Sample records for seismic array consisting

  1. Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    NASA Astrophysics Data System (ADS)

    J, Gibbons, Steven; Kværna, Tormod; Mykkeltveit, Svein

    2015-04-01

    The infrasound stations of the International Monitoring System are arrays consisting of up to 15 sites and with apertures of up to 3 km. The arrays are distributed remarkably uniformly over the globe and provide excellent coverage of South America, Africa, and Antarctica. This is to say that there are many infrasound arrays in regions many thousands of kilometers from the closest seismic array. Several infrasound arrays are in the immediate vicinity of existing 3-component seismic stations and these provide us with examples of how typical seismic signals look at these locations. We can make idealized estimates of the predicted performance of seismic arrays, consisting of seismometers at each site of the infrasound arrays, by duplicating the signals from the 3-C stations at all sites of the array. However, the true performance of seismic arrays at these sites will depend both upon Signal-to-Noise Ratios of seismic signals and the coherence of both signal and noise between sensors. These properties can only be determined experimentally. Recording seismic data of sufficient quality at many of these arrays may require borehole deployments since the microbarometers in the infrasound arrays are often situated in vaults placed in soft sediments. The geometries of all the current IMS infrasound arrays are examined and compared and we demonstrate that, from a purely geometrical perspective, essentially all the array configurations would provide seismic arrays with acceptable slowness resolution for both regional and teleseismic phase arrivals. Seismic arrays co-located with the infrasound arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would facilitate the development of seismic arrays that share the infrastructure of the infrasound arrays, reducing the development and operational costs. Hosting countries might find such added capabilities valuable from a national perspective. In addition, the seismic recordings may also help to identify the sources of infrasound signals with consequences for improved event screening and evaluating models of infrasound propagation and atmospheric properties.

  2. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  3. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  4. Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.

    2016-12-01

    The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.

  5. Small aperture seismic arrays for studying planetary interiors and seismicity

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.

  6. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  7. Infrasonic and seismic signals from earthquakes and explosions observed with Plostina seismo-acoustic array

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Ionescu, C.

    2012-04-01

    Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency-wave number analysis). Spectrograms of the recorded infrasonic and seismic data were examined, showing that an earthquake produces acoustic signals with a high energy in the 1 to 5 Hz frequency range, while, for the explosion, this range lays below 0.6 Hz. Using the combined analysis of the seismic and acoustic data, Plostina array can greatly enhance the event detection and localization in the region. The analysis can be, as well, particularly important in identifying sources of industrial explosion, and therefore, in monitoring of the hazard created both by earthquakes and anthropogenic sources of pollution (chemical factories, nuclear and power plants, refineries, mines).

  8. Analysis of volcano-related seismicity to constrain the magmatic plumbing system beneath Fogo, Cape Verde, by (multi-)array techniques

    NASA Astrophysics Data System (ADS)

    Dietrich, Carola; Wölbern, Ingo; Faria, Bruno; Rümpker, Georg

    2017-04-01

    Fogo is the only island of the Cape Verde archipelago with regular occurring volcanic eruptions since its discovery in the 15th century. The volcanism of the archipelago originates from a mantle plume beneath an almost stationary tectonic plate. With an eruption interval of approximately 20 years, Fogo belongs to the most active oceanic volcanoes. The latest eruption started in November 2014 and ceased in February 2015. This study aims to characterize and investigate the seismic activity and the magmatic plumbing system of Fogo, which is believed to be related to a magmatic source close to the neighboring island of Brava. According to previous studies, using conventional seismic network configurations, most of the seismic activity occurs offshore. Therefore, seismological array techniques represent powerful tools in investigating earthquakes and other volcano-related events located outside of the networks. Another advantage in the use of seismic arrays is their possibility to detect events of relatively small magnitude and to locate seismic signals without a clear onset of phases, such as volcanic tremors. Since October 2015 we have been operating a test array on Fogo as part of a pilot study. This array consists of 10 seismic stations, distributed in a circular shape with an aperture of 700 m. The stations are equipped with Omnirecs CUBE dataloggers, and either 4.5 Hz geophones (7 stations) or Trillium-Compact broad-band seismometers (3 stations). In January 2016 we installed three additional broad-band stations distributed across the island of Fogo to improve the capabilities for event localization. The data of the pilot study is dominated by seismic activity around Brava, but also exhibit tremors and hybrid events of unknown origin within the caldera of Fogo volcano. The preliminary analysis of these events includes the characterization and localization of the different event types using seismic array processing in combination with conventional localization methods. In the beginning of August 2016, a "seismic crisis" occurred on the island of Brava which led to the evacuation of a village. The seismic activity recorded by our instruments on Fogo exhibits more than 40 earthquakes during this time. Locations and magnitudes of these events will be presented. In January 2017 the pilot project discussed here will be complemented by three additional seismic arrays (two on Fogo, one on Brava) to improve seismic event localization and structural imaging based on scattered seismic phases by using multi-array techniques. Initial recordings from the new arrays are expected to be available by April 2017.

  9. Seismicity of the Wabash Valley, Ste. Genevieve, and Rough Creek Graben Seismic Zones from the Earthscope Ozarks-Illinois-Indiana-Kentucky (OIINK) FlexArray Experiment

    NASA Astrophysics Data System (ADS)

    Shirley, Matthew Richard

    I analyzed seismic data from the Ozarks-Illinois-Indiana-Kentucky (OIINK) seismic experiment that operated in eastern Missouri, southern Illinois, southern Indiana, and Kentucky from July 2012 through March 2015. A product of this analysis is a new catalog of earthquake locations and magnitudes for small-magnitude local events during this study period. The analysis included a pilot study involving detailed manual analysis of all events in a ten-day test period and determination of the best parameters for a suite of automated detection and location programs. I eliminated events that were not earthquakes (mostly quarry and surface mine blasts) from the output of the automated programs, and reprocessed the locations for the earthquakes with manually picked P- and S-wave arrivals. This catalog consists of earthquake locations, depths, and local magnitudes. The new catalog consists of 147 earthquake locations, including 19 located within the bounds of the OIINK array. Of these events, 16 were newly reported events, too small to be reported in the Center for Earthquake Research and Information (CERI) regional seismic network catalog. I compared the magnitudes reported by CERI for corresponding earthquakes to establish a magnitude calibration factor for all earthquakes recorded by the OIINK array. With the calibrated earthquake magnitudes, I incorporate the previous OIINK results from Yang et al. (2014) to create magnitude-frequency distributions for the seismic zones in the region alongside the magnitude-frequency distributions made from CERI data. This shows that Saint Genevieve and Wabash Valley seismic zones experience seismic activity at an order magnitude lower rate than the New Madrid seismic zone, and the Rough Creek Graben experiences seismic activity two orders of magnitude less frequently than New Madrid.

  10. Thunder-induced ground motions: 1. Observations

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.

  11. Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin

    2013-04-01

    Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.

  12. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response and hazard assessment after destructive large earthquakes. Existing multiple global seismic arrays, when properly calibrated and used in combinations, provide a high resolution image of rupture of large earthquakes and spatiotemporal distribution of aftershocks.

  13. Infrasound from thunder: A natural seismic source

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2007-07-01

    A small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones was built to investigate thunder-induced ground motions. Data from two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen as examples of data collected by the array. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters at the site. Although the depth of the borehole is relatively shallow compared to a seismic wave wavelength, velocity amplitude in the radial component decays as much as 63 percent with depth but vertical component amplitudes are unaffected consistent with air-coupled Rayleigh wave excitation. Naturally occurring thunder appears to be a useful seismic source to empirically determine site resonance characteristics for hazards assessments.

  14. Detecting Noisy Events Using Waveform Cross-Correlation at Superarrays of Seismic Stations

    NASA Astrophysics Data System (ADS)

    von Seggern, D. H.; Tibuleac, I. M.

    2007-12-01

    Cross-correlation using master events, followed by stacking of the correlation series, has been shown to dramatically improve detection thresholds of small-to-medium seismic arrays. With the goal of lowering the detection threshold, determining relative magnitudes or moments, and characterizing sources by empirical Green's functions, we extend the cross-correlation methodology to include "superarrays" of seismic stations. The superarray concept naturally brings further benefits over conventional arrays and single-stations due to the fact that many distances and azimuths can be sampled. This extension is straightforward given the ease with which regional or global data from various stations or arrays can be currently accessed and combined into a single database. We demonstrate the capability of superarrays to detect and analyze events which lie below the detection threshold. This is aided by applying an F-statistic detector to the superarray cross-correlation stack and its components. Our first example illustrates the use of a superarray consisting of the Southern Great Basin Digital Seismic Network, a small-aperture array (NVAR) in Mina, Nevada and the Earthscope Transportable Array to detect events in California-Nevada areas. In our second example, we use a combination of small-to-medium arrays and single stations to study the rupture of the great Sumatra earthquake of 26 December 2004 and to detect its early aftershocks. The location and times of "detected" events are confirmed using a frequency- wavenumber method at the small-to-medium arrays. We propose that ad hoc superarrays can be used in many studies where conventional approaches previously used only single arrays or groups of single stations. The availability of near-real-time data from many networks and of archived data from, for instance, IRIS makes possible the easy assembly of superarrays. Furthermore, the continued improvement of seismic data availability and the continued growth in the number of world-wide seismic sensors will increasingly make superarrays an attractive choice for many studies.

  15. Structure of the Suasselkä postglacial fault in northern Finland obtained by analysis of local events and ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group

    2017-04-01

    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.

  16. The discrimination of man-made explosions from earthquakes using seismo-acoustic analysis in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Jeon, Jeong-Soo

    2010-05-01

    Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.

  17. Multi-sensor investigation of the Sumatran Tsunami: observations and analysis of hydroacoustic, seismic, infrasonic, and tide gauge data

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, J.; Pulli, J.; Gibson, R.; Upton, Z.

    2005-05-01

    We present an analysis of the acoustic signals from the December 26, 2004 Sumatra earthquakes, in conjunction with the seismic and tide gauge information from the event. The M9.0 mainshock and its aftershocks were recorded by a suite of seismic sensors around the globe, giving us information on its location and the source process. Recently installed sensor assets in the Indian Ocean have enabled us to study additional features of this significant event. Hydroacoustic signals were recorded by three hydrophone arrays, and the direction finding capability of these arrays allows us to examine the location, time and extent of the T-wave generation process. We detect a clear variation of the back-azimuth that is consistent with the spatial extent of the source rupture. Recordings from nearly co-located seismometers provide insights into the acoustic-to-seismic conversion process for T-waves at islands, along with the variation in signal characteristics with source size. Two separate infrasound arrays detect the atmospheric signals generated by the event, along with additional observations of the seismic surface wave and the T-phase. We will present a comparison of the signals from the mainshock, as a function of location and size, with those from aftershocks and similar events in the nearby region. Our acoustic observations compare favorably with model predictions of wave propagation in the region. For the hydroacoustic data, the azimuth, arrival time, and signal blockage characteristics, from three separate arrays, associate the onset of the signal with the mainshock and with a time extent consistent with the rupture propagation. Our analysis of the T-phase travel times suggests that the seismic-to-acoustic conversion occurs more than 100 km from the epicenter. The infrasound signal's arrival time and signal duration are consistent with both stratospheric and thermospheric propagation from a source region near the mainshock. We use the tide gauge data from stations around the Indian Ocean to identify the arrival time of the Tsunami. The acoustic and seismic signals associated with the earthquakes arrive at the remote stations significantly ahead of the Tsunami. We combine the information from the various sensors to investigate the ability of the acoustic stations to detect the Tsunami.

  18. Infrasound Generation from the HH Seismic Hammer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  19. Geophysical character of the intraplate Wabash Fault System from the Wabash EarthScope FlexArray

    NASA Astrophysics Data System (ADS)

    Conder, J. A.; Zhu, L.; Wood, J. D.

    2017-12-01

    The Wabash Seismic Array was an EarthScope funded FlexArray deployment across the Wabash Fault System. The Wabash system is long known for oil and gas production. The fault system is often characterized as an intraplate seismic zone as it has produced several earthquakes above M4 in the last 50 years and potentially several above M7 in the Holocene. While earthquakes are far less numerous in the Wabash system than in the nearby New Madrid seismic zone, the seismic moment is nearly twice that of New Madrid over the past 50 years. The array consisted of 45 broadband instruments deployed across the axis to study the larger structure and 3 smaller phased arrays of 9 short-period instruments each to get a better sense of the local seismic output of smaller events. First results from the northern phased array indicate that seismicity in the Wabash behaves markedly differently than in New Madrid, with a low b-value around 0.7. Receiver functions show a 50 km thick crust beneath the system, thickening somewhat to the west. A variable-depth, positive-amplitude conversion in the deep crust gives evidence for a rift pillow at the base of the system within a dense lowermost crustal layer. Low Vs and a moderate negative amplitude conversion in the mid crust suggest a possible weak zone that could localize deformation. Shear wave splitting shows fast directions consistent with absolute plate motion across the system. Split times drop in magnitude to 0.5-0.7 seconds within the valley while in the 1-1.5 second range outside the valley. This magnitude decrease suggests a change in mantle signature beneath the fault system, possibly resulting from a small degree of local flow in the asthenosphere either along axis (as may occur with a thinned lithosphere) or by vertical flow (e.g., from delamination or dripping). We are building a 2D tomographic model across the region, relying primarily on teleseismic body waves. The tomography will undoubtedly show variations in crustal structure that will give additional context to the receiver function results. Possibly more importantly, the lithospheric structure will discriminate between hypotheses of mantle flow required to give the observed shear wave splitting signature.

  20. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  1. Performance of the Broadband Golay 3x6 Array Associated with the 2016 IRIS Community Wavefields Experiment

    NASA Astrophysics Data System (ADS)

    Bolarinwa, O. J.; Langston, C. A.; Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    A 6 km aperture regional array in the Golay 3x6 configuration was fielded as part of the IRIS Community Wavefields Experiment near Enid, Oklahoma from June 26 through November 12, 2016. The array consisted of 18 broadband CMG-3T seismometers deployed using a PASSCAL insulated vault design and RT130 data recorders. The Golay geometry is unusual in that it features 6 tripartite arrays in an open arrangement. Spacing and orientation of each tripartite array is such that the array uniformly samples the wavefield in space as determined from the co-array diagram even though the interior of the array configuration contains no seismic stations. The short wavelength performance of this array requires a high degree of phase correlation across its entire aperture, a characteristic that has been difficult to achieve for other regional array designs because of velocity heterogeneity in the earth. Located within an area of high regional seismicity, the IRIS experiment offered an opportunity to examine the slowness-frequency performance of a real-world Golay 3x6 array that was subject to constraints on land usage during deployment. Individual tripartite arrays fit well within a land survey quarter section but it proved difficult to match the ideal spacing between each subarray because of permitting problems. Nevertheless, these unavoidable geometry perturbations caused only minor changes to the theoretical array response. More surprisingly, observations of high frequency regional P and S phases show very high correlation over the array aperture that gives rise to precise array responses that are close to theoretical. Both the array geometry and relatively homogeneous structure under the array produces an exceptional facility that can be used for high-resolution studies of regional seismic waves.

  2. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  3. Structure of Suasselkä Postglacial Fault in northern Finland obtained by analysis of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Afonin, Nikita; Kozlovskaya, Elena

    2016-04-01

    Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen

  4. Development of a time synchronization methodology for a wireless seismic array

    NASA Astrophysics Data System (ADS)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  5. Noise-Based Seismic Measurements of Tidal-Induced Velocity Changes from Large-N Arrays at the Piton de la Fournaise Volcano

    NASA Astrophysics Data System (ADS)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Stehly, L.; Hillers, G.

    2016-12-01

    We measure the relative seismic velocity changes due to the periodic tidal deformation of the crust at Piton de la Fournaise (PdF) Volcano, La Réunion, where the velocity is expected to be highly sensitive to stress changes because of the low effective pressure resulting from volcanic fluids. We use ambient noise data from the VolcArray experiment at PdF [Brenguier et al, 2016], which includes continuous records of three dense arrays for 30 days in July 2014. Each array consists of 7 x 7 grid points of vertical-component geophones with spacing of about 80 m. We compute hourly cross-correlations of the ambient seismic wavefield to recover the Green's functions, and apply the curvelet filter to improve the signal to noise ratio at high frequency. The travel time variations of multiple-scattered body waves are calculated by the doublet analysis. Taking advantage of the stack of over 1200 station pairs for each array, the relative velocity changes are obtained with a time resolution of up to 1 hour. We remove the long period velocity variations associated with precipitation and deformation related to magma migration using a polynomial interpolation. The remaining velocity fluctuations are of the order of 0.01%. We compare the temporal changes to the vertical accelerations recorded by the nearby very long period seismic station RER, and the simulations of the volumetric tidal strain by SPOTL [Agnew, 2012]. Dominant peaks at around 12 hours and 24 hours are found very consistent in the spectrums of all three series, while small peaks at higher frequency also appear. The phases of dv/v temporal variations match well with the tidal signals during periods of large amplitudes. This experiment shows the feasibility of continuous noise-based measurements of tidal-induced seismic velocity changes with hourly resolution. REFERENCE: [1] Brenguier, F., et al. (2016), Towards 4-D noise-based seismology: First results of a Large-N array experiment on Piton de la Fournaise volcano, Seismol. Res. Lett., 87(1), 15-25, doi:10.1785/0220150173. [2] Agnew, D. C. (2012). SPOTL: Some Programs for Ocean-Tide Loading, SIO Technical Report, Scripps Institution of Oceanography

  6. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  7. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  8. Estimating Local and Near-Regional Velocity and Attenuation Structure from Seismic Noise

    DTIC Science & Technology

    2008-09-30

    seismic array in Costa Rica and Nicaragua from ambient seismic noise using two independent methods, noise cross correlation and beamforming. The noise...Mean-phase velocity-dispersion curves are calculated for the TUCAN seismic array in Costa Rica and Nicaragua from ambient seismic noise using two...stations of the TUCAN seismic array (Figure 4c) using a method similar to Harmon et al. (2007). Variations from Harmon et al. (2007) include removing the

  9. Source and Path Calibration in Regions of Poor Crustal Propagation Using Temporary, Large-Aperture, High-Resolution Seismic Arrays

    DTIC Science & Technology

    2013-09-06

    the Nepal Himalaya and the south- central Tibetan Plateau. The 2002–2005 experiment consisted of 233 stations extending from the Himalayan foreland...into the central Tibetan Plateau. The dataset provides an opportunity to obtain accurate seismic event locations for ground truth evaluation and to...after an M=6+ earthquake in the Payang Basin . .....................................................15 Approved for public release; distribution is

  10. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow slip events.

  11. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    NASA Astrophysics Data System (ADS)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was quantitatively evaluated during a variety of noise conditions and seismic detections were identified using AST and compared to ancillary injection data. During a period of CO2 injection in a nearby well to the monitoring array, 82% of seismic events were accurately detected, 13% of events were missed, and 5% of detections were determined to be false. Additionally, seismic risk was evaluated from the stress field and faulting regime at FWU to determine the likelihood of pressure perturbations to trigger slip on previously mapped faults. Faults oriented NW-SE were identified as requiring the smallest pore pressure changes to trigger slip and faults oriented N-S will also potentially be reactivated although this is less likely.

  12. Illuminating sesmic discontinuities with receiver functions from a dense array in Mexico City

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Rodríguez-Domínguez, M. Á.; González-López, A.; Espindola, V. H.; Quintanar, L.; Ramirez-Guzman, L.

    2017-12-01

    Mexico City, with close to 10 million inhabitants, has grown over a sedimentary basin, from an old dried lake. This has been a big factor in amplifying the seismic waves from large subduction earthquakes, located > 300 km away on the Pacific coast, which represents a significant hazard. For this reason, it is of great interest to improve the knowledge of the seismic structure of the city and its details on spatial variations to reduce the uncertainty in ground motion modeling. In May 2017, such array started its way in Mexico City. It consists of 18 broadband stations, that record in place for 3-5 days, moving then to a new location. In total, the city will be covered with 343 recording sites. In this work, we present preliminary results of receiver functions obtained in such array and in permanent stations of the Seismic Network of the Valley of Mexico. Despite the few teleseismic events, the small spacing between stations ( 500 m) allows identification of converted Ps phases from the Moho discontinuity, as well as other converted phases, which might be related to subtle changes in the vertical and lateral seismic structure. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  13. Seismic activity in the Sunnyside mining district, Utah, during 1967

    USGS Publications Warehouse

    Barnes, Barton K.; Dunrud, C. Richard; Hernandez, Jerome

    1969-01-01

    A seismic monitoring network near Sunnyside, Utah, consisting of a triangular array of seismometer stations that encompasses most of the mine workings in the district, recorded over 50,000 local earth tremors during 1967. About 540 of the tremors were of sufficient magnitude to be accurately located. Most of these were located within 2-3 miles of mine workings and were also near known or suspected faults. The district-wide seismic activity generally consisted of two different patterns--a periodic increase in the daily number of tremors at weekly intervals, and also a less regular and longer term increase and decrease of seismic activity that occurred over a period of weeks or even months. The shorter and more regular pattern can be correlated with the mine work week and seems to result from mining. The longer term activity, however, does not correlate with known mining causes sad therefore seems to be .caused by natural stresses.

  14. Triggered MEQ Events on LBNL Permanent Seismic Array, Brady's EGS, March 2016

    DOE Data Explorer

    Michelle Robertson

    2016-06-01

    List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.

  15. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  16. Seismic array observations for monitoring phreatic eruptions in Iwojima Island, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Kawaguchi, R.; Chiba, K.; Fujita, E.; Tanada, T.

    2015-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The volcanic activity is characterized by intensive earthquake activity associated with an island-wide uplift with high uplift rate (30~40 cm/year) and hydrothermal activity. In the last 10 years, phreatic eruptions took place in and near the island in 2012, 2013, and 2015. In such restless volcano, predictions and detections of occurrence points of phreatic eruptions are important for ensuring safety of residents. In the previous studies, we found that the earthquake activity of Iwojima highly correlates with the island wide large uplift, but the precursory activity of the phreatic eruption in 2012 was deviated from the correlation (Ueda et al. 2013 AGU Fall Meeting). For prediction of occurrence points of phreatic eruptions and investigation of the eruption mechanism, we began observation by seismic arrays at two areas in December 2014. The seismic arrays enable to locate epicenters of volcanic tremors, which are not well located by existing seismic stations. In May and June 2015, Japan Maritime Self-Defense Force stayed in Iwojima and a live camera of Japan Meteorological Agency found very small phreatic eruptions occurred at the northern beach. Existing seismic stations could not detect seismic signals related with the eruptions. The seismic array could detect weak seismic signals related with the eruptions. Although the seismic arrays could not detect precursory signals because of too small eruption, we expect the seismic arrays can detect precursory seismic signals suggesting occurrence points of small or medium-sized phreatic eruptions. The seismic arrays also detected epicenters of harmonic and monotonic tremors took place at an active fumarolic field in the north earthen part of Iwojima. The apparent velocity of seismic waves (~1km/s) strongly suggests that the tremors relate with hydrothermal activity near ground surface.

  17. Seismicity of Central Asia as Observed on Three IMS Stations

    DTIC Science & Technology

    2008-09-01

    and BVAR are all high-quality seismic arrays . Noise levels at the stations are generally acceptable for the period reviewed, except during the...following conditions: (1) a 4.5-Hz intermittent noise source at MKAR, (2) periodic high-frequency bursts on portions of the SONM array , and (3) a...seismic events (including single station events) observable on three central Asian IMS seismic array stations: Makanchi, Kazakhstan (MKAR); Songino

  18. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen Anne

    A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.

  19. Infrasound and seismic detections associated with the 7 September 2015 Bangkok fireball

    DOE PAGES

    Caudron, Corentin; Taisne, Benoit; Perttu, Anna; ...

    2016-08-22

    A bright fireball was reported at 01:43:35 UTC on September 7, 2015 at a height of ~30 km above 14.5°N, 98.9°E near Bangkok, Thailand. It had a TNT yield equivalent of 3.9 kilotons (kt), making it the largest fireball detected in South–East Asia since the ~50 kt 2009 Sumatra bolide. Infrasonic signals were observed at four infrasound arrays that are part of the International Monitoring System (IMS) and one infrasound array located in Singapore. Acoustic bearings and event origin times inferred from array processing are consistent with the eyewitness accounts. A seismic signal associated with this event was also likelymore » recorded at station SRDT, in Thailand. As a result, an acoustic energy equivalent of 1.15 ± 0.24 kt is derived from the Singaporean acoustic data using the period of the peak energy.« less

  20. Infrasound and seismic detections associated with the 7 September 2015 Bangkok fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudron, Corentin; Taisne, Benoit; Perttu, Anna

    A bright fireball was reported at 01:43:35 UTC on September 7, 2015 at a height of ~30 km above 14.5°N, 98.9°E near Bangkok, Thailand. It had a TNT yield equivalent of 3.9 kilotons (kt), making it the largest fireball detected in South–East Asia since the ~50 kt 2009 Sumatra bolide. Infrasonic signals were observed at four infrasound arrays that are part of the International Monitoring System (IMS) and one infrasound array located in Singapore. Acoustic bearings and event origin times inferred from array processing are consistent with the eyewitness accounts. A seismic signal associated with this event was also likelymore » recorded at station SRDT, in Thailand. As a result, an acoustic energy equivalent of 1.15 ± 0.24 kt is derived from the Singaporean acoustic data using the period of the peak energy.« less

  1. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  2. On the composition of earth's short-period seismic noise field

    USGS Publications Warehouse

    Koper, K.D.; Seats, K.; Benz, H.

    2010-01-01

    In the classic microseismic band of 5-20 sec, seismic noise consists mainly of fundamental mode Rayleigh and Love waves; however, at shorter periods seismic noise also contains a significant amount of body-wave energy and higher mode surface waves. In this study we perform a global survey of Earth's short-period seismic noise field with the goal of quantifying the relative contributions of these propagation modes. We examined a year's worth of vertical component data from 18 seismic arrays of the International Monitoring System that were sited in a variety of geologic environments. The apertures of the arrays varied from 2 to 28 km, constraining the periods we analyzed to 0.25-2.5 sec. Using frequency-wavenumber analysis we identified the apparent velocity for each sample of noise and classified its mode of propagation. The dominant component was found to be Lg, occurring in about 50% of the noise windows. Because Lg does not propagate across ocean-continent boundaries, this energy is most likely created in shallow water areas near coastlines. The next most common component was P-wave energy, which accounted for about 28% of the noise windows. These were split between regional P waves (Pn=Pg at 6%), mantle bottoming P waves (14%), and core-sensitive waves (PKP at 8%). This energy is mostly generated in deep water away from coastlines, with a region of the North Pacific centered at 165?? W and 40?? N being especially prolific. The remainder of the energy arriving in the noise consisted of Rg waves (28%), a large fraction of which may have a cultural origin. Hence, in contrast to the classic micro-seismic band of 5-20 sec, at shorter periods fundamental mode Rayleigh waves are the least significant component.

  3. Infrasound and seismic analysis of the SpaceX Falcon9 explosion sequence of 1-September-2016

    NASA Astrophysics Data System (ADS)

    Thompson, G.; McNutt, S. R.; Brown, R. G.; Braunmiller, J.; Mehta, C.

    2017-12-01

    During a static launch test on 1-Sep-2016 at Kennedy Space Center, a SpaceX Falcon 9 rocket exploded causing loss of the rocket and the payload, and extensively damaging the launch complex. The sequence was captured by a 3-element infrasound array and a broadband 3-component seismometer at the Astronaut Beach House, just 0.87 miles (1.4 km) from the launch pad. Manual picking identified 153 impulsive airwave signals over a 26-minute interval and these were compared to video recordings of the sequence. The explosion onset consisted of a moderate signal on both seismic and infrasound (52 Pa) instruments. This corresponds to the rupture of the second-stage fuel tank. We found no signals before this, so we do not believe that there was an external cause. The primary fuel tank ruptured 4 seconds later and was the strongest event by far, producing an infrasound signal that exceeded 1400 Pa ( 2000 Pa in reduced pressure). The seismic signal consists mainly of air-coupled Rayleigh waves with frequencies of 5-23 Hz. The infrasound events occurred in four clusters. The first cluster included the onset and main events and 46 smaller events. This was followed by several minutes without infrasound signals during which a 3.5 minute continuous seismic vibration occurred. Cluster 2 consisted of 4 events ranging from 117-256 Pa. Cluster 3 comprised 96 events of 7-78 Pa. Cluster 4 consisted of 5 events with overpressures of 23-63 Pa. Gaps of several minutes without infrasound and seismic signals occurred between clusters 2 and 3, and 3 and 4. In terms of energy, the main event dominated; in terms of numbers, cluster 3 had the most infrasound events. The seismic and infrasound data are complementary to video recordings of the explosion, and provide additional characterization that may be useful to interpret the sequence of events. Because of the proximity of our array to this rocket explosion, our dataset may be unique.

  4. Using a large-n nodal array to search for remote dynamic triggering in a region of induced seismicity in northern Oklahoma.

    NASA Astrophysics Data System (ADS)

    Peña-Castro, A. F.; Dougherty, S. L.; Harrington, R. M.; Cochran, E. S.

    2017-12-01

    Oklahoma has recently experienced a large increase in seismicity that has been linked to injection of large volumes of wastewater into deep disposal wells, a by-product of oil and gas production. Recent studies have shown that areas with active fluid injection and induced seismicity, such as Oklahoma, may be susceptible to dynamic triggering during passage of seismic waves from large, remote earthquakes. In spring 2016, the 1833-station LArge-n Seismic Survey in Oklahoma (LASSO) array was deployed for 30 days to examine an area of active seismicity in Gran County, located in northern Oklahoma. Here we use the LASSO array to look for dynamic triggering caused by teleseismic earthquakes with magnitudes between Mw 6-8 that produce Peak-Ground-Velocities (PGVs) exceeding 10 μm/s at the LASSO array, consistent with PGV values seen to have triggered seismicity at other locations. We focus on examining seismicity around the shallow Mw7.8 event in Ecuador on 04/16/2016 which generated the largest PGV at LASSO (250 µm/s). To establish if earthquake rates change during or following the passage of the teleseismic surface waves, we develop a catalog of earthquakes around the time of each teleseismic event. We first create a preliminary catalogue using a Short-Term Average/Long-Term Average (STA/LTA) detection algorithm window spanning +/- 24 hours around each teleseism,requiring detection at a minimum of 110 LASSO stations to identify an event. Next, we enhance the STA/LTA catalog with manual detections for a period of +/- 1.5 hours around the time of the teleseismic P-wave arrival to explore if triggering occurs that is not detected by the automated procedure. All detected events are then located using standard location techniques. Any observed seismicity rate changes following the teleseismic arrivals will be examined compared to the short-term background rates to determine whether they are statistically significant. If triggering is observed, focal mechanisms will be determined to estimate fault plane orientations and resolve triggering stresses on receiver fault planes. Our preliminary results for the Mw 7.8 Ecuador event suggest there may be delayed triggering that starts roughly 4 hours after the teleseismic phase arrivals, with event rates increasing from 0-5 to 15-25 events per hour.

  5. One to Large N Gradiometry

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2017-12-01

    The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.

  6. The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.

    2017-12-01

    The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.

  7. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  8. SEISMIC STUDY OF THE AGUA DE PAU GEOTHERMAL PROSPECT, SAO MIGUEL, AZORES.

    USGS Publications Warehouse

    Dawson, Phillip B.; Rodrigues da Silva, Antonio; Iyer, H.M.; Evans, John R.

    1985-01-01

    A 16 station array was operated over the 200 km**2 central portion of Sao Miguel utilizing 8 permanent Instituto Nacional de Meterologia e Geofisica stations and 8 USGS portable stations. Forty four local events with well constrained solutions and 15 regional events were located. In addition, hundreds of unlocatable seismic events were recorded. The most interesting seismic activity occurred in a swarm on September 6 and 7, 1983 when over 200 events were recorded in a 16 hour period. The seismic activity around Agua de Pau was centered on the east and northeast slopes of the volcano. The data suggest a boiling hydrothermal system beneath the Agua de Pau volcano, consistent with a variety of other data.

  9. Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions

    DTIC Science & Technology

    2011-09-01

    understanding and ability to model explosively generated seismic waves, particularly S-waves. The first SPE explosion (SPE1) consisted of a 100 kg shot at a...depth of 60 meters in granite (Climax Stock). The shot was well- recorded by an array of over 150 instruments, including both near-field wave motion...measurements as well as far- field seismic measurements. This paper focuses on measurements and modeling of the near-field data. A complimentary

  10. Western Greenland Subglacial Hydrologic Modeling and Observables: Seismicity and GPS

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Joughin, I. R.

    2010-12-01

    I present a hydro-mechanical model of the Western Greenland ice sheet with surface observables for two modes of meltwater input. Using input prescribed from distributed surface data, First, I bound the subglacial carrying capacity for both a distributed and localized system, in a typical summer. I provide observations of the ambient seismic response and its support for an established surface-to-bed connection. Second, I show the ice sheet response to large impulsive hydraulic inputs (lake drainage events) should produce distinct seismic observables that depend upon the localization of the drainage systems. In the former case, the signal propagates as a diffusive wave, while the channelized case, the response is localized. I provide a discussion of how these results are consistent with previous reports (Das et al, 2008, Joughin et al, 2008) of melt-induced speedup along Greenland's Western Flank. Late summer seismicity for a four-receiver array deployed near a supraglacial lake, 68 44.379N, 49 30.064W. Clusters of seismic activity are characterized by dominant shear-wave energy, consistent with basal sliding events.

  11. Developing and Exploiting a Unique Seismic Data Set from South African Gold Mines for Source Characterization and Wave Propagation

    DTIC Science & Technology

    2007-09-01

    The data are recorded at depth (1–5 km) by arrays of three-component geophones operated by AngloGold Ashanti, Ltd. and Integrated Seismic Systems...case-based event identification using regional arrays , Bull. Seism. Soc. Am. 80: 1874–1892. Bennett, T. J. and J. R. Murphy, Analysis of seismic ... seismic event classification at the NORESS array : seismological measurements and the use of trained neural networks, Bull. Seism. Soc. Am. 80: 1910

  12. Field test investigation of high sensitivity fiber optic seismic geophone

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  13. Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array

    NASA Astrophysics Data System (ADS)

    Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.

    2017-12-01

    In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.

  14. Accurately determining direction of arrival by seismic array based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Yu, H.

    2016-12-01

    Seismic array analysis method plays an important role in detecting weak signals and determining their locations and rupturing process. In these applications, reliably estimating direction of arrival (DOA) for the seismic wave is very important. DOA is generally determined by the conventional beamforming method (CBM) [Rost et al, 2000]. However, for a fixed seismic array generally the resolution of CBM is poor in the case of low-frequency seismic signals, and in the case of high frequency seismic signals the CBM may produce many local peaks, making it difficult to pick the one corresponding to true DOA. In this study, we develop a new seismic array method based on compressive sensing (CS) to determine the DOA with high resolution for both low- and high-frequency seismic signals. The new method takes advantage of the space sparsity of the incoming wavefronts. The CS method has been successfully used to determine spatial and temporal earthquake rupturing distributions with seismic array [Yao et al, 2011;Yao et al, 2013;Yin 2016]. In this method, we first form the problem of solving the DOA as a L1-norm minimization problem. The measurement matrix for CS is constructed by dividing the slowness-angle domain into many grid nodes, which needs to satisfy restricted isometry property (RIP) for optimized reconstruction of the image. The L1-norm minimization is solved by the interior point method. We first test the CS-based DOA array determination method on synthetic data constructed based on Shanghai seismic array. Compared to the CBM, synthetic test for data without noise shows that the new method can determine the true DOA with a super-high resolution. In the case of multiple sources, the new method can easily separate multiple DOAs. When data are contaminated by noise at various levels, the CS method is stable when the noise amplitude is lower than the signal amplitude. We also test the CS method for the Wenchuan earthquake. For different arrays with different apertures, we are able to obtain reliable DOAs with uncertainties lower than 10 degrees.

  15. An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2016-12-01

    The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early warning for large regional events on North America's west coast.

  16. Initial results from the Volcanic Risk in Saudi Arabia project: Microearthquakes in the northern Harrat Rahat monogenetic volcanic field, Madinah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.

    2012-12-01

    An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However, seismic swarms, likely related to magmatic intrusion, have occurred in 1999 in Harrat Rahat (~145 earthquakes, M1.4 to 2.3) (Moufti et al., 2010) and in 2009 in Harrat Lunayyir (~30,000 earthquakes up to M5.4) (Pallister et al., 2010). We can locate microearthquakes of Mm = -1 within the array, a significant advantage over the previous surface network. We have characterized instrument noise using power spectrum probability density functions (McNamara and Buland, 2004). All stations show a very high signal to noise ratio; for a near-source M-1 event S/N is ~5. The available data are still too sparse for advanced analysis and currently appear as a cloud of seismicity.

