The Brain's Cutting-Room Floor: Segmentation of Narrative Cinema
Zacks, Jeffrey M.; Speer, Nicole K.; Swallow, Khena M.; Maley, Corey J.
2010-01-01
Observers segment ongoing activity into meaningful events. Segmentation is a core component of perception that helps determine memory and guide planning. The current study tested the hypotheses that event segmentation is an automatic component of the perception of extended naturalistic activity, and that the identification of event boundaries in such activities results in part from processing changes in the perceived situation. Observers may identify boundaries between events as a result of processing changes in the observed situation. To test this hypothesis and study this potential mechanism, we measured brain activity while participants viewed an extended narrative film. Large transient responses were observed when the activity was segmented, and these responses were mediated by changes in the observed activity, including characters and their interactions, interactions with objects, spatial location, goals, and causes. These results support accounts that propose event segmentation is automatic and depends on processing meaningful changes in the perceived situation; they are the first to show such effects for extended naturalistic human activity. PMID:20953234
Improving semi-automated segmentation by integrating learning with active sampling
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Brown, Matthew
2012-02-01
Interactive segmentation algorithms such as GrowCut usually require quite a few user interactions to perform well, and have poor repeatability. In this study, we developed a novel technique to boost the performance of the interactive segmentation method GrowCut involving: 1) a novel "focused sampling" approach for supervised learning, as opposed to conventional random sampling; 2) boosting GrowCut using the machine learned results. We applied the proposed technique to the glioblastoma multiforme (GBM) brain tumor segmentation, and evaluated on a dataset of ten cases from a multiple center pharmaceutical drug trial. The results showed that the proposed system has the potential to reduce user interaction while maintaining similar segmentation accuracy.
Stability of local secondary structure determines selectivity of viral RNA chaperones.
Bravo, Jack P K; Borodavka, Alexander; Barth, Anders; Calabrese, Antonio N; Mojzes, Peter; Cockburn, Joseph J B; Lamb, Don C; Tuma, Roman
2018-05-18
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Correction tool for Active Shape Model based lumbar muscle segmentation.
Valenzuela, Waldo; Ferguson, Stephen J; Ignasiak, Dominika; Diserens, Gaelle; Vermathen, Peter; Boesch, Chris; Reyes, Mauricio
2015-08-01
In the clinical environment, accuracy and speed of the image segmentation process plays a key role in the analysis of pathological regions. Despite advances in anatomic image segmentation, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a low number of interactions, and a user-independent solution. In this work we present a new interactive correction method for correcting the image segmentation. Given an initial segmentation and the original image, our tool provides a 2D/3D environment, that enables 3D shape correction through simple 2D interactions. Our scheme is based on direct manipulation of free form deformation adapted to a 2D environment. This approach enables an intuitive and natural correction of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle segmentation from Magnetic Resonance Images. Experimental results show that full segmentation correction could be performed within an average correction time of 6±4 minutes and an average of 68±37 number of interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.03.
Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.
Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan
2008-01-01
The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.
Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron.
Lindström, Nils O; Lawrence, Melanie L; Burn, Sally F; Johansson, Jeanette A; Bakker, Elvira R M; Ridgway, Rachel A; Chang, C-Hong; Karolak, Michele J; Oxburgh, Leif; Headon, Denis J; Sansom, Owen J; Smits, Ron; Davies, Jamie A; Hohenstein, Peter
2015-02-03
The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.
Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron
Lindström, Nils O; Lawrence, Melanie L; Burn, Sally F; Johansson, Jeanette A; Bakker, Elvira RM; Ridgway, Rachel A; Chang, C-Hong; Karolak, Michele J; Oxburgh, Leif; Headon, Denis J; Sansom, Owen J; Smits, Ron; Davies, Jamie A; Hohenstein, Peter
2015-01-01
The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning. DOI: http://dx.doi.org/10.7554/eLife.04000.001 PMID:25647637
Grapefruit-felodipine interaction: effect of unprocessed fruit and probable active ingredients.
Bailey, D G; Dresser, G K; Kreeft, J H; Munoz, C; Freeman, D J; Bend, J R
2000-11-01
To determine whether unprocessed grapefruit can cause a drug interaction, whether the active ingredients are naturally occurring, and whether specific furanocoumarins or flavonoids are involved. The oral pharmacokinetics of felodipine and its dehydrofelodipine metabolite were determined after administration of felodipine 10 mg extended-release tablet with 250 mL commercial grapefruit juice, homogenized grapefruit segments, or extract of segment-free parts equivalent to one unprocessed fruit or water in a randomized four-way crossover study. Inhibition of recombinant CYP3A4 by furanocoumarins (bergamottin, 6',7'-epoxybergamottin, 6',7'-dihydroxybergamottin) and flavonoids (naringenin optical isomers) was determined. Furanocoumarin and naringenin precursor (naringin) concentrations were measured in each grapefruit treatment. Felodipine AUC with commercial grapefruit juice, grapefruit segments, or grapefruit extract was on average 3-fold higher than that with water. Felodipine peak concentration was higher, but the half-life was unchanged. The dehydrofelodipine/felodipine AUC ratio was reduced. The furanocoumarins produced mechanism-based and competitive inhibition of CYP3A4. Bergamottin was the most potent mechanism-based inhibitor. Naringenin isomers produced only competitive inhibition. Bergamottin, 6',7'-dihydroxybergamottin, and naringin concentrations varied among grapefruit treatments but were sufficient to inhibit markedly in vitro CYP3A4 activity. Unprocessed grapefruit can cause a drug interaction with felodipine. The active ingredients are naturally occurring in the grapefruit. Bergamottin is likely important in drug interactions with commercial grapefruit juice. 6',7'-Dihydroxybergamottin and naringin may be more important in grapefruit segments because they are present in higher concentrations. Any therapeutic concern for a drug interaction with commercial grapefruit juice should now be extended to include whole fruit and possibly confectioneries made from grapefruit peel.
Model-based video segmentation for vision-augmented interactive games
NASA Astrophysics Data System (ADS)
Liu, Lurng-Kuo
2000-04-01
This paper presents an architecture and algorithms for model based video object segmentation and its applications to vision augmented interactive game. We are especially interested in real time low cost vision based applications that can be implemented in software in a PC. We use different models for background and a player object. The object segmentation algorithm is performed in two different levels: pixel level and object level. At pixel level, the segmentation algorithm is formulated as a maximizing a posteriori probability (MAP) problem. The statistical likelihood of each pixel is calculated and used in the MAP problem. Object level segmentation is used to improve segmentation quality by utilizing the information about the spatial and temporal extent of the object. The concept of an active region, which is defined based on motion histogram and trajectory prediction, is introduced to indicate the possibility of a video object region for both background and foreground modeling. It also reduces the overall computation complexity. In contrast with other applications, the proposed video object segmentation system is able to create background and foreground models on the fly even without introductory background frames. Furthermore, we apply different rate of self-tuning on the scene model so that the system can adapt to the environment when there is a scene change. We applied the proposed video object segmentation algorithms to several prototype virtual interactive games. In our prototype vision augmented interactive games, a player can immerse himself/herself inside a game and can virtually interact with other animated characters in a real time manner without being constrained by helmets, gloves, special sensing devices, or background environment. The potential applications of the proposed algorithms including human computer gesture interface and object based video coding such as MPEG-4 video coding.
Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation
Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.
2013-01-01
This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809
Comparison of thyroid segmentation techniques for 3D ultrasound
NASA Astrophysics Data System (ADS)
Wunderling, T.; Golla, B.; Poudel, P.; Arens, C.; Friebe, M.; Hansen, C.
2017-02-01
The segmentation of the thyroid in ultrasound images is a field of active research. The thyroid is a gland of the endocrine system and regulates several body functions. Measuring the volume of the thyroid is regular practice of diagnosing pathological changes. In this work, we compare three approaches for semi-automatic thyroid segmentation in freehand-tracked three-dimensional ultrasound images. The approaches are based on level set, graph cut and feature classification. For validation, sixteen 3D ultrasound records were created with ground truth segmentations, which we make publicly available. The properties analyzed are the Dice coefficient when compared against the ground truth reference and the effort of required interaction. Our results show that in terms of Dice coefficient, all algorithms perform similarly. For interaction, however, each algorithm has advantages over the other. The graph cut-based approach gives the practitioner direct influence on the final segmentation. Level set and feature classifier require less interaction, but offer less control over the result. All three compared methods show promising results for future work and provide several possible extensions.
Internal curvature signal and noise in low- and high-level vision
Grabowecky, Marcia; Kim, Yee Joon; Suzuki, Satoru
2011-01-01
How does internal processing contribute to visual pattern perception? By modeling visual search performance, we estimated internal signal and noise relevant to perception of curvature, a basic feature important for encoding of three-dimensional surfaces and objects. We used isolated, sparse, crowded, and face contexts to determine how internal curvature signal and noise depended on image crowding, lateral feature interactions, and level of pattern processing. Observers reported the curvature of a briefly flashed segment, which was presented alone (without lateral interaction) or among multiple straight segments (with lateral interaction). Each segment was presented with no context (engaging low-to-intermediate-level curvature processing), embedded within a face context as the mouth (engaging high-level face processing), or embedded within an inverted-scrambled-face context as a control for crowding. Using a simple, biologically plausible model of curvature perception, we estimated internal curvature signal and noise as the mean and standard deviation, respectively, of the Gaussian-distributed population activity of local curvature-tuned channels that best simulated behavioral curvature responses. Internal noise was increased by crowding but not by face context (irrespective of lateral interactions), suggesting prevention of noise accumulation in high-level pattern processing. In contrast, internal curvature signal was unaffected by crowding but modulated by lateral interactions. Lateral interactions (with straight segments) increased curvature signal when no contextual elements were added, but equivalent interactions reduced curvature signal when each segment was presented within a face. These opposing effects of lateral interactions are consistent with the phenomena of local-feature contrast in low-level processing and global-feature averaging in high-level processing. PMID:21209356
Extensive interactions between HIV TAT and TAF(II)250.
Weissman, J D; Hwang, J R; Singer, D S
2001-03-09
The HIV transactivator, Tat, has been shown to be capable of potent repression of transcription initiation. Repression is mediated by the C-terminal segment of Tat, which binds the TFIID component, TAF(II)250, although the site(s) of interaction were not defined previously. We now report that the interaction between Tat and TAF(II)250 is extensive and involves multiple contacts between the Tat protein and TAF(II)250. The C-terminal domain of Tat, which is necessary for repression of transcription initiation, binds to a segment of TAF(II)250 that encompasses its acetyl transferase (AT) domain (885-1034 amino acids (aa)). Surprisingly, the N-terminal segment of Tat, which contains its activation domains, also binds to TAF(II)250 and interacts with two discontinuous segments of TAF(II)250 located between 885 and 984 aa and 1120 and 1279 aa. Binding of Tat to the 885-984 aa segment of TAF(II)250 requires the cysteine-rich domain of Tat, but not the acidic or glutamine-rich domains. Binding by the N-terminal domain of Tat to the 1120-1279 aa TAF(II)250 segment does not involve the acidic, cysteine- or glutamine-rich domains. Repression of transcription initiation by Tat requires functional TAF(II)250. We now demonstrate that transcription of the HIV LTR does not depend on TAF(II)250 which may account for its resistance to Tat mediated repression.
Interactive segmentation of tongue contours in ultrasound video sequences using quality maps
NASA Astrophysics Data System (ADS)
Ghrenassia, Sarah; Ménard, Lucie; Laporte, Catherine
2014-03-01
Ultrasound (US) imaging is an effective and non invasive way of studying the tongue motions involved in normal and pathological speech, and the results of US studies are of interest for the development of new strategies in speech therapy. State-of-the-art tongue shape analysis techniques based on US images depend on semi-automated tongue segmentation and tracking techniques. Recent work has mostly focused on improving the accuracy of the tracking techniques themselves. However, occasional errors remain inevitable, regardless of the technique used, and the tongue tracking process must thus be supervised by a speech scientist who will correct these errors manually or semi-automatically. This paper proposes an interactive framework to facilitate this process. In this framework, the user is guided towards potentially problematic portions of the US image sequence by a segmentation quality map that is based on the normalized energy of an active contour model and automatically produced during tracking. When a problematic segmentation is identified, corrections to the segmented contour can be made on one image and propagated both forward and backward in the problematic subsequence, thereby improving the user experience. The interactive tools were tested in combination with two different tracking algorithms. Preliminary results illustrate the potential of the proposed framework, suggesting that the proposed framework generally improves user interaction time, with little change in segmentation repeatability.
Learning to merge: a new tool for interactive mapping
NASA Astrophysics Data System (ADS)
Porter, Reid B.; Lundquist, Sheng; Ruggiero, Christy
2013-05-01
The task of turning raw imagery into semantically meaningful maps and overlays is a key area of remote sensing activity. Image analysts, in applications ranging from environmental monitoring to intelligence, use imagery to generate and update maps of terrain, vegetation, road networks, buildings and other relevant features. Often these tasks can be cast as a pixel labeling problem, and several interactive pixel labeling tools have been developed. These tools exploit training data, which is generated by analysts using simple and intuitive paint-program annotation tools, in order to tailor the labeling algorithm for the particular dataset and task. In other cases, the task is best cast as a pixel segmentation problem. Interactive pixel segmentation tools have also been developed, but these tools typically do not learn from training data like the pixel labeling tools do. In this paper we investigate tools for interactive pixel segmentation that also learn from user input. The input has the form of segment merging (or grouping). Merging examples are 1) easily obtained from analysts using vector annotation tools, and 2) more challenging to exploit than traditional labels. We outline the key issues in developing these interactive merging tools, and describe their application to remote sensing.
ERIC Educational Resources Information Center
Haddad, David Elias
2014-01-01
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…
Roskoski, Robert
2018-04-25
The Kit proto-oncogene was found as a consequence of the discovery of the feline v-kit sarcoma oncogene. Stem cell factor (SCF) is the Kit ligand and it mediates Kit dimerization and activation. The Kit receptor contains an extracellular segment that is made up of five immunoglobulin-like domains (D1/2/3/4/5), a transmembrane segment, a juxtamembrane segment, a protein-tyrosine kinase domain that contains an insert of 77 amino acid residues, and a carboxyterminal tail. Activating somatic mutations in Kit have been documented in various neoplasms including gastrointestinal stromal tumors (GIST), mast cell overexpression (systemic mastocytosis), core-binding factor acute myeloid leukemias (AML), melanomas, and seminomas. In the case of gastrointestinal stromal tumors, most activating mutations occur in the juxtamembrane segment and these mutants are initially sensitive to imatinib. As with many targeted anticancer drugs, resistance to Kit antagonists occurs in about two years and is the result of secondary KIT mutations. An activation segment exon 17 D816V mutation is one of the more common resistance mutations in Kit and this mutant is resistant to imatinib and sorafenib. Type I protein kinase inhibitors interact with the active enzyme form with DFG-D of the proximal activation segment directed inward toward the active site (DFG-D in ). In contrast, type II inhibitors bind to their target with the DFG-D pointing away from the active site (DFG-D out ). Based upon the X-ray crystallographic structures, imatinib, sunitinib, and ponatinib are Type II Kit inhibitors. We used the Schrödinger induced fit docking protocol to model the interaction of midostaurin with Kit and the result indicates that it binds to the DFG-D in conformation of the receptor and is thus classified as type I inhibitor. This medication inhibits the notoriously resistant Kit D816V mutant and is approved for the treatment of systemic mastocytosis and is effective against tumors bearing the D816V activation/resistance mutation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bornstein, P; McKay, J; Liska, D J; Apone, S; Devarayalu, S
1988-01-01
The first intron of the human collagen alpha 1(I) gene contains several positively and negatively acting elements. We have studied the transcription of collagen-human growth hormone fusion genes, containing deletions and rearrangements of collagen intronic sequences, by transient transfection of chick tendon fibroblasts and NIH 3T3 cells. In chick tendon fibroblasts, but not in 3T3 cells, inversion of intronic sequences containing a previously studied 274-base-pair segment, A274, resulted in markedly reduced human growth hormone mRNA levels as determined by an RNase protection assay. This inhibitory effect was largely alleviated when deletions were introduced in the collagen promoter of plasmids containing negatively oriented intronic sequences. Evidence for interaction of the promoter with the intronic segment, A274, was obtained by gel mobility shift assays. We suggest that promoter-intron interactions, mediated by DNA-binding proteins, regulate collagen gene transcription. Inversion of intronic segments containing critical interactive elements might then lead to an altered geometry and reduced activity of a transcriptional complex in those cells with sufficiently high levels of appropriate transcription factors. We further suggest that the deleted promoter segment plays a key role in directing DNA interactions involved in transcriptional control. Images PMID:3211130
Multi-object segmentation framework using deformable models for medical imaging analysis.
Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel
2016-08-01
Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-01-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. PMID:26646790
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-12-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.
NASA Astrophysics Data System (ADS)
Hadida, Jonathan; Desrosiers, Christian; Duong, Luc
2011-03-01
The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.
Trajectory data analyses for pedestrian space-time activity study.
Qi, Feng; Du, Fei
2013-02-25
It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an automatic module. Trajectory segmentation(5) involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one's activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping(6) and density volume rendering(7). We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies.
Automated breast segmentation in ultrasound computer tomography SAFT images
NASA Astrophysics Data System (ADS)
Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.
2017-03-01
Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.
Late Pleistocene - Holocene ruptures of the Lima Reservoir fault, SW Montana
NASA Astrophysics Data System (ADS)
Anastasio, David J.; Majerowicz, Christina N.; Pazzaglia, Frank J.; Regalla, Christine A.
2010-12-01
Active tectonics within the northern Basin and Range province provide a natural laboratory for the study of normal fault growth, linkage, and interaction. Here, we present new geologic mapping and morphologic fault-scarp modeling within the Centennial Valley, Montana to characterize Pleistocene - Holocene ruptures of the young and active Lima Reservoir fault. Geologic relationships and rupture ages indicate Middle Pleistocene activity on the Henry Gulch (>50 ka and 23-10 ka), Trail Creek (>43 ka and ˜13 ka), and reservoir (˜23 ka) segments. Offset Quaternary deposits also record Holocene rupture of the reservoir segment (˜8 ka), but unfaulted modern streams show that no segments of the Lima Reservoir fault have experienced a large earthquake in at least several millennia. The clustered pattern of rupture ages on the Lima Reservoir fault segments suggests a seismogenic linkage though segment length and spacing make a physical connection at depth unlikely. Trail Creek and reservoir segment slip rates were non-steady and appear to be increasing. The fault helps accommodate differential horizontal surface velocity measured by GPS geodesy across the boundary between the northern Basin and Range province and the Snake River Plain.
Jedidi, Iness; Zhang, Fan; Qiu, Hongfang; Stahl, Stephen J; Palmer, Ira; Kaufman, Joshua D; Nadaud, Philippe S; Mukherjee, Sujoy; Wingfield, Paul T; Jaroniec, Christopher P; Hinnebusch, Alan G
2010-01-22
Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown. We show that interaction of Gcn4 with the Mediator tail in vitro and recruitment of this subcomplex and intact Mediator to the ARG1 promoter in vivo involve additive contributions from three different segments in the N terminus of Gal11. These include the KIX domain, which is a critical target of other activators, and a region that shares a conserved motif (B-box) with mammalian coactivator SRC-1, and we establish that B-box is a critical determinant of Mediator recruitment by Gcn4. We further demonstrate that Gcn4 binds to the Gal11 KIX domain directly and, by NMR chemical shift analysis combined with mutational studies, we identify the likely binding site for Gcn4 on the KIX surface. Gcn4 is distinctive in relying on comparable contributions from multiple segments of Gal11 for efficient recruitment of Mediator in vivo.
Interactive lung segmentation in abnormal human and animal chest CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.
2014-08-15
Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less
Decreasing transmembrane segment length greatly decreases perfringolysin O pore size
Lin, Qingqing; Li, Huilin; Wang, Tong; ...
2015-04-08
Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less
NASA Technical Reports Server (NTRS)
Haines-Stiles, Geoff
1995-01-01
The Passport to Knowledge project delivered its initial 3-year NASA supported activity in December 1994 and January 1995. Live from Antarctica was an integrated, multimedia activity, including four one hour-long video programs, all with live components as well as taped segments, together with an extensive online element containing interactive as well as background information, and the printed Live from Antarctica Teacher's Guide, suggesting hands-on, in-class activities.
ERIC Educational Resources Information Center
Shanley, Jenelle R.; Niec, Larissa N.
2011-01-01
This study evaluated the inclusion of uncoded segments in the Dyadic Parent-Child Interaction Coding System, an analogue observation of parent-child interactions. The relationships between warm-up and coded segments were assessed, as well as the segments' associations with parent ratings of parent and child behaviors. Sixty-nine non-referred…
Segmentation in reading and film comprehension.
Zacks, Jeffrey M; Speer, Nicole K; Reynolds, Jeremy R
2009-05-01
When reading a story or watching a film, comprehenders construct a series of representations in order to understand the events depicted. Discourse comprehension theories and a recent theory of perceptual event segmentation both suggest that comprehenders monitor situational features such as characters' goals, to update these representations at natural boundaries in activity. However, the converging predictions of these theories had previously not been tested directly. Two studies provided evidence that changes in situational features such as characters, their locations, their interactions with objects, and their goals are related to the segmentation of events in both narrative texts and films. A 3rd study indicated that clauses with event boundaries are read more slowly than are other clauses and that changes in situational features partially mediate this relation. A final study suggested that the predictability of incoming information influences reading rate and possibly event segmentation. Taken together, these results suggest that processing situational changes during comprehension is an important determinant of how one segments ongoing activity into events and that this segmentation is related to the control of processing during reading. (c) 2009 APA, all rights reserved.
Interaction of Arrestin with Enolase1 in Photoreceptors
Bolch, Susan; Dugger, Donald R.; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J. Hugh
2011-01-01
Purpose. Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Methods. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. Results. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. Conclusions. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors. PMID:21051714
Interaction of arrestin with enolase1 in photoreceptors.
Smith, W Clay; Bolch, Susan; Dugger, Donald R; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J Hugh
2011-03-01
Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors.
Object segmentation using graph cuts and active contours in a pyramidal framework
NASA Astrophysics Data System (ADS)
Subudhi, Priyambada; Mukhopadhyay, Susanta
2018-03-01
Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qingqing; Li, Huilin; Wang, Tong
Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less
The segment polarity network is a robust developmental module
NASA Astrophysics Data System (ADS)
von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.
2000-07-01
All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.
Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen
2012-08-01
Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: first, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction-this not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we provide the reader reproducible experiments that demonstrate the capability of the proposed segmentation tool on several public available data sets. Copyright © 2012 Elsevier B.V. All rights reserved.
A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours
Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen
2012-01-01
Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: First, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction — This not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we provide the reader reproducible experiments that demonstrate the capability of the proposed segmentation tool on several public available data sets. PMID:22831773
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. PMID:23415254
Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N
2005-10-01
Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.
MITK-based segmentation of co-registered MRI for subject-related regional anesthesia simulation
NASA Astrophysics Data System (ADS)
Teich, Christian; Liao, Wei; Ullrich, Sebastian; Kuhlen, Torsten; Ntouba, Alexandre; Rossaint, Rolf; Ullisch, Marcus; Deserno, Thomas M.
2008-03-01
With a steadily increasing indication, regional anesthesia is still trained directly on the patient. To develop a virtual reality (VR)-based simulation, a patient model is needed containing several tissues, which have to be extracted from individual magnet resonance imaging (MRI) volume datasets. Due to the given modality and the different characteristics of the single tissues, an adequate segmentation can only be achieved by using a combination of segmentation algorithms. In this paper, we present a framework for creating an individual model from MRI scans of the patient. Our work splits in two parts. At first, an easy-to-use and extensible tool for handling the segmentation task on arbitrary datasets is provided. The key idea is to let the user create a segmentation for the given subject by running different processing steps in a purposive order and store them in a segmentation script for reuse on new datasets. For data handling and visualization, we utilize the Medical Imaging Interaction Toolkit (MITK), which is based on the Visualization Toolkit (VTK) and the Insight Segmentation and Registration Toolkit (ITK). The second part is to find suitable segmentation algorithms and respectively parameters for differentiating the tissues required by the RA simulation. For this purpose, a fuzzy c-means clustering algorithm combined with mathematical morphology operators and a geometric active contour-based approach is chosen. The segmentation process itself aims at operating with minimal user interaction, and the gained model fits the requirements of the simulation. First results are shown for both, male and female MRI of the pelvis.
Maerz, Sabine; Dettmann, Anne
2012-01-01
Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2. PMID:22451488
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Chang; S Xiang; K Xiang
The 5' {yields} 3' exoribonucleases (XRNs) have important functions in transcription, RNA metabolism and RNA interference. The structure of Rat1 (also known as Xrn2) showed that the two highly conserved regions of XRNs form a single, large domain that defines the active site of the enzyme. Xrn1 has a 510-residue segment after the conserved regions that is required for activity but is absent from Rat1/Xrn2. Here we report the crystal structures of Kluyveromyces lactis Xrn1 (residues 1-1,245, E178Q mutant), alone and in complex with a Mn{sup 2+} ion in the active site. The 510-residue segment contains four domains (D1-D4), locatedmore » far from the active site. Our mutagenesis and biochemical studies show that their functional importance results from their ability to stabilize the conformation of the N-terminal segment of Xrn1. These domains might also constitute a platform that interacts with protein partners of Xrn1.« less
Biophysics of object segmentation in a collision-detecting neuron
Dewell, Richard Burkett
2018-01-01
Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927
Modeling of the interaction between grip force and vibration transmissibility of a finger.
Wu, John Z; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Dong, Ren G
2017-07-01
It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. Published by Elsevier Ltd.
Optimization-based interactive segmentation interface for multiregion problems
Baxter, John S. H.; Rajchl, Martin; Peters, Terry M.; Chen, Elvis C. S.
2016-01-01
Abstract. Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality. PMID:27335892
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. Copyright © 2013 Elsevier Ltd. All rights reserved.
In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus
NASA Astrophysics Data System (ADS)
Zhang, Xing; Ding, Ke; Yu, Xuekui; Chang, Winston; Sun, Jingchen; Hong Zhou, Z.
2015-11-01
Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.
On the Importance of Polar Interactions for Complexes Containing Intrinsically Disordered Proteins
Wong, Eric T. C.; Na, Dokyun; Gsponer, Jörg
2013-01-01
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions. PMID:23990768
Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.
García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian
2009-01-01
Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.
Ashburn, A; Kampshoff, C; Burnett, M; Stack, E; Pickering, R M; Verheyden, G
2014-01-01
Turning round is a routine everyday activity that can often lead to instability. The purpose of this study was to investigate abnormalities of turning among people with Parkinson's disease (PwPD) through the measurement of sequence of body segments and latency response. Participants were asked to turn 180° and whole-body movements were recorded using CODAmotion and Visio Fast eye tracking equipment. Thirty-one independently mobile PwPD and 15 age-matched healthy controls participated in the study. We found that contrary to common belief, the head preceded movement of all other body segments (eyes, shoulders, pelvis, first and second foot). We also found interaction between group and body segment (P=0.005), indicating that overall, PwPD took longer to move from head to second foot than age-matched healthy controls. For PwPD only, interactions were found between disease severity and body segment (P<0.0001), between age group and body segment (P<0.0001) and between gender and body segments (P<0.0001). For each interaction, longer time periods were noted between moving the first foot after the pelvis, and moving the second foot after the first, and this was noted for PwPD in Hoehn and Yahr stage III-IV (in comparison to Hoehn and Yahr stage I-II); for PwPD who were under 70 years (in comparison with 70 years or over); and for ladies (in comparison with men). Our results indicate that in PwPD and healthy elderly, turning-on-the-spot might not follow the top-to-bottom approach we know from previous research. Copyright © 2013. Published by Elsevier B.V.
Dissection of the components for PIP2 activation and thermosensation in TRP channels
Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon
2007-01-01
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815
mir-125a-5p-mediated Regulation of Lfng is Essential for the Avian Segmentation Clock
Riley, Maurisa F.; Bochter, Matthew S.; Wahi, Kanu; Nuovo, Gerard J.; Cole, Susan E.
2013-01-01
Summary Somites are embryonic precursors of the axial skeleton and skeletal muscles, and establish the segmental vertebrate body plan. Somitogenesis is controlled in part by a segmentation clock that requires oscillatory expression of genes including Lunatic fringe (Lfng). Oscillatory genes must be tightly regulated both at the transcriptional and post-transcriptional levels for proper clock function. Here we demonstrate that microRNA-mediated regulation of Lfng is essential for proper segmentation during chick somitogenesis. We find that mir-125a-5p targets evolutionarily conserved sequences in the Lfng 3′UTR, and that preventing interactions between mir-125a-5p and Lfng transcripts in vivo causes abnormal segmentation and perturbs clock activity. This provides strong evidence that miRNAs function in the post-transcriptional regulation of oscillatory genes in the segmentation clock. Further, this demonstrates that the relatively subtle effects of miRNAs on target genes can have broad effects in developmental situations that have critical requirements for tight post-transcriptional regulation. PMID:23484856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybin, V.O.; Gureeva, A.A.
1986-05-10
The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature ofmore » the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP.« less
Classifying and profiling Social Networking Site users: a latent segmentation approach.
Alarcón-del-Amo, María-del-Carmen; Lorenzo-Romero, Carlota; Gómez-Borja, Miguel-Ángel
2011-09-01
Social Networking Sites (SNSs) have showed an exponential growth in the last years. The first step for an efficient use of SNSs stems from an understanding of the individuals' behaviors within these sites. In this research, we have obtained a typology of SNS users through a latent segmentation approach, based on the frequency by which users perform different activities within the SNSs, sociodemographic variables, experience in SNSs, and dimensions related to their interaction patterns. Four different segments have been obtained. The "introvert" and "novel" users are the more occasional. They utilize SNSs mainly to communicate with friends, although "introverts" are more passive users. The "versatile" user performs different activities, although occasionally. Finally, the "expert-communicator" performs a greater variety of activities with a higher frequency. They tend to perform some marketing-related activities such as commenting on ads or gathering information about products and brands as well as commenting ads. The companies can take advantage of these segmentation schemes in different ways: first, by tracking and monitoring information interchange between users regarding their products and brands. Second, they should match the SNS users' profiles with their market targets to use SNSs as marketing tools. Finally, for most business, the expert users could be interesting opinion leaders and potential brand influencers.
Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes
Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice
2014-01-01
The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. PMID:24214921
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Hyun; Gao, Yaozong, E-mail: yzgao@cs.unc.edu; Shi, Yinghuan, E-mail: syh@nju.edu.cn
Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correctmore » the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to evaluate both the efficiency and the robustness. The automatic segmentation results with the original average Dice similarity coefficient of 0.78 were improved to 0.865–0.872 after conducting 55–59 interactions by using the proposed method, where each editing procedure took less than 3 s. In addition, the proposed method obtained the most consistent editing results with respect to different user interactions, compared to other methods. Conclusions: The proposed method obtains robust editing results with few interactions for various wrong segmentation cases, by selecting the location-adaptive features and further imposing the manifold regularization. The authors expect the proposed method to largely reduce the laborious burdens of manual editing, as well as both the intra- and interobserver variability across clinicians.« less
An interactive medical image segmentation framework using iterative refinement.
Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay
2017-04-01
Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recreation specialization and the analysis of angler differences according to age cohort
David K. Loomis; Rodney B. Warnick
1992-01-01
We segmented a sample of sport fishermen into six unique age cohorts for the purposes of determining if significant differences existed on four recreation related dimensions. No significant differences for activity or non activity-specific elements of the experience were found. Some differences were found for mediated interaction and resource dependency, and clear...
Automatic blood vessel based-liver segmentation using the portal phase abdominal CT
NASA Astrophysics Data System (ADS)
Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen
2018-02-01
Liver segmentation is the basis for computer-based planning of hepatic surgical interventions. In diagnosis and analysis of hepatic diseases and surgery planning, automatic segmentation of liver has high importance. Blood vessel (BV) has showed high performance at liver segmentation. In our previous work, we developed a semi-automatic method that segments the liver through the portal phase abdominal CT images in two stages. First stage was interactive segmentation of abdominal blood vessels (ABVs) and subsequent classification into hepatic (HBVs) and non-hepatic (non-HBVs). This stage had 5 interactions that include selective threshold for bone segmentation, selecting two seed points for kidneys segmentation, selection of inferior vena cava (IVC) entrance for starting ABVs segmentation, identification of the portal vein (PV) entrance to the liver and the IVC-exit for classifying HBVs from other ABVs (non-HBVs). Second stage is automatic segmentation of the liver based on segmented ABVs as described in [4]. For full automation of our method we developed a method [5] that segments ABVs automatically tackling the first three interactions. In this paper, we propose full automation of classifying ABVs into HBVs and non- HBVs and consequently full automation of liver segmentation that we proposed in [4]. Results illustrate that the method is effective at segmentation of the liver through the portal abdominal CT images.
User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.
Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu
2016-04-01
Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.
A novel actin binding site of myosin required for effective muscle contraction.
Várkuti, Boglárka H; Yang, Zhenhui; Kintses, Bálint; Erdélyi, Péter; Bárdos-Nagy, Irén; Kovács, Attila L; Hári, Péter; Kellermayer, Miklós; Vellai, Tibor; Málnási-Csizmadia, András
2012-02-12
F-actin serves as a track for myosin's motor functions and activates its ATPase activity by several orders of magnitude, enabling actomyosin to produce effective force against load. Although actin activation is a ubiquitous property of all myosin isoforms, the molecular mechanism and physiological role of this activation are unclear. Here we describe a conserved actin-binding region of myosin named the 'activation loop', which interacts with the N-terminal segment of actin. We demonstrate by biochemical, biophysical and in vivo approaches using transgenic Caenorhabditis elegans strains that the interaction between the activation loop and actin accelerates the movement of the relay, stimulating myosin's ATPase activity. This interaction results in efficient force generation, but it is not essential for the unloaded motility. We conclude that the binding of actin to myosin's activation loop specifically increases the ratio of mechanically productive to futile myosin heads, leading to efficient muscle contraction.
NASA Astrophysics Data System (ADS)
Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.
2016-12-01
Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.
3D Slicer as a tool for interactive brain tumor segmentation.
Kikinis, Ron; Pieper, Steve
2011-01-01
User interaction is required for reliable segmentation of brain tumors in clinical practice and in clinical research. By incorporating current research tools, 3D Slicer provides a set of interactive, easy to use tools that can be efficiently used for this purpose. One of the modules of 3D Slicer is an interactive editor tool, which contains a variety of interactive segmentation effects. Use of these effects for fast and reproducible segmentation of a single glioblastoma from magnetic resonance imaging data is demonstrated. The innovation in this work lies not in the algorithm, but in the accessibility of the algorithm because of its integration into a software platform that is practical for research in a clinical setting.
State of the art survey on MRI brain tumor segmentation.
Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar
2013-10-01
Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan
Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.
An Interactive Image Segmentation Method in Hand Gesture Recognition
Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818
Sardi, Gabriel L; Loh, Joshua P; Torguson, Rebecca; Satler, Lowell F; Waksman, Ron
2014-01-01
The study aimed to determine if utilization of the CodeHeart application (CHap) reduces door-to-balloon (DTB) times of ST-segment elevation myocardial infarction (STEMI) patients. A pre-hospital electrocardiogram improves the management of patients with STEMI. Current telecommunication systems do not permit real-time interaction with the initial care providers. Our institution developed a novel telecommunications system based on a software application that permits real-time, two-way video and voice interaction over a secured network. All STEMI system activations after implementation of the CHap were prospectively entered into a database. Consecutive CHap activations were compared to routine activations as controls, during the same time period. A total of 470 STEMI system activations occurred; CHap was used in 83 cases (17.7%). DTB time was reduced by the use of CHap when compared to controls (CHap 103 minutes, 95% CI [87.0-118.3] vs. standard 149 minutes, 95% CI [134.0-164.8], p<0.0001), as was first call-to-balloon time (CHap 70 minutes, 95% CI [60.8-79.5] vs. standard 92 minutes, 95% CI [85.8-98.9], p=0.0002). The percentage of 'true positive' catheterization laboratory activations was nominally higher with the use of CHap, although this did not reach statistical significance [CHap 47/83 (56.6%) vs. routine 178/387 (45.9%), p=0.103]. The implementation of a two-way telecommunications system allowing real-time interactions between interventional cardiologists and referring practitioners improves overall DTB time. In addition, it has the potential to decrease the frequency of false activations, thereby improving the cost efficiency of a network's STEMI system. Copyright © 2014. Published by Elsevier Inc.
Volcanic Eruptions of the EPR and Ridge Axis Segmentation: An Interdisciplinary View
NASA Astrophysics Data System (ADS)
White, S.; Soule, S. A.; Tolstoy, M.; Waldhauser, F.; Rubin, K.
2008-12-01
The eruption of the EPR in 2005-06 provides an ideal window into the relationship between fine-scale segmentation of the ridge axis and individual eruptive episodes. Lava flow mapping of the eruption by visual and acoustic images, precise dates on multiple eruptive units, stress information from seismicity, long-term records of hydrothermal activity, and well known segment boundaries illustrate the relationships between eruptions and segmentation of mid-ocean ridges. Lava flows emerged from several sections of the axial summit trough (AST) during the eruption, presumably from en echelon fissures between 9 45'N and 9 57'N. Each en echelon fissure is a 4th order segment, and the overall area matches the 3rd Order segment between ~9 45'N and ~9 58'N. Within the eruption, the primary eruptive fissure jumped east by 600 m at 9 53'N, and ran along an inward facing fault scarp, although limited lava effusion also extended northward along the axial fissure. A zone of high seismicity connects the normal fault bounding the eastern fissure eruption with the main locus of eruption on the ridge axis to the south, suggesting that the offset eruption may have occurred in response to stress buildup on this fault. Radiometric ages indicate that the entire along-axis extent of the eruptive fissures activated initially, but that volcanic activity focused to a single fourth-order segment within 1-3 months. Previously indentified breaks in the AST and its overall outline were largely unchanged by the eruption. These observations support the hypothesis that fourth-order segments are offsets controlled by the mechanics of dike emplacement, whereas third-order segments represent discrete volcanic systems. Dike segmentation may be controlled by variations in underlying ridge structure or the magma reservoir. Hydrothermal systems disrupted as far south as 9 37'N may be responding to cracking due to stress interaction or share a common deeper magmatic source. Comparisons between the 1991 EPR eruption at the same site, and several mapped southern EPR eruptions, the 10 45'N EPR eruption in ca. 2003 all show similar relationships to segmentation
Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas
2016-08-05
This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images
NASA Astrophysics Data System (ADS)
Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei
2017-02-01
Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.
Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.
The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most openmore » reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.« less
Interactive 3D segmentation using connected orthogonal contours.
de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M
2005-05-01
This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.
An improved method for pancreas segmentation using SLIC and interactive region merging
NASA Astrophysics Data System (ADS)
Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang
2017-03-01
Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.
Effective user guidance in online interactive semantic segmentation
NASA Astrophysics Data System (ADS)
Petersen, Jens; Bendszus, Martin; Debus, Jürgen; Heiland, Sabine; Maier-Hein, Klaus H.
2017-03-01
With the recent success of machine learning based solutions for automatic image parsing, the availability of reference image annotations for algorithm training is one of the major bottlenecks in medical image segmentation. We are interested in interactive semantic segmentation methods that can be used in an online fashion to generate expert segmentations. These can be used to train automated segmentation techniques or, from an application perspective, for quick and accurate tumor progression monitoring. Using simulated user interactions in a MRI glioblastoma segmentation task, we show that if the user possesses knowledge of the correct segmentation it is significantly (p <= 0.009) better to present data and current segmentation to the user in such a manner that they can easily identify falsely classified regions compared to guiding the user to regions where the classifier exhibits high uncertainty, resulting in differences of mean Dice scores between +0.070 (Whole tumor) and +0.136 (Tumor Core) after 20 iterations. The annotation process should cover all classes equally, which results in a significant (p <= 0.002) improvement compared to completely random annotations anywhere in falsely classified regions for small tumor regions such as the necrotic tumor core (mean Dice +0.151 after 20 it.) and non-enhancing abnormalities (mean Dice +0.069 after 20 it.). These findings provide important insights for the development of efficient interactive segmentation systems and user interfaces.
