating principle to one reported using Gunn diodes and a periodically notched dielectric image guide. This circuit exhibits the high DC-RF conversion efficiency that is typical of field-effect transistor oscillators. The planar circuit is simple and inexpensive to construct, occupies a small volume, and can conform to different surface profiles. Such circuits are suitable for use in millimeter-wave systems as well as at microwave frequencies. A design procedure is given, and the performance of X-band prototype circuits is reported. Prototype circuits showed a 9 dB isotropic conversion gain and 40 MHz tuning range at 9.5 GHz.

  10. A SPICE model of double-sided Si microstrip detectors

    SciTech Connect

    Candelori, A.; Paccagnella, A. |; Bonin, F.

    1996-12-31

    We have developed a SPICE model for the ohmic side of AC-coupled Si microstrip detectors with interstrip isolation via field plates. The interstrip isolation has been measured in various conditions by varying the field plate voltage. Simulations have been compared with experimental data in order to determine the values of the model parameters for different voltages applied to the field plates. The model is able to predict correctly the frequency dependence of the coupling between adjacent strips. Furthermore, we have used such model for the study of the signal propagation along the detector when a current signal is injected in a strip. Only electrical coupling is considered here, without any contribution due to charge sharing derived from carrier diffusion. For this purpose, the AC pads of the strips have been connected to a read-out electronics and the current signal has been injected into a DC pad. Good agreement between measurements and simulations has been reached for the central strip and the first neighbors. Experimental tests and computer simulations have been performed for four different strip and field plate layouts, in order to investigate how the detector geometry affects the parameters of the SPICE model and the signal propagation.

  11. Microstrip Butler matrix design and realization for 7 T MRI.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus

    2011-07-01

    This article presents the design and realization of 8 × 8 and 16 × 16 Butler matrices for 7 T MRI systems. With the focus on low insertion loss and high amplitude/phase accuracy, the microstrip line integration technology (microwave-integrated circuit) was chosen for the realization. Laminate material of high permittivity (ε(r) = 11) and large thickness (h = 3.2 mm) is shown to allow the best trade-off of circuit board size versus insertion loss, saving circuit area by extensive folding of branch-line coupler topology and meandering phase shifter and connecting strip lines and reducing mutual coupling of neighboring strip lines by shield structures between strip lines. With this approach, 8 × 8 Butler matrices were produced in single boards of 310 mm × 530 mm, whereas the 16 × 16 Butler matrices combined two submatrices of 8 × 8 with two smaller boards. Insertion loss was found at 0.73 and 1.1 dB for an 8 × 8 matrix and 16 × 16 matrix, respectively. Measured amplitude and phase errors are shown to represent highly pure mode excitation with unwanted modes suppressed by 40 and 35 dB, respectively. Both types of matrices were implemented with a 7 T MRI system and 8- and 16-element coil arrays for RF mode shimming experiments and operated successfully with 8 kW of RF power. Copyright © 2011 Wiley-Liss, Inc.

  12. Circular Microstrip Antenna with Fractal Slots for Multiband Applications

    NASA Astrophysics Data System (ADS)

    Singh, Sivia Jagtar; Singh, Gurpreet; Bharti, Gurpreet

    2017-05-01

    In this paper, a multiband, fractal, slotted, Circular Microstrip Patch Antenna for GSM, WiMAX, C and X bands (satellite communication applications) is presented. A cantor set theory is used to make fractal slots for obtaining the desired multiband. The projected antenna is simulated using Ansys HFSS v13.0 software. Simulation test of this antenna has been carried out for a frequency range of 1 GHz-10 GHz and a peak gain of 9.19 dB at a resonance frequency of 1.9 GHz is obtained. The antenna also resonates at 3.7 GHz, 6.06 GHz and 7.9 GHz with gains of 3.04 dB, 5.19 dB and 5.39 dB respectively. Parameters like voltage standing wave ratio, return loss, and gain are used to compare the results of the projected antenna with conventional CMPA's of same dimensions with full and defective grounds. The projected antenna is fabricated on a glass epoxy material and is tested using Vector Network Analyzer. The performance parameters of the antenna are found to in good agreement with each both using simulated and measured data.

  13. A Compact Annular Ring Microstrip Antenna for WSN Applications

    PubMed Central

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  14. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  15. Series-fed circularly polarized microstrip antennas with broad bandwidth

    NASA Astrophysics Data System (ADS)

    Mao, Shau-Gang; Chen, Shiou-Li; Yeh, Jen-Chun; Lin, Tien-Min

    2007-08-01

    A new series-fed circularly polarized antenna (SFCPA) in microstrip configuration, which consists of a traveling-wave-type crank-line antenna (CLA) and a resonant-type square-ring slot antenna (SRSA), is developed. Unlike the conventional crank-line (CL) antenna array with an open end or a resistive load, the proposed SFCPA uses the SRSA at the termination of the CLA and thus exhibits not only a broad circularly polarized (CP) bandwidth but also a large antenna gain. The characteristics of the SFCPA, including the leaky-wave radiation and the circular polarization, are examined in terms of the dispersion diagram and the current distribution. The SFCPA with the two-cell CLA and the terminated SRSA is fabricated and measured to demonstrate the 10-dB return loss and 3-dB axial ratio (AR) bandwidths of 34.3% and 30.5%, respectively. The frequency-scanning radiation patterns with a 5-7 dBi antenna gain are also presented in the operating band.

  16. Metrology of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  17. Design and Analysis of a Triple Stop-band Filter Using Ratioed Periodical Defected Microstrip Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Yanyan; Li, Yingsong

    2017-07-01

    In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.

  18. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies

    PubMed Central

    Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun

    2016-01-01

    Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems. PMID:26983911

  19. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies.

    PubMed

    Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun

    2016-03-17

    Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems.

  20. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun

    2016-03-01

    Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems.

  1. Resonance in a superstrate-loaded cylindrical-rectangular microstrip structure

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Lu; Cheng, Yuan-Tung; Row, Jeen-Sheen

    1993-05-01

    The complex resonant frequencies of the cylindrical-rectangular microstrip structure loaded with a dielectric superstrate layer is studied by using a rigorous full-wave analysis and the numerical results are obtained by using the Galerkin's moment method calculation. The numerical convergence for the selected sinusoidal basis functions with and without the edge singularity condition is also discussed. Numerical results for the dependence of the real and imaginary parts of the complex resonant frequencies on the superstrate permittivity and thickness are calculated and analyzed, which are also compared with those obtained for the planar microstrip structure.

  2. Effect of electroacoustic waves on radiation properties of microstrip matched coaxial termination

    NASA Astrophysics Data System (ADS)

    Salem, A. M.; Bhatnagar, D.; Gandhi, J. M.

    1996-08-01

    Expressions for the field intensities in a warm ionized plasma for two type of modes (electromagnetic and electroacoustic) pertaining to a microstrip matched coaxial termination are obtained using linearized hydrodynamic theory coupled with a vector function technique. The radiation power and directivity for the respective modes are evaluated for different ratios of plasma to source frequencies. It is observed that electromagnetic fields are similar to other microstrip antenna structures, but more directive in a particular direction. The electroacoustic mode exhibits a complete absence of multilobed structure, which was found for other antenna structures. The efficiency of this structure in a plasma is poor.

  3. Coupling between Microstrip Lines Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Papapolymerou, John

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing SilSiGe monolithic microwavdmillimeter-wave integrated circuits on CMOS (low resistivity) Si wafers. However, the closely spaced transmission lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and measured characteristics of novel shielding structures that significantly reduce coupling between embedded microstrip lines are presented. A discussion of the electric and magnetic field distributions for the coupled microstrip lines is presented to provide a physical rationale for the presented results.

  4. Wideband bandpass filters employing broadside-coupled microstrip lines for MIC and MMIC applications

    NASA Technical Reports Server (NTRS)

    Tran, M.; Nguyen, C.

    1994-01-01

    Wideband bandpass filters employing half-wavelength broadside-coupled microstrip lines suitable for microwave and mm-wave integrated monolithic integrated circuits (MIC and MMIC) are presented. Several filters have been developed at X-band (8 to 12 GHz) with 1 dB insertion loss. Fair agreement between the measured and calculated results has been observed. The analysis of the broadside-coupled microstrip lines used in the filters, based on the quasi-static spectral domain technique, is also described.

  5. Electrical equivalent circuit for microstrip micro-plasma: control of EM propagation and numerical simulations.

    PubMed

    Mohamad, Almustafa; Tân-Hoa, Vuong; Jacques, David

    2012-01-01

    An approach to determine an equivalent electrical circuit of a micro planar discharge on a microstrip printed circuit is reported. The micro discharge is used to realize a dynamic microwave switching circuit. This approach is based on the measurement of the discharge current and the transmission coefficient for a given frequency 2.45 GHz. Numerical methods like FEM can be used to study the effect of plasma parameters on the propagation of electromagnetic waves through a microstrip printed circuit. Plasma behaves as flexible elements that can change its electrical proprieties such as conductivity.

  6. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  7. A Compact Low-loss Magic-T using Microstrip-Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Moseley, Samuel H.; Papapolymerou, John; Laskar, Joy

    2007-01-01

    The design of a compact low-loss magic-T is proposed. The planar magic-T incorporates the compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The experimental results show that the magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has an average in-band insertion loss of 0.3 dB and small in-band phase and amplitude imbalance of less than plus or minus 1.6 deg. and plus or minus 0.3 dB, respectively.

  8. Operational Studies of Cadmium Zinc Telluride Microstrip Detectors using SVX ASIC Electronics

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Barbier, L. M.; Barthelmy, S.; Bartlett, L.; Birsa, F.; Gehrels, N.; Hanchak, C.; Kurczynski, P.; Odom, J.; Parsons, A.; Palmer, D.; Sheppard, D.; Snodgrass, S.; Stahle, C. M.; Teegarden, B.; Tueller, J.

    1997-04-01

    We have been investigating the operational properties of cadmium zinc telluride (CZT) microstrip detectors by using SVX ASIC readout electronics. This research is in conjunction with the development of a CZT-based, next generation gamma-ray telescope for use in the gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS) experiment. CZT microstrip detectors with 128 channels and 100 micron strip pitch have been fabricated and were interfaced to SVX electronics at Goddard Space Flight Center. Experimental results involving position sensing, spectroscopy, and CZT operational properties will be presented.

  9. Low-loss microstrip delay line in Tl sub 2 Ba sub 2 CaCu sub 2 O sub 8

    SciTech Connect

    Bourne, L.C.; Hammond, R.B.; Robinson, M.; Eddy, M.M.; Olson, W.L.; James, T.W. )

    1990-06-04

    We have fabricated and tested a 1 ns microstrip delay line using thin films of Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}. We determined the loss in the delay line by weakly coupling at the input and output and measuring the width of the fundamental resonance at 461 MHz. At 15 K, the loss was lower than that calculated for an equivalent cryogenic copper line by a factor of 300. Resonance peaks were observable up to 102.7 K. At 77 K and 3.29 GHz, the observed loss was lower than that calculated for an equivalent Cu line by a factor of 10. Power limiting due to film defects occurred at an effective power level in the line of {minus}43 dBm at 15 K.

  10. Reconfigurable Wideband Circularly Polarized Microstrip Patch Antenna for Wireless Applications

    NASA Astrophysics Data System (ADS)

    Khidre, Ahmed

    In this thesis, developments of rectangular microstrip patch antenna to have circular polarization agility with wideband performance, for wireless applications are presented. First, a new technique to achieve circularly polarized (CP) probe feed single-layer microstrip patch antenna with wideband characteristics is proposed. The antenna is a modified form of the popular E-shaped patch, used to broaden the impedance bandwidth of a basic rectangular patch antenna. This is established by letting the two parallel slots of the E-patch unequal. Thus, by introducing asymmetry two orthogonal currents on the patch are excited and circularly polarized fields are realized. The proposed technique exhibits the advantage of the simplicity inherent in the E-shaped patch design. It requires only slot lengths, widths, and position parameters to be determined. Also, it is suitable for later adding the reconfigurable capability. With the aid of full-wave simulator Ansoft HFSS, investigations on the effect of various dimensions of the antenna have been carried out via parametric analysis. Based on these investigations, a design procedure for a CP E-shaped patch is summarized. Various design examples with different substrate thicknesses and material types are presented and compared, with CP U-slot patch antennas, recently proposed in the literature. A prototype has been constructed following the suggested design procedure to cover the IEEE 802.11b/g WLAN band. The performance of the fabricated antenna was measured and compared with the simulation results for the reflection coefficient, axial ratio, radiation pattern, and antenna gain. Good agreement is achieved between simulation and measured results demonstrating a high gain and wideband performance. Second, a polarization reconfigurable single feed E-shaped patch antenna with wideband performance is proposed. The antenna is capable of switching from right-hand circular polarization (RHCP) to left-hand circular polarization (LHCP) and

  11. Analysis of the influence of the mode type on microstrip antenna directive properties

    NASA Astrophysics Data System (ADS)

    Bem, Daniel J.; Katulski, Ryszard J.

    The subject of this paper is the analysis of the mode type influence on the directive properties of a microstrip antenna with a rectangular radiating element. Investigations in this field were carried out using the aperture model of the antenna. The results of numerical investigations are presented.

  12. An optimized forward-coupling microstrip hybrid for millimeter-wave circuits

    NASA Astrophysics Data System (ADS)

    Ikalainen, Pertti

    1990-03-01

    A forward-coupling microstrip hybrid with optimized coupling variation is described. The advantages of the new structure are its suitability for use at millimeter waves, high directivity, and relaxed fabrication tolerance. Experimental results from a 36-GHz coupler are presented.

  13. Radiation characteristics and generation of higher-order modes of circular microstrip antennas

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Shafai, L.

    1984-08-01

    The characteristics of higher-order modes of circular microstrip antennas, such as radiation pattern, directivity, bandwidth, efficiency, and location of the feedpoint to match a 50 ohm line, are studied, and the effects of varying the substrate parameters are investigated. A multifeed technique to generate any particular mode is also presented.

  14. An experimental investigation of microstrip properties on soft substrates from 2 to 40 GHz

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Ponchak, G. E.; Downey, A. N.; Connolly, D. J.

    1985-01-01

    Dispersion and loss characteristics of microstrip lines on 10 mil and 31 mil electrodeposited and electroless copper clad-Teflon substrates were experimentally obtained from 2 to 40 GHz. The roles of surface roughness and radiation in total loss were examined.

  15. Microstrip antenna study for Pioneer Saturn/Uranus atmosphere entry probe

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1974-01-01

    The design parameters of a microstrip antenna were studied to determine its performance characteristics as affected by an atmospheric entry probe environment. The technical literature was reviewed to identify the known design and performance characteristics. These data were used to evaluate the expected effects of mission environments on the microstrip antenna design proposed for the Saturn/Uranus Atmospheric Entry Probe (SAEP). Radiation patterns and VSWR measurements were made to evaluate the performance in the SAEP thermal environment. Results of the literature search and pattern tests confirm that the microstrip antenna is a good choice as a transmitting antenna on the SAEP. The microstrip antenna is efficient, compact, and well suited to a space environment. The pattern can be controlled with a minimum beamwidth of 60 degrees (air substrate; e.g., honeycomb structure) and a maximum on the order of 100 degrees with higher dielectric constant substrates. The power handling capacity is good and can be improved by covering the antenna with a dielectric cover.

  16. Ultra-wideband miniaturized microstrip patch antennas for wireless communications: Design guidelines and modeling

    NASA Astrophysics Data System (ADS)

    Dandu, Varun Kumar

    The number of wireless communication applications continue to increase steadily, leading to competition for currently allocated frequency bands. Capacity issues in form of data rate and latency have always been a bottleneck for broadband wireless-communication usage. New communication systems like ultra-wideband (UWB) require larger bandwidth than what is normally utilized with traditional antenna techniques. The interest for compact consumer electronics is growing in the meantime, creating a demand on efficient and low profile antennas which can be integrated on a printed circuit board. The main objective of this thesis is to study, design, analyze and implement UWB low profile microstrip patch antenna that satisfy UWB technology requirements. Some methods to extend the bandwidth and other antenna parameters associated with wideband usages are studied. Several techniques are used for optimal UWB bandwidth performance of the UWB microstrip patch antenna. The performance parameters such as VSWR, Gain and radiation pattern of the UWB microstrip patch antenna is extensively investigated with simulations using FEKO. A set of simple design guidelines is proposed to provide approximate rules that result in optimum "first-pass" designs of probe-fed, miniaturized, low profile, microstrip UWB antennas using different bandwidth-enhancement techniques to satisfy UWB bandwidth that require minimal tuning.