  17. Infrasound and seismic array analysis of snow avalanches: results from the 2015-2017 experiment in Dischma valley above Davos, Switzerland

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio

    2017-04-01

    While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the whole 2015-2016 winter season in order to investigate the ability of the two monitoring systems to identify and characterize snow avalanches and the benefit of the combined seismo-acoustic analysis.

  18. 3-D Characterization of Seismic Properties at the Smart Weapons Test Range, YPG

    DTIC Science & Technology

    2001-10-01

    confidence limits around each interpolated value. Ground truth was accomplished through cross-hole seismic measurements and borehole logs. Surface wave... seismic method, as well as estimating the optimal orientation and spacing of the seismic array . A variety of sources and receivers was evaluated...location within the array is partially related to at least two seismic lines. Either through good fortune or foresight by the designers of the SWTR site

  19. Downhole Microseismic Monitoring at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Balch, R. S.; van Wijk, J.

    2015-12-01

    Farnsworth Oil Field in North Texas hosts an ongoing carbon capture, utilization, and storage project. This study is focused on passive seismic monitoring at the carbon injection site to measure, locate, and catalog any induced seismic events. A Geometrics Geode system is being utilized for continuous recording of the passive seismic downhole bore array in a monitoring well. The array consists of 3-component dual Geospace OMNI-2400 15Hz geophones with a vertical spacing of 30.5m. Downhole temperature and pressure are also monitored. Seismic data is recorded continuously and is produced at a rate of over 900GB per month, which must be archived and reviewed. A Short Term Average/Long Term Average (STA/LTA) algorithm was evaluated for its ability to search for events, including identification and quantification of any false positive events. It was determined that the algorithm was not appropriate for event detection with the background level of noise at the field site and for the recording equipment as configured. Alternatives are being investigated. The final intended outcome of the passive seismic monitoring is to mine the continuous database and develop a catalog of microseismic events/locations and to determine if there is any relationship to CO2 injection in the field. Identifying the location of any microseismic events will allow for correlation with carbon injection locations and previously characterized geological and structural features such as faults and paleoslopes. Additionally, the borehole array has recorded over 1200 active sources with three sweeps at each source location that were acquired during a nearby 3D VSP. These data were evaluated for their usability and location within an effective radius of the array and were stacked to improve signal-noise ratio and are used to calibrate a full field velocity model to enhance event location accuracy. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  20. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less

  1. EMI Array for Cued UXO Discrimination

    DTIC Science & Technology

    2010-09-16

    that comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic ...interaction of the North American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains

  2. EMI Array for Cued UXO Discrimination

    DTIC Science & Technology

    2010-09-01

    that comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic ...interaction of the North American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains

  3. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  4. Properties of Repetitive Long-Period Seismicity at Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Waite, G. P.; Palma, J.; Johnson, J. B.

    2011-12-01

    Villarrica Volcano, Chile hosts a persistent lava lake and is characterized by degassing and long-period seismicity. In order to better understand the relationship between outgassing and seismicity, we recorded broadband seismic and acoustic data along with high-rate SO2 emission data. We used both a densely-spaced linear array deployed on the northern flank of Villarrica, during the austral summer of 2011, and a wider aperture array of stations distributed around the volcano that was active in the austral summer of 2010. Both deployments consisted of three-component broadband stations and were augmented with broadband infrasound sensors. Of particular interests are repetitive, ~1 Hz seismic and coincident infrasound signals that occurred approximately every 2 minutes. Because these events are typically very low amplitude, we used a matched filter approach to identify them. We windowed several high-amplitude records of these events from broadband seismic stations near the vent. The record section of each event served as a template to compare with the entire dataset by cross-correlation. This approach identified ~20,000 nearly identical events during the ~7 day deployment of the linear array, which were otherwise difficult to identify in the raw records. Assuming that all of the events that we identified have identical source mechanisms and depths, we stack the large suite of events to produce low-noise records and particle motions at receivers farther than 5 km from the vent. We find that the records from stations near the edifice are dominated by tangential particle motion, suggesting the influence of near-field components. Correlation of these data with broadband acoustic data collected at the summit suggest that these repeatable seismic processes are linked to acoustic emissions, probably due to gas bubbles bursting at the magma free surface, as no eruptive products besides gas were being emitted by the volcano during the instrument deployment. The acoustic signals affiliated with the repetitive seismic signals do not seem directly related to the continuous, well-correlated acoustic tremor observed both at the vent and at roughly 6 km away from small-aperture acoustic arrays (also reported by other groups in 2009, 2010). We also correlate the acoustic and repetitive seismic signals with high time resolution (~1 Hz sampling rate), sulfur dioxide emissions measured with an ultraviolet camera. Because a subset of stations operated during both 2010 and 2011, we could tie events from both deployments to generate a single stacked event at all 17 stations. We will present results of finite-difference modeling of this event stack using a simple homogeneous velocity structure.

  5. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  6. Polish Geophysical Solid Earth Infrastructure Contributing to EPOS

    NASA Astrophysics Data System (ADS)

    Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.

    2012-04-01

    In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10 portable, high-accuracy magnetoteluric stations.

  7. Spatial Distribution of Seismic Anisotropy in the Crust in the Northeast Front Zone of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, Q.; SHI, Y.

    2017-12-01

    There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].

  8. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank

    2012-04-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of - 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = - 0.4, when compared to the regional networks operating in West Bohemia ( M c > 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.

  9. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  10. Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    NASA Technical Reports Server (NTRS)

    Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.

    2011-01-01

    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.

  11. Inverting near-surface models from virtual-source gathers (SM Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Vossen, Caron; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field is a massive natural gas accumulation in the north-east of the Netherlands. Decades of production have led to significant compaction of the reservoir rock. The (differential) compaction is thought to have reactivated existing faults and to be the main driver of induced seismicity. The potential damage at the surface is largely affected by the state of the near surface. Thin and soft sedimentary layers can lead to large amplifications. By measuring the wavefield at different depth levels, near-surface properties can directly be estimated from the recordings. Seismicity in the Groningen area is monitored primarily with an array of vertical arrays. In the nineties a network of 8 boreholes was deployed. Since 2015, this network has been expanded with 70 new boreholes. Each new borehole consists of an accelerometer at the surface and four downhole geophones with a vertical spacing of 50 m. We apply seismic interferometry to local seismicity, for each borehole individually. Doing so, we obtain the responses as if there were virtual sources at the lowest geophones and receivers at the other depth levels. From the retrieved direct waves and reflections, we invert for P- & S- velocity and Q models. We discuss different implementations of seismic interferometry and the subsequent inversion. The inverted near-surface properties are used to improve both the source location and the hazard assessment.

  12. Towards marine seismological Network: real time small aperture seismic array

    NASA Astrophysics Data System (ADS)

    Ilinskiy, Dmitry

    2017-04-01

    Most powerful and dangerous seismic events are generated in underwater subduction zones. Existing seismological networks are based on land seismological stations. Increased demands for accuracy of location, magnitude, rupture process of coming earthquakes and at the same time reduction of data processing time require information from seabed seismic stations located near the earthquake generation area. Marine stations provide important contribution for clarification of the tectonic settings in most active subduction zones of the world. Early warning system for subduction zone area is based on marine seabed array which located near the area of most hazardous seismic zone in the region. Fast track processing for location of the earthquake hypocenter and energy takes place in buoy surface unit. Information about detected and located earthquake reaches the onshore seismological center earlier than the first break waves from the same earthquake will reach the nearest onshore seismological station. Implementation of small aperture array is based on existed and shown a good proven performance and costs effective solutions such as weather moored buoy and self-pop up autonomous seabed seismic nodes. Permanent seabed system for real-time operation has to be installed in deep sea waters far from the coast. Seabed array consists of several self-popup seismological stations which continuously acquire the data, detect the events of certain energy class and send detected event parameters to the surface buoy via acoustic link. Surface buoy unit determine the earthquake location by receiving the event parameters from seabed units and send such information in semi-real time to the onshore seismological center via narrow band satellite link. Upon the request from the cost the system could send wave form of events of certain energy class, bottom seismic station battery status and other environmental parameters. When the battery life of particular seabed unit is close to became empty, the seabed unit is switching into sleep mode and send that information to surface buoy and father to the onshore data center. Then seabed unit can wait for the vessel of opportunity for recovery of seabed unit to sea surface and replacing seabed station to another one with fresh batteries. All collected permanent seismic data by seabed unit could than downloaded for father processing and analysis. In our presentation we will demonstrate the several working prototypes of proposed system such as real time cable broad band seismological station and real time buoy seabed seismological station.

  13. 2015 Volcanic Tsunami Earthquake near Torishima Island: Array analysis of ocean bottom pressure gauge records

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.

    2016-12-01

    An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.

  14. An integrated observational site for monitoring pre-earthquake processes in Peloponnese, Greece. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Tsinganos, Kanaris; Karastathis, Vassilios K.; Kafatos, Menas; Ouzounov, Dimitar; Tselentis, Gerassimos; Papadopoulos, Gerassimos A.; Voulgaris, Nikolaos; Eleftheriou, Georgios; Mouzakiotis, Evangellos; Liakopoulos, Spyridon; Aspiotis, Theodoros; Gika, Fevronia; E Psiloglou, Basil

    2017-04-01

    We are presenting the first results of developing a new integrated observational site in Greece to study pre-earthquake processes in Peloponnese, lead by the National Observatory of Athens. We have developed a prototype of multiparameter network approach using an integrated system aimed at monitoring and thorough studies of pre-earthquake processes at the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The initial prototype of the new observational systems consists of: (1) continuous real-time monitoring of Radon accumulation in the ground through a network of radon sensors, consisting of three gamma radiation detectors [NaI(Tl) scintillators], (2) nine-station seismic array installed to detect and locate events of low magnitude (less than 1.0 R) in the offshore area of the Hellenic arc, (3) real-time weather monitoring systems (air temperature, relative humidity, precipitation, pressure) and (4) satellite thermal radiation from AVHRR/NOAA-18 polar orbit sensing. The first few moths of operations revealed a number of pre-seismic radon variation anomalies before several earthquakes (M>3.6). The radon increases systematically before the larger events. For example a radon anomaly was predominant before the event of Sep 28, M 5.0 (36.73°N, 21.87°E), 18 km ESE of Methoni. The seismic array assists in the evaluation of current seismicity and may yield identification of foreshock activity. Thermal anomalies in satellite images are also examined as an additional tool for evaluation and verification of the Radon increase. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept, atmospheric thermal anomalies observed before large seismic events are associated with the increase of Radon concentration on the ground. Details about the integrating ground and space observations, overall performance of the observational sites, future plans in advancing the cooperation in observations will be discussed.

  15. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.

    2016-12-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.

  16. South-Central Tibetan Seismicity from HiCLIMB Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Carpenter, S.; Nabelek, J.; Braunmiller, J.

    2010-12-01

    The HiCLIMB broadband passive seismic experiment (2002-2005) operated 233 sites along a 800-km long north-south array extending from the Himalayan foreland into the Central Tibetan Plateau and a flanking 350x350 km lateral array in southern Tibet and eastern Nepal. We use data from the experiment’s second phase (June 2004 to August 2005), when stations operated in Tibet, to locate earthquakes in south-central Tibet, a region with no permanent seismic network where little is known about its seismicity. We used the Antelope software for automatic detection and arrival time picking, event-arrival association and event location. Requiring a low detection and event association threshold initially resulted in ~110,000 declared events. The large database size rendered manual inspection unfeasible and we developed automated post-processing modules to weed out spurious detections and erroneous phase and event associations, which stemmed, e.g., from multiple coincident earthquakes within the array or misplaced seismicity from the great 2004 Sumatra earthquake. The resulting database contains ~32,000 events within 5° distance from the closest station. We consider ~7,600 events defined by more than 30 P and S arrivals well located and discuss them here. Seismicity in the subset correlates well with mapped faults and structures seen on satellite imagery attesting to high location quality. This is confirmed by non-systematic, kilometer-scale differences between automatic and manual locations for selected events. Seismicity in south-central Tibet is intense north of the Yarlung-Tsangpo Suture. Almost 90% of events occurred in the Lhasa Terrane mainly along north-south trending rifts. Vigorous activity (>4,800 events) accompanied two M>6 earthquakes in the Payang Basin (84°E), ~100 km west of the linear array. The Tangra-Yum Co (86.5°E) and Pumqu-Xianza (88°E) rifts were very active (~1,000 events) without dominant main shocks indicating swarm like-behavior possibly related to shallow magmatic or geothermal activity. Seismicity in the Qiangtang Terrane accounts for less than 10% of activity; seismicity is distributed and, except for the Yibuk-Caka Rift (87°E), difficult to associate with known structures. Lower seismicity may be apparent and simply reflect a larger distance to the array. Fewer than 5% of events occurred south of the Yarlong Tsangpo Suture in the Tethyan Himalaya, the only region where in addition to shallow seismicity a significant number of deep (mantle) events was located. Hypocenter depth, particularly for shallow events, is usually not well constrained due to array geometry and large distances to closest sites. The nature of deep events inside the array, though, is resolved.

  17. New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone: Observations from a dense seismic array

    NASA Astrophysics Data System (ADS)

    Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent

    2015-08-01

    With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.

  18. Coda-wave and ambient noise interferometry using an offset vertical array at Iwanuma site, northeast Japan

    NASA Astrophysics Data System (ADS)

    Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.

    2013-12-01

    Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.

  19. Analysis of seismic waves crossing the Santa Clara Valley using the three-component MUSIQUE array algorithm

    NASA Astrophysics Data System (ADS)

    Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter

    2016-10-01

    We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity curves. Wave motion simulations for two earthquakes are in good agreement with the real data results and confirm the identification of the wave scattering formations to the south of the array, which generate the scattered Love waves visible for all earthquakes.

  20. Monitoring the development of volcanic eruptions through volcanic lightning - Using a lightning mapping array, seismic and infrasound array, and visual plume analysis

    NASA Astrophysics Data System (ADS)

    Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.

    2017-12-01

    The period of 28 May - 7 June 2015 at Sakurajima Volcano, Japan witnessed a multitude of Vulcanian eruptive events, which resulted in plumes reaching 500-3000m above the vent. These plumes varied from white, gas-rich plumes to dark grey and black ash-rich plumes, and were recorded on lowlight and infrared cameras. A nine-station lightning mapping array (LMA) was deployed to locate sources of VHF (67-73 MHz) radiation produced by lightning flashes and other types of electrical activity such as `continuous RF (radio frequency)'. Two Nanometrics Trillium broadband seismometers and six BSU infrasound sensors were deployed. Over this ten day period we recorded 1556 events that consisted of both seismic and infrasound signals, indicating explosive activity. There are an additional 1222 events that were recorded as only seismic or infrasound signals, which may be a result of precursory seismic signals or noise contamination. Plume discharge types included both distinct lightning flashes and `continuous RF'. The LMA ran continuously for the duration of the experiment. On 30 May 2015 at least seven lightning flashes were also detected by the Vaisala Global Lightning Detection 360 network, which detects VLF (3-30 kHz) radiation. However the University of Washington's World Wide Lightning Location Network, which also detects VLF radiation, detected no volcanic lightning flashes in this time period. This indicates that the electrical activity in Sakurajima's plume occurs near the lower limits of the VLF detection threshold. We investigate relationships between the plume dynamics, the geophysical signal and the corresponding electrical activity through: plume velocity and height; event waveform cross-correlation; volcano acoustic-seismic ratios; overall geophysical energy; RSAM records; and VHF sources detected by the LMA. By investigating these relationships we hope to determine the seismic/infrasound energy threshold required to generate measurable electrical activity. Seismic and infrasound are two of the most common volcanic monitoring methods. By developing the relationships between plume electrification and these geophysical methods we hope to expand the use of lightning for active volcano monitoring.

  1. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Zhang, Rui; Liu, Gang; Jia, Zhige; Wang, Dijin; Zhou, Yu; Lin, Mu

    2016-12-01

    High-rate global navigation satellite systems (GNSS) can potentially be used as seismometers to capture short-period instantaneous dynamic deformation waves from earthquakes. However, the performance and seismic phase recognition of the GNSS seismometer in the real-time mode, which plays an important role in GNSS seismology, are still uncertain. By comparing the results of accuracy and precision of the real-time solution using a shake table test, we found real-time solutions to be consistent with post-processing solutions and independent of sampling rate. In addition, we analyzed the time series of real-time solutions for shake table tests and recent large earthquakes. The results demonstrated that high-rate GNSS have the ability to retrieve most types of seismic waves, including P-, S-, Love, and Rayleigh waves. The main factor limiting its performance in recording seismic phases is the widely used 1-Hz sampling rate. The noise floor also makes recognition of some weak seismic phases difficult. We concluded that the propagation velocities and path of seismic waves, macro characteristics of the high-rate GNSS array, spatial traces of seismic phases, and incorporation of seismographs are all useful in helping to retrieve seismic phases from the high-rate GNSS time series.

  2. Attenuation Model Using the Large-N Array from the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Atterholt, J.; Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. SPE seeks to better characterize the influence of subsurface heterogeneities on seismic wave propagation and energy dissipation from explosions. As a part of this experiment, SPE-5, a 5000 kg TNT equivalent chemical explosion, was detonated in 2016. During the SPE-5 experiment, a Large-N array of 996 geophones (half 3-component and half z-component) was deployed. This array covered an area that includes loosely consolidated alluvium (weak rock) and weathered granite (hard rock), and recorded the SPE-5 explosion as well as 53 weight drops. We use these Large-N recordings to develop an attenuation model of the area to better characterize how geologic structures influence source energy partitioning. We found a clear variation in seismic attenuation for different rock types: high attenuation (low Q) for alluvium and low attenuation (high Q) for granite. The attenuation structure correlates well with local geology, and will be incorporated into the large simulation effort of the SPE program to validate predictive models. (LA-UR-17-26382)

  3. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery

    USGS Publications Warehouse

    Wood, W.T.; Hart, P.E.; Hutchinson, D.R.; Dutta, N.; Snyder, F.; Coffin, R.B.; Gettrust, J.F.

    2008-01-01

    To determine the impact of seeps and focused flow on the occurrence of shallow gas hydrates, several seafloor mounds in the Atwater Valley lease area of the Gulf of Mexico were surveyed with a wide range of seismic frequencies. Seismic data were acquired with a deep-towed, Helmholz resonator source (220-820 Hz); a high-resolution, Generator-Injector air-gun (30-300 Hz); and an industrial air-gun array (10-130 Hz). Each showed a significantly different response in this weakly reflective, highly faulted area. Seismic modeling and observations of reversed-polarity reflections and small scale diffractions are consistent with a model of methane transport dominated regionally by diffusion but punctuated by intense upward advection responsible for the bathymetric mounds, as well as likely advection along pervasive filamentous fractures away from the mounds.

  4. Vertical Seismic Profiling at riser drilling site in the rupture area of the 1944 Tonankai Earthquake, Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Hino, R.; Kinoshita, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.

    2009-12-01

    A series of scientific drilling expeditions is in operation in the Nankai Trough to reveal the faulting mechanism of the magathrust earthquakes, through clarifying composition, fine structure, mechanical behavior, and environmental variables of the seismogenic faults. In the studied area, extensive seismic surveys for site characterization have been made to image detailed geometry of the fault complex in the accretionary prism as well as Vp distribution around the faults. Although these previous surveys provided invaluable information for understanding seismotectonic processes in this subduction zone, more complete knowledge is needed to be acquired to predict dynamic behavior of the faults, such as geometrical irregularities in short wavelength, Vs and seismic attenuation which are sensitive to fluid distribution in and around fault zones. It is expected that estimation of these parameters would be improved considerably by a seismic exploration using a vertical array of seismographs installed in a deep borehole (VSP: vertical seismic profiling). In July 2009, we made a VSP at one of the drilling sites located just above the rupture area of the 1994 Tonankai Earthquake (M 8.1), during the IODP Exp.319. The well site of our VSP was made by the riser drilling of D/V Chikyu. The seismic array, lowered from Chikyu into the hole, was composed of a three-component accelerometer and vertical separation of the array elements was 15.12 m. The VSP was composed of offset VSP and zero-offset VSP. In the offset VSP, a tuned airgun array towed by R/V Kairei was shot along one straight line (walk-away VSP) and another circular line (walk-around VSP) and seismic signals were recorded by an array consisting of 16 elements installed from 907 to 1,135 m in depth from seafloor. The object of the walk-away VSP is to obtain fine image of the faults using reflection arrivals with less attenuation. It is also expected to obtain spatial variation of Vs from arrival time tomography of refracted S waves. For this purpose, we preferred extraordinarily longer (~ 30 km) offset shooting than usual industrial VSPs. Shot spacing was 60 m along the same line as the previous 3D reflection and OBS wide angle surveys. The radius of circle of the walk-around VSP was 3.5 km to detect azimuthal anisotropy of downgoing P and S waves, correlated to stress state around the site. In zero-offset VSP, shots just above the hole were recorded by the 8 element array moving from 0 to 1,135 mbsf along the hole so that seismic structure with comparable vertical resolution as core-log information would be obtained. In the records of the walk-away VSP, clear first arrivals as well as several evident later arrivals were clearly identified. The later phases contain the reflection from the megasplay fault and the refracted S wave through the accretional prism, on both of which we have significant interest. The walk-around VSP also provided us with high S/N records but detailed data reduction, such as velocity analysis using vertical array, are required to derive anisotropic nature of the formation around the hole.

  5. Development of a 300°C 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.

    2016-06-29

    To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less

  6. Depth-Dependent Earthquake Properties Beneath Long-Beach, CA: Implications for the Rheology at the Brittle-Ductile Transition Zone

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Clayton, R. W.; Ampuero, J. P.

    2015-12-01

    Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.

  7. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Asten, M. W.; Hayashi, K.

    2018-07-01

    Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m ( V s30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.

  8. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Asten, M. W.; Hayashi, K.

    2018-05-01

    Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m (V s30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.

  9. Seismic and Biological Sources of Ambient Ocean Sound

    NASA Astrophysics Data System (ADS)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed. This distribution of sources could reveal small-scale spatial ecological limitations, such as the availability of food and shelter. While array-based passive acoustic sensing is well established in seismoacoustics, the technique is little utilized in the study of ambient biological sound. With the continuance of Moore's law and advances in battery and memory technology, inferring biological processes from ambient sound may become a more accessible tool in underwater ecological evaluation and monitoring.

  10. Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California

    USGS Publications Warehouse

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.

    1994-01-01

    The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.

  11. CAFE: a seismic investigation of water percolation in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Abers, G. A.; Creager, K. C.; Malone, S. D.; MacKenzie, L.; Zhang, Z.; van Keken, P. E.; Wech, A. G.; Sweet, J. R.; Melbourne, T. I.; Hacker, B. R.

    2008-12-01

    Subduction zones transport water into the Earth's interior. The subsequent release of this water through dehydration reactions may trigger intraslab earthquakes and arc volcanism, regulate slip on the plate interface, control plate buoyancy, and regulate the long-term budget of water on the planet's surface. As part of Earthscope, we have undertaken an experiment named CAFE (Cascadia Arrays for Earthscope) seeking to better constrain these effects in the Cascadia subduction zone. The basic experiment has four components: (1) a 47-element broadband imaging array of Flexible Array instruments integrated with Bigfoot; (2) three small-aperture seismic arrays with 15 additional short-period instruments near known sources of Episodic Tremor and Slip (ETS) events; (3) analysis of the PBO and PANGA GPS data sets to define the details of episodic slip events; and (4) integrative modeling with complementary constraints from petrology and geodynamics. Here, we present a summary of the results that have been obtained to date by CAFE, with a focus on high-resolution seismic imaging. A 250 km-long by 120 km-deep seismic profile extending eastward from the Washington coast was generated by 2-D Generalized Radon Transform Inversion of the broadband data. It images the subducted crust as a shallow-dipping, low-velocity layer from 20km depth beneath the coast to 40km depth beneath the forearc. The termination of the low-velocity layer is consistent with the depth at which hydrated metabasalts of the subducted crust are expected to undergo eclogitization, a reaction that is accompanied by the release of water and an increase in seismic velocities. Slab earthquakes are located in both the oceanic crust and mantle at depths <40 km, and exclusively in the oceanic mantle at greater depth, as would be expected if they are related to slab dehydration. Two ETS events have occurred during the course of the deployment. They were precisely located and are confined to the region above which the crust exhibits low-velocities and is believed to undergo progressive dehydration, further supporting the proposition that water plays a role in ETS.

  12. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2009-09-30

    array processing techniques. The regional seismic arrays that have been built in the last fifteen years should be a rich data source for the study of...far-regional phase behavior. The arrays are composed of high-quality borehole seismometers that make high fidelity, low-noise recordings. However...that propagate from the different seismic regions of South-Central Asia, utilizing recordings from the Makanchi (MKAR) and Karatau (KKAR) arrays in

  13. Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center

    NASA Astrophysics Data System (ADS)

    Van Avendonk, Harm J. A.; Hayman, Nicholas W.; Harding, Jennifer L.; Grevemeyer, Ingo; Peirce, Christine; Dannowski, Anke

    2017-06-01

    We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.

  14. The underground seismic array of Gran Sasso (UNDERSEIS), central Italy

    NASA Astrophysics Data System (ADS)

    Scarpa, R.; Muscente, R.; Tronca, F.; Fischione, C.; Rotella, P.; Abril, M.; Alguacil, G.; Martini, M.; de Cesare, W.

    2003-04-01

    Since early May, 2002, a small aperture seismic array has been installed in the underground Physics Laboratories of Gran Sasso, located near seismic active faults of central Apennines, Italy. This array is presently composed by 21 three-component short period seismic stations (Mark L4C-3D), with average distance 90 m and semi-circular aperture of 400 m x 600 m. It is intersecting a main seismogenic fault where the presence of slow earthquakes has been recently detected through two wide band geodetic laser interferometers. The underground Laboratories are shielded by a limestone rock layer having 1400 m thickness. Each seismometer is linked, through a 24 bits A/D board, to a set of 6 industrial PC via a serial RS-485 standard. The six PC transmit data to a server through an ethernet network. Time syncronization is provided by a Master Oscillator controlled by an atomic clock. Earthworm package is used for data selection and transmission. High quality data have been recorded since May 2002, including local and regional earthquakes. In particular the 31 October, 2002, Molise (Mw=5.8 earthquake) and its aftershocks have been recorded at this array. Array techniques such as polarisation and frequency-slowness analyses with the MUSIC noise algorithm indicate the high performance of this array, as compared to the national seismic network, for identifying the basic source parameters for earthquakes located at distance of few hundreds of km.

  15. Seismic anisotropy in the upper mantle beneath the MAGIC array, mid-Atlantic Appalachians: Constraints from SKS splitting and quasi-Love wave propagation

    NASA Astrophysics Data System (ADS)

    Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.

    2016-12-01

    North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.

  16. Preliminary Seismic Velocity Structure Results from Ambient Noise and Teleseismic Tomography: Laguna del Maule Volcanic Field, Chile

    NASA Astrophysics Data System (ADS)

    Wespestad, C.; Thurber, C. H.; Zeng, X.; Bennington, N. L.; Cardona, C.; Singer, B. S.

    2016-12-01

    Laguna del Maule Volcanic Field is a large, restless, rhyolitic system in the Southern Andes that is being heavily studied through several methods, including seismology, by a collaborative team of research institutions. A temporary array of 52 seismometers from OVDAS (the Southern Andean Volcano Observatory), PASSCAL (Portable Array Seismic Studies of the Continental Lithosphere), and the University of Wisconsin-Madison was used to collect the 1.3 years worth of data for this preliminary study. Ambient noise tomography uses surface wave dispersion data obtained from noise correlation functions (NCFs) between pairs of seismic stations, with one of each pair acting as a virtual source, in order to image the velocity structure in 3-D. NCFs were computed for hour-long time windows, and the final NCFs were obtained with phase-weighted stacking. The Frequency-Time Analysis technique was then utilized to measure group velocity between station pairs. NCFs were also analyzed to detect temporal changes in seismic velocity related to magmatic activity at the volcano. With the surface wave data from ambient noise, our small array aperture limits our modeling to the upper crust, so we employed teleseismic tomography to study deeper structures. For picking teleseismic arrivals, we tested two different correlation and stacking programs, which utilize adaptive stacking and multi-channel cross-correlation, to get relative arrival time data for a set of high quality events. Selected earthquakes were larger than magnitude 5 and between 30 and 95 degrees away from the center of the array. Stations that consistently show late arrivals may have a low velocity body beneath them, more clearly visualized via a 3-D tomographic model. Initial results from the two tomography methods indicate the presence of low-velocity zones at several depths. Better resolved velocity models will be developed as more data are acquired.

  17. SeisCORK Engineering Design Study

    DTIC Science & Technology

    2006-05-01

    Stephen, R. A., et al. (1994a), The seafloor borehole array seismic system (SEABASS) and VLF ambient noise, Marine Geophysical Researches, 16, 243...286. Stephen, R. A., et al. (1994b), The Seafloor Borehole Array Seismic System (SEABASS) and VLF Ambient Noise, Marine Geophysical Researches, 16, 243...Contents Executive Summary 4 Introduction 5 General Science Goals and Justification for Borehole Seismology in the Seafloor 6 Validating Surface Seismic

  18. Borehole Array Observations of Non-Volcanic Tremor at SAFOD

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Luetgert, J. H.; Oppenheimer, D. H.

    2005-12-01

    We report on the observation of non-volcanic tremor made in the San Andreas Fault Observatory at Depth in May, 2005 during the deployment of a multi-level borehole seismic array in the SAFOD main hole. The seismic array consisted of 80 levels of hydraulically-clamped 3-component, 15 Hz omni-directional geophones spaced 15.24 m apart along a 1200 m section of the inclined borehole between 1538 and 2363 m below the ground surface. The array was provided by Paulsson Geophysical Services, Inc. (P/GSI), and recorded at a sample rate of 4000 sps on 24-bit Geode digital recorders provided by Geometrics, Inc. More than 2 TB of continuous data were recorded during the 2-week deployment. Selected local earthquakes and explosions recorded by the array are available at the Northern California Earthquake Data Center, and the entire unedited data set is available as assembled data at the IRIS Data Management Center. Both data sets are currently in the industry standard SEG2 format. Episodes of non-volcanic tremor are common along this reach of the San Andreas Fault according to Nadeau and Dolenc [2004, DOI: 10.1126/science.1107142], with many originating about 30 km southeast of SAFOD beneath the southern end of the Parkfield segment and northern end of the Simmler segment of the fault. We identified tremor episodes using spectrograms routinely produced by the Northern California Seismic Network (http://quake.usgs.gov/cgi-bin/sgrampark.pl) on which they appear as periods of elevated noise relative to the background. A particularly strong tremor episode occurred on May 10, 2005 between 19:39 and 20:00 UTC. In SAFOD, tremor spectral levels exceed the instrumental noise floor to at least 40 Hz. The spatially unaliased recording of the tremor wavefield on the P/GSI array reveal individual phases that can be tracked continuously across the array. The wavefield is composed of both up- and down-going shear waves that form quasi-stationary interference patterns in which areas of constructive interference recur at the same locations along the array. Such a pattern could arise from a spatially stationary source radiating an extended duration time function into a complex medium.

  19. Seismic Interferometry of Gulf of Mexico Basin Opening (GUMBO) Data: Extraction of Body and Surface Waves with a Mixed-Mode Array

    NASA Astrophysics Data System (ADS)

    Thangraj, J. S.; Quiros, D.; Pulliam, J.

    2017-12-01

    The Gulf of Mexico (GoM) is a relative small oceanic basin that formed by rifting between the continental blocks of North America and Yucatan in the Middle to Late Jurassic. Following the breakup, seafloor spreading continued until the Early Cretaceous. Since then, subsidence and sedimentation have shaped the GoM margin that we see today. To better understand the opening of the GoM, a long-offset (307 km) seismic refraction line was acquired in 2010. The transect was located on the northwest GoM margin, and consisted of several types of instruments. This mixed-mode array combined 31 ocean bottom seismographs (OBS), 412 high-frequency instruments (4.5 Hz geophones with RefTek 125A "Texan" digitizers) and 12 broadband stations. The R/V Iron Cat provided the airgun source used in the refraction experiment. The airgun generated 2028 shots in a period of 2.5 days which were recorded by the entire array. The airgun-generated seismic energy was clearly visible on the OBS recordings, however its amplitude was too low to be discerned on most of the onshore stations. In fact, this energy was only visible on Texan stations 1-50 (station 1 is located at the coast), extending 18 km inland, limiting the extend of the velocity model that can be obtained. Here, we apply seismic interferometry techniques to the 2.5 days of continuous data recorded by the Texan array with the goal of extending the spatial range for which the airgun-generated seismic energy can be observed. Preliminary results show that by treating the 2.5 days of continuously recorded airgun data as ambient noise, and applying time-domain cross-correlation, we can observe energy propagating 50 to 70 km inland with apparent velocities of 1800 - 2200 ms-1. These velocities agree with the compressional seismic velocity for the top 5 km of sediments under the GoM obtained from the OBS records, suggesting that we are observing compressional energy in the virtual source gathers (VSG). We also observe arrivals in the VSG that exhibit dispersive behavior, which we interpret to be Rayleigh waves. Current efforts are focused on extending the spatial range of the airgun-generated seismic energy further inland (> 70 km) by creating more VSG, to obtain a body wave velocity model along the transect. Similarly, we are inverting the Rayleigh waves in the VSG to obtain a shear wave velocity model.

  20. Considerations in Phase Estimation and Event Location Using Small-aperture Regional Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Ringdal, Frode

    2010-05-01

    The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f- k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f- k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.

  1. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the array, there is a sudden cessation of seismicity not accounted for by known geologic structures. This borehole seismometer network is providing essential data for the detailed characterization of the Kilauea Lower East Rift Zone and the Puna geothermal field.

  2. Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.

  3. Goal-seismic computer programs in BASIC: Part I; Store, plot, and edit array data

    USGS Publications Warehouse

    Hasbrouck, Wilfred P.

    1979-01-01

    Processing of geophysical data taken with the U.S. Geological Survey's coal-seismic system is done with a desk-top, stand-alone computer. Programs for this computer are written in an extended BASIC language specially augmented for acceptance by the Tektronix 4051 Graphic System. This report presents five computer programs used to store, plot, and edit array data for the line, cross, and triangle arrays commonly employed in our coal-seismic investigations. * Use of brand names in this report is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

  4. Aftershock distribution and heterogeneous structure in and around the source area of the 2014 northern Nagano Prefecture earthquake (Mw 6.2) , central Japan, revealed by dense seismic array observation

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Hirata, N.; Iwasaki, T.; Sakai, S.; Obara, K.; Ishiyama, T.; Sato, H.

    2015-12-01

    A shallow earthquake (Mw 6.2) occurred on November 22 in the northern Nagano Prefecture, central Japan. Aftershock area is located near the Kamishiro fault, which is a part of the Itoigawa-Shizuoka Tectonic Line (ISTL). ISTL is one of the major tectonic boundaries in Japan. Precise aftershock distribution and heterogeneous structure in and around the source region of this earthquake is important to constrain the process of earthquake occurrence. We conducted a high-density seismic array observation in and around source area to investigate aftershock distribution and crustal structure. One hundred sixty-three seismic stations, approximately 1 km apart, were deployed during the period from December 3, 2014 to December 21, 2014. Each seismograph consisted of a 4.5 Hz 3-component seismometer and a digital data recorder (GSX-3). Furthermore, the seismic data at 40 permanent stations were incorporated in our analysis. During the seismic array observation, the Japan Meteorological Agency located 977 earthquakes in a latitude range of 35.5°-37.1°N and a longitude range of 136.7°-139.0°E, from which we selected 500 local events distributed uniformly in the study area. To investigate the aftershock distribution and the crustal structure, the double-difference tomography method [Zhang and Thurber, 2003] was applied to the P- and S-wave arrival time data obtained from 500 local earthquakes. The relocated aftershock distribution shows a concentration on a plane dipping eastward in the vicinity of the mainshock hypocenter. The large slip region (asperity) estimated from InSAR analysis [GSI, 2014] corresponds to the low-activity region of the aftershocks. The depth section of Vp structure shows that the high Vp zone corresponds to the large slip region. These results suggest that structural heterogeneities in and around the fault plane may have controlled the rupture process of the 2014 northern Nagano Prefecture earthquake.

  5. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  6. Seismic reflection and refraction data acquired in Canada Basin, Northwind Ridge and Northwind Basin, Arctic Ocean in 1988, 1992 and 1993

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; May, Steven D.