Daehn, Ilse; Casalena, Gabriella; Zhang, Taoran; Shi, Shaolin; Fenninger, Franz; Barasch, Nicholas; Yu, Liping; D’Agati, Vivette; Schlondorff, Detlef; Kriz, Wilhelm; Haraldsson, Borje; Bottinger, Erwin P.
2014-01-01
Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS. PMID:24590287
NASA Astrophysics Data System (ADS)
Kim, S.; Lin, J.; Park, S.; Choi, H.; Lee, S.
2013-12-01
During 2011-2013 the Korea Polar Research Institute (KOPRI) conducted three successive expeditions to the eastern end of the Australian-Antarctic Ridge (AAR) to investigate the tectonics, geochemistry, and hydrothermal activity of this intermediate fast spreading system. On board the Korean icebreaker R/V Araon, the science party collected multiple types of data including multibeam bathymetry, gravity, magnetics, as well as rock and water column samples. In addition, Miniature Autonomous Plume Recorders (MAPRs) were deployed at each of the wax-core rock sampling sites to detect the presence of active hydrothermal vents. In this study, we present a detailed analysis of a 360-km-long super-segment at the eastern end of the AAR to quantify the spatial variations in ridge morphology and investigate its respond to changes in melt supply. The study region contains several intriguing bathymetric features including (1) abrupt changes in the axial topography, alternating between rift valleys and axial highs within relatively short ridge segments; (2) overshooting ridge tips at the ridge-transform intersections; (3) systematic migration patterns of hooked ridges; (4) a 350-km-long mega-transform fault; and (5) robust axial and off-axis volcanisms. To obtain a proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with a shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle than the conjugate northern flank. Furthermore, this N-S asymmetry becomes more prominent toward the super-segment of the AAR. Such regional variations in seafloor topography and RMBA are consistent with the hypothesis that ridge segments in the study area have interacted with the Balleny hotspot, currently lies southwest of the AAR. However, the influence of the Balleny hotpot is not dominant in the axial morphology of the AAR super-segment. The axial topography of this super-segment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more magma supply as indicated by more negative RMBA. The eastern AAR will be further compared with other intermediate fast spreading ridges, such as the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to better understand the influence of ridge-hotspot interaction on ridge magma supply and tectonics.
IntellEditS: intelligent learning-based editor of segmentations.
Harrison, Adam P; Birkbeck, Neil; Sofka, Michal
2013-01-01
Automatic segmentation techniques, despite demonstrating excellent overall accuracy, can often produce inaccuracies in local regions. As a result, correcting segmentations remains an important task that is often laborious, especially when done manually for 3D datasets. This work presents a powerful tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that minimizes user effort and further improves segmentation accuracy. The tool partners interactive learning with an energy-minimization approach to editing. Based on interactive user input, a discriminative classifier is trained and applied to the edited 3D region to produce soft voxel labeling. The labels are integrated into a novel energy functional along with the existing segmentation and image data. Unlike the state of the art, IntellEditS is designed to correct segmentation results represented not only as masks but also as meshes. In addition, IntellEditS accepts intuitive boundary-based user interactions. The versatility and performance of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied anatomical structures and resolutions.
Easy-interactive and quick psoriasis lesion segmentation
NASA Astrophysics Data System (ADS)
Ma, Guoli; He, Bei; Yang, Wenming; Shu, Chang
2013-12-01
This paper proposes an interactive psoriasis lesion segmentation algorithm based on Gaussian Mixture Model (GMM). Psoriasis is an incurable skin disease and affects large population in the world. PASI (Psoriasis Area and Severity Index) is the gold standard utilized by dermatologists to monitor the severity of psoriasis. Computer aid methods of calculating PASI are more objective and accurate than human visual assessment. Psoriasis lesion segmentation is the basis of the whole calculating. This segmentation is different from the common foreground/background segmentation problems. Our algorithm is inspired by GrabCut and consists of three main stages. First, skin area is extracted from the background scene by transforming the RGB values into the YCbCr color space. Second, a rough segmentation of normal skin and psoriasis lesion is given. This is an initial segmentation given by thresholding a single gaussian model and the thresholds are adjustable, which enables user interaction. Third, two GMMs, one for the initial normal skin and one for psoriasis lesion, are built to refine the segmentation. Experimental results demonstrate the effectiveness of the proposed algorithm.
Molecular dynamics studies of the protein-protein interactions in inhibitor of κB kinase-β.
Jones, Michael R; Liu, Cong; Wilson, Angela K
2014-02-24
Activation of the inhibitor of κB kinase subunit β (IKKβ) oligomer initiates a cascade that results in the translocation of transcription factors involved in mediating immune responses. Dimerization of IKKβ is required for its activation. Coarse-grained and atomistic molecular dynamics simulations were used to investigate the conformation-activity and structure-activity relationships within the oligomer assembly of IKKβ that are impacted upon activation, mutation, and binding of ATP. Intermolecular interactions, free energies, and conformational changes were compared among several conformations, including a monomer, two different dimers, and the tetramer. Modifications to the activation segment induce conformational changes that disrupt dimerization and suggest that the multimeric assembly mediates a global stability for the enzyme that influences the activity of IKKβ.
Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours
Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios
2010-01-01
We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909
Development of a novel 2D color map for interactive segmentation of histological images.
Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D
2012-05-01
We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.
ERIC Educational Resources Information Center
Grinnell, Frederick
Science is many things to many people: a way of thinking and an activity of individuals in the laboratory; a highly structured institution that recruits, instructs, and regulates its members; and a sensitive, interactive, and integrated segment of modern culture and society. This book presents an introduction to these aspects of science from the…
NASA Astrophysics Data System (ADS)
Victor, P.; Sobiesiak, M.
2005-12-01
Convergent plate boundaries at continental margins belong to the tectonically most active areas on earth and are endangered by devastating earthquakes and tsunamis. The north Chilean margin is a high strain continental margin driven by fast plate convergence rate. The greatest amount of strain is accommodated along the subduction interface. Nevertheless there is extensive crustal deformation obvious by surface ruptures along reactivated segments of large fault systems and vertical surface motions reflecting the interaction between subducting and overriding plates. The historical seismicity record indicates that great earthquakes affect the Chilean Forearc with recurrence intervals of about 112+/- 21 y . The last great event in northern Chile occurred in 1995 near Antofagasta. The Mw= 8.0 event ruptured the subduction interface 180 km along strike with an average slip of about 5m in the depth interval between 10-50 km. From careful evaluation of the aftershock sequence by examining the different catagories of aftershock focal mechanisms we can define three segments of the seismogenic zone affected by the Antofagasta main shock. The non-ruptured northern segment beneath Mejillones Peninsula is seperated by a broad transition zone from the central segment which hosts the earthquakes' rupture plane. The southern fault plane boundary is identified by linear alignment of all apparent aftershock mechanisms. Along this southern boundary the strike slip mechanisms are exclusively left lateral whereas the strike slip mechanisms along the northern transition zone are right lateral. The orientations of summed moment tensors calculated from aftershock fault plane solutions on the northern segment and in the northern transition zone differ from the orientations exhibited by moment tensors on the central segment. This might indicate a rotational component in the coseismic movement of the ruptured segment relative to the non-ruptured segment. The observed segmentation of the downgoing plate correlates well with changes in the coseismic surface displacement field and coseismic rotations derived from GPS data (Allmendinger et al. in press). We can localize a transition zone at Mejillones peninsula (23,5°S) striking approximately N 80°E dominated by clockwise vertical axis rotations also marked by rotations of the summed moment tensors on the downgoing plate. The calculated strain tensor for this transition zone does not correspond with long term surface deformation, implying that coseismic as well as early postseismic effects on the subduction interface do not contribute to long term deformation of crustal fault zones. The Antofagasta earthquake took place just south of the large 1877 gap which extends from southern Peru to Mejillones Peninsula, being the surface expression of a barrier seperating the Antofagasta fault plane from the expected future fault plane. From our studies of the Antofagasta subduction zone and the surface displacement field we hope to find evidences for interface-crust-surface interactions which can be extrapolated also to the 1877 gap.
Segmentation and learning in the quantitative analysis of microscopy images
NASA Astrophysics Data System (ADS)
Ruggiero, Christy; Ross, Amy; Porter, Reid
2015-02-01
In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.
Nair, K. Saidas; Hanson, Susan M.; Mendez, Ana; Gurevich, Eugenia V.; Kennedy, Matthew J.; Shestopalov, Valery I.; Vishnivetskiy, Sergey A.; Chen, Jeannie; Hurley, James B.; Gurevich, Vsevolod V.; Slepak, Vladlen Z.
2009-01-01
Summary In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion. PMID:15944125
Zhao, Xuan; Khurana, Simran; Charkraborty, Sharmistha; Tian, Yuqian; Sedor, John R.; Bruggman, Leslie A.; Kao, Hung-Ying
2017-01-01
Glucocorticoids are a general class of steroids that possess renoprotective activity in glomeruli through their interaction with the glucocorticoid receptor. However, the mechanisms by which glucocorticoids ameliorate proteinuria and glomerular disease are not well understood. In this study, we demonstrated that α actinin 4 (ACTN4), an actin-cross-linking protein known to coordinate cytoskeletal organization, interacts with the glucocorticoid receptor (GR) in the nucleus of human podocytes (HPCs), a key cell type in the glomerulus critical for kidney filtration function. The GR-ACTN4 complex enhances glucocorticoid response element (GRE)-driven reporter activity. Stable knockdown of ACTN4 by shRNA in HPCs significantly reduces dexamethasone-mediated induction of GR target genes and GRE-driven reporter activity without disrupting dexamethasone-induced nuclear translocation of GR. Synonymous mutations or protein expression losses in ACTN4 are associated with kidney diseases, including focal segmental glomerulosclerosis, characterized by proteinuria and podocyte injury. We found that focal segmental glomerulosclerosis-linked ACTN4 mutants lose their ability to bind liganded GR and support GRE-mediated transcriptional activity. Mechanistically, GR and ACTN4 interact in the nucleus of HPCs. Furthermore, disruption of the LXXLL nuclear receptor-interacting motif present in ACTN4 results in reduced GR interaction and dexamethasone-mediated transactivation of a GRE reporter while still maintaining its actin-binding activity. In contrast, an ACTN4 isoform, ACTN4 (Iso), that loses its actin-binding domain is still capable of potentiating a GRE reporter. Dexamethasone induces the recruitment of ACTN4 and GR to putative GREs in dexamethasone-transactivated promoters, SERPINE1, ANGPLT4, CCL20, and SAA1 as well as the NF-κB (p65) binding sites on GR-transrepressed promoters such as IL-1β, IL-6, and IL-8. Taken together, our data establish ACTN4 as a transcriptional co-regulator that modulates both dexamethasone-transactivated and -transrepressed genes in podocytes. PMID:27998979
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki
2016-01-01
A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628
Identity of the segment of human complement C8 recognized by complement regulatory protein CD59.
Lockert, D H; Kaufman, K M; Chang, C P; Hüsler, T; Sodetz, J M; Sims, P J
1995-08-25
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C5b-9 membrane attack complex (MAC), thereby protecting human cells from lysis by human complement. The inhibitory function of CD59 derives from its capacity to interact with both the C8 and C9 components of MAC, preventing assembly of membrane-inserted C9 polymer. MAC-inhibitory activity of CD59 is species-selective and is most effective when both C8 and C9 derive from human or other primate plasma. Rabbit C8 and C9, which can substitute for human C8 and C9 in MAC, mediate virtually unrestricted lysis of human cells expressing CD59. In order to identify the segment of human C8 that is recognized by CD59, recombinant peptides containing human or rabbit C8 sequence were expressed in Escherichia coli and purified. CD59 was found to specifically bind to a peptide corresponding to residues 334-385 of the human C8 alpha-subunit, and to require a disulfide bond between Cys345 and Cys369. No specific binding was observed to the corresponding sequence from rabbit C8 alpha (residues 334-386). To obtain functional evidence that this segment of human C8 alpha is selectively recognized by CD59, recombinant C8 proteins were prepared by co-transfecting COS-7 cells with human/rabbit chimeras of the C8 alpha cDNA, and cDNAs encoding the C8 beta and C8 gamma chains. Hemolytic activity of MAC formed with chimeric C8 was analyzed using target cells reconstituted with CD59. These experiments confirmed that CD59 recognizes a conformationally sensitive epitope that is within a segment of human C8 alpha internal to residues 320-415. Our data also suggest that optimal interaction of CD59 with this segment of human C8 alpha is influenced by N-terminal flanking sequence in C8 alpha and by human C8 beta, but is unaffected by C8 gamma.
Seismic velocity structure in the western part of Nankai subduction zone
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.
2011-12-01
In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. However, recent studies show the possibility of simultaneous rupture of the Nankai and Hyuga-nada segments was also pointed out [e.g., Furumura et al, 2010 JGR]. Because seismic velocity structure is one of the useful and basic information for understanding the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a series of wide-angle active source surveys and local seismic observations among the three major seismogenic zones and Hyuga-nada segment from 2008, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan". We are performing two set of three-dimensional seismic velocity tomographic inversions, one is in the Hyuga-nada region and the other is western part of the coseismic rupture area of 1946 Nankai earthquake, to discuss the relationship between the structural heterogeneities and the location of segment boundary between Hyuga-nada and Nankai segment. For the analysis of Hyuga-nada segment, we used both active and passive source data. The obtained velocity model clearly showed the subducted Kyushu-Palau ridge as thick low velocity Philippine Sea slab in the southwestern part. Our velocity image also indicates that "the thin oceanic crust zone" located between Nankai segment and Kyushu-Palau Ridge segment, founded by Nakanishi et al [2010, AGU] by analyzing of the active source survey, continuously exists from trough axis to near the coastline of Kyushu Island. The overriding plate just above the coseismic slip area of 1968 Hyuga-nada earthquake shows relatively high velocity. Although the tomographic study in the western part of Nankai seismogenic zone is still a preliminary stage and we used only a part of the passive source data, we found the anomalous high velocity zone in the overriding plate. This zone is located at just beneath the cape Ashizuri, corresponding to the boundary between the Nankai and Hyuga-nada segments. To clarify more detail structure, we will perform the joint inversion using both active and passive source data in the western Nankai seismogenic zone.
Zhang, Yue; Zheng, Qing-Chuan
2018-06-14
Mig6, a negative regulator, directly binds to epidermal growth factor receptor (EGFR), including Mig6-segment1 and Mig6-segment2. Mig6 requires phosphorylation of Y394 on Mig6-segment2 in order to inhibit EGFR. Two phosphorylation pathways for Y394 have been previously reported and the first way may phosphorylate Y394 primed by Y395 phosphorylation. Besides, the binding mechanism of phosphorylated Mig6-segment2 with EGFR has not been elucidated clearly. Focused on EGFR complex with phosphorylated Mig6-segment2, molecular dynamics (MD) simulations were performed to explore the interactions of Mig6-segment2 with EGFR. Our results indicate a probable phosphorylation pathway on Y394 and some key residues of EGFR play important roles in binding to phosphorylated Mig6-segment2. In addition, a special L-shaped structure was found to be possibly associated with irreversible inhibition of EGFR by Mig6. Our work can give meaningful information to better understand the phosphorylation pathways for Y394 and the interactions of EGFR binding to phosphorylated Mig6-segment2. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bruni, R; Taeusch, H W; Waring, A J
1991-01-01
The mechanisms by which pulmonary surfactant protein B (SP-B) affects the surface activity of surfactant lipids are unclear. We have studied the peptide/lipid interactions of the amino-terminal amphipathic domain of SP-B by comparing the secondary conformations and surface activities of a family of synthetic peptides based on the native human SP-B sequence, modified by site-specific amino acid substitutions. Circular dichroism measurements show an alpha-helical structure correlating with the ability of the peptides to interact with lipids and with the surface activity of peptide/lipid dispersions. Amino acid substitutions altering either the charge or the hydrophobicity of the residues lowered the helical content and reduced the association of the aminoterminal segment with lipid dispersions. Surface activity of peptide/lipid mixtures was maximally altered by reversal of charge in synthetic peptides. These observations indicate that electrostatic interactions and hydrophobicity are important factors in determining optimal structure and function of surfactant peptides in lipid dispersions. Images PMID:1871144
Is visual image segmentation a bottom-up or an interactive process?
Vecera, S P; Farah, M J
1997-11-01
Visual image segmentation is the process by which the visual system groups features that are part of a single shape. Is image segmentation a bottom-up or an interactive process? In Experiments 1 and 2, we presented subjects with two overlapping shapes and asked them to determine whether two probed locations were on the same shape or on different shapes. The availability of top-down support was manipulated by presenting either upright or rotated letters. Subjects were fastest to respond when the shapes corresponded to familiar shapes--the upright letters. In Experiment 3, we used a variant of this segmentation task to rule out the possibility that subjects performed same/different judgments after segmentation and recognition of both letters. Finally, in Experiment 4, we ruled out the possibility that the advantage for upright letters was merely due to faster recognition of upright letters relative to rotated letters. The results suggested that the previous effects were not due to faster recognition of upright letters; stimulus familiarity influenced segmentation per se. The results are discussed in terms of an interactive model of visual image segmentation.
Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne
2017-10-01
Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.
Karenga, Samuel; El Rassi, Ziad
2011-04-01
Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D
NASA Astrophysics Data System (ADS)
Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.
2009-02-01
We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.
Interactive-cut: Real-time feedback segmentation for translational research.
Egger, Jan; Lüddemann, Tobias; Schwarzenberg, Robert; Freisleben, Bernd; Nimsky, Christopher
2014-06-01
In this contribution, a scale-invariant image segmentation algorithm is introduced that "wraps" the algorithm's parameters for the user by its interactive behavior, avoiding the definition of "arbitrary" numbers that the user cannot really understand. Therefore, we designed a specific graph-based segmentation method that only requires a single seed-point inside the target-structure from the user and is thus particularly suitable for immediate processing and interactive, real-time adjustments by the user. In addition, color or gray value information that is needed for the approach can be automatically extracted around the user-defined seed point. Furthermore, the graph is constructed in such a way, so that a polynomial-time mincut computation can provide the segmentation result within a second on an up-to-date computer. The algorithm presented here has been evaluated with fixed seed points on 2D and 3D medical image data, such as brain tumors, cerebral aneurysms and vertebral bodies. Direct comparison of the obtained automatic segmentation results with costlier, manual slice-by-slice segmentations performed by trained physicians, suggest a strong medical relevance of this interactive approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Min; Chen, Xinjian; Zhang, Zhiqiang; Ma, Chiyuan
2017-02-01
Accurate volume measurements of pituitary adenoma are important to the diagnosis and treatment for this kind of sellar tumor. The pituitary adenomas have different pathological representations and various shapes. Particularly, in the case of infiltrating to surrounding soft tissues, they present similar intensities and indistinct boundary in T1-weighted (T1W) magnetic resonance (MR) images. Then the extraction of pituitary adenoma from MR images is still a challenging task. In this paper, we propose an interactive method to segment the pituitary adenoma from brain MR data, by combining graph cuts based active contour model (GCACM) and random walk algorithm. By using the GCACM method, the segmentation task is formulated as an energy minimization problem by a hybrid active contour model (ACM), and then the problem is solved by the graph cuts method. The region-based term in the hybrid ACM considers the local image intensities as described by Gaussian distributions with different means and variances, expressed as maximum a posteriori probability (MAP). Random walk is utilized as an initialization tool to provide initialized surface for GCACM. The proposed method is evaluated on the three-dimensional (3-D) T1W MR data of 23 patients and compared with the standard graph cuts method, the random walk method, the hybrid ACM method, a GCACM method which considers global mean intensity in region forces, and a competitive region-growing based GrowCut method planted in 3D Slicer. Based on the experimental results, the proposed method is superior to those methods.
Malu, Krishnakumar; Garhwal, Rahul; Pelletier, Margery G. H.; Gotur, Deepali; Halene, Stephanie; Zwerger, Monika; Yang, Zhong-Fa; Rosmarin, Alan G.; Gaines, Peter
2016-01-01
Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted ETS factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils. PMID:27342846
Bhattacharya, Nilakshee; Yi, Myunggi; Zhou, Huan-Xiang; Logan, Timothy M.
2008-01-01
Summary The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of DtxR by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. In this study we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low order parameters with internal rotational correlation times on the order of 0.6 – 1 ns. Further analysis showed that the SH3 domain was rich in millisecond timescale motions while the Pr segment was rich in motions on the 100s μs timescale. Molecular dynamics simultations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results of this study provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity. PMID:17976643
An interactive method based on the live wire for segmentation of the breast in mammography images.
Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu
2014-01-01
In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.
Data acquisition system for segmented reactor antineutrino detector
NASA Astrophysics Data System (ADS)
Hons, Z.; Vlášek, J.
2017-01-01
This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
NASA Astrophysics Data System (ADS)
Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander
2016-04-01
Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.
NASA Astrophysics Data System (ADS)
Ahmed, Abdulhakim; Doubre, Cécile; Leroy, Sylvie; Kassim, Mohamed; Keir, Derek; Abayazid, Ahmadine; Julie, Perrot; Laurence, Audin; Vergne, Jérome; Alexandre, Nercessian; Jacques, Eric; Khanbari, Khaled; Sholan, Jamal; Rolandone, Frédérique; Al-Ganad, Ismael
2016-05-01
In November 2010, intense seismic activity including 29 events with a magnitude above 5.0, started in the western part of the Gulf of Aden, where the structure of the oceanic spreading ridge is characterized by a series of N115°-trending slow-spreading segments set within an EW-trending rift. Using signals recorded by permanent and temporary networks in Djibouti and Yemen, we located 1122 earthquakes, with a magnitude ranging from 2.1 to 5.6 from 2010 November 1 to 2011 March 31. By looking in detail at the space-time distribution of the overall seismicity, and both the frequency and the moment tensor of large earthquakes, we re-examine the chronology of this episode. In addition, we also interpret the origin of the activity using high-resolution bathymetric data, as well as from observations of seafloor cable damage caused by high temperatures and lava flows. The analysis allows us to identify distinct active areas. First, we interpret that this episode is mainly related to a diking event along a specific ridge segment, located at E044°. In light of previous diking episodes in nearby subaerial rift segments, for which field constraints and both seismic and geodetic data exist, we interpret the space-time evolution of the seismicity of the first few days. Migration of earthquakes suggests initial magma ascent below the segment centre. This is followed by a southeastward dike propagation below the rift immediately followed by a northwestward dike propagation below the rift ending below the northern ridge wall. The cumulative seismic moment associated with this sequence reaches 9.1 × 1017 Nm, and taking into account a very low seismic versus geodetic moment, we estimate a horizontal opening of ˜0.58-2.9 m. The seismic activity that followed occurred through several bursts of earthquakes aligned along the segment axis, which are interpreted as short dike intrusions implying fast replenishment of the crustal magma reservoir feeding the dikes. Over the whole period, the opening is estimated to be ˜1.76-8.8 m across the segment. A striking feature of this episode is that the seismicity remained confined within one individual segment, whereas the adjacent en-echelon segments were totally quiescent, suggesting that the magma supply system of one segment is disconnected from those of the neighbouring segments. Second, we identify activity induced by the first intrusion with epicentres aligned along an N035°E-trending, ˜30 km long at the northwestern end of the active opening segment. This group encompasses more than seven earthquakes with magnitude larger than 5.0, and with strike-slip focal mechanisms consistent with the faults identified in the bathymetry and the structural pattern of the area. We propose that a transform fault is currently in formation which indicates an early stage of the ridge segmentation, at the locus of the trend change of the spreading ridge, which also corresponds to the boundary between a clear oceanic lithosphere and the zone of transform between continental and oceanic crust.
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.
2015-01-01
Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433
Berthier, Marcelo L.; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia
2013-01-01
Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and18FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream. PMID:24391569
Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia
2013-01-01
Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream.
NASA Astrophysics Data System (ADS)
Yin, Y.; Sonka, M.
2010-03-01
A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).
KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.
Nakajo, Koichi; Kubo, Yoshihiro
2015-06-15
The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Role of the tail in the regulated state of myosin 2
Jung, HyunSuk; Billington, Neil; Thirumurugan, Kavitha; Salzameda, Bridget; Cremo, Christine R.; Chalovich, Joseph M.; Chantler, Peter D.; Knight, Peter J.
2013-01-01
Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together and the long tail is folded into three closely-packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained. Using electron microscopy, we show that compact monomers of smooth muscle myosin 2 have the same structure in both the native state and following specific, intramolecular photo-cross-linking between Cys109 of the regulatory light chain (RLC) and segment 3 of the tail. Non-specific cross-linking between lysine residues of the folded monomer by glutaraldehyde also does not perturb the compact conformation, and stabilises it against unfolding at high ionic strength. Sequence comparisons across phyla and myosin 2 isoforms suggest that folding of the tail is stabilised by ionic interactions between the positively-charged N-terminal sequence of the RLC and a negatively-charged region near the start of tail segment 3, and that phosphorylation of the RLC could perturb these interactions. Our results support the view that interactions between the heads and the distal tail perform a critical role in regulating activity of myosin 2 molecules through stabilising the compact monomer conformation. PMID:21419133
NASA Astrophysics Data System (ADS)
Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; St. Laurent, K. E.; Soummer, R.; Shaklan, S.; Norman, C.
2018-01-01
Future searches for bio-markers on habitable exoplanets will rely on telescope instruments that achieve extremely high contrast at small planet-to-star angular separations. Coronagraphy is a promising starlight suppression technique, providing excellent contrast and throughput for off-axis sources on clear apertures. However, the complexity of space- and ground-based telescope apertures goes on increasing over time, owing to the combination of primary mirror segmentation, the secondary mirror, and its support structures. These discontinuities in the telescope aperture limit the coronagraph performance. In this paper, we present ACAD-OSM, a novel active method to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph. Active methods use one or several deformable mirrors that are controlled with an interaction matrix to correct for the aberrations in the pupil. However, they are often limited by the amount of aberrations introduced by aperture discontinuities. This algorithm relies on the recalibration of the interaction matrix during the correction process to overcome this limitation. We first describe the ACAD-OSM technique and compare it to the previous active methods for the correction of aperture discontinuities. We then show its performance in terms of contrast and off-axis throughput for static aperture discontinuities (segmentation, struts) and for some aberrations evolving over the life of the instrument (residual phase aberrations, artifacts in the aperture, misalignments in the coronagraph design). This technique can now obtain the Earth-like planet detection threshold of {10}10 contrast on any given aperture over at least a 10% spectral bandwidth, with several coronagraph designs.
Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage
Zhou, Wei; De Iuliis, Geoffry N.; Dun, Matthew D.; Nixon, Brett
2018-01-01
The testicular spermatozoa of all mammalian species are considered functionally immature owing to their inability to swim in a progressive manner and engage in productive interactions with the cumulus–oocyte complex. The ability to express these key functional attributes develops progressively during the cells’ descent through the epididymis, a highly specialized ductal system that forms an integral part of the male reproductive tract. The functional maturation of the spermatozoon is achieved via continuous interactions with the epididymal luminal microenvironment and remarkably, occurs in the complete absence of de novo gene transcription or protein translation. Compositional analysis of the luminal fluids collected from the epididymis of a variety of species has revealed the complexity of this milieu, with a diversity of inorganic ions, proteins, and small non-coding RNA transcripts having been identified to date. Notably, both the quantitative and qualitative profile of each of these different luminal elements display substantial segment-to-segment variation, which in turn contribute to the regionalized functionality of this long tubule. Thus, spermatozoa acquire functional maturity in the proximal segments before being stored in a quiescent state in the distal segment in preparation for ejaculation. Such marked division of labor is achieved via the combined secretory and absorptive activity of the epithelial cells lining each segment. Here, we review our current understanding of the molecular mechanisms that exert influence over the unique intraluminal environment of the epididymis, with a particular focus on vesicle-dependent mechanisms that facilitate intercellular communication between the epididymal soma and maturing sperm cell population. PMID:29541061
Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona
2015-01-01
Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05); LLR was scaled to increased displacement (P<0.05). Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05) and proximal muscles to stabilise in LLR (P<0.05). Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05), whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05) and hip joint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061
Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi
2015-07-01
Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Kai-Chun; Chan, Chia-Tai
2017-01-01
The proportion of the aging population is rapidly increasing around the world, which will cause stress on society and healthcare systems. In recent years, advances in technology have created new opportunities for automatic activities of daily living (ADL) monitoring to improve the quality of life and provide adequate medical service for the elderly. Such automatic ADL monitoring requires reliable ADL information on a fine-grained level, especially for the status of interaction between body gestures and the environment in the real-world. In this work, we propose a significant change spotting mechanism for periodic human motion segmentation during cleaning task performance. A novel approach is proposed based on the search for a significant change of gestures, which can manage critical technical issues in activity recognition, such as continuous data segmentation, individual variance, and category ambiguity. Three typical machine learning classification algorithms are utilized for the identification of the significant change candidate, including a Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Naive Bayesian (NB) algorithm. Overall, the proposed approach achieves 96.41% in the F1-score by using the SVM classifier. The results show that the proposed approach can fulfill the requirement of fine-grained human motion segmentation for automatic ADL monitoring. PMID:28106853
Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong
2011-01-01
Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
Molecular mechanism of APC/C activation by mitotic phosphorylation
Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David
2016-01-01
In eukaryotes, the anaphase-promoting complex/cyclosome (APC/C) regulates the ubiquitin-dependent proteolysis of specific cell cycle proteins to coordinate chromosome segregation in mitosis and entry into G1 (refs 1,2). The APC/C’s catalytic activity and ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits (Cdc20 and Cdh1). Coactivators recognize substrate degrons3, and enhance the APC/C’s affinity for its cognate E2 (refs 4–6). During mitosis, cyclin-dependent kinase and polo kinase control Cdc20 and Cdh1-mediated activation of the APC/C. Hyper-phosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C7–12, whereas phosphorylation of Cdh1 prevents its association with the APC/C9,13,14. Since both coactivators associate with the APC/C through their common C box15 and IR (Ile-Arg) tail motifs16,17, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy (cryo-EM) and biochemical analysis, we define the molecular basis of how APC/C phosphorylation allows for its control by Cdc20. An auto-inhibitory (AI) segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the AI segment displaces it from the C-box binding site. Efficient phosphorylation of the AI segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin-Cks to a hyper-phosphorylated loop of Apc3. We also find that the small molecule inhibitor, tosyl-L-arginine methyl ester (TAME), preferentially suppresses APC/CCdc20 rather than APC/CCdh1, and interacts with both the C-box and IR-tail binding sites. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state. PMID:27120157
Molecular mechanism of APC/C activation by mitotic phosphorylation.
Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David
2016-05-12
In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.
Tseng, Tien-Sheng; Tsai, Keng-Chang; Chen, Chinpan
2017-06-01
Microbial infections of antibiotic-resistant strains cause serious diseases and have a significant impact on public health worldwide, so novel antimicrobial drugs are urgently needed. Insect venoms, a rich source of bioactive components containing antimicrobial peptides (AMPs), are attractive candidates for new therapeutic agents against microbes. Recently, a novel peptide, P1, identified from the venom of the Australian jumper ant Myrmecia pilosula, showed potent antimicrobial activities against both Gram-negative and Gram-positive bacteria, but its structure-function relationship is unknown. Here, we used biochemical and biophysical techniques coupled with computational simulations to explore the mode of action of P1 interaction with dodecylphosphocholine (DPC) micelles as a model membrane system. Our circular dichroism (CD) and NMR studies revealed an amphipathic α-helical structure for P1 upon interaction with DPC micelles. A paramagnetic relaxation enhancement approach revealed that P1 orients its α-helix segment (F6-G14) into DPC micelles. In addition, the α-helix segment could be essential for membrane permeabilization and antimicrobial activity. Moreover, the arginine residues R8, R11, and R15 significantly contribute to helix formation and membrane-binding affinity. The lysine residue K19 of the C-terminus functionally guides P1 to interact with DPC micelles in the early interaction stage. Our study provides insights into the mode of action of P1, which is valuable in modifying and developing potent AMPs as antibiotic drugs.
NASA Astrophysics Data System (ADS)
Butler, Jason E.; Shaqfeh, Eric S. G.
2005-01-01
Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.
Butler, Jason E; Shaqfeh, Eric S G
2005-01-01
Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions. (c) 2005 American Institute of Physics.
Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki
2016-07-15
A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Garneau, Line; Klein, Hélène; Lavoie, Marie-France; Brochiero, Emmanuelle; Parent, Lucie
2014-01-01
The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators. PMID:24470490
Adams, Rachel M.; Karlin, Beth; Eisenman, David P.; Blakley, Johanna; Glik, Deborah
2017-01-01
Background: In 2008, the Southern California Earthquake Center in collaboration with the U.S. Geological Survey Earthquake Hazards Program launched the first annual Great ShakeOut, the largest earthquake preparedness drill in the history of the United States. Materials and Methods: We collected online survey data from 2052 campaign registrants to assess how people participated, whether audience segments shared behavioral patterns, and whether these segments were associated with five social cognitive factors targeted by the ShakeOut campaign. Results: Participants clustered into four behavioral patterns. The Minimal cluster had low participation in all activities (range: 0–39% participation). The Basic Drill cluster only participated in the drop, cover and hold drill (100% participation). The Community-Oriented cluster, involved in the drill (100%) and other interpersonal activities including attending disaster planning meetings (74%), was positively associated with interpersonal communication (β = 0.169), self-efficacy (β = 0.118), outcome efficacy (β = 0.110), and knowledge about disaster preparedness (β = 0.151). The Interactive and Games cluster, which participated in the drill (79%) and two online earthquake preparedness games (53% and 75%), was positively associated with all five social cognitive factors studied. Conclusions: Our results support audience segmentation approaches to engaging the public, which address the strengths and weaknesses of different segments. Offering games may help “gamers” gain competencies required to prepare for disasters. Targeting the highly active Community-Oriented cluster for leadership roles could help build community resilience by encouraging others to become more involved in disaster planning. We propose that the days of single, national education campaigns without local variation should end. PMID:29149064
Selionov, V A; Solopova, I A; Zhvansky, D S
2016-01-01
We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries, Parkinson's disease and other neurological diseases.
Vesselness propagation: a fast interactive vessel segmentation method
NASA Astrophysics Data System (ADS)
Cai, Wenli; Dachille, Frank; Harris, Gordon J.; Yoshida, Hiroyuki
2006-03-01
With the rapid development of multi-detector computed tomography (MDCT), resulting in increasing temporal and spatial resolution of data sets, clinical use of computed tomographic angiography (CTA) is rapidly increasing. Analysis of vascular structures is much needed in CTA images; however, the basis of the analysis, vessel segmentation, can still be a challenging problem. In this paper, we present a fast interactive method for CTA vessel segmentation, called vesselness propagation. This method is a two-step procedure, with a pre-processing step and an interactive step. During the pre-processing step, a vesselness volume is computed by application of a CTA transfer function followed by a multi-scale Hessian filtering. At the interactive stage, the propagation is controlled interactively in terms of the priority of the vesselness. This method was used successfully in many CTA applications such as the carotid artery, coronary artery, and peripheral arteries. It takes less than one minute for a user to segment the entire vascular structure. Thus, the proposed method provides an effective way of obtaining an overview of vascular structures.
The semiotics of medical image Segmentation.
Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M
2018-02-01
As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Interactive surface correction for 3D shape based segmentation
NASA Astrophysics Data System (ADS)
Schwarz, Tobias; Heimann, Tobias; Tetzlaff, Ralf; Rau, Anne-Mareike; Wolf, Ivo; Meinzer, Hans-Peter
2008-03-01
Statistical shape models have become a fast and robust method for segmentation of anatomical structures in medical image volumes. In clinical practice, however, pathological cases and image artifacts can lead to local deviations of the detected contour from the true object boundary. These deviations have to be corrected manually. We present an intuitively applicable solution for surface interaction based on Gaussian deformation kernels. The method is evaluated by two radiological experts on segmentations of the liver in contrast-enhanced CT images and of the left heart ventricle (LV) in MRI data. For both applications, five datasets are segmented automatically using deformable shape models, and the resulting surfaces are corrected manually. The interactive correction step improves the average surface distance against ground truth from 2.43mm to 2.17mm for the liver, and from 2.71mm to 1.34mm for the LV. We expect this method to raise the acceptance of automatic segmentation methods in clinical application.
[A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].
Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong
2011-06-01
For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.
Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M
2010-12-01
Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.
The Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs
Parker, Michael S.; Balasubramaniam, Ambikaipakan; Sallee, Floyd R.; Parker, Steven L.
2018-01-01
Eukaryote ribosomal RNAs (rRNAs) have expanded in the course of phylogeny by addition of nucleotides in specific insertion areas, the expansion segments. These number about 40 in the larger (25–28S) rRNA (up to 2,400 nucleotides), and about 12 in the smaller (18S) rRNA (<700 nucleotides). Expansion of the larger rRNA shows a clear phylogenetic increase, with a dramatic rise in mammals and especially in hominids. Substantial portions of expansion segments in this RNA are not bound to ribosomal proteins, and may engage extraneous interactants, including messenger RNAs (mRNAs). Studies on the ribosome-mRNA interaction have focused on proteins of the smaller ribosomal subunit, with some examination of 18S rRNA. However, the expansion segments of human 28S rRNA show much higher density and numbers of mRNA matches than those of 18S rRNA, and also a higher density and match numbers than its own core parts. We have studied that with frequent and potentially stable matches containing 7–15 nucleotides. The expansion segments of 28S rRNA average more than 50 matches per mRNA even assuming only 5% of their sequence as available for such interaction. Large expansion segments 7, 15, and 27 of 28S rRNA also have copious long (≥10-nucleotide) matches to most human mRNAs, with frequencies much higher than in other 28S rRNA parts. Expansion segments 7 and 27 and especially segment 15 of 28S rRNA show large size increase in mammals compared to other metazoans, which could reflect a gain of function related to interaction with non-ribosomal partners. The 28S rRNA expansion segment 15 shows very high increments in size, guanosine, and cytidine nucleotide content and mRNA matching in mammals, and especially in hominids. With these segments (but not with other 28S rRNA or any 18S rRNA expansion segments) the density and number of matches are much higher in 5′-terminal than in 3′-terminal untranslated mRNA regions, which may relate to mRNA mobilization via 5′ termini. Matches in the expansion segments 7, 15, and 27 of human 28S rRNA appear as candidates for general interaction with mRNAs, especially those associated with intracellular matrices such as the endoplasmic reticulum. PMID:29563925
Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun
2013-08-01
Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.
Stratton, Margaret; Lee, Il-Hyung; Bhattacharyya, Moitrayee; Christensen, Sune M; Chao, Luke H; Schulman, Howard; Groves, Jay T; Kuriyan, John
2014-01-01
The activation of the dodecameric Ca2+/calmodulin dependent kinase II (CaMKII) holoenzyme is critical for memory formation. We now report that CaMKII has a remarkable property, which is that activation of the holoenzyme triggers the exchange of subunits between holoenzymes, including unactivated ones, enabling the calcium-independent phosphorylation of new subunits. We show, using a single-molecule TIRF microscopy technique, that the exchange process is triggered by the activation of CaMKII, and that exchange is modulated by phosphorylation of two residues in the calmodulin-binding segment, Thr 305 and Thr 306. Based on these results, and on the analysis of molecular dynamics simulations, we suggest that the phosphorylated regulatory segment of CaMKII interacts with the central hub of the holoenzyme and weakens its integrity, thereby promoting exchange. Our results have implications for an earlier idea that subunit exchange in CaMKII may have relevance for information storage resulting from brief coincident stimuli during neuronal signaling. DOI: http://dx.doi.org/10.7554/eLife.01610.001 PMID:24473075
Drin, Guillaume; Douguet, Dominique; Scarlata, Suzanne
2008-01-01
Phospholipase C-beta (PLCβ) enzymes are activated by Gαq and Gβγ subunits and catalyze the hydrolysis of the minor membrane lipid phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2). Activation of PLCβ2 by Gβγ subunits has been shown to be conferred through its N-terminal pleckstrin homology (PH) domain although the underlying mechanism is unclear. Also unclear are observations that the extent of Gβγ activation differs on different membrane surfaces. In this study, we have identified a unique region of the PH domain of PLCβ2 domain (residues 71-88) which, when added to the enzyme as a peptide, causes enzyme activation similar to Gβγ subunits. This PH domain segment interacts strongly with membranes composed of lipid mixtures but not those containing lipids with electrically neutral zwitterionic head groups. Moreso, addition of this segment perturbs interaction of the catalytic domain, but not the PH domain, with membrane surfaces. We monitored the orientation of the PH and catalytic domains of PLC by intermolecular fluorescence resonance energy transfer (FRET) using the Gβγ activatable mutant, PLCβ2/δ1(C193S). We find an increase in FRET with binding to membranes with mixed lipids but not to those containing only lipids with electrically neutral head groups. These results suggest that enzymatic activation can be conferred through optimal association of the PHβ71-88 region to specific membrane surfaces. These studies allow us to understand the basis of variations of Gβγ activation on different membrane surfaces. PMID:16669615
NASA Astrophysics Data System (ADS)
Murton, B. J.; Parson, L. M.; Sauter, D.