  17. Design investigation for a microstrip phased array antenna for the ORION satellite

    NASA Astrophysics Data System (ADS)

    Smith, Mark B.

    1988-06-01

    Students at the Naval Postgraduate School are designing a general purpose mini-satellite that can be launched from a Get-Away-Special cannister located in the cargo bay of the Space Shuttle and will be compatible with expendable launch vehicles as well. This thesis defines preliminary antenna systems and the design parameters for the telemetry system of the ORION mini-satellite. These antenna design parameters may be used for investigations of various proposed antenna systems and the design parameters also allow for trade-off studies with the mission capabilities and subsystems of the satellite. An investigation is made into the feasibility of using conformal microstrip patch array antennas for the telemetry, tracking and command (TT&C) systems. It is necessary to have two separate microstrip patch array antennas for the telemetry system: one uplink and one downlink antenna. The microstrip patch array antenna can operate as either an omnidirectional antenna or a directional antenna by changing the phase of the individual patch feeds. This feature gives the microstrip patch array antenna more flexibility for meeting the needs of potential users.

  18. Ka-band propagation characteristics of microstrip lines on GaAs substrates at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Martinez, J. C.; Viergutz, B. J.; Bhasin, K. B.

    1990-01-01

    Effective permitivity and loss characteristics of gold microstrip lines on GaAs substrates were obtained by characterizing GaAs linear resonators at cryogenic temperatures (300 to 20 K) from 30-40 GHz. A slight decrease in effective permittivity and a significant reduction in loss were observed with lower temperatures.

  19. A Novel Approach for an Integrated Straw Tube-Microstrip Detector

    NASA Astrophysics Data System (ADS)

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Pucci, C.; Russo, A.; Saviano, G.; Casali, F.; Bettuzzi, M.; Bianconi, D.; Baruffaldi, F.; Perilli, E.; Massa, F.

    2006-06-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell $^{\\circledR}$ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  20. Scanning and Defocusing Properties of Microstrip Reflectarray Antennas

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    A symmetric reflectarray, consisting of variable-size square patch elements with a commonly used mathematical model for the horn in the form of a cosine function, has been designed using the transmit mode technique for different f/D ratios with 10 dB edge taper. Subsequently, the antennas were analyzed for the radiation pattern and gain. The infinite array model was used to determine the reflection phase of each patch element in the design and analysis codes. By displacing the feed laterally, the scan characteristics were obtained, such as the beam deviation factor, gain loss, and pattern degradation. The properties of reflect arrays were compared to those of the conventional paraboloidal reflectors. The same procedure was used to study the scan properties of offset reflectarrays. There is no cross-polarized radiation in the principal planes for a symmetric system. Cross-polarized radiation exists in non-principal planes off broadside in symmetric systems, with greater levels for larger values of subtended angles. Such cross-polarized radiation level increases with subtended angle just as cross-polarization level increases with decreasing values of f/D ratios for symmetric paraboloids in non-principal planes. Pattern distortions and gain loss were found to be more severe in the case of a microstrip reflectarray compared to the conventional parabolic reflector. The scan performance of the reflect arrays was found to improve with f/D ratios as is true for paraboloids. In general, scanning by means of displaced feed is limited to a few beam - widths in reflectarrays. Feed displacement in the axial direction of a symmetric reflectarray was investigated and compared to that of paraboloids. The gain loss due to the defocused feed of a reflectarray was found to be nearly the same as that of a paraboloid of the same subtended angle for larger values of f/D, and for displacements away from the antenna. The gain loss of an axially defocused reflectarray was found to be

  1. Experimental Verification of the Use of Metal Filled Via Hole Fences for Crosstalk Control of Microstrip Lines in LTCC Packages

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Chun, Donghoon; Katehi, Linda P. B.; Yook, Jong-Gwan

    1999-01-01

    Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior 3D-FEM electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually increases coupling between the lines; however, if the top of the via posts are connected by a metal Strip, coupling is reduced. In this paper, experimental verification of the 3D-FEM simulations Is demonstrated for commercially fabricated LTCC packages.

  2. Multiquadric Spline-Based Interactive Segmentation of Vascular Networks

    PubMed Central

    Meena, Sachin; Surya Prasath, V. B.; Kassim, Yasmin M.; Maude, Richard J.; Glinskii, Olga V.; Glinsky, Vladislav V.; Huxley, Virginia H.; Palaniappan, Kannappan

    2016-01-01

    Commonly used drawing tools for interactive image segmentation and labeling include active contours or boundaries, scribbles, rectangles and other shapes. Thin vessel shapes in images of vascular networks are difficult to segment using automatic or interactive methods. This paper introduces the novel use of a sparse set of user-defined seed points (supervised labels) for precisely, quickly and robustly segmenting complex biomedical images. A multiquadric spline-based binary classifier is proposed as a unique approach for interactive segmentation using as features color values and the location of seed points. Epifluorescence imagery of the dura mater microvasculature are difficult to segment for quantitative applications due to challenging tissue preparation, imaging conditions, and thin, faint structures. Experimental results based on twenty epifluorescence images is used to illustrate the benefits of using a set of seed points to obtain fast and accurate interactive segmentation compared to four interactive and automatic segmentation approaches. PMID:28261011

  3. Multiquadric Spline-Based Interactive Segmentation of Vascular Networks.

    PubMed

    Meena, Sachin; Surya Prasath, V B; Kassim, Yasmin M; Maude, Richard J; Glinskii, Olga V; Glinsky, Vladislav V; Huxley, Virginia H; Palaniappan, Kannappan

    2016-08-01

    Commonly used drawing tools for interactive image segmentation and labeling include active contours or boundaries, scribbles, rectangles and other shapes. Thin vessel shapes in images of vascular networks are difficult to segment using automatic or interactive methods. This paper introduces the novel use of a sparse set of user-defined seed points (supervised labels) for precisely, quickly and robustly segmenting complex biomedical images. A multiquadric spline-based binary classifier is proposed as a unique approach for interactive segmentation using as features color values and the location of seed points. Epifluorescence imagery of the dura mater microvasculature are difficult to segment for quantitative applications due to challenging tissue preparation, imaging conditions, and thin, faint structures. Experimental results based on twenty epifluorescence images is used to illustrate the benefits of using a set of seed points to obtain fast and accurate interactive segmentation compared to four interactive and automatic segmentation approaches.

  4. Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2001-01-01

    A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.

  5. Efficient evaluation of the inner products in the spectral domain analysis of microstrip discontinuities

    NASA Astrophysics Data System (ADS)

    McNay, Dan; Mittra, Raj

    1990-11-01

    The current trend in microwave and millimeter-wave integrated circuits (MICs) is toward higher operating frequencies, high packing densities, and more stringent performance requirements. As a result, earlier models based on approximate analysis techniques are becoming insufficiently accurate for use in computer-aided design (CAD) packages. In particular, simplifying assumptions, such as the quasi-static approximation and the magnetic wall approximation, are becoming inappropriate in the analysis of microstrip discontinuities such as bends, steps, and stubs. Instead, a rigorous full-wave analysis is needed to obtain a more accurate characterization of thes passive circuits. Such an analysis captures the increasingly significant effects of coupling, dispersion, and radiation. The objective of this study is to develop an asymptotic acceleration technique for the efficient evaluation of the integrals involved in the full-wave spectral domain method for analyzing microstrip discontinuity problems. (kr)

  6. Radiation characteristics of two-element array of circular patch microstrip antenna in a warm plasma

    NASA Astrophysics Data System (ADS)

    Saxena, V. K.; Dinesh, Abhinav; Gupta, Raj Kumar

    1989-08-01

    The radiation properties of a two-element array of circular patch microstrip antenna in an ionized medium are studied. Expressions for the far zone EM-mode and P-mode radiation fields using hydrodynamic equations and potential function techniques are derived. The results are computed for the ionized media as well as for free space and compared with those of single-element circular patch microstrip antenna. It is observed that EM-mode field patterns are modified to a great extent, whereas the P-mode field patterns show discrete raylike structure similar to those of other antennas. Antenna parameters like radiation conductivity, radiation efficiency, directivity and quality factor are also computed for different ratios of plasma to source frequency.

  7. Electric surface current model for the analysis of microstrip antennas with application to rectangular elements

    NASA Astrophysics Data System (ADS)

    Perlmutter, P.; Shtrikman, S.; Treves, D.

    1985-03-01

    An approach to the analysis of microstrip antennas which is applicable also to relatively thick substrates using the relevant Green's function is presented. The Green's function is derived and closed form expressions for various antenna characteristics which explicity take into account the presence of the dielectric material are obtained in terms of the electric surface current density. For rectangular microstrip elements near resonance the current distribution is approximated using lossless transmission line analysis, thus enabling the complete evaluation of the characteristics of the element near resonance. The results obtained in this approach for the radiation resistance, surface wave resistance, radiation pattern, directivity, and bandwidth are presented in a detailed set of graphs for a representative set of parameters.

  8. Radiation and Resonant Frequency of Superconducting Annular Ring Microstrip Antenna on Uniaxial Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Barkat, Ouarda; Benghalia, Abdelmadjid

    2009-10-01

    In this work, the full-wave method is used for computing the resonant frequency, the bandwidth, and radiation pattern of High temperature superconductor, or an imperfectly conducting annular ring microstrip, which is printed on uniaxial anisotropic substrate. Galerkin’s method is used in the resolution of the electric field integral equation. The TM set of modes issued from the cavity model theory are used to expand the unknown currents on the patch. Numerical results concerning the effect of the anisotropic substrates on the antenna performance are presented and discussed. It is found that microstrip superconducting could give high efficiency with high gain in millimeter wavelengths. Results are compared with previously published data and are found to be in good agreement.

  9. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    NASA Technical Reports Server (NTRS)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.

    1990-01-01

    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  10. The effect of coupling line loss in microstrip to dielectric resonator coupling

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.

    1990-01-01

    The interaction between a dielectric resonator and a microstrip transmission line is fundamentally a field phenomenon. However, the model of Figure 1b widely is used to represent the arrangement in Figure 1a, and predicts the behavior encountered in practice. The microstrip line of length l = n(lambda)/4 between the input and coupling planes and the lambda/4 open-circuit stub usually is assumed to be lossless. This paper considers the effect of coupling line loss on the unloaded-Q and coupling coefficient beta of the combination. It shows that transmission line loss can cause the decrease in unloaded-Q that has been observed to occur with tight coupling, and limits the coupling coefficient to a much lower value than would be obtained with a lossless coupling line.

  11. Design of Microstrip Lange Coupler Based on Em-Ann Model

    NASA Astrophysics Data System (ADS)

    Yang, Ziqiang; Yang, Tao; Liu, Yu

    2006-10-01

    Electromagnetically trained artificial neural network (EM-ANN) model for microstrip Lange Coupler is presented. Full-wave EM analysis software is employed to characterize the Lange Coupler. The EM-ANN model is then designed using physical parameters as inputs and S-parameters as outputs. Once the EM-ANN model is trained, it can be used to find the optimal physical structure of the Lange Coupler for a given application using optimization technique. A Ka-band microstrip Lange Coupler is designed by this method. The simulated results of the Lange Coupler show that the insert loss is better than -3.64 dB; the amplitude balance is less than 0.55 dB and the phase balance is less than 0.52°from the 90°phase difference over the 30 to 40 GHz frequency range.

  12. Gap Excitations and Series Loads in Microstrip Lines: Equivalent Network Characterization with Application to THz Circuits

    NASA Technical Reports Server (NTRS)

    Neto, Andrea; Siegel, Peter H.

    2001-01-01

    At submillimeter wavelengths typical gap discontinuities in microstrip, CPW lines or at antenna terminals, which might contain diodes or active elements, cannot be viewed as simple quasi statically evaluated lumped elements. Planar Schottky diodes at 2.5 THz, for example, have a footprint that is comparable to a wavelength. Thus, apart from modelling the diodes themselves, the connection with their exciting elements (antennas or microstrip) gives rise to parasitics. Full wave or strictly numeric approaches can be used to account for these parasitics but at the expense of generality of the solution and the CPU time of the calculation. In this paper an equivalent network is derived that accurately accounts for large gap discontinuities (with respect to a wavelength) without suffering from the limitations of available numeric techniques.

  13. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    PubMed Central

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S. T.; John, Sabu; Wang, Chun H.; Ghorbani, Kamran

    2014-01-01

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection. PMID:24451457

  14. Low-loss microstrip MEMS technology for passive components design in the Ka-band

    NASA Astrophysics Data System (ADS)

    Martoglio, L.; Richalot, E.; Picon, O.

    2002-04-01

    The development of Wireless Local Loop applications require low-cost technologies in the Ka-band. As transmission lines and passive circuit components on standard low-resistivity silicon substrates have high loss in this frequency range, a new microstrip MEMS technology is proposed for high- frequency applications. It has many advantages as the low cost of the substrates (glass and standard silicon), the simple technological process, the good electrical performances, and the low sensitivity to electromagnetic radiation. This technology consists in inverted microstrip lines, either on low loss silicon or on glass, which can be combined to obtain compact circuits associating active and passive components. Moreover, this technology seems suitable for current microwave and radiofrequency applications because it could be easily adapted to silicon fabrication technologies dedicated to planar circuits.

  15. Input impedance of a probe-fed circular microstrip antenna with thick substrate

    NASA Technical Reports Server (NTRS)

    Davidovitz, M.; Lo, Y. T.

    1986-01-01

    A method of computing the input impedance for the probe fed circular microstrip antenna with thick dielectric substrate is presented. Utilizing the framework of the cavity model, the fields under the microstrip patch are expanded in a set of modes satisfying the boundary conditions on the eccentrically located probe, as well as on the cavity magnetic wall. A mode-matching technique is used to solve for the electric field at the junction between the cavity and the coaxial feed cable. The reflection coefficient of the transverse electromagnetic (TEM) mode incident in the coaxial cable is determined, from which the input impedance of the antenna is computed. Measured data are presented to verify the theoretical calculations. Results of the computation of various losses for the circular printed antenna as a function of substrate thickness are also included.

  16. Analysis and optimal design of Si microstrip detector with overhanging metal electrode

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Bhardwaj, Ashutosh; Namrata; Chatterji, Sudeep; Srivastava, Ajay K.; Shivpuri, R. K.

    2001-07-01

    The harsh radiation environment to be encountered at LHC (large hadron collider) and RHIC (relativistic heavy ion collider) poses a challenging task for the fabrication of Si microstrip detectors. Due to high luminosities, detectors are required to sustain very high voltage operation well exceeding the bias voltage needed to fully deplete them. The `overhanging' metal contact is now a well established technique for improving the breakdown performance of the Si microstrip detector. Based on computer simulation, the influence of various physical and geometrical parameters on the electrical breakdown of the Si detectors equipped with metal overhangs is extensively analysed. Furthermore, optimization of design parameters is performed to achieve breakdown voltages close to maximum realizable values. The simulation results are found to be in good agreement with experimental data.

  17. Use of a combined expansion scheme to analyze microstrip antennas with the method of moments

    NASA Astrophysics Data System (ADS)

    Vandenbosch, G. A. E.; van de Capelle, A. R.