    2004-01-01

    Seismic reflection and refraction data were collected in generally ice-covered waters of the Canada Basin and the eastern part of the Chukchi Continental Borderland of the Amerasia Basin, Arctic Ocean, during the late summers of 1988, 1992, and 1993. The data were acquired from a Polar class icebreaker, the U.S. Coast Guard Cutter Polar Star, using a seismic reflection system designed by the U.S. Geological Survey (USGS). The northernmost data extend to 78? 48' N latitude. In 1988, 155 km of reflection data were acquired with a prototype system consisting of a single 195 cubic inch air gun seismic source and a two-channel hydrophone streamer with a 150-m active section. In 1992 and 1993, 500 and 1,900 km, respectively, of seismic reflection profile data were acquired with an improved six air gun, 674 to 1303 cubic inch tuned seismic source array and the same two-channel streamer. In 1993, a 12-channel streamer with a 150-m active section was used to record five of the reflection lines and one line was acquired using a three air gun, 3,000 cubic inch source. All data were recorded with a DFS-V digital seismic recorder. Processed sections feature high quality vertical incidence images to more than 6 km of sub-bottom penetration in the Canada Basin. Refraction data were acquired with U.S. Navy sonobuoys recorded simultaneously with the seismic reflection profiles. In 1988 eight refraction profiles were recorded with the single air gun, and in 1992 and 1993 a total of 47 refraction profiles were recorded with the six air gun array. The sonobuoy refraction records, with offsets up to 35 km, provide acoustic velocity information to complement the short-offset reflection data. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles.

  7. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  8. Infrasonic induced ground motions

    NASA Astrophysics Data System (ADS)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  9. The EarthScope USArray Observatories: Status and Results

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R.; Alvarez, M.; Schultz, A.; Simpson, D.

    2009-05-01

    The EarthScope USArray program includes three seismic and two magnetotelluric components. The USArray seismic components consist of the Transportable Array (TA), the Flexible Array (FA), and the Reference Network. The TA component of USArray has now occupied over 700 sites in the western United States, from the Pacific coast through the Rocky Mountains. The three component broadband TA stations are deployed in a grid-like arrangement, with 70 km separation between stations. At any given time there are approximately 400 station sites, occupying a ~2000 km by 800 km "footprint." Each station is operated for two years. The FA component of USArray provides a pool of instruments, ranging from high frequency geophones to three- component broadband sensors, and these instruments are typically deployed for focused geological targets for time periods ranging from days to years. Finally, the Reference Network provides a fixed, permanent reference frame for the TA and FA, with approximately 100 broadband stations deployed across the contiguous US, at roughly 300 km spacing. The magnetotelluric (MT) component of USArray consists of both a fixed reference network as well as a transportable array of instruments that are deployed campaign style, using a 70 km by 70 km grid. The geographical extent of USArray allows unprecedented observation of geophysical targets. Instruments have been deployed across the west and mid-west of the US, with TA stations presently moving into the states spanning a north-south line from North Dakota to Texas. MT observations in Cascadia have been augmented by corresponding observations in Canada. Similarly, as the seismic TA moves east, plans are being developed to collaborate on TA seismic observations on both sides of the US-Canada border in the region of the Great Lakes. We will present the current status of USArray activities and progress to-date, with a special emphasis on standardized data products that are produced from USArray data, including phase picks, wave-field animations, observations of the ambient noise field, and MT transfer functions. We will also provide an overview of USArray deployment plans, to facilitate collaborative experiments and investigations, and discuss opportunities for the seismological education and research communities to participate in and leverage the FA and TA efforts.

  10. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper at ~1350 m of depth, properly associable to the geological bedrock, considering the transition between the pliocenic loose sediments and the miocenic marls observable from the available stratigraphy. Numerical 1D analyses, computed to obtain the theoretical Transfer Function at the site, support the correlation between the experimental amplification peak around 0.17 Hz and the hypothesized geological bedrock. In terms of site specific SHA, the UHS expressed in displacement (MRP: 475 years) shows a significant increase if the seismic input is located at the geological bedrock (~1350 m) instead of the seismic bedrock (~165 m). Even if this increase is not relevant for the studied site, since the seismic hazard is low, it could be significant in other part of the Po Plain, where the seismic hazard is medium-high. According to the HVSR results, obtained for other available Po Plain broadband stations, the considerations of this work could represent a warning for future seismic hazard investigations in other areas of the basin.

  11. Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase velocities than the basin-bounding ranges. Two areas of localized low velocities will be the focus of future work and interpretation. One low velocity zone appears to be co-located with the area of maximum InSAR-observed uplift related to the SMB. A second low velocity zone surrounds the Paleogene-aged Black Butte Volcano.

  12. The 2013 Eruptions of Pavlof and Mount Veniaminof Volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Waythomas, C. F.; Wallace, K.; Haney, M. M.; Fee, D.; Pavolonis, M. J.; Read, C.

    2013-12-01

    Pavlof Volcano and Mount Veniaminof on the Alaska Peninsula erupted during the summer of 2013 and were monitored by the Alaska Volcano Observatory (AVO) using seismic data, satellite and web camera images, a regional infrasound array and observer reports. An overview of the work of the entire AVO staff is presented here. The 2013 eruption of Pavlof Volcano began on May 13 after a brief and subtle period of precursory seismicity. Two volcano-tectonic (VT) earthquakes at depths of 6-8 km on April 24 preceded the onset of the eruption by 3 weeks. Given the low background seismicity at Pavlof, the VTs were likely linked to the ascent of magma. The onset of the eruption was marked by subtle pulsating tremor that coincided with elevated surface temperatures in satellite images. Activity during May and June was characterized by lava fountaining and effusion from a vent near the summit. Seismicity consisted of fluctuating tremor and numerous explosions that were detected on an infrasound array (450 km NE) and as ground-coupled airwaves at local and distant seismic stations (up to 650 km). Emissions of ash and sulfur dioxide were observed in satellite data extending as far as 300 km downwind at altitudes of 5-7 km above sea level. Ash collected in Sand Point (90 km E) were well sorted, 60-150 micron diameter juvenile glass shards, many of which had fluidal forms. Automated objective ash cloud detection and cloud height retrievals from the NOAA volcanic cloud alerting system were used to evaluate the hazard to aviation. A brief reconnaissance of Pavlof in July found that lava flows on the NW flank consist of rubbly, clast rich, 'a'a flows composed of angular blocks of agglutinate and rheomorphic lava. There are at least three overlapping flows, the longest of which extends about 5 km from the vent. Eruptive activity continued through early July, and has since paused or stopped. Historical eruptions of Mount Veniaminof volcano have been from an intracaldera cone within a 10-km summit caldera. Subtle pulsating tremor also signaled unrest at Veniaminof on June 7, a week prior to satellite observations of elevated surface temperatures within the caldera that indicated the presence of lava at the surface. Eruptive activity consisted of lava fountaining and effusion, and numerous explosive events that produced small ash clouds that typically reached only several hundred meters above the vent, and rarely were observed extending beyond the summit caldera. Seismicity was characterized by energetic tremor, and accompanied at times by numerous explosions that were heard by local residents at distances of 20-50 km, and detected as ground coupled airwaves at distant seismic stations (up to 200 km) and by an infrasound array (350 km distance). Because infrasound can propagate over great distances with little signal degradation or distortion, it was possible to correlate the ground-coupled airwaves between seismometers separated by 100's of km and thus identify their source. A helicopter fly over in July found that lava flows erupted from the intracaldera cone consist of 3-5 small lobes of rubbly spatter-rich lava up to 800 m in length on the southwest flank of the cone. The distal ends of the flows melted snow and ice adjacent to the cone to produce a water-rich plume, but there was no evidence for outflow of water from the caldera. Volcanic unrest has continued through early August, 2013.

  13. Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2010-09-01

    method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO) array (Thurber et al., 2004...limitations in mind, we apply our method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO...Proposal No. BAA09-69 ABSTRACT Surface array and deep borehole recordings of chemical explosions in the near-source (0-20 km) region are studied to

  14. Cluster Computing For Real Time Seismic Array Analysis.

    NASA Astrophysics Data System (ADS)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by a pro- gram which reads data from disk files and send them to a remote host by using the Internet protocols.

  15. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not more than 2000 meters are planned. The prototype must be modified and adapted to the conditions in deep boreholes with respect to pressure and temperature. This project is funded by the German Federal Environment Ministry.

  16. Studies of infrasound propagation using the USArray seismic network (Invited)

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  17. Large-N Nodal Seismic Deployment at Mount St Helens

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Vidale, J. E.; Creager, K. C.; Levander, A.; Kiser, E.; Barklage, M.; Hollis, D.

    2014-12-01

    In late July of 2014 over 900 autonomous short period seismometers were deployed within 12 km of the summit crater at Mount St Helens. In concert with the larger iMUSH experiment, these data constitute the largest seismic interrogation of an active volcano ever conducted. The array was deployed along the road and trail system of the national volcanic monument and adjacent regions with an average station spacing of 250 meters and included several station clusters with increased sampling density. The 10 Hz phones recorded the vertical component wavefield continuously at 250 Hz sampling rate over a period of approximately two weeks. During the recording time, the Pacific Northwest Seismic Network detected ~65 earthquakes within the array footprint ranging in magnitude from -0.9 to 1.1, the majority of which were located beneath the crater at less than 10 km depth. In addition to the natural seismicity, 23 explosion sources from the iMUSH active source experiment were recorded, several of which exceeded magnitude 2. Preliminary results for this project will include an expanded event catalog as the array should significantly reduce the detection threshold. The sheer number of instruments allows for stacking of station clusters producing high signal-to-noise beam traces which can be used for event triggering and for creating waveform templates to measure relative travel-times across the array via cross-correlation. The ability of the array to estimate focal mechanisms from event radiation patterns and delineate complex path effects will also be investigated. The density and azimuthal coverage provide by this array offers an excellent opportunity to investigate short-wavelength variations of the seismic wavefield in a complex geologic environment. Previous seismic tomography results suggest the presence of a shallow magma chamber at 1-3 km depth near the region of shallow seismicity as evidenced by a P wave low-velocity anomaly of at least -5.5% [Waite and Moran, 2009]. The proximity of the array as well as the event distribution make it possible to investigate wavefield distortion and scattering due to the potential magma chamber, including s-wave blockage as has been observed in other systems.

  18. Earthquake source parameters determined using the SAFOD Pilot Hole vertical seismic array

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Ellsworth, W. L.; Prejean, S. G.

    2003-12-01

    We determined source parameters of microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole vertical seismic array. The array consists of 32 stations with 3-component 15 Hz geophones at 40 meter spacing (856 to 2096 m depth) The site is about 1.8 km southwest of a segment of the San Andreas fault characterized by a combination of aseismic creep and repeating microearthquakes. We analyzed seismograms recorded at sample rates of 1kHz or 2kHz. Spectra have high signal-to-noise ratios at frequencies up to 300-400 Hz, showing these data include information on source processes of microearthquakes. By comparing spectra and waveforms at different levels of the array, we observe how attenuation and scattering in the shallow crust affect high-frequency waves. We estimated spectral level (Ω 0), corner frequency (fc) and path-averaged attenuation (Q) at each level of the array by fitting an omega squared model to displacement spectra. While the spectral level changes smoothly with depth, there is significant scatter in fc and Q due to the strong trade-off between these parameters. Because we expect source parameters to vary systematically with depth, we impose a smoothness constraint on Q, Ω 0 and fc as a function of depth. For some of the nearby events, take-off angles to the different levels of the array span a significant part of the focal sphere. Therefore corner frequencies should also change with depth. We smooth measurements using a linear first-difference operator that links Q, Ω 0 and fc at one level to the levels above and below, and use Akaike_fs Bayesian Information Criterion (ABIC) to weight the smoothing operators. We applied this approach to events with high signal-to-noise ratios. For the results with the minimum ABIC, fc does not scatter and Q decreases with decreasing depth. Seismic moments were determined by the spectral level and range from 109 and 1012 Nm. Source radii were estimated from the corner frequency using the circular crack model of Sato and Hirasawa (1973). Estimated values of static stress drop were roughly 1 MPa and do not vary with seismic moment. Q values from all earthquakes were averaged at each level of the array. Average Qp and Qs range from 250 to 350 and from 300 to 400 between the top and bottom of the array, respectively. Increasing Q values as a function of depth explain well the observed decrease in high-frequency content as waves propagate toward the surface. Thus, by jointly analyzing the entire vertical array we can both accurately determine source parameters of microearthquakes and make reliable Q estimates while suppressing the trade-off between fc and Q.

  19. Surface-wave and refraction tomography at the FACT Site, Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert E.; Bartel, Lewis Clark; Pullammanappallil, Satish

    2006-08-01

    We present a technique that allows for the simultaneous acquisition and interpretation of both shear-wave and compressive-wave 3-D velocities. The technique requires no special seismic sources or array geometries, and is suited to studies with small source-receiver offsets. The method also effectively deals with unwanted seismic arrivals by using the statistical properties of the data itself to discriminate against spurious picks. We demonstrate the technique with a field experiment at the Facility for Analysis, Calibration, and Testing at Sandia National Laboratories, Albuquerque, New Mexico. The resulting 3-D shear-velocity and compressive-velocity distributions are consistent with surface geologic mapping. The averaged velocitiesmore » and V{sub p}/V{sub s} ratio in the upper 30 meters are also consistent with examples found in the scientific literature.« less

  20. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  1. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an apparent slowness of ~0.8 s/km and a back-azimuth of 135°N. These estimates have remained approximately constant since the onset of volcanic tremor, indicating a unique source and thus a single, continuing eruptive center.

  2. 3D shallow velocity model in the area of Pozzo Pitarrone, NE flank of Mt. Etna Volcano, by using SPAC array method.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore

    2016-04-01

    In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.

  3. Armored umbilical apparatus for towing a marine seismic air gun sub array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, E.C.

    1985-06-25

    An armored umbilical and termination housing is disclosed for towing a sub-array of seismic air guns used in marine seismic surveying comprising a single air hose for supplying all the high pressure air to the individual air guns surrounded by all the electrical control cables needed to operate the air guns in the sub-array. Protective coatings are applied around the electrical control cables and stress members for carrying the load of towing the sub-array are incorporated within the umbilical. A termination housing is provided on the end of the umbilical for terminating the single air hose and all the electricalmore » control lines to common connectors so that individual electrical control lines and air hoses can run from the termination housing to each individual air gun in the sub-array. Air shut off valves are provided so that the high pressure air can be shut off to the individual air guns within the sub-array remotely from the survey vessel.« less

  4. Using Network Theory to Understand Seismic Noise in Dense Arrays

    NASA Astrophysics Data System (ADS)

    Riahi, N.; Gerstoft, P.

    2015-12-01

    Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.

  5. Aleutian Array of Arrays (A-cubed) to probe a broad spectrum of fault slip under the Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; LI, B.

    2016-12-01

    Alaska-Aleutian subduction zone is one of the most seismically active subduction zones in this planet. It is characterized by remarkable along-strike variations in seismic behavior, more than 50 active volcanoes, and presents a unique opportunity to serve as a natural laboratory to study subduction zone processes including fault dynamics. Yet details of the seismicity pattern, spatiotemporal distribution of slow earthquakes, nature of interaction between slow and fast earthquakes and their implication on the tectonic behavior remain unknown. We use a hybrid seismic network approach and install 3 mini seismic arrays and 5 stand-alone stations to simultaneously image subduction fault and nearby volcanic system (Makushin). The arrays and stations are strategically located in the Unalaska Island, where prolific tremor activity is detected and located by a solo pilot array in summer 2012. The hybrid network is operational between summer 2015 and 2016 in continuous mode. One of the three arrays starts in summer 2014 and provides additional data covering a longer time span. The pilot array in the Akutan Island recorded continuous seismic data for 2 months. An automatic beam-backprojection analysis detects almost daily tremor activity, with an average of more than an hour per day. We imaged two active sources separated by a tremor gap. The western source, right under the Unalaska Island shows the most prolific activity with a hint of steady migration. In addition, we are able to identify more than 10 families of low frequency earthquakes (LFEs) in this area. They are located within the tremor source area as imaged by the bean-backprojection technique. Application of a match filter technique reveals that intervals between LFE activities are shorter during tremor activity and longer during quiet time period. We expect to present new results from freshly obtained data. The experiment A-cubed is illuminating subduction zone processes under Unalaska Island in unprecedented detail.

  6. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.

  7. Static Corrections to Improve Seismic Monitoring of the North Korean Nuclear Test Site with Regional Arrays

    NASA Astrophysics Data System (ADS)

    Wilkins, N.; Wookey, J. M.; Selby, N. D.

    2017-12-01

    Seismology is an important part of the International Monitoring System (IMS) installed to detect, identify, and locate nuclear detonations in breach of the Comprehensive nuclear Test Ban Treaty (CTBT) prior to and after its entry into force. Seismic arrays in particular provide not only a means of detecting and locating underground nuclear explosions, but in discriminating them from naturally occurring earthquakes of similar magnitude. One potential discriminant is the amplitude ratio of high frequency (> 2 Hz) P waves to S waves (P/S) measured at regional distances (3 - 17 °). Accurate measurement of such discriminants, and the ability to detect low-magnitude seismicity from a suspicious event relies on high signal-to-noise ratio (SNR) data. A correction to the slowness vector of the incident seismic wavefield, and static corrections applied to the waveforms recorded at each receiver within the array can be shown to improve the SNR. We apply codes we have developed to calculate slowness-azimuth station corrections (SASCs) and static corrections to the arrival time and amplitude of the seismic waveform to seismic arrays regional to the DPRK nuclear test site at Punggye-ri, North Korea. We use the F-statistic to demonstrate the SNR improvement to data from the nuclear tests and other seismic events in the vicinity of the test site. We also make new measurements of P/S with the corrected waveforms and compare these with existing measurements.

  8. Calving of Talyor Glacier, Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Pettit, E. C.; Creager, K. C.; Hallet, B.

    2007-12-01

    Calving of tide-water glaciers has received considerable attention, with seismic arrays in Alaska, Greenland, and Antarctica devoted to their observation. In these environments, ice cliffs are directly coupled to oceanic temperatures. The land-based polar glaciers of the McMurdo Dry Valleys in Antarctica represent a simpler environment unaffected directly by water contact where other factors can be isolated. In particular, summer calving events of Taylor Glacier are observed to consist of precursory activity including crack growth, cliff overhang, and active seismicity at least 1 hour before collapse. We propose that collapse occurs only after a stress threshold has been crossed, evident from 'pre-calving' of ice from the cliff base 1-3 days prior to the major event. We provide photographic, seismic, and temperature data to illustrate the thermal and stress landscape for land-based calving of polar glaciers.

  9. On the potential of seismic rotational motion measurements for extraterrestrial seismology

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Sollberger, David; Khan, Amir; Greenhalgh, Stewart; Van Renterghem, Cederic; Robertsson, Johan

    2017-04-01

    Classically, seismological recordings consist of measurements of translational ground motion only. However, in addition to three vector components of translation there are three components of rotation to consider, leading to six degrees of freedom. Of particular interest is thereby the fact that measuring rotational motion means isolating shear (S) waves. Recording the rotational motion requires dedicated rotational sensors. Alternatively, since the rotational motion is given by the curl of the vectorial displacements, the rotational motion around the two horizontal axes can be computed from the horizontal spatial gradients of vertical translational recordings if standard translational seismometers are placed in an areal array at the free surface. This follows from the zero stress free surface condition. Combining rotational and translational motion measurements opens up new ways of analyzing seismic data, such as facilitating much improved arrival identification and wavefield separation (e.g., P-/S-wave separation), and local slowness (arrival direction and velocity) determination. Such combined measurements maximize the seismic information content that a single six-component station or a small station array can provide, and are of particular interest for sparse or single-station measurements such as in extraterrestrial seismology. We demonstrate the value of the analysis of combined translational and rotational recordings by re-evaluating data from the Apollo 17 lunar seismic profiling experiment (LSPE). The LSPE setup consisted of four vertical-component geophones arranged in a star-like geometry. This areal receiver layout enables computing the horizontal spatial gradients by spatial finite differencing of the vertical-component data for two perpendicular directions and, hence, the estimation of rotational motion around two horizontal axes. Specifically, the recorded seismic waveform data originated from eight explosive packages as well as from continuously listening to the natural lunar seismic activity of moonquakes. As an example, the combined analysis of translational and rotational motion from the active-source LSPE data provides, for the first time, the possibility to extract S-wave information from the enigmatic and reverbatory lunar seismic waveform data, which hithertofore had masked later arriving S-waves. The identification of S-waves enables to characterize the shallow lunar crust in a full elastic sense. The resultant Poisson's ratio profile allows discriminating shallow basalt layers of different degree of fracturing. Our successful analysis of the Apollo 17 data highlights the anticipated significant value of rotational measurements for future extraterrestrial seismology missions.

  10. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    DTIC Science & Technology

    2007-09-01

    March 17, 2005. The seismic signals from both master and detected events are followed by infrasound arrivals. Note the long duration of the...correlation coefficient traces with a significant array -gain. A detected event that is co-located with the master event will record the same time-difference...estimating the detection threshold reduction for a range of highly repeating seismic sources using arrays of different configurations and at different

  11. Correlation of Geophysical and Geotechnical Methods for Sediment Mapping in Sungai Batu, Kedah

    NASA Astrophysics Data System (ADS)

    Zakaria, M. T.; Taib, A.; Saidin, M. M.; Saad, R.; Muztaza, N. M.; Masnan, S. S. K.

    2018-04-01

    Exploration geophysics is widely used to map the subsurface characteristics of a region, to understand the underlying rock structures and spatial distribution of rock units. 2-D resistivity and seismic refraction methods were conducted in Sungai Batu locality with objective to identify and map the sediment deposit with correlation of borehole record. 2-D resistivity data was acquire using ABEM SAS4000 system with Pole-dipole array and 2.5 m minimum electrode spacing while for seismic refraction ABEM MK8 seismograph was used to record the seismic data and 5 kg sledgehammer used as a seismic source with geophones interval of 5 m spacing. The inversion model of 2-D resistivity result shows that, the resistivity values <100 Ωm was interpreted as saturated zone with while high resistivity values >500 Ωm as the hard layer for this study area. The seismic result indicates that the velocity values <2000 m/s represent as the highly-weathered soil consists of clay and sand while high velocity values >3600 m/s interpreted as the hard layer in this locality.

  12. Constraints on a plume in the mid-mantle beneath the Iceland region from seismic array data

    USGS Publications Warehouse

    Pritchard, M.J.; Foulger, G.R.; Julian, B.R.; Fyen, J.

    2000-01-01

    Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ~ 1000-2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ~ 1500 km beneath the Iceland-Faeroe ridge with a maximum diameter of ~ 250 km and a maximum wave-speed contrast of ~ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ~ 500 km and a wave-speed anomaly of ~ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.

  13. Explosion source strong ground motions in the Mississippi embayment

    USGS Publications Warehouse

    Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.

    2006-01-01

    Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.

  14. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  15. Basic Research on Seismic and Infrasonic Monitoring of the European Arctic

    DTIC Science & Technology

    2007-09-01

    detected with a high signal -to-noise ratio (SNR) on the ARCES array ; secondly they register very stable azimuth estimates on the detection lists; and...exploiting the data from the Swedish infrasound array network, which provides a useful supplement to the seismic and infrasonic arrays in Norway and NW...infrasonic phase associations. Furthermore, we plan to generate an infrasonic event bulletin using only the estimated azimuths and detection times of

  16. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2008-09-30

    developing array -based methods that can more accurately characterize far-regional (14*-29*) seismic wavefield structure. Far- regional (14*-29*) seismograms...arrivals with the primary arrivals. These complexities can be region and earthquake specific. The regional seismic arrays that have been built in the last...fifteen years should be a rich data source for the study of far-regional phase behavior. The arrays are composed of high-quality borehole seismometers

  17. Back-Projection Imaging of extended, high-frequency pre-, co-, and post-eruptive seismicity at El Jefe Geyser, El Tatio Geyser Field, Chile

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    El Tatio Geyser Field in northern Chile is the third largest geyser field in the world. It is comprised of 3 basins that span 10 km x 10 km at an average elevation of 4250 m and contains at least 80 active geysers. Heavy tourist traffic and previous geothermal exploration make the field relatively non-pristine and ideal for performing minimally invasive geophysical experiments. We deployed a dense array of 51 L-28 3-component geophones (1-10 m spacing, corner frequency 4.5 Hz, 1000 Hz sample rate), and 6 Trillium 120 broadband seismometers (2-20 m spacing, long period corner 120 s, 500 Hz sample rate) in a 50 m x 50 m grid in the central Upper Geyser Basin (the largest basin in area at 5 km x 5 km) during October 2012 as part of a collaborative study of hydrothermal systems between Stanford University; U.C. Berkeley; U. of Chile, Santiago; U. of Tokyo; and the USGS. The seismic array was designed to target at El Jefe Geyser (EJG), a columnar geyser (eruption height 1-1.5 m) with a consistent periodic eruption cycle of 132 +/- 3 s. Seismicity at EJG was recorded continuously for 9 days during which 6000 total eruptions occurred. Excluding periods of high anthropogenic noise (i.e. tourist visits, field work), the array recorded 2000 eruptions that we use to create 4D time-lapse images of the evolution of seismic source locations before, during and after EJG eruptions. We use a new back-projection processing technique to locate geyser signals, which tend to be harmonic and diffuse in nature, during characteristic phases of the EJG eruption cycle. We obtain Vp and Vs from ambient-field tomography and estimates of P and S propagation from a hammer source recorded by the array. We use these velocities to back-project and correlate seismic signals from all available receiver-pairs to all potential source locations in a subsurface model assuming straight-line raypaths. We analyze results for individual and concurrent geyser sources throughout an entire EJG eruption cycle and over multiple eruption cycles. We target specific seismic observations by restricting the frequency band of analysis (i.e., high or low frequency bands), and use our results to evaluate changes in source distributions before, during and after eruptions and compare them to synchronous surface observations (downhole pressure/temperature, discharge rate, thermal video).

  18. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    NASA Astrophysics Data System (ADS)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image of velocity structure from scattered wave migration, we can test whether the thrust zone is above the Yakutat terrane or between the Yakutat terrane and the subducting Pacific plate. Our refined relocations will also improve our understanding of other active faults (e.g., splay faults) and their relationship to the plate boundary.

  19. Dynamic characterization of the Chamousset rock column before its fall

    NASA Astrophysics Data System (ADS)

    Levy, C.; Baillet, L.; Jongmans, D.

    2009-04-01

    The rockfall of Chamousset (volume of 21000m3 ) occurred on November 10, 2007, affecting the 300 m high Urgonian cliff of the southern Vercors massif, French Alps. This event took place when the Vercors plateau was covered by snow. The unstable column was previously detected by observations on the development of a 30 m long fracture back on the plateau. Two aerial Lidar scans of the cliff were acquired before and after the failure, allowing the geometry of the column and of the broken plane to be determined. A temporary seismic array along with two extensometers was installed from July to November 2007. The seismic array consisted of 7 short period seismometers (1 three-components and 6 vertical-component). One vertical seismometer was installed on the column while the other 6 were deployed on the plateau with an array aperture of about 70 m. During the last two months of record, short period seismometers were replaced by 4.5 Hz geophones. The monitoring system recorded in a continuous mode (1000 Hz of frequency sampling) but it stopped to work two weeks before the fall, after the solar panels were covered by snow. During the running period, the seismic array recorded hundreds of local seismic events, from short (less than 0.5 s) impulsive signals to events with a long duration (a few tens of seconds). Our study was first focused on the dynamic response of the column and on the seismic noise frequency content. Fourier spectra of the seismic noise signals recorded on the column and the corresponding spectral ratios showed the presence of several resonance frequencies of the column. The first resonance frequency was measured at 3.6 Hz in July 2007 and it decreases regularly with time to reach 2.6 Hz two weeks before the fall. In parallel, extensometer measurements show that the fracture aperture increased with time during the same period. The dynamic response of a block which separates from a rock mass was 2D numerically modelled. Finite element computations showed that the progressive block decoupling, resulting from a crack propagation inside the mass, generates a decrease of the natural frequency, as it was measured on the site. These results highlight the interest to study the dynamic response of an unstable column for hazard assessment purposes. In a second phase, we studied the recorded impulsive signals in which we were able to identify P and S waves. Seismic experiments were performed in September 2008 on the plateau in order to constrain the ground velocity structure. Preliminary event location shows that the signal sources were located along the broken plane and probably result from micro-cracks along rock bridges.

  20. Analysis and Modeling of Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2011-09-01

    No. BAA09-69 ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km...NNSA). 14. ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km depth...generated using the direct Green’s function (DGF) method of Friederich and Dalkolmo (1995). This method synthesizes the seismic wavefield for a spherically

  1. Instrument Correction and Dynamic Site Profile Validation at the Central United States Seismic Observatory, New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Brengman, C.; Woolery, E. W.; Wang, Z.; Carpenter, S.

    2016-12-01

    The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located in southwestern Kentucky within the New Madrid seismic zone. It is intended to describe the effects of local geology, including thick sediment overburden, on seismic-wave propagation, particularly strong-motion. The three-borehole array at CUSSO is composed of seismic sensors placed on the surface, and in the bedrock at various depths within the 585 m thick sediment overburden. The array's deep borehole provided a unique opportunity in the northern Mississippi embayment for the direct geological description and geophysical measurement of the complete late Cretaceous-Quaternary sediment column. A seven layer, intra-sediment velocity model is interpreted from the complex, inhomogeneous stratigraphy. The S- and P-wave sediment velocities range between 160 and 875 m/s and between 1000 and 2300 m/s, respectively, with bedrock velocities of 1452 and 3775 m/s, respectively. Cross-correlation and direct comparisons were used to filter out the instrument response and determine the instrument orientation, making CUSSO data ready for analysis, and making CUSSO a viable calibration site for other free-field sensors in the area. The corrected bedrock motions were numerically propagated through the CUSSO soil profile (transfer function) and compared, in terms of both peak acceleration and amplitude spectra, to the recorded surface observations. Initial observations reveal a complex spectral mix of amplification and de-amplification across the array, indicating the site effect in this deep sediment setting is not simply generated by the shallowest layers.

  2. Diverse Seismic Imaging Created by the Seismic Explosion Experiment of the TAIGER Project

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okaya, D.; Wu, F.; Yen, H.; Huang, B.; Liang, W.

    2008-12-01

    The TAIGER (TAiwan Integrated GEodynamics Research) project which examines the Taiwan orogeny includes five experiments: natural earthquake recording, man-made explosion recording, Magnetotelluic imaging, marine MCS and sea-land shooting, and deformation evolution modeling. During Feb-Mar 2008, the explosion experiment was carried out. Ten sources with 500~3000kg dynamite were detonated along two transects across northern and southern Taiwan. Over 600 PASSCAL Texans and 40 R-130 instruments record the signals over 100~300 km range. Additional arrays with 100 seismometers were deployed to collect north-south line and fan shoot data for 3D imaging. Furthermore, there are 9 ocean bottom seismometers (OBS) in the Taiwan Strait and two lines with 20 seismometers deployed on the mainland China side. A large volume of qualified data has been created. Except explosion signals, numerous local and regional earthquakes were also recorded even by the Texan instruments. The rich earthquake-explosion dataset now exists at the Institute of Earth Sciences, Academia Sinica operated by the Taiwan Earthquake Center (TEC). Preliminary examination of the data reveal crustal Pg, PmP, Pn and intermediate crustal reflection phases within the transect profiles and in the 3D cross-arrays. These data provide direct seismic imaging of the continental Moho under Taiwan and the sharp Moho root configuration associated with mountain building. Seismic tomography and raytrace methods reveal velocity structure consistent with convergence and vertical exhumation of the Central Ranges.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froemyr, E.; Berteussen, K.A.; Jahren, L.

    Small scale seismic surveys have the potential of providing low-cost high resolution subsurface images of limited targets. Crucial to the success of this method is to understand the character and level of ambient noise. Based on this understanding appropriate source strength and receiver fold can be determined in order to obtain the necessary signal to noise ratio at target depth. Saga Petroleum a.s. and Read Well Services A/S performed a test off-shore Norway using geophones on the seabed. The receivers consisted of two small geophone arrays separated by 1 km. A 3 km line was host symmetrically above the receivermore » arrays. The line was shot in a non-continuous fashion by moving from one position to the next with 5 repetitive shots fired at each shot position. A small airgun array was used. A large proportion of the noise exhibits clear spatial coherence. The most significant noise sources are the receiver vessel and the shooting boat. Spectral and spatial analysis reveals that additional sources of noise are present including subsurface sources. The target reflector was top reservoir at approximately 2.1 sec. two-way time. With 4 geophones in each array and repetitive shooting, top reservoir is visible but weak. The area is in general complex but the authors may infer that reduce vessel noise coupled with increased source strength can provide a high resolution subsurface image revealing details not seen on the standard marine seismic section.« less

  4. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  5. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  6. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Joshua D.; Hartse, Hans

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  8. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    NASA Astrophysics Data System (ADS)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  9. Array seismological investigation of the South Atlantic 'Superplume'

    NASA Astrophysics Data System (ADS)

    Hempel, Stefanie; Gassmöller, Rene; Thomas, Christine

    2015-04-01

    We apply the axisymmetric, spherical Earth spectral elements code AxiSEM to model seismic compressional waves which sample complex `superplume' structures in the lower mantle. High-resolution array seismological stacking techniques are evaluated regarding their capability to resolve large-scale high-density low-velocity bodies including interior structure such as inner upwellings, high density lenses, ultra-low velocity zones (ULVZs), neighboring remnant slabs and adjacent small-scale uprisings. Synthetic seismograms are also computed and processed for models of the Earth resulting from geodynamic modelling of the South Atlantic mantle including plate reconstruction. We discuss the interference and suppression of the resulting seismic signals and implications for a seismic data study in terms of visibility of the South Atlantic `superplume' structure. This knowledge is used to process, invert and interpret our data set of seismic sources from the Andes and the South Sandwich Islands detected at seismic arrays spanning from Ethiopia over Cameroon to South Africa mapping the South Atlantic `superplume' structure including its interior structure. In order too present the model of the South Atlantic `superplume' structure that best fits the seismic data set, we iteratively compute synthetic seismograms while adjusting the model according to the dependencies found in the parameter study.

  10. Earth's interior. Dehydration melting at the top of the lower mantle.

    PubMed

    Schmandt, Brandon; Jacobsen, Steven D; Becker, Thorsten W; Liu, Zhenxian; Dueker, Kenneth G

    2014-06-13

    The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone. Copyright © 2014, American Association for the Advancement of Science.

  11. Imaging Critical Zone Using High Frequency Rayleigh Wave Group Velocity Measurements Extracted from Ambient Seismic Fields Gathered With 2400 Seismic Nodes in Southeastern Wyoming.

    NASA Astrophysics Data System (ADS)

    Keifer, I. S.; Dueker, K. G.

    2016-12-01

    In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images. Results will be presented.

  12. Crustal seismic structure beneath the southwest Yunnan region from joint inversion of body-wave and surface wave data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.

    2016-12-01

    Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.

  13. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that was revealed in the 3D magnetotelluric inversion of Tietze and Ritter(2013).

  14. Hydraulic Fracture Induced Seismicity During A Multi-Stage Pad Completion in Western Canada: Evidence of Activation of Multiple, Parallel Faults

    NASA Astrophysics Data System (ADS)

    Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.

    2017-12-01

    Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close to the pad operations providing information about the local ground motion at near offsets, although no ground motion was recorded that exceeds the minimum levels requiring mandatory reporting to the regulator.

  15. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    NASA Astrophysics Data System (ADS)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform”), were performed to obtain reflection images from heterogeneous geological structure. As the results, the reflective events that seemed to correspond with sedimentary layers, the unconformity between sedimentary rocks and granite, and fracture zones in granite could be detected by reflection profiles using “conventional VSP data processing” and “Seismic interferometry”. However, it is difficult to identify the faults around the MIU because they are generally at a high-angle. “IP transform” is one type of Radon transform which change common shot gather to IP domain. Image Points are defined through geometries of sources and reflectors. Reflection signals in time domain can be accumulated and enhanced in IP domain by “IP transform” on the condition of the right angle to a fault. So, by a search of the direction that reflection signals are enhanced using “IP transform”, the locations of faults can be inferred. By this method, the distribution of faults that correspond with faults in the current geological model constructed from investigation data in the MIU project could be detected.

  16. An Integrated Monitoring System of Pre-earthquake Processes in Peloponnese, Greece

    NASA Astrophysics Data System (ADS)

    Karastathis, V. K.; Tsinganos, K.; Kafatos, M.; Eleftheriou, G.; Ouzounov, D.; Mouzakiotis, E.; Papadopoulos, G. A.; Voulgaris, N.; Bocchini, G. M.; Liakopoulos, S.; Aspiotis, T.; Gika, F.; Tselentis, A.; Moshou, A.; Psiloglou, B.

    2017-12-01

    One of the controversial issues in the contemporary seismology is the ability of radon accumulation monitoring to provide reliable earthquake forecasting. Although there are many examples in the literature showing radon increase before earthquakes, skepticism arises from instability of the measurements, false alarms, difficulties in interpretation caused by the weather influence (eg. rainfall) and difficulties on the consideration an irrefutable theoretical background of the phenomenon.We have developed and extensively tested a multi parameter network aimed for studying of the pre-earthquake processes and operating as a part of integrated monitoring system in the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The prototype consists of four components: A real-time monitoring system of Radon accumulation. It consists of three gamma radiation detectors [NaI(Tl) scintillators] A nine-station seismic array to monitor the microseismicity in the offshore area of the Hellenic arc. The processing of the data is based on F-K and beam-forming techniques. Real-time weather monitoring systems for air temperature, relative humidity, precipitation and pressure. Thermal radiation emission from AVHRR/NOAA-18 polar orbit satellite observation. The project revolved around the idea of jointly studying the emission of Radon that has been proven in many cases as a reliable indicator of the possible time of an event, with the accurate location of the foreshock activity detected by the seismic array that can be a more reliable indicator of the possible position of an event. In parallel a satellite thermal anomaly detection technique has been used for monitoring of larger magnitude events (possible indicator for strong events M ≥5.0.). The first year of operations revealed a number of pre-seismic radon variation anomalies before several local earthquakes (M>3.6). The Radon increases systematically before the larger events.Details about the overall performance in registration of pre-seismic signals in Peloponnese region, along with two distant but very strong earthquakes in Jun 12, 2017 M6.3 and Jul 20, 2017 M6.6 in Greece will be discussed.