2001-12-01
The intermediate spreading, Central Indian Ridge (CIR) forms a couplet with a weak hot-spot of which the Rodrigues archipelago is an expression. Recently collected bathymetry shows that despite having little in the way of a significant topographic swell, the hot-spot is associated with a change in offset sense across adjacent transforms of the CIR causing the ridge to draw nearer to the Rodrigues island system. The most proximal ridge segment of the CIR is over 20km long and comprises three non-transform bounded sub-segments. The most northerly sub-segment has a shallow (<3000m), narrow (<5km) and featureless flat rift valley. TOBI sidescan sonar imagery shows that the segment is host to a 15km-long, 5km-wide single sheet flow. Elsewhere in the segment the valley floor is characterised by long (>5km), narrow (<1km) ridges that often terminate in conical seamounts. These ridges are the loci of some of the acoustically freshest volcanic facies in the rift valley. Samples recovered from these ridges have similar petrology along strike. With increasing distance south along the CIR, the ridge segments are typically 500m deeper than to the north. Here they are about 75km long and bounded by transform offsets that are 50 km long. However, even in the deepest parts of these segments, where the axial floor is over 4000m deep at the ridge-transform-intersections, there is fresh lava and other evidence for abundant volcanic activity. Within these segments, the rift valley comprises mainly seamounts and hummocky volcanic features. We believe the westward stepping trend of the CIR towards the Rodrigues islands is a function of the hot spot. The elevated temperature and volatile content to the west reduces mantle viscosity which, combined with thinner and hence weaker lithosphere, influencec the loci of initial oceanic rifting and the relative position of the ridge axis. The unusually great length of the northern segment has a similar origin with the presence of thin and weak lithosphere and less viscous mantle reducing the tectonic ``memory" of the ridge system. Despite being farther from the hot-spot, the southern segments have a similarly robust melt supply to the northern segment. The main difference is melt delivery, with the northern segments supplied via long dikes that also erupt as fissure ridges, while to the south the supply is more disseminated. The massive lava sheet and robust and narrow axial valley in the northernmost sub-segment coincides with the tip of a southward propagating system. This system appears to herald the onset of more productive melting a may represent a relocation of the hot-spot-ridge interaction.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
Three-dimensional rendering of segmented object using matlab - biomed 2010.
Anderson, Jeffrey R; Barrett, Steven F
2010-01-01
The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.
Brain blood vessel segmentation using line-shaped profiles
NASA Astrophysics Data System (ADS)
Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried
2013-11-01
Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.
A database of aerothermal measurements in hypersonic flow for CFD validation
NASA Technical Reports Server (NTRS)
Holden, M. S.; Moselle, J. R.
1992-01-01
This paper presents an experimental database selected and compiled from aerothermal measurements obtained on basic model configurations on which fundamental flow phenomena could be most easily examined. The experimental studies were conducted in hypersonic flows in 48-inch, 96-inch, and 6-foot shock tunnels. A special computer program was constructed to provide easy access to the measurements in the database as well as the means to plot the measurements and compare them with imported data. The database contains tabulations of model configurations, freestream conditions, and measurements of heat transfer, pressure, and skin friction for each of the studies selected for inclusion. The first segment contains measurements in laminar flow emphasizing shock-wave boundary-layer interaction. In the second segment, measurements in transitional flows over flat plates and cones are given. The third segment comprises measurements in regions of shock-wave/turbulent-boundary-layer interactions. Studies of the effects of surface roughness of nosetips and conical afterbodies are presented in the fourth segment of the database. Detailed measurements in regions of shock/shock boundary layer interaction are contained in the fifth segment. Measurements in regions of wall jet and transpiration cooling are presented in the final two segments.
Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets
Jeong, Won-Ki; Beyer, Johanna; Hadwiger, Markus; Vazquez, Amelio; Pfister, Hanspeter; Whitaker, Ross T.
2011-01-01
Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized volume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that our interactive workflow is faster and easier to use for the reconstruction of complex neural processes. PMID:19834227
Semi-automatic knee cartilage segmentation
NASA Astrophysics Data System (ADS)
Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus
2006-03-01
Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.
Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin
2011-03-04
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.
NASA Astrophysics Data System (ADS)
Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe
2018-06-01
In this study, we present a method for improving the quality of automatic single fallen tree stem segmentation in ALS data by applying a specialized constrained conditional random field (CRF). The entire processing pipeline is composed of two steps. First, short stem segments of equal length are detected and a subset of them is selected for further processing, while in the second step the chosen segments are merged to form entire trees. The first step is accomplished using the specialized CRF defined on the space of segment labelings, capable of finding segment candidates which are easier to merge subsequently. To achieve this, the CRF considers not only the features of every candidate individually, but incorporates pairwise spatial interactions between adjacent segments into the model. In particular, pairwise interactions include a collinearity/angular deviation probability which is learned from training data as well as the ratio of spatial overlap, whereas unary potentials encode a learned probabilistic model of the laser point distribution around each segment. Each of these components enters the CRF energy with its own balance factor. To process previously unseen data, we first calculate the subset of segments for merging on a grid of balance factors by minimizing the CRF energy. Then, we perform the merging and rank the balance configurations according to the quality of their resulting merged trees, obtained from a learned tree appearance model. The final result is derived from the top-ranked configuration. We tested our approach on 5 plots from the Bavarian Forest National Park using reference data acquired in a field inventory. Compared to our previous segment selection method without pairwise interactions, an increase in detection correctness and completeness of up to 7 and 9 percentage points, respectively, was observed.
A Bayesian Approach for Image Segmentation with Shape Priors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hang; Yang, Qing; Parvin, Bahram
2008-06-20
Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less
Beichel, Reinhard R; Van Tol, Markus; Ulrich, Ethan J; Bauer, Christian; Chang, Tangel; Plichta, Kristin A; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M
2016-06-01
The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the "just-enough-interaction" principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.
Proportional crosstalk correction for the segmented clover at iThemba LABS
NASA Astrophysics Data System (ADS)
Bucher, T. D.; Noncolela, S. P.; Lawrie, E. A.; Dinoko, T. R. S.; Easton, J. L.; Erasmus, N.; Lawrie, J. J.; Mthembu, S. H.; Mtshali, W. X.; Shirinda, O.; Orce, J. N.
2017-11-01
Reaching new depths in nuclear structure investigations requires new experimental equipment and new techniques of data analysis. The modern γ-ray spectrometers, like AGATA and GRETINA are now built of new-generation segmented germanium detectors. These most advanced detectors are able to reconstruct the trajectory of a γ-ray inside the detector. These are powerful detectors, but they need careful characterization, since their output signals are more complex. For instance for each γ-ray interaction that occurs in a segment of such a detector additional output signals (called proportional crosstalk), falsely appearing as an independent (often negative) energy depositions, are registered on the non-interacting segments. A failure to implement crosstalk correction results in incorrectly measured energies on the segments for two- and higher-fold events. It affects all experiments which rely on the recorded segment energies. Furthermore incorrectly recorded energies on the segments cause a failure to reconstruct the γ-ray trajectories using Compton scattering analysis. The proportional crosstalk for the iThemba LABS segmented clover was measured and a crosstalk correction was successfully implemented. The measured crosstalk-corrected energies show good agreement with the true γ-ray energies independent on the number of hit segments and an improved energy resolution for the segment sum energy was obtained.
Rodríguez, Erika E.; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A.; Jiménez, Ismael; Rudomín, Pablo
2011-01-01
The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA- mean = 1.040.09) or simultaneously from several lumbar segments (mDFA- mean = 1.010.06), where = 0.5 indicates randomness while 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA- = 0.992 as compared to initial conditions mDFA- = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA- = 0.924). In contrast to the classical methods, such as correlation and coherence quantification that define a relation between two sets of data, the mDFA method properly reveals the synchronization of multiple groups of neurons in several segments of the spinal cord. This method is envisaged as a useful tool to characterize the structure of higher order ensembles of cord dorsum spontaneous potentials after spinal cord or peripheral nerve lesions. PMID:22046288
Identification of a Lytic-Cycle Epstein-Barr Virus Gene Product That Can Regulate PKR Activation
Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian
2003-01-01
The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response. PMID:12477828
Identification of a lytic-cycle Epstein-Barr virus gene product that can regulate PKR activation.
Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian
2003-01-01
The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response.
A functional analysis of the spacer of V(D)J recombination signal sequences.
Lee, Alfred Ian; Fugmann, Sebastian D; Cowell, Lindsay G; Ptaszek, Leon M; Kelsoe, Garnett; Schatz, David G
2003-10-01
During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jbeta2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a "digital" requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an "analog" manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for "RSS information content." The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein-DNA interactions in various biological systems.
Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆
Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan
2016-01-01
Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282
Husler, T; Lockert, D H; Sims, P J
1996-03-12
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex (MAC), thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective, and is most effective toward C9 derived from human or other primate plasma. The species-selective activity of CD59 was recently used to map the segment of human C9 that is recognized by this MAC inhibitor, using recombinant rabbit/human C9 chimeras that retain lytic function within the MAC [Husler, T., Lockert, D. H., Kaufman, K. M., Sodetz, J. M., & Sims, P. J. (1995) J. Biol. Chem. 270,3483-3486]. These experiments suggested that the CD59 recognition domain was contained between residues 334 and 415 in human C9. By analyzing the species-selective lytic activity of recombinant C9 with chimeric substitutions internal to this segment, we now demonstrate that the site in human C9 uniquely recognized by CD59 is centered on those residues contained between C9 Cys359/Cys384, with an additional contribution by residues C-terminal to this segment. Consistent with its role as a CD59 recognition domain, CD59 specifically bound a human C9-derived peptide corresponding to residues 359-384, and antibody (Fab) raised against this C9-derived peptide inhibited the lytic activity of human MAC. Mutant human C9 in which Ala was substituted for Cys359/384 was found to express normal lytic activity and to be fully inhibited by CD59. This suggests that the intrachain Cys359/Cys384 disulfide bond within C9 is not required to maintain the conformation of this segment of C9 for interaction with CD59.
Modal analysis of dislocation vibration and reaction attempt frequency
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-02-04
Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less
Genealogy of an ancient protein family: the Sirtuins, a family of disordered members.
Costantini, Susan; Sharma, Ankush; Raucci, Raffaele; Costantini, Maria; Autiero, Ida; Colonna, Giovanni
2013-03-05
Sirtuins genes are widely distributed by evolution and have been found in eubacteria, archaea and eukaryotes. While prokaryotic and archeal species usually have one or two sirtuin homologs, in humans as well as in eukaryotes we found multiple versions and in mammals this family is comprised of seven different homologous proteins being all NAD-dependent de-acylases. 3D structures of human SIRT2, SIRT3, and SIRT5 revealed the overall conformation of the conserved core domain but they were unable to give a structural information about the presence of very flexible and dynamically disordered regions, the role of which is still structurally and functionally unclear. Recently, we modeled the 3D-structure of human SIRT1, the most studied member of this family, that unexpectedly emerged as a member of the intrinsically disordered proteins with its long disordered terminal arms. Despite clear similarities in catalytic cores between the human sirtuins little is known of the general structural characteristics of these proteins. The presence of disorder in human SIRT1 and the propensity of these proteins in promoting molecular interactions make it important to understand the underlying mechanisms of molecular recognition that reasonably should involve terminal segments. The mechanism of recognition, in turn, is a prerequisite for the understanding of any functional activity. Aim of this work is to understand what structural properties are shared among members of this family in humans as well as in other organisms. We have studied the distribution of the structural features of N- and C-terminal segments of sirtuins in all known organisms to draw their evolutionary histories by taking into account average length of terminal segments, amino acid composition, intrinsic disorder, presence of charged stretches, presence of putative phosphorylation sites, flexibility, and GC content of genes. Finally, we have carried out a comprehensive analysis of the putative phosphorylation sites in human sirtuins confirming those sites already known experimentally for human SIRT1 and 2 as well as extending their topology to all the family to get feedback of their physiological functions and cellular localization. Our results highlight that the terminal segments of the majority of sirtuins possess a number of structural features and chemical and physical properties that strongly support their involvement in activities of recognition and interaction with other protein molecules. We also suggest how a multisite phosphorylation provides a possible mechanism by which flexible and intrinsically disordered segments of a sirtuin supported by the presence of positively or negatively charged stretches might enhance the strength and specificity of interaction with a particular molecular partner.
Personius, Stephen F.; DuRoss, Christopher B.; Crone, Anthony J.
2012-01-01
The Brigham City segment (BCS), the northernmost Holocene‐active segment of the Wasatch fault zone (WFZ), is considered a likely location for the next big earthquake in northern Utah. We refine the timing of the last four surface‐rupturing (~Mw 7) earthquakes at several sites near Brigham City (BE1, 2430±250; BE2, 3490±180; BE3, 4510±530; and BE4, 5610±650 cal yr B.P.) and calculate mean recurrence intervals (1060–1500 yr) that are greatly exceeded by the elapsed time (~2500 yr) since the most recent surface‐rupturing earthquake (MRE). An additional rupture observed at the Pearsons Canyon site (PC1, 1240±50 cal yr B.P.) near the southern segment boundary is probably spillover rupture from a large earthquake on the adjacent Weber segment. Our seismic moment calculations show that the PC1 rupture reduced accumulated moment on the BCS about 22%, a value that may have been enough to postpone the next large earthquake. However, our calculations suggest that the segment currently has accumulated more than twice the moment accumulated in the three previous earthquake cycles, so we suspect that additional interactions with the adjacent Weber segment contributed to the long elapse time since the MRE on the BCS. Our moment calculations indicate that the next earthquake is not only overdue, but could be larger than the previous four earthquakes. Displacement data show higher rates of latest Quaternary slip (~1.3 mm/yr) along the southern two‐thirds of the segment. The northern third likely has experienced fewer or smaller ruptures, which suggests to us that most earthquakes initiate at the southern segment boundary.
HLA-E regulatory and coding region variability and haplotypes in a Brazilian population sample.
Ramalho, Jaqueline; Veiga-Castelli, Luciana C; Donadi, Eduardo A; Mendes-Junior, Celso T; Castelli, Erick C
2017-11-01
The HLA-E gene is characterized by low but wide expression on different tissues. HLA-E is considered a conserved gene, being one of the least polymorphic class I HLA genes. The HLA-E molecule interacts with Natural Killer cell receptors and T lymphocytes receptors, and might activate or inhibit immune responses depending on the peptide associated with HLA-E and with which receptors HLA-E interacts to. Variable sites within the HLA-E regulatory and coding segments may influence the gene function by modifying its expression pattern or encoded molecule, thus, influencing its interaction with receptors and the peptide. Here we propose an approach to evaluate the gene structure, haplotype pattern and the complete HLA-E variability, including regulatory (promoter and 3'UTR) and coding segments (with introns), by using massively parallel sequencing. We investigated the variability of 420 samples from a very admixed population such as Brazilians by using this approach. Considering a segment of about 7kb, 63 variable sites were detected, arranged into 75 extended haplotypes. We detected 37 different promoter sequences (but few frequent ones), 27 different coding sequences (15 representing new HLA-E alleles) and 12 haplotypes at the 3'UTR segment, two of them presenting a summed frequency of 90%. Despite the number of coding alleles, they encode mainly two different full-length molecules, known as E*01:01 and E*01:03, which corresponds to about 90% of all. In addition, differently from what has been previously observed for other non classical HLA genes, the relationship among the HLA-E promoter, coding and 3'UTR haplotypes is not straightforward because the same promoter and 3'UTR haplotypes were many times associated with different HLA-E coding haplotypes. This data reinforces the presence of only two main full-length HLA-E molecules encoded by the many HLA-E alleles detected in our population sample. In addition, this data does indicate that the distal HLA-E promoter is by far the most variable segment. Further analyses involving the binding of transcription factors and non-coding RNAs, as well as the HLA-E expression in different tissues, are necessary to evaluate whether these variable sites at regulatory segments (or even at the coding sequence) may influence the gene expression profile. Copyright © 2017 Elsevier Ltd. All rights reserved.
Segmentation, dynamic storage, and variable loading on CDC equipment
NASA Technical Reports Server (NTRS)
Tiffany, S. H.
1980-01-01
Techniques for varying the segmented load structure of a program and for varying the dynamic storage allocation, depending upon whether a batch type or interactive type run is desired, are explained and demonstrated. All changes are based on a single data input to the program. The techniques involve: code within the program to suppress scratch pad input/output (I/O) for a batch run or translate the in-core data storage area from blank common to the end-of-code+1 address of a particular segment for an interactive run; automatic editing of the segload directives prior to loading, based upon data input to the program, to vary the structure of the load for interactive and batch runs; and automatic editing of the load map to determine the initial addresses for in core data storage for an interactive run.
Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.
Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L
2010-07-01
The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty liver disease, to test this hypothesis. Five transcutaneous and five intraoperative US liver images were acquired in each animal and a liverbiopsy was taken. In liver tissue samples, triacylglycerol (TAG) was measured by biochemical analysis and hepatic diseases other than hepatic lipidosis were excluded by histopathologic examination. Ultrasonic tissue characterization (UTC) parameters--Mean echo level, standard deviation (SD) of echo level, signal-to-noise ratio (SNR), residual attenuation coefficient (ResAtt) and axial and lateral speckle size--were derived using a computer-aided US (CAUS) protocol and software package. First, the liver tissue was interactively segmented by two observers. With increasing fat content, fewer hepatic vessels were visible in the ultrasound images and, therefore, a smaller proportion of the liver needed to be excluded from these images. Automatic-segmentation algorithms were implemented and it was investigated whether better results could be achieved than with the subjective and time-consuming interactive-segmentation procedure. The automatic-segmentation algorithms were based on both fixed and adaptive thresholding techniques in combination with a 'speckle'-shaped moving-window exclusion technique. All data were analyzed with and without postprocessing as contained in CAUS and with different automated-segmentation techniques. This enabled us to study the effect of the applied postprocessing steps on single and multiple linear regressions ofthe various UTC parameters with TAG. Improved correlations for all US parameters were found by using automatic-segmentation techniques. Stepwise multiple linear-regression formulas where derived and used to predict TAG level in the liver. Receiver-operating-characteristics (ROC) analysis was applied to assess the performance and area under the curve (AUC) of predicting TAG and to compare the sensitivity and specificity of the methods. Best speckle-size estimates and overall performance (R2 = 0.71, AUC = 0.94) were achieved by using an SNR-based adaptive automatic-segmentation method (used TAG threshold: 50 mg/g liver wet weight). Automatic segmentation is thus feasible and profitable.
d'Elia, Nicolò; Vanetti, Federica; Cempini, Marco; Pasquini, Guido; Parri, Andrea; Rabuffetti, Marco; Ferrarin, Maurizio; Molino Lova, Raffaele; Vitiello, Nicola
2017-04-14
In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., < 1 cm) relative displacements between the APO cuffs and the corresponding body segments (called stability); and (iii) significant increment in the human-robot kinematics discrepancy at the hip flexion-extension joint associated with speed and assistance level increase. APO mechanics and actuation have negligible interference in human locomotion. Human kinematics was not affected by the APO under all tested conditions. In addition, under all tested conditions, there was no relevant relative displacement between the orthotic cuffs and the corresponding anatomical segments. Hence, the physical human-robot coupling is reliable. These facts prove that the adopted mechanical design of passive degrees of freedom allows an effective human-robot kinematic coupling. We believe that this analysis may be useful for the definition of evaluation metrics for the ergonomics assessment of wearable robots.
Electronic considerations for externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.
1991-01-01
The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.
2011-01-01
Background Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss/. PMID:21668958
Live imaging of root–bacteria interactions in a microfluidics setup
Massalha, Hassan; Korenblum, Elisa; Malitsky, Sergey; Shapiro, Orr H.; Aharoni, Asaph
2017-01-01
Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root–microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root–bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root–bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research. PMID:28348235
Hirota, Kikue; Yokota, Yuji; Sekimura, Toru; Uchiumi, Hiroshi; Guo, Yong; Ohta, Hiroyuki; Yumoto, Isao
2016-08-01
A dairy wastewater treatment system composed of the 1st segment (no aeration) equipped with a facility for the destruction of milk fat particles, four successive aerobic treatment segments with activated sludge and a final sludge settlement segment was developed. The activated sludge is circulated through the six segments by settling sediments (activated sludge) in the 6th segment and sending the sediments beck to the 1st and 2nd segments. Microbiota was examined using samples from the non-aerated 1st and aerated 2nd segments obtained from two farms using the same system in summer or winter. Principal component analysis showed that the change in microbiota from the 1st to 2nd segments concomitant with effective wastewater treatment is affected by the concentrations of activated sludge and organic matter (biological oxygen demand [BOD]), and dissolved oxygen (DO) content. Microbiota from five segments (1st and four successive aerobic segments) in one location was also examined. Although the activated sludge is circulating throughout all the segments, microbiota fluctuation was observed. The observed successive changes in microbiota reflected the changes in the concentrations of organic matter and other physicochemical conditions (such as DO), suggesting that the microbiota is flexibly changeable depending on the environmental condition in the segments. The genera Dechloromonas, Zoogloea and Leptothrix are frequently observed in this wastewater treatment system throughout the analyses of microbiota in this study. Copyright © 2016. Published by Elsevier B.V.
Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.
Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman
2013-06-01
Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.
Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.
Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude
2009-01-01
Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.
Navigation domain representation for interactive multiview imaging.
Maugey, Thomas; Daribo, Ismael; Cheung, Gene; Frossard, Pascal
2013-09-01
Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives toward rich multimedia applications, it requires the design of novel representations and coding techniques to solve the new challenges imposed by the interactive navigation. In particular, the encoder must prepare a priori a compressed media stream that is flexible enough to enable the free selection of multiview navigation paths by different streaming media clients. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server generally cannot transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits us to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image (color and depth data) and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Because of these unique properties, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services.
NASA Astrophysics Data System (ADS)
Li, Shouju; Shangguan, Zichang; Cao, Lijuan
A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.
NASA Astrophysics Data System (ADS)
Kühn, Sonja; Erdmann, Constanze; Kage, Frieda; Block, Jennifer; Schwenkmezger, Lisa; Steffen, Anika; Rottner, Klemens; Geyer, Matthias
2015-05-01
Formins are actin polymerization factors that elongate unbranched actin filaments at the barbed end. Rho family GTPases activate Diaphanous-related formins through the relief of an autoregulatory interaction. The crystal structures of the N-terminal domains of human FMNL1 and FMNL2 in complex with active Cdc42 show that Cdc42 mediates contacts with all five armadillo repeats of the formin with specific interactions formed by the Rho-GTPase insert helix. Mutation of three residues within Rac1 results in a gain-of-function mutation for FMNL2 binding and reconstitution of the Cdc42 phenotype in vivo. Dimerization of FMNL1 through a parallel coiled coil segment leads to formation of an umbrella-shaped structure that--together with Cdc42--spans more than 15 nm in diameter. The two interacting FMNL-Cdc42 heterodimers expose six membrane interaction motifs on a convex protein surface, the assembly of which may facilitate actin filament elongation at the leading edge of lamellipodia and filopodia.
De Avila, Miguel; Vassall, Kenrick A.; Smith, Graham S. T.; Bamm, Vladimir V.; Harauz, George
2014-01-01
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex. PMID:25343306
Quiroga-Lombard, Claudio S; Hass, Joachim; Durstewitz, Daniel
2013-07-01
Correlations among neurons are supposed to play an important role in computation and information coding in the nervous system. Empirically, functional interactions between neurons are most commonly assessed by cross-correlation functions. Recent studies have suggested that pairwise correlations may indeed be sufficient to capture most of the information present in neural interactions. Many applications of correlation functions, however, implicitly tend to assume that the underlying processes are stationary. This assumption will usually fail for real neurons recorded in vivo since their activity during behavioral tasks is heavily influenced by stimulus-, movement-, or cognition-related processes as well as by more general processes like slow oscillations or changes in state of alertness. To address the problem of nonstationarity, we introduce a method for assessing stationarity empirically and then "slicing" spike trains into stationary segments according to the statistical definition of weak-sense stationarity. We examine pairwise Pearson cross-correlations (PCCs) under both stationary and nonstationary conditions and identify another source of covariance that can be differentiated from the covariance of the spike times and emerges as a consequence of residual nonstationarities after the slicing process: the covariance of the firing rates defined on each segment. Based on this, a correction of the PCC is introduced that accounts for the effect of segmentation. We probe these methods both on simulated data sets and on in vivo recordings from the prefrontal cortex of behaving rats. Rather than for removing nonstationarities, the present method may also be used for detecting significant events in spike trains.
De Avila, Miguel; Vassall, Kenrick A; Smith, Graham S T; Bamm, Vladimir V; Harauz, George
2014-12-08
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP-Fyn-SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62-L68), and demonstrate further that residues (V83-P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn-SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.
Ben-David, Jonathan; Chipman, Ariel D
2010-10-01
The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.
Batianovskiĭ, A V; Filatov, I V; Namiot, V A; Esipova, N G; Volotovskiĭ, I D
2012-01-01
It was shown that selective interactions between helical segments of macromolecules can realize in globular proteins in the segments characterized by the same periodicities of charge distribution i.e. between conformationally conservative oligopeptides. It was found that in the macromolecules of alpha-helical proteins conformationally conservative oligopeptides are disposed at a distance being characteristic of direct interactions. For representatives of many structural families of alpha-type proteins specific disposition of conformationally conservative segments is observed. This disposition is inherent to a particular structural family. Disposition of conformationally conservative segments is not related to homology of the amino acid sequence but reflects peculiarities of native 3D-architectures of protein globules.
NASA Astrophysics Data System (ADS)
Feng, Min-nan; Wang, Yu-cong; Wang, Hao; Liu, Guo-quan; Xue, Wei-hua
2017-03-01
Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.
König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M
2012-12-15
Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.
Cunningham, Charles E; Kostrzewa, Linda; Rimas, Heather; Chen, Yvonne; Deal, Ken; Blatz, Susan; Bowman, Alida; Buchanan, Don H; Calvert, Randy; Jennings, Barbara
2013-01-01
Patients value health service teams that function effectively. Organizational justice is linked to the performance, health, and emotional adjustment of the members of these teams. We used a discrete-choice conjoint experiment to study the organizational justice improvement preferences of pediatric health service providers. Using themes from a focus group with 22 staff, we composed 14 four-level organizational justice improvement attributes. A sample of 652 staff (76 % return) completed 30 choice tasks, each presenting three hospitals defined by experimentally varying the attribute levels. Latent class analysis yielded three segments. Procedural justice attributes were more important to the Decision Sensitive segment, 50.6 % of the sample. They preferred to contribute to and understand how all decisions were made and expected management to act promptly on more staff suggestions. Interactional justice attributes were more important to the Conduct Sensitive segment (38.5 %). A universal code of respectful conduct, consequences encouraging respectful interaction, and management's response when staff disagreed with them were more important to this segment. Distributive justice attributes were more important to the Benefit Sensitive segment, 10.9 % of the sample. Simulations predicted that, while Decision Sensitive (74.9 %) participants preferred procedural justice improvements, Conduct (74.6 %) and Benefit Sensitive (50.3 %) participants preferred interactional justice improvements. Overall, 97.4 % of participants would prefer an approach combining procedural and interactional justice improvements. Efforts to create the health service environments that patients value need to be comprehensive enough to address the preferences of segments of staff who are sensitive to different dimensions of organizational justice.
Within-brain classification for brain tumor segmentation.
Havaei, Mohammad; Larochelle, Hugo; Poulin, Philippe; Jodoin, Pierre-Marc
2016-05-01
In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem. This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise. In this paper, we avoid these issues by approaching the problem as one of within brain generalization. Specifically, we propose a semi-automatic method that segments a brain tumor by training and generalizing within that brain only, based on some minimum user interaction. We investigate how adding spatial feature coordinates (i.e., i, j, k) to the intensity features can significantly improve the performance of different classification methods such as SVM, kNN and random forests. This would only be possible within an interactive framework. We also investigate the use of a more appropriate kernel and the adaptation of hyper-parameters specifically for each brain. As a result of these experiments, we obtain an interactive method whose results reported on the MICCAI-BRATS 2013 dataset are the second most accurate compared to published methods, while using significantly less memory and processing power than most state-of-the-art methods.
Interactive Medical Volume Visualization for Surgical Operations
2001-10-25
the preprocessing and processing stages, related medical brain tissues, which are skull, white matter, gray matter and pathology ( tumor ), are segmented ...from 12 or 16 bit data depths. NMR segmentation plays an important role in our work, because, classifying brain tissues from NMR slices requires an...performing segmentation of brain structures. Our segmentation process uses Self Organizing Feature Maps (SOFM) [12]. In SOM, on the contrary to Feedback
Gender differences in head-neck segment dynamic stabilization during head acceleration.
Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph
2005-02-01
Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.
Smith, Benjamin D.; Fichthorn, Kristen A.; Kirby, David J.; Quimby, Lisa M.; Triplett, Derek A.; González, Pedro; Hernández, Darimar; Keating, Christine D.
2014-01-01
Understanding how micro- and nanoparticles interact is important for achieving bottom-up assembly of desired structures. Here, we examine the self-assembly of two-component, compositionally asymmetric nanocylinders that sediment from solution onto a solid surface. These particles spontaneously formed smectic arrays. Within the rows of an array, nanocylinders tended to assemble such that neighboring particles had the same orientation of their segments. As a probe of interparticle interactions, we classified nanocylinder alignments by measuring the segment orientations of many sets of neighboring particles. Monte Carlo simulations incorporating an exact expression for the van der Waals (vdW) energy indicate that differences in the vdW interactions, even when small, are the key factor in producing observed segment alignment. These results point to asymmetrical vdW interactions as a potentially powerful means of controlling orientation in multicomponent cylinder arrays, and suggest that designing for these interactions could yield new ways to control self-assembly. PMID:24308771
Hakuno, Yoko; Omori, Takahide; Yamamoto, Jun-Ichi; Minagawa, Yasuyo
2017-08-01
In natural settings, infants learn spoken language with the aid of a caregiver who explicitly provides social signals. Although previous studies have demonstrated that young infants are sensitive to these signals that facilitate language development, the impact of real-life interactions on early word segmentation and word-object mapping remains elusive. We tested whether infants aged 5-6 months and 9-10 months could segment a word from continuous speech and acquire a word-object relation in an ecologically valid setting. In Experiment 1, infants were exposed to a live tutor, while in Experiment 2, another group of infants were exposed to a televised tutor. Results indicate that both younger and older infants were capable of segmenting a word and learning a word-object association only when the stimuli were derived from a live tutor in a natural manner, suggesting that real-life interaction enhances the learning of spoken words in preverbal infants. Copyright © 2017 Elsevier Inc. All rights reserved.
Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure
2015-05-01
In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.
2010-06-01
autonomic and pain functions, and facilitating/inhibiting voluntary movements. The external segment of the globus pallidus (globus pallidus externa, GPe...or less responsive to pain stimuli. 1.2.4. Other cortico-basal ganglia loops Alexander, Strick and colleagues have additionally defined a number of... orofacial loop and loops through inferotemporal and posterior parietal cortical areas have also been defined. 1.2.5. Interactions between loops Once
Perception and Perspective in Robotics
2003-01-01
data, the bottom row shows the segmented views that are tized to just two luminance levels. The dark line cen- the best match with these prototypes. The...and Mataric , 1999) for one effort in the ate an active, developing, malleable perceptual system robotic domain). The human interacting with the robot...learning will be im- Robot s an Sys(ems,)volumenI,pleentd. heinstructor demonstrates the task while Goldberg, D). and Mataric , M. 1. (1999
Segmenting Student Markets with a Student Satisfaction and Priorities Survey.
ERIC Educational Resources Information Center
Borden, Victor M. H.
1995-01-01
A market segmentation analysis of 872 university students compared 2 hierarchical clustering procedures for deriving market segments: 1 using matching-type measures and an agglomerative clustering algorithm, and 1 using the chi-square based automatic interaction detection. Results and implications for planning, evaluating, and improving academic…
Social network analysis of a project-based introductory physics course
NASA Astrophysics Data System (ADS)
Oakley, Christopher
2016-03-01
Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.
Cummings, David F.; Ericksen, Spencer S.; Goetz, Angela
2010-01-01
Conserved serines of transmembrane segment (TM) five (TM5) are critical for the interactions of endogenous catecholamines with α1- and α2-adrenergic, β2-adrenergic, and D1, D2, and D3 dopamine receptors. The unique high-affinity interaction of the D4 dopamine receptor subtype with both norepinephrine and dopamine, and the fact that TM5 serine interactions have never been studied for this receptor subtype, led us to investigate the interactions of ligands with D4 receptor TM5 serines. Serine-to-alanine mutations at positions 5.42 and 5.46 drastically decreased affinities of dopamine and norepinephrine for the D4 receptor. The D4-S5.43A receptor mutant had substantially reduced affinity for norepinephrine, but a modest loss of affinity for dopamine. In functional assays of cAMP accumulation, norephinephrine was unable to activate any of the mutant receptors, even though the agonist quinpirole displayed wild-type functional properties for all of them. Dopamine was unable to activate the S5.46A mutant and had reduced potency for the S5.43A mutant and reduced potency and efficacy for the S5.42A mutant. In contrast, Ro10-4548 [RAC-2′-2-hydroxy-3-4-(4-hydroxy-2-methoxyphenyl)-1-piperazinyl-propoxy-acetanilide], a catechol-like antagonist of the wild-type receptor unexpectedly functions as an agonist of the S5.43A mutant. Other noncatechol ligands had similar properties for mutant and wild-type receptors. This is the first example of a dopamine receptor point mutation selectively changing the receptor's interaction with a specific antagonist to that of an agonist, and together with other data, provides evidence, supported by molecular modeling, that catecholamine-type agonism is induced by different ligand-specific configurations of intermolecular H-bonds with the TM5 conserved serines. PMID:20215412
An interactive toolbox for atlas-based segmentation and coding of volumetric images
NASA Astrophysics Data System (ADS)
Menegaz, G.; Luti, S.; Duay, V.; Thiran, J.-Ph.
2007-03-01
Medical imaging poses the great challenge of having compression algorithms that are lossless for diagnostic and legal reasons and yet provide high compression rates for reduced storage and transmission time. The images usually consist of a region of interest representing the part of the body under investigation surrounded by a "background", which is often noisy and not of diagnostic interest. In this paper, we propose a ROI-based 3D coding system integrating both the segmentation and the compression tools. The ROI is extracted by an atlas based 3D segmentation method combining active contours with information theoretic principles, and the resulting segmentation map is exploited for ROI based coding. The system is equipped with a GUI allowing the medical doctors to supervise the segmentation process and eventually reshape the detected contours at any point. The process is initiated by the user through the selection of either one pre-de.ned reference image or one image of the volume to be used as the 2D "atlas". The object contour is successively propagated from one frame to the next where it is used as the initial border estimation. In this way, the entire volume is segmented based on a unique 2D atlas. The resulting 3D segmentation map is exploited for adaptive coding of the different image regions. Two coding systems were considered: the JPEG3D standard and the 3D-SPITH. The evaluation of the performance with respect to both segmentation and coding proved the high potential of the proposed system in providing an integrated, low-cost and computationally effective solution for CAD and PAC systems.
Anderst, William
2016-01-01
Arthrodesis is the standard of care for numerous pathologic conditions of the cervical spine and is performed over 150,000 times annually in the United States. The primary long-term concern after this surgery is adjacent segment disease (ASD), defined as new clinical symptoms adjacent to a previous fusion. The incidence of adjacent segment disease is approximately 3% per year, meaning that within 10 years of the initial surgery, approximately 25% of cervical arthrodesis patients require a second procedure to address symptomatic adjacent segment degeneration. Despite the high incidence of ASD, until recently, there was little data available to characterize in vivo adjacent segment mechanics during dynamic motion. This manuscript reviews recent advances in our knowledge of adjacent segment mechanics after cervical arthrodesis that have been facilitated by the use of dynamic biplane radiography. The primary observations from these studies are that current in vitro test paradigms often fail to replicate in vivo spine mechanics before and after arthrodesis, that intervertebral mechanics vary among cervical motion segments, and that joint arthrokinematics (i.e., the interactions between adjacent vertebrae) are superior to traditional kinematics measurements for identifying altered adjacent segment mechanics after arthrodesis. Future research challenges are identified, including improving the biofidelity of in vitro tests, determining the natural history of in vivo spine mechanics, conducting prospective longitudinal studies on adjacent segment kinematics and arthrokinematics after single and multiple-level arthrodesis, and creating subject-specific computational models to accurately estimate muscle forces and tissue loading in the spine during dynamic activities. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.
Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan
2015-09-01
Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
Vessally, Esmail; Siadati, Seyyed Amir; Hosseinian, Akram; Edjlali, Ladan
2017-01-01
OZONE is a key species in forming a layer in the atmosphere of earth that brings vita for our planet and supports the complex life. This three-atom molecule in the ozone-layer, is healing the earth's ecosystem by protecting it from dangerous rays of the sun. Until this molecule is in the stratosphere, it would support the natural order of the life; but, when it appears in our environment, damages will begin against us. In this project, we have tried to find a new way for beaconing ozone species in our environment via physical adsorption by the C 20 fullerene and graphene segment as a sensor. To find the selectivity of this nano-sized segment in sensing ozone (O 3 ), compared to the usual chemically active gasses of the troposphere like O 2 , N 2 , CO 2 , H 2 O, CH 4 , H 2 , and CO, the density of state (DOS) plots were analyzed, for each interacting species. The results showed that ozone could significantly change the electrical conductivity of C 20 fullerene, for each adsorption step. Thus, this fullerene could clearly sense ozone in different adsorption steps; while, the graphene segment could do this only at the second step adsorption (/ΔE g-B /=0.016eV) (at the first adsorption step the /ΔE g-A / is 0.00eV). Copyright © 2016 Elsevier B.V. All rights reserved.
Transpressive mantle uplift at large offset oceanic transform faults
NASA Astrophysics Data System (ADS)
Maia, M.; Briais, A.; Brunelli, D.; Ligi, M.; Sichel, S. E.; Campos, T.
2017-12-01
Large-offset transform faults deform due to changes in plate motions and local processes. At the St. Paul transform, in the Equatorial Atlantic, a large body of ultramafic rocks composed of variably serpentinized and mylonitized peridotites is presently being tectonically uplifted. We recently discovered that the origin of the regional mantle uplift is linked to long-standing compressive stresses along the transform fault (1). A positive flower structure, mainly made of mylonitized mantle rocks, can be recognized on the 200 km large push-up ridge. Compressive earthquakes mechanisms reveal seismically active thrust faults on the southern flank of the ridge . The regional transpressive stress field affects a large portion of the ridge segment south of the transform, as revealed by the presence of faults and dykes striking obliquely to the direction of the central ridge axis. A smaller thrust, affecting recent sediments, was mapped south of this segment, suggesting a regional active compressive stress field. The transpressive stress field is interpreted to derive from the propagation of the Mid-Atlantic Ridge (MAR) segment into the transform domain as a response to the enhanced melt supply at the ridge axis. The propagation forced the migration and segmentation of the transform fault southward and the formation of restraining step-overs. The process started after a counterclockwise change in plate motion at 11 Ma initially resulting in extensive stress of the transform domain. A flexural transverse ridge formed in response. Shortly after plate reorganization, the MAR segment started to propagate southwards due to the interaction of the ridge and the Sierra Leone thermal anomaly. 1- Maia et al., 2016. Extreme mantle uplift and exhumation along a transpressive transform fault Nat. Geo. doi:10.1038/ngeo2759
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process
Chen, Yang; Zhang, Michael Q.
2018-01-01
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282
AISLE: an automatic volumetric segmentation method for the study of lung allometry.