    1992-12-01

    A new expansion scheme is introduced to solve the integral equations describing a microstrip antenna with the method of moments. The scheme offers both flexibility and a low number of expansion functions and thus an acceptable calculation time. The basic idea consists of constructing secondary entire domain expansion functions as fixed combinations of primary expansion functions. This special concept allows the solution of several problems concerning rapid variations of the currents on the patches in an efficient way without having to deal with an unacceptable number of expansion functions to describe the mutual coupling between the patches. The efficiency of the combined scheme is illustrated by a comparison of measured and calculated results for a linear eight-element microstrip array antenna.

  18. A general analysis of propagation along multiple-layer superconducting stripline and microstrip transmission lines

    NASA Technical Reports Server (NTRS)

    Nghiem, David; Williams, Jeffrey T.; Jackson, David R.

    1990-01-01

    A rigorous spectral-domain formulation for a superconducting stripline or microstrip transmission line with a multiple-layer dielectric substrate is presented. The formulation models the strip conductor as a surface current with an equivalent surface impedance, where the surface impedance is approximated in closed form when the strip is either much thinner or much thicker than a penetration depth. In either case the surface impedance is related to the complex conductivity of the material, which is calculated from a two-fluid model. Results are presented to show the slow-wave propagation and attenuation along both microstrip and stripline packages in a realistic multiple-layer configuration, which accounts for the field penetration into the superconducting ground planes.

  19. The application of a microstrip gas counter to energy-dispersive x-ray fluorescence analysis

    SciTech Connect

    Veloso, J.F.C.A.; Santos, J.M.F. dos; Conde, C.A.N.; Morgado, R.E.

    1996-07-01

    Performance characteristics of a microstrip gas counter operated as a x-ray fluorescence spectrometer are reported. Gas amplification as a function of microstrip anode-cathode voltage was measured, and the breakdown threshold voltage was determined in pure xenon. The detector temporal stability and the effect of gas purity were assessed. Energy resolution and linearity, detection efficiency, and uniformity of spatial response in the 2- to 60-keV x-ray energy range were determined from the pulse-height distributions of the fluorescence x-ray spectra induced in a variety of single- and multi-element sample materials. Energy resolution similar to conventional proportional counters was achieved at 6 keV.

  20. Microwave-excited atmospheric-pressure plasma jets using a microstrip line

    SciTech Connect

    Kim, Jaeho; Katsurai, Makoto; Kim, Dongmin; Ohsaki, Hyroyuki

    2008-11-10

    We report a 2.45 GHz microwave-excited atmospheric-pressure plasma jet (MW-APPJ) device using a microstrip line for materials processing. A three-dimensional simulation based on the finite difference time domain method revealed that the configuration of the MW-APPJ device results in a strong concentration of electric fields at the gas nozzle. Argon plasmas were generated at the nozzle and were blown into ambient air with the maximum length of 5 mm at a microwave power of 40 W. The rotational temperatures of molecular nitrogen in the downstream of the plasma jets, measured by optical emission spectroscopy, were 1720 to 900 K for gas flow rates from 0.5 to 3.5 l/min, indicating that the jets were nonthermal plasmas. This MW-APPJ device will provide a large-area APPJ for materials processing depending on the configuration of the nozzle array and microstrip lines.

  1. A general analysis of propagation along multiple-layer superconducting stripline and microstrip transmission lines

    NASA Technical Reports Server (NTRS)

    Nghiem, David; Williams, Jeffery T.; Jackson, David R.

    1991-01-01

    A rigorous spectral-domain formulation for a superconducting stripline or microstrip transmission line with a multiple-layer dielectric substrate is presented. The formulation models the strip conductor as a surface current with an equivalent surface impedance, where the surface impedance is approximated in closed form when the strip is either much thinner or much thicker than a penetration depth. In either case the surface impedance is related to the complex conductivity of the material, which is calculated from a two-fluid model. Results are presented to show the slow-wave propagation and attenuation along both microstrip and stripline packages in a realistic multiple-layer configuration, which accounts for the field penetration into the superconducting ground planes.

  2. Quality factor effect on the wireless range of microstrip patch antenna strain sensors.

    PubMed

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S T; John, Sabu; Wang, Chun H; Ghorbani, Kamran

    2014-01-02

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.

  3. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  4. Bird Face Microstrip Printed Monopole Antenna Design for Ultra Wide Band Applications

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Md. Moinul; Islam, Mohammad Tariqul; Rahman, Md. Atiqur

    2016-11-01

    In this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1-12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.

  5. Effective side length formula for resonant frequency of equilateral triangular microstrip antenna

    NASA Astrophysics Data System (ADS)

    Guney, Kerim; Kurt, Erhan

    2016-02-01

    A novel and accurate expression is obtained by employing the differential evolution algorithm for the effective side length (ESL) of the equilateral triangular microstrip antenna (ETMA). This useful formula allows the antenna engineers to accurately calculate the ESL of the ETMA. The computed resonant frequencies (RFs) show very good agreement with the experimental RFs when this accurate ESL formula is utilised for the computation of the RFs for the first five modes.

  6. Radiation and surface waves of a microstrip antenna covered with a dielectric layer

    NASA Astrophysics Data System (ADS)

    Hoorfar, Ahmad; Gupta, K. C.; Chang, D. C.

    1990-01-01

    The effects of a thick cover layer on the radiation characteristics of a microstrip patch antenna are investigated. A magnetic line source model has been used to derive explicit expressions for the far field, radiated power, directivity, and surface wave of the antenna. Numerical results are presented to show the effects of a lossless as well as a lossy dielectric cover layer on the surface waves and the radiated power.

  7. Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Yang, Lechen; Shi, Xueshun; Chen, Kunfeng; Fu, Kai; Zhang, Baoshun

    2013-12-01

    In this paper, two-dimensional photonic crystals working at terahertz (THz) frequency is analyzed, a multi-frequency terahertz microstrip patch antenna on photonic crystal substrate is presented and its electromagnetic wave propagation phenomenon is investigated. The proposed antenna can work at five frequency points' scope at terahertz frequency regions, and the radiation efficiency is as high as ~96%. The photonic crystal structure of the substrate is used to enhance the gain, directivity and radiation efficiency of the antenna.

  8. Coupling Between Microstrip Lines Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Papapolymerou, John

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on CMOS (low resistivity) Si wafers. However, the closely spaced transmission lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and measured characteristics of novel shielding structures that significantly reduce coupling between embedded microstrip lines are presented.

  9. A new model for broadband waveguide-to-microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1988-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  10. Degradation of silicon ac-coupled microstrip detectors induced by radiation

    SciTech Connect

    Bacchetta, N.; Gotra, Yu.; Bisello, D. |; Canali, C.; Fuochi, P.G.; Paccagnella, A.; Verzellesi, G. |

    1993-12-01

    Results are presented showing the radiation response of ac-coupled FOXFET biased microstrip detectors and related test patterns to be used in the microvertex detector of the CDF experiment at Fermi National Laboratory. Radiation tolerance of detectors to gamma and proton irradiation has been tested and the radiation induced variations of the dc electrical parameters have been analyzed. Long term post-irradiation behavior of detector characteristics have been studied, and the relevant room temperature annealing phenomena have been discussed.

  11. Radiation tolerance of the FOXFET biasing scheme for AC-coupled Si microstrip detectors

    SciTech Connect

    Bacchetta, N.; Gotra, Yu. ); Bisello, D.; Da Ros, R.; Giraldo, A. Univ. di Padova . Dipt. di Fisica); Canali, C. Univ. di Modena . Facolta di Ingegneria); Fuochi, P.G. ); Fusaro, G. . Dept. di Elettronica e Informatica); Paccagnella, A. Univ. di Cagliari . Instituto di Elettrotecnica); Verzellesi, G. Univ. di Padova . Dept. di Elettronica e Informatica)

    1993-12-01

    The radiation response of FOXFETs has been studied for proton, gamma and neutron exposures. The punch-through behavior, which represents the normal FET operating conditions in Si microstrip detectors, has been found to be much less sensitive to radiation damage than threshold voltage. The device performance has been elucidated by means of two-dimensional simulations. The main radiation effects have been also taken into account in the numerical analysis and separately examined.

  12. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  13. Radiation tolerance studies of neutron irradiated double sided silicon microstrip detectors

    NASA Astrophysics Data System (ADS)

    Singla, M.; Larionov, P.; Balog, T.; Heuser, J.; Malygina, H.; Momot, I.; Sorokin, I.; Sturm, C.

    2016-07-01

    Radiation tolerance studies were made on double-sided silicon microstrip detectors for the Silicon Tracking System of the Compressed Baryonic Matter experiment at FAIR. The prototype detectors from two different vendors were irradiated to twice the highest expected fluence (1 ×1014 1 MeVneqcm-2) in the CBM experimental runs of several years. Test results from these prototype detectors both before and after irradiations have been discussed.

  14. A spectrum domain analysis for the microstrip patch antenna loaded by conducting posts

    NASA Astrophysics Data System (ADS)

    Zhang, W.-X.; Cheng, C.-H.

    Some samples of microstrip patch antennas, loaded or unloaded, with rectangular or equilateral triangle patches are analyzed and computed using the moment method and the spectrum domain method (SDM). A flexible technique for using SDM to analyze a perpendicular current in layered structures is introduced, and an integration technique to improve the convergence is suggested. The results show that loading posts cause a decrease rather than an increase in the resonant frequency.

  15. Nonreciprocal spin wave spectroscopy of thin Ni-Fe stripes

    NASA Astrophysics Data System (ADS)

    Khalili Amiri, Pedram; Rejaei, Behzad; Vroubel, Marina; Zhuang, Yan

    2007-08-01

    The authors report on the observation of nonreciprocal spin wave propagation in a thin (˜200nm) patterned Ni-Fe stripe. The spin wave transmission spectrum is measured using a pair of microstrip lines as antennas. The nonreciprocity of surface wave dispersion brought about by an adjacent aluminum ground leads to a nonreciprocal coupling of the antennas. The effects of Ni-Fe film conductivity, thickness, and reflections caused by the lateral confinement of the magnetic stripe are discussed. The nonreciprocity observed in this structure can potentially be used to realize nonreciprocal microwave devices on silicon.

  16. Closed Form Formulas for Distributed Circuit Model of Discontinuities in HTS Microstrip Transmission Lines

    NASA Astrophysics Data System (ADS)

    Javadzadeh, S. Mohammad Hassan; Mamaghany, Zahra Mardy; Farzaneh, Forouhar; Fardmanesh, Mehdi

    A distributed circuit model for different kinds of discontinuities in high temperature superconducting (HTS) microstrip transmission lines (TLs), is proposed. In each case, closed form formula for lumped element model is presented based on the configuration of the discontinuity and the characterizations of HTS microstrip TLs. These discontinuities consist of steps in width, open ends, gaps and 90-degree bends. In the case of normal conductor microstrip TLs there are a lot of numerical and analytical equations that can accurately model them, however those formulas are not efficient for HTS TLs. Thus modified relations are extracted utilizing the superconducting characterizations to obtain much more accurate formulas. Additionally temperature dependence of HTS TLs is considered in the relations. Moreover regarding the kinetic inductance in HTS TLs a closed form formula is proposed for characteristic impedance of HTS TLs. Furthermore correction factors based on fringe fields is used to optimize all formulas. Using these formulations can lead to modeling and analysis of some superconducting microwave devices such as resonators, microwave filters, couplers, etc. In contrast to EM analysis, using the distributed circuit model is much easier for analysis of HTS microwave devices. The accuracy of the proposed model is confirmed in comparison with some electromagnetic full-wave simulations. This full analytical approach shows great accuracy in this test case as well.

  17. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.

    PubMed

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-06-27

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  18. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    PubMed Central

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  19. Tunable microstrip SQUID amplifiers for the Gen 2 Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hilton, Gene; Clarke, John

    We present a series of tunable microstrip SQUID amplifiers (MSAs) for installation in ADMX. The axion dark matter candidate is detected via Primakoff conversion to a microwave photon in a high-Q (~100,000) tunable microwave cavity cooled with a dilution refrigerator in the presence of a 7-tesla magnetic field. The microwave photon frequency ν is a function of the unknown axion mass, so both the cavity and amplifier must be scanned over a wide frequency range. An MSA is a linear, phase-preserving amplifier consisting of a superconducting, resonant microstrip flux-coupled to a resistively-shunted dc SQUID biased into the voltage state. Tunability is achieved by terminating the microstrip with low inductance GaAs varactor diodes that operate below 100 mK. By varying the bias voltage of the varactors we vary their capacitance, allowing a reflected phase varying from nearly 0 to π, thus achieving a tunability close to a factor of 2. We demonstrate several devices operating below 100 mK, matched to the discrete operating bands of ADMX at frequencies ranging from 560 MHz to 1 GHz, that exhibit gains exceeding 20 dB. The associated noise temperatures, measured with a hot/cold load, approach the standard quantum limit (hν/kB) for a linear phase-preserving amplifier.

  20. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: Theory versus experiment in water

    SciTech Connect

    Underwood, H.R. ); Peterson, A.F. ); Magin, R.L. )

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low ([epsilon][sub r] = 10) and high ([epsilon][sub r] = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios ar 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  1. Stripline feed for a microstrip array of patch elements with teardrop shaped probes

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1990-01-01

    A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.

  2. Stripline feed for a microstrip array of patch elements with teardrop shaped probes

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1989-01-01

    A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0, 90, 180, and 270 degree relationship is described. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface wave between subarrays.

  3. A parallel-series-fed microstrip array with high efficiency and low cross-polarization

    NASA Technical Reports Server (NTRS)

    Huang, John

    1992-01-01

    The requirements of a microstrip array with a vertically polarized fan beam are addressed that correspond to its use in C-band interferometric SAR. A combination of parallel- and series-feed techniques are utilized in an array design with a three-stage parallel-fed configuration to enhance bandwidth performance. The linearly polarized traveling-wave microstrip array antenna is fed by microstrip transmission lines in two rows of 36 elements that resonate at 5.30 GHz. The transmission lines are impedance-matched at every junction for all the waves that travel toward the two ends of the array. The two measured principal-plane patterns are shown, and the measured narrow-beam pattern is found to agree with the calculated values. The VSWR bandwidths and narrow and broad beamwidths of the antenna are found to permit efficient performance. The efficiency is attributed to the parallel and series-feed configuration which allows proper impedance matching, and low cross-polarization is a result of the antiphase feed technique employed in the configuration.

  4. A Novel Miniaturization Technique of a Microstrip Patch Antenna using Patch Resonators

    NASA Astrophysics Data System (ADS)

    Kakita, Katsutoshi; Morita, Norihiko; Horii, Yasushi

    Microstrip patch antennas have been widely used in mobile and satellite communication systems due to their great advantages of low cost, low profile, lightweight and easy fabrication. However, the dimensions of a classical patch antenna are on the order of half a wavelength. This paper proposes a new approach to reduce the size of the antenna by embedding several patch resonators in an antenna substrate. Periodically installed resonators are expected to exhibit slow-wave effects. First of all, a microstrip delay line having a train of patch resonators in its substrate is demonstrated theoretically by the conventional FDTD method, and the slow-wave effect is discussed. Next, a 2-dimentional patch resonator array is applied to a microstrip patch antenna, and the effectiveness of the proposed structure is evaluated in the respect of antenna dimensions. Also, several experiments have been carried out to confirm the theoretical predictions. Using a prototype model fabricated on an LTCC substrate, the size reduction of more the 50% is attained.

  5. Hybrid perturbation scheme for wide beamwidth circularly polarized stacked patch microstrip antenna for satellite communication

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Shakawat

    Circularly polarized microstrip antennas are popular for satellite communications due to their circularly polarized orientation. They are used frequently in modern day satellite communication. In order to achieve wide angular coverage in satellite communication, a wide beamwidth is required from the antenna. Traditional single layer microstrip antenna inherently demonstrates low angular beamwidth of approximately 600 to 800and thereby lacks wide angular coverage when used for satellite communication. The objective of this thesis is to design a single-fed stacked microstrip antenna using different perturbation techniques in order to achieve a wide angular beamwidth. This thesis presents a new design for a circularly polarized antenna based on the hybrid perturbation scheme. First, a method of stacked patch-ring with negative perturbation was used to generate a significantly larger beamwidth of 1060. The axial ratio (AR) bandwidth obtained is also significantly larger compared to the case when square rings are used as parasitic and driven rings with a single feed. A simulated impedance bandwidth (S11< - 10 dB) of 16%, 3 dB AR bandwidth of 8% and a peak gain of 8.65 dBic are obtained from this design. Next, a new design of stacked hybrid antenna is presented, which uses hybrid perturbations to generate circular polarization radiation. An enhanced beamwidth of 1260 was obtained. The simulation results are confirmed by the measured results.