  17. Characterizing Shallow Seismicity at the Western End of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Abbott, E. R.; Brudzinski, M. R.

    2011-12-01

    The Middle America Trench along southwestern Mexico marks the subduction of both Cocos and Rivera plates. A wide range of seismic activity is seen all along this trench including great earthquakes with short (50-100 y) cycles, abundant microseismicity, prominent earthquake afterslip, recurring interseismic slow slip, and bands of non-volcanic tremor. Despite the fact that each of these different fault behaviors should be controlled by stress on the plate interface, no reliable relationship has been found between these phenomena as of yet. This study focuses on characterizing seismicity at the western end of the subduction zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. The subducted boundary between the Cocos and Rivera plates occurs beneath this region, indicated by the Manzanillo Trough, Colima Graben, inland volcanic activity, and a curious gap in tremor activity. Our data was collected by the MARS seismic array, which consists of about 50 three-component broadband seismometers deployed across Jalisco, Colima and Michoacán from January 2006 to June 2007, covering an along-strike distance of ~400 km. 18 months of data from this array was processed with Antelope for hypocentral locations of shallow (<30 km) earthquakes. To confirm the reliability of the automated locations, analyst refinement was performed on the first ~700 events, revealing little change in location and a similar clustering of events. Compilation of the resulting hypocenters reveals clusters that appear to be associated with the 2003 and 1973 megathrust earthquakes. While there are some events within the 2003 Tecomán earthquake rupture zone, more events are found inland and directly northward. Modeling of geodetic data following the neighboring 1995 Colima-Jalisco earthquake showed significant afterslip immediately downdip from that event, and there are also geodetic signatures consistent with afterslip following the 2003 event such that seismicity patterns in 2006-2007 may be influenced by ongoing afterslip. Seismicity may be concentrated north of the 2003 event as opposed to more broadly covering the region immediately downdip as it appears to follow the western edge of the Colima Graben. The prominent cluster of seismicity within the suspected 1973 rupture zone is curious both in that there is ongoing megathrust related seismicity at this point in the earthquake cycle and that it seems to match a cluster of aftershocks recorded in the days immediately after the 1973 mainshock. Finally, in comparison with observed non-volcanic tremor in the region, shallow seismicity appears to be most prominent where there are notable gaps in tremor distribution indicating that shallow earthquakes are anticorrelated with tremor locations.

  18. A Suite of Discriminants for Ground-Truth Mining Events in the Western U.S. and Its Implications for Discrimination Capability in Russia

    DTIC Science & Technology

    2008-09-01

    of up to 1000 individual boreholes is filled with 5000 to 10,000 lbs of material and delay fired over several seconds. The explosive array is...delay-fired mining events using seismic arrays : Application to the PDAR array in Wyoming, USA, Bull. Seism. Soc. Am. 97: pp .989–1001. Arrowsmith...regional seismic stations in monitoring areas of interest, particularly in countries where mining efforts are significant to the economy. As with other

  19. Interferometric imaging of the San Andreas Fault at Parkfield Using a Massive VSP

    NASA Astrophysics Data System (ADS)

    Chavarria, J.; Goertz, A.; Karrenbach, M.; Paulsson, B.

    2006-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) has the goal of investigating the physical processes controlling earthquakes in central California at Parkfield. The observatory consists of a deep well, that intersected the San Andreas Fault at seismogenic depths of ~3.2 km, where recurring microearthquake activity takes place. Previous to the drilling of Phase II, that intersected the fault at the end of Summer 2005, a long array of seismometers was deployed in the deeper part of the well to characterize the fault structure and to aid the monitoring activities of the natural seismicity. The Massive VSP array consisted of 80 three component seismometers that were deployed during April and May 2005. During this period of time we recorded active data from 13 explosions used to refine the velocity models that improved the locations of target events. In addition to this, we continuously monitored passive data from the natural earthquake activity in the area that was dominated by the Parkfield 2004 event aftershock sequence. During the recording time of this project we were able to record one of the target earthquakes of the SAFOD project as well as recently discovered non-volcanic tremor. The data recorded by this deep array of seismometers has provided important information to characterize the structure of the fault at scale that is comparable to the scale of the geologic observations. These observations, derived during drilling of the well, consist of cores and cuttings as well as geophysical logs. With the use of the borehole array of seismometers we have been able to directly correlate this lithologic information with seismic phases observed in the VSP data. This has lead to better understanding the nature of the scattering that takes place in this complex fault zone. Seismic reflections in the dataset were analyzed with Kirchhoff imaging methods to determine a partial image of the San Andreas Fault at depth. Due to the low density distribution of sources in the study area the illumination volume is limited but still shows clear signals originating from sub-vertical structures associated to the strands of the San Andreas fault inferred from high resolution earthquake location. The existing Kirchhoff imaging methods have been complemented with the use of interferometric imaging by which we extract the Green's function of the data recorded by the array. This takes place with the use of correlation analysis of both active and passive data resulting in a dataset where each downhole receiver acts as a virtual source. This analysis has provided a refined image of the structure of the San Andreas Fault at seismogenic depths with which a better understanding of the system can be achieved.

  20. Geometry and velocity structure of the northern Costa Rica seismogenic zone from 3D local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Schwartz, S. Y.; Newman, A. V.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2003-12-01

    We present results of a 3D local earthquake tomography study of the Middle America Trench seismogenic zone in northern Costa Rica. Local earthquake tomography can provide constraints on the updip, downdip, and lateral variability of seismicity and P- and S-wave velocities; these constraints may in turn provide information on compositional and/or mechanical variability along the seismogenic zone. We use arrival time data recorded by the Nicoya Peninsula seismic array, part of the Costa Rica seismogenic zone experiment (CRSEIZE), a collaborative effort undertaken to better understand seismogenic behavior at the Costa Rica subduction zone using data from land and ocean bottom seismic arrays, oceanic fluid flux meters, and GPS receivers. We invert ˜10,000 P-wave and S-wave arrival times from 475 well-recorded local earthquakes (GAP < 180° , >8 P-wave arrivals) to solve for the best-fitting 1D P- and S-wave velocity models, station corrections, and hypocenters using the algorithm VELEST. These 1D velocity models are used as a starting models for 3D simultaneous inversion using the algorithm SIMULPS14. Preliminary P-wave inversions contain a positive velocity anomaly dipping beneath the Nicoya Peninsula, interpreted as the subducting Cocos Plate. Earthquakes occur in a narrow band along the slab-continent interface and are consistent with the results of Newman et al. (2002). The updip limit of seismicity occurs ˜5 km deeper and 5-10 km landward in the northern vs. the southern Nicoya Peninsula, and this shift spatially correlates to the change from Cocos-Nazca to East Pacific Rise derived oceanic plate. P-wave velocities in the upper 5-10 km of the model are consistent with the geology of the Nicoya Peninsula. We will correlate relocated microseismicity to previously noted variability in oceanic plate morphology, heat flow, fluid flow, and thermal structure and compare the resulting P- and S-wave velocity models to wide-angle refraction models and hypothesized mantle wedge compositions.

  1. The crustal structure along the 1999 Izmit/Düzce rupture of the North-Anatolian Fault

    NASA Astrophysics Data System (ADS)

    Sebastian, Rost; David, Cornwell; David, Thompson; Greg, Houseman; Metin, Kahraman; Ugur, Teoman; Selda, Altuncu-Poyraz; Niyazi, Turkelli; Andrew, Frederiksen; Stephane, Rondenay; Tim, Wright

    2015-04-01

    Deformation along continental strike-slip faults is localized onto narrow fault zones at the surface, which may slip suddenly and catastrophically in earthquakes. On the other hand, strain in the upper mantle is more broadly distributed and is thought to occur by continuous ductile creep. The transition between these two states is poorly understood although it controls the behaviour of the fault zone during the earthquake loading cycle. To understand the structure of and strain distribution across the North-Anatolian Fault Zone (NAFZ) we deployed temporary seismic stations in the region of the 1999 Izmit (M7.5) and Düzce (M7.2) earthquakes. The rectangular array consisted of 66 seismic stations with a nominal station spacing of 7 km and seven additional stations forming a semi-circular ring towards the east (Dense Array for Northern Anatolia - DANA). Using this very dense seismic dataset and a combination of established (e.g. H-k stacking and common conversion point migration) and novel (scattering migration and scattering inversion) seismic processing techniques allows unprecedented resolution of the crustal structure in this region. This study resolves sharp changes in crustal structure across and along the surface expression of the two branches of the NAFZ at scale lengths less than 10 km at mid to lower-crustal depths. The results indicate that the northern NAFZ branch depth extent varies from the mid-crust to the upper mantle and it is likely to be less than 5 km wide throughout the crust. We furthermore resolve a high velocity lower crust and a region of crustal underthrusting that might add strength to a heterogeneous crust and may play a role in dictating the variation in faulting style and postseismic deformation in this region of the NAFZ. The results are consistent with a narrow fault zone accommodating postseismic deformation in the lower crust, as opposed to a broad ductile region below the seismogenic region of the fault.

  2. Broadband spectra of seismic survey air-gun emissions, with reference to dolphin auditory thresholds.

    PubMed

    Goold, J C; Fish, P J

    1998-04-01

    Acoustic emissions from a 2120 cubic in air-gun array were recorded through a towed hydrophone assembly during an oil industry 2-D seismic survey off the West Wales Coast of the British Isles. Recorded seismic pulses were sampled, calibrated, and analyzed post-survey to investigate power levels of the pulses in the band 200 Hz-22 kHz at 750-m, 1-km, 2.2-km, and 8-km range from source. At 750-m range from source, seismic pulse power at the 200-Hz end of the spectrum was 140 dB re: 1 microPa2/Hz, and at the 20-kHz end of the spectrum seismic pulse power was 90 dB re: 1 microPa2/Hz. Although the background noise levels of the seismic recordings were far in excess of ambient, due to the proximity of engine, propeller, and flow sources of the ship towing the hydrophone, seismic power dominated the entire recorded bandwidth of 200 Hz-22 kHz at ranges of up to 2 km from the air-gun source. Even at 8-km range seismic power was still clearly in excess of the high background noise levels up to 8 kHz. Acoustic observations of common dolphins during preceding seismic surveys suggest that these animals avoided the immediate vicinity of the air-gun array while firing was in progress, i.e., localized disturbance occurred during seismic surveying. Although a general pattern of localized disturbance is suggested, one specific observation revealed that common dolphins were able to tolerate the seismic pulses at 1-km range from the air-gun array. Given the high broadband seismic pulse power levels across the entire recorded bandwidth, and known auditory thresholds for several dolphin species, we consider such seismic emissions to be clearly audible to dolphins across a bandwidth of tens on kilohertz, and at least out to 8-km range.

  3. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    NASA Astrophysics Data System (ADS)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion of geographic coverage from array processing. Measurements at the arrays of systematic azimuth residuals, between 5sp° and 50sp° from 203 Aleutian events, reveal significant effects of heterogeneous structure on wavefields. Finally, algorithms to automatically detect earthquakes in continuous array data are demonstrated with the detection of an Aleutian earthquake.

  4. Wind seismic noise introduced by external infrastructure: field data and transfer mechanism

    NASA Astrophysics Data System (ADS)

    Martysevich, Pavel; Starovoyt, Yuri

    2017-04-01

    Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.

  5. Seismic Monitoring of Permafrost During Controlled Thaw: An Active-Source Experiment Using a Surface Orbital Vibrator and Fiber-Optic DAS Arrays

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.

    2016-12-01

    Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.

  6. Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function

    NASA Astrophysics Data System (ADS)

    Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.

    2017-12-01

    It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)

  7. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate final minimum 1D P and S velocity models for the region with appropriate stations corrections. Finally, all the events are relocated with the NonLinLoc algorithm in combination with the updated 1D models. The proposed procedure represents the first step towards uniform earthquake catalog for the entire greater Alpine region using the AASN.

  8. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    NASA Astrophysics Data System (ADS)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (< 10 km depth) with variable spatial and temporal occurrence, including early 20th century events of magnitude 5.5 - 6. Recent small earthquakes (magnitudes 3 to -1) have been monitored with a variety of broadband and short-term local seismic networks over the past several decades, but these routine catalogs have not been relocated or fully interpreted in terms of newer models of the structure, or its emplacement and history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  9. Tectonic Inversion Along the Algerian and Ligurian Margins: On the Insight Provided By Latest Seismic Processing Techniques Applied to Recent and Vintage 2D Offshore Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.

    2014-12-01

    Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to reveal.

  10. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.

  11. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  12. Naval Research Laboratory Arctic Initiatives

    DTIC Science & Technology

    2011-06-01

    Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial

  13. Tiny intraplate earthquakes triggered by nearby episodic tremor and slip in Cascadia

    USGS Publications Warehouse

    Vidale, J.E.; Hotovec, A.J.; Ghosh, A.; Creager, K.C.; Gomberg, J.

    2011-01-01

    Episodic tremor and slip (ETS) has been observed in many subduction zones, but its mechanical underpinnings as well as its potential for triggering damaging earthquakes have proven difficult to assess. Here we use a seismic array in Cascadia of unprecedented density to monitor seismicity around a moderate 16 day ETS episode. In the 4 months of data we examine, we observe five tiny earthquakes within the subducting slab during the episode and only one more in the same area, which was just before and nearby the next ETS burst. These earthquakes concentrate along the sides and updip edge of the ETS region, consistent with greater stress concentration there than near the middle and downdip edge of the tremor area. Most of the seismicity is below the megathrust, with a similar depth extent to the background intraslab seismicity. The pattern of earthquakes that we find suggests slow slip has a more continuous temporal and spatial pattern than the tremor loci, which notoriously appear in bursts, jumps, and streaks. Copyright 2011 by the American Geophysical Union.

  14. Improved earthquake monitoring in the central and eastern United States in support of seismic assessments for critical facilities

    USGS Publications Warehouse

    Leith, William S.; Benz, Harley M.; Herrmann, Robert B.

    2011-01-01

    Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.

  15. Multichannel seismic-reflection data collected in 1980 in the eastern Chukchi Sea

    USGS Publications Warehouse

    Grantz, Arthur; Mann, Dennis M.; May, Steven D.

    1986-01-01

    The U.S. Geological Survey (USGS) collected approximately 2,652 km of 24-channel seismic-reflection data in early September, 1980, over the continental shelf in the eastern Chukchi Sea (Fig. 1). The profiles were collected on the USGS Research Vessel S.P. Lee. The seismic energy source consisted of a tuned array of five airguns with a total volume of 1213 cubic inches of air compressed to approximately 1900 psi. The recording system consisted of a 24-channel, 2400 meter long streamer with a group interval of 100 m, and a GUS (Global Universal Science) model 4200 digital recording instrument. Shots were fired every 50 meters. Navigational control for the survey was provided by a Magnavox integrated navigation system using transit satellites and doppler-sonar augmented by Loran C (Rho-Rho). A 2-millisecond sampling rate was used in the field; the data were later desampled to 4-milliseconds during the demultiplexing process. 8 seconds data length was recorded. Processing was done at the USGS Pacific Marine Geology Multichannel Processing Center in Menlo Park, California, in the sequence: editing-demultiplexing, velocity analysis, CDP stacking, deconvolution-filtering, and plotting on an electrostatic plotter. Plate 1 is a trackline chart showing shotpoint navigation.

  16. The behavioural response of migrating humpback whales to a full seismic airgun array.

    PubMed

    Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Slade, Robert; Paton, David; Cato, Douglas H

    2017-12-20

    Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales ( Megaptera novaeangliae ) to a 3130 in 3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel ( n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls , the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa 2 s. © 2017 The Author(s).

  17. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)

    NASA Astrophysics Data System (ADS)

    -Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen

    2016-04-01

    Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the Moesian Platform. The backazimuth distribution of energy shows that the scattering comes primarily from the southern and northern edges of the basin. The Airy phases of Love waves were identified in the direction of the backazimuth and its reflection around the fundamental frequency (0.15 - 0.25 Hz). Love and Rayleigh wave dispersion curves are successfully retrieved after combining the records of all events, and show a good match with the ones obtained in previous studies using ambient vibration measurements. Additionally, the first higher mode of Rayleigh waves was retrieved using earthquakes records. We could also identify the Rayleigh wave ellipticity curves, distinguishing between prograde and retrograde particle motion.

  18. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

  19. Seismic gradiometry using ambient seismic noise in an anisotropic Earth

    NASA Astrophysics Data System (ADS)

    de Ridder, S. A. L.; Curtis, A.

    2017-05-01

    We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.

  20. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  1. The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap

    NASA Astrophysics Data System (ADS)

    Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten

    2015-04-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures mapped for the area. Consistent with mapped faults, the seismicity interested both eastwards and westwards dipping normal faults that define the geometry of seismically active graben-like structures. At least one cluster shows an additional spatio-temporal migration with spreading hypocentres similar to other swarm areas with fluid-triggering mechanisms. The static Coulomb stress change transferred by the largest shock onto the swarm area and on the CF cannot explain the observed high seismicity rate. We study the evolution of the frequency-size distribution of the events and the seismicity rate changes. We find that the majority of the earthquakes cannot be justified as aftershocks (directly related to the tectonics or to earthquake-earthquake interaction) and are best explained by an additional forcing active over the entire sequence. Our findings are consistent with the action of fluids (e.g. pore-pressure diffusion) triggering seismicity on pre-loaded faults. Additional aseismic release of tectonic strain by transient, slow slip is also consistent with our analysis. Analysis of deformation time series may clarify this point in future studies.

  2. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  3. Analysis and Modeling of the Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2012-09-01

    09NA29328 Proposal No. BAA09-69 ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3...Administration (NNSA). 14. ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3 kilometer (km) depth...in the lower half of the borehole array . The strong velocity discontinuity at 2.0 km depth gives rise to another converted S wave, best seen in

  4. 76 FR 26255 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ..., the R/V Marcus G. Langseth (Langseth) and a seismic airgun array to collect seismic reflection and... possible, depending on logistics and weather. The proposed seismic survey will collect seismic reflection... Shillington, Spahr Webb, and Mladen Nedimovic, all of L-DEO. The vessel will be self-contained, and the crew...

  5. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  6. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    NASA Astrophysics Data System (ADS)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  7. Evaluation of high frequency ghost cavitation emissions for two different seismic air-gun arrays using numerical modelling

    NASA Astrophysics Data System (ADS)

    Khodabandeloo, Babak; Landrø, Martin

    2017-04-01

    Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.

  8. Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway

    NASA Astrophysics Data System (ADS)

    Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.

    2014-12-01

    Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at the local seismometers as the race began. The infrasound arrays recorded a variety of atmosphere only processes including substantial helicopter traffic although the array outside the track did not capture the details of the race as a result of the rapid attenuation of high frequency signals.

  9. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    NASA Astrophysics Data System (ADS)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.

  10. Application of Seismic Array Processing to Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.

  11. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  12. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  13. An ocean bottom seismometer study of shallow seismicity near the Mid- America Trench offshore Guatemala ( Pacific).

    USGS Publications Warehouse

    Ambos, E.L.; Hussong, D.M.; Holman, C.E.

    1985-01-01

    Five ocean bottom seismometers recorded seismicity near the Mid-America Trench offshore Guatemala for 27 days in 1979. The array was emplaced in the lower slope region, just above the topographic trench. Approximately 170 events were recorded by 3 or more seismometers, and almost half were located with statistical hypocentral errors of <10 km. Most epicenters were located immediately landward of the trench axis, and many were further confined to a zone NW of the array. In terms of depth, most events were located within the subducting Cocos plate rather than in the overlying plate or at the plate-plate boundary. Most magnitudes ranged between 3.0 and 4.0 mb, and the threshold magnitude of locatable events was about 2.8 mb. Two distinct composite focal mechanisms were determined. One appears to indicate high- angle reverse faulting in the subducting plate, in a plane parallel to trench axis strike. The other, constructed for some earthquakes in the zone NW of the array, seems to show normal faulting along possible fault planes oriented quasi-perpendicular to the trench axis. Projection of our seismicity sample and of well-located WWSSN events from 1954 to 1980 onto a plane perpendicular to the trench axis shows a distinct gap between the shallow seismicity located by our array, and the deeper Wadati-Benioff zone seismicity located by the WWSSN. We tentatively ascribe this gap to inadequate sampling.-from Authors

  14. Measuring temporal variability in pore-fluid chemistry to assess gas hydrate stability: development of a continuous pore-fluid array.

    PubMed

    Lapham, Laura L; Chanton, Jeffrey P; Martens, Christopher S; Higley, Paul D; Jannasch, Hans W; Woolsey, J Robert

    2008-10-01

    A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site. A 170 day record was acquired from the overlying water and 1.3 m below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and methane concentrations and dissolved inorganic carbon and methane stable carbon and deuterium isotope ratios. Chloride and sulfate did not change significantly over time, suggesting the absence of gas hydrate formation or decomposition events. Over the temporal record, methane concentrations averaged 4 mM at 1.3 mbsf, and methane was thermogenic in origin (delta13C-CH4 = -32.4 +/- 3.4 per thousand). The timing of an anomalous 14 mM methane spike coincided with a nearby earthquake (Mw = 5.8), consistent with the hypothesis that pore-fluid chemistry reflects seismic events.

  15. Seismicity in Oklahoma Before Prague

    NASA Astrophysics Data System (ADS)

    Delorey, A. A.; Johnson, P. A.

    2017-12-01

    The 2011 M5.7 Prague earthquake was the first large anthropogenically induced earthquake in Oklahoma. Since then, three more M5+ earthquakes followed it near Fairview, Pawnee, and Cushing. Oklahoma induced seismicity has garnered a lot of attention from both the media and the scientific community. But, little is known about seismicity in Oklahoma prior to the Prague earthquake due to a lack of instrumentation. We ask the question, "Was there any indication in the geophysical record prior to the Prague earthquake that bigger earthquakes were becoming more likely?" Fortunately, stations from Earthscope's Transportable Array were in Oklahoma during 2010 and 2011 providing a sparse, but still useful data set. Using our microseismicity detector called Interstation Seismic Coherence, we were able to catalog over 3000 earthquakes with a magnitude of completeness around 2.0 in northeastern Oklahoma over 17 months between June 2010 and the Prague earthquake in November 2011. During this period of time there are less than 200 earthquakes in the ANSS Comprehensive Catalog and 900 in the catalog produced by the Array Network Facility at the UCSD using Transportable Array stations. The M>5 earthquakes occurred in a region where stress conditions and seismicity rates were evolving much faster than they do in many natural systems presenting an opportunity to study the time dependence of upper crustal behavior. A clustering analysis shows that earthquakes occurring in northeastern Oklahoma during 2010-2011 are highly correlated with the magnitude of solid earth tides. Although some aftershocks and clusters were recorded following the Prague earthquake using temporary arrays, regional seismicity is not well recorded again until later in 2013. Of note, after 2013, we no longer observe tidal correlation suggesting the ensemble of fault criticality has evolved. One explanation for this change in earthquake behavior is a change in poroelastic conditions.

  16. Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis

    NASA Astrophysics Data System (ADS)

    Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.

    2016-12-01

    Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.

  17. Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.

    2017-12-01

    In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.

  18. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Xu, Fei; Burdette, T.

    1998-01-01

    Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996.

  19. Seismic fiber optic multiplexed sensors for exploration and reservoir management

    NASA Astrophysics Data System (ADS)

    Houston, Mark H.

    2000-12-01

    Reliable downhole communications, control and sensor networks will dramatically improve oil reservoir management practices and will enable the construction of intelligent or smart-well completions. Fiber optic technology will play a key role in the implementation of these communication, control and sensing systems because of inherent advantages of power, weight and reliability over more conventional electronic-based systems. Field test data, acquired using an array of fiber optic seismic hydrophones within a steam-flood, heavy oil- production filed, showed a significant improvement (10X in this specific case) in subsurface resolution as compared to conventional surface seismic acquisition. These results demonstrate the viability of using multiplexed fiber optic sensors for exploration and reservoir management in 3D vertical seismic profiling (VSP) surveys and in permanent sensor arrays for 4D surveys.

  20. Mapping Shear-wave Velocity Structures of the "African Anomaly" Along a Northwest to Southeast Arc From New Zealand to the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Frodsham, A. E.; Wen, L.

    2006-12-01

    A previous study [Wang and Wen, 2006] investigated the geometry and shear velocity structure of the "African Anomaly" along a great circle arc from the East Pacific Rise to the Japan Sea, and concluded the anomaly extends 1300 km above the core-mantle boundary, that the sides of the anomaly slope towards the apex and has velocity deviations of -5% in the base and -2% to -3% in the mid-lower mantle. Wang and Wen [2004] also reported on the very low velocity province that forms the base of the "African Anomaly" and its lateral extent, but the northern edge of the anomaly was poorly constrained because of the nature of the seismic data. In this presentation we focus on the nature of the anomaly in a cross-section of the mantle along a great arc, from New Zealand, to the Mid-Atlantic Ridge off the coast of Newfoundland, centered over the anomaly. In particular, we focus on the northern edge of the "African Anomaly" where a paucity of large, deep focus earthquakes makes seismic arrivals from the northwest difficult to analyze. We map the lateral extent, thickness, and shear velocity structures of the "African Anomaly" on the basis of forward travel time and waveform modeling of direct S, ScS, and SKS waves. Seismic data used in this study were collected from PASSCAL arrays: KAAPVAAL seismic array (operating years 1997-1999), Tanzania seismic array (1994- 1995), Ethiopia/Kenya seismic array (2000-2002), and the Global Seismographic Network (1994-2002). We minimize uncertainty from earthquake mislocation by relocation of the earthquakes using a global tomographic shear wave velocity model and also correct for heterogeneities outside the anomaly. We explore various methods of data processing, such as frequency filtration, low fold stacking, and cross correlation, to best interpret the arrival times of the various seismic phases and constrain the nature of the "African Anomaly" along a northwest to southeast cross-section.

  1. Microseismic Properties of Typhoons in the Western Pacific

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Koper, K. D.; Burlacu, R.

    2017-12-01

    We analyzed the ambient seismic noise recorded in 2012 by a temporary array of 240 seismometers deployed in Yunnan, China as part of Phase I of the ChinArray project. The stations were installed with a quasi-uniform spacing of about 70 km by the Yunnan Earthquake Administration. Each station consisted of a three-component Guralp-3ESP seismometer and a Reftek 130 data acquisition system with a sampling interval of 0.01 s. To identify the structure and source of the ambient noise, we applied frequency-dependent polarization analysis to the individual stations and f-k analysis for three sub-arrays consisting of 14-25 stations. The most prominent microseismic signals we observed were surface waves generated at periods of 3-7 s by 15 typhoons that occurred in the Western Pacific, mostly during the summer of 2012. The U.S. Navy's Joint Typhoon Warning Center divides a tropical cyclone into four levels, Tropical Depression (TD), Tropical Storm (TS), Typhoon (TY) and Super Typhoon (ST) based on the estimated wind speed. Four of the 15 analyzed typhoons reached ST intensity. The maximum microseism signals tended to last throughout the lifetime of a typhoon. Sometimes, we observed the splitting of a single microseism spectral peak into two parallel peaks. We compared the seismic observations to storm track data for typhoons Guchol, Jelawat, and Son-Tinh, and with oceanic models of wave-wave interaction. We find that microseismic power is correlated with changes in the direction or speed, or both, of the typhoon track. High wind speed or changing wind speed within the typhoon does not have a clear relationship with the microseismic power.

  2. Subspace Dimensionality: A Tool for Automated QC in Seismic Array Processing

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2013-12-01

    Because of the great resolving power of seismic arrays, the application of automated processing to array data is critically important in treaty verification work. A significant problem in array analysis is the inclusion of bad sensor channels in the beamforming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by node basis, so the dimensionality of the node traffic is instead monitoried for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. In the established template application, a detector functions in a manner analogous to waveform cross-correlation, applying a statistical test to assess the similarity of the incoming data stream to known templates for events of interest. In our approach, we seek not to detect matching signals, but instead, we examine the signal subspace dimensionality in much the same way that the method addresses node traffic anomalies in large computer systems. Signal anomalies recorded on seismic arrays affect the dimensional structure of the array-wide time-series. We have shown previously that this observation is useful in identifying real seismic events, either by looking at the raw signal or derivatives thereof (entropy, kurtosis), but here we explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for identifying bad array elements through a jackknifing process to isolate the anomalous channels, so that an automated analysis system might discard them prior to FK analysis and beamforming on events of interest.

  3. Ambient Vehicular Noise recorded on a 2D Distributed Fiber Optic Sensing Array :Applications to Permafrost Thaw Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Wagner, A. M.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.

    2016-12-01

    Distributed Acoustic Sensing (DAS) is a recently developed technique that allows the spatially dense ( 1m) continuous recording of seismic signals on long strands of commercial fiber optic cables. The availability of continuous recording on dense arrays offers unique possibilities for long-term timelapse monitoring of environmental processes in arctic environments. In the absence of a repeatable semi-permanent seismic source, the use of ambient surface wave noise from infrastructure use (e.g. moving vehicles) for seismic imaging allows tomographic monitoring of evolving subsurface systems. Challenges in such scenarios include (1) the processing requirements for dense (1000+ channel) arrays recording weeks to months of seismic data, (2) appropriate methods to retrieve empirical noise correlation functions (NCFs) in environments with non-optimal array geometries and both coherent as well as incoherent noise, and (3) semi-automated approaches to invert timelapse NCFs for near-surface soil properties.We present an exploratory study of data from a sparse 2D DAS array acquisition on 4000 linear meters of trenched fiber deployed in 10 crossing profiles. The dataset, collected during July and August of 2016, covers a zone of permafrost undergoing a controlled thaw induced by an array of resistive heaters. The site, located near a heavily used road, has a high level of infrastructure noise but exhibits distance-dependent variation in both noise amplitude and spectrum. We apply seismic interferometry to retrieve the empirical NCF across array subsections, and use collocated geophone and broadband sensors to measure the NCF against the true impulse response function of the medium. We demonstrate that the combination of vehicle tracking and data windowing allows improved reconstruction of stable NCFs appropriate for dispersion analysis and inversion. We also show both spatial and temporal patterns of background noise at the site using 2D beamforming and spectral analysis. Our results suggest that valuable information can be extracted from ambient noise recorded with DAS, particularly in the context of monitoring transformations in cold region environments.

  4. Berkeley Seismological Laboratory Seismic Moment Tensor Report for the August 6, 2007 M3.9 Seismic event in central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, S; Dreger, D; Hellweg, P

    2007-08-08

    We have performed a complete moment tensor analysis of the seismic event, which occurred on Monday August 6, 2007 at 08:48:40 UTC 21 km from Mt.Pleasant, Utah. In our analysis we utilized complete three-component seismic records recorded by the USArray, University of Utah, and EarthScope seismic arrays. The seismic waveform data was integrated to displacement and filtered between 0.02 to 0.10 Hz following instrument removal. We used the Song et al. (1996) velocity model to compute Green's functions used in the moment tensor inversion. A map of the stations we used and the location of the event is shown inmore » Figure 1. In our moment tensor analysis we assumed a shallow source depth of 1 km consistent with the shallow depth reported for this event. As shown in Figure 2 the results point to a source mechanism with negligible double-couple radiation and is composed of dominant CLVD and implosive isotropic components. The total scalar seismic moment is 2.12e22 dyne cm corresponding to a moment magnitude (Mw) of 4.2. The long-period records are very well matched by the model (Figure 2) with a variance reduction of 73.4%. An all dilational (down) first motion radiation pattern is predicted by the moment tensor solution, and observations of first motions are in agreement.« less

  5. The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling.

    PubMed

    Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano

    2017-12-12

    Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.

  6. Investigation of cortical structures at Etna Volcano through the analysis of array and borehole data.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore

    2015-04-01

    A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.

  7. Modeling Wide-Angle Seismic Data from the Hi-CLIMB Experiment in Tibet

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Griffin, J. D.; Tseng, T.; Chen, W.

    2009-12-01

    Using data from local and regional events recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes, including arrival times, Hilbert amplitudes and pulse frequencies, to constrain structures of seismic wave speed and attenuation in the crust and the upper mantle in western China. We construct more than 30 high-quality, regional seismic profiles, and select 14 of these, which show excellent crustal and Pn arrivals, for further analysis. Travel-times from events at regional distances constrain large-scale velocity structures, and four close-in events provide further details on crustal structure. We use the 3-D ray tracer, CRT, to model the travel-times. Initial results indicate that the Moho beneath the Lhasa terrane of southern Tibet is over 73 km deep with a high Pn speed of about 8.2 km/s. In contrast, the Qiangtang terrane farther north shows a thinner crust, by up to 10 km, and a low Pn speed of 7.8-7.9 km/s. Preliminary estimates of upper mantle velocity gradients are between .003 and .004 km/s per km, consistent with previous results by Phillips et al. (2007). We also use P to SV conversions from teleseismic earthquakes to independently constrain variations in speeds of Pn and depths of the Moho. For instance, amplitudes of the SsPmP phase, when its last reflection off the Moho is near-critical, are particularly sensitive to the contrast in seismic wave speeds across the crust-mantle interface; and results from these additional data are consistent with those from modeling of travel-times. Additional seismic attributes, extracted from wave-trains containing Pn and major crustal phases, are being compared with results of numerical modeling based on the spectral element method and asymptotic calculations in laterally varying media, where both lateral and vertical gradients in seismic wave speeds can strongly affect Pn amplitudes and pulse frequencies.

  8. Spatial and temporal distribution of the seismicity along two mid-oceanic ridges with contrasted spreading rates in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, E.; Perrot, J.; Royer, J. Y.

    2015-12-01

    The seismicity of the ultra-slow spreading Southwest (14 mm/y) and intermediate spreading Southeast (60 mm/y) Indian ridges was monitored from February 2012 to March 2013 by the OHASISBIO array of 7 autonomous hydrophones. A total of 1471 events were located with 4 instruments or more, inside the array, with a median location uncertainty < 5 km and a completeness magnitude of mb = 3. Both ridges display similar average rates of seismicity, suggesting that there is no systematic relationship between seismicity and spreading rates. Accretion modes do differ, however, by the along-axis distribution of the seismic events. Along the ultra-slow Southwest Indian Ridge, events are sparse but regularly spaced and scattered up to 50 km off-axis. Along the fast Southeast Indian Ridge, events are irregularly distributed, focusing in narrow regions near the ridge axis at segment ends and along transform faults, whereas ridge-segment centers generally appear as seismic gaps (at the level of completeness of the array). Only two clusters, 6 months apart, are identified in a segment-center at 29°S. From the temporal distribution of the clustered events and comparisons with observations in similar mid-oceanic ridge setting, both clusters seem to have a volcanic origin and to be related to a dike emplacement or a possible eruption on the seafloor. Their onset time and migration rate are comparable to volcanic swarms recorded along the Juan de Fuca Ridge. Overall, the rate of seismicity along the two Indian spreading ridges correlates with the large-scale variations in the bathymetry and shear-wave velocity anomaly in the upper mantle, suggesting that the distribution of the low-magnitude seismicity is mainly controlled by along-axis variations in the lithosphere rheology and temperature.

  9. Construction and development of IGP DMC of China National Seismological Network

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Zheng, J.; Lin, P.; Yao, Z.; Liang, J.

    2011-12-01

    In 2003, CEA (China Earthquake Administration) commenced the construction of China Digital Seismological Observation Network. By the end of 2007, a new-generation digital seismological observation system had been established, which consists of 1 National Seismic Network, 32 regional seismic networks, 2 small-aperture seismic arrays, 6 volcano monitoring networks and 19 mobile seismic networks, as well as CENC (China Earthquake Network Center) DMC (Data Management Centre) and IGP (Institute of Geophysics) DMC. Since then, the seismological observation system of China has completely entered a digital time. For operational, data backup and data security considerations, the DMC at the Institute of Geophysics (IGP), CEA was established at the end of 2007. IGP DMC now receives and archives waveform data from more than 1000 permanent seismic stations around China in real-time. After the great Wenchuan and Yushu earthquakes, the real-time waveform data from 56 and 8 portable seismic stations deployed in the aftershock area are added to IGP DMC. The technical system of IGP DMC is designed to conduct data management, processing and service through the network of CEA. We developed and integrated a hardware system with high-performance servers, large-capacity disc arrays, tape library and other facilities, as well as software packages for real-time waveform data receiving, storage, quality control, processing and service. Considering the demands from researchers for large quantities of seismic event waveform data, IGP DMC adopts an innovative "user order" method to extract event waveform data. Users can specify seismic stations, epicenter distance and record length. In a short period of 3 years, IGP DMC has supplied about 350 Terabytes waveform data to over 200 researches of more than 40 academic institutions. According to incomplete statistics, over 40 papers have been published in professional journals, in which 30 papers were indexed by SCI. Now, IGP DMC has become an important platform of promoting seismological researches in China. In the future, IGP DMC will continue to improve its technical system with powerful ability of waveform data processing, management and service, and to provide better and more data service to the research community. We expect IGP DMC to become an exchange and collaboration platform for geo-scientific researchers around the world.