Ren, Hongliang; Kazanzides, Peter
2011-01-01
We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.
Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Hall, Christopher S.
2014-03-01
Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.
Event segmentation improves event memory up to one month later.
Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M
2017-08-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd
2016-05-01
Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
Groome, James R; Winston, Vern
2013-05-01
The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.
Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.
Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas
2016-04-01
Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
Thermal activation of dislocations in large scale obstacle bypass
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique
2017-08-01
Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.
Static stress changes associated with normal faulting earthquakes in South Balkan area
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.
2007-10-01
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.
Extracting stationary segments from non-stationary synthetic and cardiac signals
NASA Astrophysics Data System (ADS)
Rodríguez, María. G.; Ledezma, Carlos A.; Perpiñán, Gilberto; Wong, Sara; Altuve, Miguel
2015-01-01
Physiological signals are commonly the result of complex interactions between systems and organs, these interactions lead to signals that exhibit a non-stationary behaviour. For cardiac signals, non-stationary heart rate variability (HRV) may produce misinterpretations. A previous work proposed to divide a non-stationary signal into stationary segments by looking for changes in the signal's properties related to changes in the mean of the signal. In this paper, we extract stationary segments from non-stationary synthetic and cardiac signals. For synthetic signals with different signal-to-noise ratio levels, we detect the beginning and end of the stationary segments and the result is compared to the known values of the occurrence of these events. For cardiac signals, RR interval (cardiac cycle length) time series, obtained from electrocardiographic records during stress tests for two populations (diabetic patients with cardiovascular autonomic neuropathy and control subjects), were divided into stationary segments. Results on synthetic signals reveal that the non-stationary sequence is divided into more stationary segments than needed. Additionally, due to HRV reduction and exercise intolerance reported on diabetic cardiovascular autonomic neuropathy patients, non-stationary RR interval sequences from these subjects can be divided into longer stationary segments compared to the control group.
Gamifying Video Object Segmentation.
Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela
2017-10-01
Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation
ERIC Educational Resources Information Center
Hsieh, Fushing; Ferrer, Emilio; Chen, Shu-Chun; Chow, Sy-Miin
2010-01-01
In this article we present an exploratory tool for extracting systematic patterns from multivariate data. The technique, hierarchical segmentation (HS), can be used to group multivariate time series into segments with similar discrete-state recurrence patterns and it is not restricted by the stationarity assumption. We use a simulation study to…
Brain tumor segmentation in MR slices using improved GrowCut algorithm
NASA Astrophysics Data System (ADS)
Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying
2015-12-01
The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.
Multiresolution multiscale active mask segmentation of fluorescence microscope images
NASA Astrophysics Data System (ADS)
Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena
2009-08-01
We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.
Nguyen, Hung P; Ayachi, Fouaz; Lavigne-Pelletier, Catherine; Blamoutier, Margaux; Rahimi, Fariborz; Boissy, Patrick; Jog, Mandar; Duval, Christian
2015-04-11
Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living. A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG. We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners. The present study lays the foundation for the development of a comprehensive algorithm to detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor performance within the detected tasks.
A Typology of Middle School Girls: Audience Segmentation Related to Physical Activity
Staten, Lisa K.; Birnbaum, Amanda S.; Jobe, Jared B.; Elder, John P.
2008-01-01
The Trial of Activity for Adolescent Girls (TAAG) combines social ecological and social marketing approaches to promote girls’ participation in physical activity programs implemented at 18 middle schools throughout the United States. Key to the TAAG approach is targeting materials to a variety of audience segments. TAAG segments are individuals who share one or more common characteristic that is expected to correlate with physical activity. Thirteen focus groups with seventh and eighth grade girls were conducted to identify and characterize segments. Potential messages and channels of communication were discussed for each segment. Based on participant responses, six primary segments were identified: athletic, preppy, quiet, rebel, smart, and tough. The focus group information was used to develop targeted promotional tools to appeal to a diversity of girls. Using audience segmentation for targeting persuasive communication is potentially useful for intervention programs but may be sensitive; therefore, ethical issues must be critically examined. PMID:16397160
A typology of middle school girls: audience segmentation related to physical activity.
Staten, Lisa K; Birnbaum, Amanda S; Jobe, Jared B; Elder, John P
2006-02-01
The Trial of Activity for Adolescent Girls (TAAG) combines social ecological and social marketing approaches to promote girls' participation in physical activity programs implemented at 18 middle schools throughout the United States. Key to the TAAG approach is targeting materials to a variety of audience segments. TAAG segments are individuals who share one or more common characteristic that is expected to correlate with physical activity. Thirteen focus groups with seventh and eighth grade girls were conducted to identify and characterize segments. Potential messages and channels of communication were discussed for each segment. Based on participant responses, six primary segments were identified: athletic, preppy, quiet, rebel, smart, and tough. The focus group information was used to develop targeted promotional tools to appeal to a diversity of girls. Using audience segmentation for targeting persuasive communication is potentially useful for intervention programs but may be sensitive; therefore, ethical issues must be critically examined.
Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.
Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S
2017-02-28
Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lindin, Inger; Wuxiuer, Yimingjiang; Ravna, Aina Westrheim; Moens, Ugo; Sylte, Ingebrigt
2014-01-01
The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD) simulations of: (1) MK5 alone; (2) MK5 in complex with an inhibitor; and (3) MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS) calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding. PMID:24651460
NASA Astrophysics Data System (ADS)
Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled
2017-04-01
The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.
NASA Astrophysics Data System (ADS)
Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Stork, Alexander; Peterfy, Charles G.; Genant, Harry K.
2000-06-01
A technique for segmentation of articular cartilage from 3D MRI scans of the knee has been developed. It overcomes the limitations of the conventionally used region growing techniques, which are prone to inter- and intra-observer variability, and which can require much manual intervention. We describe a hybrid segmentation method combining expert knowledge with directionally oriented Canny filters, cost functions and cubic splines. After manual initialization, the technique utilized 3 cost functions which aided automated detection of cartilage and its boundaries. Using the sign of the edge strength, and the local direction of the boundary, this technique is more reliable than conventional 'snakes,' and the user had little control over smoothness of boundaries. This means that the automatically detected boundary can conform to the true shape of the real boundary, also allowing reliable detection of subtle local lesions on the normally smooth cartilage surface. Manual corrections, with possible re-optimization were sometimes needed. When compared to the conventionally used region growing techniques, this newly described technique measured local cartilage volume with 3 times better reproducibility, and involved two thirds less human interaction. Combined with the use of 3D image registration, the new technique should also permit unbiased segmentation of followup scans by automated initialization from a baseline segmentation of an earlier scan of the same patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y; Chen, I; Kashani, R
Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less
Interactive approach to segment organs at risk in radiotherapy treatment planning
NASA Astrophysics Data System (ADS)
Dolz, Jose; Kirisli, Hortense A.; Viard, Romain; Massoptier, Laurent
2014-03-01
Accurate delineation of organs at risk (OAR) is required for radiation treatment planning (RTP). However, it is a very time consuming and tedious task. The use in clinic of image guided radiation therapy (IGRT) becomes more and more popular, thus increasing the need of (semi-)automatic methods for delineation of the OAR. In this work, an interactive segmentation approach to delineate OAR is proposed and validated. The method is based on the combination of watershed transformation, which groups small areas of similar intensities in homogeneous labels, and graph cuts approach, which uses these labels to create the graph. Segmentation information can be added in any view - axial, sagittal or coronal -, making the interaction with the algorithm easy and fast. Subsequently, this information is propagated within the whole volume, providing a spatially coherent result. Manual delineations made by experts of 6 OAR - lungs, kidneys, liver, spleen, heart and aorta - over a set of 9 computed tomography (CT) scans were used as reference standard to validate the proposed approach. With a maximum of 4 interactions, a Dice similarity coefficient (DSC) higher than 0.87 was obtained, which demonstrates that, with the proposed segmentation approach, only few interactions are required to achieve similar results as the ones obtained manually. The integration of this method in the RTP process may save a considerable amount of time, and reduce the annotation complexity.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.
Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q
2018-02-12
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.
Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro
2016-01-01
The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722
Event Segmentation Improves Event Memory up to One Month Later
ERIC Educational Resources Information Center
Flores, Shaney; Bailey, Heather R.; Eisenberg, Michelle L.; Zacks, Jeffrey M.
2017-01-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer…
Roles of Segmental and Oligomeric Diffusion on the Gel Effect in Free Radical Polymerization
NASA Astrophysics Data System (ADS)
Wisnudel, M. B.; Torkelson, J. M.
1996-03-01
Termination between radicals has been simulated by phosphorescence quenching, showing strong roles for segmental and oligomeric radical self-diffusion in the origin of the gel effect. Quenching rate constants (k_q) were measured between benzil-terminated polymer as a function of anthracene-terminated polymer in polymer solutions. In dilute solution, interactions between 10k or 73k MW benzil-terminated polystyrene (PS- B) and anthracence-terminated polystyrene (PS-A) of varying MW, the MW effect is weaker than the Smoluchowski eq. prediction (kq MW^- 0.5). At higher concentration, interactions of PS-B and PS-A of like MW show only weak dependence of kq on MW and a concentration dependence similar to that of segmental mobility, indicating that segmental diffusion is important in termination. Finally, with interactions between 73k MW PS-B and PS-A of varying MW at 35 wt% PS, kq decreases by a factor of 10 in going from MW's of 100 to 1000 g/mol; beyond 1000 g/mol, kq is MW independent. Such effects cannot be explained by polymer-radical self-diffusion. However, they support the notion that the gel effect onset is associated with the concentration dependence of oligomeric radical self-diffusion and polymer radical chain-end segmental mobility.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Improved 3D live-wire method with application to 3D CT chest image analysis
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Higgins, William E.
2006-03-01
The definition of regions of interests (ROIs), such as suspect cancer nodules or lymph nodes in 3D CT chest images, is often difficult because of the complexity of the phenomena that give rise to them. Manual slice tracing has been used widely for years for such problems, because it is easy to implement and guaranteed to work. But the manual method is extremely time-consuming, especially for high-solution 3D images which may have hundreds of slices, and it is subject to operator biases. Numerous automated image-segmentation methods have been proposed, but they are generally strongly application dependent, and even the "most robust" methods have difficulty in defining complex anatomical ROIs. To address this problem, the semi-automatic interactive paradigm referred to as "live wire" segmentation has been proposed by researchers. In live-wire segmentation, the human operator interactively defines an ROI's boundary guided by an active automated method which suggests what to define. This process in general is far faster, more reproducible and accurate than manual tracing, while, at the same time, permitting the definition of complex ROIs having ill-defined boundaries. We propose a 2D live-wire method employing an improved cost over previous works. In addition, we define a new 3D live-wire formulation that enables rapid definition of 3D ROIs. The method only requires the human operator to consider a few slices in general. Experimental results indicate that the new 2D and 3D live-wire approaches are efficient, allow for high reproducibility, and are reliable for 2D and 3D object segmentation.
Cai, Wei; He, Baochun; Fang, Chihua
2016-01-01
This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods— one interactive method, an in‐house‐developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)‐based segmentation, and one automatic probabilistic atlas (PA)‐guided segmentation method on clinical contrast‐enhanced CT images. Forty‐two datasets, including 27 normal liver and 15 space‐occupying liver lesion patients, were retrospectively included in this study. The three methods — one semiautomatic 3DMIA, one automatic ASM‐based, and one automatic PA‐based liver volumetry — achieved an accuracy with VD (volume difference) of −1.69%,−2.75%, and 3.06% in the normal group, respectively, and with VD of −3.20%,−3.35%, and 4.14% in the space‐occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excellent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p<0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p<0.001). The semiautomatic interactive 3DMIA, automatic ASM‐based, and automatic PA‐based liver volumetry agreed well with manual gold standard in both the normal liver group and the space‐occupying lesion group. The ASM‐ and PA‐based automatic segmentation have better efficiency in clinical use. PACS number(s): 87.55.‐x PMID:27929487
Cai, Wei; He, Baochun; Fan, Yingfang; Fang, Chihua; Jia, Fucang
2016-11-08
This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods- one interactive method, an in-house-developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)-based segmentation, and one automatic probabilistic atlas (PA)-guided segmentation method on clinical contrast-enhanced CT images. Forty-two datasets, including 27 normal liver and 15 space-occupying liver lesion patients, were retrospectively included in this study. The three methods - one semiautomatic 3DMIA, one automatic ASM-based, and one automatic PA-based liver volumetry - achieved an accuracy with VD (volume difference) of -1.69%, -2.75%, and 3.06% in the normal group, respectively, and with VD of -3.20%, -3.35%, and 4.14% in the space-occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excel-lent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p < 0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p < 0.001). The semiautomatic interactive 3DMIA, automatic ASM-based, and automatic PA-based liver volum-etry agreed well with manual gold standard in both the normal liver group and the space-occupying lesion group. The ASM- and PA-based automatic segmentation have better efficiency in clinical use. © 2016 The Authors.
Identification of cis-acting regulatory elements in the human oxytocin gene promoter.
Richard, S; Zingg, H H
1991-12-01
The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT promoter resides in a small region extending only 50 bases upstream of the cap site and that this activity is the result of a cooperative interaction of at least three distinct proximal promoter elements.
ERIC Educational Resources Information Center
Lay, Robert S.
The advantages and disadvantages of new software for market segmentation analysis are discussed, and the application of this new, chi-square based procedure (CHAID), is illustrated. A comparison is presented of an earlier, binary segmentation technique (THAID) and a multiple discriminant analysis. It is suggested that CHAID is superior to earlier…
1990-05-25
INCLUDING ORIENTATIONAL INTERACTIONS BETWEEN CHAIN SEGMENTS B. Deloche, E.T. Samulski (France, USA) CHAIN SEGMENT ORDERING IN STRAINED BIMODAL P-2 PDMS...theory of elastomers is difficult because it requires a detailed study of many body interactions . A theory of elasticity must address the following: (1...a Kirchhoff matrix which describes the connectivity of the network (Kc) or the linear chains (Ku). The nonbonded interactions are handled with the
Method to Reduce Target Motion Through Needle-Tissue Interactions.
Oldfield, Matthew J; Leibinger, Alexander; Seah, Tian En Timothy; Rodriguez Y Baena, Ferdinando
2015-11-01
During minimally invasive surgical procedures, it is often important to deliver needles to particular tissue volumes. Needles, when interacting with a substrate, cause deformation and target motion. To reduce reliance on compensatory intra-operative imaging, a needle design and novel delivery mechanism is proposed. Three-dimensional finite element simulations of a multi-segment needle inserted into a pre-existing crack are presented. The motion profiles of the needle segments are varied to identify methods that reduce target motion. Experiments are then performed by inserting a needle into a gelatine tissue phantom and measuring the internal target motion using digital image correlation. Simulations indicate that target motion is reduced when needle segments are stroked cyclically and utilise a small amount of retraction instead of being held stationary. Results are confirmed experimentally by statistically significant target motion reductions of more than 8% during cyclic strokes and 29% when also incorporating retraction, with the same net insertion speed. By using a multi-segment needle and taking advantage of frictional interactions on the needle surface, it is demonstrated that target motion ahead of an advancing needle can be substantially reduced.
Interactive lesion segmentation with shape priors from offline and online learning.
Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C
2012-09-01
In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.
Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments.
Cheng, Christiana L; Molday, Robert S
2013-12-15
In photoreceptors, the assembly of signaling molecules into macromolecular complexes is important for phototransduction and maintaining the structural integrity of rod outer segments (ROSs). However, the molecular composition and formation of these complexes are poorly understood. Using immunoprecipitation and mass spectrometry, 4.1G was identified as a new interacting partner for the cyclic-nucleotide gated (CNG) channels in ROSs. 4.1G is a widely expressed multifunctional protein that plays a role in the assembly and stability of membrane protein complexes. Multiple splice variants of 4.1G were cloned from bovine retina. A smaller splice variant of 4.1G selectively interacted with CNG channels not associated with peripherin-2-CNG channel complex. A combination of truncation studies and domain-binding assays demonstrated that CNG channels selectively interacted with 4.1G through their FERM and CTD domains. Using immunofluorescence, labeling of 4.1G was seen to be punctate and partially colocalized with CNG channels in the ROS. Our studies indicate that 4.1G interacts with a subset of CNG channels in the ROS and implicate this protein-protein interaction in organizing the spatial arrangement of CNG channels in the plasma membrane of outer segments.
Nguyen, Leonard T.; Vogel, Hans J.
2016-01-01
Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein’s α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435
Interactive and scale invariant segmentation of the rectum/sigmoid via user-defined templates
NASA Astrophysics Data System (ADS)
Lüddemann, Tobias; Egger, Jan
2016-03-01
Among all types of cancer, gynecological malignancies belong to the 4th most frequent type of cancer among women. Besides chemotherapy and external beam radiation, brachytherapy is the standard procedure for the treatment of these malignancies. In the progress of treatment planning, localization of the tumor as the target volume and adjacent organs of risks by segmentation is crucial to accomplish an optimal radiation distribution to the tumor while simultaneously preserving healthy tissue. Segmentation is performed manually and represents a time-consuming task in clinical daily routine. This study focuses on the segmentation of the rectum/sigmoid colon as an Organ-At-Risk in gynecological brachytherapy. The proposed segmentation method uses an interactive, graph-based segmentation scheme with a user-defined template. The scheme creates a directed two dimensional graph, followed by the minimal cost closed set computation on the graph, resulting in an outlining of the rectum. The graphs outline is dynamically adapted to the last calculated cut. Evaluation was performed by comparing manual segmentations of the rectum/sigmoid colon to results achieved with the proposed method. The comparison of the algorithmic to manual results yielded to a Dice Similarity Coefficient value of 83.85+/-4.08%, in comparison to 83.97+/-8.08% for the comparison of two manual segmentations of the same physician. Utilizing the proposed methodology resulted in a median time of 128 seconds per dataset, compared to 300 seconds needed for pure manual segmentation.
Haas, Laura T.; Kostylev, Mikhail A.; Strittmatter, Stephen M.
2014-01-01
Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrPC). PrPC interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrPC to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrPC and mGluR5 in cell lines and mouse brain. We show that the PrPC segment of amino acids 91–153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrPC interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrPC and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrPC and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrPC segment of amino acids 91–153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrPC. The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrPC and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol. PMID:25148681
Interactive experimenters' planning procedures and mission control
NASA Technical Reports Server (NTRS)
Desjardins, R. L.
1973-01-01
The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule.
NASA Astrophysics Data System (ADS)
Medynski, S.; Williams, A.; Pik, R.; Burnard, P.; Vye, C.; France, L.; Ayalew, D.; Yirgu, G.
2012-12-01
In the Afar depression (Ethiopia), extension is already organised along rift segments which morphologically resemble oceanic rifts. Segmentation here results from interactions between dyke injection and volcanism, as observed during the well documented 2005 event on the Dabbahu rift segment. During this tectono-volcanic crisis, a megadyke was injected, followed by 12 subsequent dike intrusions, sometimes associated with fissure flow eruptions. Despite the accurate surveying of the magmatic and tectonic interplay during this event via remote sensing techniques, there is a lack of data on timescales of 1 to 100 kyr, the period over which the main morphology of a rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. It is possible to constrain the timing of fault growth relative to the infilling of the rift axial depression by lava flows, and to assess the influence of the different magma bodies involved in lava production along the rift-segment. We use cosmogenic nuclides (3He) to determine the ages of young (<100 kyr) lava flows and to date the initiation and movement of fault scarps which cut the lavas. Combined with major & trace element compositions, field mapping and digital cartography (Landsat, ASTER and SPOT imagery), the rift geomorphology can be linked to the magmatic and tectonic history defined by surface exposure dating. The results show that over the last 100 ka the Northern part of the Dabbahu segment was supplied by two different magma reservoirs which can be identified based on their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano, and has been supplied with magma for at least 72 ka. This magmatic centre supplies magma to most of the northern third of the rift segment. The second reservoir is located further south, on the axis, close to the current mid-segment magma chamber, which was responsible for the 2005 rifting episode. This second magmatic centre supplies magma to the remaining 2/3 of the segment, but scarcely impacts its Northern termination (where the Dabbahu activity predominates) - except during extraordinary events when dykes are long enough to reach those parts, as in 2005. The eruption ages of the different lava units correlates with their degrees of differentiation, allowing different magmatic cycles of about a few tens of years each to be distinguished. During the first recorded magmatic cycle (~70 ka to ~55 ka), Dabbahu is built of wide-spreading pāhoehoe flows around localised eruptive centres. The resulting topography of the volcanic edifice remains low, and is only slightly affected by rift-related fault activity, with the development of minor scarps. The second recorded magmatic cycle (~50 ka to ~20 ka) coincides with a strong development of Dabbahu topography - underlined by the change in lava morphology with well channelized 'a'ā flows since 50 ka. Tectonic activity also clearly increases over this period, with the initiation of the major fault scarps of the rift, which have been dated at around 35 ka. Our study underlines the role of the magma supply and availability beneath Dabbahu in the evolution both topographies of Dabbahu volcano and of the rift depression morphology.
Three-dimensional choroidal segmentation in spectral OCT volumes using optic disc prior information
NASA Astrophysics Data System (ADS)
Hu, Zhihong; Girkin, Christopher A.; Hariri, Amirhossein; Sadda, SriniVas R.
2016-03-01
Recently, much attention has been focused on determining the role of the peripapillary choroid - the layer between the outer retinal pigment epithelium (RPE)/Bruchs membrane (BM) and choroid-sclera (C-S) junction, whether primary or secondary in the pathogenesis of glaucoma. However, the automated choroidal segmentation in spectral-domain optical coherence tomography (SD-OCT) images of optic nerve head (ONH) has not been reported probably due to the fact that the presence of the BM opening (BMO, corresponding to the optic disc) can deflect the choroidal segmentation from its correct position. The purpose of this study is to develop a 3D graph-based approach to identify the 3D choroidal layer in ONH-centered SD-OCT images using the BMO prior information. More specifically, an initial 3D choroidal segmentation was first performed using the 3D graph search algorithm. Note that varying surface interaction constraints based on the choroidal morphological model were applied. To assist the choroidal segmentation, two other surfaces of internal limiting membrane and innerouter segment junction were also segmented. Based on the segmented layer between the RPE/BM and C-S junction, a 2D projection map was created. The BMO in the projection map was detected by a 2D graph search. The pre-defined BMO information was then incorporated into the surface interaction constraints of the 3D graph search to obtain more accurate choroidal segmentation. Twenty SD-OCT images from 20 healthy subjects were used. The mean differences of the choroidal borders between the algorithm and manual segmentation were at a sub-voxel level, indicating a high level segmentation accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagi-Utsumi, Maho; Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603; Yamaguchi, Yoshiki
Highlights: ► Recombinant sarcotoxin IA was successfully produced with {sup 13}C- and {sup 15}N-labeling. ► Sarcotoxin IA adopts an N-terminal α-helix upon binding to lipid A-embedding micelles. ► Two lysine residues are involved in lipid A-mediated antibacterial activities. -- Abstract: Sarcotoxin IA is a 39-residue cecropin-type peptide from Sarcophaga peregrina. This peptide exhibits antibacterial activity against Gram-negative bacteria through its interaction with lipid A, a core component of lipopolysaccharides. To acquire detailed structural information on this specific interaction, we performed NMR analysis using bacterially expressed sarcotoxin IA analogs with {sup 13}C- and {sup 15}N-labeling along with lipid A-embedding micelles composedmore » of dodecylphosphocholine. By inspecting the stable isotope-assisted NMR data, we revealed that the N-terminal segment (Leu3–Arg18) of sarcotoxin IA formed an amphiphilic α-helix upon its interaction with the aqueous micelles. Furthermore, chemical shift perturbation data indicated that the amino acid residues displayed on this α-helix were involved in the specific interaction with lipid A. On the basis of these data, we successfully identified Lys4 and Lys5 as key residues in the interaction with lipid A and the consequent antibacterial activity. Therefore, these results provide unique information for designing chemotherapeutics based on antibacterial peptide structures.« less
NASA Astrophysics Data System (ADS)
Wisnudel, Marc; Torkelson, John
1997-03-01
Termination between radicals has been simulated by use of phosphorescence quenching interactions, showing that segmental diffusion plays a strong role in the origin of autoacceleration or the gel effect. Quenching rate constants (k_q) were measured between benzil-labeled polymer as a function of anthracene-labeled polymer in polystyrene or polymethylmethacrylate solutions. Values of kq were obtained for interactions involving end- or center-labeled chains as a function of polymer MW and concentration. A large effect of label location was observed as interactions between center-labeled chains resulted in values of kq that were more MW-dependent and smaller in magnitude than those for interactions between end-labeled chains. For interactions between end-labeled chains at concentrations between 0 and 600 g/L, data show only very weak dependencies of kq on MW and concentration dependencies similar to that of segmental mobility. In addition, comparisons of kq data for interactions in PMMA-toluene solutions with termination rate constant (k_t) data for MMA polymerizations, showing weaker concentration dependencies for both kq and kt than translational diffusion coefficients in similar solutions, also indicate that segmental diffusion is important in termination.
Hung, Huynh Minh; Hang, Tran Dieu; Nguyen, Minh Tho
2016-09-09
Hepatitis C virus (HCV) is one of the most crucial global health issues, in which the HCV non-structural protein 2 (NS2), particularly its three transmembrane segments, plays a crucial role in HCV assembly. In this context, multiscale MD simulations have been applied to investigate the preferred orientation of transmembrane domain of NS2 protein (TNS2) in a POPC bilayer, structural stability and characteristic of intramembrane protein-lipid and protein-protein interaction. Our study indicates that NS2 protein adopts three trans-membrane segments with highly stable α-helix structure in a POPC bilayer and a short helical luminal segment. While the first and second TM segment involved in continuous helical domain, the third TM segment is however cleaved into two sub-segments with different tilt angles via a kink at L87G88. Salt bridges K81-E45, R32-PO4 and R43-PO4 are determined as the key factor to stabilize the structure of TM2 and TM3 which consist of charged residues located in the hydrophobic region of the membrane. Copyright © 2016 Elsevier Inc. All rights reserved.
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.
Segmentation and Recognition of Continuous Human Activity
2001-01-01
This paper presents a methodology for automatic segmentation and recognition of continuous human activity . We segment a continuous human activity into...commencement or termination. We use single action sequences for the training data set. The test sequences, on the other hand, are continuous sequences of human ... activity that consist of three or more actions in succession. The system has been tested on continuous activity sequences containing actions such as
ERIC Educational Resources Information Center
Cheon, Jongpil; Chung, Sungwon; Crooks, Steven M.; Song, Jaeki; Kim, Jeakyeong
2014-01-01
Since the complex and transient information in instructional animations requires more cognitive resources, the segmenting principle has been proposed to reduce cognitive overload by providing smaller chunks with pauses between segments. This study examined the effects of different types of activities during pauses in a segmented animation. Four…
Irwin, Gareth; Kerwin, David G; Williams, Genevieve; Van Emmerik, Richard E A; Newell, Karl M; Hamill, Joseph
2018-06-18
A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics.
FragFit: a web-application for interactive modeling of protein segments into cryo-EM density maps.
Tiemann, Johanna K S; Rose, Alexander S; Ismer, Jochen; Darvish, Mitra D; Hilal, Tarek; Spahn, Christian M T; Hildebrand, Peter W
2018-05-21
Cryo-electron microscopy (cryo-EM) is a standard method to determine the three-dimensional structures of molecular complexes. However, easy to use tools for modeling of protein segments into cryo-EM maps are sparse. Here, we present the FragFit web-application, a web server for interactive modeling of segments of up to 35 amino acids length into cryo-EM density maps. The fragments are provided by a regularly updated database containing at the moment about 1 billion entries extracted from PDB structures and can be readily integrated into a protein structure. Fragments are selected based on geometric criteria, sequence similarity and fit into a given cryo-EM density map. Web-based molecular visualization with the NGL Viewer allows interactive selection of fragments. The FragFit web-application, accessible at http://proteinformatics.de/FragFit, is free and open to all users, without any login requirements.
Ultrasound-propelled nanoporous gold wire for efficient drug loading and release.
Garcia-Gradilla, Victor; Sattayasamitsathit, Sirilak; Soto, Fernando; Kuralay, Filiz; Yardımcı, Ceren; Wiitala, Devan; Galarnyk, Michael; Wang, Joseph
2014-10-29
Ultrasound (US)-powered nanowire motors based on nanoporous gold segment are developed for increasing the drug loading capacity. The new highly porous nanomotors are characterized with a tunable pore size, high surface area, and high capacity for the drug payload. These nanowire motors are prepared by template membrane deposition of a silver-gold alloy segment followed by dealloying the silver component. The drug doxorubicin (DOX) is loaded within the nanopores via electrostatic interactions with an anionic polymeric coating. The nanoporous gold structure also facilitates the near-infrared (NIR) light controlled release of the drug through photothermal effects. Ultrasound-driven transport of the loaded drug toward cancer cells followed by NIR-light triggered release is illustrated. The incorporation of the nanoporous gold segment leads to a nearly 20-fold increase in the active surface area compared to common gold nanowire motors. It is envisioned that such US-powered nanomotors could provide a new approach to rapidly and efficiently deliver large therapeutic payloads in a target-specific manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolutionary Origin of Body Axis Segmentation in Annelids and Arthropods
NASA Technical Reports Server (NTRS)
Shankland, S. Martin
2003-01-01
During the period of this report, we have made a number of important discoveries. To date this work has led to 4 peer-reviewed publications in primary research journals plus 1 minireview and 1 chapter in the proceedings of a meeting. Publications resulting from this grant support are enumerated at the end of the report. Two additional, on-going studies also described. 1. Using laser cell ablation, we have obtained evidence that an annelid - the leech Helobdella robusta - patterns the anteroposterior (AP) polarity of its nascent segment primordia independent of cell interactions oriented along the AP axis. 2. We cloned a Helobdella homologue (hro-hh) of the Drosophila segment polarity gene hedgehog, and used in situ hybridization and northern blots to characterize its expression in the embryo. 3. We have used laser cell ablations to examine the possible role of cell interactions during the developmental patterning of the 4 rostralmost "head" segments of the leech Helobdella robusta.
Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment
NASA Astrophysics Data System (ADS)
Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng
2018-06-01
To investigate the effect of imidazolium ionic liquid with poly(ethylene glycol) segment (IL) on the polar phase crystallization behavior of poly(vinylidene fluoride) (PVDF), a series of PVDF/IL composites were prepared using solution-cast method. The crystallization peak temperature of PVDF composites and the growth speed of samples decrease with increasing of IL. The >CF2 groups in amorphous region are retained and >CF2 groups in crystalline region are liberated by the PEG long soft segments of IL. The intensity of peaks represented as α phase reduces, moreover polar phase content increases with increasing of IL. The interaction between the >CF2 and the imidazolium cation can induce the polar phase, and the interaction between the >CF2 and PEG soft segment can strengthen polar crystalline induction. PVDF/12IL composite can form big γ spherulite circled by β phase.
USDA analyst review of the LACIE IMAGE-100 hybrid system test
NASA Technical Reports Server (NTRS)
Ashburn, P.; Buelow, K.; Hansen, H. L.; May, G. A. (Principal Investigator)
1979-01-01
Fifty operational segments from the U.S.S.R., 40 test segments from Canada, and 24 test segments from the United States were used to provide a wide range of geographic conditions for USDA analysts during a test to determine the effectiveness of labeling single pixel training fields (dots) using Procedure 1 on the 1-100 hybrid system, and clustering and classifying on the Earth Resources Interactive Processing System. The analysts had additional on-line capabilities such as interactive dot labeling, class or cluster map overlay flickers, and flashing of all dots of equal spectral value. Results on the 1-100 hybrid system are described and analyst problems and recommendations are discussed.
A Typology of Middle School Girls: Audience Segmentation Related to Physical Activity
ERIC Educational Resources Information Center
Staten, Lisa K.; Birnbaum, Amanda S.; Jobe, Jared B.; Elder, John P.
2006-01-01
The Trial of Activity for Adolescent Girls (TAAG) combines social ecological and social marketing approaches to promote girls' participation in physical activity programs implemented at 18 middle schools throughout the United States. Key to the TAAG approach is targeting materials to a variety of audience segments. TAAG segments are individuals…
NASA Astrophysics Data System (ADS)
McCann, William R.; Sykes, Lynn R.
1984-06-01
Normal seafloor entering the Puerto Rico and northern Lesser Antillean trenches in the northeastern Caribbean is interrupted by a series of aseismic ridges on the North and South American plates. These topographic features lie close to the expected trend of fracture zones created about 80-110 m.y. ago when this seafloor was formed at the Mid-Atlantic Ridge. The northernmost of the ridges that interact with the Lesser Antillean subduction zone, the Barracuda Ridge, intersects the arc in a region of high seismic activity. Some of this seismicity including a large shock in 1974, occurs within the overthrust plate and may be related to the deformation of the Caribbean plate as it overrides the ridge. A large bathymetric high, the Main Ridge, is oriented obliquely to the Puerto Rico trench and intersects the subduction zone north of the Virgin Islands in another cluster of seismic activity along the inner wall of the trench. Data from a seismic network in the northeastern Caribbean indicate that this intersection is also characterized by both interpolate and intraplate seismic activity. Magnetic anomalies, bathymetric trends, and the pattern of deformed sediments on the inner wall of the trench strongly suggest that the Main and Barracuda ridges are parts of a formerly continuous aseismic ridge, a segment of which has recently been overridden by the Caribbean plate. Reconstruction of mid-Miocene to Recent plate motions also suggest that at least two aseismic ridges, and possibly fragments of the Bahama Platform, have interacted with the subduction zone in the northeastern Caribbean. The introduction of these narrow segments of anomalous seafloor into the subduction zone has segmented the arc into elements about 200 km long. These ridges may act as tectonic barriers or asperities during the rupture processes involved in large earthquakes. They also leave a geologic imprint on segments of the arc with which they have interacted. A 50-km landward jump of the locus of island arc volcanism occurred in Late Miocene time along the northern half of the Lesser Antilles. We postulate that the subduction of a segment of seafloor of anomolously thick crust, being more buoyant than adjacent seafloor, resulted in a marked shoaling in the dip of the descending slab and, therefore, a shift of the locus of volcanism. In the region near western Puerto Rico and eastern Hispanolia, Plio-Pleistocene interaction with a similar feature, in this case a part of the Bahama Platform, about 3-4 m.y. ago led to a jump in the locus of subduction as evidenced by a gap in the downgoing seismic zone. That segment of the Bahama Platform interferred with the subduction process and was subsequently sutured onto the Caribbean plate when the boundary jumped about 60 km to the northeast. The maximum size of historic shallow earthquakes along the Lesser Antillean arc varies from about 7.0-7.5 in the center of the arc where the dip of the shallow part of the plate boundary is steep to 8.0-8.5 along the northern part of the arc where the dip is shallow. The interaction of anomalous seafloor, as along the northern Lesser Antilles, can lead to the development of a wider than normal zone of interplate contact and hence to earthquakes that are larger than those associated with more typical seafloor entering subduction zones. Major seismic gaps and regions of high seismic potential currently exist along the northern Lesser Antilles and to the north of Puerto Rico. Both gaps are bounded by anomalous features on the downgoing plate. The intersection of these features with the plate boundary created large asperities that may be good places to search for precursors to future large earthquakes. A great shock in 1787 may have ruptured an existing seismic gap north of Puerto Rico between 65° and 67°W. Thus that gap can be expected to eventually rupture again in a great shock and not to accommodate plate motion by totally aseismic processes.
Kreikemeier, K K; Harmon, D L; Peters, J P; Gross, K L; Armendariz, C K; Krehbiel, C R
1990-09-01
Twenty (12 Holstein, 8 Longhorn cross) calves (198 kg and 7 mo old) were used in a randomized complete block design to evaluate the effects of dietary forage concentration and feed intake on carbohydrase activities and small intestinal (SI) morphology. Calves were individually fed 90% forage (alfalfa) or a 90% concentrate (50% sorghum: 50% wheat) diet at either one or two times NEm for 140 d and slaughtered; tissues and small intestinal digesta were collected. Increased feed intake increased (P less than .05) pancreatic weight, alpha-amylase and glucoamylase activities in the pancreas, SI length and SI digesta weight. Forage-fed calves gained faster (P less than .01) and had greater (P less than .05) pancreatic protein concentrations, alpha-amylase and glucoamylase activities in the pancreas and greater SI digesta alpha-amylase activities than grain-fed calves did. Increased feed intake increased (P less than .01) mucosal weight/cm small intestine only in forage-fed calves and increased (P less than .05) SI surface/volume only in grain-fed calves. Mucosal weight was greatest (P less than .05) at the terminal ileum, surface/volume was greatest (P less than .05) in the duodenum, and mucosal protein concentration was highest (P less than .05) in the SI mid-section. Mucosal lactase was higher (P less than .05) in proximal segments, whereas mucosal isomaltase was higher in middle and distal segments of the small intestine. For mucosal maltase activity, there was a feed intake x SI sampling site interaction (P less than .05) and for trehalase, a diet x feed intake x SI sampling site interaction (P less than .05). The SI distribution patterns of maltase and isomaltase were similar, as were those of trehalase and lactase. The alpha-amylase activity in the pancreas and SI morphology were influenced greatly by diet composition and feed intake by calves.
NASA Astrophysics Data System (ADS)
Wegener, Pam; Covino, Tim; Wohl, Ellen
2017-06-01
River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.
Difference of the seismic structure between the Hyuga-nada and the Nankai seismogenic segments
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.
2010-12-01
In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. In the Hyuga-nada region, interplate earthquakes of M~7 occur repeatedly at intervals of about 20 years whereas no megathrust (M > 8) earthquakes had been recognized up to now. However, recent studies show the possibility of simultaneous rupture of the Tokai, Tonankai, Nankai and Hyuga-nada segments was also pointed out [e.g., Hori et al., 2009 AOGS]. To understand the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a wide-angle active source survey and local seismic observation in the western end of the Nankai seismogenic zone, as a part of Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Nakanishi et al [2009, AGU] showed that subducting Philippine Sea Plate can be divided into three zones and there is the zone of the thin oceanic crust of the subducting Philippine Sea Plate between Nankai segment and Kyushu-Palau Ridge segment by analyzing of the active source survey. Deep structure of the subducting slab is also important to consider the possibility of the seismic linkage and the location of the boundary among three zones described above. To obtain the deep seismic image, we performed a three-dimensional seismic tomography using the local seismic data recorded on 158 ocean bottom seismographs and 105 land seismic stations. From these data, we could detect 1141 earthquakes in the Hyuga-nada region. From the result of hypocenter relocation, microseismicity near the trough axis is active on the western part of the ‘thin oceanic crust’, whereas inactive on the eastern part. Besides, velocity structure of the uppermost part of the subducting slab mantle shows spatial heterogeneities. In the thin oceanic crust zone, high velocity slab mantle is imaged from near the trough to coastline. On the other hands, there is low velocity zone in the slab mantle near the trough axis in the Kyusyu-Palau Ridge segment. This low velocity zone may be related to the location of the eastern end of subducted Kyusyu-Palau Ridge.
Interaction between the Cockayne syndrome B and p53 proteins: implications for aging.
Frontini, Mattia; Proietti-De-Santis, Luca
2012-02-01
The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
NASA Astrophysics Data System (ADS)
Reyes López, Misael; Arámbula Cosío, Fernando
2017-11-01
The cerebellum is an important structure to determine the gestational age of the fetus, moreover most of the abnormalities it presents are related to growth disorders. In this work, we present the results of the segmentation of the fetal cerebellum applying statistical shape and appearance models. Both models were tested on ultrasound images of the fetal brain taken from 23 pregnant women, between 18 and 24 gestational weeks. The accuracy results obtained on 11 ultrasound images show a mean Hausdorff distance of 6.08 mm between the manual segmentation and the segmentation using active shape model, and a mean Hausdorff distance of 7.54 mm between the manual segmentation and the segmentation using active appearance model. The reported results demonstrate that the active shape model is more robust in the segmentation of the fetal cerebellum in ultrasound images.
Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.
Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H
2012-12-01
Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.