  6. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    PubMed

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  7. High-frequency microstrip cross resonators for circular polarization electron paramagnetic resonance spectroscopy.

    PubMed

    Henderson, J J; Ramsey, C M; Quddusi, H M; del Barco, E

    2008-07-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Omega impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled through small gaps to three arms of the cross to connect the resonator to the excitation ports. The control of the relative magnitude and phase between the two microwave stimuli at the input ports of each line allows for tuning the degree and type of polarization of the microwave excitation at the center of the cross resonator. The third (output) port is used to measure the transmitted signal, which is crucial to work at low temperatures, where reflections along lengthy coaxial lines mask the signal reflected by the resonator. Electron paramagnetic resonance spectra recorded at low temperature in an S=5/2 molecular magnet system show that 82% fidelity circular polarization of the microwaves is achieved over the central area of the resonator.

  8. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    PubMed

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  9. Full-wave analysis of superconducting microstrip lines on anisotropic substrates using equivalent surface impedance approach

    SciTech Connect

    Lee, L.H.; Lyons, W.G.; Orlando, T.P.; Ali, S.M. . Dept. of Electrical Engineering and Computer Science); Lyons, W.G. . Lincoln Lab.); Withers, R.S. )

    1993-12-01

    A computationally efficient full-wave technique is developed to analyze single and coupled superconducting microstrip lines on anisotropic substrates. The optic axis of the dielectric is in the plane of the substrate at an arbitrary angle with respect to the propagation direction. A dyadic Green's function for layered, anisotropic media is used to formulate an integral equation for the current in the strips. To increase the efficiency of the method, the superconducting strips are replaced by equivalent surface impedances which account for the loss and kinetic inductance of the superconductors. The validity of this equivalent surface impedance (ESI) approach is verified by comparing the calculated complex propagation constant and characteristic impedance for superconducting microstrip lines on an isotropic substrate to measured results, and to numerical results by the more rigorous volume-integral equation method. The results calculated using the ESI approach for perfectly conducting coupled lines on an anisotropic substrate agree with the results by the finite-difference time-domain method. This efficient ESI technique is then used to study the effects of the optic axis orientation and the strip width on the characteristics of single and coupled superconducting microstrip lines on M-plane sapphire. The effects of the line separation and operating temperature on the coupled lines are also investigated.

  10. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  11. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  12. Segmentation and segment connection of obstructed colon

    NASA Astrophysics Data System (ADS)

    Medved, Mario; Truyen, Roel; Likar, Bostjan; Pernus, Franjo

    2004-05-01

    Segmentation of colon CT images is the main factor that inhibits automation of virtual colonoscopy. There are two main reasons that make efficient colon segmentation difficult. First, besides the colon, the small bowel, lungs, and stomach are also gas-filled organs in the abdomen. Second, peristalsis or residual feces often obstruct the colon, so that it consists of multiple gas-filled segments. In virtual colonoscopy, it is very useful to automatically connect the centerlines of these segments into a single colon centerline. Unfortunately, in some cases this is a difficult task. In this study a novel method for automated colon segmentation and connection of colon segments' centerlines is proposed. The method successfully combines features of segments, such as centerline and thickness, with information on main colon segments. The results on twenty colon cases show that the method performs well in cases of small obstructions of the colon. Larger obstructions are mostly also resolved properly, especially if they do not appear in the sigmoid part of the colon. Obstructions in the sigmoid part of the colon sometimes cause improper classification of the small bowel segments. If a segment is too small, it is classified as the small bowel segment. However, such misclassifications have little impact on colon analysis.

  13. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    NASA Technical Reports Server (NTRS)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were

  14. Aperture-Coupled Thin-Membrane L-Band Antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    2007-01-01

    The upper part of the figure depicts an aperture-coupled L-band antenna comprising patterned metal conductor films supported on two thin polyimide membranes separated by an air gap. In this antenna, power is coupled from a microstrip line on the lower surface of the lower membrane, through a slot in a metal ground plane on the upper surface of the lower membrane, to a radiating metal patch on the upper surface of the upper membrane. The two-membrane configuration of this antenna stands in contrast to a three-membrane configuration heretofore considered as the basis for developing arrays of dual-polarization, wideband microwave antennas that could be thin and could be, variously, incorporated into, or supported on, thin structures, including inflatable structures. By reducing the number of membranes from three to two, the present design simplifies the problems of designing and fabricating such antennas or arrays of such antennas, including the problems of integrating such antennas or arrays with thin-membrane-mounted transmit/ receive modules. In addition, the use of aperture (slot) coupling eliminates the need for rigid coaxial feed pins and associated solder connections on thin membranes, making this antenna more mechanically reliable, relative to antennas that include coaxial feed pins. This antenna is designed for a nominal frequency of 1.26 GHz. The polyimide membranes are 0.05 mm thick and have a relative permittivity of 3.4. The radiating patch is square, 8.89 cm on each side. This radiating patch lies 1.27 cm above the ground plane. The feeding microstrip line is 0.12 mm wide and has a characteristic impedance of 50 . The aperture-coupling slot, etched in the ground plane, is 0.48 mm wide and 79.5 mm long. In order to maximize coupling, the microstrip line is extended beyond the middle of the slot by a length of 36 mm, which corresponds to a transmission- line electrical length of about a quarter wavelength. The other end of the microstrip line is

  15. Automated retinal layer segmentation and characterization

    NASA Astrophysics Data System (ADS)

    Luisi, Jonathan; Briley, David; Boretsky, Adam; Motamedi, Massoud

    2014-05-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.

  16. Experimental Verification of the Use of Metal Filled Via Hole Fences for Crosstalk Control of Microstrip Lines in LTCC Packages

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.

    2001-01-01

    Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.

  17. Investigation of electromagnetic couplings between planar open-loop triangular-shaped resonators in microstrip and in multilayer technologies

    NASA Astrophysics Data System (ADS)

    Militaru, Nicolae

    2016-12-01

    The paper presents a study of the electromagnetic couplings between planar open-loop triangular-shaped resonators. Based on the proposed single-mode resonator, various couplings schemes are considered: between a single microstrip resonator and its 50Ω feeding line, between two identical triangular-shaped resonators designed in microstrip technology, and between pairs of synchronously-tuned resonators located on different metallization layers, in a multilayer configuration. In this last case, properly located slots, cut out in the common ground plane, ensure and control the coupling between resonators. The results shown in the paper can be used in the design of different miniature planar band-pass filters, including filters with cross-coupled resonators, in microstrip and in multilayer technologies.

  18. Experimental Verification of the Use of Metal Filled Via Hole Fences for Crosstalk Control of Microstrip Lines in LTCC Packages

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.

    2001-01-01

    Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.

  19. A microstrip silicon telescope for high performance particle tracking

    NASA Astrophysics Data System (ADS)

    Lietti, D.; Berra, A.; Prest, M.; Vallazza, E.

    2013-11-01

    Bent crystals are thin silicon/germanium devices that act as a bulk dipole magnet and thus are able to deflect relativistic charged particle beams with high efficiency (up to 98%). To study their behavior on extracted beamlines in terms of deflection capability and efficiency, a fast and high position resolution telescope is needed such as the INSULAB telescope. It consists in several modules equipped with double or single side silicon detectors readout by different ASICs. The Data Acquisition system is designed to work with pulsed beams minimizing the dead time to allow the collection of a large statistics in a short time. It is based on custom VME readout/memory boards for the data storage and 12 bit ADC custom boards for the signal digitization; the present maximum DAQ rate is 6 kHz. A detailed description of the detectors, the ASICs and the readout system together with the results obtained at the SPS H4 and PS T9 CERN beamlines in terms of spatial resolution and charge sharing are presented.

  20. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    NASA Astrophysics Data System (ADS)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  1. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  2. Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

    PubMed Central

    Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  3. Compact ultra wide band microstrip bandpass filter based on multiple-mode resonator and modified complementary split ring resonator.

    PubMed

    Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.

  4. Comparative Electromagnetic and Quasi-Static Simulations of a Shortpulse Propagation along Microstrip Meander Delay Lines with Design Constraints

    NASA Astrophysics Data System (ADS)

    Orlov, Pavel; Gazizov, Talgat; Zabolotsky, Aleksander

    2016-09-01

    A numerical analysis of microstrip meander delay lines is considered. Results of quasi-static and electromagnetic simulations are given. It is shown that when increasing a number of turns and proportionally reducing their length, distortions of a pulse signal in the line are reduced. At the same time, despite structure's electrical width increase, the agreement between the results of quasi-static and electromagnetic analyses is improved. Thus, it is demonstrated that when designing the microstrip meander delay lines with minimal distortions, the quasi-static analysis is relevant.

  5. Single Pixel, Single Band Microstrip Antenna for Sub-Millimeter Wavelength Detection Using Transition Edge Superconducting Bolometric Receivers

    NASA Astrophysics Data System (ADS)

    Hunt, Cynthia; Bock, Jamie J.; Day, Peter K.; Goldin, Alexey; Lange, Andrew E.; Leduc, Henry G.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    We are developing a single pixel antenna coupled bolometric detector as a precursor to the SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) instrument. Our device consists of a dual slot microstrip antenna coupled to an Al/Ti/Au voltage-biased transition edge superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting microstrip lines and terminating the lines at a normal metal resistor on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized to for 100GHz band measurements, ideal for future implementation as an astronomical sub-millimeter instrument. We will present recent tests of these single pixel detectors.

  6. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  7. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    SciTech Connect

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  8. Optimization of substrate dielectric and mode of microstrip ring antenna for high efficiency and directivity

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran Iyer, S. M.; Joshi, A. W.; Karekar, R. N.

    1993-07-01

    Fields of microstrip ring antennas are calculated using a theoretical formulation based on the Green's function in conjunction with the reflection coefficient matrix approach. The effect of surface wave excitation on the efficiency of space wave launching of an annular ring antenna is analyzed, focusing on the case when the antenna is operated at higher-order modes. It is shown that the ring antenna outperforms disk and rectangular patch antennas and exhibits optimized performance for the TM sub 12 mode, with a substrate dielectric constant of 6 with high gain, broad lobe width, and no side lobes. It is considered to be a good candidate for array synthesis even in MMIC.

  9. X-band directive single microstrip patch antenna using dielectric parasite

    NASA Astrophysics Data System (ADS)

    Afzalzadeh, R.; Karekar, R. N.

    1992-01-01

    A method to enhance the gain of a single microstrip patch antenna using spaced superstrates as a dielectric parasite is presented. The experimental results of radiation pattern using alumina parasites with different thicknesses and spacings are given. The minimum beamwidth obtainable with a single patch using present studies is only 18 deg with symmetric lobes in the H and E planes. This simple method can also be used to vary the beamwidth of the patch between 18 and 125 deg with proper choice of parasite parameters.

  10. Estimation of radiation characteristics of circular microstrip antenna in weakly ionized plasma medium

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Manoj; Kumar, Pramod

    2010-02-01

    The paper deals with the analysis of circular microstrip antenna in weakly ionized plasma medium using the concept of vector magnetic potential, the expression for electric field and magnetic field has been obtained. Attempt has also been made to obtain the radiation resistance, trans-conductance and power radiated from the antenna. Particular emphasis has been given to estimate the effects of weakly ionized plasma medium on the directivity of antenna. It has been found that radiation characteristics and directivity of antenna affected sincerely by the weakly ionized plasma medium.

  11. Study of LDPE/Al2O3 composite material as substrate for microstrip antenna

    NASA Astrophysics Data System (ADS)

    Sarmah, Debashis; Bhattacharyya, N. S.; Bhattacharyya, S.; Gogoi, J. P.

    2013-01-01

    Low density polyethylene (LDPE)/Alumina (Al2O3) composite systems have been studied as an alternate substrate for microstrip patch antennas (MPA). Morphological, thermal and microwave characterizations of the composites are carried out for different volume fractions of Al2O3 in the LDPE matrix. The size and the distribution of alumina particles are quite uniform in the composite. Enhancement of thermal and microwave properties of the composite over the parent polymer is observed. Simple rectangular MPA in X-band is fabricated on the composite material to verify its applicability as substrates for MPA. A return loss of ~ -26dB is observed at the design frequency.

  12. (abstract) A Ka-Band 0.5 m Circularily Polarized Microstrip Reflectarray

    NASA Technical Reports Server (NTRS)

    Huang, John

    1997-01-01

    The microstrip reflectarray antenna, being in the form of a flat reflector, has recently been investigated by several antenna researchers. This antenna, when compared to the conventional parabolic reflector, not only has the potential advantages of achieving smaller mass, smaller volume, simpler deployment mechanism, but also has the capability of scanning its main beam to larger angles from the broadside direction. Without any power divider and its associated large insertion loss, a phased reflectarray may not need the high cost T/R modules and can still remain to be an efficient array antenna.

  13. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  14. A Study of Microstrip Antennas for Multiple Band and High Frequency Operations.

    DTIC Science & Technology

    1986-03-01

    34 Report No. RADC-TR-81-98. [61 Desoer , Charles A. and Ernest S. Kuh, " Basic Circuit Theory ," 1969 by McGraw-Hill, Inc. 4" 111-12 p. LIST OF FIGURES...improvement in the future. Throughout this report a basic understanding of phased array theory and terminology is assumed. As mentioned above, many excellent...Y. T. Lo, W. F. Richards, P. Simon, and D. D. Harrison, " Theory and Applications for Microstrip Antennas," Proceedings of the Printed Circuit Antenna

  15. Performance and future prospects of CVD diamond micro-strip detectors

    NASA Astrophysics Data System (ADS)

    Dutta, D.

    2013-10-01

    Particle detectors made from artificial diamond are far less vulnerable to radiation damage than any other detector type and therefore hold great promise for nuclear and particle physics experiments. We have built a set of diamond micro-strip detectors that were used by the QWeak experiment at Jefferson Lab, as recoil electron detector in a Compton polarimeter. These are the first diamond detectors to be used as tracking detectors in a nuclear and particle physics experiment. We discuss the performance of these detectors over the past two years of running. We show preliminary results and evaluate the radiation hardness of these detectors.

  16. Performance of 500 μm thick silicon microstrip detectors after irradiation

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Berger, G.; Borrello, L.; Buffini, A.; Busoni, S.; Civinini, C.; D'Alessandro, R.; Gregoire, Gh.; Dell'Orso, R.; Lenzi, M.; Meschini, M.; Messineo, A.; Segneri, G.; Starodumov, A.; Tonelli, G.; Verdini, P. G.

    2002-01-01

    This paper investigates the performance of 500 μm thick silicon microstrip detectors before and after heavy irradiation. Prototype sensors, produced by STMicroelectronics, have been extensively studied using laboratory measurements, a radioactive source and a beam of minimum ionising particles. The comparison with a standard 300 μm sensor shows that the collected charge in thick devices scales linearly with thickness. By over-depleting the irradiated devices, the pre-irradiated charge collection efficiency is fully recovered. The measured noise is in good agreement with expectations. Although more work is needed, the paper shows that 500 μm thick devices are a promising technology for very large tracking systems.

  17. Modeling of Power Combining in Microstrips with Active Devices for THz Applications

    DTIC Science & Technology

    2005-08-29

    Brest, F’rance, May 1999. [12] M. Shur, GaAs Devices and Circuits, Plenum Press, London, 1987. [13] E. Alekseev and D . Pavlidis , "GaN Gunn Diodes for THz...schematically in Fig. 1. Extended sections of the transmission lines (microstrips) of length d , provide the time-delayed coupling between the lumped...radiated towards the infinity x = -oo, thus, simulating the radiation of the electromagnetic waves by the antennas in three-dimensional space. d n "sd 0

  18. Spectral-domain moment-method analysis of coplanar microstrip parasitic subarrays

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Lee, Kai-Fong; Lee, R. Q.