  10. Seismic Source Scaling and Discrimination in Diverse Tectonic Environments

    DTIC Science & Technology

    2009-09-30

    3349-3352. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004). Earthquake source parameters determined by the SAFOD Pilot Hole seismic array ... seismic discrimination by performing a thorough investigation of* earthquake source scaling using diverse, high-quality datascts from varied tectonic...these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity

  11. Ground Motion Response to a ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays

    DOE PAGES

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; ...

    2018-03-17

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench, including 340 m in a well. The conventional seismometer array consisted of 238 three- component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 meters in length and geophones were spaced atmore » approximately 60- meter intervals. Both DAS and conventional geophones recorded continuously over 15 days during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise (SNR) ratios in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources, because the earthquake signal contains more low frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. In conclusion, the combination of good SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.« less

  12. Ground Motion Response to a ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays

    NASA Astrophysics Data System (ADS)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; Fratta, Dante; Feigl, Kurt L.; Thurber, Clifford H.; Mellors, Robert J.

    2018-03-01

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench, including 340 m in a well. The conventional seismometer array consisted of 238 three-component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 meters in length and geophones were spaced at approximately 60-m intervals. Both DAS and conventional geophones recorded continuously over 15 days during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise (SNR) ratios in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources, because the earthquake signal contains more low frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. The combination of good SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.

  13. Detailed study of upper mantle anisotropy in the upper mantle of eastern North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Levin, V. L.; Li, Y.

    2016-12-01

    We collected observations of core-refracted shear waves on a 1300 km long array crossing the eastern part of the North American continent from James Bay to the Fundy Basin. We combine data from the Earthscope Transportable Array, Canadian and US permanent observatories, and the recently completed Earthscope FlexArray QMIII.Past studies found ample evidence for directional dependence (anisotropy) of seismic wave speed in the upper mantle of this region. However, to date the lateral spacing of seismic observatories made direct comparisons between anisotropic structure and tectonic divisions evident on the surface challenging. With instruments spacing 50 km, and less near major tectonic boundaries such as the Grenville Front and the Appalachian Front, we can discriminate between gradual changes in anisotropic properties due to asthenospheric flow variations, and abrupt and localized changes likely to arise from juxtaposition of distinct lithospheric blocks.To insure lateral consistency of measurements we selected core-refracted shear waves that were observed over the entire length of our array. Also, since directional dependence of splitting parameters is a well recognized signature of vertical changes in anisotropic properties we examine observations from different directions, and look for systematic changes.Most locations show evidence for some degree of splitting in observed shear waves. Delays between fast and slow components estimated using rotation-correlation method range from 0.3 to 1.5 s. At most sites delay values vary considerably between individual phases measured. Fast polarizations are predominantly NE-SW, which agrees with numerous past studies of the region. Systematic directional dependence of fast polarization is seen at all sites we studied. Furthermore, the values of fast polarization appear to be similar along the entire array for individual events but vary from event to event. Both of these observations are consistent with the previously proposed notion of layered anisotropy in the upper mantle of the North American continent. We find localized changes in splitting parameters at the Grenville Front. The Appalachian Front, or the internal divisions of the Appalachian Orogen do not have obvious changes in splitting parameters associated with them.

  14. Ground Motion Response to a ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench, including 340 m in a well. The conventional seismometer array consisted of 238 three- component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 meters in length and geophones were spaced atmore » approximately 60- meter intervals. Both DAS and conventional geophones recorded continuously over 15 days during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise (SNR) ratios in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources, because the earthquake signal contains more low frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. In conclusion, the combination of good SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.« less

  15. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays

    NASA Astrophysics Data System (ADS)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; Fratta, Dante; Feigl, Kurt L.; Thurber, Clifford H.; Mellors, Robert J.

    2018-06-01

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) × 500 m (width) × 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The distributed acoustic sensing (DAS) array consisted of about 8400 m of fiber-optic cable in a shallow trench and 360 m in a well. The conventional seismometer array consisted of 238 shallowly buried three-component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 m in length and geophones were spaced at approximately 60 m intervals. Both DAS and conventional geophones recorded continuously over 15 d during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on 2016 March 21. Its epicentre was approximately 150 km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise ratios (SNRs) in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources because the earthquake signal contains more low-frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. The combination of good SNR in the seismic frequency band, high-spatial density, large N and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.

  16. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    USGS Publications Warehouse

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  17. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.

  18. Exploring Seismic Noise with the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R. W.; Simpson, D. W.

    2009-12-01

    The large number of seismic stations that comprise the EarthScope USArray Transportable Array (TA) seismic network provide an unparalleled opportunity for studying how seismic noise evolves with time over a large portion of the North American continent. Power spectra for every station in the TA data are computed automatically, for every hour of every station-day, by the Quality Analysis Control Kit (QUACK) system at the IRIS Data Management Center. The power spectra utilize hour-long data segments, with 50% overlap between segments, providing spectral values in the band between 20 Hz and 172 s. Thus, at any in-band frequency one can construct a continuous two-year time history of seismic noise for every TA station. When the time variation of the power spectra values across the array are rendered as individual movie frames one can examine the evolution of seismic noise across the full spatio-temporal extent of the TA. Overall, the background noise levels (especially at periods below 10 s) are remarkably uniform across the entire array. Numerous expected features are present, including diurnal and annual variations, enhanced noise levels at coastal stations, transients related to large storms, and episodes when the observations of background noise are dominated by earthquake energy. Upgrades to the TA station instrumentation will provide the capability to measure additional physical factors relevant to seismic noise. All TA stations deployed after August 2009 include MEMS barometers that can measure atmospheric pressure from DC to approximately 0.1 Hz. In additional, several stations have been temporarily equipped with infrasound sensors. Previous research has highlighted the direct effect of atmospheric pressure fluctuations on very long period vertical seismometers. The relationship to noise observed on horizontal seismometers is more complex. However, with a large number of uniform installations it may be possible to make further progress. We will present analyses of the spatio-temporal evolution of noise observed on the TA stations and present preliminary results from the barometers and infrasound sensors that have been deployed with TA stations so far. We will discuss opportunities for augmenting TA stations with additional sensors that may further elucidate seismic noise processes.

  19. Infrasonic and seismic signals from the Myanmar earthquake of November 11,2012

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhang, Dongning; Li, Ke

    2013-04-01

    On November 11, 2012, at 01:12:38 UTC (09:12:38 Beijing Time), a strong earthquake (Mw=6.8) occurred in Myanmar. The epicenter (23.0˚N,95.9˚E,focal depth ~10 km) was near the town of Male, 52 km NNE of the city of Shwebo. The earthquake with a rupture length of 60-70 km resulted from right lateral movement on the Sagaing Fault related to collision between the Indo-Australian Plate and the Eurasian Plate. At a distance of 366 km from the epicenter, infrasonic and seismic signals were recorded by Tengchong seismo-acoustic array located in southwest of China for monitoring volcanic and earthquake activity, which consists of four MB2005 microbarometers with bandwidth 0.01-27Hz and four BBVS-60 seismometers with bandwidth 0.01667-50Hz arranged in a centered triangle with an aperture of about 1.8 km. PMCC provided by CEA/DASE applied to analyze infrasound data. Comparison of the infrasonic and seismic signals produced by this earthquake showed infrasonic signals with different arrival times and azimuths may be classified as local, epicentral and diffracted or secondary sourced infrasound, but seismic signals only include P, S and surface waves can produce local infrasound through ground-coupled air waves at the station. The PMCC results indicated that the infrasonic waves showed a consistent acoustic trace velocity of approximately 0.348 km/s from 09:30 to 09:36 (Beijing Time) and the azimuth of arrival changed with time from 227 to 217 degrees. There are mountain chains with altitude more than 1000 m in the east of the epicenter. Mountains shaking induced by earthquake acted as a speaker and radiated the infrasound that traveled to Tengchong seismo-acoustic array. It was worth noting that PMCC detected a group infrasound with trace velocity of approximately 0.339 km/s and arrival azimuth of 237 degree from 09:23:31 to 09:24 (Beijing Time). It may be inferred that the seismic surface wave induced by earthquake reach the mountains on the border between China Yunnan and Myanmar, then acted as a secondary sources and generated diffracted infrasound. This work is supported by the fundamental research and development project of the Institute of Geophysics,CEA(DQJB10B28).

  20. The KRISP 90 seismic experiment-a technical review

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Achauer, U.; Keller, Gordon R.; Khan, M.A.; Mooney, W.D.; Gaciri, S.J.; Obel, J.D.

    1994-01-01

    On the basis of a preliminary experiment in 1985 (KRISP 85), a seismic refraction/wide-angle reflection survey and a teleseismic tomography experiment were jointly undertaken to study the lithospheric structure of the Kenya rift down to depths of greater than 200 km. This report serves as an introduction to a series of subsequent papers and will focus on the technical description of the seismic surveys of the main KRISP 90 effort. The seismic refraction/wide-angle reflection survey was carried out in a 4-week period in January and February 1990. It consisted of three profiles: one extending along the rift valley from Lake Turkana to Lake Magadi, one crossing the rift at Lake Baringo, and one located on the eastern flank of the rift proper. A total of 206 mobile vertical-component seismographs, with an average station interval of about 2 km, recorded the energy of underwater and borehole explosions to distances of up to about 550 km. During the teleseismic survey an array of 65 seismographs was deployed to record teleseismic, regional and local events for a period of about 7 months from October 1989 to April 1990. The elliptical array spanned the central portion of the rift, with Nakuru at its center, and covered an area about 300 ?? 200 km, with an average station spacing of 10-30 km. Major scientific goals of the project were to reveal the detailed crustal and upper-mantle structure under the Kenya rift, to study the relationship between deep crustal and mantle structure and the development of sedimentary basins and volcanic features within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system, and to answer fundamental questions such as the mode and mechanism of continental rifting. ?? 1994.

  1. The multi-parameter borehole system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSITE Project.

    NASA Astrophysics Data System (ADS)

    Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref

    2016-04-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Deploying a borehole system eastern end of the Ganos fault zone may yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture.

  2. EarthScope's USArray: A Decade of Observations and Results

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R. W.; Hafner, K.; Gridley, J. M.; Schultz, A.; Frassetto, A.; Simpson, D. W.

    2013-12-01

    EarthScope's USArray observatory provides unprecedented observations of geophysical targets across the contiguous United States through the systematic deployment of seismic, magnetotelluric, and atmospheric instruments. In addition, USArray includes tightly integrated data management and outreach activities. The seismic and atmospheric components of USArray consist of a Transportable Array (TA), Flexible Array (FA), and Reference Network. The TA has now occupied approximately 1700 sites spanning the entire contiguous 48 states, at 70 km inter-station spacing. These stations have provided broadband seismic, barometric pressure and atmospheric infrasound observations. The pool of instruments that comprise the FA have been deployed by numerous individual investigators in dense arrays to investigate local and regional features over time periods ranging from days to years. The Reference Network provides a permanent, stationary foundation for the TA and FA, with approximately 100 broadband stations deployed across the contiguous US at roughly 300 km spacing. The magnetotelluric (MT) component of USArray has provided both fixed and campaign-style long-period magnetotelluric observations at hundreds of locations across the US. Many of the field activities of USArray engaged both students and the public in important ways and this has been a significant component of USArray outreach. The TA alone has engaged well over one hundred students in site reconnaissance activities and placed seismic stations on the property of roughly a thousand different landowners. All data collected by USArray are openly available, most in real time. Many of the observations have also been incorporated into a variety of data products that have been developed to facilitate use of USArray by many different audiences. The scientific community has used USArray data to achieve a wide range of results--some that were anticipated when the facility was proposed and some that were completely unanticipated. Data products such as direct visualizations of seismic wave propagation observed by the TA have been viewed hundreds of thousands of times on the web by the general public. We will provide a brief overview of the deployments and accomplishments of USArray from the past ten years, and an overview of the significant and diverse scientific results that have been achieved. We will touch on some of the technologies and organizational and operational strategies that have enabled the success of USArray. We will conclude with a brief discussion of USArray plans for the next five years.

  3. High-resolution Teleseismic Tomography Reveals a Complex Lithospheric Structure Beneath the North Anatolian Fault

    NASA Astrophysics Data System (ADS)

    Papaleo, E.; Cornwell, D. G.; Rawlinson, N.

    2016-12-01

    We present high-resolution tomography images of a major active continental strike slip fault zone, the North Anatolian Fault (NAF) in northern Turkey. Historical seismic records show that the NAF, with a length of 1500 km and a current slip rate of 25 mm/yr, is capable of producing large magnitude earthquakes that have activated different segments of the fault in a westward progression towards the study region, where the devastating Izmit and Düzce events occurred in 1999. The NAF poses a major seismic hazard to the city of Istanbul, situated close to one of the two strands into which the fault splays east of the Sea of Marmara. In order to improve our understanding of the lower crust and upper mantle properties that influence fault dynamics throughout the seismic cycle, we constrain NAF structure across the Moho in unprecedented detail by applying teleseismic tomography to data recorded by an array of 70 temporary seismic stations deployed with 7 km spacing (Dense Array for North Anatolia, DANA). High quality recordings of teleseismic earthquakes combined with the dense nature of the array allow high-resolution (i.e. horizontal and vertical resolution of 8 and 15 km, respectively) 3D seismic imaging of the velocity structure beneath the NAF. The northern branch of the NAF coincides with an abrupt change between opposite polarity velocity anomalies and can be traced to at least Moho depths ( 36 km) with a width of ≤8 km. A similar pattern of antithetic anomalies occurs over a horizontal distance of 30-50 km below the Moho and may indicate a widening shear zone as it passes from the crust into the upper mantle. We find evidence for significant along-strike variation in NAF structure over distances of ≤20 km and interpret an east-to-west narrowing of upper mantle slow velocity anomalies (from 50 to 30 km) to represent laterally variable strain focussing within the lithosphere. Our observations are consistent with the notion that the NAF marks the boundary between compositionally distinct lithospheres with different tectonic histories and reactivates the pre-existing Intra-Pontide suture zone. We discuss our results in terms of the influence of lithosphere heterogeneity on the development and evolution of global continental strike-slip fault zones and assess the applicability of current shear zone deformation models.

  4. Source and Path Calibration in Regions of Poor Crustal Propagation Using Temporary, Large-Aperture, High-Resolution Seismic Arrays (Postprint). Annual Report 3

    DTIC Science & Technology

    2012-06-04

    central Tibetan Plateau. Automated hypocenter locations in south- central Tibet were finalized. Refinements included an update of the model used for... central Tibet. A subset of ~7,900 events with 25+ arrivals is considered well-located based on kilometer-scale differences relative to manually located...propagation in the Nepal Himalaya and the south- central Tibetan Plateau. The 2002–2005 experiment consisted of 233 stations along a dense 800 km linear

  5. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    USGS Publications Warehouse

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  6. Seismic &Infrasound Integrated Array "Apatity". Techniques, data processing, first results of observations.

    NASA Astrophysics Data System (ADS)

    Vinogradov, Y.; Baryshnikov, A.

    2003-04-01

    Since September 2001 3 infrasound membrane type sensors "K-304 AM" have been installed on the territory seismic array "Apatity" near the lake Imandra. A seismic array comprising 11 short-period sensors (type "Geotech S-500"), disposed on small and large circle (0.4 and 1 km diameter). Infrasound sensors located on small circle near the seismograths. All data are digitized at the array site and transmitted in real time to a processing center in Apatity to the Kola Regional Seismological Centre (KRSC). Common complex we are called - Seismic &Infrasound Integrated Array (SISIA) "Apatity". To support temporary storage the transmitting data in a disk loop and access to the data "NEWNORAC" program was created. This program replaced "NORAC" system developed by Norwegian Institute NORSAR, which was in use in KRSC before. A program package EL (event locator) for display and processing of the data has been modified. Now it includes the following : - quick access to the data stored in the disk loop (last two weeks); - data convertation from disk loop format to CSS 3.0 format; - data filtering using bandpass, highpass, lowpass, adaptive or rejector filters; - calculation of spectra and sonograms (spectral diagrams); - seismic events location with plotting on a map; - calculation of backazimuth and apparent velocity of acoustic wave by similar parts of wave recordings; - loading and processing CSS 3.0 seismic and acoustic data from KRSC archive. To store the acoustic data permanently the program BARCSS was made. It rewrites the data from the disk loop to KRSC archive in CSS 3.0 format. For comparison of acoustic noise level with wind we use data from meteorological station in Kandalaksha city, sampling rate is 3 hours. During the period from October 2001 to October 2002 more than 745 seismic events, which basically connected with mine technical activity of the large mining enterprises at the Kola Peninsula, were registered. The most part of events, caused by ground explosions, was registered by infrasound part of SISIA "Apatity". Their sources were at distances from 38 to 220 km. The result of observations during the first 1 year enabled us to estimate frequency range and main directions of arrivals of acoustic waves and noise level in the place of observations. In accordance with the results and relief a 4-rays wind-noise-reducing pipe array would be install at all 3 sensors at May 2003, for improvement the delectability during windy conditions. A schemes of the SISIA "Apatity", data transmitting and processing and samples of detected signals are shown in the presentation.

  7. Integrating EarthScope Data to Constrain the Long-Term Effects of Tectonism on Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Porter, R. C.; van der Lee, S.

    2017-12-01

    One of the most significant products of the EarthScope experiment has been the development of new seismic tomography models that take advantage of the consistent station design, regular 70-km station spacing, and wide aperture of the EarthScope Transportable Array (TA) network. These models have led to the discovery and interpretation of additional compositional, thermal, and density anomalies throughout the continental US, especially within tectonically stable regions. The goal of this work is use data from the EarthScope experiment to better elucidate the temporal relationship between tectonic activity and seismic velocities. To accomplish this, we compile several upper-mantle seismic velocity models from the Incorporated Research Institute for Seismology (IRIS) Earth Model Collaboration (EMC) and compare these to a tectonic age model we compiled using geochemical ages from the Interdisciplinary Earth Data Alliance: EarthChem Database. Results from this work confirms quantitatively that the time elapsed since the most recent tectonic event is a dominant influence on seismic velocities within the upper mantle across North America. To further understand this relationship, we apply mineral-physics models for peridotite to estimate upper-mantle temperatures for the continental US from tomographically imaged shear velocities. This work shows that the relationship between the estimated temperatures and the time elapsed since the most recent tectonic event is broadly consistent with plate cooling models, yet shows intriguing scatter. Ultimately, this work constrains the long-term thermal evolution of continental mantle lithosphere.

  8. Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sun, X.; He, L.; Wang, S.

    2015-12-01

    Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.

  9. Tomographic Imaging of the Peru Subduction Zone beneath the Altiplano and Implications for Andean Tectonics

    NASA Astrophysics Data System (ADS)

    Davis, P. M.; Foote, E. J.; Stubailo, I.; Phillips, K. E.; Clayton, R. W.; Skinner, S.; Audin, L.; Tavera, H.; Dominguez Ramirez, L. A.; Lukac, M. L.

    2010-12-01

    This work describes preliminary tomography results from the Peru Seismic Experiment (PERUSE) a 100 station broadband seismic network installed in Peru. The network consists a linear array of broadband seismic stations that was installed mid-2008 that runs from the Peruvian coast near Mollendo to Lake Titicaca. A second line was added in late 2009 between Lake Titicaca and Cusco. Teleseismic and local earthquake travel time residuals are being combined in the tomographic inversions. The crust under the Andes is found to be 70-80 km thick decreasing to 30 km near the coast. The morphology of the Moho is consistent with the receiver function images (Phillips et al., 2010; this meeting) and also gravity. Ray tracing through the heterogeneous structure is used to locate earthquakes. However the rapid spatial variation in crustal thickness, possibly some of the most rapid in the world, generates shadow zones when using conventional ray tracing for the tomography. We use asymptotic ray theory that approximates effects from finite frequency kernels to model diffracted waves in these regions. The observation of thickened crust suggests that models that attribute the recent acceleration of the Altiplano uplift to crustal delamination are less likely than those that attribute it to crustal compression.

  10. What was that?

    USGS Publications Warehouse

    Anglin, F. M.; Haddon, R. A. W.

    1988-01-01

    At 4:20 local time on September 19, 1986, Mrs. Laurie Harder saw a meteor passing across the sky above her home in Yellowknife, N.W.T. She reported her observation to Yellowknife Seismic Station staff who examined the records of the Yellowknife seismic array to see if the associated meteoroid had hit Earth and generated observalbe seismic signals. 

  11. The AlpArray Seismic Network: current status and next steps

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  12. Discriminating different type waves from pressure and ground motion observation in the seafloor by DONET cabled observation network.

    NASA Astrophysics Data System (ADS)

    Araki, E.; Kawaguchi, K.; Kaneda, Y.

    2011-12-01

    We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to observe both in the similar level of sensitivity and dynamic range in wide frequencies from near DC to over 100 Hz. In the case of DONET, the broadband seismometer and the differential pressure gauge have similar level of sensitivity in 0.005 - 10 Hz, and similarly the accelerometer and the hydrophone cover between 1-100Hz, in total covering most frequencies of our interest, 0.005 Hz to 100 Hz. With both ground motion and seafloor pressure measurement, we may distinguish types of waves relatively easily, and it is also possible to filter particular types of waves from the array dataset to help our data analysis. For example, it has been commonly practiced to distinguish up-going and down-going seismic phases from pressure and ground motion, but this is relatively difficult only with sparse seismometer array. This technique may also be applied to correct teleseismic record with sea surface reflection in receiver function analysis for exploring deep crustal structure.

  13. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  14. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.

  15. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to highlight a chimney-shaped structure inside Erebus volcano with true positive rates ranging from 80% to 95%. Although computed independently, the results at each depth are spatially consistent, substantiating their physical reliability. The identified structure is therefore likely to describe accurately the internal structure of the Erebus volcano.

  16. Analysis of the low-level seismicity along the Southern Indian Ocean spreading ridges recorded by the OHASISBIO array of hydrophones in 2012

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Sukhovich, Alexey; Perrot, Julie

    2014-05-01

    Arrays of autonomous hydrophones (AUHs) proved to be a very valuable tool for monitoring the seismic activity of mid-ocean ridges. AUHs take advantage of the ocean acoustic properties to detect many low-magnitude underwater earthquakes undetected by land-based stations. This allows for a significant improvement in the magnitude completeness level of seismic catalogs in remote oceanic areas. This study presents some results from the deployment of the OHASISBIO array comprising 7 AUHs deployed in the southern Indian Ocean. The source of acoustic events, i.e. site where - conversion from seismic to acoustic waves occur and proxy to epicenters for shallow earthquakes - can be precisely located within few km, inside the AUH array. The distribution of the uncertainties in the locations and time-origins shows that the OHASISBIO array reliably covers a wide region encompassing the Indian Ocean triple junction and large extent of the three mid-oceanic Indian spreading ridges, from 52°E to 80°E and from 25°S to 40°S. During its one year long deployment in 2012 and in this area the AUH array recorded 1670 events, while, for the same period, land-based networks only detected 470 events. A comparison of the background seismicity along the South-east (SEIR) and South-west (SWIR) Indian ridges suggests that the microseismicity, even over a year period, could be representative of the steady-state of stress along the SEIR and SWIR; this conclusion is based on very high Spearman's correlations between our one-year long AUH catalog and teleseismic catalogs over nearly 40 years. Seismicity along the ultra-slow spreading SWIR is regularly distributed in space and time, along spreading segments and transform faults, whereas the intermediate spreading SEIR diplays clusters of events in the vicinity of some transform faults or near specific geological structures such as the St-Paul and Amsterdam hotspot. A majority of these clusters seem to be related to magmatic processes, such as dyke intrusion or propagation. The analysis of mainshock-aftershock sequences reveals that flew clusters fit a modified Omori law, non-withstanding of their location (on transform faults or not), reflecting complex rupture mechanisms along both spreading ridges.

  17. The Green Canyon Event as Recorded by the Atlantis OBS Node Survey

    NASA Astrophysics Data System (ADS)

    Dellinger, J. A.; Ehlers, J.; Clarke, R.

    2006-12-01

    On 10 February, 2006, a magnitude 5.2 earthquake occurred 260~km South of New Orleans, Louisiana, in the Green Canyon area of the United States Gulf of Mexico. Fortuitously, at the time of the earthquake an array of nearly 500 ocean-bottom-seismic nodes happened to be recording about 40~km SouthEast of the epicenter. These nodes were part of an ongoing oil-exploration 3D-seismic survey ("Atlantis patch 2"), and were designed to record oil-exploration air-gun seismic signals (with a dominant frequency of about 15~Hz), not low-frequency earthquake signals (1~Hz). The survey's own air guns, located about 7~km to the SouthEast of the array at the time of the event, were also repeatedly firing, generating large amounts of "noise" (at least for the purposes of analyzing the earthquake signal). Not surprisingly, when the data are plotted at their original sample rate they are dominated by the Atlantis survey's air-gun signal. When low passed with an upper cutoff of 2~Hz, however, the air-gun signals essentially vanish and underlying natural signals are clearly revealed. In land-seismic exploration dense 3D arrays of single geophones are used to characterize unwanted surface-wave energy. Beam forming the dense array allows the directions and phase velocities of wavefronts propagating across the array to be identified and localized so that receiver arrays can be designed that best attenuate the surface-wave noise. The 400-meter spacing of the Atlantis node array was designed to be optimally sparse for reflection-seismic processing. At 1~Hz, however, a 400-meter spacing becomes "dense" and we were able to use the same toolkit of programs originally developed for analyzing surface waves in land-seismic data to analyze the earthquake waves. The analysis reveals a complex and protracted series of arrivals spanning nearly 20~minutes of time. The expected sequence of earthquake arrivals from the North-NorthWest are followed by weaker sequences of arrivals of unknown origin from first the SouthEast and then from the East. It is hoped that these data can be used to help constrain the location, depth, and mechanism of the Green Canyon event. The authors wish to thank BP and BHPB for their permission to present this work, Fairfield for their enthusiasm in preserving the data, and CGG, WesternGeco, and Fugro for their cooperation in identifying other sources of man-made signals in the data.

  18. Possible Non-volcanic Tremor Discovered in the Reelfoot Fault Zone, Northern Tennessee

    NASA Astrophysics Data System (ADS)

    Langston, C. A.; Williams, R. A.; Magnani, M.; Rieger, D. M.

    2007-12-01

    A swarm of ~80 microearthquakes was fortuitously detected in 20, 14 second-duration long-offset vibroseis shotgathers collected for a seismic reflection experiment near Mooring, TN, directly over the Reelfoot fault zone on the afternoon of 16 November 2006. These natural events show up in the shotgathers as near-vertically incident P waves with a dominant frequency of 10-15 Hz. The reflection line was 715m in length consisting of 144 channels with a sensor spacing of 5m, 8Hz vertical geophones, and recording using a Geometrics 24bit Geode seismograph. Small variations in event moveout across the linear array indicate that the seismicity was not confined to the same hypocenter and probably occurred at depths of approximately 10 km. The largest events in the series are estimated to have local magnitudes of ~-1 if at 10 km distance from the array. This is about 2.5 magnitude units lower than the threshold for local events detected and located by the CERI cooperative network in the area. The seismicity rate was ~1000 events per hour based on the total time duration of the shotgathers. The expected number of earthquakes of ML greater than or equal to -1 for the entire central United States is only 1 per hour. This detection of microseismic swarms in the Reelfoot fault zone indicates active physical processes that may be similar to non-volcanic tremor seen in the Cascadia and San Andreas fault zones and merits long-term monitoring to understand its source.

  19. Automated Sensor Tuning for Seismic Event Detection at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Balch, R. S.; Knox, H. A.; Van Wijk, J. W.; Draelos, T.; Peterson, M. G.

    2016-12-01

    We present results (e.g. seismic detections and STA/LTA detection parameters) from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Specifically, we evaluate data from a passive vertical monitoring array consisting of 16 levels of 3-component 15Hz geophones installed in the field and continuously recording since January 2014. This detection database is directly compared to ancillary data (i.e. wellbore pressure) to determine if there is any relationship between seismic observables and CO2 injection and pressure maintenance in the field. Of particular interest is detection of relatively low-amplitude signals constituting long-period long-duration (LPLD) events that may be associated with slow shear-slip analogous to low frequency tectonic tremor. While this category of seismic event provides great insight into dynamic behavior of the pressurized subsurface, it is inherently difficult to detect. To automatically detect seismic events using effective data processing parameters, an automated sensor tuning (AST) algorithm developed by Sandia National Laboratories is being utilized. AST exploits ideas from neuro-dynamic programming (reinforcement learning) to automatically self-tune and determine optimal detection parameter settings. AST adapts in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest, leading to a reduction in the number of missed legitimate event detections and the number of false event detections. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support has been provided by site operator Chaparral Energy, L.L.C. and Schlumberger Carbon Services. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. High Frequency Recordings of the Parkfield M=6 and its Aftershocks in the 1.1 km Deep SAFOD Pilot Hole

    NASA Astrophysics Data System (ADS)

    Malin, P.; Shalev, E.; Chavarria, A.

    2004-12-01

    Seismic waves from the September 28th Parkfield event and its aftershocks were recorded by the SAFOD Pilot Hole seismic array. This array currently consists of seven levels of 3-component 15 Hz seismometers within the Salinian granite. Its sensors are spaced at 40 m intervals between depths of 856 to 1156 meters below ground. Our deep borehole recordings with high signal-to-noise ratios has allowed us to explore the high frequency content and distribution of both the main event and a large number of aftershocks not detected by the local surface network. We have determined the spectral characteristics for events of different sizes and have related them to their source characteristics. Events close to the PH array contain surprisingly similar distributions of high frequency energy irrespective of their seismic moment. For example, the seismic waves of nearly co-located M~2 and M~5 aftershocks have instrument-corrected corner frequencies that are different by only a few Hz: ~58 Hz versus ~50 Hz. The M~5 can thus be thought of as having broken numerous small but strong fault patches - a model previously suggested by others based on both theoretical and observational grounds. The M~6, which was much further away than these aftershocks, also contains high frequency signals, not quite, but almost, to the same degree. Our results suggest that strong attenuation of high frequency waves in the fault zone area, as well as in shallow weathering layers, prevents more distantly located instruments from recording a complete picture of the actual radiation. Further, in keeping with this suggestion, we have found that, at least for the first nine minutes after the main event, the number of aftershocks observed at the PH is almost ten times higher than that reported in the NCEDC catalog. The rate and size of these events does not fit previous notions of aftershock activity, but may fit with our suggested heterogeneous fault patch and near-source attenuation models.

  1. Assessing Multiple Methods for Determining Active Source Travel Times in a Dense Array

    NASA Astrophysics Data System (ADS)

    Parker, L.; Zeng, X.; Thurber, C. H.; Team, P.

    2016-12-01

    238 three-component nodal seismometers were deployed at the Brady Hot Springs geothermal field in Nevada to characterize changes in the subsurface as a result of changes in pumping conditions. The array consisted of a 500 meter by 1600 meter irregular grid with 50 meter spacing centered in an approximately rectangular 1200 meter by 1600 meter grid with 200 meter spacing. A large vibroseis truck (T-Rex) was deployed as an active seismic source at 216 locations. Over the course of 15 days, the truck occupied each location up to four times. At each location a swept-frequency source between 5 and 80 Hz over 20 seconds was produced using three vibration modes: longitudinal S-wave, transverse S-wave, and P-wave. Seismic wave arrivals were identified using three methods: cross-correlation, deconvolution, and Wigner-Ville distribution (WVD) plus the Hough Transform (HT). Surface wave arrivals were clear for all three modes of vibration using all three methods. Preliminary tomographic models will be presented, using the arrivals of the identified phases. This analysis is part of the PoroTomo project: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology; http://geoscience.wisc.edu/feigl/porotomo.

  2. Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008-2010

    NASA Astrophysics Data System (ADS)

    Nakai, J. S.; Sheehan, A. F.; Bilek, S. L.

    2017-03-01

    We developed a catalog of small magnitude (ML -0.1 to 4.7) seismicity across Colorado and New Mexico from the EarthScope USArray Transportable Array and CREST (Colorado Rocky Mountains Experiment and Seismic Transects) seismic networks from 2008 to 2010 to characterize active deformation in the Rio Grande Rift. We recorded over 900 earthquakes in the Rio Grande Rift region, not including induced earthquakes and mine blasts, and find that the rift is actively deforming both broadly and in distinct regions. Seismic events that are likely induced, mostly in the Raton Basin, make up 66% of the catalog (1837 earthquakes). Neogene faults in the northern rift in north central Colorado are seismically active in the North Park Basin and northwestern Colorado. The central rift from the San Luis Basin (southern Colorado) to south of the Socorro Magma Body is the most seismically active rift region, and seismicity delineates the deformation in the Colorado Plateau transition zone, which is spatially correlated with volcanic vents, dikes, and faults within the western Jemez Lineament. The eastern Jemez Lineament is nearly aseismic and surrounded by a halo of seismicity culminating in boundaries defined by recent moderate (Mw 3.9 and Mw 3.3) earthquakes. The southern rift is characterized by diffuse seismicity in Texas and Mexico. This study provides an updated seismic catalog built with uniformity in seismometer coverage and low epicentral uncertainties ( 2 km) that allows for regional evaluation of seismicity. During this time period, clusters of seismicity and moderate magnitude earthquakes characterize deformation in a low-strain rate extensional environment.

  3. Improved microseismic event locations through large-N arrays and wave-equation imaging and inversion

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2016-12-01

    The recent increased focus on small-scale seismicity, Mw < 4 has come about primarily for two reasons. First, there is an increase in induced seismicity related to injection operations primarily for wastewater disposal and hydraulic fracturing for oil and gas recovery and for geothermal energy production. While the seismicity associated with injection is sometimes felt, it is more often weak. Some weak events are detected on current sparse arrays; however, accurate location of the events often requires a larger number of (multi-component) sensors. This leads to the second reason for an increased focus on small magnitude seismicity: a greater number of seismometers are being deployed in large N-arrays. The greater number of sensors decreases the detection threshold and therefore significantly increases the number of weak events found. Overall, these two factors bring new challenges and opportunities. Many standard seismological location and inversion techniques are geared toward large, easily identifiable events recorded on a sparse number of stations. However, with large-N arrays we can detect small events by utilizing multi-trace processing techniques, and increased processing power equips us with tools that employ more complete physics for simultaneously locating events and inverting for P- and S-wave velocity structure. We present a method that uses large-N arrays and wave-equation-based imaging and inversion to jointly locate earthquakes and estimate the elastic velocities of the earth. The technique requires no picking and is thus suitable for weak events. We validate the methodology through synthetic and field data examples.

  4. Earthquake recording at the Stanford DAS Array with fibers in existing telecomm conduits

    NASA Astrophysics Data System (ADS)

    Biondi, B. C.; Martin, E. R.; Yuan, S.; Cole, S.; Karrenbach, M. H.

    2017-12-01

    The Stanford Distributed Acoustic Sensing Array (SDASA-1) has been continuously recording seismic data since September 2016 on 2.5 km of single mode fiber optics in existing telecommunications conduits under Stanford's campus. The array is figure-eight shaped and roughly 600 m along its widest side with a channel spacing of roughly 8 m. This array is easy to maintain and is nonintrusive, making it well suited to urban environments, but it sacrifices some cable-to-ground coupling compared to more traditional seismometers. We have been testing its utility for earthquake recording, active seismic, and ambient noise interferometry. This talk will focus on earthquake observations. We will show comparisons between the strain rates measured throughout the DAS array and the particle velocities measured at the nearby Jasper Ridge Seismic Station (JRSC). In some of these events, we will point out directionality features specific to DAS that can require slight modifications in data processing. We also compare repeatability of DAS and JRSC recordings of blasts from a nearby quarry. Using existing earthquake databases, we have created a small catalog of DAS earthquake observations by pulling records of over 700 Northern California events spanning Sep. 2016 to Jul. 2017 from both the DAS data and JRSC. On these events we have tested common array methods for earthquake detection and location including beamforming and STA/LTA analysis in time and frequency. We have analyzed these events to approximate thresholds on what distances and magnitudes are clearly detectible by the DAS array. Further analysis should be done on detectability with methods tailored to small events (for example, template matching). In creating this catalog, we have developed open source software available for free download that can manage large sets of continuous seismic data files (both existing files, and files as they stream in). This software can both interface with existing earthquake networks, and efficiently extract earthquake recordings from many continuous recordings saved on the users machines.