Distinct Contributions of Conserved Modules to Runt Transcription Factor Activity
Walrad, Pegine B.; Hang, Saiyu; Joseph, Genevieve S.; Salas, Julia
2010-01-01
Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators. PMID:20462957
Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc
2004-03-01
The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles involved in this action. This contraction occurs during the last part of classical systole and the first part of diastole. Therefore, the most important part of ventricular diastole (i.e. the rapid filling phase), in which it receives >70% of the stroke volume, belongs to the active muscular contraction of the ascendent segment. We hope that these facts will give rise to new understanding of the principal mechanisms involved in normal and abnormal diastolic heart function.
NASA Astrophysics Data System (ADS)
Valenziano, L.; Gregorio, A.; Butler, R. C.; Amiaux, J.; Bonoli, C.; Bortoletto, F.; Burigana, C.; Corcione, L.; Ealet, A.; Frailis, M.; Jahnke, K.; Ligori, S.; Maiorano, E.; Morgante, G.; Nicastro, L.; Pasian, F.; Riva, M.; Scaramella, R.; Schiavone, F.; Tavagnacco, D.; Toledo-Moreo, R.; Trifoglio, M.; Zacchei, A.; Zerbi, F. M.; Maciaszek, T.
2012-09-01
Euclid is the future ESA mission, mainly devoted to Cosmology. Like WMAP and Planck, it is a survey mission, to be launched in 2019 and injected in orbit far away from the Earth, for a nominal lifetime of 7 years. Euclid has two instruments on-board, the Visible Imager (VIS) and the Near- Infrared Spectro-Photometer (NISP). The NISP instrument includes cryogenic mechanisms, active thermal control, high-performance Data Processing Unit and requires periodic in-flight calibrations and instrument parameters monitoring. To fully exploit the capability of the NISP, a careful control of systematic effects is required. From previous experiments, we have built the concept of an integrated instrument development and verification approach, where the scientific, instrument and ground-segment expertise have strong interactions from the early phases of the project. In particular, we discuss the strong integration of test and calibration activities with the Ground Segment, starting from early pre-launch verification activities. We want to report here the expertise acquired by the Euclid team in previous missions, only citing the literature for detailed reference, and indicate how it is applied in the Euclid mission framework.
Seismic risk assessment for road in Indonesia
NASA Astrophysics Data System (ADS)
Toyfur, Mona Foralisa; Pribadi, Krishna S.
2016-05-01
Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.
The physiological roles of arrestin-1 in rod photoreceptor cells.
Chen, Jeannie
2014-01-01
Arrestin-1 is the second most abundant protein in rod photoreceptors and is nearly equimolar to rhodopsin. Its well-recognized role is to "arrest" signaling from light-activated, phosphorylated rhodopsin, a prototypical G protein-coupled receptor. In doing so, arrestin-1 plays a key role in the rapid recovery of the light response. Arrestin-1 exists in a basal conformation that is stabilized by two independent sets of intramolecular interactions. The intramolecular constraints are disrupted by encountering (1) active conformation of the receptor (R*) and (2) receptor-attached phosphates. Requirement for these two events ensures its highly specific high-affinity binding to phosphorylated, light-activated rhodopsin (P-R*). In the dark-adapted state, the basal form is further organized into dimers and tetramers. Emerging data suggest pleiotropic roles of arrestin-1 beyond the functional range of rod cells. These include light-induced arrestin-1 translocation from the inner segment to the outer segment, a process that may be protective against cellular damage incurred by constitutive signaling. Its expanding list of binding partners also hints at additional, yet to be characterized functions. Uncovering these novel roles of arrestin-1 is a subject of future studies.
Beichel, Reinhard R.; Van Tol, Markus; Ulrich, Ethan J.; Bauer, Christian; Chang, Tangel; Plichta, Kristin A.; Smith, Brian J.; Sunderland, John J.; Graham, Michael M.; Sonka, Milan; Buatti, John M.
2016-01-01
Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction. PMID:27277044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beichel, Reinhard R., E-mail: reinhard-beichel@uiowa.edu; Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242
Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behaviormore » of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.« less
Interactive Volumetry Of Liver Ablation Zones.
Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael
2015-10-20
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.
Interactive Volumetry Of Liver Ablation Zones
Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael
2015-01-01
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow. PMID:26482818
Interactive Volumetry Of Liver Ablation Zones
NASA Astrophysics Data System (ADS)
Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael
2015-10-01
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.
Tong, Catherine; Sims-Gould, Joanie; McKay, Heather
2016-11-01
The global population is aging and older adults overwhelmingly wish to age in place. A positive neighbourhood context is crucial for the wellbeing of older adults. The ability to age in place is predicated on mobility; mobility is the capacity to move oneself around the home and community using a variety of modes. Segments of the population have been entirely overlooked within the mobility and built environment literature; we know surprisingly little about foreign-born older adults (FBOAs). We sought to understand the impact of the neighbourhood environment on the mobility and physical activity of FBOAs. To do so we endeavoured to develop an interview tool that would allow us to interact with the environment alongside, or through the eyes of, our participants. This article outlines lessons learned following design and implementation of an interview approach that we conducted with FBOAs -- "InterACTIVE Interpreted Interviews (I 3 )". We used the interACTIVE interview approach in a large mixed-method study on FBOA mobility in Vancouver, Canada. All aspects of the study were offered in Hindi, Punjabi, Cantonese, Mandarin and English, with the aid of professional interpreters. Twenty FBOAs completed in-depth qualitative interviews. Of these, thirteen completed the mobile, interACTIVE interview. The interACTIVE interview consisted of a neighbourhood walk, guided by the participant. Our approach integrated elements of participant observation, researcher participation, and unstructured interviewing to enrich discussions with participants. The interACTIVE approach deepened our understanding of neighbourhood context and allowed researchers and participants to overcome issues inherent in language interpretation. We were able to overcome concerns of privacy, safety and comfort to successfully implement this observational tool and recommend it as an attractive, alternative approach for those conducting studies with FBOAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using movement and intentions to understand human activity.
Zacks, Jeffrey M; Kumar, Shawn; Abrams, Richard A; Mehta, Ritesh
2009-08-01
During perception, people segment continuous activity into discrete events. They do so in part by monitoring changes in features of an ongoing activity. Characterizing these features is important for theories of event perception and may be helpful for designing information systems. The three experiments reported here asked whether the body movements of an actor predict when viewers will perceive event boundaries. Body movements were recorded using a magnetic motion tracking system and compared with viewers' segmentation of his activity into events. Changes in movement features were strongly associated with segmentation. This was more true for fine-grained than for coarse-grained boundaries, and was strengthened when the stimulus displays were reduced from live-action movies to simplified animations. These results suggest that movement variables play an important role in the process of segmenting activity into meaningful events, and that the influence of movement on segmentation depends on the availability of other information sources.
Wulfmeyer, Vera Christine; Drewell, Hoora; Mutig, Kerim; Hou, Jianghui; Breiderhoff, Tilman; Müller, Dominik; Fromm, Michael; Bleich, Markus; Günzel, Dorothee
2017-01-01
The thick ascending limb (TAL) of Henle’s loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2+. PMID:28028216
Development of a semi-automated combined PET and CT lung lesion segmentation framework
NASA Astrophysics Data System (ADS)
Rossi, Farli; Mokri, Siti Salasiah; Rahni, Ashrani Aizzuddin Abd.
2017-03-01
Segmentation is one of the most important steps in automated medical diagnosis applications, which affects the accuracy of the overall system. In this paper, we propose a semi-automated segmentation method for extracting lung lesions from thoracic PET/CT images by combining low level processing and active contour techniques. The lesions are first segmented in PET images which are first converted to standardised uptake values (SUVs). The segmented PET images then serve as an initial contour for subsequent active contour segmentation of corresponding CT images. To evaluate its accuracy, the Jaccard Index (JI) was used as a measure of the accuracy of the segmented lesion compared to alternative segmentations from the QIN lung CT segmentation challenge, which is possible by registering the whole body PET/CT images to the corresponding thoracic CT images. The results show that our proposed technique has acceptable accuracy in lung lesion segmentation with JI values of around 0.8, especially when considering the variability of the alternative segmentations.
Segmental Interactions between Polymers and Small Molecules in Batteries and Biofuel Purification
NASA Astrophysics Data System (ADS)
Balsara, Nitash
2015-03-01
Polymers such as poly(ethylene oxide) (PEO) and poly(dimethyl siloxane) (PDMS) have the potential to play an important role in the emerging clean energy landscape. Mixtures of PEO and lithium salts are the most widely studied non-flammable electrolyte for rechargeable lithium batteries. PDMS membranes are ideally suited for purifying bioethanol and biobutanol from fermentation broths. The ability of PEO and PDMS to function in these applications depends on segmental interactions between the polymeric host and small molecule guests. One experimental approach for studying these interactions is X-ray absorption spectroscopy (XAS). Models for interpreting XAS spectra of amorphous mixtures and charged species such as salts must quantify the effect of segmental interactions on the electronic structure of the atoms of interest (e.g. sulfur). This combination of experiment and theory is used to determine the species formed in during charging and discharging lithium-sulfur batteries; the theoretical specific energy of lithium-sulfur batteries is a factor of four larger than that of current lithium-ion batteries. Selective transport of alcohols in PDMS-containing membranes is controlled by the size, shape, and connectivity of sub-nanometer cavities or free volume that form and disappear spontaneously as the chain segments undergo Brownian motion. We demonstrate that self-assembly of PDMS-containing block copolymers can be used to control segmental relaxation, which, in turn, affects free volume. Positron annihilation was used to determine the size distribution of free volume cavities in the PDMS-containing block copolymers. The effect of this artificial free volume on selective permeation of alcohols formed by fermentation of sugars derived from lignocellulosic biomass is studied. Molecular dynamics simulations are needed to understand the relationship between self-assembly, free volume, and transport in block copolymers.
Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc
2015-11-01
The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc
2015-01-01
ABSTRACT The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. IMPORTANCE This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. PMID:26339065
The Time Course of Segmentation and Cue-Selectivity in the Human Visual Cortex
Appelbaum, Lawrence G.; Ales, Justin M.; Norcia, Anthony M.
2012-01-01
Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ∼143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity. PMID:22479566
Importance of fishing as a segmentation variable in the application of a social worlds model
Gigliotti, Larry M.; Chase, Loren
2017-01-01
Market segmentation is useful to understanding and classifying the diverse range of outdoor recreation experiences sought by different recreationists. Although many different segmentation methodologies exist, many are complex and difficult to measure accurately during in-person intercepts, such as that of creel surveys. To address that gap in the literature, we propose a single-item measure of the importance of fishing as a surrogate to often overly- or needlesslycomplex segmentation techniques. The importance of fishing item is a measure of the value anglers place on the activity or a coarse quantification of how central the activity is to the respondent’s lifestyle (scale: 0 = not important, 1 = slightly, 2 = moderately, 3 = very, and 4 = fishing is my most important recreational activity). We suggest the importance scale may be a proxy measurement for segmenting anglers using the social worlds model as a theoretical framework. Vaske (1980) suggested that commitment to recreational activities may be best understood in relation to social group participation and the social worlds model provides a rich theoretical framework for understanding social group segments. Unruh (1983) identified four types of actor involvement in social worlds: strangers, tourists, regulars, and insiders, differentiated by four characteristics (orientation, experiences, relationships, and commitment). We evaluated the importance of fishing as a segmentation variable using data collected by a mixed-mode survey of South Dakota anglers fishing in 2010. We contend that this straightforward measurement may be useful for segmenting outdoor recreation activities when more complicated segmentation schemes are not suitable. Further, this index, when coupled with the social worlds model, provides a valuable framework for understanding the segments and making management decisions.
Dolz, J; Kirişli, H A; Fechter, T; Karnitzki, S; Oehlke, O; Nestle, U; Vermandel, M; Massoptier, L
2016-05-01
Accurate delineation of organs at risk (OARs) on computed tomography (CT) image is required for radiation treatment planning (RTP). Manual delineation of OARs being time consuming and prone to high interobserver variability, many (semi-) automatic methods have been proposed. However, most of them are specific to a particular OAR. Here, an interactive computer-assisted system able to segment various OARs required for thoracic radiation therapy is introduced. Segmentation information (foreground and background seeds) is interactively added by the user in any of the three main orthogonal views of the CT volume and is subsequently propagated within the whole volume. The proposed method is based on the combination of watershed transformation and graph-cuts algorithm, which is used as a powerful optimization technique to minimize the energy function. The OARs considered for thoracic radiation therapy are the lungs, spinal cord, trachea, proximal bronchus tree, heart, and esophagus. The method was evaluated on multivendor CT datasets of 30 patients. Two radiation oncologists participated in the study and manual delineations from the original RTP were used as ground truth for evaluation. Delineation of the OARs obtained with the minimally interactive approach was approved to be usable for RTP in nearly 90% of the cases, excluding the esophagus, which segmentation was mostly rejected, thus leading to a gain of time ranging from 50% to 80% in RTP. Considering exclusively accepted cases, overall OARs, a Dice similarity coefficient higher than 0.7 and a Hausdorff distance below 10 mm with respect to the ground truth were achieved. In addition, the interobserver analysis did not highlight any statistically significant difference, at the exception of the segmentation of the heart, in terms of Hausdorff distance and volume difference. An interactive, accurate, fast, and easy-to-use computer-assisted system able to segment various OARs required for thoracic radiation therapy has been presented and clinically evaluated. The introduction of the proposed system in clinical routine may offer valuable new option to radiation oncologists in performing RTP.
Kasaian, Marion T; Tan, Xiang-Yang; Jin, Macy; Fitz, Lori; Marquette, Kimberly; Wood, Nancy; Cook, Timothy A; Lee, Julie; Widom, Angela; Agostinelli, Rita; Bree, Andrea; Schlerman, Franklin J; Olland, Stephane; Wadanoli, Michael; Sypek, Joseph; Gill, Davinder; Goldman, Samuel J; Tchistiakova, Lioudmila
2008-06-01
Interleukin (IL)-13 is a key cytokine driving allergic and asthmatic responses and contributes to airway inflammation in cynomolgus monkeys after segmental challenge with Ascaris suum antigen. IL-13 bioactivity is mediated by a heterodimeric receptor (IL-13Ralpha1/IL-4Ralpha) and can be inhibited in vitro by targeting IL-13 interaction with either chain. However, in cytokine systems, in vitro neutralization activity may not always predict inhibitory function in vivo. To address the efficacy of two different IL-13 neutralization mechanisms in a primate model of atopic disease, two humanized monoclonal antibodies to IL-13 were generated, with highly homologous properties, differing in epitope recognition. Ab01 blocks IL-13 interaction with IL-4Ralpha, and Ab02 blocks IL-13 interaction with IL-13Ralpha1. In a cynomolgus monkey model of IgE responses to A. suum antigen, both Ab01 and Ab02 effectively reduced serum titers of Ascaris-specific IgE and diminished ex vivo Ascaris-triggered basophil histamine release, assayed 8 weeks after a single administration of antibody. The two antibodies also produced comparable reductions in pulmonary inflammation after lung segmental challenge with Ascaris antigen. Increased serum levels of IL-13, lacking demonstrable biological activity, were seen postchallenge in animals given either anti-IL-13 antibody but not in control animals given human IgG of irrelevant specificity. These findings demonstrate a potent effect of IL-13 neutralization on IgE-mediated atopic responses in a primate system and show that IL-13 can be efficiently neutralized by targeting either the IL-4Ralpha-binding epitope or the IL-13Ralpha1-binding epitope.
Figure-Ground Segmentation Using Factor Graphs
Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr
2009-01-01
Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994
Smith, Steven P; Bayer, Edward A
2013-10-01
Cellulosomes are multi-enzyme complexes produced by anaerobic bacteria for the efficient deconstruction of plant cell wall polysaccharides. The assembly of enzymatic subunits onto a central non-catalytic scaffoldin subunit is mediated by a highly specific interaction between the enzyme-bearing dockerin modules and the resident cohesin modules of the scaffoldin, which affords their catalytic activities to work synergistically. The scaffoldin also imparts substrate-binding and bacterial-anchoring properties, the latter of which involves a second cohesin-dockerin interaction. Recent structure-function studies reveal an ever-growing array of unique and increasingly complex cohesin-dockerin complexes and cellulosomal enzymes with novel activities. A 'build' approach involving multimodular cellulosomal segments has provided a structural model of an organized yet conformationally dynamic supramolecular assembly with the potential to form higher order structures. Copyright © 2013. Published by Elsevier Ltd.
Statistical Mechanical Theory of Coupled Slow Dynamics in Glassy Polymer-Molecule Mixtures
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth
The microscopic Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids and glasses is generalized to polymer-molecule mixtures. The key idea is to account for dynamic coupling between molecule and polymer segment motion. For describing the molecule hopping event, a temporal casuality condition is formulated to self-consistently determine a dimensionless degree of matrix distortion relative to the molecule jump distance based on the concept of coupled dynamic free energies. Implementation for real materials employs an established Kuhn sphere model of the polymer liquid and a quantitative mapping to a hard particle reference system guided by the experimental equation-of-state. The theory makes predictions for the mixture dynamic shear modulus, activated relaxation time and diffusivity of both species, and mixture glass transition temperature as a function of molecule-Kuhn segment size ratio and attraction strength, composition and temperature. Model calculations illustrate the dynamical behavior in three distinct mixture regimes (fully miscible, bridging, clustering) controlled by the molecule-polymer interaction or chi-parameter. Applications to specific experimental systems will be discussed.
Ma, Ning; Wang, Peng; Kong, Xia; Shi, Rongfu; Yuan, Zhi; Wang, Chunhong
2012-01-01
The hydrolysis reaction of ester groups in vinyl acetate (VAc) was used to introduce hydroxyl groups into the matrix of a macroporous adsorbent, which was itself prepared by free radical suspension copolymerization of triallyl isocyanurate (TAIC) and VAc. Therefore, the copolymerization incompatibility between the hydrophilic and the hydrophobic monomer was overcome successfully and the hydrophobic matrix of the polymeric adsorbent containing a polyvinyl alcohol (PVA) segment was obtained. Introduction of the PVA segment decreased the hydrophobic adsorption affinity of the adsorbent while producing the hydrogen-bonding interaction. When isolating the two active components, polyphenols (TPh) and caffeine (CAF), from green tea extracts, this polymeric adsorbent, namely poly(TAIC-co-VA), exhibited good adsorption selectivity towards TPh over CAF. The adsorption mechanism leading to this selectivity involved a hydrophobic interaction mechanism for CAF and multiple weak hydrophobic and hydrogen-bonding interactions for TPh. The adsorption thermodynamics for TPh on poly(TAIC-co-VA) were studied. The effects of adsorbent structure and gradient desorption conditions on isolation were investigated. The result showed that adsorbent, with 20% TAIC content, was able to efficiently remove CAF from different tea extracts with different ratios of TPh and CAF. Finally, almost no CAF was detected in the TPh fraction and the recovery of TPh was greater than 95%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Bacterial biofilms on PVC tubing's inner surface of hemodialysis water treatment system].
Yang, Sha; Jia, Ke; Peng, Youming; Liu, Hong; Liu, Yinghong; Chen, Xing; Liu, Fuyou
2009-10-01
To determine the morphology, bacteria and endotoxin content of biofilms on the inner surface of PVC tubes in hemodialysis water treatment system. We dissolved biofilms of segments before and after reverse osmosis machine for bacterial count and identification. We studied biofilm structure of segments before and after reverse osmosis machine with eyes and scanning electron microscope. Biofilms of all 7 segments were dissolved for qualitative and quantitative assay of endotoxin. The inner surface of segment before reverse osmosis machine was homogeneously distributed with activated carbon powder deposition. The segment after reverse osmosis machine was normal. With scanning electron microscope, biofilm with successive surface and sandwich was found on the inner surface of segment before reverse osmosis machine, formed by clustering bacillus, activated carbon powder and some coccus. Bacteria of the same shape and length were found on segment after reverse osmosis machine, but fewer and looser. Bacterial culture and identification showed the former was mostly gram-negative bacillus, the latter was only a few micrococcus. Endotoxin of biofilm was between 2.0 EU/mL and 4.0 EU/mL. Quantitative assay showed: segment after softener (2.821+/-0.807) EU/mL; segment after active charcoal canister(3.635+/-0.427) EU/mL; segment before reverse osmosis machine (3.687+/-0.271) EU/mL; segment after reverse osmosis machine (2.041+/-0.295) EU/mL; exit of power pump (1.983+/-0.390)EU/mL;the 1st dead space (2.373+/-0.535) EU/mL; and the 2nd dead space (2.858+/-0.690)EU/mL. Biofilms are found on the inner surface of segment before and after reverse osmosis machine. Endotoxin level from high to low is as follows: segment before reverse osmosis machine, segment after active charcoal canister, the 2nd dead space, segment after softener, the 1st dead space, segment after reverse osmosis machine, exit of power pump. The character of the bacteria and endotoxin of the biofilm can help us find better ways to control them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques da Silva, A; Narciso, L
Purpose: Commercial workstations usually have their own software to calculate dynamic renal functions. However, usually they have low flexibility and subjectivity on delimiting kidney and background areas. The aim of this paper is to present a public domain software, called RenalQuant, capable to semi-automatically draw regions of interest on dynamic renal scintigraphies, extracting data and generating renal function quantification parameters. Methods: The software was developed in Java and written as an ImageJ-based plugin. The preprocessing and segmentation steps include the user’s selection of one time frame with higher activity in kidney’s region, compared with background, and low activity in themore » liver. Next, the chosen time frame is smoothed using a Gaussian low pass spatial filter (σ = 3) for noise reduction and better delimitation of kidneys. The maximum entropy thresholding method is used for segmentation. A background area is automatically placed below each kidney, and the user confirms if these regions are correctly segmented and positioned. Quantitative data are extracted and each renogram and relative renal function (RRF) value is calculated and displayed. Results: RenalQuant plugin was validated using retrospective 20 patients’ 99mTc-DTPA exams, and compared with results produced by commercial workstation software, referred as reference. The renograms intraclass correlation coefficients (ICC) were calculated and false-negative and false-positive RRF values were analyzed. The results showed that ICC values between RenalQuant plugin and reference software for both kidneys’ renograms were higher than 0.75, showing excellent reliability. Conclusion: Our results indicated RenalQuant plugin can be trustingly used to generate renograms, using DICOM dynamic renal scintigraphy exams as input. It is user friendly and user’s interaction occurs at a minimum level. Further studies have to investigate how to increase RRF accuracy and explore how to solve limitations in the segmentation step, mainly when background region has higher activity compared to kidneys. Financial support by CAPES.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, J.; Zugliani, C.; Mischler, R.
1991-03-05
Fusion of influenza viruses with membranes is catalyzed by the viral spike protein hemagglutinin (HA). Under mildly acidic conditions ({approximately}pH 5) this protein undergoes a conformational change that triggers the exposure of the fusion peptide, the hydrophobic N-terminal segment of the HA2 polypeptide chain. Insertion of this segment into the target membrane (or viral membrane ) is likely to represent a key step along the fusion pathway, but the details are far from being clear. The photoreactive phospholipid 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-{sup 3}H)undecanoyl)-sn-glycero-3-phosphocholine (({sup 3}H)PTPC/11), inserted into the bilayer of large unilamellar vesicles (LUVs), allowed the authors to investigate both the interaction ofmore » viruses with the vesicles under perfusion conditions and the fusion process itself occurring at elevated temperatures only. Despite the observed binding of viruses to LUVs at pH 5 and 0C, labeling of HA2 was very weak. They have studied also the effect of temperature on the acid-induced (pH 5) interaction of bromelain-solubilized HA (BHA) with vesicles.« less
User-guided segmentation for volumetric retinal optical coherence tomography images
Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.
2014-01-01
Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962
User-guided segmentation for volumetric retinal optical coherence tomography images.
Yin, Xin; Chao, Jennifer R; Wang, Ruikang K
2014-08-01
Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.
Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M
2016-09-23
Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Initial Ferritic Wall Mode studies on HBT-EP
NASA Astrophysics Data System (ADS)
Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.
2013-10-01
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Spatial location influences vocal interactions in bullfrog choruses
Bates, Mary E.; Cropp, Brett F.; Gonchar, Marina; Knowles, Jeffrey; Simmons, James A.; Simmons, Andrea Megela
2010-01-01
A multiple sensor array was employed to identify the spatial locations of all vocalizing male bullfrogs (Rana catesbeiana) in five natural choruses. Patterns of vocal activity collected with this array were compared with computer simulations of chorus activity. Bullfrogs were not randomly spaced within choruses, but tended to cluster into closely spaced groups of two to five vocalizing males. There were nonrandom, differing patterns of vocal interactions within clusters of closely spaced males and between different clusters. Bullfrogs located within the same cluster tended to overlap or alternate call notes with two or more other males in that cluster. These near-simultaneous calling bouts produced advertisement calls with more pronounced amplitude modulation than occurred in nonoverlapping notes or calls. Bullfrogs located in different clusters more often alternated entire calls or overlapped only small segments of their calls. They also tended to respond sequentially to calls of their farther neighbors compared to their nearer neighbors. Results of computational analyses showed that the observed patterns of vocal interactions were significantly different than expected based on random activity. The use of a multiple sensor array provides a richer view of the dynamics of choruses than available based on single microphone techniques. PMID:20370047
Alternative modes of client binding enable functional plasticity of Hsp70
NASA Astrophysics Data System (ADS)
Mashaghi, Alireza; Bezrukavnikov, Sergey; Minde, David P.; Wentink, Anne S.; Kityk, Roman; Zachmann-Brand, Beate; Mayer, Matthias P.; Kramer, Günter; Bukau, Bernd; Tans, Sander J.
2016-11-01
The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.
Sadeghian, Hakimeh; Kousari, Aliasghar; Majidi, Shahla; Rezvanfard, Mehrnaz; Kazemisaeid, Ali; Moezzi, Seyed Ali; Vasheghani Farahani, Ali; Abdar Esfahani, Morteza; Sahebjam, Mohammad; Zoroufian, Arezoo; Sadeghian, Afsaneh
2016-07-06
Background: It is not clear whether the latest activation sites in the left ventricle (LV) are matched with infracted regions in patients with ischemic cardiomyopathy (ICM). We aimed to investigate whether the latest activation sites in the LV are in agreement with the region of akinesia in patients with ICM. Methods: Data were analyzed in 106 patients (age = 60.5 ± 12.1 y, male = 88.7%) with ICM (ejection fraction ≤ 35%) who were refractory to pharmacological therapy and were referred to the echocardiography department for an evaluation of the feasibility of cardiac resynchronization therapy. Wall motion abnormalities, time to peak systolic myocardial velocity (Ts) of 6 basal and 6 mid-portion segments of the LV, and 4 frequently used dyssynchrony indices were measured using 2-dimensional echocardiography and tissue Doppler imaging (TDI). To evaluate the influence of the electrocardiographic pattern, we categorized the patients into 2 groups: patients with QRS ≤ 120 ms and those with QRS >120 ms. Results: A total of 1 272 segments were studied. The latest activation sites (with longest Ts) were most frequently located in the mid-anterior (n = 32, 30.2%) and basal-anterior segments (n = 29, 27.4%), while the most common sites of akinesia were the mid-anteroseptal (n = 65, 61.3%) and mid-septal (n = 51, 48.1%) segments. Generally, no significant concordance was found between the latest activated segments and akinesia either in all the patients or in the QRS groups. Detailed analysis within the segments indicated a good agreement between akinesia and delayed activation in the basal-lateral segment solely in the patients with QRS duration ≤ 120 ms (Φ = 0.707; p value ≤ 0.001). Conclusion: The akinetic segment on 2-dimensional echocardiogram was not matched with the latest activation sites in the LV determined by TDI in patients with ICM.
Sadeghian, Hakimeh; Kousari, Aliasghar; Majidi, Shahla; Rezvanfard, Mehrnaz; Kazemisaeid, Ali; Moezzi, Seyed Ali; Vasheghani Farahani, Ali; Abdar Esfahani, Morteza; Sahebjam, Mohammad; Zoroufian, Arezoo; Sadeghian, Afsaneh
2016-01-01
Background: It is not clear whether the latest activation sites in the left ventricle (LV) are matched with infracted regions in patients with ischemic cardiomyopathy (ICM). We aimed to investigate whether the latest activation sites in the LV are in agreement with the region of akinesia in patients with ICM. Methods: Data were analyzed in 106 patients (age = 60.5 ± 12.1 y, male = 88.7%) with ICM (ejection fraction ≤ 35%) who were refractory to pharmacological therapy and were referred to the echocardiography department for an evaluation of the feasibility of cardiac resynchronization therapy. Wall motion abnormalities, time to peak systolic myocardial velocity (Ts) of 6 basal and 6 mid-portion segments of the LV, and 4 frequently used dyssynchrony indices were measured using 2-dimensional echocardiography and tissue Doppler imaging (TDI). To evaluate the influence of the electrocardiographic pattern, we categorized the patients into 2 groups: patients with QRS ≤ 120 ms and those with QRS >120 ms. Results: A total of 1 272 segments were studied. The latest activation sites (with longest Ts) were most frequently located in the mid-anterior (n = 32, 30.2%) and basal-anterior segments (n = 29, 27.4%), while the most common sites of akinesia were the mid-anteroseptal (n = 65, 61.3%) and mid-septal (n = 51, 48.1%) segments. Generally, no significant concordance was found between the latest activated segments and akinesia either in all the patients or in the QRS groups. Detailed analysis within the segments indicated a good agreement between akinesia and delayed activation in the basal-lateral segment solely in the patients with QRS duration ≤ 120 ms (Φ = 0.707; p value ≤ 0.001). Conclusion: The akinetic segment on 2-dimensional echocardiogram was not matched with the latest activation sites in the LV determined by TDI in patients with ICM. PMID:27956911
NASA Astrophysics Data System (ADS)
Bretis, Bernhard; Bartl, Nikolaus; Graseman, Bernhard; Lockhart, Duncan
2010-05-01
The Zagros fold and thrust belt is a seismically active orogen, where actual kinematic models based on GPS networks suggest a north-south shortening between Arabian and Eurasian in the order of 1.5-2.5 cm/yr. Most of this deformation is partitioned in south-southwest oriented folding and thrusting with northwest-southeast to north-south trending dextral strike slip faults. The Zagros fold and thrust belt is of great economic interest because it has been estimated that this area contains about 15% of the global recoverable hydrocarbons. Whereas the SE parts of the Zagros have been investigated by detailed geological studies, the NW extent being part of the Republic of Iraq have experienced considerably less attention. In this study we combine field work and remote sensing techniques in order to investigate the interaction of erosion and fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular we focus on the interaction of the transient development of drainage patterns along growing antiforms, which directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi-, Permam- and Safeen fold trains show that these anticlines have not developed from subcylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification. This fold segments with length between 5 and 25 km have been detected by mapping ancient and modern river courses that initially cut the nose of growing folds and eventually got defeated leaving behind a wind gap. Fold segments, propagating in different directions force rivers to join resulting in steep gorges, which dissect the merging fold noses. Along rapidly lateral growing folds (e.g. at the SE end of the Bana Bawi Anticline) we observed "curved wind gaps", a new type of abandoned river course, where form of the wind gap mimics a formed nose of a growing antiform. The inherited curved segments of uplifted curved river courses strongly influence the development of the drainage system. This new model helps to detect embryonic fold segments of subcylindrical folds, which are otherwise difficult to identify.
Integrating shape into an interactive segmentation framework
NASA Astrophysics Data System (ADS)
Kamalakannan, S.; Bryant, B.; Sari-Sarraf, H.; Long, R.; Antani, S.; Thoma, G.
2013-02-01
This paper presents a novel interactive annotation toolbox which extends a well-known user-steered segmentation framework, namely Intelligent Scissors (IS). IS, posed as a shortest path problem, is essentially driven by lower level image based features. All the higher level knowledge about the problem domain is obtained from the user through mouse clicks. The proposed work integrates one higher level feature, namely shape up to a rigid transform, into the IS framework, thus reducing the burden on the user and the subjectivity involved in the annotation procedure, especially during instances of occlusions, broken edges, noise and spurious boundaries. The above mentioned scenarios are commonplace in medical image annotation applications and, hence, such a tool will be of immense help to the medical community. As a first step, an offline training procedure is performed in which a mean shape and the corresponding shape variance is computed by registering training shapes up to a rigid transform in a level-set framework. The user starts the interactive segmentation procedure by providing a training segment, which is a part of the target boundary. A partial shape matching scheme based on a scale-invariant curvature signature is employed in order to extract shape correspondences and subsequently predict the shape of the unsegmented target boundary. A `zone of confidence' is generated for the predicted boundary to accommodate shape variations. The method is evaluated on segmentation of digital chest x-ray images for lung annotation which is a crucial step in developing algorithms for screening Tuberculosis.
Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.
Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A
2013-01-01
Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.
Nandy, Suman Kumar; Seal, Alpana
2016-01-01
Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.
Smith, Laura; Litman, Paul; Kohli, Ekta; Amick, Joseph; Page, Richard C.; Misra, Saurav
2013-01-01
Mutations in cystic fibrosis transmembrane regulator (CFTR), a chloride channel in the apical membranes of secretory epithelial cells, underlie the fatal genetic disorder cystic fibrosis. Certain CFTR mutations, including the common mutation ΔF508-CFTR, result in greatly decreased levels of active CFTR at the apical membrane. Direct interactions between CFTR and the cytoskeletal adaptors filamin-A (FlnA) and Na+/H+ exchanger regulatory factor 1 (NHERF1) stabilize the expression and localization of CFTR at the plasma membrane. The scaffold protein receptor for activated C kinase 1 (RACK1) also stabilizes CFTR surface expression; however, RACK1 does not interact directly with CFTR and its mechanism of action is unknown. In the present study, we report that RACK1 interacts directly with FlnA in vitro and in a Calu-3 airway epithelial cell line. We mapped the interaction between RACK1 and FlnA to the WD4 and WD6 repeats of RACK1 and to a segment of the large rod domain of FlnA, consisting of immunoglobulin-like repeats 8–15. Disruption of the RACK1-FlnA interaction causes a reduction in CFTR surface levels. Our results suggest that a novel RACK1-FlnA interaction is an important regulator of CFTR surface localization. PMID:23636454
Carbon isotopic data from test hole USW UZ-1, Yucca Mountain, Nevada
Yang, In C.; Peters, C.A.; Thorstenson, D.C.
1993-01-01
Rock-CO2-gas analyses in test hole USW UZ-1 at Yucca Mountain indicate that gas movement in the unsaturated zone is likely through a dry-fracture system with little porewater or caliche-calcite interaction. This is because near-surface ??13C values are of biogenic origin and have changed little throughout the total depth. Post-bomb 14C activity is observed to the depth of about 12 m. An abrupt change in plotted 14C/depth slope is seen at 61 m. The less steep upper segment corresponds to the zone with greater porosity and moisture content, and consequently more tortuosity, with an estimated traveltime of 1.27 cm/yr; the steeper sloped zone corresponding to the lower segment has smaller porosity and moisture content but larger fracture density for gas transport, with an estimated traveltime of 3.26 cm/yr.
Allocation of spectral and spatial modes in multidimensional metro-access optical networks
NASA Astrophysics Data System (ADS)
Gao, Wenbo; Cvijetic, Milorad
2018-04-01
Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.
Are the users of social networking sites homogeneous? A cross-cultural study.
Alarcón-Del-Amo, María-Del-Carmen; Gómez-Borja, Miguel-Ángel; Lorenzo-Romero, Carlota
2015-01-01
The growing use of Social Networking Sites (SNS) around the world has made it necessary to understand individuals' behaviors within these sites according to different cultures. Based on a comparative study between two different European countries (The Netherlands versus Spain), a comparison of typologies of networked Internet users has been obtained through a latent segmentation approach. These typologies are based on the frequency with which users perform different activities, their socio-demographic variables, and experience in social networking and interaction patterns. The findings show new insights regarding international segmentation in order to analyse SNS user behaviors in both countries. These results are relevant for marketing strategists eager to use the communication potential of networked individuals and for marketers willing to explore the potential of online networking as a low cost and a highly efficient alternative to traditional networking approaches. For most businesses, expert users could be valuable opinion leaders and potential brand influencers.
Are the users of social networking sites homogeneous? A cross-cultural study
Alarcón-del-Amo, María-del-Carmen; Gómez-Borja, Miguel-Ángel; Lorenzo-Romero, Carlota
2015-01-01
The growing use of Social Networking Sites (SNS) around the world has made it necessary to understand individuals' behaviors within these sites according to different cultures. Based on a comparative study between two different European countries (The Netherlands versus Spain), a comparison of typologies of networked Internet users has been obtained through a latent segmentation approach. These typologies are based on the frequency with which users perform different activities, their socio-demographic variables, and experience in social networking and interaction patterns. The findings show new insights regarding international segmentation in order to analyse SNS user behaviors in both countries. These results are relevant for marketing strategists eager to use the communication potential of networked individuals and for marketers willing to explore the potential of online networking as a low cost and a highly efficient alternative to traditional networking approaches. For most businesses, expert users could be valuable opinion leaders and potential brand influencers. PMID:26321971
Roskoski, Robert
2018-03-01
Platelet-derived growth factor (PDGF) was discovered as a serum-derived component necessary for the growth of smooth muscle cells, fibroblasts, and glial cells. The PDGF family is a product of four gene products and consists of five dimeric isoforms: PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD, and the PDGF-AB heterodimer. This growth factor family plays an essential role in embryonic development and in wound healing in the adult. These growth factors mediate their effects by binding to and activating their receptor protein-tyrosine kinases, which are encoded by two genes: PDGFRA and PDGFRB. The functional receptors consist of the PDGFRα/α and PDGFRβ/β homodimers and the PDGFRα/β heterodimer. Although PDGF signaling is most closely associated with mesenchymal cells, PDGFs and PDGF receptors are widely expressed in the mammalian central nervous system. The PDGF receptors contain an extracellular domain that is made up of five immunoglobulin-like domains (Ig-d1/2/3/4/5), a transmembrane segment, a juxtamembrane segment, a protein-tyrosine kinase domain that contains an insert of about 100 amino acid residues, and a carboxyterminal tail. Although uncommon, activating mutations in the genes for PDGF or PDGF receptors have been documented in various neoplasms including dermatofibrosarcoma protuberans (DFSP) and gastrointestinal stromal tumors (GIST). In most neoplastic diseases, PDGF expression and action appear to involve the tumor stroma. Moreover, this family is pro-angiogenic. More than ten PDGFRα/β multikinase antagonists have been approved by the FDA for the treatment of several neoplastic disorders and interstitial pulmonary fibrosis (www.brimr.org/PKI/PKIs.htm). Type I protein kinase inhibitors interact with the active enzyme form with DFG-D of the proximal activation segment directed inward toward the active site (DFG-D in ). In contrast, type II inhibitors bind to their target with the DFG-D pointing away from the active site (DFG-D out ). We used the Schrödinger induced-fit docking protocol to model the interaction of several antagonists with PDGFRα including imatinib, sorafenib, and sunitinib. The results indicate that these antagonists are able to bind to the DFG-D out conformation of the receptor and are thus classified as type II inhibitors. Owing to the multiplicity of less active protein kinase conformations when compared with the canonical more active conformation, it was hypothesized that type II drugs would be less promiscuous than type I drugs which bind to the typical active conformation. Although type II inhibitors may be more selective, most - if not all - inhibit more than one target protein kinase and the differences are a matter of degree only. Copyright © 2018 Elsevier Ltd. All rights reserved.
A synthetic seismicity model for the Middle America Trench
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1991-01-01
A novel iterative technique, based on the concept of fault segmentation and computed using 2D static dislocation theory, for building models of seismicity and fault interaction which are physically acceptable and geometrically and kinematically correct, is presented. The technique is applied in two steps to seismicity observed at the Middle America Trench. The first constructs generic models which randomly draw segment strengths and lengths from a 2D probability distribution. The second constructs predictive models in which segment lengths and strengths are adjusted to mimic the actual geography and timing of large historical earthquakes. Both types of models reproduce the statistics of seismicity over five units of magnitude and duplicate other aspects including foreshock and aftershock sequences, migration of foci, and the capacity to produce both characteristic and noncharacteristic earthquakes. Over a period of about 150 yr the complex interaction of fault segments and the nonlinear failure conditions conspire to transform an apparently deterministic model into a chaotic one.
Plexiform neurofibroma tissue classification
NASA Astrophysics Data System (ADS)
Weizman, L.; Hoch, L.; Ben Sira, L.; Joskowicz, L.; Pratt, L.; Constantini, S.; Ben Bashat, D.