    1993-01-01

    Basic characteristics of several configurations of coplanar microstrip parasitic subarrays consisting of one fed patch and two or more parasitic patches were investigated by means of a spectral-domain full-wave analysis and the moment method analysis. Results are presented for radiating- and nonradiating edge-coupled three-element linear subarrays and for a five-patch cross. A comparison of the theoretical input impedance results obtained by the analysis of a three-element linear array showed a reasonable agreement between computed and measured R and X values.

  19. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Astrophysics Data System (ADS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-02-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  20. Design of WLAN microstrip antenna for 5.17 - 5.835 GHz

    NASA Astrophysics Data System (ADS)

    Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian

    2017-04-01

    This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.

  1. Analysis of microstrip lines with alternative implementation of conductors and superconductors

    NASA Astrophysics Data System (ADS)

    Kong, K.-S.; Lee, H.-Y.; Itoh, T.; Chorey, C. M.; Bhasin, K. B.

    1990-09-01

    An analysis of microstrip line structures in which either the strip or the ground plane or both are made of a high Tc superconductor is presented. The effect of implementation of a superconductor to the strip and the ground plane is explained with the calculation of a conductor loss of the structure by the Phenomenological Loss Equivalence Method (PEM). The theoretical values are compared with the experimental results from a ring resonator which is made of a gold ground plane and a high Tc superconductor, YBa2Cu3O(7-x), strip.

  2. Analysis of microstrip lines with alternative implementation of conductors and superconductors

    NASA Technical Reports Server (NTRS)

    Kong, K.-S.; Lee, H.-Y.; Itoh, T.; Chorey, C. M.; Bhasin, K. B.

    1990-01-01

    An analysis of microstrip line structures in which either the strip or the ground plane or both are made of a high Tc superconductor is presented. The effect of implementation of a superconductor to the strip and the ground plane is explained with the calculation of a conductor loss of the structure by the Phenomenological Loss Equivalence Method (PEM). The theoretical values are compared with the experimental results from a ring resonator which is made of a gold ground plane and a high Tc superconductor, YBa2Cu3O(7-x), strip.

  3. A density-independent method for high moisture content measurement using a microstrip transmission line.

    PubMed

    Zhang, Yangjun; Okamura, Seichi

    2006-01-01

    This paper describes a method to measure high moisture content in materials from 190% to 350% on a dry weight basis. The method uses a microstrip transmission line, on which the material under test is overlaid. A parameter calculated from the attenuation and phase shift of the microwave signal is proposed to measure the moisture content. The experiments were performed on samples of sawdust, and the results show that the method is able to determine high moisture content independent of density. The standard error of calibration for the moisture content determination was 12.4% in the moisture content range from 190% to 350%.

  4. Plasmonic analog of microstrip transmission line and effect of thermal annealing on its propagation loss.

    PubMed

    Chen, Yiting; Wang, Jing; Chen, Xi; Yan, Min; Qiu, Min

    2013-01-28

    We fabricated a plasmonic analog of the microwave microstrip transmission line and measured its propagation loss before and after thermal annealing. It is found that its propagation loss at 980 nm wavelength can be reduced by more than 50%, from 0.45 to 0.20 dB/μm, after thermal annealing at 300 °C. The reduction in loss can be attributed to the improved gold surface condition and probably also to the change in the metal's inner structure. Less evident loss reduction is noticed at 1550 nm, which is owing to extremely small portion of the modal electric field located in the metal regions at this wavelength.

  5. Influence of solar heating on the performance of integrated solar cell microstrip patch antennas

    SciTech Connect

    Roo-Ons, M.J.; Shynu, S.V.; Ammann, M.J.; Seredynski, M.; McCormack, S.J.; Norton, B.

    2010-09-15

    The integration of microstrip patch antennas with photovoltaics has been proposed for applications in autonomous wireless communication systems located on building facades. Full integration was achieved using polycrystalline silicon solar cells as both antenna ground plane and direct current power generation in the same device. An overview of the proposed photovoltaic antenna designs is provided and the variation characterised of the electromagnetic properties of the device with temperature and solar radiation. Measurements for both copper and solar antennas are reported on three different commercial laminates with contrasting values for thermal coefficient of the dielectric constant. (author)

  6. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  7. Automatic knee cartilage delineation using inheritable segmentation

    NASA Astrophysics Data System (ADS)

    Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.

    2008-03-01

    We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.

  8. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  9. Station Tour: Russian Segment

    NASA Image and Video Library

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  10. Self-assembling segmented coiled tubing

    SciTech Connect

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  11. A Compact, High Power Capable, and Tunable High Directivity Microstrip Coupler.

    PubMed

    Sohn, Sung-Min; Gopinath, Anand; Vaughan, John Thomas

    2016-10-01

    A coupler is an indispensable component to sample the forward and reflected power for the real-time radio frequency (RF) power monitoring system. The directivity of a coupler is a critical factor to achieve accurate RF power measurements. This paper proposes a microstrip coupler with a tunable high directivity circuit to accurately measure the reflected RF power. The directivity tuner composed of passive components adjusts phase and amplitude of the coupled RF signal, and cancel out the leakage signal from the RF input port at the coupled reflection port. The experimental results, which agree with simulation results, show that the microstrip coupler with the directivity tuner circuit has a compact size (~ 0.07 λg x 0.05 λg), high power capability (up to 1 kW), and high directivities (more than 40 dB) at operating frequency bands (f = 297.3 MHz, 400 MHz, and 447 MHz, respectively) for magnetic resonance imaging (MRI) applications.

  12. A new design of a miniature filter on microstrip resonators with an interdigital structure of conductors

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Serzhantov, A. M.; Bal'va, Ya. F.; Leksikov, An. A.; Galeev, R. G.

    2015-05-01

    A microstrip bandpass filter of new design based on original resonators with an interdigital structure of conductors has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and much smaller size than analogs. It is established that a broad stop band, extending up to a sixfold central bandpass frequency, is determined by low unloaded Q of higher resonance mode and weak coupling of resonators in the pass band. It is shown for the first time that, as the spacing of interdigital stripe conductors decreases, the Q of higher resonance mode monotonically drops, while the Q value for the first operating mode remains high. A prototype fourth-order filter with a central frequency of 0.9 GHz manufactured on a ceramic substrate with dielectric permittivity ɛ = 80 has microstrip topology dimensions of 9.5 × 4.6 × 1 mm3. The electrodynamic 3D model simulations of the filter characteristics agree well with the results of measurements.

  13. Analysis of microstrip antennas on a curved surface using the conformal grids FD-TD method

    NASA Astrophysics Data System (ADS)

    Fukai, Ichiro; Onishi, Teruo; Kashiwa, Tatsuya

    1994-03-01

    The need for small, potable antennas for mobile communications has recently spurred the study of microstrip antennas (MSA). MSA are quite flexible and have been used as conformal antennas on arbitrary curved surfaces. The characteristics of conformal MSA can be expected to differ from those of planar models. Dependable numerical analyses will obviate many of the costs and other inconveniences associated with experiments, but as antennas may be mounted on the surfaces of arbitrary topological complexity, analysis methods must have as general applicability as possible. The curvilinear finite difference time-domain (FD-TD) method has shown excellent versatility. In this paper, the curvilinear FD-TD method is applied to analyze microstrip antennas mounted on curved surfaces. The numerical predictions are compared with the experimental values. The results confirm the predictions within acceptable limits and appear to confirm the validity of the method. As a result, it was confirmed that the input impedance and directivity of MSA on curved surfaces are different from the flat MSA.

  14. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    NASA Astrophysics Data System (ADS)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  15. A SPICE model for Si microstrip detectors and read-out electronics

    SciTech Connect

    Bacchetta, N.; Candelori, A.; Bisello, D. |; Calgarotto, C.; Paccagnella, A. |

    1996-06-01

    The authors have developed a SPICE model of silicon microstrip detector and its read-out electronics. The SPICE model of an AC-coupled single-sided polysilicon-biased silicon microstrip detector has been implemented by using a RC network containing up to 19 strips. The main parameters of this model have been determined by direct comparison with DC and AC measurements. The simulated interstrip and coupling impedance and phase angle are in good agreement with experimental results, up to a frequency of 1 MHz. The authors have used the PreShape 32 as the read-out chip for both the simulation and the measurements. It consists of a charge sensitive preamplifier followed by a shaper and a buffer. The SPICE parameters have been adjusted to fit the experimental results obtained for the configuration where every strip is connected to the read-out electronics and kept the same for the different read-out configurations they have considered. By adding 2 further capacitances simulating the parasitic contributions between the read-out channels of the PS32 chip, a satisfactory matching between the experimental data and the simulated curves has been reached on both rising and trailing edges of the signal. Such agreement deteriorates only for strips far from the strip where the signal has been applied.

  16. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.

    PubMed

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-02-01

    Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.

  17. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  18. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields.

    PubMed

    Yan, Xinqiang; Xue, Rong; Zhang, Xiaoliang

    2015-11-01

    Radiofrequency (RF) coil arrays with high count of elements, e.g., closely-spaced multi-row arrays, exhibit superior parallel imaging performance in MRI. However, it is technically challenging and time-consuming to build multi-row arrays due to complex coupling issues. This paper presents a novel and simple method for closely-spaced multi-row RF array designs. Induced current elimination (ICE) decoupling method has shown the capability of reducing coupling between microstrip elements from different rows. In this study, its capability for decoupling array elements from the same row was investigated and validated by bench tests, with an isolation improvement from -8.9 dB to -20.7 dB. Based on this feature, a closely-spaced double-row microstrip array with 16 elements was built at 7T. S21 between any two elements of the 16-channel closely-spaced was better than -14 dB. In addition, its feasibility and performance was validated by MRI experiments. No significant image reconstruction- related noise amplifications were observed for parallel imaging even when reduced factor (R) achieves 4. The experimental results demonstrated that the proposed design might be a simple and efficient approach in fabricating closely-spaced multi-row RF arrays.

  19. Dielectric parameter estimation of novel magneto-dielectric substrate based microstrip antenna

    NASA Astrophysics Data System (ADS)

    Saini, Ashish; Kumar, P.; Ravelo, B.; Thakur, Atul; Thakur, Preeti

    2016-05-01

    The effective relative permittivity and effective relative permeability of magneto-dielectric materials when used as substrate for microstrip antenna shows interdependency. This dependency was analyzed through simulation and verified by synthesizing nano composite ferrite. The 40nm nano crystallite size particles were synthesized using a co- precipitation method. Matching values of complex permittivity (ɛ* = 4.2-0.1j) and complex permeability (μ* = 4.3-0.2j) at 1 GHz were obtained from the electromagnetic characterization. The microstrip antenna with coaxial feed was fabricated and the interdependence of relative permittivity and relative permeability was verified. An error of 7% in the drawn length was observed for ɛr and μr of the order of 4. The magneto-dielectric material with composition Mn0.5Zn0.3Co0.2Fe2O4+BaFe12O19 proposed in this paper definitely can be proposed as a substrate material for miniaturized antenna. The antenna with desired resonant frequency can be fabricated by calculating the effective medium parameters as discussed in the paper.

  20. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields

    PubMed Central

    Yan, Xinqiang; Xue, Rong; Zhang, Xiaoliang

    2015-01-01

    Radiofrequency (RF) coil arrays with high count of elements, e.g., closely-spaced multi-row arrays, exhibit superior parallel imaging performance in MRI. However, it is technically challenging and time-consuming to build multi-row arrays due to complex coupling issues. This paper presents a novel and simple method for closely-spaced multi-row RF array designs. Induced current elimination (ICE) decoupling method has shown the capability of reducing coupling between microstrip elements from different rows. In this study, its capability for decoupling array elements from the same row was investigated and validated by bench tests, with an isolation improvement from −8.9 dB to −20.7 dB. Based on this feature, a closely-spaced double-row microstrip array with 16 elements was built at 7T. S21 between any two elements of the 16-channel closely-spaced was better than −14 dB. In addition, its feasibility and performance was validated by MRI experiments. No significant image reconstruction- related noise amplifications were observed for parallel imaging even when reduced factor (R) achieves 4. The experimental results demonstrated that the proposed design might be a simple and efficient approach in fabricating closely-spaced multi-row RF arrays. PMID:26508810

  1. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    PubMed

    Mezaal, Yaqeen S; Eyyuboglu, Halil T

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  2. Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica.

    PubMed

    Wlodarczyk, Krystian L; Thomson, Ian J; Baker, Howard J; Hall, Denis R

    2012-09-10

    We report a new technique for the rapid fabrication of microstripe cylindrical and toroidal mirrors with a high ratio (>10) of the two principal radii of curvature (RoC(1)/RoC(2)), and demonstrate their effectiveness as mode-selecting resonator mirrors for high-power planar waveguide lasers. In this process, the larger radius of curvature (RoC(1)) is determined by the planar or cylindrical shape of the fused silica substrate selected for laser processing, whilst the other (RoC(2)) is produced by controlled CO(2) laser-induced vaporization of the glass. The narrow stripe mirror aperture is achieved by applying a set of partially overlapped laser scans, with the incident laser power, the number of laser scans, and their spacing being used to control the curvature produced by laser evaporation. In this work, a 1 mm diameter laser spot is used to produce grooves of cylindrical/toroidal shape with 240 μm width and 16 mm length. After high reflectance coating, these grooves are found to provide excellent mode selectivity as resonator mirrors for a 150 μm core Yb:YAG planar waveguide laser, producing high brightness output at more than 300 W. The results show clearly that the laser-generated microstripe mirrors can improve the optical performance of high-power planar waveguide lasers when applied in a low-loss mode-selective resonator configuration.

  3. Increased quality factor in superconducting microstrip resonators by selective removal of the gold contact layer

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Zaitsev, A. G.; Geerk, J.; Linker, G.; Ratzel, F.; Smithey, R.

    2002-02-01

    We present measurements of the unloaded quality factor of superconducting microstrip resonators at 77 K and 3.86 GHz. The resonators were made of 0.3 μm thick YBa2Cu3O7 films with a transition temperature of 90 K on both sides of ceria-buffered 3 inch sapphire wafers. In particular, we investigated the effect of a 0.3 μm thick gold contact layer on the resonator performance. It was found that the gold layer decreases the quality factor by a factor of almost 5. This result is due to an additional microwave loss in the gold film which can be quantitatively described by the impedance transformation rules for transmission lines. On the basis of the quantitative analysis, we suggest a selective removal of the contact layer by appropriate patterning in order to eliminate the extra loss without deterioration of the low-ohmic galvanic contact to the microwave housing. The experimental results demonstrate the usefulness of the proposed method. Their comparison with the calculated surface current density in the ground plane shows that the contact layer has to be in an area where the current is zero. Furthermore, the results reveal that the surface current density distribution in the ground plane and microstrip depends on the microwave power.

  4. VHF Wide-Band, Dual-Polarization Microstrip-Patch Antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    2008-01-01

    The figure depicts selected aspects of a very-high-frequency (VHF) microstrip patch antenna designed and built to satisfy requirements specific to an airborne synthetic-aperture radar system for measuring the thickness of sea ice. One of the requirements is that the antenna be capable of functioning over the relatively wide frequency band of 127 to 172 MHz corresponding to a fractional bandwidth of about 30 percent relative to a nominal mid-band frequency of 149.5 MHz. Another requirement is that the antenna be capable of functioning in either or both of two orthogonal linear polarizations. In addition, the antenna is required to be as compact and lightweight as possible. In a basic design according to generally accepted microstrip-patch-antenna engineering practice, one would ordinarily use a relatively thick dielectric substrate and multiple feed probes to obtain the desired combination of wide-band and dual-polarization capabilities. However, the combination of a thick substrate and multiple feeds would give rise to higher-order electromagnetic nodes, thereby undesirably contributing to cross polarization and to reduction of the isolation between feed probes. To counter these adverse effects while satisfying the requirements stated above, the design of this antenna incorporates several improvements over the basic design.