  5. Seismic Imaging of UXO-Contaminated Underwater Sites (Interim Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritto, Roland; Korneev, Valeri; Nihei, Kurt

    2004-11-30

    Finite difference modeling with 2-dimensional models were conducted to evaluate the performance of source-receiver arrays to locate UXO in littoral environments. The model parameters were taken from measurements in coastal areas with typical bay mud and from examples in the literature. Seismic arrays are well suited to focus energy by steering the elements of the array to any point in the medium that acts as an energy source. This principle also applies to seismic waves that are backscattered by buried UXO. The power of the array is particularly evident in strong noise conditions when the signal-to-noise ratio is too lowmore » to observe the scattered signal on the seismograms. Using a seismic array, it was possible to detect and locate the UXO with a reliability similar to noise free situations. When the UXO was positioned within 3-6 wavelengths of the incident signal from the source array, the resolution was good enough to determine the dimensions of the UXO from the scattered waves. Beyond this distance this distinction decreased gradually while the location and the center of the UXO were still determined reliably. The location and the dimensions of two adjacent UXO were resolved down to a separation of 1/3 of the dominant wavelength of the incident wave, at which time interference effects began to appear. In the investigated cases, the ability to locate a UXO was independent on the use of a model with a rippled or a flat seafloor, as long as the array was located above the UXO. Nevertheless, the correct parameters of the seafloor interface were obtained in these cases. An investigation to find the correct migration velocity in the sediments to locate the UXO revealed that a range of velocity gradients centered around the correct velocity model produced comparable results, which needs to be further investigated with physical modeling.« less

  6. Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance

    NASA Astrophysics Data System (ADS)

    Letort, Jean; Retailleau, Lise; Boué, Pierre; Radiguet, Mathilde; Gardonio, Blandine; Cotton, Fabrice; Campillo, Michel

    2018-05-01

    Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude Mb 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 Mb 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.

  7. Systematic detection of seismic events at Mount St. Helens with an ultra-dense array

    NASA Astrophysics Data System (ADS)

    Meng, X.; Hartog, J. R.; Schmandt, B.; Hotovec-Ellis, A. J.; Hansen, S. M.; Vidale, J. E.; Vanderplas, J.

    2016-12-01

    During the summer of 2014, an ultra-dense array of 900 geophones was deployed around the crater of Mount St. Helens and continuously operated for 15 days. This dataset provides us an unprecedented opportunity to systematically detect seismic events around an active volcano and study their underlying mechanisms. We use a waveform-based matched filter technique to detect seismic events from this dataset. Due to the large volume of continuous data ( 1 TB), we performed the detection on the GPU cluster Stampede (https://www.tacc.utexas.edu/systems/stampede). We build a suite of template events from three catalogs: 1) the standard Pacific Northwest Seismic Network (PNSN) catalog (45 events); 2) the catalog from Hansen&Schmandt (2015) obtained with a reverse-time imaging method (212 events); and 3) the catalog identified with a matched filter technique using the PNSN permanent stations (190 events). By searching for template matches in the ultra-dense array, we find 2237 events. We then calibrate precise relative magnitudes for template and detected events, using a principal component fit to measure waveform amplitude ratios. The magnitude of completeness and b-value of the detected catalog is -0.5 and 1.1, respectively. Our detected catalog shows several intensive swarms, which are likely driven by fluid pressure transients in conduits or slip transients on faults underneath the volcano. We are currently relocating the detected catalog with HypoDD and measuring the seismic velocity changes at Mount St. Helens using the coda wave interferometry of detected repeating earthquakes. The accurate temporal-spatial migration pattern of seismicity and seismic property changes should shed light on the physical processes beneath Mount St. Helens.

  8. 4-D crustal structure of the conterminous U.S.: Continental assembly, crustal growth, and deformation history from receiver functions, xenoliths, and structural mapping

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.

    2015-12-01

    We investigate seismic and geological features related to the tectonic evolution of the crust on a continent-wide scale. We present continent-wide features using Transportable Array data receiver function analysis, followed by regional comparisons to tie to ground truth from xenolith studies and structural mapping. We stress that the Transportable Array, at ~75 km station spacing, only offers a collection of point measurements of the crust due to the lack of crossing raypaths. 7.x layers (lower crust with high seismic velocities) can be created during crustal growth processes such as magmatic or mechanical underplating and during crustal modification such as large-scale melting. We present receiver function results and a compilation of previous regional studies using refraction data or receiver functions from regional dense networks. 7.x layers appear predominantly in parts of the northern U.S. Cordillera and across the southeastern U.S. We compare the seismic results with a xenolith study in Montana that details incremental growth of the 7.x layer from the Archean on. Hydration of a granulitic lower crust can destroy the 7.x layer and has the potential to cause epirogenic uplift. We interpret the pattern seen across the Transportable Array in the light of this hypothesis. Ductile deformation of the deep crust generates shear fabrics that can be detected seismically. Receiver functions detect shear zones via contrasts in foliation to the surrounding material. We map foliation strikes and depths in the crust across the Transportable Array using azimuthal analysis of receiver functions. Strikes from receiver functions typically align with surface fault traces in tectonically active regions, with depths of the converters exceeding the brittle zone. We discuss continent-wide strikes mapped with receiver functions. Contrasting orientations of Proterozoic shear zones and pervasive surrounding foliations in basement exposures in Colorado are reflected in seismic results from the Transportable Array and CREST experiment.

  9. Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.

    2005-12-01

    The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.

  10. A Comprehensive Overview of the Duvernay Induced Seismicity near Fox Creek, Alberta

    NASA Astrophysics Data System (ADS)

    Schultz, R.; Wang, R.; Gu, Y. J.; Haug, K.; Atkinson, G. M.

    2016-12-01

    In this work we summarize the current state of understanding regarding the induced seismicity related to Duvernay hydraulic fracturing operations in central Alberta, near the town of Fox Creek. Earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism. To corroborate this point, we use cross-correlation detection methods to delineate transient temporal relationships, double-difference relocations to confirm spatial clustering, and moment tensor determinations to show fault motion consistency. The spatiotemporal clustering of sequences is strongly related to nearby hydraulic fracturing operations. In addition, we identify a strong preference for subvertical strike-slip motion with a roughly 45º P-axis orientation, consistent with ambient stress field considerations. The hypocentral geometry in two red traffic light protocol cases, that are robustly constrained by local array data, provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these features as faults orientated approximately north-south and subvertically, consistent with moment tensor determinations. Finally, we conclude that the primary sequences are best explained as induced events in response to effective stress changes as a result of pore-pressure increase along previously existing faults due to hydraulic fracturing stimulations.

  11. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  12. A tree fell in the forest, and SPREE heard it: seismic recording of the 2011 St. Croix Valley Blowdown

    NASA Astrophysics Data System (ADS)

    Wolin, E.; van der Lee, S.

    2016-12-01

    As part of the Superior Province Rifting Earthscope Experiment (SPREE), 82 broadband seismic stations from the EarthScope Flexible Array pool were deployed by the SPREE team from April 2011 through October 2013, to explore the deep structure of the Mid-Continent Rift System (Stein et al., 2011). The deployment included two crosslines with approximate station spacing of 10 km centered near the northern Minnesota-Wisconsin border. Analysis of long-period noise reveals strong seasonal and diurnal variations (Wolin et al., 2015). On 1 July 2011, a severe thunderstorm system swept over the St. Croix Valley, passing directly over the dense SPREE array. This storm system was accompanied by a series of downbursts that generated straight-line winds in excess of 100 km/hr, resulting in extensive damage to hundreds of thousands of acres of forest. Seven SPREE stations were located in the path of the storm, with two stations in the center of areas that were heavily damaged by downbursts. The stations remained in operation throughout this extreme weather event, capturing a unique record of ground noise generated by the storm system. We compare available radar reflectivity data with seismic noise power spectra throughout the event and show that storm cells generated significant broadband seismic signals as they passed over the region. Relative to typical background seismic noise levels, power between 0.05-10 Hz increased by 5-20 dB during the storm. Seismic noise levels can be compared to available wind speed data to provide a detailed record of wind speeds during the weather event. We also explore the long-period coherence of energy across the array, which is potentially useful to help constrain near-surface velocity structure at the array sites as well as to better characterize how atmospheric processes couple into the solid earth during severe weather events.

  13. Analysis of the Noise in Data from the Mt. Meron Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D. H.; Breitfeller, E.

    2010-07-15

    This memo describes an analysis of the noise in data obtained from the Mt. Meron seismic array in northern Israel. The overall objective is to development a method for removing noise from extraneous sources in the environment, increasing the sensitivity to seismic signals from far events. For this initial work, we concentrated on understanding the propagation characteristics of the noise in the frequency band from 0.1 – 8 Hz, and testing a model-based method for removing narrow band (single frequency) noise.

  14. Characteristics of Tremor During the Entire July 2004 Cascadia Episodic Tremor and Slip event

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; La Rocca, M.; Creager, K.

    2005-12-01

    The July 2004 Cascadia episodic tremor and slip (ETS) event was recorded and analyzed using three geographically distributed small aperture seismic arrays (600m) located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. We analyzed the tremor sequence in the 1 to 6 Hz frequency band in overlapping windows (12s length)using zero-lag cross correlation and polarization analysis in order to obtain a continuous record of the back-azimuth, slowness, and particle motion of tremor sources throughout the ETS episode. During periods without tremor, the average interstation correlations for each array range between 0.2 and 0.4, and observed azimuths are randomly distributed. During periods of strong tremor, the average correlation for each array is typically between 0.5 and 0.8, and azimuths are stable over periods of minutes. Observed apparent velocities are greater than 4 km/s and polarization analysis indicates that the wave-field is composed primarily of SH-waves, both of which are consistent with a deep source of shear wave energy. Azimuths and slownesses are consistent with previously obtained hypocentral locations and apparent velocities calculated using the relative arrival times of energy bursts on Pacific Northwest Seismograph Network.

  15. Images for the base of the Pacific lithospheric plate beneath Wellington, New Zealand, from 500 kg dynamite shots recorded on a 100 km-long, 1000 seismometer array

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Sato, H.; Okaya, D. A.

    2012-12-01

    Seismic P and S-wave reflections are recorded from a west-dipping horizon at depth of 105 km beneath Wellington, New Zealand. From the depth and dip of this horizon we interpret this horizon to be the bottom of the subducting Pacific plate. In May 2011 the Seismic Array on Hikurangi margin Experiment (SAHKE) recorded reflections on a ~100 km-long high-resolution seismic line across the lower North Island of New Zealand. The main goal of this experiment was to provide a detailed image of the west dipping subducted Pacific plate beneath the Wellington city region. The seismic line had ~1000 seismographs spaced between 50-100 m apart and the 500 kg shots were in 50 m-deep, drill holes. An exceptionally high-resolution image for the top of the subducting Pacific Plate at a depth of 20-25 km beneath the Wellington region is seen. In addition, on most of the shots are a pair of 10-14 Hz reflections between 27 and 29 s two-way-travel-time (twtt) at zero offset. The quality of this reflection pair varies from shot to shot. When converted to depth and ray-traced the best solution for these deep events is a west-dipping ( ~ 15 degrees) horizon at a depth of about 105 km. This is consistent with the dip of the upper surface of the plate beneath Wellington, and therefore we argue that the deep (~105 km) reflector is the base of the Pacific plate. On two of the shots another pair 5-8 Hz reflections can also be seen between 47 and 52 s, and the move-out of these events is consistent with them being S-wave reflections from the same 105 km deep, west-dipping, boundary for a Vp/Vs ~ 1.74. Both the P-and S-wave reflections occur in pairs of twtt-thickness of 2 and 5 s, respectively and appear to define a ~ 6-8 km thick channel at the base of the plate if the Vp/Vs ratio~ 5/2 or 2.5. Such a high value of Vp/Vs is consistent with the channel containing fluids or partial melt of an unknown percent. Although we can't rule out the double reflections in both P and S as being multiples, this seems unlikely as multiples are not seen any where else in the shot gathers. Thus the lithosphere-asthenosphere boundary (LAB), at least in this setting, appears to be a sharp boundary, less than 10 km thick. As the top of the subduction zone is 20-25 km deep beneath our profile, the total thickness of the plate beneath Wellington is about 80 km. This is consistent with the thickness of old oceanic plates measured elsewhere with passive seismic methods.

  16. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived From Thermodynamically Self-Consistent Modelling of Seismic Surface-Wave and S-wave Receiver Function, Heat-flow, Elevation, Xenolith and Magnetotelluric Observations

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.

    2012-12-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 μWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model (consistent with mantle xenoliths), with lithospheric thickness in excess of 220 km, is required to match all geophysical constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs will assess whether this chemical transition may account for the reported S-to-P conversion event at 160 km depth. However, in this this instance the SRF conversion event would not represent the petrological/thermal LAB.

  17. Joint the active source and passive source seismic to research the fine crustal structure of the Lushan area

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yu, C.

    2017-12-01

    On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.

  18. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  19. A pilot study of the Earthquake Precursors in the Southwest Peloponnes, Greece

    NASA Astrophysics Data System (ADS)

    Velez, A. P.; Tsinganos, K.; Karastathis, V. K.; Kafatos, M.; Ouzounov, D.; Papadopoulos, G. A.; Tselentis, A.; Eleftheriou, G.; Mouzakiotis, E.; Gika, F.; Aspiotis, T.; Liakopoulos, S.; Voulgaris, N.

    2016-12-01

    A seismic array of the most contemporary technology has been recently installed in the area of Southwest Peloponnese, Greece, an area well known for its high seismic activity. The tectonic regime of the Hellenic arc was the reason for many lethal earthquakes with considerable damage to the broader area of East Mediterranean sea. The seismic array is based on nine 32-bit stations with broadband borehole seismometers. The seismogenic region, monitored by the array, is offshore. At this place the earthquake location suffers by poor azimuthal coverage and the stations of the national seismic network are very distant to this area. Therefore, the existing network cannot effectively monitor the microseismicity. The new array achieved a detailed monitoring of the small events dropping considerably the magnitude of completeness. The detectability of the microearthquakes has been drastically improved permitting so the statistical assessment of earthquake sequences in the area. In parallel the monitored seismicity is directly related with Radon measurement in the soil, taken at three stations in the area.. Radon measurements are performed indirectly by means γ-ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively). NaI(Tl) detectors have been installed at 1 m depth, at sites in vicinity of faults providing continuous real time data. Local meteorological records for atmospheric corrections are also continuously recorded. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model atmospheric thermal anomalies observed before strong events can be attributed to increased radon concentration. This is also supported by the statistical analysis of AVHRR/NOAA-18 satellite thermal infrared (TIR) daily records. A combined study of precursor's signals is expected to provide a reliable assessment of their ability on short-term forecasting.

  20. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    NASA Astrophysics Data System (ADS)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  1. RAPID DETERMINATION OF FOCAL DEPTH USING A GLOBAL NETWORK OF SMALL-APERTURE SEISMIC ARRAYS

    NASA Astrophysics Data System (ADS)

    Seats, K.; Koper, K.; Benz, H.

    2009-12-01

    The National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) operates 24 hours a day, 365 days a year with the mission of locating and characterizing seismic events around the world. A key component of this task is quickly determining the focal depth of each seismic event, which has a first-order effect on estimates of ground shaking used in the impact assessment applications of emergency response activities. Current methods of depth estimation used at the NEIC include arrival time inversion both with and without depth phases, a Bayesian depth constraint based on historical seismicity (1973-present), and moment tensor inversion primarily using P- and S-wave waveforms. In this study, we explore the possibility of automated modeling of waveforms from vertical-component arrays of the International Monitoring System (IMS) to improve rapid depth estimation at NEIC. Because these arrays are small-aperture, they are effective at increasing signal to noise ratios for frequencies of 1 Hz and higher. Currently, NEIC receives continuous real-time data from 23 IMS arrays. Following work done by previous researchers, we developed a technique that acts as an array of arrays. For a given epicentral location we calculate fourth root beams for each IMS array in the distance range of 30 to 95 degrees at the expected slowness vector of the first arrival. Because the IMS arrays are small-aperture, these beams highlight energy that has slowness similar to the first arrival, such as depth phases. The beams are rectified by taking the envelope and then automatically aligned on the largest peak within 5 seconds of the expected arrival time. The station beams are then combined into network beams assuming a range of depths varying from 10 km to 700 km in increments of 1 km. The network beams are computed assuming both pP and sP propagation, and a measure of beam power is output as a function of depth for both propagation models, as well as their sum. We validated this approach using several hundred seismic events in the magnitude range 4.5-6.5 mb that occurred in 2008 and 2009. In most cases, clear spikes in the network beam power existed at depths around those estimated by the NEIC using traditional location procedures. However, in most cases there was also a bimodality in the network beam power because of the ambiguity between assuming pP or sP propagation for later arriving energy. There were only a handful of cases in which a seismic event generated both sP and pP phases with sizes large enough to resolve the ambiguity. We are currently working to include PKP arrivals into the network beams and experimenting with various tuning parameters to improve the efficiency of the algorithm. This promising approach will allow NEIC to significantly and systematically improve the quality of hypocentral locations reported in the PDE and provide NEIC with additional valuable information on seismic source parameters needed in emergency response applications.

  2. Hemispheric variation of the depth dependent attenuation and velocity structures of the top half of the inner core determined from global seismic array data

    NASA Astrophysics Data System (ADS)

    Iritani, R.; Takeuchi, N.; Kawakatsu, H.

    2012-12-01

    Previous studies suggested the existence of the hemispheric heterogeneities in the top 100 km of the inner core [eg. Wen and Niu, 2002]. Although depth profiles of the attenuation and velocity of the inner core provide important clues to constrain the physical mechanism and the growing process of the inner core, they have not yet been well constrained primarily due to difficulties in analyzing core phases with phase overlapping. We have previously developed a waveform inversion method to be applicable to such complex waveforms [Iritani et al., 2010, GRL] and revealed the depth profile of the attenuation beneath North America [Iritani et al., 2011, AGU]. In this study, we applied our method to a large number of broadband seismic arrays to compare depth profiles of the top half of the inner core in various regions. The data set consists of about 8,500 traces from Japanese F-net, NECESSArray (a large temporary broadband seismic array installed in northeastern China), permanent European stations, USArray and PASSCAL arrays deployed in a number of places in the world. Regions of the inner core sampled by core phases are beneath eastern Pacific, North America and Africa in the western hemisphere (WH), and beneath eastern and central Asia in the eastern hemisphere (EH). The obtained attenuation models for the WH show the gradually increase from ICB and have a peak around a 200 km depth. In contrast, the models for the EH have a high attenuation zone at the top 150 km layer. However, almost all models show common features below a depth of 250 km where the attenuation starts to gradually decrease with depth. It appears that hemispheric heterogeneities of the inner core are confined to the top 150 - 250 km of the inner core. Velocity models obtained by using various core phase data (PKP(DF), PKP(BC), PKP(CD) and PKP(Cdiff)) will be also presented to infer the origin of hemispherical heterogeneities and their relationship to the growing process of the inner core.

  3. Seismic monitoring at Deception Island volcano (Antarctica): Recent advances

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.

    2012-04-01

    Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating at Deception Island since 2008. In the current survey we collaborate with the Spanish Army to add another permanent station that will be able to send to the IAG-UGR seismic information about the activity of the volcano during the winter, using a communications satellite (SPAINSAT). These advances simplify the field work and the data acquisition procedures, and allow us to obtain high-quality seismic data in real-time. These improvements have a very important significance for a better and faster interpretation of the seismo-volcanic activity and assessment of the volcanic hazards at Deception Island volcano.

  4. Influence of Spatial Variation in Ground Motion Peak Acceleration on Local Site Effects Estimation at Bucovina Seismic Array (BURAR) Romania

    NASA Astrophysics Data System (ADS)

    Ghica, D. V.; Radulian, M.; Popa, M.; Grecu, B.

    2006-05-01

    Basically, array processing techniques require a high signal coherency across the seismic site; therefore the local crustal velocities below the station, signal amplitude differences between array elements and local noise conditions, resulting in local site effects will affect calculation of phase arrival times, propagation velocities and ground motion amplitudes. In general, array techniques assume a homogenous structure for all sites, and a simple relief correction is taking in account for the data analysis. To increase the results accuracy, individual element corrections must be applied, based on the biases factors systematically observed. This study aims at identifying the anomalous amplitude variations recorded at the Bucovina Seismic Array (BURAR) and at explaining their influence on site effects estimation. Maximum amplitudes for the teleseismic and regional phases in four narrow frequency bands (0.25-0.5Hz; 0.5-1Hz; 1-2Hz; 1.5-3Hz) are measured. Spatial distribution of ground motion peak acceleration in BURAR site, for each band, is plotted; a different behavior was observed at frequencies below 2Hz. The most important aspect observed is the largest amplitude exhibited by BUR07 across the whole array at high frequencies (an amplification factor of about two). This can be explained by the different geology at BUR07 site (mica schist outcrops), comparing with the rest of elements (green schist outcrops). At the lowest frequencies (0.25-0.5Hz), BUR09 peak amplitudes dominate the other sites. Considering BUR07 as reference site, peak acceleration ratios were investigated. The largest scattering of these ratios appears at the highest frequencies (1.5-3Hz), when the weight of over unit values is about 90 %. No azimuth and distance dependence was found for these effects, suggesting the absence of the dipping layer structures. Although an increase of the ratio values is noticed for epicentral distance between 8000 and 10000 km, for frequencies over 1 Hz. The results of this study are essential to further develop the calibration technique for seismic monitoring with BURAR array, in order to improve the detection and single-array location capabilities of the system.

  5. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  6. Crustal deformation and seismic measurements in the region of McDonald Observatory, West Texas. [Texas and Northern Chihuahua, Mexico

    NASA Technical Reports Server (NTRS)

    Dorman, H. J.

    1981-01-01

    The arrival times of regional and local earthquakes and located earthquakes in the Basin and Range province of Texas and in the adjacent areas of Chihuahua, Mexico from January 1976 to August 1980 at the UT'NASA seismic array are summarized. The August 1931 Texas earthquake is reevaluated and the seismicity and crustal structure of West Texas is examined. A table of seismic stations is included.

  7. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with lessmore » charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.« less

  8. Infrasonic tremor observed at Kilauea Volcano, Hawaii'i

    USGS Publications Warehouse

    Garces, M.; Harris, A.; Hetzer, C.; Johnson, J.; Rowland, S.; Marchetti, E.; Okubo, P.

    2003-01-01

    Infrasonic array data collected at Ki??lauea Volcano, Hawai'i, during November 12-21, 2002 indicate that the active vents and lava tube system near the P'u 'O??'o?? vent complex emit almost continuous infrasound in the 0.310 Hz frequency band. The spectral content of these infrasonic signals matches well that of synchronous seismic tremor. In sites protected from wind noise, significant signal to noise ratios were recorded as far as ???13 km from the crater of Pu'u 'O??'o??. The infrasonic recordings suggest that one or more tremor sources may be close to the surface. In addition, these results demonstrate that adequate site and instrument selections for infrasonic arrays are essential in order to obtain consistent and reliable infrasonic detections. ?? 2003 by the American Geophysical Union.

  9. Air-gun signature modelling considering the influence of mechanical structure factors

    NASA Astrophysics Data System (ADS)

    Li, Guofa; Liu, Zhao; Wang, Jianhua; Cao, Mingqiang

    2014-04-01

    In marine seismic prospecting, as the air-gun array is usually composed of different types of air-guns, the signature modelling of different air-guns is particularly important to the array design. Different types of air-guns have different mechanical structures, which directly or indirectly affect the signatures. In order to simulate the influence of the mechanical structure, five parameters—the throttling constant, throttling power law exponent, mass release efficiency, fluid viscosity and heat transfer coefficient—are used in signature modelling. Through minimizing the energy relative error between the simulated and the measured signatures by the simulated annealing method, the five optimal parameters can be estimated. The method is tested in a field experiment, and the consistency between the simulated and the measured signatures is improved with the optimal parameters.

  10. Preliminary results of receiver function analysis of seismic data recorded from a broadband deployment across the Gulf Coast Plain

    NASA Astrophysics Data System (ADS)

    Gurrola, H.; Pratt, K. W.; Pulliam, J.; Dunbar, J. A.

    2011-12-01

    In summer of 2010, 21 broadband seismographs were installed at 16-18 km spacing along a transect running from Johnson City, TX, (on the Edwards Plateau), to Matagorda Island to study the current structure of this rifted passive margin. The large magnetic anomaly that parallels the coast throughout the Gulf region moves on-shore beneath our transect such that we will be able to investigate the source of this anomaly. A second important target that will be imaged in this Balcones fault which is associated with the Ouachita front. This project is funded by a grant from the Norman Hackerman Advanced Research Program (NHARP), a biannual competition among Texas Universities to support research, and makes use of Texas Tech, Baylor, and UT Austin equipment. As a result, the deployment includes a less uniform array of seismic equipment, (10 Trillium compact seismometers and 10 Guralps; including 40Ts, 3Ts and 3ESPs), than projects supported by the IRIS PASSCAL center. Our vault construction was similar to Flexible array vaults, but Gulf Coast provides a more challenging environment for deployment than most encountered in the western US. The shallow water table and loose sediment can become almost fluid when storms deluge the area with rain. In dry periods, mud cracks near the vaults cause the vaults to tilt. As a result, even high quality, shallow seismic vaults can "float" or shift sufficiently to cause one or two components of the seismic stations to drift against their stops in days or weeks. As a result, the only data consistently available from all our stations, are vertical components. Horizontal component data from the summer of 2010 can be hit and miss due to the tilting of the vaults. These issues have been reduced in the summer of 2011 due to the drought. To address the data's shortcomings, we will average the vertical components from our stations and nearby EarthScope TA stations, (up 300 km away), to isolate the cleanest representation of the incoming P-wave, (with local PPp reverberations averaged out). This is essentially beam forming for the optimal teleseismic ray path. The clean P-wave will then be deconvolved from the vertical components at each station to produce a vertical component receiver function that will enable us to model and stack local P-wave reverberations to produce a 2-D image of lithospheric structure. To produce traditional receiver functions from time periods where one component is lost from several stations, we will treat neighboring stations as arrays and recover an "array averaged three-component seismogram" for each loacation. These "beamed" seismograms will allow imaging of the crust, lithospheric mantle, and transition zone beneath the broadband array using traditional receiver function stacking or migration.

  11. Calibration of the R/V Marcus G. Langseth Seismic Array in shallow Cascadia waters using the Multi-Channel Streamer

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Tolstoy, M.; Carton, H. D.

    2013-12-01

    In the summer of 2012, two multi-channel seismic (MCS) experiments, Cascadia Open-Access Seismic Transects (COAST) and Ridge2Trench, were conducted in the offshore Cascadia region. An area of growing environmental concern with active source seismic experiments is the potential impact of the received sound on marine mammals, but data relating to this issue is limited. For these surveys sound level 'mitigation radii' are established for the protection of marine mammals, based on direct arrival modeling and previous calibration experiments. Propagation of sound from seismic arrays can be accurately modeled in deep-water environments, but in shallow and sloped environments the complexity of local geology and bathymetry can make it difficult to predict sound levels as a function of distance from the source array. One potential solution to this problem is to measure the received levels in real-time using the ship's streamer (Diebold et al., 2010), which would allow the dynamic determination of suitable mitigation radii. We analyzed R/V Langseth streamer data collected on the shelf and slope off the Washington coast during the COAST experiment to measure received levels in situ up to 8 km away from the ship. Our analysis shows that water depth and bathymetric features can affect received levels in shallow water environments. The establishment of dynamic mitigation radii based on local conditions may help maximize the safety of marine mammals while also maximizing the ability of scientists to conduct seismic research. With increasing scientific and societal focus on subduction zone environments, a better understanding of shallow water sound propagation is essential for allowing seismic exploration of these hazardous environments to continue. Diebold, J. M., M. Tolstoy, L. Doermann, S. Nooner, S. Webb, and T. J. Crone (2010) R/V Marcus G. Langseth Seismic Source: Modeling and Calibration. Geochemistry, Geophysics, Geosystems, 11, Q12012, doi:10.1029/2010GC003216.

  12. Sled-Mounted Geophone Arrays for Near-Surface (0-4m) Seismic Profiling in Highly-attenuating Sedimentary Facies: Atchafalaya Basin Indian Bayou, Louisiana

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Saanumi, A. A.; Westbrook, C. C.; Egnew, S. F.; Bentley, S. J.

    2004-12-01

    Towed land-geophone seismic arrays have the potential to increase markedly the efficiency for collecting near-surface (0-100m) high-resolution seismic data, but viable cases are few and have been limited to a narrow range of near-surface sedimentary facies. During November 2003 through June 2004 we conducted extensive seismic tests with traditional geophones mounted on low-cost Π -shaped sleds. We targeted human habitation surfaces within the upper few meters of a crevasse splay complex in the Atchafalaya Basin study area, Indian Bayou Wildlife Management Area, Louisiana, U.S. For seismic-to-core correlation, sealed, continuous test cores were run through a multi-sensor to test for magnetic susceptibility, bulk sediment density and electrical resistivity. We compared 24-channel seismic data using a variety of seismic source-receiver combinations. Sources comprised a 12-gauge pipe-gun, a 0.22 caliber-powered piston gun, an accelerated weight drop, and a small claw hammer. Commercial blanks, 2g-black-powder, and primer-only shells were fired by the pipe gun. Receivers included 100-Hz vertical-, and 14-Hz-horizontal-component geophones. For comparison, both ground-planted and geophones mounted on wooden and iron sleds 0.3 and 1.2m long respectively. Geophones mounted on steel sleds produced data of adequate quality. Whereas traditional ground-planted geophones showed better data quality, time and cost efficiency make mounted phones more feasible for regional studies as traditional arrays are prohibitively expensive. Because of the high seismic attenuation, only horizontal-component geophones mounted on heavy (9-kg) steel sleds provided useful data, although the shallowest reflection observed in the shear wave data came from a boundary at ~ 19m depth, too far below the target depth of 4-5 m. Instead, we forward-modeled refraction traveltime data to derive the acoustic and SH velocity structure.

  13. Multi-Sensor Data Fusion Project

    DTIC Science & Technology

    2000-02-28

    seismic network by detecting T phases generated by underground events ( generally earthquakes ) and associating these phases to seismic events. The...between underwater explosions (H), underground sources, mostly earthquake - generated (7), and noise detections (N). The phases classified as H are the only...processing for infrasound sensors is most similar to seismic array processing with the exception that the detections are based on a more sophisticated

  14. Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Yehuda; Vernon, Frank L.; Ozakin, Yaman; Zigone, Dimitri; Ross, Zachary E.; Meng, Haoran; White, Malcolm; Reyes, Juan; Hollis, Dan; Barklage, Mitchell

    2015-07-01

    We discuss several outstanding aspects of seismograms recorded during >4 weeks by a spatially dense Nodal array, straddling the damage zone of the San Jacinto fault in southern California, and some example results. The waveforms contain numerous spikes and bursts of high-frequency waves (up to the recorded 200 Hz) produced in part by minute failure events in the shallow crust. The high spatial density of the array facilitates the detection of 120 small local earthquakes in a single day, most of which not detected by the surrounding ANZA and regional southern California networks. Beamforming results identify likely ongoing cultural noise sources dominant in the frequency range 1-10 Hz and likely ongoing earthquake sources dominant in the frequency range 20-40 Hz. Matched-field processing and back-projection of seismograms provide alternate event location. The median noise levels during the experiment at different stations, waves generated by Betsy gunshots, and wavefields from nearby earthquakes point consistently to several structural units across the fault. Seismic trapping structure and local sedimentary basin produce localized motion amplification and stronger attenuation than adjacent regions. Cross correlations of high-frequency noise recorded at closely spaced stations provide a structural image of the subsurface material across the fault zone. The high spatial density and broad frequency range of the data can be used for additional high resolution studies of structure and source properties in the shallow crust.

  15. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  16. Evidence for a meteoritic origin of the September 15, 2007, Carancas crater

    NASA Astrophysics Data System (ADS)

    Le Pichon, A.; Antier, K.; Cansi, Y.; Hernandez, B.; Minaya, E.; Burgoa, B.; Drob, D.; Evers, L. G.; Vaubaillon, J.

    2008-11-01

    On September 15th, 2007, around 11:45 local time in Peru, near the Bolivian border, the atmospheric entry of a meteoroid produced bright lights in the sky and intense detonations. Soon after, a crater was discovered south of Lake Titicaca. These events have been detected by the Bolivian seismic network and two infrasound arrays operating for the Comprehensive Nuclear-Test-Ban Treaty Organization, situated at about 80 and 1620 km from the crater. The localization and origin time computed with the seismic records are consistent with the reported impact. The entry elevation and azimuthal angles of the trajectory are estimated from the observed signal time sequences and back-azimuths. From the crater diameter and the airwave amplitudes, the kinetic energy, mass and explosive energy are calculated. Using the estimated velocity of the meteoroid and similarity criteria between orbital elements, an association with possible parent asteroids is attempted. The favorable setting of this event provides a unique opportunity to evaluate physical and kinematic parameters of the object that generated the first actual terrestrial meteorite impact seismically recorded.

  17. Structure of the San Bernardino Basin Along Two Seismic Transects: Rialto-Colton Fault to the San Andreas Fault and Along the I-215 Freeway (I-10 to SR30)

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.; Steedman, C.E.

    2008-01-01

    In this report, we present seismic data and acquisition parameters for two seismic profiles acquired in the San Bernardino, California area in May and October 2003. We refer to these seismic profiles as the San Bernardino Regional (SBR) and San Bernardino High-Resolution (SBHR) seismic profiles. We present both un-interpreted and interpreted seismic images so that the structure of the area can independently interpreted by others. We explain the rationale for our interpretations within the text of this report, and in addition, we provide a large body of supporting evidence. The SBR seismic profile extended across the San Bernardino Basin approximately N30?E from the town of Colton to the town of Highland. The data were acquired at night when the signal-to-noise ratios were reasonably good, and for the larger shots, seismic energy propagated across the ~20-km-long array. Tomographic velocity data are available to depths of about 4 km, and low-fold reflection data are available to depths in excess of 5 km. The SBR seismic data reveal an asymmetric, fault-bound basin to about 5 km depth. The SBHR seismic profile trended along the I-215 freeway from its intersection with the Santa Ana River to approximately State Road 30 in San Bernardino. Seismic data acquired along the I-215 freeway provide detailed images, with CDP spacing of approximately 2.5 m along an approximately 8.2-km-long profile; shot and geophone spacing was 5 m. For logistical reasons, the high-resolution (SBHR) seismic data were acquired during daylight hours on the shoulder of the I-215 freeway and within 5 to 10 m of high-traffic volumes, resulting in low signal-to-noise ratios. The limited offset at which refracted first-arrivals could be measured along the SBHR seismic profile limited our measurements of tomographic refraction velocities to relatively shallow (< 150 m) depths. The SBHR reflection data reveal a basin with complex structural details within the upper kilometer. The two seismic profiles show internal consistency and consistency with other existing geophysical data. Collectively, the data suggest that the I-215 freeway trends along the faulted edge of a pull-apart basin, within a zone where the principal slip of the San Jacinto Fault is transferred to the San Andreas Fault. Because the I-215 freeway trends at low angles to these flower-structure faults, both primary and numerous secondary faults are apparent between the I-10 exchange and State Road-30, suggesting that much of the 8-km-long segment of the I-215 freeway could experience movement along primary or secondary faults.

  18. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2018-01-01

    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.

  19. Using Ambient Seismic Noise to Monitor Post-Seismic Relaxation After the 2010 Mw 7.1 Darfield Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Heckels, R.; Townend, J.

    2015-12-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into the crustal response of the earth. The use of ambient seismic noise to monitor these changes is becoming increasingly widespread. Cross-correlations of long-duration ambient noise records can be used to give stable impulse response functions without the need for repeated seismic events. Temporal velocity changes were detected in the four months following the September 2010 Mw 7.1 Darfield event in South Island, New Zealand, using temporary seismic networks originally deployed to record aftershocks in the region. The arrays consisted of stations lying on and surrounding the fault, with a maximum inter-station distance of 156km. The 2010-2011 Canterbury earthquake sequence occurred largely on previously unknown and buried faults. The Darfield earthquake was the first and largest in a sequence of events that hit the region, rupturing the Greendale Fault. A surface rupture of nearly 30km was observed. The sequence also included the Mw 6.3 February 2011 Christchurch event, which caused widespread damage throughout the city and resulted in almost 200 deaths. Nine-component, day-long Green's functions were computed for frequencies between 0.1 - 1.0 Hz for full waveform seismic data from immediately after the 4th September 2010 earthquake until mid-January 2011. Using the moving window cross-spectral method, stacks of daily functions covering the study period (reference functions), were compared to consecutive 10 day stacks of cross-correlations to measure time delays between them. These were then inverted for seismic velocity changes with respect to the reference functions. Over the study period an increase in seismic velocity of 0.25% ± 0.02% was determined proximal to the Greendale fault. These results are similar to studies in other regions, and we attribute the changes to post-seismic relaxation through crack-healing of the Greendale Fault and throughout the region.