2011-03-01
Plexiform Neurofibroma (PN) is a major complication of NeuroFibromatosis-1 (NF1), a common genetic disease that involving the nervous system. PNs are peripheral nerve sheath tumors extending along the length of the nerve in various parts of the body. Treatment decision is based on tumor volume assessment using MRI, which is currently time consuming and error prone, with limited semi-automatic segmentation support. We present in this paper a new method for the segmentation and tumor mass quantification of PN from STIR MRI scans. The method starts with a user-based delineation of the tumor area in a single slice and automatically detects the PN lesions in the entire image based on the tumor connectivity. Experimental results on seven datasets yield a mean volume overlap difference of 25% as compared to manual segmentation by expert radiologist with a mean computation and interaction time of 12 minutes vs. over an hour for manual annotation. Since the user interaction in the segmentation process is minimal, our method has the potential to successfully become part of the clinical workflow.
Aging and the segmentation of narrative film.
Kurby, Christopher A; Asiala, Lillian K E; Mills, Steven R
2014-01-01
The perception of event structure in continuous activity is important for everyday comprehension. Although the segmentation of experience into events is a normal concomitant of perceptual processing, previous research has shown age differences in the ability to perceive structure in naturalistic activity, such as a movie of someone washing a car. However, past research has also shown that older adults have a preserved ability to comprehend events in narrative text, which suggests that narrative may improve the event processing of older adults. This study tested whether there are age differences in event segmentation at the intersection of continuous activity and narrative: narrative film. Younger and older adults watched and segmented a narrative film, The Red Balloon, into coarse and fine events. Changes in situational features, such as changes in characters, goals, and objects predicted segmentation. Analyses revealed little age-difference in segmentation behavior. This suggests the possibility that narrative structure supports event understanding for older adults.
Yamashita, Ayako; Norton, Emily B; Kaplan, Joshua A; Niu, Chuan; Loganzo, Frank; Hernandez, Richard; Beyer, Carl F; Annable, Tami; Musto, Sylvia; Discafani, Carolyn; Zask, Arie; Ayral-Kaloustian, Semiramis
2004-11-01
Analogs of hemiasterlin (1) and HTI-286 (2), which contain various aromatic rings in the A segment, were synthesized as potential inhibitors of tubulin polymerization. The structure-activity relationships related to stereo- and regio-chemical effects of substituents on the aromatic ring in the A segment were studied. Analogs, which carry a meta-substituted phenyl ring in the A segment show comparable activity for inhibition of tubulin polymerization to 2, as well as in the cell proliferation assay using KB cells containing P-glycoprotein, compared to those of 1 and 2.
In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.
Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung
2015-08-19
In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.
In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation
Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung
2015-01-01
In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395
The contribution of waveform interactions to the perception of concurrent vowels.
Assmann, P F; Summerfield, Q
1994-01-01
Models of the auditory and phonetic analysis of speech must account for the ability of listeners to extract information from speech when competing voices are present. When two synthetic vowels are presented simultaneously and monaurally, listeners can exploit cues provided by a difference in fundamental frequency (F0) between the vowels to help determine their phonemic identities. Three experiments examined the effects of stimulus duration on the perception of such "double vowels." Experiment 1 confirmed earlier findings that a difference in F0 provides a smaller advantage when the duration of the stimulus is brief (50 ms rather than 200 ms). With brief stimuli, there may be insufficient time for attentional mechanisms to switch from the "dominant" member of the pair to the "nondominant" vowel. Alternatively, brief segments may restrict the availability of cues that are distributed over the time course of a longer segment of a double vowel. In experiment 1, listeners did not perform better when the same 50-ms segment was presented four times in succession (with 100-ms silent intervals) rather than only once, suggesting that limits on attention switching do not underlie the duration effect. However, performance improved in some conditions when four successive 50-ms segments were extracted from the 200-ms double vowels and presented in sequence, again with 100-ms silent intervals. Similar improvements were observed in experiment 2 between performance with the first 50-ms segment and one or more of the other three segments when the segments were presented individually. Experiment 3 demonstrated that part of the improvement observed in experiments 1 and 2 could be attributed to waveform interactions that either reinforce or attenuate harmonics that lie near vowel formants. Such interactions were beneficial only when the difference in F0 was small (0.25-1 semitone). These results are compatible with the idea that listeners benefit from small differences in F0 by performing a sequence of analyses of different time segments of a double vowel to determine where the formants of the constituent vowels are best defined.
The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation
Mobli, Mehdi; Ke, Ying; Kuchel, Philip W.; King, Glenn F.; Stock, Daniela; Vandenberg, Jamie I.
2011-01-01
The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel. PMID:21249148
Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.
Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji
2017-02-01
Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.
Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.
NASA Astrophysics Data System (ADS)
Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer
2013-04-01
The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five light to moderate (M 4 - 5.4) earthquakes over the last 40 years. The last surface-rupturing earthquake occurred about 1000 years ago (OSL dating). Alluvial fans affected by the fault suggest the rate of deformation (left lateral with normal component) along the main segment ranges from 0.3 to 0.4 mm/year for the last 120 000 years. Hence, the average recurrence interval for a full-segment M 7-7.5 is likely in the order of 10 ky. However, if the Hustai fault also releases strain during partial ruptures along its strongly segmented trace, a Mw 6.5 event may be expected anytime. However, only the main central fault segment has been investigated in terms of paleoseismicity. The Sharai and Avdar faults, oriented NNE-SSW, were mapped along ~50-km-long sections. Each of these faults was the site of earthquakes of magnitude 6 and more in the past as suggested by morphology and trench observations. Full-segment-ruptures could produce events as large as M 7.2. The precise relationship and interactions between these faults as well as associated earthquakes have to be clarified by collecting more data. They are the key of the seismic hazard and risk of Ulaanbaatar.
Grotmol, Sindre; Nordvik, Kari; Kryvi, Harald; Totland, Geir K
2005-05-01
This study shows that segmental expression of alkaline phosphatase (ALP) activity by the notochord of the Atlantic salmon (Salmo salar L.) coincides with the initial mineralization of the vertebral body (chordacentrum), and precedes ALP expression by presumed somite-derived cells external to the notochordal sheath. The early expression of ALP indicates that the notochord plays an instructive role in the segmental patterning of the vertebral column. The chordacentra form segmentally as mineralized rings within the notochordal sheath, and ALP activity spreads within the chordoblast layer from ventral to dorsal, displaying the same progression and spatial distribution as the mineralization process. No ALP activity was observed in sclerotomal mesenchyme surrounding the notochordal sheath during initial formation of the chordacentra. Our results support previous findings indicating that the chordoblasts initiate a segmental differentiation of the notochordal sheath into chordacentra and intervertebral regions.
NASA Technical Reports Server (NTRS)
Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.
1999-01-01
Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.
Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide.
Xu, Zhen; Lei, Xiaoling; Tu, Yusong; Tan, Zhi-Jie; Song, Bo; Fang, Haiping
2017-09-21
Functional nanoscale structures consisting of a DNA molecule coupled to graphene or graphene oxide (GO) have great potential for applications in biosensors, biomedicine, nanotechnology, and materials science. Extensive studies using the most sophisticated experimental techniques and theoretical methods have still not clarified the dynamic process of single-stranded DNA (ssDNA) adsorbed on GO surfaces. Based on a molecular dynamics simulation, this work shows that an ssDNA segment could be stably adsorbed on a GO surface through hydrogen bonding and π-π stacking interactions, with preferential binding to the oxidized rather than to the unoxidized region of the GO surface. The adsorption process shows a dynamic cooperation adsorption behavior; the ssDNA segment first captures the oxidized groups of the GO surface by hydrogen bonding interaction, and then the configuration relaxes to maximize the π-π stacking interactions between the aromatic rings of the nucleobases and those of the GO surface. We attributed this behavior to the faster forming hydrogen bonding interaction compared to π-π stacking; the π-π stacking interaction needs more relaxation time to regulate the configuration of the ssDNA segment to fit the aromatic rings on the GO surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interaction between the Cockayne syndrome B and p53 proteins: implications for aging
Frontini, Mattia; Proietti-De-Santis, Luca
2012-01-01
The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53's levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis. PMID:22383384
Brain Activity and Human Unilateral Chewing
Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.
2012-01-01
Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631
Radio Frequency Ablation Registration, Segmentation, and Fusion Tool
McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.
2008-01-01
The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716
Brewer, S.K.; Rabeni, C.F.
2011-01-01
This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.
At-a-glance monitoring: covert observations of anesthesiologists in the operating room.
Ford, Simon; Birmingham, Elina; King, Ashlee; Lim, Joanne; Ansermino, J Mark
2010-09-01
Patient monitoring displays are designed to improve patient safety, and yet little is known about how anesthesiologists interact with these displays. Previous studies of clinician behavior used an observer in the operating room, which may have altered behavior. We describe a covert observation technique to determine how often and for how long anesthesiologists actually look at the monitoring display during different segments of the maintenance phase of anesthesia, and to determine whether this changed with more than 1 anesthesia provider or during concomitant activities such as reading. Five staff anesthesiologists, 2 anesthesia fellows, 3 anesthesia residents, and 2 medical students were covertly videotaped across 10 dual anesthesia provider cases and 10 solo cases. Videotapes were later segmented (5 minutes postinduction [early maintenance], mid-maintenance, and immediately before the drapes came down [late maintenance]) and coded for looking behavior at the patient monitor, anesthesia chart, and other reading material. Anesthesiologists looked at the monitor in 1- to 2-second glances, performed frequently throughout the 3 segments of maintenance anesthesia. Overall, the patient monitor was looked at only 5 of the analyzed time, which is less than has previously been reported. Monitoring behavior was constant across the segments of maintenance anesthesia and was not significantly affected by the number of anesthesia providers or role (trainee vs. senior). In contrast, charting behavior and other reading material viewing changed significantly over the analyzed segments of maintenance anesthesia. The presence of "at-a-glance monitoring" has implications for the design of patient monitoring displays. Displays should be developed to optimize the information obtained from brief glances at the monitor.
A new fractional order derivative based active contour model for colon wall segmentation
NASA Astrophysics Data System (ADS)
Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong
2018-02-01
Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.
Effects of cues to event segmentation on subsequent memory.
Gold, David A; Zacks, Jeffrey M; Flores, Shaney
2017-01-01
To remember everyday activity it is important to encode it effectively, and one important component of everyday activity is that it consists of events. People who segment activity into events more adaptively have better subsequent memory for that activity, and event boundaries are remembered better than event middles. The current study asked whether intervening to improve segmentation by cuing effective event boundaries would enhance subsequent memory for events. We selected a set of movies that had previously been segmented by a large sample of observers and edited them to provide visual and auditory cues to encourage segmentation. For each movie, cues were placed either at event boundaries or event middles, or the movie was left unedited. To further support the encoding of our everyday event movies, we also included post-viewing summaries of the movies. We hypothesized that cuing at event boundaries would improve memory, and that this might reduce age differences in memory. For both younger and older adults, we found that cuing event boundaries improved memory-particularly for the boundaries that were cued. Cuing event middles also improved memory, though to a lesser degree; this suggests that imposing a segmental structure on activity may facilitate memory encoding, even when segmentation is not optimal. These results provide evidence that structural cuing can improve memory for everyday events in younger and older adults.
Validation of semi-automatic segmentation of the left atrium
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Camp, J. J.; Packer, D. L.; Robb, R. A.
2008-03-01
Catheter ablation therapy has become increasingly popular for the treatment of left atrial fibrillation. The effect of this treatment on left atrial morphology, however, has not yet been completely quantified. Initial studies have indicated a decrease in left atrial size with a concomitant decrease in pulmonary vein diameter. In order to effectively study if catheter based therapies affect left atrial geometry, robust segmentations with minimal user interaction are required. In this work, we validate a method to semi-automatically segment the left atrium from computed-tomography scans. The first step of the technique utilizes seeded region growing to extract the entire blood pool including the four chambers of the heart, the pulmonary veins, aorta, superior vena cava, inferior vena cava, and other surrounding structures. Next, the left atrium and pulmonary veins are separated from the rest of the blood pool using an algorithm that searches for thin connections between user defined points in the volumetric data or on a surface rendering. Finally, pulmonary veins are separated from the left atrium using a three dimensional tracing tool. A single user segmented three datasets three times using both the semi-automatic technique as well as manual tracing. The user interaction time for the semi-automatic technique was approximately forty-five minutes per dataset and the manual tracing required between four and eight hours per dataset depending on the number of slices. A truth model was generated using a simple voting scheme on the repeated manual segmentations. A second user segmented each of the nine datasets using the semi-automatic technique only. Several metrics were computed to assess the agreement between the semi-automatic technique and the truth model including percent differences in left atrial volume, DICE overlap, and mean distance between the boundaries of the segmented left atria. Overall, the semi-automatic approach was demonstrated to be repeatable within and between raters, and accurate when compared to the truth model. Finally, we generated a visualization to assess the spatial variability in the segmentation errors between the semi-automatic approach and the truth model. The visualization demonstrates the highest errors occur at the boundaries between the left atium and pulmonary veins as well as the left atrium and left atrial appendage. In conclusion, we describe a semi-automatic approach for left atrial segmentation that demonstrates repeatability and accuracy, with the advantage of significant time reduction in user interaction time.
Kang, Jin Young; Olinares, Paul Dominic B; Chen, James; Campbell, Elizabeth A; Mustaev, Arkady; Chait, Brian T; Gottesman, Max E; Darst, Seth A
2017-01-01
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs. DOI: http://dx.doi.org/10.7554/eLife.25478.001 PMID:28318486
Axonal transports of tripeptidyl peptidase II in rat sciatic nerves.
Chikuma, Toshiyuki; Shimizu, Maki; Tsuchiya, Yukihiro; Kato, Takeshi; Hojo, Hiroshi
2007-01-01
Axonal transport of tripeptidyl peptidase II, a putative cholecystokinin inactivating serine peptidase, was examined in the proximal, middle, and distal segments of rat sciatic nerves using a double ligation technique. Enzyme activity significantly increased not only in the proximal segment but also in the distal segment 12-72h after ligation, and the maximal enzyme activity was found in the proximal and distal segments at 72h. Western blot analysis of tripeptidyl peptidase II showed that its immunoreactivities in the proximal and distal segments were 3.1- and 1.7-fold higher than that in the middle segment. The immunohistochemical analysis of the segments also showed an increase in immunoreactive tripeptidyl peptidase II level in the proximal and distal segments in comparison with that in the middle segment, indicating that tripeptidyl peptidase II is transported by anterograde and retrograde axonal flow. The results suggest that tripeptidyl peptidase II may be involved in the metabolism of neuropeptides in nerve terminals or synaptic clefts.
Promon's participation in the Brasilsat program: first & second generations
NASA Astrophysics Data System (ADS)
Depaiva, Ricardo N.
This paper presents an overview of the Brasilsat program, space and ground segments, developed by Hughes and Promon. Promon is a Brazilian engineering company that has been actively participating in the Brasilsat Satellite Telecommunications Program since its beginning. During the first generation, as subcontractor of the Spar/Hughes/SED consortium, Promon had a significant participation in the site installation of the Ground Segment, including the antennas. During the second generation, as partner of a consortium with Hughes, Promon participated in the upgrade of Brasilsat's Ground Segment systems: the TT&C (TCR1, TCR2, and SCC) and the COCC (Communications and Operations Control Center). This upgrade consisted of the design and development of hardware and software to support the second generation requirements, followed by integration and tests, factory acceptance tests, transport to site, site installation, site acceptance tests and warranty support. The upgraded systems are distributed over four sites with remote access to the main ground station. The solutions adopted provide a high level of automation, and easy operator interaction. The hardware and software technologies were selected to provide the flexibility to incorporate new technologies and services from the demanding satellite telecommunications market.
Supervised interpretation of echocardiograms with a psychological model of expert supervision
NASA Astrophysics Data System (ADS)
Revankar, Shriram V.; Sher, David B.; Shalin, Valerie L.; Ramamurthy, Maya
1993-07-01
We have developed a collaborative scheme that facilitates active human supervision of the binary segmentation of an echocardiogram. The scheme complements the reliability of a human expert with the precision of segmentation algorithms. In the developed system, an expert user compares the computer generated segmentation with the original image in a user friendly graphics environment, and interactively indicates the incorrectly classified regions either by pointing or by circling. The precise boundaries of the indicated regions are computed by studying original image properties at that region, and a human visual attention distribution map obtained from the published psychological and psychophysical research. We use the developed system to extract contours of heart chambers from a sequence of two dimensional echocardiograms. We are currently extending this method to incorporate a richer set of inputs from the human supervisor, to facilitate multi-classification of image regions depending on their functionality. We are integrating into our system the knowledge related constraints that cardiologists use, to improve the capabilities of our existing system. This extension involves developing a psychological model of expert reasoning, functional and relational models of typical views in echocardiograms, and corresponding interface modifications to map the suggested actions to image processing algorithms.
de Oliveira, Guilherme A. P.; Pereira, Elen G.; Ferretti, Giulia D. S.; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L.
2013-01-01
c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl+ cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target. PMID:23928308
de Oliveira, Guilherme A P; Pereira, Elen G; Ferretti, Giulia D S; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L
2013-09-27
c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl(+) cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.
Homotypic Interaction of Bunyamwera Virus Nucleocapsid Protein
Leonard, Vincent H. J.; Kohl, Alain; Osborne, Jane C.; McLees, Angela; Elliott, Richard M.
2005-01-01
The bunyavirus nucleocapsid protein, N, plays a central role in viral replication in encapsidating the three genomic RNA segments to form functional templates for transcription and replication by the viral RNA-dependent RNA polymerase. Here we report functional mapping of interacting domains of the Bunyamwera orthobunyavirus N protein by yeast and mammalian two-hybrid systems, immunoprecipitation experiments, and chemical cross-linking studies. N forms a range of multimers from dimers to high-molecular-weight structures, independently of the presence of RNA. Deletion of the N- or C-terminal domains resulted in loss of activity in a minireplicon assay and a decreased capacity for N to form higher multimers. Our data suggest a head-to-head and tail-to-tail multimerization model for the orthobunyavirus N protein. PMID:16189017
Axial compartmentation of descending and ascending thin limbs of Henle's loops
Westrick, Kristen Y.; Serack, Bradley; Dantzler, William H.
2013-01-01
In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss. PMID:23195680
Axial compartmentation of descending and ascending thin limbs of Henle's loops.
Westrick, Kristen Y; Serack, Bradley; Dantzler, William H; Pannabecker, Thomas L
2013-02-01
In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss.
Synthesis of hollow spherical calcium phosphate nanoparticles using polymeric nanotemplates
NASA Astrophysics Data System (ADS)
Tjandra, Wiliana; Ravi, Palaniswamy; Yao, Jia; Tam, Kam C.
2006-12-01
Poly(methylmethacrylate)-block-poly(methacrylic acid) (PMMA-b-PMAA) copolymer was synthesized by an atom transfer radical polymerization (ATRP) technique. The block copolymer was employed as a template for the controlled precipitation of calcium phosphate from aqueous solution at different pH values. A Ca2+ ion selective electrode was used to study the interactions between Ca2+ ions and the polymer, which indicated a possible weak interaction between Ca2+ and un-ionized MAA segments at pH~4.0 in addition to electrostatic interaction between Ca2+ and ionized MAA segments at higher pH. An interesting structure representing that of a superstructure consisting of hybrid nano-filaments was observed by the transmission electron microscope at pH~4.0. The filaments originated from a core of similar size to primary polymer aggregates, suggesting that cooperative interactions at a local level between dissolving calcium phosphate clusters and disassembling polymer segments are responsible for the secondary growth process. A hollow spherical morphology was obtained at pH~7.0 and 9.0. Such calcium phosphate/polymer monohybrids with complex morphologies are interesting and might be useful as novel drug delivery carriers, ceramics precursors, reinforcing fillers or biomedical implants.
Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.
Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William
2016-07-01
Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.
Open-source software platform for medical image segmentation applications
NASA Astrophysics Data System (ADS)
Namías, R.; D'Amato, J. P.; del Fresno, M.
2017-11-01
Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.
Motor adaptation to prosthetic cycling in people with trans-tibial amputation
Childers, W. Lee; Prilutsky, Boris I.; Gregor, Robert J.
2014-01-01
The neuromusculoskeletal system interacts with the external environment via end-segments, e.g. feet. A person with trans-tibial amputation (TTAmp) has lost a foot and ankle; hence the residuum with prosthesis becomes the new end-segment. We investigated changes in kinetics and muscle activity in TTAmps during cycling with this altered interface with the environment. Nine unilateral TTAmps and nine subjects without amputation (NoAmp) pedaled at a constant torque of 15Nm and a constant cadence of 90rpm (~150watts). Pedal forces and limb kinematics were used to calculate resultant joint moments. Electromyographic activity was recorded to determine its magnitude and timing. Biomechanical and EMG variables of the amputated limb were compared to those of the TTAmp sound limb and to the dominant limb in the NoAmp group using a one-way ANOVA. Results showed maximum angular displacement between the residuum and prosthesis was 4.8 ± 1.8deg. The amputated limb compared to sound limb and NoAmp group produced lower extensor moments averaged over the cycle about the ankle (13 ± 2.3, 20 ± 5.7, and 19 ± 5.3Nm, respectfully) and knee (8.4 ± 5.0, 15 ± 4.5, and 12.7 ± 5.9Nm, respectfully) (p<0.05). Gastrocnemius and rectus femoris peak activity in the TTAmps shifted to later in the crank cycle (by 36° and 75°, respectfully; p<0.05). These data suggest gastrocnemius was utilized as a one-joint knee flexor in combination with rectus femoris for prosthetic socket control and highlight prosthetic control as an interaction between the residuum, prosthesis and external environment. PMID:24818794
A Novel Face-on-Face Contact Method for Nonlinear Solid Mechanics
NASA Astrophysics Data System (ADS)
Wopschall, Steven Robert
The implicit solution to contact problems in nonlinear solid mechanics poses many difficulties. Traditional node-to-segment methods may suffer from locking and experience contact force chatter in the presence of sliding. More recent developments include mortar based methods, which resolve local contact interactions over face-pairs and feature a kinematic constraint in integral form that smoothes contact behavior, especially in the presence of sliding. These methods have been shown to perform well in the presence of geometric nonlinearities and are demonstratively more robust than node-to-segment methods. These methods are typically biased, however, interpolating contact tractions and gap equations on a designated non-mortar face, which leads to an asymmetry in the formulation. Another challenge is constraint enforcement. The general selection of the active set of constraints is brought with difficulty, often leading to non-physical solutions and easily resulting in missed face-pair interactions. Details on reliable constraint enforcement methods are lacking in the greater contact literature. This work presents an unbiased contact formulation utilizing a median-plane methodology. Up to linear polynomials are used for the discrete pressure representation and integral gap constraints are enforced using a novel subcycling procedure. This procedure reliably determines the active set of contact constraints leading to physical and kinematically admissible solutions void of heuristics and user action. The contact method presented herein successfully solves difficult quasi-static contact problems in the implicit computational setting. These problems feature finite deformations, material nonlinearity, and complex interface geometries, all of which are challenging characteristics for contact implementations and constraint enforcement algorithms. The subcycling procedure is a key feature of this method, handling active constraint selection for complex interfaces and mesh geometries.
NASA Astrophysics Data System (ADS)
Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew
2016-04-01
The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident from available datasets that improved rifting-cycle models do need to incorporate realistic lithospheric properties, as well as the dynamic transport of magma, in order to reproduce the variety of observations, and provide means of forecasting large future dyking events and eruptions at active rifting segments.
Boslaugh, Sarah E; Kreuter, Matthew W; Nicholson, Robert A; Naleid, Kimberly
2005-08-01
The goal of audience segmentation is to identify population subgroups that are homogeneous with respect to certain variables associated with a given outcome or behavior. When such groups are identified and understood, targeted intervention strategies can be developed to address their unique characteristics and needs. This study compares the results of audience segmentation for physical activity that is based on either demographic, health status or psychosocial variables alone, or a combination of all three types of variables. Participants were 1090 African-American and White adults from two public health centers in St Louis, MO. Using a classification-tree algorithm to form homogeneous groups, analyses showed that more segments with greater variability in physical activity were created using psychosocial versus health status or demographic variables and that a combination of the three outperformed any individual set of variables. Simple segmentation strategies such as those relying on demographic variables alone provided little improvement over no segmentation at all. Audience segmentation appears to yield more homogeneous subgroups when psychosocial and health status factors are combined with demographic variables.
Inferior vena cava segmentation with parameter propagation and graph cut.
Yan, Zixu; Chen, Feng; Wu, Fa; Kong, Dexing
2017-09-01
The inferior vena cava (IVC) is one of the vital veins inside the human body. Accurate segmentation of the IVC from contrast-enhanced CT images is of great importance. This extraction not only helps the physician understand its quantitative features such as blood flow and volume, but also it is helpful during the hepatic preoperative planning. However, manual delineation of the IVC is time-consuming and poorly reproducible. In this paper, we propose a novel method to segment the IVC with minimal user interaction. The proposed method performs the segmentation block by block between user-specified beginning and end masks. At each stage, the proposed method builds the segmentation model based on information from image regional appearances, image boundaries, and a prior shape. The intensity range and the prior shape for this segmentation model are estimated based on the segmentation result from the last block, or from user- specified beginning mask if at first stage. Then, the proposed method minimizes the energy function and generates the segmentation result for current block using graph cut. Finally, a backward tracking step from the end of the IVC is performed if necessary. We have tested our method on 20 clinical datasets and compared our method to three other vessel extraction approaches. The evaluation was performed using three quantitative metrics: the Dice coefficient (Dice), the mean symmetric distance (MSD), and the Hausdorff distance (MaxD). The proposed method has achieved a Dice of [Formula: see text], an MSD of [Formula: see text] mm, and a MaxD of [Formula: see text] mm, respectively, in our experiments. The proposed approach can achieve a sound performance with a relatively low computational cost and a minimal user interaction. The proposed algorithm has high potential to be applied for the clinical applications in the future.
Analysis of TMT primary mirror control-structure interaction
NASA Astrophysics Data System (ADS)
MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.
2008-07-01
The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.
Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan
2011-01-01
A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602
Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)
2015-01-01
A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.
NASA Astrophysics Data System (ADS)
Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo
2018-02-01
A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.
Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.
2006-01-01
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776
Cell-to-cell interactions in changed gravity: Ground-based and flight experiments
NASA Astrophysics Data System (ADS)
Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.
2005-07-01
Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.
Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel
2005-02-01
The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.
Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.
Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim Y
2010-11-01
Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.
Buckle, A M; Schreiber, G; Fersht, A R
1994-08-02
We have solved, refined, and analyzed the 2.0-å resolution crystal structure of a 1:1 complex between the bacterial ribonuclease, barnase, and a Cys-->Ala(40,82) double mutant of its intracellular polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site with a helix and adjacent loop segment. Almost half of the 14 hydrogen bonds between barnase and barstar involve two charged residues, and a third involve one charged partner. The electrostatic contribution to the overall binding energy is considerably greater than for other protein-protein interactions. Consequently, the very high rate constant for the barnase-barstar association (10(8) s-1 M-1) is most likely due to electrostatic steering effects. The barnase active-site residue His102 is located in a pocket on the surface of barstar, and its hydrogen bonds with Asp39 and Gly31 residues of barstar are directly responsible for the pH dependence of barnase-barstar binding. There is a high degree of complementarity both of the shape and of the charge of the interacting surfaces, but neither is perfect. The surface complementarity is slightly poorer than in protease-inhibitor complexes but a little better than in antibody-antigen interactions. However, since the burial of solvent in the barnase-barstar interface improves the fit significantly by filling in the majority of gaps, as well as stabilizing unfavorable electrostatic interactions, its role seems to be more important than in other protein-protein complexes. The electrostatic interactions between barnase and barstar are very similar to those between barnase and the tetranucleotide d(CGAC). In the barnase-barstar complex, the two phosphate-binding sites in the barnase active site are occupied by Asp39 and Gly43 of barstar. However, barstar has no equivalent for a guanine base of an RNA substrate, resulting in the occupation of the guanine recognition site in the barnase-barstar complex by nine ordered water molecules. Upon barnase-barstar binding, entropy losses resulting from the immobilization of segments of the protein chain and the energetic costs of conformational changes are minimized due to the essentially preformed active site of barnase. However, a certain degree of flexibility within the barnase active site is required to allow for the structural differences between barnase-barstar binding and barnase-RNA binding. A comparison between the bound and the free barstar structure shows that the overall structural response to barnase-binding is significant. This response can be best described as outwardly oriented, rigid-body movements of the four alpha-helices of barstar, resulting in the structure of bound barstar being somewhat expanded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolz, J., E-mail: jose.dolz.upv@gmail.com; Kirişli, H. A.; Massoptier, L.
2016-05-15
Purpose: Accurate delineation of organs at risk (OARs) on computed tomography (CT) image is required for radiation treatment planning (RTP). Manual delineation of OARs being time consuming and prone to high interobserver variability, many (semi-) automatic methods have been proposed. However, most of them are specific to a particular OAR. Here, an interactive computer-assisted system able to segment various OARs required for thoracic radiation therapy is introduced. Methods: Segmentation information (foreground and background seeds) is interactively added by the user in any of the three main orthogonal views of the CT volume and is subsequently propagated within the whole volume.more » The proposed method is based on the combination of watershed transformation and graph-cuts algorithm, which is used as a powerful optimization technique to minimize the energy function. The OARs considered for thoracic radiation therapy are the lungs, spinal cord, trachea, proximal bronchus tree, heart, and esophagus. The method was evaluated on multivendor CT datasets of 30 patients. Two radiation oncologists participated in the study and manual delineations from the original RTP were used as ground truth for evaluation. Results: Delineation of the OARs obtained with the minimally interactive approach was approved to be usable for RTP in nearly 90% of the cases, excluding the esophagus, which segmentation was mostly rejected, thus leading to a gain of time ranging from 50% to 80% in RTP. Considering exclusively accepted cases, overall OARs, a Dice similarity coefficient higher than 0.7 and a Hausdorff distance below 10 mm with respect to the ground truth were achieved. In addition, the interobserver analysis did not highlight any statistically significant difference, at the exception of the segmentation of the heart, in terms of Hausdorff distance and volume difference. Conclusions: An interactive, accurate, fast, and easy-to-use computer-assisted system able to segment various OARs required for thoracic radiation therapy has been presented and clinically evaluated. The introduction of the proposed system in clinical routine may offer valuable new option to radiation oncologists in performing RTP.« less
Grasso, R; Zago, M; Lacquaniti, F
2000-01-01
Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.
Hybrid active contour model for inhomogeneous image segmentation with background estimation
NASA Astrophysics Data System (ADS)
Sun, Kaiqiong; Li, Yaqin; Zeng, Shan; Wang, Jun
2018-03-01
This paper proposes a hybrid active contour model for inhomogeneous image segmentation. The data term of the energy function in the active contour consists of a global region fitting term in a difference image and a local region fitting term in the original image. The difference image is obtained by subtracting the background from the original image. The background image is dynamically estimated from a linear filtered result of the original image on the basis of the varying curve locations during the active contour evolution process. As in existing local models, fitting the image to local region information makes the proposed model robust against an inhomogeneous background and maintains the accuracy of the segmentation result. Furthermore, fitting the difference image to the global region information makes the proposed model robust against the initial contour location, unlike existing local models. Experimental results show that the proposed model can obtain improved segmentation results compared with related methods in terms of both segmentation accuracy and initial contour sensitivity.
NASA Astrophysics Data System (ADS)
Castells, Victoria; Van Tassel, Paul R.
2005-02-01
Proteins often undergo changes in internal conformation upon interacting with a surface. We investigate the thermodynamics of surface induced conformational change in a lattice model protein using a multicanonical Monte Carlo method. The protein is a linear heteropolymer of 27 segments (of types A and B) confined to a cubic lattice. The segmental order and nearest neighbor contact energies are chosen to yield, in the absence of an adsorbing surface, a unique 3×3×3 folded structure. The surface is a plane of sites interacting either equally with A and B segments (equal affinity surface) or more strongly with the A segments (A affinity surface). We use a multicanonical Monte Carlo algorithm, with configuration bias and jump walking moves, featuring an iteratively updated sampling function that converges to the reciprocal of the density of states 1/Ω(E), E being the potential energy. We find inflection points in the configurational entropy, S(E)=klnΩ(E), for all but a strongly adsorbing equal affinity surface, indicating the presence of free energy barriers to transition. When protein-surface interactions are weak, the free energy profiles F(E)=E-TS(E) qualitatively resemble those of a protein in the absence of a surface: a free energy barrier separates a folded, lowest energy state from globular, higher energy states. The surface acts in this case to stabilize the globular states relative to the folded state. When the protein surface interactions are stronger, the situation differs markedly: the folded state no longer occurs at the lowest energy and free energy barriers may be absent altogether.
Rhythmic Effects of Syntax Processing in Music and Language.
Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche
2015-01-01
Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical region. Experiment 2 replicated effects of rhythm and language, without an interaction. Together, results suggest that the interaction of music and language syntax processing depends on rhythmic expectancy, and support a merging of theories of music and language syntax processing with dynamic models of attentional entrainment.
Bai, Zhengya; Hou, Shasha; Zhang, Shilei; Li, Zhongyan; Zhou, Peng
2017-04-24
Previously, we have reported a new biomolecular phenomenon spanning between protein folding and binding, termed as self-binding peptides (SBPs), where a short peptide segment in monomeric protein functions as a molecular switch by dynamically binding to/unbinding from its cognate domain in the monomer (Yang et al. J. Chem. Inf. 2015, 55, 329-342). Here, we attempt to raise the SBP as a new class of druggable targets to regulate the biological activity and function of proteins. A case study was performed on the proto-oncogene nonreceptor tyrosine kinase, c-Src, which contains two SBPs that bind separately to SH3 and SH2 domains of the kinase. State-of-the-art molecular dynamics (MD) simulations and post binding energetics analysis revealed that disrupting the kinase-intramolecular interactions of SH3 and SH2 domains with their cognate SBP ligands can result in totally different effects on the structural dynamics of c-Src kinase architecture; targeting the SH2 domain unlocks the autoinhibitory form of the kinase-this is very similar to the pTyr527 dephosphorylation that functionally activates the kinase, whereas targeting the SH3 domain can only release the domain from the tightly packed kinase but has a moderate effect on the kinase activity. Subsequently, based on the cognate SBP sequence we computationally designed a number of SH2-binding phosphopeptides using a motif grafting strategy. Fluorescence polarization (FP) assay observed that most of the designed phosphopeptides have higher binding affinity to SH2 domain as compared to the native SBP segment (K d = 53 nM). Kinase assay identified a typical dose-response relationship of phosphopeptides against kinase activation, substantiating that disruption of SH2-SBP interaction can mimic c-Src dephosphorylation and activate the kinase. Two rationally designed phosphopeptides, namely EPQpYEEIEN and EPQpYEELEN, were determined as strong binders of SH2 domain (K d = 8.3 and 15 nM, respectively) and potent activators of c-Src kinase (EC 50 = 3.2 and 41 μM, respectively).
Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback
2009-11-10
The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.
Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren
2015-12-01
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.
Quantification of regional fat volume in rat MRI
NASA Astrophysics Data System (ADS)
Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren
2003-05-01
Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.
Transition Probabilities and Different Levels of Prominence in Segmentation
ERIC Educational Resources Information Center
Ordin, Mikhail; Nespor, Marina
2013-01-01
A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…
Thermal-Interaction Matrix For Resistive Test Structure
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser
1990-01-01
Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.
A robust and fast active contour model for image segmentation with intensity inhomogeneity
NASA Astrophysics Data System (ADS)
Ding, Keyan; Weng, Guirong
2018-04-01
In this paper, a robust and fast active contour model is proposed for image segmentation in the presence of intensity inhomogeneity. By introducing the local image intensities fitting functions before the evolution of curve, the proposed model can effectively segment images with intensity inhomogeneity. And the computation cost is low because the fitting functions do not need to be updated in each iteration. Experiments have shown that the proposed model has a higher segmentation efficiency compared to some well-known active contour models based on local region fitting energy. In addition, the proposed model is robust to initialization, which allows the initial level set function to be a small constant function.
Developing integrated parametric planning models for budgeting and managing complex projects
NASA Technical Reports Server (NTRS)
Etnyre, Vance A.; Black, Ken U.
1988-01-01
The applicability of integrated parametric models for the budgeting and management of complex projects is investigated. Methods for building a very flexible, interactive prototype for a project planning system, and software resources available for this purpose, are discussed and evaluated. The prototype is required to be sensitive to changing objectives, changing target dates, changing costs relationships, and changing budget constraints. To achieve the integration of costs and project and task durations, parametric cost functions are defined by a process of trapezoidal segmentation, where the total cost for the project is the sum of the various project cost segments, and each project cost segment is the integral of a linearly segmented cost loading function over a specific interval. The cost can thus be expressed algebraically. The prototype was designed using Lotus-123 as the primary software tool. This prototype implements a methodology for interactive project scheduling that provides a model of a system that meets most of the goals for the first phase of the study and some of the goals for the second phase.
Segmentation and visualization of tissues surrounding the airway in children via MRI
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Udupa, Jayaram K.; Odhner, Dewey; McDonough, Joseph M.; Arens, Raanan
2003-05-01
Continuing with our previous work of the segmentation and delineation of upper airway, the purpose of this work is to segment and delineate soft tissue organs surrounding the upper airway, such as adenoid, tonsils, fat pads and tongue, with the further goal of studying the relationship among the architectures of these structures, for understanding upper airway disorders in children. We use two MRI protocols, Axial T2 (used for adenoid, tonsil, and fat pads) and sagittal T1 (for tongue), to gather information about different aspects of the tissues. MR images are first corrected for background intensity variation and then the intensities are standardized. All segmentations are achieved via fuzzy connectedness algorithms with only limited operator interaction. A smooth 3D rendition of the upper airway and its surrounding tissues is displayed. The system has been tested utilizing 20 patient data sets. The tests indicate a 95% or better precision and accuracy for segmentation. The mean time taken per study is about 15 minutes including operator interaction time and processing time for all operations. This method provides a robust and fast means of assessing sizes, shapes, and the architecture of the tissues surrounding the upper airway, as well as providing data sets suitable for use in modeling studies of airflow and mechanics.
Semiautomated Segmentation of Polycystic Kidneys in T2-Weighted MR Images.
Kline, Timothy L; Edwards, Marie E; Korfiatis, Panagiotis; Akkus, Zeynettin; Torres, Vicente E; Erickson, Bradley J
2016-09-01
The objective of the present study is to develop and validate a fast, accurate, and reproducible method that will increase and improve institutional measurement of total kidney volume and thereby avoid the higher costs, increased operator processing time, and inherent subjectivity associated with manual contour tracing. We developed a semiautomated segmentation approach, known as the minimal interaction rapid organ segmentation (MIROS) method, which results in human interaction during measurement of total kidney volume on MR images being reduced to a few minutes. This software tool automatically steps through slices and requires rough definition of kidney boundaries supplied by the user. The approach was verified on T2-weighted MR images of 40 patients with autosomal dominant polycystic kidney disease of varying degrees of severity. The MIROS approach required less than 5 minutes of user interaction in all cases. When compared with the ground-truth reference standard, MIROS showed no significant bias and had low variability (mean ± 2 SD, 0.19% ± 6.96%). The MIROS method will greatly facilitate future research studies in which accurate and reproducible measurements of cystic organ volumes are needed.
NASA Technical Reports Server (NTRS)
Vitart, V.; Christodoulou, J.; Huang, J. F.; Chazin, W. J.; Harper, J. F.; Evans, M. L. (Principal Investigator)
2000-01-01
Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.
Recovery of choline oxidase activity by in vitro recombination of individual segments.
Heinze, Birgit; Hoven, Nina; O'Connell, Timothy; Maurer, Karl-Heinz; Bartsch, Sebastian; Bornscheuer, Uwe T
2008-11-01
Initial attempts to express a choline oxidase from Arthrobacter pascens (APChO-syn) in Escherichia coli starting from a synthetic gene only led to inactive protein. However, activity was regained by the systematic exchange of individual segments of the gene with segments from a choline oxidase-encoding gene from Arthrobacter globiformis yielding a functional chimeric enzyme. Next, a sequence alignment of the exchanged segment with other choline oxidases revealed a mutation in the APChO-syn, showing that residue 200 was a threonine instead of an asparagine, which is, thus, crucial for confering enzyme activity and, hence, provides an explanation for the initial lack of activity. The active recombinant APChO-syn-T200N variant was biochemically characterized showing an optimum at pH 8.0 and at 37 degrees C. Furthermore, the substrate specificity was examined using N,N-dimethylethanolamine, N-methylethanolamine and 3,3-dimethyl-1-butanol.
Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo
2011-01-01
This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.
Image segmentation and registration for the analysis of joint motion from 3D MRI
NASA Astrophysics Data System (ADS)
Hu, Yangqiu; Haynor, David R.; Fassbind, Michael; Rohr, Eric; Ledoux, William
2006-03-01
We report an image segmentation and registration method for studying joint morphology and kinematics from in vivo MRI scans and its application to the analysis of ankle joint motion. Using an MR-compatible loading device, a foot was scanned in a single neutral and seven dynamic positions including maximal flexion, rotation and inversion/eversion. A segmentation method combining graph cuts and level sets was developed which allows a user to interactively delineate 14 bones in the neutral position volume in less than 30 minutes total, including less than 10 minutes of user interaction. In the subsequent registration step, a separate rigid body transformation for each bone is obtained by registering the neutral position dataset to each of the dynamic ones, which produces an accurate description of the motion between them. We have processed six datasets, including 3 normal and 3 pathological feet. For validation our results were compared with those obtained from 3DViewnix, a semi-automatic segmentation program, and achieved good agreement in volume overlap ratios (mean: 91.57%, standard deviation: 3.58%) for all bones. Our tool requires only 1/50 and 1/150 of the user interaction time required by 3DViewnix and NIH Image Plus, respectively, an improvement that has the potential to make joint motion analysis from MRI practical in research and clinical applications.
Implementation of an interactive liver surgery planning system
NASA Astrophysics Data System (ADS)
Wang, Luyao; Liu, Jingjing; Yuan, Rong; Gu, Shuguo; Yu, Long; Li, Zhitao; Li, Yanzhao; Li, Zhen; Xie, Qingguo; Hu, Daoyu
2011-03-01
Liver tumor, one of the most wide-spread diseases, has a very high mortality in China. To improve success rates of liver surgeries and life qualities of such patients, we implement an interactive liver surgery planning system based on contrastenhanced liver CT images. The system consists of five modules: pre-processing, segmentation, modeling, quantitative analysis and surgery simulation. The Graph Cuts method is utilized to automatically segment the liver based on an anatomical prior knowledge that liver is the biggest organ and has almost homogeneous gray value. The system supports users to build patient-specific liver segment and sub-segment models using interactive portal vein branch labeling, and to perform anatomical resection simulation. It also provides several tools to simulate atypical resection, including resection plane, sphere and curved surface. To match actual surgery resections well and simulate the process flexibly, we extend our work to develop a virtual scalpel model and simulate the scalpel movement in the hepatic tissue using multi-plane continuous resection. In addition, the quantitative analysis module makes it possible to assess the risk of a liver surgery. The preliminary results show that the system has the potential to offer an accurate 3D delineation of the liver anatomy, as well as the tumors' location in relation to vessels, and to facilitate liver resection surgeries. Furthermore, we are testing the system in a full-scale clinical trial.
Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread
Dall’Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E.; Gilmer, David
2016-01-01
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the “life aspects” of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant. PMID:27548199
Nandy, Suman Kumar; Seal, Alpana
2016-01-01
Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases. PMID:27764212
NASA Astrophysics Data System (ADS)
Varga, T.; McKinney, A. L.; Bingham, E.; Handakumbura, P. P.; Jansson, C.
2017-12-01
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as in processes with important implications to farming and thus human food supply. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. Selected Brachypodium distachyon phenotypes were grown in both natural and artificial soil mixes. The specimens were imaged by XCT, and the root architectures were extracted from the data using three different software-based methods; RooTrak, ImageJ-based WEKA segmentation, and the segmentation feature in VG Studio MAX. The 3D root image was successfully segmented at 30 µm resolution by all three methods. In this presentation, ease of segmentation and the accuracy of the extracted quantitative information (root volume and surface area) will be compared between soil types and segmentation methods. The best route to easy and accurate segmentation and root analysis will be highlighted.
Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta
2015-01-01
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments. PMID:26335437
Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao
2015-01-01
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.
Yu, Corey H; Yang, Nan; Bothe, Jameson; Tonelli, Marco; Nokhrin, Sergiy; Dolgova, Natalia V; Braiterman, Lelita; Lutsenko, Svetlana; Dmitriev, Oleg Y
2017-11-03
The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo -Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular simulations of lipid-mediated protein-protein interactions.
de Meyer, Frédérick Jean-Marie; Venturoli, Maddalena; Smit, Berend
2008-08-01
Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the lipid-mediated interactions between two intrinsic membrane proteins, we developed a mesoscopic model of a lipid bilayer with embedded proteins, which we studied with dissipative particle dynamics. Our calculations of the potential of mean force between transmembrane proteins show that hydrophobic forces drive long-range protein-protein interactions and that the nature of these interactions depends on the length of the protein hydrophobic segment, on the three-dimensional structure of the protein and on the properties of the lipid bilayer. To understand the nature of the computed potentials of mean force, the concept of hydrophilic shielding is introduced. The observed protein interactions are interpreted as resulting from the dynamic reorganization of the system to maintain an optimal hydrophilic shielding of the protein and lipid hydrophobic parts, within the constraint of the flexibility of the components. Our results could lead to a better understanding of several membrane processes in which protein interactions are involved.
Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.
Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz
2015-01-01
Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent).
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments
Wichgers Schreur, Paul J.; Kortekaas, Jeroen
2016-01-01
The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH), the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV) genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process. PMID:27548280
Implications of segment mismatch for influenza A virus evolution
White, Maria C.; Lowen, Anice C.
2018-01-01
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity. PMID:29244017
Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.
Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-11-01
Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
A dorsolateral prefrontal cortex semi-automatic segmenter
NASA Astrophysics Data System (ADS)
Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen
2006-03-01
Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on our DLPFC open-source tool.
2006-01-01
segments video game interaction into domain-independent components which together form a framework that can be used to characterize real-time interactive...multimedia applications in general and HRI in particular. We provide examples of using the components in both the video game and the Unmanned Aerial
Cell–material interactions on biphasic polyurethane matrix
Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan
2013-01-01
Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285
Active mask segmentation of fluorescence microscope images.
Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena
2009-08-01
We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.
Design, selection, and characterization of a split chorismate mutase
Müller, Manuel M; Kries, Hajo; Csuhai, Eva; Kast, Peter; Hilvert, Donald
2010-01-01
Split proteins are versatile tools for detecting protein–protein interactions and studying protein folding. Here, we report a new, particularly small split enzyme, engineered from a thermostable chorismate mutase (CM). Upon dissecting the helical-bundle CM from Methanococcus jannaschii into a short N-terminal helix and a 3-helix segment and attaching an antiparallel leucine zipper dimerization domain to the individual fragments, we obtained a weakly active heterodimeric mutase. Using combinatorial mutagenesis and in vivo selection, we optimized the short linker sequences connecting the leucine zipper to the enzyme domain. One of the selected CMs was characterized in detail. It spontaneously assembles from the separately inactive fragments and exhibits wild-type like CM activity. Owing to the availability of a well characterized selection system, the simple 4-helix bundle topology, and the small size of the N-terminal helix, the heterodimeric CM could be a valuable scaffold for enzyme engineering efforts and as a split sensor for specifically oriented protein–protein interactions. PMID:20306491
Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.
Becirovic, Elvir; Nguyen, O N Phuong; Paparizos, Christos; Butz, Elisabeth S; Stern-Schneider, Gabi; Wolfrum, Uwe; Hauck, Stefanie M; Ueffing, Marius; Wahl-Schott, Christian; Michalakis, Stylianos; Biel, Martin
2014-11-15
Outer segments (OSs) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate, which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit, we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in vivo co-immunoprecipitation and fluorescence resonance energy transfer (FRET), we found that the tetraspanin peripherin-2 links CNGB1a to the light-detector rhodopsin. Using immunoelectron microscopy, we found that this peripherin-2/rhodopsin/CNG channel complex localizes to the contact region between the disk rims and the plasma membrane. FRET measurements revealed that the fourth transmembrane domain (TM4) of peripherin-2 is required for the interaction with rhodopsin. Quantitatively, the binding affinity of the peripherin-2/rhodopsin interaction was in a similar range as that observed for rhodopsin dimers. Finally, we demonstrate that the p.G266D retinitis pigmentosa mutation found within TM4 selectively abolishes the binding of peripherin-2 to rhodopsin. This finding suggests that the specific disruption of the rhodopsin/peripherin-2 interaction in the p.G266D mutant might contribute to the pathophysiology in affected persons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gandy, William M; Coberley, Carter; Pope, James E; Rula, Elizabeth Y
2014-02-01
The goal of this study was to determine the relationship between individual well-being and risk of a hospital event in the subsequent year. The authors hypothesized an inverse relationship in which low well-being predicts higher likelihood of hospital use. The study specifically sought to understand how well-being segments and demographic variables interact in defining risk of a hospital event (inpatient admission or emergency room visit) in an employed population. A retrospective study design was conducted with data from 8835 employees who completed a Well-Being Assessment questionnaire based on the Gallup-Healthways Well-Being Index. Cox proportional hazards models were used to examine the impact of Individual Well-Being Score (IWBS) segments and member demographics on hazard ratios (HRs) for a hospital event during the 12 months following assessment completion. Significant main effects were found for the influence of IWBS segments, sex, education, and relationship status on HRs of a hospital event, but not for age. However, further analysis revealed significant interactions between age and IWBS segments (P=0.005) and between age and sex (P<0.0001), indicating that the effects for IWBS segments and sex on HRs of a hospital event are mediated through their relationship with age. Overall, the strong relationship between low well-being and higher risk of an event in employees ages 44 years and older is mitigated in younger age groups. These results suggest that youth attenuates the risk engendered in poor well-being; therefore, methods to maintain or improve well-being as individuals age presents a strong opportunity for reducing hospital events.
Gandy, William M.; Coberley, Carter; Pope, James E.
2014-01-01
Abstract The goal of this study was to determine the relationship between individual well-being and risk of a hospital event in the subsequent year. The authors hypothesized an inverse relationship in which low well-being predicts higher likelihood of hospital use. The study specifically sought to understand how well-being segments and demographic variables interact in defining risk of a hospital event (inpatient admission or emergency room visit) in an employed population. A retrospective study design was conducted with data from 8835 employees who completed a Well-Being Assessment questionnaire based on the Gallup-Healthways Well-Being Index. Cox proportional hazards models were used to examine the impact of Individual Well-Being Score (IWBS) segments and member demographics on hazard ratios (HRs) for a hospital event during the 12 months following assessment completion. Significant main effects were found for the influence of IWBS segments, sex, education, and relationship status on HRs of a hospital event, but not for age. However, further analysis revealed significant interactions between age and IWBS segments (P=0.005) and between age and sex (P<0.0001), indicating that the effects for IWBS segments and sex on HRs of a hospital event are mediated through their relationship with age. Overall, the strong relationship between low well-being and higher risk of an event in employees ages 44 years and older is mitigated in younger age groups. These results suggest that youth attenuates the risk engendered in poor well-being; therefore, methods to maintain or improve well-being as individuals age presents a strong opportunity for reducing hospital events. (Population Health Management 2014;17:13–20) PMID:23560493
Energy reconstruction of an n-type segmented inverted coaxial point-contact HPGe detector
Salathe, M.; Cooper, R. J.; Crawford, H. L.; ...
2017-06-27
We have characterized, for the rst time, an n-type segmented Inverted Coaxial Point-Contact detector. This novel detector technology relys on a large variation in drift time of the majority charge carriers, as well as image and net charges observed on the segments, to achieve a potential -ray interaction position resolution of better than 1 mm. However, the intrinsic energy resolution in such a detector is poor (more than 20 keV at 1332 keV) because of charge (electron) trapping e ects. We propose an algorithm that enables restoration of the resolution to a value of 3.44 0.03 keV at 1332 keVmore » for events with a single interaction. The algorithm is based on a measurement of the azimuthal angle and the electron drift time of a given event; the energy of the event is corrected as a function of these two values.« less
NASA Astrophysics Data System (ADS)
Juneja, P.; Harris, E. J.; Evans, P. M.
2014-03-01
Realistic modelling of breast deformation requires the breast tissue to be segmented into fibroglandular and fatty tissue and assigned suitable material properties. There are a number of breast tissue segmentation methods proposed and used in the literature. The purpose of this study was to validate and compare the accuracy of various segmentation methods and to investigate the effect of the tissue distribution on the segmentation accuracy. Computed tomography (CT) data for 24 patients, both in supine and prone positions were segmented into fibroglandular and fatty tissue. The segmentation methods explored were: physical density thresholding; interactive thresholding; fuzzy c-means clustering (FCM) with three classes (FCM3) and four classes (FCM4); and k-means clustering. Validation was done in two-stages: firstly, a new approach, supine-prone validation based on the assumption that the breast composition should appear the same in the supine and prone scans was used. Secondly, outlines from three experts were used for validation. This study found that FCM3 gave the most accurate segmentation of breast tissue from CT data and that the segmentation accuracy is adversely affected by the sparseness of the fibroglandular tissue distribution.
Vallon, Volker; Edwards, Aurélie
2016-01-01
Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by <1% in mTAL, OMCD, and IMCD. In summary, the model predicts that SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207
Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.
Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato
2009-02-18
Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3' --> 5' order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action.
Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G
Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato
2009-01-01
Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action. PMID:19153609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogunovic, Hrvoje; Pozo, Jose Maria; Villa-Uriol, Maria Cruz
Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA andmore » TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.« less
Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault
NASA Astrophysics Data System (ADS)
Wechsler, N.; Rockwell, T. K.; Klinger, Y.
2015-12-01
The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.
Interactive lesion segmentation on dynamic contrast enhanced breast MRI using a Markov model
NASA Astrophysics Data System (ADS)
Wu, Qiu; Salganicoff, Marcos; Krishnan, Arun; Fussell, Donald S.; Markey, Mia K.
2006-03-01
The purpose of this study is to develop a method for segmenting lesions on Dynamic Contrast-Enhanced (DCE) breast MRI. DCE breast MRI, in which the breast is imaged before, during, and after the administration of a contrast agent, enables a truly 3D examination of breast tissues. This functional angiogenic imaging technique provides noninvasive assessment of microcirculatory characteristics of tissues in addition to traditional anatomical structure information. Since morphological features and kinetic curves from segmented lesions are to be used for diagnosis and treatment decisions, lesion segmentation is a key pre-processing step for classification. In our study, the ROI is defined by a bounding box containing the enhancement region in the subtraction image, which is generated by subtracting the pre-contrast image from 1st post-contrast image. A maximum a posteriori (MAP) estimate of the class membership (lesion vs. non-lesion) for each voxel is obtained using the Iterative Conditional Mode (ICM) method. The prior distribution of the class membership is modeled as a multi-level logistic model, a Markov Random Field model in which the class membership of each voxel is assumed to depend upon its nearest neighbors only. The likelihood distribution is assumed to be Gaussian. The parameters of each Gaussian distribution are estimated from a dozen voxels manually selected as representative of the class. The experimental segmentation results demonstrate anatomically plausible breast tissue segmentation and the predicted class membership of voxels from the interactive segmentation algorithm agrees with the manual classifications made by inspection of the kinetic enhancement curves. The proposed method is advantageous in that it is efficient, flexible, and robust.
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Shankland, M.
2000-01-01
We have investigated whether the development of segmental repeats is autonomous in the embryo of the leech Helobdella robusta. The segmental tissues of the germinal band arise from progeny of five stem cells called teloblasts. Asymmetric divisions of the teloblasts form chains of segment founder cells (called primary blast cells) that divide in a stereotypical manner to produce differentiated descendants. Using two distinct techniques, we have looked for potential interactions between neighboring blast cell clones along the anterior-posterior axis. In one technique, we prevented the birth of primary blast cells by injection of DNase I into the teloblast, thereby depriving the last blast cell produced before the ablation of its normal posterior neighbors. We also ablated single blast cells with a laser microbeam, which allowed us to assess potential signals acting on either more anterior or more posterior primary blast cell clones. Our results suggest that interactions along the anterior-posterior axis between neighboring primary blast cell clones are not required for development of normal segmental organization within the blast cell clone. We also examined the possibility that blast cells receive redundant signals from both anterior and posterior neighboring clones and that either is sufficient for normal development. Using double blast cell laser ablations to isolate a primary blast cell clone by removal of both its anterior and its posterior neighbor, we found that the isolated clone still develops normally. These results reveal that the fundamental segmental repeat in the leech embryo, the primary blast cell clone, can develop normally in the apparent absence of signals from adjacent repeats along the anterior-posterior axis.
Dynamic deformable models for 3D MRI heart segmentation
NASA Astrophysics Data System (ADS)
Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.
2002-05-01
Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.
NASA Astrophysics Data System (ADS)
Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.
2012-12-01
The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma chamber roof-topology in focusing fluid flow at the center of the Lucky Strike segment. They also help identifying some causes of variations in the modalities of hydrothermal heat extraction along the global ridge network.
Hybrid Active/Passive Jet Engine Noise Suppression System
NASA Technical Reports Server (NTRS)
Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.
1999-01-01
A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.
The 2016 Central Italy "reverse" seismic sequence
NASA Astrophysics Data System (ADS)
Chiaraluce, Lauro; Di Stefano, Raffaele; Tinti, Elisa; Scognamiglio, Laura; Michele, Maddalena; Cattaneo, Marco; De Gori, Pasquale; Chiarabba, Claudio; Monachesi, Giancarlo; Lombardi, Annamaria; Valoroso, Luisa; Latorre, Diana; Marzorati, Simone
2017-04-01
The 2016 seismic sequence consists so far of a series of moderate to large earthquakes that within three month's time activated a 60 km long segmented normal fault system located in the Central Italy and almost contiguous to the 1997 Colfiorito and 2009 L'Aquila normal fault systems. The first mainshock of the sequence occurred with MW6.0 on the 24th of August at 01:36 UTC close to the Accumoli and Amatrice villages producing evidence for centimetres' surface ruptures along the Mt. Vettore normal fault outcrop. Two months later on the 26th of October at 19:18 UTC another mainshock with MW5.9 occurred 25 km to the north activating another normal fault segment approximately on the along strike continuation of the first structure. Then, four days later on the 30th of October at 06:40 UTC the largest shock of the sequence with MW6.5 close to Norcia, in the middle part of the fault system activated two months before. We reconstruct the first order anatomy of the activated normal faults system, by analysing the spatial and temporal distribution of 25,354 aftershocks with 0.1
Liu, Bo; Cheng, H D; Huang, Jianhua; Tian, Jiawei; Liu, Jiafeng; Tang, Xianglong
2009-08-01
Because of its complicated structure, low signal/noise ratio, low contrast and blurry boundaries, fully automated segmentation of a breast ultrasound (BUS) image is a difficult task. In this paper, a novel segmentation method for BUS images without human intervention is proposed. Unlike most published approaches, the proposed method handles the segmentation problem by using a two-step strategy: ROI generation and ROI segmentation. First, a well-trained texture classifier categorizes the tissues into different classes, and the background knowledge rules are used for selecting the regions of interest (ROIs) from them. Second, a novel probability distance-based active contour model is applied for segmenting the ROIs and finding the accurate positions of the breast tumors. The active contour model combines both global statistical information and local edge information, using a level set approach. The proposed segmentation method was performed on 103 BUS images (48 benign and 55 malignant). To validate the performance, the results were compared with the corresponding tumor regions marked by an experienced radiologist. Three error metrics, true-positive ratio (TP), false-negative ratio (FN) and false-positive ratio (FP) were used for measuring the performance of the proposed method. The final results (TP = 91.31%, FN = 8.69% and FP = 7.26%) demonstrate that the proposed method can segment BUS images efficiently, quickly and automatically.
Maeda, Rodrigo S; Cluff, Tyler; Gribble, Paul L; Pruszynski, J Andrew
2017-10-01
Moving the arm is complicated by mechanical interactions that arise between limb segments. Such intersegmental dynamics cause torques applied at one joint to produce movement at multiple joints, and in turn, the only way to create single joint movement is by applying torques at multiple joints. We investigated whether the nervous system accounts for intersegmental limb dynamics across the shoulder, elbow, and wrist joints during self-initiated planar reaching and when countering external mechanical perturbations. Our first experiment tested whether the timing and amplitude of shoulder muscle activity account for interaction torques produced during single-joint elbow movements from different elbow initial orientations and over a range of movement speeds. We found that shoulder muscle activity reliably preceded movement onset and elbow agonist activity, and was scaled to compensate for the magnitude of interaction torques arising because of forearm rotation. Our second experiment tested whether elbow muscles compensate for interaction torques introduced by single-joint wrist movements. We found that elbow muscle activity preceded movement onset and wrist agonist muscle activity, and thus the nervous system predicted interaction torques arising because of hand rotation. Our third and fourth experiments tested whether shoulder muscles compensate for interaction torques introduced by different hand orientations during self-initiated elbow movements and to counter mechanical perturbations that caused pure elbow motion. We found that the nervous system predicted the amplitude and direction of interaction torques, appropriately scaling the amplitude of shoulder muscle activity during self-initiated elbow movements and rapid feedback control. Taken together, our results demonstrate that the nervous system robustly accounts for intersegmental dynamics and that the process is similar across the proximal to distal musculature of the arm as well as between feedforward (i.e., self-initiated) and feedback (i.e., reflexive) control. NEW & NOTEWORTHY Intersegmental dynamics complicate the mapping between applied joint torques and the resulting joint motions. We provide evidence that the nervous system robustly predicts these intersegmental limb dynamics across the shoulder, elbow, and wrist joints during reaching and when countering external perturbations. Copyright © 2017 the American Physiological Society.
A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.
Guo, Shengwen; Fei, Baowei
2009-03-27
We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.
A minimal path searching approach for active shape model (ASM)-based segmentation of the lung
NASA Astrophysics Data System (ADS)
Guo, Shengwen; Fei, Baowei
2009-02-01
We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.
A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung
Guo, Shengwen; Fei, Baowei
2013-01-01
We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs. PMID:24386531
Event segmentation ability uniquely predicts event memory.
Sargent, Jesse Q; Zacks, Jeffrey M; Hambrick, David Z; Zacks, Rose T; Kurby, Christopher A; Bailey, Heather R; Eisenberg, Michelle L; Beck, Taylor M
2013-11-01
Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. Copyright © 2013 Elsevier B.V. All rights reserved.
Event Segmentation Ability Uniquely Predicts Event Memory
Sargent, Jesse Q.; Zacks, Jeffrey M.; Hambrick, David Z.; Zacks, Rose T.; Kurby, Christopher A.; Bailey, Heather R.; Eisenberg, Michelle L.; Beck, Taylor M.
2013-01-01
Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79 years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. PMID:23942350
NASA Astrophysics Data System (ADS)
Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong
2017-12-01
Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.
The Intricacies of Children's Physical Activity.
Brusseau, Timothy A
2015-09-29
Understanding the physical activity patterns of youth is an essential step in preparing programming and interventions needed to change behavior. To date, little is known about the intricacies of youth physical activity across various physical activity segments (i.e. in school, out of school, recess, classroom physical activity, physical education, weekends, etc.). Therefore, the purpose of the study was to examine the physical activity patterns of elementary school children across various segments and during two seasons. A total of 287 fourth and fifth graders from the Southwest US wore the Yamax Digiwalker SW-200 pedometer for 7 consecutive days during the Fall and Spring seasons. Children were prompted to record their step counts when arriving and leaving school, before and after physical education and recess, as well as on the weekends. Means and standard deviations were calculated and ANOVAs and t tests were utilized to examine difference by sex, season, and segment. Youth were more active outside of school and on weekdays (p<0.05). Boys were generally more active than girls and all youth were more active during the milder Spring season. There is a clear need for Comprehensive School Physical Activity Programming and weekend physical activity opportunities. Furthermore, greater emphasis is needed on PE and across other activity segments for girls to increase their physical activity levels.
The Intricacies of Children’s Physical Activity
Brusseau, Timothy A
2015-01-01
Understanding the physical activity patterns of youth is an essential step in preparing programming and interventions needed to change behavior. To date, little is known about the intricacies of youth physical activity across various physical activity segments (i.e. in school, out of school, recess, classroom physical activity, physical education, weekends, etc.). Therefore, the purpose of the study was to examine the physical activity patterns of elementary school children across various segments and during two seasons. A total of 287 fourth and fifth graders from the Southwest US wore the Yamax Digiwalker SW-200 pedometer for 7 consecutive days during the Fall and Spring seasons. Children were prompted to record their step counts when arriving and leaving school, before and after physical education and recess, as well as on the weekends. Means and standard deviations were calculated and ANOVAs and t tests were utilized to examine difference by sex, season, and segment. Youth were more active outside of school and on weekdays (p<0.05). Boys were generally more active than girls and all youth were more active during the milder Spring season. There is a clear need for Comprehensive School Physical Activity Programming and weekend physical activity opportunities. Furthermore, greater emphasis is needed on PE and across other activity segments for girls to increase their physical activity levels. PMID:26557210
Lemon, W C; Levine, R B
1997-06-01
During the metamorphosis of Manduca sexta the larval nervous system is reorganized to allow the generation of behaviors that are specific to the pupal and adult stages. In some instances, metamorphic changes in neurons that persist from the larval stage are segment-specific and lead to expression of segment-specific behavior in later stages. At the larval-pupal transition, the larval abdominal bending behavior, which is distributed throughout the abdomen, changes to the pupal gin trap behavior which is restricted to three abdominal segments. This study suggests that the neural circuit that underlies larval bending undergoes segment specific modifications to produce the segmentally restricted gin trap behavior. We show, however, that non-gin trap segments go through a developmental change similar to that seen in gin trap segments. Pupal-specific motor patterns are produced by stimulation of sensory neurons in abdominal segments that do not have gin traps and cannot produce the gin trap behavior. In particular, sensory stimulation in non-gin trap pupal segments evokes a motor response that is faster than the larval response and that displays the triphasic contralateral-ipsilateral-contralateral activity pattern that is typical of the pupal gin trap behavior. Despite the alteration of reflex activity in all segments, developmental changes in sensory neuron morphology are restricted to those segments that form gin traps. In non-gin trap segments, persistent sensory neurons do not expand their terminal arbors, as do sensory neurons in gin trap segments, yet are capable of eliciting gin trap-like motor responses.
ERIC Educational Resources Information Center
Loucaides, Constantinos A.
2018-01-01
This study examined seasonal differences in children's segmented-day physical activity (PA) and time engaged in sedentary activities. Seventy-three children wore a pedometer during winter and spring and completed a diary relating to their after-school sedentary activities and time playing outside. Children recorded higher steps in spring compared…
Learning a cost function for microscope image segmentation.
Nilufar, Sharmin; Perkins, Theodore J
2014-01-01
Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.
Nonchev, S; Maconochie, M; Vesque, C; Aparicio, S; Ariza-McNaughton, L; Manzanares, M; Maruthainar, K; Kuroiwa, A; Brenner, S; Charnay, P; Krumlauf, R
1996-09-03
Transient segmentation in the hindbrain is a fundamental morphogenetic phenomenon in the vertebrate embryo, and the restricted expression of subsets of Hox genes in the developing rhombomeric units and their derivatives is linked with regional specification. Here we show that patterning of the vertebrate hindbrain involves the direct upregulation of the chicken and pufferfish group 2 paralogous genes, Hoxb-2 and Hoxa-2, in rhombomeres 3 and 5 (r3 and r5) by the zinc finger gene Krox-20. We identified evolutionarily conserved r3/r5 enhancers that contain high affinity Krox-20. binding sites capable of mediating transactivation by Krox-20. In addition to conservation of binding sites critical for Krox-20 activity in the chicken Hoxa-2 and pufferfish Hoxb-2 genes, the r3/r5 enhancers are also characterized by the presence of a number of identical motifs likely to be involved in cooperative interactions with Krox-20 during the process of hindbrain patterning in vertebrates.
Drozdzik, M; Oswald, S
2016-01-01
Orally administered drugs must pass through the intestinal wall and then through the liver before reaching systemic circulation. During this process drugs are subjected to different processes that may determine the therapeutic value. The intestinal barrier with active drug metabolizing enzymes and drug transporters in enterocytes plays an important role in the determination of drug bioavailability. Accumulating information demonstrates variable distribution of drug metabolizing enzymes and transporters along the human gastrointestinal tract (GI), that creates specific barrier characteristics in different segments of the GI. In this review, expression of drug metabolizing enzymes and transporters in the healthy and diseased human GI as well as their regulatory aspects: genetic, miRNA, DNA methylation are outlined. The knowledge of unique interplay between drug metabolizing enzymes and transporters in specific segments of the GI tract allows more precise definition of drug release sites within the GI in order to assure more complete bioavailability and prediction of drug interactions.
Unusual DNA Structures Associated With Germline Genetic Activity in Caenorhabditis elegans
Fire, Andrew; Alcazar, Rosa; Tan, Frederick
2006-01-01
We describe a surprising long-range periodicity that underlies a substantial fraction of C. elegans genomic sequence. Extended segments (up to several hundred nucleotides) of the C. elegans genome show a strong bias toward occurrence of AA/TT dinucleotides along one face of the helix while little or no such constraint is evident on the opposite helical face. Segments with this characteristic periodicity are highly overrepresented in intron sequences and are associated with a large fraction of genes with known germline expression in C. elegans. In addition to altering the path and flexibility of DNA in vitro, sequences of this character have been shown by others to constrain DNA∷nucleosome interactions, potentially producing a structure that could resist the assembly of highly ordered (phased) nucleosome arrays that have been proposed as a precursor to heterochromatin. We propose a number of ways that the periodic occurrence of An/Tn clusters could reflect evolution and function of genes that express in the germ cell lineage of C. elegans. PMID:16648589
The RNA synthesis machinery of negative-stranded RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortín, Juan, E-mail: jortin@cnb.csic.es; Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es
The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure ofmore » their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.« less
An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine
2007-08-10
Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutantmore » correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.« less
NASA Astrophysics Data System (ADS)
Goslin, Jean; Thirot, Jean-Louis; Noël, Olivier; Francheteau, Jean
1998-11-01
Among the mantle hotspots present under oceanic areas, a large number are located on-or close to-active oceanic ridges. This is especially true in the slow-spreading Atlantic and Indian oceans. The recent availability of worldwide gravity grids and the increasing coverage of geochemical data sets along active spreading centres allow a fruitful comparison of these data with global geoid and seismic tomography models, and allow one to study interactions between mantle plumes and active slow-spreading ridges. The observed correlations allow us to draw preliminary conclusions on the general links between surficial processes, which shape the detailed morphology of the ridge axes, and deeper processes, active in the upper mantle below the ridge axial domains as a whole. The interactions are first studied at the scale of the Atlantic (the Mid-Atlantic Ridge from Iceland to Bouvet Island) from the correlation between the zero-age free-air gravity anomaly, which reflects the zero-age depth of the ridge axis, and Sr isotopic ratios of ridge axis basalts. The study is then extended to a more global scale (the slow ridges from Iceland to the Gulf of Aden) by including geoid and upper-mantle tomography models. The interactions appear complex, ranging from the effect of large and very productive plumes, almost totally overprinting the long-wavelength segmentation pattern of the ridge, to that of weaker hotspots, barely marking some of the observables in the ridge axial domain. Intermediate cases are observed, in which hotspots of medium activity (or whose activity has gradually decreased) located at some distance from the ridge axis produce geophysical or geochemical signals whose variation along the axis can be correlated with the geometry of the plume head in the upper mantle. Such observations tend to preclude the use of a single hotspot/ridge interaction model and stress the need for additional observations in various plume/ridge configurations.
Attentional priorities and access to short-term memory: parietal interactions.
Gillebert, Céline R; Dyrholm, Mads; Vangkilde, Signe; Kyllingsbæk, Søren; Peeters, Ronald; Vandenberghe, Rik
2012-09-01
The intraparietal sulcus (IPS) has been implicated in selective attention as well as visual short-term memory (VSTM). To contrast mechanisms of target selection, distracter filtering, and access to VSTM, we combined behavioral testing, computational modeling and functional magnetic resonance imaging. Sixteen healthy subjects participated in a change detection task in which we manipulated both target and distracter set sizes. We directly compared the IPS response as a function of the number of targets and distracters in the display and in VSTM. When distracters were not present, the posterior and middle segments of IPS showed the predicted asymptotic activity increase with an increasing target set size. When distracters were added to a single target, activity also increased as predicted. However, the addition of distracters to multiple targets suppressed both middle and posterior IPS activities, thereby displaying a significant interaction between the two factors. The interaction between target and distracter set size in IPS could not be accounted for by a simple explanation in terms of number of items accessing VSTM. Instead, it led us to a model where items accessing VSTM receive differential weights depending on their behavioral relevance, and secondly, a suppressive effect originates during the selection phase when multiple targets and multiple distracters are simultaneously present. The reverse interaction between target and distracter set size was significant in the right temporoparietal junction (TPJ), where activity was highest for a single target compared to any other condition. Our study reconciles the role of middle IPS in attentional selection and biased competition with its role in VSTM access. Copyright © 2012 Elsevier Inc. All rights reserved.
Structure and Neotectonics of the Southern Chile Forearc 35°S - 40°S
NASA Astrophysics Data System (ADS)
Geersen, Jacob; Völker, David; Weinrebe, Wilhelm; Krastel-Gudegast, Sebastian; Behrmann, Jan H.
2010-05-01
The Southern Chile Forearc exhibits an extreme level of neotectonic deformation. On-land studies have documented a pronounced segmentation in the region 36°S - 41°S. However, information on the seaward continuation of the individual segments towards the Chile Trench is rare, as direct observations end at the coastline and are replaced by a less dense set of marine geophysical data. In this study we use swath bathymetric data combined with high and low-frequency reflection seismic data as well as results from heat-flow measurements to: (A) map and identify active deformation structures and investigate their spatial distribution, and (B) analyse the factors controlling segmentation along the Southern Chile Forearc. Considering the region 35°S to 40°S we found evidence for a division into four major segments; Concepcion North, Concepcion South, Nahuelbuta, and Tolten (from North to South). Within all four segments, the lower continental slope is dissected by distinct margin-parallel thrust ridges overlying active landward-dipping thrust faults, indicating the presence of an active accretionary prism. The middle and upper slope, however, shows major differences between the four segments. The Concepcion North Segment is dominated by a large margin-parallel thrust ridge. The Concepcion South Segment shows large up to 600 m high north-south aligned normal fault scarps highlighting east-west extension. The change from thrust to normal faulting domains is accompanied by a drastic decrease in surface heat-flow by a factor of up to four. Further south in the Nahuelbuta Segment, east-west trending active thrust ridges indicate north-south compression of this part of the forearc. Shortening in this segment is not only limited to the middle and upper slope, but includes the entire marine forearc and occurs perpendicular to the direction of plate convergence. In the southernmost Tolten Segment the middle and upper continental slope shows no signs of compressive or extensional deformation. For the factors controlling segmentation our data suggest that when considering the whole forearc variations in the overriding plate such as the position of continental fault zones are responsible for the large scale tectonic segmentation. The east-west oriented shortening structures in the Nahuelbuta Segment (perpendicular to the direction of plate motion) probably originate from the collision of the Chiloe Microplate with a marine buttress situated below the Concepcion South Segment. The Chiloe Microplate represents a 1000 km-sized forearc sliver, which is kinematically decoupled from stable South America along the Liquine-Ofqui and Lanalhue Fault Zones. The important transition from wholesale forearc compression to extension observed between the two Concepcion segments, however, is more likely related to plate boundary processes, i.e. different degrees of coupling and/or friction in the plate boundary itself.
Predictions interact with missing sensory evidence in semantic processing areas.
Scharinger, Mathias; Bendixen, Alexandra; Herrmann, Björn; Henry, Molly J; Mildner, Toralf; Obleser, Jonas
2016-02-01
Human brain function draws on predictive mechanisms that exploit higher-level context during lower-level perception. These mechanisms are particularly relevant for situations in which sensory information is compromised or incomplete, as for example in natural speech where speech segments may be omitted due to sluggish articulation. Here, we investigate which brain areas support the processing of incomplete words that were predictable from semantic context, compared with incomplete words that were unpredictable. During functional magnetic resonance imaging (fMRI), participants heard sentences that orthogonally varied in predictability (semantically predictable vs. unpredictable) and completeness (complete vs. incomplete, i.e. missing their final consonant cluster). The effects of predictability and completeness interacted in heteromodal semantic processing areas, including left angular gyrus and left precuneus, where activity did not differ between complete and incomplete words when they were predictable. The same regions showed stronger activity for incomplete than for complete words when they were unpredictable. The interaction pattern suggests that for highly predictable words, the speech signal does not need to be complete for neural processing in semantic processing areas. Hum Brain Mapp 37:704-716, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Chuang, Bo-I; Kuo, Li-Chieh; Yang, Tai-Hua; Su, Fong-Chin; Jou, I-Ming; Lin, Wei-Jr; Sun, Yung-Nien
2017-01-01
Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint’s tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians’ opinions. PMID:29077737
Markel, D; Naqa, I El; Freeman, C; Vallières, M
2012-06-01
To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.
Bergeest, Jan-Philip; Rohr, Karl
2012-10-01
In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.
Mouillon, Jean-Marie; Gustafsson, Petter; Harryson, Pia
2006-01-01
Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na2SO4. Taken together, these observations indicate that the dehydrins are not in equilibrium with high-energy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows sequence similarity with the animal chaperone HSP90. PMID:16565295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, T.L.
1991-11-12
Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of {sup 125}I-{alpha}-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b and the structurally similarmore » segment of CVS rabies virus glycoprotein. These affinities were comparable to those of d-tubocurarine and suberyldicholine. These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Since this region of the glycoprotein contains residues corresponding to all of the functionally invariant neurotoxin residues, it may interact with the acetylcholine receptor through a mechanism similar to that of the neurotoxins.« less
Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-02-01
Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.
Chanda, Baron; Asamoah, Osei Kwame; Bezanilla, Francisco
2004-03-01
The voltage-sensing S4 segments in the sodium channel undergo conformational rearrangements in response to changes in the electric field. However, it remains unclear whether these structures move independently or in a coordinated manner. Previously, site-directed fluorescence measurements were shown to track S4 transitions in each of the four domains. Here, using a similar technique, we provide direct evidence of coupling interactions between voltage sensors in the sodium channel. Pairwise interactions between S4s were evaluated by comparing site-specific conformational changes in the presence and absence of a gating perturbation in a distal domain. Reciprocity of effect, a fundamental property of thermodynamically coupled systems, was measured by generating converse mutants. The magnitude of a local gating perturbation induced by a remote S4 mutation depends on the coupling strength and the relative equilibrium positions of the two voltage sensors. In general, our data indicates that the movement of all four voltage sensors in the sodium channel are coupled to a varying extent. Moreover, a gating perturbation in S4-DI has the largest effect on the activation of S4-DIV and vice versa, demonstrating an energetic linkage between S4-DI and S4-DIV. This result suggests a physical mechanism by which the activation and inactivation process may be coupled in voltage-gated sodium channels. In addition, we propose that cooperative interactions between voltage sensors may be the mechanistic basis for the fast activation kinetics of the sodium channel.
Lopez Castillo, Maria A; Carlson, Jordan A; Cain, Kelli L; Bonilla, Edith A; Chuang, Emmeline; Elder, John P; Sallis, James F
2015-01-01
The study aims were to determine: (a) how class structure varies by dance type, (b) how moderate-to-vigorous physical activity (MVPA) and sedentary behavior vary by dance class segments, and (c) how class structure relates to total MVPA in dance classes. Participants were 291 boys and girls ages 5 to 18 years old enrolled in 58 dance classes at 21 dance studios in Southern California. MVPA and sedentary behavior were assessed with accelerometry, with data aggregated to 15-s epochs. Percent and minutes of MVPA and sedentary behavior during dance class segments and percent of class time and minutes spent in each segment were calculated using Freedson age-specific cut points. Differences in MVPA (Freedson 3 Metabolic Equivalents of Tasks age-specific cut points) and sedentary behavior ( < 100 counts/min) were examined using mixed-effects linear regression. The length of each class segment was fairly consistent across dance types, with the exception that in ballet, more time was spent in technique as compared with private jazz/hip-hop classes and Latin-flamenco and less time was spent in routine/practice as compared with Latin-salsa/ballet folklorico. Segment type accounted for 17% of the variance in the proportion of the segment spent in MVPA. The proportion of the segment in MVPA was higher for routine/practice (44.2%) than for technique (34.7%). The proportion of the segment in sedentary behavior was lowest for routine/practice (22.8%). The structure of dance lessons can impact youths' physical activity. Working with instructors to increase time in routine/practice during dance classes could contribute to physical activity promotion in youth.