  5. Multi-Channel Microstrip Transceiver Arrays Using Harmonics for High Field MR Imaging in Humans

    PubMed Central

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-01-01

    RF transceiver array design using primary and higher order harmonics for in-vivo parallel MR imaging and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging. PMID:21878410

  6. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOEpatents

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  7. A simple rectangular microstrip technique for determination of moisture content in Hevea rubber latex

    NASA Astrophysics Data System (ADS)

    Yahaya, Nor Zakiah; Abbas, Zulkifly; Norimi, Amizadillah Md; Yahaya, Muhamad Zamri; Razak, Nik Noor Ashikin Abd; Mustafa, Iskandar Shahrim

    2015-08-01

    A simple rectangular microstrip sensor for determination of moisture content in Hevea Rubber Latex is presented in this paper. The microstrip patch sensor was designed to operate at microwave frequency range from 1 to 5 GHz on a RT/Duroid substrate with 6.15 ±0.015 permittivity and 1.27 mm thickness. The width and length of the rectangular patch antenna was 18 mm and 38 mm, respectively. The reflection coefficient of the sensor loaded with Hevea latex at various percentages of moisture content from approximately 36.1% to 88.6 %. Calibration equations have been established between moisture content and phase of reflection coefficient at several selected frequencies. These equations were used to predict the amount of moisture content on Hevea latex based on the measured reflection coefficient values. The actual values of moisture content were obtained using standard oven drying method. The lowest mean relative error between actual and predicted moisture contents was 0.04 at 1 GHz.

  8. Color image segmentation

    NASA Astrophysics Data System (ADS)

    McCrae, Kimberley A.; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.

    1994-03-01

    The most difficult stage of automated target recognition is segmentation. Current segmentation problems include faces and tactical targets; previous efforts to segment these objects have used intensity and motion cues. This paper develops a color preprocessing scheme to be used with the other segmentation techniques. A neural network is trained to identify the color of a desired object, eliminating all but that color from the scene. Gabor correlations and 2D wavelet transformations will be performed on stationary images; and 3D wavelet transforms on multispectral data will incorporate color and motion detection into the machine visual system. The paper will demonstrate that color and motion cues can enhance a computer segmentation system. Results from segmenting faces both from the AFIT data base and from video taped television are presented; results from tactical targets such as tanks and airplanes are also given. Color preprocessing is shown to greatly improve the segmentation in most cases.

  9. Toward automated segmentation of the pathological lung in CT.

    PubMed

    Sluimer, Ingrid; Prokop, Mathias; van Ginneken, Bram

    2005-08-01

    Conventional methods of lung segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on scans with lungs that contain dense pathologies, and such scans occur frequently in clinical practice. We propose a segmentation-by-registration scheme in which a scan with normal lungs is elastically registered to a scan containing pathology. When the resulting transformation is applied to a mask of the normal lungs, a segmentation is found for the pathological lungs. As a mask of the normal lungs, a probabilistic segmentation built up out of the segmentations of 15 registered normal scans is used. To refine the segmentation, voxel classification is applied to a certain volume around the borders of the transformed probabilistic mask. Performance of this scheme is compared to that of three other algorithms: a conventional, a user-interactive and a voxel classification method. The algorithms are tested on 10 three-dimensional thin-slice computed tomography volumes containing high-density pathology. The resulting segmentations are evaluated by comparing them to manual segmentations in terms of volumetric overlap and border positioning measures. The conventional and user-interactive methods that start off with thresholding techniques fail to segment the pathologies and are outperformed by both voxel classification and the refined segmentation-by-registration. The refined registration scheme enjoys the additional benefit that it does not require pathological (hand-segmented) training data.

  10. Impact assisted segmented cutterhead

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  11. Segmented holographic spectrum splitting concentrator

    NASA Astrophysics Data System (ADS)

    Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.

  12. Dual-band microstrip patch antenna based on metamaterial refractive surface

    NASA Astrophysics Data System (ADS)

    Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi

    2017-06-01

    In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.

  13. Microwave permittivity of leaf using an Ag thick-film microstrip resonator

    NASA Astrophysics Data System (ADS)

    Kamble, Pradeep; Puri, Vijaya

    2010-07-01

    The X-band microwave dielectric constant, dielectric loss and the conductivity of the leaves of four different plants were measured from even and odd mode resonance characteristics of an Ag thick-film microstrip straight resonator, due to the perturbation caused by leafy vegetation as an overlay. Using the changes in the frequency response, the moisture-dependent X-band microwave properties of the leaves of Ficus Bengalensis, Ficus Religiosa, Acalypha Wilkensiana, and Acalypha Hispidia have been calculated. The permittivity obtained depends on the position of the overlay and moisture content. A partial overlay method might be a low-cost alternative for dielectric characterisation of biomaterials since a very small size of leaf is needed.

  14. Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.; Schaubert, D. H.

    1984-01-01

    A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.

  15. Configurations of Splitter/Combiner Microstrip Sections Loaded with Stepped Impedance Resonators (SIRs) for Sensing Applications

    PubMed Central

    Su, Lijuan; Mata-Contreras, Javier; Vélez, Paris; Martín, Ferran

    2016-01-01

    In this paper, several configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) are analyzed. Such structures are useful as sensors and comparators, and the main aim of the paper is to show that the proposed configurations are useful for the optimization of sensitivity and discrimination. Specifically, for comparison purposes, i.e., to determine anomalies, abnormalities or defects of a sample under test (SUT) in comparison to a reference sample, it is shown that up to three samples can be simultaneously tested. Simple models of the proposed structures are presented, and these models are validated through electromagnetic simulation and experiment. Finally, the principle of operation is validated through a proof-of-concept demonstrator. PMID:27999399

  16. A new inner layer silicon micro-strip detector for D0

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D{O} experiment at the Fermilab Tevatron is building a new inner layer detector (Layer-0) to be installed inside the existing D{O} Silicon Micro-strip Tracker (SMT). The Layer-0 detector is based on R&D performed for the RunIIb silicon upgrade, which was canceled in the fall of 2003. Layer-0 will be installed between the bean pipe and the the 2.2cm radius opening available in the SMT support structure. The radius of the first sampling will be reduced from 2.7cm to 1.6cm. Layer-0 will be radiation harder than the current SMT, thus ensuring that the silicon tracker remains viable through Tevatron RunII.

  17. Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  18. Silicon microstrip detectors and the measurement of lifetimes of charmed hadrons

    SciTech Connect

    Masciocchi, Silvia

    1996-10-16

    WA89 is a fixed target experiment with a 340 GeV/c hyperon beam at the SPS at CERN. One of the main topics of its physics program is the study of the properties of charmed baryons. For the measurement of their lifetimes, silicon microstrip detectors are an essential tool to measure with the required resolution the production and the decay point of short living particles. The development and the test of a system with double sided counters and zero suppression readout has been presented. The device is now installed at the “next generation” hyperon beam experiment SELEX at Fermilab, downstream of the vertex area. The success of the project supports the possibility of including double sided detectors close to the vertex area to limit the amount of scattering material and improve pattern recognition.

  19. Circular patch microstrip array antenna on NiCoAl ferrite substrate in C-band

    NASA Astrophysics Data System (ADS)

    Kumar, Dheeraj; Pourush, P. K. S.

    2010-05-01

    The problem of a 4×4 circular disc array antenna (CDAA) printed on a uniaxially anisotropic ferrite (NiCoAl) substrate is treated. The effect of anisotropy on the resonant frequency of the antenna is investigated. Radiation and scattering characteristics of the antenna with normal magnetic bias field to the direction of wave propagation in the plane of ferrite are described. Calculated result for the radar cross section (RCS) of antenna presented, and it is shown that the peaks in the RCS can be moved with respect to angle of incidence by changing the magnetic bias field. This effect offers a way of minimizing the radar visibility of microstrip antennas and arrays. Results are obtained from cavity modal solutions for a circular patch antenna at its TM 11 mode.

  20. Long-Term Running Experience with the Silicon Micro-Strip

    SciTech Connect

    Jung, Andreas W.; Cherry, M.; Edmunds, D.; Johnson, M.; Matulik, M.; Utes, M.; Zmuda, T.; /Fermilab

    2011-09-13

    The Silicon Microstrip Tracker (SMT) at the D0 experiment in the Fermilab Tevatron collider has been operating since 2001. In 2006, an additional layer, referred to as Layer 0, was installed to improve impact parameter resolution and compensate for detector degradation due to radiation damage to the original innermost SMT layer. The SMT detector provides valuable tracking and vertexing information for the experiment. This talk will highlight aspects of the long term operation of the SMT, including the impact of the silicon readout test stand. Due to the full integration of the test stand into the D0 trigger framework, this test stand provides a valuable tool for training new experts and studying subtle effects in the SMT while minimizing impact on the global data acquisition.

  1. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  2. Bandwidth optimization of compact microstrip antenna for PCS/DCS/bluetooth application

    NASA Astrophysics Data System (ADS)

    Singh, Vinod Kumar; Ali, Zakir; Ayub, Shahanaz; Singh, Ashutosh Kumar

    2014-09-01

    A novel compact broadband microstrip patch antenna is presented for various wireless applications. The proposed antenna has been fabricated and the impedance bandwidth and radiation pattern are measured. The simulated and measured antenna characteristics along with radiation pattern and gain are presented. It is stated that the proposed designed antenna can completely cover the required band widths of Digital communication system (DCS 1.71-1.88 GHz), Personal communication system (PCS 1.85-1.88 GHz) and IEEE 802.11b/g (2.4-2.485 GHz) with satisfactory radiation characteristics. The Experimental result shows that the proposed antenna presents a bandwidth 60.25% covering the range of 1.431-2.665 GHz with the maximum radiation efficiency 90%.

  3. Onset of dispersion in Nb microstrip transmission lines at submillimeter wave frequencies

    NASA Technical Reports Server (NTRS)

    Javadi, H. H. S.; Mcgrath, William R.; Bumble, B.; Leduc, Henry G.

    1992-01-01

    We have measured the dispersion in phase velocity of a Nb-SiO(x)-Nb microstrip transmission line resonator over a frequency range from 50 GHz to 800 GHz. A submicron Nb/Al-AlO(x)/Nb Josephson junction was used as a voltage-controlled oscillator to excite the high order modes in the resonator. The same junction is used as a direct detector resulting in a series of step-like structures in the DC current-voltage characteristic at the position of each mode frequency. The transmission line is dispersionless up to about 500 GHz where the phase velocity begins to decrease. This is well below the gap frequency f(sub g) approx. equals 700 GHz. Results agree qualitatively with the expected theoretical behavior near f(sub g). This onset of dispersion and loss in Nb transmission lines will have a significant impact on the design of submillimeter wave RF circuits.

  4. Clutter sensitivity test under controlled field conditions Resonant Microstrip Patch Antenna (RMPA) sensor technology

    SciTech Connect

    1996-06-27

    Theoretical research, controlled laboratory tests, and these field test results show that nonmetallic (and metallic) shallowly buried objects can be detected and imaged with the Resonant Microstrip Patch Antenna (RMPA) sensor. The sensor can be modeled as a high Q cavity which capitalizes on its resonant condition sensitivity to scattered waves from buried objects. When the RMPA sensor is swept over a shallowly buried object, the RMPA fed-point impedance (resistance), measured with a Maxwell bridge, changes by tens of percent. The significant change in unprocessed impedance data can be presented in two-dimensional and three-dimensional graphical displays over the survey area. This forms silhouette images of the objects without the application of computationally intensive data processing algorithms. Because RMPA employed electromagnetic waves to illuminate the shallowly buried object, a number of questions and issues arise in the decision to fund or deny funding of the reconfiguration of the RMPA technology into a nonmetallic (metallic) land mine detector.

  5. Compact Microstrip Low-pass Filter with Wide Stop-band and Sharp Roll-off

    NASA Astrophysics Data System (ADS)

    Hayati, Mohsen; Vaziri, Hamid Sherafat

    2013-09-01

    This paper presents a novel compact microstrip low-pass filter with wide stop-band and sharp roll-off. The structure consists of a transmission line, loaded with coupled novel Hairpin units. The cut-off frequency of the proposed filter is 2.9 GHz. The measured results show good LPF performance such as sharp roll-off skirt, low insertion-loss, high return-loss in the pass-band and wide upper stop-band of 3.2 to 16.1 GHz with an insertion-loss higher than 20.0 dB. The measured values and the EM-simulation results are in good agreement.

  6. Configurations of Splitter/Combiner Microstrip Sections Loaded with Stepped Impedance Resonators (SIRs) for Sensing Applications.

    PubMed

    Su, Lijuan; Mata-Contreras, Javier; Vélez, Paris; Martín, Ferran

    2016-12-20

    In this paper, several configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) are analyzed. Such structures are useful as sensors and comparators, and the main aim of the paper is to show that the proposed configurations are useful for the optimization of sensitivity and discrimination. Specifically, for comparison purposes, i.e., to determine anomalies, abnormalities or defects of a sample under test (SUT) in comparison to a reference sample, it is shown that up to three samples can be simultaneously tested. Simple models of the proposed structures are presented, and these models are validated through electromagnetic simulation and experiment. Finally, the principle of operation is validated through a proof-of-concept demonstrator.

  7. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array

    NASA Astrophysics Data System (ADS)

    Hu, Lizhong; Wang, Guangming; Liang, Jiangang; Zhang, Chenxin

    2015-03-01

    A novel compact electromagnetic bandgap (EBG) structure consisting of two turns complementary spiral resonator (CSR) and conventional mushroom EBG (CM-EBG) structure is introduced to suppress the mutual coupling in antenna arrays for multiple-input and multiple-output (MIMO) applications. Eigenmode calculation is used to investigate the proposed CSR-loaded mushroom-type EBG (MT-EBG), which proved to exhibit bandgap property and a miniaturization of 48.9% is realized compared with the CM-EBG. By inserting the proposed EBG structure between two E-plane coupled microstrip antennas, a mutual coupling reduction of 8.13 dB has been achieved numerically and experimentally. Moreover, the EBG-loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel EBG structure with advantages of compactness and high decoupling efficiency opens an avenue to new types of antennas with super performances.

  8. Radiative and non-radiative recombinations in tensile strained Ge microstrips: Photoluminescence experiments and modeling

    SciTech Connect

    Virgilio, M.; Schroeder, T.; Yamamoto, Y.; Capellini, G.

    2015-12-21

    Tensile germanium microstrips are candidate as gain material in Si-based light emitting devices due to the beneficial effect of the strain field on the radiative recombination rate. In this work, we thoroughly investigate their radiative recombination spectra by means of micro-photoluminescence experiments at different temperatures and excitation powers carried out on samples featuring different tensile strain values. For sake of comparison, bulk Ge(001) photoluminescence is also discussed. The experimental findings are interpreted in light of a numerical modeling based on a multi-valley effective mass approach, taking in to account the depth dependence of the photo-induced carrier density and of the self-absorption effect. The theoretical modeling allowed us to quantitatively describe the observed increase of the photoluminescence intensity for increasing values of strain, excitation power, and temperature. The temperature dependence of the non-radiative recombination time in this material has been inferred thanks to the model calibration procedure.

  9. Rigorous analysis of a circular patch antenna excited by a microstrip transmission line

    NASA Technical Reports Server (NTRS)

    Davidovitz, Marat; Lo, Yuen Tze

    1989-01-01

    Boundary conditions are enforced on a portion of the microstrip feed line as well as the patch antenna. The integral equation for the unknown currents on the antenna and feed is solved by applying the Galerkin method of moments in the Fourier transform domain. The validity of the solution is tested by comparison of computed results with experimental data. The theoretical treatment proves to be applicable to the most common feeding arrangements, namely, the direct edge-feed and proximity coupling excitation. In the latter case, two-layer substrates having distinct dielectric constants are studied. The purpose of the study is to deduce, for a given overall substrate thickness, the smallest line-ground plane separation for which a match of the radiator to the feed line is still possible. The advantages of such a configuration are discussed.