  20. Observation of Infrasonic/Acoustic/Seismic Waves Induced by Hypersonic Reentry of Hayabusa

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.-Y.; Ishihara, Y.; Hiramatsu, Y.; Furumoto, M.; Fujita, K.

    2012-05-01

    Observation of infrasonic/acoustic/seismic waves induced by hypersonic reentry of HAYABUSA was carried out on June 13, 2010. Results by 3-sites arrayed observation will be shown in detail by comparison with multiple-sites optical observation.

  1. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrockmore » at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).« less

  2. SPREE: A Successful Seismic Array by a Failed Rift System; Analysis of Seismic Noise in the Seismically Quiet Mid-continent

    NASA Astrophysics Data System (ADS)

    Wolin, E.; van der Lee, S.; Bollmann, T. A.; Revenaugh, J.; Aleqabi, G. I.; Darbyshire, F. A.; Frederiksen, A. W.; Wiens, D.; Shore, P.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) completed its field recording phase last fall with over 96% data return. While 60% of the stations returned data 100% of the time, only 9 performed below 90% and one station had questionable timing. One station was vandalized, another stolen. One station continued recording after its solar panels were pierced by a bullet, while another two stations survived a wildfire and a blow-down, respectively. The blow-down was an extreme wind event that felled hundreds of thousands of trees around the station. SPREE stations recorded many hundreds of earthquakes. Two regional earthquakes and over 400 teleseismic earthquakes had magnitudes over 5.5 and three, smaller local earthquakes had magnitudes over 2.5. We have calculated power spectral estimates between 0.1-1000 s period for the ~2.5-year lifespan of all 82 SPREE stations. Vertical channels performed quite well across the entire frequency range, falling well below the high noise model of Peterson (1993) and usually within 10-15 dB of nearby Transportable Array stations. SPREE stations' horizontal components suffer from long-period (> 30 s) noise. This noise is quietest at night and becomes up to 30 dB noisier during the day in the summer months. We explore possible causes of this variation, including thermal and atmospheric pressure effects. One possibility is that stations are insulated by snow during the winter, reducing temperature variations within the vault. Spring snowmelt creates instability at many of the SPREE stations, evidenced by frequent recenterings and enhanced long-period noise. For all channels, power in the microseismic band (4-16 s) is strongest in the winter, corresponding to storm season in the Northern Hemisphere, and approximately 20 dB weaker during the summer. The power spectrum and temporal variation of microseismic energy is consistent across the entire SPREE array.

  3. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    NASA Astrophysics Data System (ADS)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated in the visual form using the Seistrain/geosearch program. Data were fully screened for the period 5.-13.9.2008. 360 teleseismic, regional and local events were identified. Results of the detection and analysis will be presented and consequences for further SAMS development will be discussed.

  4. Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 parkfield earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Sasai, Y.; Egbert, G.D.; Mueller, R.J.

    2006-01-01

    Precise measurements of local magnetic fields have been obtained with a differentially connected array of seven synchronized proton magnetometers located along 60 km of the locked-to-creeping transition region of the San Andreas fault at Parkfield, California, since 1976. The M 6.0 Parkfield earthquake on 28 September 2004, occurred within this array and generated coseismic magnetic field changes of between 0.2 and 0.5 nT at five sites in the network. No preseismic magnetic field changes exceeding background noise levels are apparent in the magnetic data during the month, week, and days before the earthquake (or expected in light of the absence of measurable precursive deformation, seismicity, or pore pressure changes). Observations of electric and magnetic fields from 0.01 to 20 Hz are also made at one site near the end of the earthquake rupture and corrected for common-mode signals from the ionosphere/magnetosphere using a second site some 115 km to the northwest along the fault. These magnetic data show no indications of unusual noise before the earthquake in the ULF band (0.01-20 Hz) as suggested may have preceded the 1989 ML 7.1 Loma Prieta earthquake. Nor do we see electric field changes similar to those suggested to occur before earthquakes of this magnitude from data in Greece. Uniform and variable slip piezomagnetic models of the earthquake, derived from strain, displacement, and seismic data, generate magnetic field perturbations that are consistent with those observed by the magnetometer array. A higher rate of longer-term magnetic field change, consistent with increased loading in the region, is apparent since 1993. This accompanied an increased rate of secular shear strain observed on a two-color EDM network and a small network of borehole tensor strainmeters and increased seismicity dominated by three M 4.5-5 earthquakes roughly a year apart in 1992, 1993, and 1994. Models incorporating all of these data indicate increased slip at depth in the region, and this may have played a role in the final occurrence of the 28 September 2004 M 6.0 Parkfield earthquake. The absence of electric and magnetic field precursors for this, and other earthquakes with M 5-7.3 elsewhere in the San Andreas fault system, indicates useful prediction of damaging earthquakes seems unlikely using these electromagnetic data.

  5. Imaging of Heterogeneous Structure beneath the Metropolitan Tokyo Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Kurashimo, E.; Kato, A.; Hagiwara, H.; Kasahara, K.; Tanada, T.; Obara, K.; Hirata, N.

    2009-12-01

    Beneath the metropolitan Tokyo area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. The Dai-Dai-Toku Project revealed the geometry of the upper surface of PSP, and estimated a rupture process and a ground motion of the 1923 Kanto earthquake [Sato et al., 2005]. Hagiwara et al. (2006) estimated the velocity structure of Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the metropolitan Tokyo area including those due to an intra-slab M7+ earthquake. So, we have carried out a 5-year project since 2007, the Special Project for Earthquake Disaster Mitigation in the Metropolitan Tokyo area. Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) of PSP is very important to attain this issue. The core item of this project is the dense seismic array observation in metropolitan area, which is called the MeSO-net (Metropolitan Seismic Observation network). In order to obtain the high resolution images of a velocity structure, it is requested to construct a seismic network with a spacing of 2-5 km. The total number of seismic stations of the MeSO-net will be about 400 and will be deployed in 4 years. We deployed the 178 seismic stations, which construct 5 seismic arrays such as Tsukuba-Fujisawa (TF) array etc., by 2008, and we are now deploying the 45 seismic stations in this year. The MeSO-net data are quasi-real-time transferred to the data center at ERI [Kasahara et al., 2007; Nakagawa et al., 2007]. In this study, we applied the tomography to image the heterogeneous structure under the metropolitan Tokyo area. We selected events from the catalogue by Hagiwara et al. (2006) and merged the new event data observed by MeSO-net with these data. Around the Kanto region there are several seismic explorations using active sources were carried out [Sato et al., 2005; Oikawa et al., 2007]. Since these data may improve the velocity structure in shallower part, we added the arrival time data of these explorations into the dataset. Then, we applied the double-difference tomography method [Zhang and Thurber, 2003] to this dataset and estimated the fine-scale velocity structure. The initial velocity structure is the same in Hagiwara et al. (2006), and the VP/VS ratio is set to 1.73 for all grid nodes. The TF array passes directory above Tokyo and is parallel to Boso peninsula. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The increase of MeSO-net stations and event data may improve images of heterogeneous structure and contribute the purpose of this special project. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  6. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  7. Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis

    NASA Astrophysics Data System (ADS)

    Buehler, Janine Sylvia

    The aim of this dissertation is to improve our understanding of the crust and uppermost mantle structure in the western United States, profiting from the wealth of regional phase data recorded at USArray stations. USArray, a transportable seismic array of ˜400 seismometers, has greatly increased seismic data coverage across the United States in the past few years, and allows imaging of the lithosphere of the North American continent with better resolution and new methods. The regional phases are often challenging to analyze, especially in a tectonically-active region like the western United States, because of their sensitivities to the heterogeneities of the crust and uppermost mantle. However, knowledge of the seismic structure of the lithosphere is not only essential in order to accurately image the velocity structure at greater depths, but also for constraining geodynamic models that reconstruct the tectonic evolution of the continent, and hence the information that is carried by the regional phases is very valuable. The data set used in this study consists mostly of the regional seismic phases Pn and Sn, which propagate horizontally along the Moho in the mantle lid and constrain the seismic velocity structure at a confined depth. We applied traditional tomographic methods that profit from the improved ray coverage through USArray, but also employed array-based techniques that take advantage of the regular station spacing of the transportable array and don't depend on regularization. In addition, we used stacking methods to image the propagation efficiency of the Sn phase, which is often highly attenuated in tectonically active regions, on a regional scale. The results complement other seismic studies that average over greater depth intervals, such as surface- and body-wave tomographies and anisotropy analysis from shear-wave splitting, to provide information on temperature, composition, and tectonic processes at depth. Comparisons between Pn azimuthal anisotropy and fast polarization direction from shear wave splitting suggest significant vertical changes in anisotropy in several regions of the upper mantle beneath the western United States. Sn can in theory further constrain the nature of anisotropy in the mantle lid. However, we have so far been unable to resolve shear-wave splitting directly in the Sn waveforms as the phase is often attenuated and difficult to detect. Still, we obtained evidence for Sn propagation in several regions of the western United States such as the central Great Basin and the northeastern part of the Colorado Plateau. We found that there are enough quality Sn picks for joint Pn-Sn tomography and identified prominent Vp/Vs anomalies, such as large high Vp/Vs regions --- typically associated with partial melt --- below the Snake River Plain and the Colorado Plateau.

  8. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys.

    PubMed

    Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

  9. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

    PubMed Central

    Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400

  10. Earthquakes: Risk, Monitoring, Notification, and Research

    DTIC Science & Technology

    2007-02-02

    Global Seismic Network (GSN). The GSN is a system of broadband digital seismographs arrayed around the globe and designed to collect high-quality...39 states face some risk from earthquakes. Seismic hazards are greatest in the western United States, particularly California, Alaska, Washington...Oregon, and Hawaii. The Rocky Mountain region, a portion of the central United States known as the New Madrid Seismic Zone, and portions of the eastern

  11. Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms

    NASA Astrophysics Data System (ADS)

    Gal, M.; Reading, A. M.; Ellingsen, S. P.; Koper, K. D.; Burlacu, R.; Gibbons, S. J.

    2016-07-01

    Microseisms in the period of 2-10 s are generated in deep oceans and near coastal regions. It is common for microseisms from multiple sources to arrive at the same time at a given seismometer. It is therefore desirable to be able to measure multiple slowness vectors accurately. Popular ways to estimate the direction of arrival of ocean induced microseisms are the conventional (fk) or adaptive (Capon) beamformer. These techniques give robust estimates, but are limited in their resolution capabilities and hence do not always detect all arrivals. One of the limiting factors in determining direction of arrival with seismic arrays is the array response, which can strongly influence the estimation of weaker sources. In this work, we aim to improve the resolution for weaker sources and evaluate the performance of two deconvolution algorithms, Richardson-Lucy deconvolution and a new implementation of CLEAN-PSF. The algorithms are tested with three arrays of different aperture (ASAR, WRA and NORSAR) using 1 month of real data each and compared with the conventional approaches. We find an improvement over conventional methods from both algorithms and the best performance with CLEAN-PSF. We then extend the CLEAN-PSF framework to three components (3C) and evaluate 1 yr of data from the Pilbara Seismic Array in northwest Australia. The 3C CLEAN-PSF analysis is capable in resolving a previously undetected Sn phase.

  12. Illuminating the Intricate Details of Tremor and Slow Slip Using an Array of Arrays

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Vidale, J. E.; Sweet, J. R.; Chestler, S.; Ghosh, A.

    2014-12-01

    Our Array of Arrays experiment consisted of eight 1-km aperture arrays, each containing 10-20 three-component continuously recording stations. One of these arrays ran continuously for five years and the others for more than one year. We applied frequency-domain beam forming to each array, and a multi-beam back projection method to detect and locate tremor on the Cascadia subduction plate interface every minute. We have also used the arrays to detect and locate over 10,000 tiny repeating Low-Frequency Earthquakes (LFEs) in dozens of distinct families. Repeating events are detected by autocorrelating every 6-s window with every other one during many 1-hour periods and stacking them across several stations to find repeating events. Clean templates are built for each family by iteratively scanning for new repeats and stacking them into the previous template. LFE catalogs are obtained by scanning templates through years of continuous data. Waveform similarities across LFEs and across stations within arrays are used to estimate seismic moment, double-difference event locations and source spectra. These methods have revealed fascinating space-time patterns in both tremor and LFEs that shed light on the propagation modes of slow slip earthquakes on the subduction plate interface including tremor streaks that propagate 100 km/hour parallel to relative plate motion, Rapid Tremor Reversals that propagate at 10 km/hour, and up to 4 times variations in the 0.4 km/hour along-strike propagation speed of the main rupture front that indicates sticky spots on the plate interface. Rather than following a standard Gutenberg-Richter power-law relation, the distributions of seismic moment of LFEs within each family follow an exponential law, allowing estimates of characteristic size. LFEs for a given family cluster in time. Going up dip, time between LFE bursts vary systematically from about a week to a year, durations from an hour to several days, and characteristic moment magnitudes from 1.25 to 1.85. The characteristic moment for up dip LFEs is thus 8 times bigger than their down-dip counter parts. Double-difference locations indicate that many of the families occur on patches that are elongated in the direction of relative plate motion, perhaps related to structural features on the plate interface.

  13. Complex Seismic Anisotropy at the Edges of a Very-low Velocity Province in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2005-12-01

    A prominent very-low velocity province (VLVP) in the lowermost mantle is revealed, and has been extensively mapped out in recent seismic studies (e.g., Wang and Wen, 2004). Seismic evidence unambiguously indicates that the VLVP is compositionally distinct, and its seismic structure can be best explained by partial melting driven by a compositional change produced in the early Earth's history (Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004). In this presentation, we study the seismic anisotropic behavior inside the VLVP and its surrounding area using SKS and SKKS waveform data. We collect 272 deep earthquakes recorded by more than 80 stations in the Kaapvaal seismic array in southern Africa from 1997 to 1999. Based on the data quality, we choose SKS and SKKS waveform data for 16 earthquakes to measure the anisotropic parameters: the fast polarization direction and the splitting time, using the method of Silver and Chan (1991). A total of 162 high-quality measurements are obtained based on the statistics analysis of shear wave splitting results. The obtained anisotropy exhibits different patterns for the SKS and SKKS phases sampling inside the VLVP and at the edges of the VLVP. When the SKS and SKKS phases sample inside the VLVP, their fast polarization directions exhibit a pattern that strongly correlates with stations, gradually changing from 11°N~to 80°N~across the seismic array from south to north and rotating back to the North direction over short distances for several northernmost stations. The anisotropy pattern obtained from the analysis of the SKKS phases is the same as that from the SKS phases. However, when the SKS and SKKS phases sample at the edges of the VLVP, the measured anisotropy exhibits a very complex pattern. The obtained fast polarization directions change rapidly over a small distance, and they no longer correlate with stations; the measurements obtained from the SKS analysis also differ with those from the SKKS analysis. As the SKS and SKKS phases have similar propagation paths in the lithosphere beneath the array, but different sampling points near the core mantle boundary. The anisotropy in the lithosphere should have a similar influence on SKS and SKKS phases. Therefore, the similar anisotropy obtained from the SKS and SKKS phases sampling inside the VLVP and its correlation with seismic stations suggest that the observed anisotropy variation across the seismic array is mainly due to the anisotropy in the lithosphere beneath the Kaapvaal seismic array, and the interior of the VLVP is isotropic or weakly anisotropic. On the other hand, for the SKS and SKKS phases sampling at the edges of the VLVP, the observed complex anisotropy pattern and the lack of correlation between the results from the SKS and SKKS analyses indicate that part of that anisotropy has to originate from the lowermost mantle near the exit points of these phases at the core mantle boundary, revealing a complex flow pattern at the edges of the VLVP.

  14. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, Leo; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  15. Network capability estimation. Vela network evaluation and automatic processing research. Technical report. [NETWORTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, N.S.

    1976-09-24

    NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less

  16. An Overview of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS)

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Barker, D. L.; White, R. L.; Emmitt, R. F.; Townsend, M. J.; Graves, T. E.; Becker, S. A.; Teel, M. G.; Lee, P.; Antoun, T. H.; Rodgers, A.; Walter, W. R.; Mellors, R. J.; Brunish, W. M.; Bradley, C. R.; Patton, H. J.; Hawkins, W. L.; Corbell, B. H.; Abbott, R. E.; SPE Working Group

    2011-12-01

    Modeling of explosion phenomenology has been primarily empirically based when looking at the seismic, infrasound, and acoustic signals. In order to detect low-yield nuclear explosions under the Comprehensive Nuclear Test-Ban Treaty (CTBT), we must be able to understand and model the explosive source in settings beyond where we have empirical data. The Source Physics Experiments (SPE) at the Nevada National Security Site are the first step in this endeavor to link the empirically based with the physics-based modeling to develop this predictive capability. The current series of tests is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the site's expected "simple geology"-the granite is a fairly homogeneous body. In addition, data are available from underground nuclear tests that were conducted in the same rock body, and the nature of the geology has been well-documented. Among the project goals for the SPE is to provide fully coupled seismic energy to the seismic and acoustic seismic arrays so that the transition between the near and far-field data can be modeled and our scientists can begin to understand how non-linear effects and anisotropy control seismic energy transmission and partitioning. The first shot for the SPE was conducted in May 2011 as a calibration shot (SPE1) with 220 lb (100 kg) of chemical explosives set at a depth of 180 ft (55 m). An array of sensors and diagnostics recorded the shot data, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD) as well as infrasound sensors. The three-component accelerometer packages were set at depths of 180 ft (55 m), 150 ft (46 m), and 50 ft (15 m) in two rings around ground zero (GZ); the inner ring was at 10 m and the outer ring was 20 m from GZ. Six sets of surface accelerometers (100 and 500 g) were placed along in an azimuth of SW from GZ every 10 m. Seven infrasound sensors were placed in an array around the GZ, extending from tens of meters to kilometers. Over 100 seismic stations were positioned, most of which were in five radial lines from GZ out to 2 km. Over 400 data channels were recorded for SPE1, and data recovery was about 95% with high signal to noise ratio. Future tests will be conducted in the same shot hole as SPE1. The SPE2 experiment will consist of 2200 lb (1000 kg) of chemical explosives shot at 150 ft (46 m) depth utilizing the above-described instrumentation. Subsequent SPE shots will be the same size, within the same shot hole, and within the damage zone. The ultimate goal of the SPE Project is to develop predictive capability for using seismic energy as a tool for CTBT issues. This work was done by National Security Technologies, LLC, under Contract No. DE AC52 06NA25946 with the U.S. Department of Energy.

  17. Time-lapse CO2 monitoring using ambient-noise seismic interferometry: a feasibility study from Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Boullenger, Boris; Verdel, Arie; Paap, Bob; Thorbecke, Jan; Draganov, Deyan

    2015-04-01

    Seismic interferometry applied to ambient-noise measurements allows retrieval of the Green's function between two seismic receivers, by cross-correlating their recordings, as if from a source at one of the receivers. We propose to use ambient-noise seismic interferometry (ANSI) to retrieve reflection data. The time-lapse differences between different vintages of the retrieved data may help characterize property changes within a geologic reservoir with varying CO2 saturation. We test the feasibility of this time-lapse passive seismic method with numerical experiments based on the CO2-storage site of Ketzin, Germany. Ambient-noise recordings from Ketzin exhibit significant passive body-wave energy (from natural tremors or induced seismicity in the vicinity of the reservoir), which is advantageous to retrieve reflections with ANSI. The ANSI numerical experiments aim to understand what the requirements are for the recorded body-wave noise to retrieve the time-lapse reflection signal caused by an increase of CO2 saturation in the reservoir. For this purpose, we design two velocity scenarios at Ketzin: a base scenario before the injection of CO2, and a repeat scenario corresponding to a P-wave velocity decline in the reservoir by 20 percent. For both scenarios, we simulate passive seismic experiments of body-wave noise recordings that may take several days or months to record in the field. The passive recordings are obtained by modelling global (direct wave, internal and surface multiples) transmission responses from band-limited subsurface noise sources, randomly triggered in space and time. The time-lapse reflection signal is obtained by taking the differences between the base and the repeat retrieved reflection data (virtual common-shot gathers). We found that the time-lapse signal is still recovered with ANSI even if the base and repeat retrieved reflection data are partially polluted with artifacts. This means that uneven illumination of the array does not necessarily exclude acceptable time-lapse signal retrieval. Furthermore, the clarity of the time-lapse signal at the reservoir level increases with increasing repeatability of the two passive experiments. The increase in repeatability is achieved when the contributing noise sources form denser clusters that share analogous spatial coverage. To support the merits of the numerical experiments, we applied ANSI (by auto-correlation) to three days of Ketzin passive field-data and compare the retrieved responses with the modelling results. The data are recorded at a permanent array of sensors (hydrophones and geophones) installed above the injection site. We used the records from the buried line of the array that consists of sensors lying at 50-meters depth. These records are less contaminated with surface noise and preserve passive body-wave events better than surface-recorded data. The retrieved responses exhibit significant correspondence with the existing active-seismic field data as well as with our modelled ANSI and active responses. Key reflection events seem to be retrieved at the expected arrival times and support the idea that the settings and characteristics of the ambient noise at Ketzin offer good potential for time-lapse ANSI to monitor CO2 sequestration.

  18. The AlpArray-CASE project: temporary broadband seismic network deployment and characterization

    NASA Astrophysics Data System (ADS)

    Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico

    2017-04-01

    While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.

  19. Complex Rayleigh Waves Produced by Shallow Sedimentary Basins and their Potential Effects on Mid-Rise Buildings

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.

    2017-12-01

    Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.

  20. Analysis and localization of blue whale vocalizations in the Solomon Sea using waveform amplitude data.

    PubMed

    Frank, Scott D; Ferris, Aaron N

    2011-08-01

    During the Woodlark Basin seismic experiment in eastern Papua New Guinea (1999-2000), an ocean-bottom seismic array recorded marine mammal vocalizations along with target earthquake signals. The array consisted of 14 instruments, 7 of which were three-component seismometers with a fourth component hydrophone. They were deployed at 2.0-3.2 km water depth and operated from September 1999 through February 2000. While whale vocalizations were recorded throughout the deployment, this study focuses on 3 h from December 21, 1999 during which the signals are particularly clear. The recordings show a blue whale song composed of a three-unit phrase. That song does not match vocalization characteristics of other known Pacific subpopulations and may represent a previously undocumented blue whale song. Animal tracking and source level estimates are obtained with a Bayesian inversion method that generates probabilistic source locations. The Bayesian method is augmented to include travel time estimates from seismometers and hydrophones and acoustic signal amplitude. Tracking results show the whale traveled northeasterly over the course of 3 h, covering approximately 27 km. The path followed the edge of the Woodlark Basin along a shelf that separates the shallow waters of the Trobriand platform from the deep waters of the basin.

  1. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    NASA Astrophysics Data System (ADS)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  2. Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.

    2009-08-01

    The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.

  3. Data Quality Control Tools Applied to Seismo-Acoustic Arrays in Korea

    NASA Astrophysics Data System (ADS)

    Park, J.; Hayward, C.; Stump, B. W.

    2017-12-01

    We assess data quality (data gap, seismometer orientation, timing error, noise level and coherence between co-located sensors) for seismic and infrasound data in South Korea using six seismo-acoustic arrays, BRDAR, CHNAR, KSGAR, KMPAR, TJIAR, and YPDAR, cooperatively operated by Southern Methodist University and Korea Institute for Geosciences and Mineral Resources. Timing errors associated with seismometers can be found based on estimated changes in instrument orientation calculated from RMS errors between the reference array and each array seismometer using waveforms filtered from 0.1 to 0.35 Hz. Noise levels of seismic and infrasound data are analyzed to investigate local environmental effects and seasonal noise variation. In order to examine the spectral properties of the noise, the waveform are analyzed using Welch's method (Welch, 1967) that produces a single power spectral estimate from an average of spectra taken at regular intervals over a specific time period. This analysis quantifies the range of noise conditions found at each of the arrays over the given time period. We take an advantage of the fact that infrasound sensors are co-located or closely located to one another, which allows for a direct comparison of sensors, following the method by Ringler et al. (2010). The power level differences between two sensors at the same array in the frequency band of interest are used to monitor temporal changes in data quality and instrument conditions. A data quality factor is assigned to stations based on the average values of temporal changes estimated in the frequency and time domains. These monitoring tools enable us to automatically assess technical issue related to the instruments and data quality at each seismo-acoustic array as well as to investigate local environmental effects and seasonal variations in both seismic and infrasound data.

  4. Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Chen, P.; Cochran, E.S.; Vidale, J.E.; Burdette, T.

    2006-01-01

    We deployed a dense linear array of 45 seismometers across and along the San Andreas fault near Parkfield a week after the M 6.0 Parkfield earthquake on 28 September 2004 to record fault-zone seismic waves generated by aftershocks and explosions. Seismic stations and explosions were co-sited with our previous experiment conducted in 2002. The data from repeated shots detonated in the fall of 2002 and 3 months after the 2004 M 6.0 mainshock show ???1.0%-1.5% decreases in seismic-wave velocity within an ???200-m-wide zone along the fault strike and smaller changes (0.2%-0.5%) beyond this zone, most likely due to the coseismic damage of rocks during dynamic rupture in the 2004 M 6.0 earthquake. The width of the damage zone characterized by larger velocity changes is consistent with the low-velocity waveguide model on the San Andreas fault, near Parkfield, that we derived from fault-zone trapped waves (Li et al., 2004). The damage zone is not symmetric but extends farther on the southwest side of the main fault trace. Waveform cross-correlations for repeated aftershocks in 21 clusters, with a total of ???130 events, located at different depths and distances from the array site show ???0.7%-1.1% increases in S-wave velocity within the fault zone in 3 months starting a week after the earthquake. The velocity recovery indicates that the damaged rock has been healing and regaining the strength through rigidity recovery with time, most likely . due to the closure of cracks opened during the mainshock. We estimate that the net decrease in seismic velocities within the fault zone was at least ???2.5%, caused by the 2004 M 6.0 Parkfield earthquake. The healing rate was largest in the earlier stage of the postmainshock healing process. The magnitude of fault healing varies along the rupture zone, being slightly larger for the healing beneath Middle Mountain, correlating well with an area of large mapped slip. The fault healing is most prominent at depths above ???7 km.

  5. Teleseismic Array Studies of Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine

    2011-12-01

    The core mantle boundary (CMB) is an inaccessible and complex region, knowledge of which is vital to our understanding of many Earth processes. Above it is the heterogeneous lower-mantle. Below the boundary is the outer-core, composed of liquid iron, and/or nickel and some lighter elements. Elucidation of how these two distinct layers interact may enable researchers to better understand the geodynamo, global tectonics, and overall Earth history. One parameter that can be used to study structure and limit potential chemical compositions is seismic-wave velocity. Current global-velocity models have significant uncertainties in the 200 km above and below the CMB. In this thesis, these regions are studied using three methods. The upper outer core is studied using two seismic array methods. First, a modified vespa, or slant-stack method is applied to seismic observations at broadband seismic arrays, and at large, dense groups of broadband seismic stations dubbed 'virtual' arrays. Observations of core-refracted teleseismic waves, such as SmKS, are used to extract relative arrivaltimes. As with previous studies, lower -mantle heterogeneities influence the extracted arrivaltimes, giving significant scatter. To remove raypath effects, a new method was developed, called Empirical Transfer Functions (ETFs). When applied to SmKS waves, this method effectively isolates arrivaltime perturbations caused by outer core velocities. By removing raypath effects, the signals can be stacked further reducing scatter. The results of this work were published as a new 1D outer-core model, called AE09. This model describes a well-mixed outer core. Two array methods are used to detect lower mantle heterogeneities, in particular Ultra-Low Velocity Zones (ULVZs). The ETF method and beam forming are used to isolate a weak P-wave that diffracts along the CMB. While neither the ETF method nor beam forming could adequately image the low-amplitude phase, beam forms of two events indicate precursors to the SKS and SKKS phase, which may be ULVZ indicators. Finally, cross-correlated observed and modelled beams indicate a tendency towards a ULVZ-like lower mantle in the study region.

  6. High-Resolution Fault Zone Monitoring and Imaging Using Long Borehole Arrays

    NASA Astrophysics Data System (ADS)

    Paulsson, B. N.; Karrenbach, M.; Goertz, A. V.; Milligan, P.

    2004-12-01

    Long borehole seismic receiver arrays are increasingly used in the petroleum industry as a tool for high--resolution seismic reservoir characterization. Placing receivers in a borehole avoids the distortion of reflected seismic waves by the near-surface weathering layer which leads to greatly improved vector fidelity and a much higher frequency content of 3-component recordings. In addition, a borehole offers a favorable geometry to image near-vertically dipping or overturned structure such as, e.g., salt flanks or faults. When used for passive seismic monitoring, long borehole receiver arrays help reducing depth uncertainties of event locations. We investigate the use of long borehole seismic arrays for high-resolution fault zone characterization in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD). We present modeling scenarios to show how an image of the vertically dipping fault zone down to the penetration point of the SAFOD well can be obtained by recording surface sources in a long array within the deviated main hole. We assess the ability to invert fault zone reflections for rock physical parameters by means of amplitude versus offset or angle (AVO/AVA) analyzes. The quality of AVO/AVA studies depends on the ability to illuminate the fault zone over a wide range of incidence angles. We show how the length of the receiver array and the receiver spacing within the borehole influence the size of the volume over which reliable AVO/AVA information could be obtained. By means of AVO/AVA studies one can deduce hydraulic properties of the fault zone such as the type of fluids that might be present, the porosity, and the fluid saturation. Images of the fault zone obtained from a favorable geometry with a sufficient illumination will enable us to map fault zone properties in the surrounding of the main hole penetration point. One of the targets of SAFOD is to drill into an active rupture patch of an earthquake cluster. The question of whether or not this goal has indeed been achieved at the time the fault zone is penetrated can only be answered if the rock properties found at the penetration point can be compared to the surrounding volume. This task will require mapping of rock properties inverted from AVO/AVA analyzes of fault zone reflections. We will also show real data examples of a test deployment of a 4000 ft, 80-level clamped 3-component receiver array in the SAFOD main hole in 2004.

  7. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  8. Moho Depth and Geometry in the Illinois Basin Region Based on Gravity and Seismic Data from an EarthScope FlexArray Experiment

    NASA Astrophysics Data System (ADS)

    Curcio, D. D.; Pavlis, G. L.; Yang, X.; Hamburger, M. W.; Zhang, H.; Ravat, D.

    2017-12-01

    We present results from a combined analysis of seismic and gravity in the Illinois Basin region that demonstrate the presence of an unusually deep and highly variable Moho discontinuity. We construct a new, high-resolution image of the Earth's crust beneath the Illinois Basin using teleseismic P-wave receiver functions from the EarthScope OIINK (Ozarks, Illinois, INdiana, Kentucky) Flexible Array and the USArray Transportable Array. Our seismic analyses involved data from 143 OIINK stations and 80 USArray stations, using 3D plane-wave migration and common conversion point (CCP) stacking of P-to-S conversion data. Seismic interpretation has been done using the seismic exploration software package Petrel. One of the most surprising results is the anomalous depth of the Moho in this area, ranging from 41 to 63 km, with an average depth of 50 km. This thickened crust is unexpected in the Illinois Basin area, which has not been subject to convergence and mountain building processes in the last 900 Ma. This anomalously thick crust in combination with the minimal topography requires abnormally dense lower crust or unusually light upper mantle in order to retain gravitational equilibrium. Combining gravity modeling with the seismically identified Moho and a ubiquitous lower crustal boundary, we solve for the density variation of the middle and lower crust. We test the hypothesis that the anomalously thick crust and its high lower crustal layer observed in most of the central and southeastern Illinois Basin predates the formation and development of the current Illinois Basin. Post-formation tectonic activity, such as late Precambrian rifting or underplating are inferred to have modified the crustal thickness as well. The combination of high-resolution seismic data analysis and gravity modeling promises to provide additional insight into the geometry and composition of the lower crust in the Illinois Basin area.

  9. Small-aperture seismic array data processing using a representation of seismograms at zero-crossing points

    NASA Astrophysics Data System (ADS)

    Brokešová, Johana; Málek, Jiří

    2018-07-01

    A new method for representing seismograms by using zero-crossing points is described. This method is based on decomposing a seismogram into a set of quasi-harmonic components and, subsequently, on determining the precise zero-crossing times of these components. An analogous approach can be applied to determine extreme points that represent the zero-crossings of the first time derivative of the quasi-harmonics. Such zero-crossing and/or extreme point seismogram representation can be used successfully to reconstruct single-station seismograms, but the main application is to small-aperture array data analysis to which standard methods cannot be applied. The precise times of the zero-crossing and/or extreme points make it possible to determine precise time differences across the array used to retrieve the parameters of a plane wave propagating across the array, namely, its backazimuth and apparent phase velocity along the Earth's surface. The applicability of this method is demonstrated using two synthetic examples. In the real-data example from the Příbram-Háje array in central Bohemia (Czech Republic) for the Mw 6.4 Crete earthquake of October 12, 2013, this method is used to determine the phase velocity dispersion of both Rayleigh and Love waves. The resulting phase velocities are compared with those obtained by employing the seismic plane-wave rotation-to-translation relations. In this approach, the phase velocity is calculated by obtaining the amplitude ratios between the rotation and translation components. Seismic rotations are derived from the array data, for which the small aperture is not only an advantage but also an applicability condition.

  10. Using Building Seismic Strong-Motion Data to Quantify Urban Blast Pressure Fields

    NASA Astrophysics Data System (ADS)

    Massari, A.; Kohler, M. D.; Heaton, T. H.; Kanamori, H.; Hauksson, E.; Clayton, R. W.; Guy, R.; Bunn, J.; Chandy, M.

    2015-12-01

    The use of building vibrations to measure blast wave propagation in a city is examined in this case study. The Exxon Mobil Corp. oil refinery in Torrance, California experienced an explosion on February 18, 2015 causing ground shaking equivalent to a magnitude 1.9 earthquake. The impulse response for the source was computed from Southern California Seismic Network data for a multi-orthogonal force system with a value of 2×105 kN vertically downward. The pressure wave excited by the explosion traveled through the city of Los Angeles, and was detected by a dense accelerometer array in a 52-story building also in downtown Los Angeles 22.8 km from the explosion. The array is part of the Community Seismic Network (CSN) and consists of three-component class-C MEMs sensors located on each floor of the building. The detection was verified by the nearly simultaneous arrival times of acceleration pulses on multiple floors of the building, corresponding to an average wave speed near the speed of sound in air. The pressure wave peak magnitude from the air blast was determined using accelerometer data collected on every floor of the building coupled with the elastic response of the structure as a whole. . Making use of high-fidelity finite element modeling of the building validated by previous low-level seismicity and ambient noise data, a procedure is outlined for pressure wave detection and quantification on well instrumented buildings. This case study for a 52 story building, instrumented by the CSN, acts as a proxy for blast wave quantification in dense urban environments. This type of information can be used to understand the flow of blast waves through a cityscape as well as enhance procedures for estimating blast source magnitude. Better understanding of the propagation of pressure waves in urban environments will lead to the development of improved countermeasures in those environments.

  11. Seismic Structure of the Half-Graben of Santiaguillo, Durango, Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, J. M.; Nieto-Samaniego, A. F.; Barajas-Gea, I.; Alaniz-Alvarez, S. A.; Diaz-Baez, I.

    2007-05-01

    The Santiaguillo half-graben is part of the San Luis-Tepehuanes fault system, which is a major structure separating two physiographic provinces, the Mesa Central and the Sierra Madre Occidental. The younger movement of the faults is Quaternary, which is affecting the rocks of the Durango volcanic field. In this work, we study the faults and grabens forming the complex structure of the Santiaguillo half-graben. These structures result from active extensional tectonics since the Oligocene. The contemporary tectonic deformations have been manifested in the last 50 years by a number of earthquakes occurred in the region (1.2 < M < 4.5, epicenter depths < 10 km). The most recent event occurred on July 29, 2003, is a small-sized earthquake M4.5 reported by the Servicio Sismologico Nacional (SSN) that struck the middle of the basin. Some other small-sized earthquakes, microseismicity and swarms occurred around the basin. However, the lack of permanent seismic stations has prevented a recorded history of this activity. We report the preliminary results from the Durango network, which consists of an 8-station passive short-period array deployed around the Laguna de Santiaguillo. This temporal and portable network has been installed for a period of roughly 12 months starting in April 2006, over an area of about 80 km length and 40 km width. The overall aim of our experiment is to understand the driven forces controlling the tectonics of the western side of the Mesa Central in western Mexico. We combine structural observations and recorded seismicity to locate the potential seismogenic structures. Another objective is characterizing some of the crustal properties in the region. Results show a sparsed and scattered seismic activity. We recorded about 50 microearthquakes, half of them were located out side of the array. Bulk of this activity does not coincide with previously reported activity, which implies a more difficult definition of the seismogenic zones.

  12. The Use of Signal Dimensionality for Automatic QC of Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.; Draganov, D.; Maceira, M.; Gomez, M.