Body Segment Kinematics and Energy Expenditure in Active Videogames.
Böhm, Birgit; Hartmann, Michael; Böhm, Harald
2016-06-01
Energy expenditure (EE) in active videogames (AVGs) is a component for assessing its benefit for cardiovascular health. Existing evidence suggests that AVGs are able to increase EE above rest and when compared with playing passive videogames. However, the association between body movement and EE remains unclear. Furthermore, for goal-directed game design, it is important to know the contribution of body segments to EE. This knowledge will help to acquire a certain level of exercise intensity during active gaming. Therefore, the purpose of this study was to determine the best predictors of EE from body segment energies, acceleration, and heart rate during different game situations. EE and body segment movement of 17 subjects, aged 22.1 ± 2.5 years, were measured in two different AVGs. In randomized order, the subjects played a handheld-controlled Nintendo(®) Wii™ tennis (NWT) game and a whole body-controlled Sony EyeToy(®) waterfall (ETW) game. Body segment movement was analyzed using a three-dimensional motion capture system. From the video data, mean values of mechanical energy change and acceleration of 10 body segments were analyzed. Measured EE was significantly higher in ETW (7.8 ± 1.4 metabolic equivalents [METs]) than in NWT (3.4 ± 1.0 METs). The best prediction parameter for the more intense ETW game was the energy change of the right thigh and for the less intense hand-controlled NWT game was the energy change of the upper torso. Segment acceleration was less accurate in predicting EE. The best predictors of metabolic EE were the thighs and the upper torso in whole body and handheld-controlled games, respectively. Increasing movement of these body segments would lead to higher physical activity intensity during gaming, reducing sedentary behavior.
Shahedi, Maysam; Cool, Derek W; Romagnoli, Cesare; Bauman, Glenn S; Bastian-Jordan, Matthew; Gibson, Eli; Rodrigues, George; Ahmad, Belal; Lock, Michael; Fenster, Aaron; Ward, Aaron D
2014-11-01
Three-dimensional (3D) prostate image segmentation is useful for cancer diagnosis and therapy guidance, but can be time-consuming to perform manually and involves varying levels of difficulty and interoperator variability within the prostatic base, midgland (MG), and apex. In this study, the authors measured accuracy and interobserver variability in the segmentation of the prostate on T2-weighted endorectal magnetic resonance (MR) imaging within the whole gland (WG), and separately within the apex, midgland, and base regions. The authors collected MR images from 42 prostate cancer patients. Prostate border delineation was performed manually by one observer on all images and by two other observers on a subset of ten images. The authors used complementary boundary-, region-, and volume-based metrics [mean absolute distance (MAD), Dice similarity coefficient (DSC), recall rate, precision rate, and volume difference (ΔV)] to elucidate the different types of segmentation errors that they observed. Evaluation for expert manual and semiautomatic segmentation approaches was carried out. Compared to manual segmentation, the authors' semiautomatic approach reduces the necessary user interaction by only requiring an indication of the anteroposterior orientation of the prostate and the selection of prostate center points on the apex, base, and midgland slices. Based on these inputs, the algorithm identifies candidate prostate boundary points using learned boundary appearance characteristics and performs regularization based on learned prostate shape information. The semiautomated algorithm required an average of 30 s of user interaction time (measured for nine operators) for each 3D prostate segmentation. The authors compared the segmentations from this method to manual segmentations in a single-operator (mean whole gland MAD = 2.0 mm, DSC = 82%, recall = 77%, precision = 88%, and ΔV = - 4.6 cm(3)) and multioperator study (mean whole gland MAD = 2.2 mm, DSC = 77%, recall = 72%, precision = 86%, and ΔV = - 4.0 cm(3)). These results compared favorably with observed differences between manual segmentations and a simultaneous truth and performance level estimation reference for this data set (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 66%, precision = 77%, and ΔV = 15.5 cm(3)). The authors found that overall, midgland segmentation was more accurate and repeatable than the segmentation of the apex and base, with the base posing the greatest challenge. The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.
Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation.
Nakao, Hajime
2015-09-01
In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.
2013-03-01
Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%+/-3.5%, and that of false positives is 5.5%+/-4.2%.
A novel content-based active contour model for brain tumor segmentation.
Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal
2012-06-01
Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. Copyright © 2012 Elsevier Inc. All rights reserved.
Bertrand, S; Cazalets, Jean-René
2002-11-01
Various studies on isolated neonatal rat spinal cord have pointed to the predominant role played by the rostral lumbar area in the generation of locomotor activity. In the present study, the role of the various regions of the lumbar spinal cord in locomotor genesis was further examined using compartmentalization and transections of the cord. We report that the synaptic drive received by caudal motoneurons following N-methyl-d-l-aspartate (NMA)/5-HT superfusion on the entire lumbar cord is different from that triggered by the same compounds specifically applied on the rostral segments. These differences appear to be due to the direct action of NMA/5-HT on motoneuron membrane potential, rather than on premotoneuronal input activation. In order to assess the possible participation of the caudal lumbar segments in locomotor rhythm generation, the segments were over-stimulated with high concentrations of NMA or K+. We find that significant variations in motor cycle period occurred during the over-activation of the rostral segments. Over-activation of caudal segments only si+gnificantly increased the caudal ventral roots burst amplitude. We find that low 5-HT concentrations were unable to induce fictive locomotion under our experimental conditions. When a hemi-transection of the cord was performed between the L2-L3 segments, rhythmic bursting in the ipsilateral L5 disappeared while rhythmicity persisted on the contralateral side. Sectioning of the remaining L2-L3 side totally suppressed rhythmic activity in both L5 ventral roots. These results show that the thoracolumbar part of the cord constitutes the key area for locomotor pattern generation.
Markel, D; Naqa, I El
2012-06-01
Positron emission tomography (PET) presents a valuable resource for delineating the biological tumor volume (BTV) for image-guided radiotherapy. However, accurate and consistent image segmentation is a significant challenge within the context of PET, owing to its low spatial resolution and high levels of noise. Active contour methods based on the level set methods can be sensitive to noise and susceptible to failing in low contrast regions. Therefore, this work evaluates a novel active contour algorithm applied to the task of PET tumor segmentation. A novel active contour segmentation algorithm based on maximizing the Jensen-Renyi Divergence between regions of interest was applied to the task of segmenting lesions in 7 patients with T3-T4 pharyngolaryngeal squamous cell carcinoma. The algorithm was implemented on an NVidia GEFORCE GTV 560M GPU. The cases were taken from the Louvain database, which includes contours of the macroscopically defined BTV drawn using histology of resected tissue. The images were pre-processed using denoising/deconvolution. The segmented volumes agreed well with the macroscopic contours, with an average concordance index and classification error of 0.6 ± 0.09 and 55 ± 16.5%, respectively. The algorithm in its present implementation requires approximately 0.5-1.3 sec per iteration and can reach convergence within 10-30 iterations. The Jensen-Renyi active contour method was shown to come close to and in terms of concordance, outperforms a variety of PET segmentation methods that have been previously evaluated using the same data. Further evaluation on a larger dataset along with performance optimization is necessary before clinical deployment. © 2012 American Association of Physicists in Medicine.
Shape-driven 3D segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2006-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.
Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong
2015-01-01
Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.
Borthwick, Karen; Jackson, Vicky N; Price, Nigel T; Zammit, Victor A
2006-11-03
Carnitine palmitoyltransferase (CPT) 1A adopts a polytopic conformation within the mitochondrial outer membrane, having both the N- and C-terminal segments on the cytosolic aspect of the membrane and a loop region connecting the two transmembrane (TM) segments protruding into the inter membrane space. In this study we demonstrate that the loop exerts major effects on the sensitivity of the enzyme to its inhibitor, malonyl-CoA. Insertion of a 16-residue spacer between the C-terminal part of the loop sequence (i.e. between residues 100 and 101) and TM2 (which is predicted to start at residue 102) increased the sensitivity to malonyl-CoA inhibition of the resultant mutant protein by more than 10-fold. By contrast, the same insertion made between TM1 and the loop had no effects on the kinetic properties of the enzyme, indicating that effects on the catalytic C-terminal segment were specifically induced by loop-TM2 interactions. Enhanced sensitivity was also observed in all mutants in which the native TM2-loop pairing was disrupted either by making chimeras in which the loops and TM2 segments of CPT 1A and CPT 1B were exchanged or by deleting successive 9-residue segments from the loop sequence. The data suggest that the sequence spanning the loop-TM2 boundary determines the disposition of this TM in the membrane so as to alter the conformation of the C-terminal segment and thus affect its interaction with malonyl-CoA.
A hybrid approach of using symmetry technique for brain tumor segmentation.
Saddique, Mubbashar; Kazmi, Jawad Haider; Qureshi, Kalim
2014-01-01
Tumor and related abnormalities are a major cause of disability and death worldwide. Magnetic resonance imaging (MRI) is a superior modality due to its noninvasiveness and high quality images of both the soft tissues and bones. In this paper we present two hybrid segmentation techniques and their results are compared with well-recognized techniques in this area. The first technique is based on symmetry and we call it a hybrid algorithm using symmetry and active contour (HASA). In HASA, we take refection image, calculate the difference image, and then apply the active contour on the difference image to segment the tumor. To avoid unimportant segmented regions, we improve the results by proposing an enhancement in the form of the second technique, EHASA. In EHASA, we also take reflection of the original image, calculate the difference image, and then change this image into a binary image. This binary image is mapped onto the original image followed by the application of active contouring to segment the tumor region.
ERIC Educational Resources Information Center
van Severen, Lieve; Gillis, Joris J. M.; Molemans, Inge; van den Berg, Renate; De Maeyer, Sven; Gillis, Steven
2013-01-01
The impact of input frequency (IF) and functional load (FL) of segments in the ambient language on the acquisition order of word-initial consonants is investigated. Several definitions of IF/FL are compared and implemented. The impact of IF/FL and their components are computed using a longitudinal corpus of interactions between thirty…
ERIC Educational Resources Information Center
Floccia, Caroline; Nazzi, Thierry; Austin, Keith; Arreckx, Frederique; Goslin, Jeremy
2011-01-01
To investigate the interaction between segmental and supra-segmental stress-related information in early word learning, two experiments were conducted with 20- to 24-month-old English-learning children. In an adaptation of the object categorization study designed by Nazzi and Gopnik (2001), children were presented with pairs of novel objects whose…
Ganderton, Charlotte; Pizzari, Tania; Cook, Jill; Semciw, Adam
2017-12-01
Study Design Controlled laboratory study, cross-sectional. Background The gluteus medius (GMed) and gluteus minimus (GMin) provide dynamic stability of the hip joint and pelvis. These muscles are susceptible to atrophy and injury in individuals during menopause, aging, and disease. Numerous studies have reported on the ability of exercises to elicit high levels of GMed activity; however, few studies have differentiated between the portions of the GMed, and none have examined the GMin. Objectives To quantify and rank the level of muscle activity of the 2 segments of the GMin (anterior and posterior fibers) and 3 segments of the GMed (anterior, middle, and posterior fibers) during 4 isometric and 3 dynamic exercises in a group of healthy, postmenopausal women. Methods Intramuscular electrodes were inserted into each segment of the GMed and GMin in 10 healthy, postmenopausal women. Participants completed 7 gluteal rehabilitation exercises, and average normalized muscle activity was used to rank the exercises from highest to lowest. Results The isometric standing hip hitch with contralateral hip swing was the highest-ranked exercise for all muscle segments except the anterior GMin, where it was ranked second. The highest-ranked dynamic exercise for all muscle segments was the dip test. Conclusion The hip hitch and its variations maximally activate the GMed and GMin muscle segments, and may be useful in hip muscle rehabilitation in postmenopausal women. J Orthop Sports Phys Ther 2017;47(12):914-922. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7229.
Two-dimensional segmentation for analyzing Hi-C data
Lévy-Leduc, Celine; Delattre, M.; Mary-Huard, T.; Robin, S.
2014-01-01
Motivation: The spatial conformation of the chromosome has a deep influence on gene regulation and expression. Hi-C technology allows the evaluation of the spatial proximity between any pair of loci along the genome. It results in a data matrix where blocks corresponding to (self-)interacting regions appear. The delimitation of such blocks is critical to better understand the spatial organization of the chromatin. From a computational point of view, it results in a 2D segmentation problem. Results: We focus on the detection of cis-interacting regions, which appear to be prominent in observed data. We define a block-wise segmentation model for the detection of such regions. We prove that the maximization of the likelihood with respect to the block boundaries can be rephrased in terms of a 1D segmentation problem, for which the standard dynamic programming applies. The performance of the proposed methods is assessed by a simulation study on both synthetic and resampled data. A comparative study on public data shows good concordance with biologically confirmed regions. Availability and implementation: The HiCseg R package is available from the Comprehensive R Archive Network and from the Web page of the corresponding author. Contact: celine.levy-leduc@agroparistech.fr PMID:25161224
The interaction between specificity and linguistic contrast
NASA Astrophysics Data System (ADS)
Nielsen, Kuniko
2005-09-01
Previous studies have shown listeners' ability to remember fine phonetic details [e.g., Mullennix et al., 1989], providing support for the episodic view of speech perception. The imitation paradigm [Goldinger, 1998, Shockley et al., 2004], in which subjects' speech is compared before and after they are exposed to target speech (= study phase) has shown that subjects shift their production in the direction of the target. Our earlier results [Nielsen, 2005] showed that the imitation effect for extended VOT was generalized to new stimuli as well as to a new segment, suggesting that the locus of the imitation effect can be smaller than individual words or segments. The current study aims to further investigate how experienced speech input interacts with linguistic representations, by testing whether the imitation effect is observed when the modeled stimuli have reduced VOT (which could introduce linguistic ambiguity). In other words, do speakers imitate and generalize shorter VOT even if the change might impair linguistic contrasts? To address this question, the study phase includes words with initial /p/ with reduced VOT, while the pre- and post-study production list includes (1) the modeled words, (2) the modeled segments /p/ in new words, and (3) the new segment /k/.
Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas.
Labra, Nicole; Guevara, Pamela; Duclap, Delphine; Houenou, Josselin; Poupon, Cyril; Mangin, Jean-François; Figueroa, Miguel
2017-01-01
This paper presents an algorithm for fast segmentation of white matter bundles from massive dMRI tractography datasets using a multisubject atlas. We use a distance metric to compare streamlines in a subject dataset to labeled centroids in the atlas, and label them using a per-bundle configurable threshold. In order to reduce segmentation time, the algorithm first preprocesses the data using a simplified distance metric to rapidly discard candidate streamlines in multiple stages, while guaranteeing that no false negatives are produced. The smaller set of remaining streamlines is then segmented using the original metric, thus eliminating any false positives from the preprocessing stage. As a result, a single-thread implementation of the algorithm can segment a dataset of almost 9 million streamlines in less than 6 minutes. Moreover, parallel versions of our algorithm for multicore processors and graphics processing units further reduce the segmentation time to less than 22 seconds and to 5 seconds, respectively. This performance enables the use of the algorithm in truly interactive applications for visualization, analysis, and segmentation of large white matter tractography datasets.
Structural constraints in the packaging of bluetongue virus genomic segments
Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.
2014-01-01
The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5′ and 3′ ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. PMID:24980574
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
Multiresolution saliency map based object segmentation
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Xin; Dai, ZhenYou
2015-11-01
Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.
2016-01-01
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444
Kitamura, Kaoru; Shimizu, Takashi
2002-04-15
During embryogenesis of the oligochaete annelid Tubifex, segments VII and VIII specifically express mesodermal alkaline phosphatase (ALP) activity in the ventrolateral region. In this study, using specific inhibitors, we examined whether this segment-specific expression of ALP activity depends on DNA replication and RNA transcription. BrdU-incorporation experiments showed that presumptive ALP-expressing cells undergo the last round of DNA replication at 12-24 hr prior to emergence of ALP activity. When this DNA replication was inhibited by aphidicolin, ALP development was completely abrogated in the ventrolateral mesoderm. Similar inhibition of ALP development was also observed in alpha-amanitin-injected embryos. While injection of alpha-amanitin at 24 hr prior to the emergence of ALP activity exerted inhibitory effects on ALP development, injection at 14 hr was no longer effective. In contrast, ALP activity developed normally in cytochalasin-D-treated embryos in which cytokinesis was prevented from occurring for 36 hs prior to appearance of ALP activity. These results suggest that the segment-specific development of ALP activity in the Tubifex embryo depends on DNA replication and mRNA transcription, both of which occur long before the emergence of ALP activity. Copyright 2002 Wiley-Liss, Inc.
Jain, M; Tiwary, S; Gadre, R
2018-01-01
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.
A Novel Segmentation Approach Combining Region- and Edge-Based Information for Ultrasound Images
Luo, Yaozhong; Liu, Longzhong; Li, Xuelong
2017-01-01
Ultrasound imaging has become one of the most popular medical imaging modalities with numerous diagnostic applications. However, ultrasound (US) image segmentation, which is the essential process for further analysis, is a challenging task due to the poor image quality. In this paper, we propose a new segmentation scheme to combine both region- and edge-based information into the robust graph-based (RGB) segmentation method. The only interaction required is to select two diagonal points to determine a region of interest (ROI) on the original image. The ROI image is smoothed by a bilateral filter and then contrast-enhanced by histogram equalization. Then, the enhanced image is filtered by pyramid mean shift to improve homogeneity. With the optimization of particle swarm optimization (PSO) algorithm, the RGB segmentation method is performed to segment the filtered image. The segmentation results of our method have been compared with the corresponding results obtained by three existing approaches, and four metrics have been used to measure the segmentation performance. The experimental results show that the method achieves the best overall performance and gets the lowest ARE (10.77%), the second highest TPVF (85.34%), and the second lowest FPVF (4.48%). PMID:28536703
NASA Astrophysics Data System (ADS)
Shim, Hackjoon; Lee, Soochan; Kim, Bohyeong; Tao, Cheng; Chang, Samuel; Yun, Il Dong; Lee, Sang Uk; Kwoh, Kent; Bae, Kyongtae
2008-03-01
Knee osteoarthritis is the most common debilitating health condition affecting elderly population. MR imaging of the knee is highly sensitive for diagnosis and evaluation of the extent of knee osteoarthritis. Quantitative analysis of the progression of osteoarthritis is commonly based on segmentation and measurement of articular cartilage from knee MR images. Segmentation of the knee articular cartilage, however, is extremely laborious and technically demanding, because the cartilage is of complex geometry and thin and small in size. To improve precision and efficiency of the segmentation of the cartilage, we have applied a semi-automated segmentation method that is based on an s/t graph cut algorithm. The cost function was defined integrating regional and boundary cues. While regional cues can encode any intensity distributions of two regions, "object" (cartilage) and "background" (the rest), boundary cues are based on the intensity differences between neighboring pixels. For three-dimensional (3-D) segmentation, hard constraints are also specified in 3-D way facilitating user interaction. When our proposed semi-automated method was tested on clinical patients' MR images (160 slices, 0.7 mm slice thickness), a considerable amount of segmentation time was saved with improved efficiency, compared to a manual segmentation approach.
Pre-operative segmentation of neck CT datasets for the planning of neck dissections
NASA Astrophysics Data System (ADS)
Cordes, Jeanette; Dornheim, Jana; Preim, Bernhard; Hertel, Ilka; Strauss, Gero
2006-03-01
For the pre-operative segmentation of CT neck datasets, we developed the software assistant NeckVision. The relevant anatomical structures for neck dissection planning can be segmented and the resulting patient-specific 3D-models are visualized afterwards in another software system for intervention planning. As a first step, we examined the appropriateness of elementary segmentation techniques based on gray values and contour information to extract the structures in the neck region from CT data. Region growing, interactive watershed transformation and live-wire are employed for segmentation of different target structures. It is also examined, which of the segmentation tasks can be automated. Based on this analysis, the software assistant NeckVision was developed to optimally support the workflow of image analysis for clinicians. The usability of NeckVision was tested within a first evaluation with four otorhinolaryngologists from the university hospital of Leipzig, four computer scientists from the university of Magdeburg and two laymen in both fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardisty, M.; Gordon, L.; Agarwal, P.
2007-08-15
Quantitative assessment of metastatic disease in bone is often considered immeasurable and, as such, patients with skeletal metastases are often excluded from clinical trials. In order to effectively quantify the impact of metastatic tumor involvement in the spine, accurate segmentation of the vertebra is required. Manual segmentation can be accurate but involves extensive and time-consuming user interaction. Potential solutions to automating segmentation of metastatically involved vertebrae are demons deformable image registration and level set methods. The purpose of this study was to develop a semiautomated method to accurately segment tumor-bearing vertebrae using the aforementioned techniques. By maintaining morphology of anmore » atlas, the demons-level set composite algorithm was able to accurately differentiate between trans-cortical tumors and surrounding soft tissue of identical intensity. The algorithm successfully segmented both the vertebral body and trabecular centrum of tumor-involved and healthy vertebrae. This work validates our approach as equivalent in accuracy to an experienced user.« less
Evolution of semilocal string networks. II. Velocity estimators
NASA Astrophysics Data System (ADS)
Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.
2017-07-01
We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.
Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production
Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.
2009-01-01
Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156
[Medical image segmentation based on the minimum variation snake model].
Zhou, Changxiong; Yu, Shenglin
2007-02-01
It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.
Active appearance model and deep learning for more accurate prostate segmentation on MRI
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.
2016-03-01
Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.
Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo
2015-08-28
Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.
Dietrich, Timo; Rundle-Thiele, Sharyn; Leo, Cheryl; Connor, Jason
2015-04-01
According to commercial marketing theory, a market orientation leads to improved performance. Drawing on the social marketing principles of segmentation and audience research, the current study seeks to identify segments to examine responses to a school-based alcohol social marketing program. A sample of 371 year 10 students (aged: 14-16 years; 51.4% boys) participated in a prospective (pre-post) multisite alcohol social marketing program. Game On: Know Alcohol (GO:KA) program included 6, student-centered, and interactive lessons to teach adolescents about alcohol and strategies to abstain or moderate drinking. A repeated measures design was used. Baseline demographics, drinking attitudes, drinking intentions, and alcohol knowledge were cluster analyzed to identify segments. Change on key program outcome measures and satisfaction with program components were assessed by segment. Three segments were identified; (1) Skeptics, (2) Risky Males, (3) Good Females. Segments 2 and 3 showed greatest change in drinking attitudes and intentions. Good Females reported highest satisfaction with all program components and Skeptics lowest program satisfaction with all program components. Three segments, each differing on psychographic and demographic variables, exhibited different change patterns following participation in GO:KA. Post hoc analysis identified that satisfaction with program components differed by segment offering opportunities for further research. © 2015, American School Health Association.
Miklík, Dalibor; Šenigl, Filip; Hejnar, Jiří
2018-01-01
Individual groups of retroviruses and retroviral vectors differ in their integration site preference and interaction with the host genome. Hence, immediately after infection genome-wide distribution of integrated proviruses is non-random. During long-term in vitro or persistent in vivo infection, the genomic position and chromatin environment of the provirus affects its transcriptional activity. Thus, a selection of long-term stably expressed proviruses and elimination of proviruses, which have been gradually silenced by epigenetic mechanisms, helps in the identification of genomic compartments permissive for proviral transcription. We compare here the extent and time course of provirus silencing in single cell clones of the K562 human myeloid lymphoblastoma cell line that have been infected with retroviral reporter vectors derived from avian sarcoma/leukosis virus (ASLV), human immunodeficiency virus type 1 (HIV) and murine leukaemia virus (MLV). While MLV proviruses remain transcriptionally active, ASLV proviruses are prone to rapid silencing. The HIV provirus displays gradual silencing only after an extended time period in culture. The analysis of integration sites of long-term stably expressed proviruses shows a strong bias for some genomic features—especially integration close to the transcription start sites of active transcription units. Furthermore, complex analysis of histone modifications enriched at the site of integration points to the accumulation of proviruses of all three groups in gene regulatory segments, particularly close to the enhancer loci. We conclude that the proximity to active regulatory chromatin segments correlates with stable provirus expression in various retroviral species. PMID:29517993
Activity recognition using Video Event Segmentation with Text (VEST)
NASA Astrophysics Data System (ADS)
Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge
2014-06-01
Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.
Eriksson, Sylvia K.; Kutzer, Michael; Procek, Jan; Gröbner, Gerhard; Harryson, Pia
2011-01-01
Dehydrins are intrinsically disordered plant proteins whose expression is upregulated under conditions of desiccation and cold stress. Their molecular function in ensuring plant survival is not yet known, but several studies suggest their involvement in membrane stabilization. The dehydrins are characterized by a broad repertoire of conserved and repetitive sequences, out of which the archetypical K-segment has been implicated in membrane binding. To elucidate the molecular mechanism of these K-segments, we examined the interaction between lipid membranes and a dehydrin with a basic functional sequence composition: Lti30, comprising only K-segments. Our results show that Lti30 interacts electrostatically with vesicles of both zwitterionic (phosphatidyl choline) and negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl serine, and phosphatidic acid) with a stronger binding to membranes with high negative surface potential. The membrane interaction lowers the temperature of the main lipid phase transition, consistent with Lti30’s proposed role in cold tolerance. Moreover, the membrane binding promotes the assembly of lipid vesicles into large and easily distinguishable aggregates. Using these aggregates as binding markers, we identify three factors that regulate the lipid interaction of Lti30 in vitro: (1) a pH dependent His on/off switch, (2) phosphorylation by protein kinase C, and (3) reversal of membrane binding by proteolytic digest. PMID:21665998
Heuristic Bayesian segmentation for discovery of coexpressed genes within genomic regions.
Pehkonen, Petri; Wong, Garry; Törönen, Petri
2010-01-01
Segmentation aims to separate homogeneous areas from the sequential data, and plays a central role in data mining. It has applications ranging from finance to molecular biology, where bioinformatics tasks such as genome data analysis are active application fields. In this paper, we present a novel application of segmentation in locating genomic regions with coexpressed genes. We aim at automated discovery of such regions without requirement for user-given parameters. In order to perform the segmentation within a reasonable time, we use heuristics. Most of the heuristic segmentation algorithms require some decision on the number of segments. This is usually accomplished by using asymptotic model selection methods like the Bayesian information criterion. Such methods are based on some simplification, which can limit their usage. In this paper, we propose a Bayesian model selection to choose the most proper result from heuristic segmentation. Our Bayesian model presents a simple prior for the segmentation solutions with various segment numbers and a modified Dirichlet prior for modeling multinomial data. We show with various artificial data sets in our benchmark system that our model selection criterion has the best overall performance. The application of our method in yeast cell-cycle gene expression data reveals potential active and passive regions of the genome.
Rhythmic Effects of Syntax Processing in Music and Language
Jung, Harim; Sontag, Samuel; Park, YeBin S.; Loui, Psyche
2015-01-01
Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated—linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical region. Experiment 2 replicated effects of rhythm and language, without an interaction. Together, results suggest that the interaction of music and language syntax processing depends on rhythmic expectancy, and support a merging of theories of music and language syntax processing with dynamic models of attentional entrainment. PMID:26635672
Nagdas, Subir K; Smith, Linda; Medina-Ortiz, Ilza; Hernandez-Encarnacion, Luisa; Raychoudhury, Samir
2016-03-01
Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction comprises three major (54, 50, and 45 kDa) and several minor (38-19 kDa) polypeptides. The set of minor polypeptides (38-19 kDa) termed "OMCrpf polypeptides" is selectively solubilized by high-pH extraction (pH 10.5), while the three major polypeptides (55, 50, and 45 kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32 kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38-19-kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent-soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment, whereas IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidylcholine (LPC)-induced acrosome reaction, whereas the IZUMO1 and lactadherin polypeptides remain associated to the particulate fraction. Almost entire population of bovine sperm IZUMO1 relocates to the equatorial segment during the LPC-induced acrosome reaction. We propose that the interaction of OMC32 matrix polypeptide with detergent-soluble acrosomal proteins regulates the release of hydrolases/other acrosomal protein(s) during the acrosome reaction.
Characteristics of Urban Sidewalks/Streets and Objectively Measured Physical Activity
Heinrich, Katie M.; Poston, Walker S.C.; Hyder, Melissa; Pyle, Sara
2007-01-01
Several studies have found significant relationships between environmental characteristics (e.g., number of destinations, aesthetics) and physical activity. While a few of these studies verified that the physical activities assessed were performed in the environments examined, none have done this in an urban, neighborhood setting. This information will help efforts to inform policy decisions regarding the design of more “physically active” communities. Fourteen environmental characteristics of 60, 305-m-long segments, located in an urban, residential setting, were directly measured using standardized procedures. The number of individuals walking, jogging, and biking in the segments was assessed using an observation technique. The segments were heterogeneous with regards to several of the environmental characteristics. A total of 473 individuals were seen walking, bicycling, or jogging in the segments during 3,600 min of observation (60 min/segment). Of the 473 seen, 315 were walking, 116 bicycling, and 42 jogging. A greater number of individuals were seen walking in segments with more traffic, sidewalk defects, graffiti, and litter and less desirable property aesthetics. Only one environmental characteristic was associated with bicycling and none were significantly related with jogging. This study provides further evidence that environmental characteristics and walking are related. It also adds new information regarding the importance of scale (e.g., micro, macro) and how some environmental characteristics of urban, residential sidewalks and streets relate to physical activity. PMID:18161026
Biased figure-ground assignment affects conscious object recognition in spatial neglect.
Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B
2010-09-01
Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.
Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert
2018-05-08
In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.
Hanson, Erik A; Lundervold, Arvid
2013-11-01
Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berndt, B; Wuerl, M; Dedes, G
Purpose: To improve agreement of predicted and measured positron emitter yields in patients, after proton irradiation for PET-based treatment verification, using a novel dual energy CT (DECT) tissue segmentation approach, overcoming known deficiencies from single energy CT (SECT). Methods: DECT head scans of 5 trauma patients were segmented and compared to existing decomposition methods with a first focus on the brain. For validation purposes, three brain equivalent solutions [water, white matter (WM) and grey matter (GM) – equivalent with respect to their reference carbon and oxygen contents and CT numbers at 90kVp and 150kVp] were prepared from water, ethanol, sucrosemore » and salt. The activities of all brain solutions, measured during a PET scan after uniform proton irradiation, were compared to Monte Carlo simulations. Simulation inputs were various solution compositions obtained from different segmentation approaches from DECT, SECT scans, and known reference composition. Virtual GM solution salt concentration corrections were applied based on DECT measurements of solutions with varying salt concentration. Results: The novel tissue segmentation showed qualitative improvements in %C for patient brain scans (ground truth unavailable). The activity simulations based on reference solution compositions agree with the measurement within 3–5% (4–8Bq/ml). These reference simulations showed an absolute activity difference between WM (20%C) and GM (10%C) to H2O (0%C) of 43 Bq/ml and 22 Bq/ml, respectively. Activity differences between reference simulations and segmented ones varied from −6 to 1 Bq/ml for DECT and −79 to 8 Bq/ml for SECT. Conclusion: Compared to the conventionally used SECT segmentation, the DECT based segmentation indicates a qualitative and quantitative improvement. In controlled solutions, a MC input based on DECT segmentation leads to better agreement with the reference. Future work will address the anticipated improvement of quantification accuracy in patients, comparing different tissue decomposition methods with an MR brain segmentation. Acknowledgement: DFG-MAP and HIT-Heidelberg Deutsche Forschungsgemeinschaft (MAP); Bundesministerium fur Bildung und Forschung (01IB13001)« less
Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.
Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A
1995-08-17
Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.
van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander
2014-01-01
Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering.
van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander
2014-01-01
Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366
Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development.
Maconochie, M K; Nonchev, S; Manzanares, M; Marshall, H; Krumlauf, R
2001-05-15
During hindbrain development, segmental regulation of the paralogous Hoxa2 and Hoxb2 genes in rhombomeres (r) 3 and 5 involves Krox20-dependent enhancers that have been conserved during the duplication of the vertebrate Hox clusters from a common ancestor. Examining these evolutionarily related control regions could provide important insight into the degree to which the basic Krox20-dependent mechanisms, cis-regulatory components, and their organization have been conserved. Toward this goal we have performed a detailed functional analysis of a mouse Hoxa2 enhancer capable of directing reporter expression in r3 and r5. The combined activities of five separate cis-regions, in addition to the conserved Krox20 binding sites, are involved in mediating enhancer function. A CTTT (BoxA) motif adjacent to the Krox20 binding sites is important for r3/r5 activity. The BoxA motif is similar to one (Box1) found in the Hoxb2 enhancer and indicates that the close proximity of these Box motifs to Krox20 sites is a common feature of Krox20 targets in vivo. Two other rhombomeric elements (RE1 and RE3) are essential for r3/r5 activity and share common TCT motifs, indicating that they interact with a similar cofactor(s). TCT motifs are also found in the Hoxb2 enhancer, suggesting that they may be another common feature of Krox20-dependent control regions. The two remaining Hoxa2 cis-elements, RE2 and RE4, are not conserved in the Hoxb2 enhancer and define differences in some of components that can contribute to the Krox20-dependent activities of these enhancers. Furthermore, analysis of regulatory activities of these enhancers in a Krox20 mutant background has uncovered differences in their degree of dependence upon Krox20 for segmental expression. Together, this work has revealed a surprising degree of complexity in the number of cis-elements and regulatory components that contribute to segmental expression mediated by Krox20 and sheds light on the diversity and evolution of Krox20 target sites and Hox regulatory elements in vertebrates. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sato, H.; Van Horne, A.
2015-12-01
We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.
Diagnostic accuracy of ovarian cyst segmentation in B-mode ultrasound images
NASA Astrophysics Data System (ADS)
Bibicu, Dorin; Moraru, Luminita; Stratulat (Visan), Mirela
2013-11-01
Cystic and polycystic ovary syndrome is an endocrine disorder affecting women in the fertile age. The Moore Neighbor Contour, Watershed Method, Active Contour Models, and a recent method based on Active Contour Model with Selective Binary and Gaussian Filtering Regularized Level Set (ACM&SBGFRLS) techniques were used in this paper to detect the border of the ovarian cyst from echography images. In order to analyze the efficiency of the segmentation an original computer aided software application developed in MATLAB was proposed. The results of the segmentation were compared and evaluated against the reference contour manually delineated by a sonography specialist. Both the accuracy and time complexity of the segmentation tasks are investigated. The Fréchet distance (FD) as a similarity measure between two curves and the area error rate (AER) parameter as the difference between the segmented areas are used as estimators of the segmentation accuracy. In this study, the most efficient methods for the segmentation of the ovarian were analyzed cyst. The research was carried out on a set of 34 ultrasound images of the ovarian cyst.
Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek
2014-01-01
Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.
ERIC Educational Resources Information Center
Blayney, Paul; Kalyuga, Slava; Sweller, John
2016-01-01
Element interactivity is a central concept of cognitive load theory that defines the complexity of a learning task. The reduction of task complexity through a temporary segmentation or isolation of interacting elements was investigated with 104 students randomly assigned to an interacting elements group, where participants were required to deal…
NASA Astrophysics Data System (ADS)
Sinton, John; Detrick, Robert; Canales, J. Pablo; Ito, Garrett; Behn, Mark
2003-12-01
Complete multibeam bathymetric coverage of the western Galápagos Spreading Center (GSC) between 90.5°W and 98°W reveals the fine-scale morphology, segmentation and influence of the Galápagos hot spot on this intermediate spreading ridge. The western GSC comprises three morphologically defined provinces: A Western Province, located farthest from the Galápagos hot spot west of 95°30'W, is characterized by an axial deep, rift valley morphology with individual, overlapping, E-W striking segments separated by non-transform offsets; A Middle Province, between the propagating rift tips at 93°15'W and 95°30'W, with transitional axial morphology strikes ˜276°; An Eastern Province, closest to the Galápagos hot spot between the ˜90°50'W Galápagos Transform and 93°15'W, with an axial high morphology generally less than 1800 m deep, strikes ˜280°. At a finer scale, the axial region consists of 32 individual segments defined on the basis of smaller, mainly <2 km, offsets. These offsets mainly step left in the Western and Middle Provinces, and right in the Eastern Province. Glass compositions indicate that the GSC is segmented magmatically into 8 broad regions, with Mg # generally decreasing to the west within each region. Striking differences in bathymetric and lava fractionation patterns between the propagating rifts with tips at 93°15'W and 95°30'W reflect lower overall magma supply and larger offset distance at the latter. The structure of the Eastern Province is complicated by the intersection of a series of volcanic lineaments that appear to radiate away from a point located on the northern edge of the Galápagos platform, close to the southern limit of the Galápagos Fracture Zone. Where these lineaments intersect the GSC, the ridge axis is displaced to the south through a series of overlapping spreading centers (OSCs); abandoned OSC limbs lie even farther south. We propose that southward displacement of the axis is promoted during intermittent times of increased plume activity, when lithospheric zones of weakness become volcanically active. Following cessation of the increased plume activity, the axis straightens by decapitating southernmost OSC limbs during short-lived propagation events. This process contributes to the number of right stepping offsets in the Eastern Province.
Shape-Driven 3D Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2013-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875
Klenin, K; Merlitz, H; Langowski, J
1998-01-01
For the interpretation of solution structural and dynamic data of linear and circular DNA molecules in the kb range, and for the prediction of the effect of local structural changes on the global conformation of such DNAs, we have developed an efficient and easy way to set up a program based on a second-order explicit Brownian dynamics algorithm. The DNA is modeled by a chain of rigid segments interacting through harmonic spring potentials for bending, torsion, and stretching. The electrostatics are handled using precalculated energy tables for the interactions between DNA segments as a function of relative orientation and distance. Hydrodynamic interactions are treated using the Rotne-Prager tensor. While maintaining acceptable precision, the simulation can be accelerated by recalculating this tensor only once in a certain number of steps. PMID:9533691
ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.
Lumb, Alan M.; Kittle, John L.
1985-01-01
ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.
ERIC Educational Resources Information Center
Weaver, R. Glenn; Crimarco, Anthony; Brusseau, Timothy A.; Webster, Collin A.; Burns, Ryan D.; Hannon, James C.
2016-01-01
Background: Schools should provide children 30 minutes/day of moderate-to-vigorous-physical-activity (MVPA). Determining school day segments that contribute to children's MVPA can inform school-based activity promotion. The purpose of this paper was to identify the proportion of children accumulating 30 minutes/day of school-based MVPA, and to…
Tran, Neil; Proenza, Catherine; Macri, Vincenzo; Petigara, Fiona; Sloan, Erin; Samler, Shannon; Accili, Eric A
2002-11-15
Pacemaker channels are formed by co-assembly of hyperpolarization-activated cyclic nucleotide-gated (HCN) subunits. Previously, we suggested that the NH(2) termini of the mouse HCN2 isoform were important for subunit co-assembly and functional channel expression. Using an alignment strategy together with yeast two-hybrid assays, patch clamp electrophysiology, and confocal imaging, we have now identified a domain within the NH(2) terminus of the HCN2 subunit that is responsible for interactions between NH(2) termini and promoting the trafficking of functional channels to the plasma membrane. This domain is composed of 52 amino acids, is located adjacent to the putative first transmembrane segment, and is highly conserved among the mammalian HCN isoforms. This conserved domain, but not the remaining unconserved NH(2)-terminal regions of HCN2, specifically interacted with itself in yeast two-hybrid assays. Moreover, the conserved domain was important for expression of currents. Whereas relatively normal whole cell HCN2 currents were produced by channels containing only the conserved domain, further deletion of this region, leaving only a more polar and putative coiled-coil segment, eliminated HCN2 currents and resulted in proteins that localized predominantly in perinuclear compartments. Thus, we suggest that this conserved domain is the critical NH(2)-terminal determinant of subunit co-assembly and trafficking of pacemaker channels.
Araripe, L O; Tao, Y; Lemos, B
2016-06-01
Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in specific genotypic combinations.
Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David
2009-01-01
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927
Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.
Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D
2015-09-01
The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.