  10. Complementary split ring resonator metamaterial to achieve multifrequency operation in microstrip-based radiating structure design

    NASA Astrophysics Data System (ADS)

    Patel, Shobhit K.; Kosta, Yogeshwar

    2014-02-01

    Following recent findings on metamaterials, a miniaturized microstrip patch antenna loaded with a complementary split ring resonator (CSRR) was investigated for multiband operation. The proposed structure has a CSRR loaded in the base of the antenna to improve its performance and to make it a metamaterial. Metamaterials exhibit qualitatively new electromagnetic response functions that cannot be found in nature. The CSRR-loaded base allows simultaneous operation over several frequencies. Here, a total of seven bands were achieved by loading the patch antenna with the CSRR. The seven bands were centered around frequencies of 4.33 GHz, 5.29 GHz, 6.256 GHz, 7.066 GHz, 7.846 GHz, 8.86 GHz, and 9.75 GHz. Design results were obtained by using a high-frequency structure simulator that is used for simulating microwave passive components.

  11. Full wave analysis and miniaturization of microstrip antenna on ferrimagnetics substrates

    NASA Astrophysics Data System (ADS)

    Lavor, Otávio Paulino; Fernandes, Humberto Cesar Chaves

    2016-02-01

    This paper presents the miniaturization of the microstrip antenna on ferrimagnetic substrate for operate at a frequency of 2.5 GHz, where the full wave method Transverse Transmission Line-TTL is used it for obtain resonance frequency. For validate this method in these substrates, the results as function of DC magnetic field are shown. When the field is 132.6 AT/m, the value of reference is 151.7 MHz and the value of TTL is 151.3 MHz. The dimensions are obtained for the frequency of 2.5 GHz and a comparison is done with ferrites and conventional substrate, showing a reduction in volume of the antenna of 2808.96 mm3 for 0.39 mm3 when the ferrites are used.

  12. Spectral-domain computation of characteristic impedances and multiport parameters of multiple coupled microstrip lines

    NASA Astrophysics Data System (ADS)

    Tripathi, Vijai K.; Lee, Hyuckjae

    1989-01-01

    A numerical procedure based on the spectral-domain techniques is formulated to compute all the frequency-dependent normal-mode parameters of general multiple coupled line structures in an inhomogeneous medium. In addition to the phase and attenuation constants for all the normal modes, these parameters include the line-mode and decoupled line modal impedances and the current and equivalent voltage eigenvector matrices of the coupled system. The multiport admittance (and impedance) matrices and coupled line equivalent-circuit model parameters are evaluated in terms of these normal-mode parameters. Numerical results for these normal-mode parameters for typical asymmetric two-, three-, and four-line microstrip structures are included to demonstrate the procedure and the frequency dependence of these parameters.

  13. Microstrip electrode readout noise for load-dominated long shaping-time systems

    NASA Astrophysics Data System (ADS)

    Collier, Kelsey; Cunnington, Taylor; Crosby, Sean; Fadeyev, Vitaliy; Martinez-McKinney, Forest; Mistry, Khilesh; Schumm, Bruce A.; Spencer, Edwin; Taylor, Aaron; Wilder, Max

    2013-11-01

    In cases such as that of the proposed International Linear Collider (ILC), for which the beam-delivery and detector-occupancy characteristics permit a long shaping-time readout of the microstrip sensors, it is possible to envision long (∼1 meter) daisy-chained ‘ladders’ of fine-pitch sensors read out by a single front-end amplifier. In this study, a long shaping-time (∼2 μsec) front-end amplifier has been used to measure readout noise as a function of detector load. Comparing measured noise to that expected from lumped and distributed models of the load network, it is seen that network effects significantly mitigate the amount of readout noise contributed by the detector load. Further reduction in noise is demonstrated for the case that the sensor load is read out from its center rather than its end.

  14. Image x-ray emission converters and microstrip porous dielectric x-ray detector

    SciTech Connect

    Lorikyan, M. P.

    2008-11-01

    The effective, fast, and accurate registration of x ray depends on the quality conversion of the X-quanta to photoelectrons. In this respect, of high interest are porous x-ray emission converters (PXECs). They are analogs of porous secondary electron emitters (PSEEs); the only difference is that active porous material should have high absorption properties for the X-quanta energies to be detected. Microstrip porous dielectric detector (MSPDD) is highly effective for x-ray registration without preliminary conversion of the X-quanta. Earlier it was shown that PSEE similar to PXEC has a high emission factor for 1-2 MeV {beta}-particles and 5 MeV {alpha}-particles. It was shown that MSPDDs and PSEEs are very stable.

  15. Asymptotic eigenequations and analytic formulas for the dispersion characteristics of open wide microstrip lines

    NASA Astrophysics Data System (ADS)

    Chew, W. C.; Kong, J. A.

    1981-09-01

    Through the matched asymptotic expansions technique, asymptotic eigenequations for the even and odd modes of an open wide microstrip transmission line are derived. The eigenequations, and simplifications thereof which do not involve integration, can be solved easily for the effective permittivity. Even though d/W is assumed to be small, the solutions are good even if d/W is approximately 0.8 when compared with the numerical results of Jansen (1978). From these eigenequations, asymptotic formulas for the effective permittivity can be derived which are excellent when d/W is approximately 0.2. When the frequency goes to zero, the asymptotic formula derived under the quasi-TEM approximation in Mittra and Itoh (1970) were reproduced. The asymptotic analysis provides good physical insight into the problem, otherwise unavailable from numerical analysis.

  16. Phase reciprocity of spin-wave excitation by a microstrip antenna

    NASA Astrophysics Data System (ADS)

    Schneider, T.; Serga, A. A.; Neumann, T.; Hillebrands, B.; Kostylev, M. P.

    2008-06-01

    Using space-, time-, and phase-resolved Brillouin light-scattering spectroscopy we investigate the difference in phase of the two counterpropagating spin waves excited by the same microwave microstrip transducer. These studies are performed both for backward volume magnetostatic waves and magnetostatic surface waves in an in-plane magnetized yttrium iron garnet film. The experiments show that for the backward volume magnetostatic spin waves (which are reciprocal and excited symmetrically in amplitude) there is a phase difference of π associated with the excitation process and thus the phase symmetry is distorted. On the contrary, for the magnetostatic surface spin waves (which are nonreciprocal and unsymmetrical in amplitude) the phase symmetry is preserved (there is no phase difference between the two waves associated with the excitation). Theoretical analysis confirms this effect.

  17. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    SciTech Connect

    Bhardwaj, Dheeraj; Saraswat, Shriti Gulati, Gitansh Shekhar, Snehanshu Joshi, Kanika; Sharma, Komal

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  18. Rigorous analysis of a circular patch antenna excited by a microstrip transmission line

    NASA Technical Reports Server (NTRS)

    Davidovitz, Marat; Lo, Yuen Tze

    1989-01-01

    Boundary conditions are enforced on a portion of the microstrip feed line as well as the patch antenna. The integral equation for the unknown currents on the antenna and feed is solved by applying the Galerkin method of moments in the Fourier transform domain. The validity of the solution is tested by comparison of computed results with experimental data. The theoretical treatment proves to be applicable to the most common feeding arrangements, namely, the direct edge-feed and proximity coupling excitation. In the latter case, two-layer substrates having distinct dielectric constants are studied. The purpose of the study is to deduce, for a given overall substrate thickness, the smallest line-ground plane separation for which a match of the radiator to the feed line is still possible. The advantages of such a configuration are discussed.

  19. A proposal to use microstrip gas counters in a LHC tracker

    NASA Astrophysics Data System (ADS)

    Geijsberts, M.; Hartjes, F. G.; Pannekoek, J. G.; Schmitz, J.; Udo, F.

    1991-06-01

    An LHC (Large Hadron Collider) tracker constructed from microstrip gas counters is described. The system occupies a cylinder around the beam between r = 400 mm and r = 900 mm. The instrument measured 12 points on a track with an accuracy of 30 microns. The occupancy is below 1 pct. at a luminosity of L = 10 to the power of 34/sq cm. Operation at high magnetic field and a fast large collection process are possible by using Xe/DME/CO2 mixtures and reducing the gap with between substrate and drift cathode to 1.6 mm. Hits from low energetic tracks are suppressed and hard tracks stand out. The (r,z) coordinate can be measured with an accuracy of 1 mm. The charge collected per strip is calculated and shows that the tracker can withstand the LHC radiation for many years.

  20. A Study of Microstrip Line Balanced Filters with Attenuation Poles Based on Tapped Resonators

    NASA Astrophysics Data System (ADS)

    Kubo, Yoshiyuki; Wada, Kouji

    We propose microstrip-line balanced filters with controllable attenuation poles by using tapped resonators. These filters are basically composed of a coupled-line and tapped resonators. The coupled-line provides bandpass responses with attenuation poles and balanced filter operation. Also, the tappd resonators provide bandpass responses and attenuation poles. The position and number of the attenuation pole are controlled by the choice of the kind of the tapped resonator. In this paper, we examine a filter with an unbalanced port and a balanced port as well as a filter with a balanced port and a balanced port. The presented filters are simulated with commercial simulators and are measured with a vector network analyzer. We have confirmed that the bandpass characteristics with controllable attenuation poles and balanced characteristics(amplitude and phase balance performances) are obtained. The measured results of the fabricated filters agree well with the simulated results.

  1. Design of Tunable, Thin, and Wide-band Microwave Absorbers

    DTIC Science & Technology

    2011-07-28

    the first part (Section 2) is the theoretical analysis of scattering by a twodimensional periodic array of vertical microstrip lines; the other...first part (Section 2) is the theoretical analysis of scattering by a two- dimensional periodic array of vertical microstrip lines; the other (Section 3... Microstrip Lines This section provides a theoretical analysis of scattering by a two-dimensional (2D) periodic array of vertical microstrip lines

  2. Effective Permeability and Miniaturization Estimation of Ferrite-loaded Microstrip Patch Antenna

    NASA Astrophysics Data System (ADS)

    Saini, Ashish; Thakur, Atul; Thakur, Preeti

    2016-08-01

    Miniaturization of a microstrip patch antenna using composite nanosized ferrite material is proposed in this paper. Detailed simulations were performed to analyze the effect of increase in relative permeability of substrate material on physical size and efficiency of a microstrip antenna. An analytical expression for estimation of the effective relative permeability is established here on the basis of the detailed simulation. Composite nano ferrite (Mn0.5Zn0.35Co0.15Fe2O4 + SrFe12O19) with an average crystallite size of 72 nm was synthesized and characterized for electromagnetic properties. The substrate material was prepared by the co-precipitation method. Matching values of complex permittivity ( ɛ* = 4.1-0.1j) and complex permeability ( μ* = 3.72-0.28j) up to 1 GHz were obtained from the electromagnetic characterization. Measurement of the resonant frequency of the fabricated antenna validates the derived expression of effective relative permeability. It reduces the error in calculation of resonant frequency from 10% to 1%. Simulation and measurement results also confirm that an antenna fabricated with the above parameters can reduce the patch size by almost 44% and increases -10 dB reflection loss bandwidth over a pure dielectric FR4 substrate. Therefore, we propose here an analytical expression for estimation of effective relative permeability and Mn0.5Zn0.35Co0.15Fe2O4 + SrFe12O19 composite nano ferrites as suitable candidate for a high-bandwidth miniaturized antenna in the microwave frequency range.

  3. Production testing and quality assurance of CMS silicon microstrip tracker readout chips

    NASA Astrophysics Data System (ADS)

    Bainbridge, R.; Barrillon, P.; Hall, G.; Leaver, J.; Noah, E.; Raymond, M.; Bisello, D.; Candelori, A.; Kaminsky, A.; Khomenkov, V.; Stefanutti, L.; Tessaro, M.; French, M.

    2005-05-01

    The APV25 is the 128 channel CMOS chip developed for readout of the silicon microstrip tracker in the CMS experiment at the CERN Large Hadron Collider. The detector is now under construction and will be the largest silicon microstrip system ever built, with ˜200 m 2 of silicon sensors. 75,000 chips are required to instrument the system, which must operate for 10 years in a high radiation environment with little or no possibility of replacement of any component. The readout chip is a crucial components, which must provide low noise and reliable operation. Thus, each readout chip must be carefully tested prior to installation in CMS modules and assurance of long-term performance of the readout electronics, especially verification of radiation tolerance, is highly desirable. This has been achieved by means of automated probe testing of every chip on the silicon wafers from the foundry, followed by studies of sample die to evaluate in more detail properties of the chips, which cannot easily be examined at the wafer level. During production, it was observed that the yield of good die varied unexpectedly from one production lot to another. This was investigated with significant help from the manufacturer and the process was optimised to ensure consistent high yield. A fraction of the dies, which successfully passed the wafer screening, are subjected to short-term X-ray irradiation to levels equivalent to that expected in CMS and are then annealed. Results are presented here and illustrate the excellent performance of APV25 under all expected operating conditions.

  4. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.

    PubMed

    Gelvich, Edward A; Mazokhin, Vladimir N

    2002-09-01

    Contact flexible microstrip applicator (CFMA) is a new light-weight microstrip applicator type for superficial and deep local hyperthermia. Typical specimens are developed for operation at frequencies of 434, 70, 40, and 27 MHz. The main common features of CFMA, namely, their flexibility and light weight, as well as their aperture dimensions slightly depend on the operating frequency. Two antenna types are used in CFMAs: inductive antennas with a radiating plane electrical dipole at microwaves, and coplanar capacitive antennas, providing depression of the normal component of the electrical field in the very high-frequency (VHF) and high-frequency (HF) range. The flexibility of the applicators enables one to conform them with curved surfaces. In a bent state of the applicators there arises a focusing effect of energy deposition in deeper located tissues due to linear polarization of the irradiated electromagnetic (EM) field, inherent in CFMA. All CFMA are integrated with silicon water boluses which serve as a matching element, so as a skin cooling agent. Due to this and to the predominance of the tangential electrical component in the radiated EM field, no fat overheating effects are noticed, as a rule. The aperture of the developed applicators overlap the range 160-630 cm2 providing effective heating field sizes (EFSs) 64-400 cm2, respectively. The most bulky CFMAs with an aperture of (21 x 29) cm2 operating at the frequency of 434 MHz weigh 0.8 kg and 2.5 kg at 27 MHz. Phenomenological analysis of the radiating systems, as well as experimental evaluation of the applicators are presented. CFMAs operating at frequencies of 434 and 40 MHz are used in clinical practice. CFMA at 70 and 27 MHz are subjected to laboratory clinical investigations.

  5. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  6. Hospital benefit segmentation.

    PubMed

    Finn, D W; Lamb, C W

    1986-12-01

    Market segmentation is an important topic to both health care practitioners and researchers. The authors explore the relative importance that health care consumers attach to various benefits available in a major metropolitan area hospital. The purposes of the study are to test, and provide data to illustrate, the efficacy of one approach to hospital benefit segmentation analysis.

  7. Random Forests for Dura Mater Microvasculature Segmentation Using Epifluorescence Images

    PubMed Central

    Kassim, Yasmin M.; Surya Prasath, V. B.; Pelapur, Rengarajan; Glinskii, Olga V.; Maude, Richard J.; Glinsky, Vladislav V.; Huxley, Virginia H.; Palaniappan, Kannappan

    2016-01-01

    Automatic segmentation of microvascular structures is a critical step in quantitatively characterizing vessel remodeling and other physiological changes in the dura mater or other tissues. We developed a supervised random forest (RF) classifier for segmenting thin vessel structures using multiscale features based on Hessian, oriented second derivatives, Laplacian of Gaussian and line features. The latter multiscale line detector feature helps in detecting and connecting faint vessel structures that would otherwise be missed. Experimental results on epifluorescence imagery show that the RF approach produces foreground vessel regions that are almost 20 and 25 percent better than Niblack and Otsu threshold-based segmentations respectively. PMID:28261007

  8. Random Forests for Dura Mater Microvasculature Segmentation Using Epifluorescence Images.

    PubMed

    Kassim, Yasmin M; Surya Prasath, V B; Pelapur, Rengarajan; Glinskii, Olga V; Maude, Richard J; Glinsky, Vladislav V; Huxley, Virginia H; Palaniappan, Kannappan

    2016-08-01

    Automatic segmentation of microvascular structures is a critical step in quantitatively characterizing vessel remodeling and other physiological changes in the dura mater or other tissues. We developed a supervised random forest (RF) classifier for segmenting thin vessel structures using multiscale features based on Hessian, oriented second derivatives, Laplacian of Gaussian and line features. The latter multiscale line detector feature helps in detecting and connecting faint vessel structures that would otherwise be missed. Experimental results on epifluorescence imagery show that the RF approach produces foreground vessel regions that are almost 20 and 25 percent better than Niblack and Otsu threshold-based segmentations respectively.

  9. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  10. Keypoint Transfer Segmentation

    PubMed Central

    Toews, M.; Langs, G.; Wells, W.; Golland, P.

    2015-01-01

    We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm’s robustness enables the segmentation of scans with highly variable field-of-view. PMID:26221677

  11. Keypoint Transfer Segmentation.

    PubMed

    Wachinger, C; Toews, M; Langs, G; Wells, W; Golland, P

    2015-01-01

    We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm's robustness enables the segmentation of scans with highly variable field-of-view.

  12. Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands

    PubMed Central

    Islam, M. M.; Islam, M. T.; Faruque, M. R. I.

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878

  13. A wide-band dual-polarized VHF microstrip antenna for global sensing of sea ice thickness

    NASA Technical Reports Server (NTRS)

    Huang, John; Hussein, Ziad; Petros, Argy

    2005-01-01

    A VHF microstrip patch antenna was developed to achieve a bandwidth of 45 MHz (30%) from 127 MHz to 172 MHz with dual-linear-polarization capability. This microstrip antenna used foam substrates and dual stacked patches with capacitive probe feeds to achieve wide bandwidth. Four such capacitive feeds were used to achieve dual polarizations with less than -20 dB of cross-polarization level. Twenty-four shorting pins were used on the lower patch to achieve acceptable isolation between the four feed probes. This antenna has a measured gain of 8.5 dB at 137 MHz and 10 dB at 162 MHz. By using the Method of Moments technique, multipath scattering patterns were calculated when the antenna is mounted on the outside of a Twin Otter aircraft.

  14. A wide-band dual-polarized VHF microstrip antenna for global sensing of sea ice thickness

    NASA Technical Reports Server (NTRS)

    Huang, John; Hussein, Ziad; Petros, Argy

    2005-01-01

    A VHF microstrip patch antenna was developed to achieve a bandwidth of 45 MHz (30%) from 127 MHz to 172 MHz with dual-linear-polarization capability. This microstrip antenna used foam substrates and dual stacked patches with capacitive probe feeds to achieve wide bandwidth. Four such capacitive feeds were used to achieve dual polarizations with less than -20 dB of cross-polarization level. Twenty-four shorting pins were used on the lower patch to achieve acceptable isolation between the four feed probes. This antenna has a measured gain of 8.5 dB at 137 MHz and 10 dB at 162 MHz. By using the Method of Moments technique, multipath scattering patterns were calculated when the antenna is mounted on the outside of a Twin Otter aircraft.

  15. Enhanced bandwidth of a microstrip antenna using a parasitic mushroom-like metamaterial structure for multi-robot cooperative navigation

    NASA Astrophysics Data System (ADS)

    Lee, Cherl-Hee; Lee, Jonghun; Kim, Yoon-Gu; An, Jinung

    2015-01-01

    The broadband design of a microstrip patch antenna is presented and experimentally studied for multi-robot cooperation. A parasitic mushroom-like metamaterial (MTM) patch close to a microstrip top patch is excited through gap-coupling, thereby producing a resonance frequency. Because of the design, the resonance frequency of the parasitic MTM patch is adjacent to that of the main patch, and the presented antenna can achieve an enhanced bandwidth of 450 MHz, which is about two times the bandwidth of a conventional patch antenna without the MTM parasitic patch. The error rate of packet transmissions for measuring the distance between a leader robot and a follower robot was also improved by almost two-fold.

  16. Design and Analysis of Miniaturized Microstrip Patch Antenna with Metamaterials Based on Modified Split-Ring Resonator for UWB Applications

    NASA Astrophysics Data System (ADS)

    Khedrouche, D.; Bougoutaia, T.; Hocini, A.

    2016-11-01

    In this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9-13.5 GHz, (for return loss less than or equal -10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.

  17. Control of the sensitivity of CRLH interdigital microstrip balanced structures using a co-design genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Siragusa, R.; Perret, E.; Nguyen, H. V.; Lemaître-Auger, P.; Tedjini, S.; Caloz, C.

    2011-06-01

    A fully automated tool for designing CRLH interdigital microstrip structures using a co-design synthesis computational approach is proposed and demonstrated experimentally. This approach uses an electromagnetic simulator in conjunction with a genetic algorithm to synthesize and optimize a balanced CRLH interdigital microstrip transmission line. The high sensitivity of a long balanced transmission line to fabrication tolerances is controlled by the use of a high precision 3D simulator. The 2.5D simulator used was found insufficient for a large number of unit cells. A 13 UC CRLH transmission line is designed with the proposed approach. The response sensitivity of the balanced transmission lines to the over/under-etching factor is highlighted by comparing the measurements of four lines with different factors. The effect of over/under-etching is significant for values larger than 10 μm.

  18. Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.

    PubMed

    Islam, M M; Islam, M T; Faruque, M R I

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.

  19. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  20. Improving the Pass-Band Return Loss in Liquid Crystal Dual-Mode Bandpass Filters by Microstrip Patch Reshaping

    PubMed Central

    Torrecilla, Javier; Urruchi, Virginia; Sánchez-Pena, José Manuel; Bennis, Noureddine; García, Alejandro; Segovia, Daniel

    2014-01-01

    In this paper, the design and experimental characterization of a tunable microstrip bandpass filter based on liquid crystal technology are presented. A reshaped microstrip dual-mode filter structure has been used in order to improve the device performance. Specifically, the aim is to increase the pass-band return loss of the filter by narrowing the filter bandwidth. Simulations confirm the improvement of using this new structure, achieving a pass-band return loss increase of 1.5 dB at least. Because of the anisotropic properties of LC molecules, a filter central frequency shift from 4.688 GHz to 5.045 GHz, which means a relative tuning range of 7.3%, is measured when an external AC voltage from 0 Vrms to 15 Vrms is applied to the device. PMID:28788690

  1. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  2. A compact cylindrical-shape microstrip structure with cloaking properties for mutual coupling reduction in array antennas

    NASA Astrophysics Data System (ADS)

    Naqvi, Syed Aftab

    A cylindrical-shaped microstrip structure with cloaking properties is presented as a shielding device to reduce the mutual coupling between two patch antennas. The surface comprises of a number of 2-port microstrip (2-PM) elements printed on individual substrates and, to enclose a particular region, several 2-PM elements are interconnected into a cylindrical shape. Each 2-PM element has the capability of coupling an incident EM field on the surface to the adjacent interconnected elements. Then, because the 2-PM elements are connected into a cylindrical shape, the incident EM field is re-radiated from the other interconnected 2-PM elements in a direction away from the transmitter; achieving a behavior similar to a cloak. The prototypes in this dissertation illustrates that this surface has the additional benefit of overcoming many of the manufacturing difficulties of traditional cloaks because microstrip structures are used. To demonstrate this concept, a cylindrical surface operating at 3.89 GHz and a frequency reconfigurable surface (consisting of 2-port frequency reconfigurable microstrip elements (2-PFRM)) operating at 3.68 GHz and 3.89 GHz is simulated in HFSS, manufactured and measured in a full anechoic chamber. Moreover, as an application, the cylindrical surface operating at 3.89 GHz is used to reduce the mutual coupling between two patch antennas operating simultaneously at 3.89 GHz. The radiation pattern and the gain of a 2-element array is measured to demonstrate the negligible effects of a cylindrical surface on the far field antenna array parameters. Simulation and measurement results are in good agreement and validate the proposed EM cloak-based surface for applications such as antenna array shielding, radar cross section and communications in complex EM environments.

  3. Low-pressure micro-strip gas chamber and a search for a high-efficiency secondary-electron emitter

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Sbarra, C.

    1994-11-01

    The test beam performance of a low-pressure micro-strip gas chamber with a thick CsI secondary-electron emitting surface as the source of primary ionization is presented. A study of the secondary-electron yield of CsI and KCl coated surfaces are discussed, as well as a promising new technique, CsI-treated CVD diamond films.

  4. Computer-aided design models for broadside-coupled striplines and millimeter-wave suspended substrate microstrip lines

    NASA Astrophysics Data System (ADS)

    Bhartia, Prakash; Pramanick, Protap

    1988-11-01

    Models were derived from the results of conformal transformation on homogeneous stripline, the equivalence of the odd-mode with the quasi-TEM mode of covered microstrip line, and logarithmic regression of spectral-domain results. Effects of finite strip thickness have been taken into account. These models are fully compatible with the needs and trends of computer-aided and programmable-calculator-aided microwave and millimeter-wave integrated circuit design.

  5. Size Optimization for Mirror Segments for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  6. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  7. Haustral fold segmentation with curvature-guided level set evolution.

    PubMed

    Zhu, Hongbin; Barish, Matthew; Pickhardt, Perry; Liang, Zhengrong

    2013-02-01

    Human colon has complex structures mostly because of the haustral folds. The folds are thin flat protrusions on the colon wall, which complicate the shape analysis for computer-aided detection (CAD) of colonic polyps. Fold segmentation may help reduce the structural complexity, and the folds can serve as an anatomic reference for computed tomographic colonography (CTC). Therefore, in this study, based on a model of the haustral fold boundaries, we developed a level-set approach to automatically segment the fold surfaces. To evaluate the developed fold segmentation algorithm, we first established the ground truth of haustral fold boundaries by experts' drawing on 15 patient CTC datasets without severe under/over colon distention from two medical centers. The segmentation algorithm successfully detected 92.7% of the folds in the ground truth. In addition to the sensitivity measure, we further developed a merit of segmented-area ratio (SAR), i.e., the ratio between the area of the intersection and union of the expert-drawn folds and the area of the automatically segmented folds, to measure the segmentation accuracy. The segmentation algorithm reached an average value of SAR = 86.2%, showing a good match with the ground truth on the fold surfaces. We believe the automatically segmented fold surfaces have the potential to benefit many postprocedures in CTC, such as CAD, taenia coli extraction, supine-prone registration, etc.

  8. Image segmentation survey

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The methodologies and capabilities of image segmentation techniques are reviewed. Single linkage schemes, hybrid linkage schemes, centroid linkage schemes, histogram mode seeking, spatial clustering, and split and merge schemes are addressed.

  9. CPCs with segmented absorbers

    SciTech Connect

    Keita, M.; Robertson, H.S. )

    1991-01-01

    One of the most promising means of improving the performance of solar thermal collectors is to reduce the energy lost by the hot absorber. One way to do this, not currently part of the technology, is to recognize that since the absorber is usually not irradiated uniformly, it is therefore possible to construct an absorber of thermally isolated segments, circulate the fluid in sequence from low to high irradiance segments, and reduce loss by improving effective concentration. This procedure works even for ideal concentrators, without violating Winston's theorem. Two equivalent CPC collectors with single and segmented absorber were constructed and compared under actual operating conditions. The results showed that the daily thermal efficiency of the collector with segmented absorber is higher (about 13%) than that of the collector with nonsegmented absorber.

  10. GPS Control Segment Improvements

    DTIC Science & Technology

    2015-04-29

    Systems Center GPS Control Segment Improvements Mr. Tim McIntyre GPS Product Support Manager GPS Ops Support and Sustainment Division Peterson...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...DATE 29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS Control Segment Improvements 5a. CONTRACT

  11. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  12. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  13. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  14. Current Status of Thin Film (Ba,Sr)TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable micro-wave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg at 18 GHz and a figure of merit of 74.3 deg/dB). Issues of post-annealing, Mn-doping and Ba(x)Sr(1-x) TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  15. Current Status of Thin Film (Ba,Sr) TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romananofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable microwave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg. at 18 GHz and a figure of merit of 74.3 deg./dB). Issues of postannealing, Mn-doping and Ba(x)Sr(1-x)TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  16. Geometry Guided Segmentation

    NASA Astrophysics Data System (ADS)

    Dunn, Stanley M.; Liang, Tajen

    1989-03-01

    Our overall goal is to develop an image understanding system for automatically interpreting dental radiographs. This paper describes the module that integrates the intrinsic image data to form the region adjacency graph that represents the image. The specific problem is to develop a robust method for segmenting the image into small regions that do not overlap anatomical boundaries. Classical algorithms for finding homogeneous regions (i.e., 2 class segmentation or connected components) will not always yield correct results since blurred edges can cause adjacent anatomical regions to be labeled as one region. This defect is a problem in this and other applications where an object count is necessary. Our solution to the problem is to guide the segmentation by intrinsic properties of the constituent objects. The module takes a set of intrinsic images as arguments. A connected components-like algorithm is performed, but the connectivity relation is not 4- or 8-neighbor connectivity in binary images; the connectivity is defined in terms of the intrinsic image data. We shall describe both the classical method and the modified segmentation procedures, and present experiments using both algorithms. Our experiments show that for the dental radiographs a segmentation using gray level data in conjunction with edges of the surfaces of teeth give a robust and reliable segmentation.

  17. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  18. Streamline segment statistics of premixed flames with nonunity Lewis numbers

    NASA Astrophysics Data System (ADS)

    Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus

    2014-03-01

    The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.

  19. Rediscovering market segmentation.

    PubMed

    Yankelovich, Daniel; Meer, David

    2006-02-01

    In 1964, Daniel Yankelovich introduced in the pages of HBR the concept of nondemographic segmentation, by which he meant the classification of consumers according to criteria other than age, residence, income, and such. The predictive power of marketing studies based on demographics was no longer strong enough to serve as a basis for marketing strategy, he argued. Buying patterns had become far better guides to consumers' future purchases. In addition, properly constructed nondemographic segmentations could help companies determine which products to develop, which distribution channels to sell them in, how much to charge for them, and how to advertise them. But more than 40 years later, nondemographic segmentation has become just as unenlightening as demographic segmentation had been. Today, the technique is used almost exclusively to fulfill the needs of advertising, which it serves mainly by populating commercials with characters that viewers can identify with. It is true that psychographic types like "High-Tech Harry" and "Joe Six-Pack" may capture some truth about real people's lifestyles, attitudes, self-image, and aspirations. But they are no better than demographics at predicting purchase behavior. Thus they give corporate decision makers very little idea of how to keep customers or capture new ones. Now, Daniel Yankelovich returns to these pages, with consultant David Meer, to argue the case for a broad view of nondemographic segmentation. They describe the elements of a smart segmentation strategy, explaining how segmentations meant to strengthen brand identity differ from those capable of telling a company which markets it should enter and what goods to make. And they introduce their "gravity of decision spectrum", a tool that focuses on the form of consumer behavior that should be of the greatest interest to marketers--the importance that consumers place on a product or product category.

  20. Fast tip-tilt segment alignment for segmented mirrors

    NASA Astrophysics Data System (ADS)

    Skvarč, Jure

    2016-07-01

    A method for fast identification of segments and alignment of the segmented mirrors has been developed and applied for the deformable mirror of the WHT AO system (NAOMI) and for the GTC 36-segment primary mirror. By moving each segment by a known but different amount and in a different direction it is possible to identify many segments simultaneously using a pattern-matching algorithm which finds spots that have moved by a segment-specific vector from one image to another. The method does not need any special optical setup. The applicability of the method for the segmented primary mirrors of future telescopes is discussed.