    2014-12-01

    A significant problem in seismic array analysis is the inclusion of bad sensor channels in the beam-forming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by-node basis, so the dimensionality of the node traffic is instead monitored for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. We examine the signal dimension in similar way to the method addressing node traffic anomalies in large computer systems. We explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for identifying bad array elements. We show preliminary results applied to arrays in Kazakhstan (Makanchi) and Argentina (Malargue).

  13. Seismic Strong Motion Array Project (SSMAP) to Record Future Large Earthquakes in the Nicoya Peninsula area, Costa Rica

    NASA Astrophysics Data System (ADS)

    Simila, G.; McNally, K.; Quintero, R.; Segura, J.

    2006-12-01

    The seismic strong motion array project (SSMAP) for the Nicoya Peninsula in northwestern Costa Rica is composed of 10 13 sites including Geotech A900/A800 accelerographs (three-component), Ref-Teks (three- component velocity), and Kinemetric Episensors. The main objectives of the array are to: 1) record and locate strong subduction zone mainshocks [and foreshocks, "early aftershocks", and preshocks] in Nicoya Peninsula, at the entrance of the Nicoya Gulf, and in the Papagayo Gulf regions of Costa Rica, and 2) record and locate any moderate to strong upper plate earthquakes triggered by a large subduction zone earthquake in the above regions. Our digital accelerograph array has been deployed as part of our ongoing research on large earthquakes in conjunction with the Earthquake and Volcano Observatory (OVSICORI) at the Universidad Nacional in Costa Rica. The country wide seismographic network has been operating continuously since the 1980's, with the first earthquake bulletin published more than 20 years ago, in 1984. The recording of seismicity and strong motion data for large earthquakes along the Middle America Trench (MAT) has been a major research project priority over these years, and this network spans nearly half the time of a "repeat cycle" (50 years) for large (Ms 7.5- 7.7) earthquakes beneath the Nicoya Peninsula, with the last event in 1950. Our long time co-collaborators include the seismology group OVSICORI, with coordination for this project by Dr. Ronnie Quintero and Mr. Juan Segura. Numerous international investigators are also studying this region with GPS and seismic stations (US, Japan, Germany, Switzerland, etc.). Also, there are various strong motion instruments operated by local engineers, for building purposes and mainly concentrated in the population centers of the Central Valley. The major goal of our project is to contribute unique scientific information pertaining to a large subduction zone earthquake and its related seismic activity when the next large earthquake occurs in Nicoya. A centralized data base will be created within the main seismic network files at OVSICORI, with various local personnel working in teams that will be responsible to collect data within 3 days following a large mainshock.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Sean R.; Walter, William R.

    Seismic waveform correlation offers the prospect of greatly reducing event detection thresholds when compared with more conventional processing methods. Correlation is applicable for seismic events that in some sense repeat, that is they have very similar waveforms. A number of recent studies have shown that correlated seismic signals may form a significant fraction of seismicity at regional distances. For the particular case of multiple nuclear explosions at the same test site, regional distance correlation also allows very precise relative location measurements and could offer the potential to lower thresholds when multiple events exist. Using the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Internationalmore » Monitoring System (IMS) seismic array at Matsushiro, Japan (MJAR), Gibbons and Ringdal (2012) were able to create a multichannel correlation detector with a very low false alarm rate and a threshold below magnitude 3.0. They did this using the 2006 or 2009 Democratic People’s Republic of Korea (DPRK) nuclear explosion as a template to search through a data stream from the same station to find a match via waveform correlation. In this paper, we extend the work of Gibbons and Ringdal (2012) and measure the correlation detection threshold at several other IMS arrays. We use this to address three main points. First, we show the IMS array station at Mina, Nevada (NVAR), which is closest to the Nevada National Security Site (NNSS), is able to detect a chemical explosion that is well under 1 ton with the right template. Second, we examine the two IMS arrays closest to the North Korean (DPRK) test site (at Ussuriysk, Russian Federation [USRK] and Wonju, Republic of Korea [KSRS]) to show that similarly low thresholds are possible when the right templates exist. We also extend the work of Schaff et al. (2012) and measure the correlation detection threshold at the nearest Global Seismic Network (GSN) three-component station (MDJ) at Mudanjiang, Heilongjiang Province, China, from the New China Digital Seismograph Network (IC). To conclude, we use these results to explore the recent claim by Zhang and Wen (2015) that the DPRK conducted “…a low-yield nuclear test…” on 12 May 2010.« less

  15. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located <10 km from the epicenter exceeds 70%. Due to the sensor's self-noise, smaller magnitude events at short epicentral distances are very difficult to detect. To increase the signal-to-noise ratio, we employ array back-projection techniques on continuous data recorded by thousands of phones. In this class of methods, the array is used as a spatial filter that suppresses signals emitted from shallow noise sources. Filtered traces are stacked to further enhance seismic signals from deep sources. We benchmark our technique against traditional location algorithms using recordings from California, a region with large MyShake user database. We find that locations derived from back-projection images of M 3 events recorded by >20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  16. Seismic perspectives from the western U.S. on the evolution of magma reservoirs underlying major silicic eruptions

    NASA Astrophysics Data System (ADS)

    Schmandt, B.; Huang, H. H.; Farrell, J.; Hansen, S. M.; Jiang, C.

    2017-12-01

    The western U.S. Cordillera has hosted widespread magmatic activity since the Eocene including ≥1,000 km3 silicic eruptions since 1 Ma. A review of recent seismic constraints on relatively young (≤1.1 Ma) and old (Oligocene) magmatic systems provides insight into the heterogeneity among these systems and their temporal evolution. Local seismic data vary widely but all of these systems are covered by the USArray's 70-km spacing. Among 3 young systems with ≥300 km3 silicic eruptions (Yellowstone - 0.64 Ma; Long Valley - 0.76 Ma; Valles - 1.1 Ma) only Yellowstone shows sufficiently low seismic velocities to require partial melt in the upper crust at scales visible with USArray data. Finer-scale arrays refine the shape of large (>1,000 km3) partially molten volumes in the upper and lower crust at Yellowstone, and similar studies at Long Valley and Valles indicate much smaller volumes of partial melt. Notably, Long Valley Caldera is seismically active in the upper and lower crust, has a high flux of CO2 degassing, and multi-year geodetic transients consistent with an inflating upper crustal reservoir of 2-4 km radius (compared to 20x50x5 km at Yellowstone). Upper mantle seismic imaging finds strong low velocity anomalies that require some partial melt beneath Yellowstone and Long Valley, but more ambiguous results beneath Valles. Thus, the structures of the three young large-volume silicic systems are highly variable suggesting that large reservoirs of melt in the upper crust are short-lived with respect to the ≤1.1 Ma since the last major eruption, consistent with recent inferences from geochemically constrained thermal histories of erupted crystals. Among long-extinct silicic systems, most were severely overprinted by extensional deformation. The San Juan and Mogollon Datil are exceptions with only modest deformation. These systems show low-to-average velocity crust down to a sharp Moho and relatively thin crust for their elevations. Both are consistent with a felsic to intermediate crustal column, suggesting that mafic cumulates required to produce silicic magma from basaltic inputs are not present in large quantities (>5 km layers). We infer that post-eruption foundering of mafic cumulates into the mantle occurred and was not followed by another major episode of basaltic melt input.

  17. Ambient Seismic Noise Monitoring of Time-lapse Velocity Changes During CO2 Injection at Otway, South Australia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Lumley, D. E.

    2017-12-01

    We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.

  18. The IberArray BB seismic network of Topo-Iberia: new constraints revealing the deep structure of the Iberian Peninsula and North Morocco

    NASA Astrophysics Data System (ADS)

    Gallart, J.; Diaz Cusi, J.; Villasenor, A.; Mancilla, F. D. L.; Bonatto, L.; Schimmel, M.; El moudnib, L.

    2014-12-01

    Topo-Iberia has been a large-scale Spanish project running from 2007 to 2013 that integrated more than 150 researchers on Earth Sciences. One of its key assets was the management of an observatory platform, named IberArray, aimed to provide new geophysical datasets (seismic, GPS, MT) to constrain the structure of Iberia with unprecedented resolution. The IberArray seismic pool was composed by 70+ BB stations, covering the study area in 3 deployments with a site-density of 60km x 60km. The data base holds ~300 sites, including the permanent networks in the area. Hence it forms a unique seismic database in Europe that allow for multiple analyses to constrain the complex geodinamics of the Western Mediterranean. A summary of new results coming from different techniques is presented here. The SKS splitting analysis has provided a spectacular image of the rotation of the fast velocity direction along the Gibraltar Arc. In central and northern Iberia, the fast polarization directions are close to EW, consistently with global mantle flow models considering contributions of surface plate motion, density variations and net lithosphere rotation. Those results suggest an asthenospheric origin of the observed anisotropy related to present-day mantle flow. Receiver functions have revealed the crustal thickness variations beneath the Rif and southern Iberia, including a crustal root beneath the Rif. The Variscan Iberian massif shows a flat Moho discontinuity, while the areas reworked in the Alpine orogeny show a slightly thicker crust. Beneath N Iberia, the imbrication of the Iberian and Eurasian crusts results in complex receiver functions. Depths exceeding 45 km are observed along the Pyrenean range, while the crust thins to values of 26-28 km close to the Atlantic coasts. The geometry of the 410-km and 660-km discontinuities has been investigated using novel cross-correlation/stacking techniques. Ambient noise tomography allows to identify the main sedimentary basins and to discriminate between the Variscan and the Alpine reworked areas. Local body-wave tomography in North Morocco has improved the location of the small magnitude events on the area and the details of the crustal structure. Teleseismic tomography has confirmed, using an independent data set, the presence of a high-velocity slab beneath the Gibraltar Arc.

  19. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  20. Array observations and analyses of Cascadia deep tremor

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; Creager, K.; Crosson, R.; La Rocca, M.; Saccoretti, G.

    2004-12-01

    The July 8-24, 2004 Cascadia Episodic Tremor and Slip (ETS) event was observed using three small aperture seismic arrays located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. Initial tremor burst epicenters located in the Strait of Juan de Fuca and were calculated using the relative arrivals of band-passed, rectified regional network signals. Most subsequent epicenters migrated to the northwest along Vancouver Island and a few occurred in the central to southern Puget Sound. Tremor bursts lasting on the order of a few seconds can be identified across the stations of any of the three arrays. Individual bursts from distinct back-azimuths often occur within five seconds of each other, indicating the presence of spatially distributed but near simultaneous tremor. None of this was visible at such a fine scale using Pacific Northwest Seismograph Network (PNSN). Several array processing techniques, including beam-forming, zero-lag cross correlation and multiple signal classification (MUSIC), are being investigated to determine the optimal technique for exploring the temporal and spatial evolution of the tremor signals during the whole ETS. The back-azimuth and slowness of consecutive time windows for a one half-hour period of strong tremor were calculated using beam-forming with a linear stack, with an nth-root stack, and using zero-lag cross-correlation. Results for each array and each method yield consistent estimates of back azimuth and slowness. Beam-forming with a nonlinear stack produces results similar to the linear case but with larger uncertainty. Among the arrays, the back-azimuths give a reasonable estimate of the tremor epicenter that is consistent with the network determined epicentral locations.

  1. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  2. Velocity and Attenuation Structure of the Tibetan Lithosphere using Seismic Attributes of P-waves from Regional Earthquakes Recorded by the Hi-CLIMB Array

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.

    2010-12-01

    Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.

  3. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  4. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan

    PubMed Central

    Satake, Kenji

    2018-01-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [Mw (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non–double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of Mzx, Mzy, and M{tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved. PMID:29740604

  5. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan.

    PubMed

    Fukao, Yoshio; Sandanbata, Osamu; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime; Watada, Shingo; Satake, Kenji

    2018-04-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [ M w (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non-double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of M zx , M zy , and M {tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved.

  6. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more. We used 158,930 (P wave) and 149,308 (S wave) absolute arrival times, and 374,072 (P wave) and 354,912 (S wave) differential travel times. The initial velocity structure is the JMA2001 (Ueno et al., 2001), and the Vp/Vs ratio is set to 1.73 for all grid nodes. We imaged the subducting PSP and Pacific Plate clearly. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The obtained tomograms combined with seismicity and focal mechanisms indicate that the interior of the subducting PSP is characterized by heterogeneous structures, which could exert a profound influence on the genesis of intra-slab earthquakes. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  7. Data report for onshore-offshore wide-angle seismic recordings in the Bering-Chukchi Sea, Western Alaska and eastern Siberia

    USGS Publications Warehouse

    Brocher, Thomas M.; Allen, Richard M.; Stone, David B.; Wolf, Lorraine W.; Galloway, Brian K.

    1995-01-01

    This report presents fourteen deep-crustal wide-angle seismic reflection and refraction profiles recorded onland in western Alaska and eastern Siberia from marine air gun sources in the Bering-Chukchi Seas. During a 20-day period in August, 1994, the R/V Ewing acquired two long (a total of 3754 km) deep-crustal seismic-reflection profiles on the continental shelf of the Bering and Chukchi Seas, in a collaborative project between Stanford University and the United States Geological Survey (USGS). The Ewing's 137.7 liter (8355 cu. in.) air gun array was the source for both the multichannel reflection and the wide-angle seismic data. The Ewing, operated by the Lamont-Doherty Earth Observatory, steamed northward from Nunivak Island to Barrow, and returned, firing the air gun array at intervals of either 50 m or 75 m. About 37,700 air gun shots were fired along the northward directed Lines 1 and 2, and more than 40,000 air gun shots were fired along the southward directed Line 3. The USGS and the University of Alaska, Fairbanks (UAF), deployed an array of twelve 3-component REFTEK and PDAS recorders in western Alaska and eastern Siberia which continuously recorded the air gun signals fired during the northward bound Lines 1 and 2. Seven of these recorders also continuously recorded the southward bound Line 3. These wide-angle seismic data were acquired to: (1) image reflectors in the upper to lower crust, (2) determine crustal and upper mantle refraction velocities, and (3) provide important constraints on the geometry of the Moho along the seismic lines. In this report, we describe the land recording of wide-angle data conducted by the USGS and the UAF, describe in detail how the wide-angle REFTEK and PDAS data were reduced to common receiver gather seismic sections, and illustrate the wide-angle seismic data obtained by the REFTEKs and PDAS's. Air gun signals were observed to ranges in excess of 400 km, and crustal and upper /mantle refractions indicate substantial variation in the crustal thickness along the transect.

  8. Constraining Seismic Structure of Upper-Mantle Discontinuities: A New Approach Using High-Frequency Triplication Data

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Park, S.

    2016-12-01

    Constraining elastic properties of the 410- and 660-km discontinuities is crucial for understanding the mantle composition and dynamics. One approach to study the transition zone is to use the "triplicated" arrivals of seismic data. These arrivals consist of three seismic phases that are sensitive to seismic structure slightly above, at, and below the discontinuity. Thus, these data are powerful tools in providing constraints on the depth and velocity jump of the discontinuities with consequences for the studies of mantle composition and relevant phase transitions. One of the most challenging aspects of using the triplication data, however, is to identify the three individual phases that arrive close in time. In order to separate the three phases, we apply Radon transform to short-period seismograms recorded by a dense array of stations. This approach unwraps the triplication pattern, and brings out the high-frequency information that is not easily accessible in the original form of data. Subsequent modeling of the unwrapped data allows velocity jump, depth, and width of the discontinuities to be obtained. This method is applied to study the transition zone around the Kuril subduction zone, a region northeast of Japan. We take advantage of the High-Sensitivity Seismograph Network in Japan that consists of more than 700 stations. These stations provide dense sampling in distance that allows us to capture the triplication pattern. The wave speeds immediately above and below the 410- and 660-km discontinuities as well as their depths and widths are constrained. In general, both discontinuities are depressed compared to the global average, and exhibit finite widths. The width estimates have implications on effects such as the existence of water or melt, and garnet transformations occurring at similar depths as the post-spinel transition.

  9. Seismic response of soft deposits due to landslide: The Mission Peak, California, landslide

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Jibson, Randall W.

    2017-01-01

    The seismic response of active and intermittently active landslides is an important issue to resolve to determine if such landslides present an elevated hazard in future earthquakes. To study the response of landslide deposits, seismographs were placed on the Mission Peak landslide in the eastern San Francisco Bay region for a period of one year. Numerous local and near‐regional earthquakes were recorded that reveal a complexity of seismic response phenomena using the horizontal‐to‐vertical spectral ratio method. At lower frequencies, a clear spectral peak is observed at 0.5 Hz common to all four stations in the array and is attributed to a surface topographic effect. At higher frequencies, other spectral peaks occur that are interpreted in terms of local deposits and structures. Site amplification from the standard reference site method shows the minimum amplification with a factor of 2, comparing a site on and off the landslide. A site located on relatively homogeneous deposits of loose soils shows a clear spectral peak associated with the thickness of the deposit. Another site on a talus‐filled graben near the headscarp shows possible 2D or 3D effects from subsurface topography or scattering within and between buried sandstone blocks. A third site on a massive partially detached block below the crown of the headscarp shows indications of resonance caused by the reverberation of shear waves within the block. The varied seismic response of different parts of this complex landslide is consistent with other studies which found that, although landslide response is commonly enhanced in the downslope direction of landslide movement, such a response does not occur uniformly or consistently. When it does occur, enhanced site response parallel to the direction of landslide movement would contribute to landslide reactivation during significant earthquakes.

  10. Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hanson, Jeffrey A.; Bowman, J. Roger

    2006-02-01

    The recent installation of permanent, three-element hydrophone arrays in the Indian Ocean offshore Diego Garcia and Cape Leeuwin, Australia, provides an opportunity to study hydroacoustic sources in more detail than previously possible. We developed and applied methods for coherent processing of the array data, for automated association of signals detected at more than one array, and for source location using only direct arrivals and using signals reflected from coastlines and other bathymetric features. During the 286-day study, 4725 hydroacoustic events were defined and located in the Indian and Southern oceans. Events fall into two classes: tectonic earthquakes and ice-related noise. The tectonic earthquakes consist of mid-ocean ridge, trench, and intraplate earthquakes. Mid-ocean ridge earthquakes are the most common tectonic events and often occur in clusters along transform offsets. Hydroacoustic signal levels for earthquakes in a standard catalog suggest that the hydroacoustic processing threshold for ridge events is one magnitude below the seismic network. Fewer earthquakes are observed along the Java Trench than expected because the large bathymetric relief of the source region complicates coupling between seismic and hydroacoustic signals, leading to divergent signal characteristics at different stations. We located 1843 events along the Antarctic coast resulting from various ice noises, most likely thermal fracturing and ice ridge forming events. Reflectors of signals from earthquakes are observed along coastlines, the mid-Indian Ocean and Ninety East ridges, and other bathymetric features. Reflected signals are used as synthetic stations to reduce location uncertainty and to enable event location with a single station.

  11. Estimation of velocity structure around a natural gas reservoir at Yufutsu, Japan, by microtremor survey

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.; Tezuka, K.

    2010-12-01

    Seismic reflection survey has been commonly used for exploration and time-lapse monitoring of oil/gas resources. Seismic reflection images typically have reasonable reliability and resolution for commercial production. However, cost consideration sometimes avoids deployment of widely distributed array or repeating survey in cases of time lapse monitoring or exploration of small-scale reservoir. Hence, technologies to estimate structures and physical properties around the reservoir with limited cost would be effectively used. Microtremor survey method (MSM) has an ability to realize long-term monitoring of reservoir with low cost, because this technique has a passive nature and minimum numbers of the monitoring station is four. MSM has been mainly used for earthquake disaster prevention, because velocity structure of S-wave is directly estimated from velocity dispersion of the Rayleigh wave. The authors experimentally investigated feasibility of the MSM survey for exploration of oil/gas reservoir. The field measurement was carried out around natural gas reservoir at Yufutsu, Hokkaido, Japan. Four types of arrays with array radii of 30m, 100m, 300m and 600m are deployed in each area. Dispersion curves of the velocity of Rayleigh wave were estimated from observed microtremors, and S-wave velocity structures were estimated by an inverse analysis of the dispersion curves with genetic algorism (GA). The estimated velocity structures showed good consistency with one dimensional velocity structure by previous reflection surveys up to 4-5 km. We also found from the field experiment that a data of 40min is effective to estimate the velocity structure even the seismometers are deployed along roads with heavy traffic.

  12. Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.

    2016-12-01

    The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.

  13. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-08-01

    The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.

  14. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (∼33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-01-01

    The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and fault segment transfer zones.

  15. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  16. Autonomous microexplosives subsurface tracing system final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less

  17. Ambient seismic noise study in Taiwan for two different scale arrays

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Yao, H.; Liang, W.; Huang, B.; Wen, K.; Huang, W.; van der Hilst, R. D.

    2008-12-01

    It has been demonstrated that Time Domain Empirical Green's Function (TDEGF) from ambient seismic noise cross-correlation can be used to investigate crustal velocity structure from many studies around the world. For surface wave tomographic studies from ambient noise, the maximum exploring depth depends on the aperture of receiver array and the lateral resolution relies on the density of station-pair paths. To decipher subsurface structures in various scales, researchers can utilize some existing continuous-recording seismic stations and/or deploy a newly dense receiver array in the study region. In this study, we perform tomographic applications of ambient seismic noise analysis in Taiwan region for two arrays with very different scales. Taiwan is located at a complex convergent plate boundary zone where the Philippine Sea plate interacts with the Eurasian plate. As a result, the lateral velocity variations show dramatic patterns among different geologic provinces. In the past decade, many continuous-recording broadband stations have already been set up to monitor earthquake activities in the Taiwan region. The BATS (Broadband Array in Taiwan for Seismology) network is being operated by the Institute of Earth Sciences, Academia Sinica (IESAS) since 1994. Currently, there are 20 permanent stations covering approximately 350 km by 400 km area around Taiwan, including some remote islets. In this study we selected 7 years data (2000-2006) from BATS to get the TDEGFs which were then used to measure inter-station phase velocities in the period band 5-30s. Finally we then constructed 2D phase velocity maps. At shorter periods (5-10s), phase velocity distribution can compare well with surface geology. At longer periods (14-22s), there is a saxophone shape low velocity zone beneath the Taiwan Island. Taipei Basin is a high-level artificial noise metropolis with a nearly triangular shape basin located close to northern tip of Taiwan with area just around 20 km by 20 km, much smaller than the area BATS covers. Central Geological Survey (CGS) entrusted IESAS to monitor seismicity in this region from 2004. There were around 20 continuous-recording broadband stations with about 5km average inter-station distance. For this study we selected 3 months data, from mid July to mid October in 2005, to calculate TDEGFs. Finally we obtained 0.5-3s phase velocity maps, which can compare well with surface geologic structure. The days with typhoon warnings were excluded from ambient seismic noise analysis due to the fact that TDEGFs are affected by temporarily close and massive moving sources like typhoons. We also found that the source direction of ambient seismic noise in typhoon days had close relationship with typhoon location.

  18. Seismoelectric imaging of shallow targets

    USGS Publications Warehouse

    Haines, S.S.; Pride, S.R.; Klemperer, S.L.; Biondi, B.

    2007-01-01

    We have undertaken a series of controlled field experiments to develop seismoelectric experimental methods for near-surface applications and to improve our understanding of seismoelectric phenomena. In a set of off-line geometry surveys (source separated from the receiver line), we place seismic sources and electrode array receivers on opposite sides of a man-made target (two sand-filled trenches) to record separately two previously documented seismoelectric modes: (1) the electromagnetic interface response signal created at the target and (2) the coseismic electric fields located within a compressional seismic wave. With the seismic source point in the center of a linear electrode array, we identify the previously undocumented seismoelectric direct field, and the Lorentz field of the metal hammer plate moving in the earth's magnetic field. We place the seismic source in the center of a circular array of electrodes (radial and circumferential orientations) to analyze the source-related direct and Lorentz fields and to establish that these fields can be understood in terms of simple analytical models. Using an off-line geometry, we create a multifold, 2D image of our trenches as dipping layers, and we also produce a complementary synthetic image through numerical modeling. These images demonstrate that off-line geometry (e.g., crosswell) surveys offer a particularly promising application of the seismoelectric method because they effectively separate the interface response signal from the (generally much stronger) coseismic and source-related fields. ?? 2007 Society of Exploration Geophysicists.

  19. Hybridization of Guided Surface Acoustic Modes in Unconsolidated Granular Media by a Resonant Metasurface

    NASA Astrophysics Data System (ADS)

    Palermo, Antonio; Krödel, Sebastian; Matlack, Kathryn H.; Zaccherini, Rachele; Dertimanis, Vasilis K.; Chatzi, Eleni N.; Marzani, Alessandro; Daraio, Chiara

    2018-05-01

    We investigate the interaction of guided surface acoustic modes (GSAMs) in unconsolidated granular media with a metasurface, consisting of an array of vertical oscillators. We experimentally observe the hybridization of the lowest-order GSAM at the metasurface resonance, and note the absence of mode delocalization found in homogeneous media. Our numerical studies reveal how the stiffness gradient induced by gravity in granular media causes a down-conversion of all the higher-order GSAMs, which preserves the acoustic energy confinement. We anticipate these findings to have implications in the design of seismic-wave protection devices in stratified soils.

  20. EarthScope's Transportable Array: Advancing Eastward

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Vernon, F.; Newman, R. L.; Astiz, L.

    2006-12-01

    EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating by September 2007. Stations have a residence time of about 2 years before being relocated to the next site. Throughout the continental US, 1623 sites are expected to be occupied. Standardized procedures and protocols have been developed to streamline all aspects of Transportable Array operations, from siting to site construction and installation to equipment purchasing and data archiving. Earned Value Management tools keep facility installation and operation on budget and schedule. A diverse, yet efficient, infrastructure installs and maintains the Transportable Array. Sensors, dataloggers, and other equipment are received and tested by the IRIS PASSCAL Instrument Center and shipped to regional storage facilities. To engage future geoscientists in the project, students are trained to conduct field and analytical reconnaissance to identify suitable seismic station sites. Contract personnel are used for site verification; vault construction; and installation of sensors, power, and communications systems. IRIS staff manages permitting, landowner communications, and station operations and maintenance. Seismic signal quality and metadata are quality-checked at the Array Network Facility at the University of California-San Diego and simultaneously archived at the IRIS Data Management Center in Seattle. Station equipment has been specifically designed for low power, remote, unattended operation and uses diverse two-way IP communications for real-time transmission. Digital cellular services, VSAT satellite, and commercial DSL, cable or wireless transport services are employed. Automatic monitoring of status, signal quality and earthquake event detection as well as operational alarms for low voltage and water intrusion are performed by a robust data acquisition package. This software is coupled with a host of network management tools and display managers operated by the Array Network Facility to allow managers, field personnel, and network operations staff to visualize array performance in real-time and to access historical information for diagnostics. Current data recording proficiency is 99.1%, with real-time telemetry averaging about 91%. EarthScope, IRIS and the USGS are working with regional seismic network operators, both existing and newly formed, to transition some of the Transportable Array stations into regional network assets. Each region has unique circumstances and interested parties are invited to exchange ideas on how this might be accomplished in their area. Contact busby@iris.edu for more information.

  1. The deep Algerian margin structure revisited by the Algerian-French SPIRAL research program, stage 2 : Wide-ange seismic experiment

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral

    2010-05-01

    During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.

  2. Initial results from seismic monitoring at the Aquistore CO 2 storage site, Saskatchewan, Canada

    DOE PAGES

    White, D. J.; Roach, L. A.N.; Roberts, B.; ...

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO 2 storage projects in the world that is designed to demonstrate CO 2 storage in a deep saline aquifer. Starting in 2014, CO 2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO 2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will hostmore » the injected CO 2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m 3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO 2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO 2. Prior to the onset of CO 2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO 2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO 2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO 2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO 2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less

  3. Analysis of the Spatial and Temporal Distribution of the Seismicity of the Mid-Atlantic Ridge Using the SIRENA and the South Azores Autonomous Hydrophone Arrays

    NASA Astrophysics Data System (ADS)

    Simão, N.; Goslin, J.; Perrot, J.; Haxel, J.; Dziak, R.

    2006-12-01

    Acoustic data recorded by two Autonomous Hydrophone Arrays (AHA) were jointly processed in Brest (IUEM) and Newport (PMEL-VENTS) to monitor the seismicity of the Mid-Atlantic Ridge (MAR) over a ten month period, at a wide range of spatial scales. Over the deployment period, nearly 6000 T-phase generating earthquakes were localized using a semi-automatic algorithm. Our analysis of the temporal and spatial distribution of these events combined with their acoustic energy source levels provides important insights for the generation mechanisms and characteristic behavior of MAR seismicity. It shows for the AHA catalog a variation of the cumulative number of events with time almost linear. Taking in account the area inside the arrays, the section of the ridge north of the Azores is more seismically active than the southern part of it and the seismic activity occurs in large localized clusters. Our (AHA) catalog of acoustic events was used to compare locations, focal mechanisms and magnitude observations with correlated data from land-based stations of the NEIC global seismic network to establish completeness levels from both within and outside of the hydrophone array. The (AHA) catalog has a Source Level of Completeness (SLc) of 204dB, and a b-value of 0.0605. The NEIC catalog for this region during this period has a Magnitude of Completeness (Mc) of 4.6 and a b-value of 1.01. Regressing the AHA values onto the NEIC derived Mc/b-value relationship suggests a Mc of 3.2 for the AHA catalog. By restricting the events to the region inside the AHA, the NEIC catalog has an Mc of 4.7 with a b-value of 1.09, while the AHA catalog has a SLc of 205dB with a b-value of 0.0753. Comparing the b-values of the NEIC catalog with the AHA catalog, we obtain an improved Mc of 3.0 for the AHA inside the array. A time- and space-dependent Single-Link-Cluster algorithm was applied to the events localized inside the AHA. This allowed us to gather cluster sequences of earthquakes for higher temporal and spatial resolution Mc and b-value computations. The cumulative number of events and time series for several of these clusters were used in a Modified Omori Law simulation. Some of the identified sequences correlated well with a main-shock /aftershock mechanism associated with the older and colder crustal characteristics related to a tectonically dominated MAR regime.

  4. Multi-Array Detection, Association and Location of Infrasound and Seismo-Acoustic Events in Utah

    DTIC Science & Technology

    2008-09-30

    techniques for detecting , associating, and locating infrasound signals at single and multiple arrays and then combining the processed results with...was detected and located by both infrasound and seismic instruments (Figure 3). Infrasound signals at all three arrays , from one of the explosions, are...COVERED (From - To) 30-Sep-2008 REPRINT 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER MULTI- ARRAY DETECTION , ASSOCIATION AND LOCATION OF INFRASOUND FA8718

  5. Fault geometries illuminated from seismicity in central Taiwan: Implications for crustal scale structural boundaries in the northern Central Range

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan R.; Byrne, Timothy; Chan, Yu-Chang; Wu, Francis; Rau, Ruey-Juin

    2007-12-01

    Data sets of collapsed earthquake locations, earthquake focal mechanisms, GPS velocities and geologic data are integrated to constrain the geometry and kinematics of a crustal block within the accreted continental margin rocks of Taiwan's northeastern Central Range. This block is laterally extruding and exhuming towards the north-northeast. The block is bound on the west-southwest by the previously recognized Sanyi-Puli seismic zone and on the east by a vertical seismic structure that projects to the eastern mountain front of the Central Range. Focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS) catalog consistently show west-side-up reverse displacements for this fault zone. A second vertical structure is recognized beneath the Slate Belt-Metamorphic Belt boundary as a post-Chi-Chi relaxation oblique normal fault. BATS focal mechanisms show east-side-up, normal displacements with a minor left-lateral component. The vertical and lateral extrusion of this crustal block may be driven by the current collision between the Philippine Sea Plate and the Puli basement high indenter on the Eurasian Plate and/or trench rollback along the Ryukyu subduction zone. In addition, the vertical extent of the two shear zones suggests that a basal décollement below the eastern Central Range is deeper than previously proposed and may extend below the brittle-ductile transition.

  6. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao

    2018-02-01

    The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.

  7. High resolution images of the mid- to lower-crust beneath the North Anatolian Fault obtained using the scattered seismic wavefield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.

    2014-12-01

    Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.

  8. High-resolution shallow structure revealed with ambient noise tomography on a dense array

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Luo, Y.; Matzel, E.; Team, P.

    2016-12-01

    A dense seismic array was deployed by the PoroTomo research team at Brady Hot Springs, Nevada in March 2016. The array consisted of 238 short-period three-component geophones (5-Hz corner frequency) with about 60 m spacing. Over the 15 day deployment, the array recorded over 6,000 active source signals (vibroseis sweeps) and ambient noise that was dominated by traffic noise.We adopted the one-bit method to better reduce the effect of the active source. Spectral whitening was performed between 0.5 and 2 Hz. The continuous record was chopped into 1 minute segments. The 1-minute cross-correlation functions were initially stacked linearly, and then the phase-weighted stacking method was applied to improve signal quality. More than two million noise correlation functions (NCFs) have been obtained.The Rayleigh wave group velocity was measured on the symmetric component of the NCFs with the frequency-time analysis method. The average group velocity is about 400 m/s at 4 Hz, which is consistent with preliminary active source result. To avoid mis-picking possible precursors, the arrival time was picked at the peak in a two-second time window predicted with the average group velocity of the fundamental mode. The quality of the arrival measurements is defined by the signal-to-noise ratio. We were able to pick reliable arrivals at about 35% of the station-pairs. Since the straight-ray assumption may not be valid in a strongly heterogeneous medium, the wave path was traced with a finite difference scheme and the LSQR method was utilized to invert group velocity. The heterogeneous features of the group velocity map are consistent with a local geologic map. The PoroTomo project is funded by a grant from the U.S. Department of Energy.

  9. Infrasound's capability to detect and characterise volcanic events, from local to regional scale.

    NASA Astrophysics Data System (ADS)

    Taisne, Benoit; Perttu, Anna

    2017-04-01

    Local infrasound and seismic networks have been successfully used for identification and quantification of explosions at single volcanoes. However the February, 2014 eruption of Kelud volcano, Indonesia, destroyed most of the local monitoring network. The use of remote seismic and infrasound sensors proved to be essential in the reconstruction of the eruptive sequence. The first recorded explosive event, with relatively weak seismic and infrasonic signature, was followed by a 2 hour sustained signal detected as far away as 11,000 km by infrasound sensors and up to 2,300 km away by seismometers. The volcanic intensity derived from these observations places the 2014 Kelud eruption between the intensity of the 1980 Mount St. Helens and the 1991 Pinatubo eruptions. The use of remote seismic stations and infrasound arrays in deriving valuable information about the onset, evolution, and intensity of volcanic eruptions is clear from the Kelud example. After this eruption the Singapore Infrasound Array became operational. This array, along with the other regional infrasound arrays which are part of the International Monitoring System, have recorded events from fireballs and regional volcanoes. The detection capability of this network for any specific volcanic event is not only dependent on the amplitude of the source, but also the propagation effects, noise level at each station, and characteristics of the regional persistent noise sources (like the microbarum). Combining the spatial and seasonal characteristics of this noise, within the same frequency band as significant eruptive events, with the probability of such events to occur, gives us a comprehensive understanding of detection capability for any of the 750 active or potentially active volcanoes in Southeast Asia.

  10. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  11. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  12. Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone

    NASA Astrophysics Data System (ADS)

    Abbott, Elizabeth R.; Brudzinski, Michael R.

    2015-11-01

    This study characterizes subduction related seismicity with local deployments along the northwestern section of the Mexico Subduction Zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. It has been proposed that the subducted boundary between the Cocos and Rivera plates occurs beneath this region, as indicated by inland volcanic activity, a gap in tectonic tremor, and the Manzanillo Trough and Colima Graben, which are depressions thought to be associated with the splitting of the two plates after subduction. Data from 50 broadband stations that comprised the MARS seismic array, deployed from January 2006 to June 2007, were processed with the software program Antelope and its generalized source location algorithm, genloc, to detect and locate earthquakes within the network. Slab surface depth contours from the resulting catalog indicate a change in subduction trajectory between the Rivera and Cocos plates. The earthquake locations are spatially anti-correlated with tectonic tremor, supporting the idea that they represent different types of fault slip. Hypocentral patterns also reveal areas of more intense seismic activity (clusters) that appear to be associated with the 2003 and 1973 megathrust rupture regions. Seismicity concentrated inland of the 2003 rupture is consistent with slip on a shallowly dipping trajectory for the Rivera plate interface as opposed to crustal faulting in the overriding North American plate. A prominent cluster of seismicity within the suspected 1973 rupture zone appears to be a commonly active portion of the megathrust as it has been active during three previous deployments. We support these interpretations by determining focal mechanisms and detailed relocations of the largest events within the 1973 and inland 2003 clusters, which indicate primarily thrust mechanisms near the plate interface.

  13. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet)

    NASA Astrophysics Data System (ADS)

    Savvaidis, A.; Young, B.; Mukherjee, T.; Hennings, P.; Rathje, E.; Zalachoris, G.; Young, M.; Walter, J. I.; DeShon, H. R.; Frohlich, C.

    2016-12-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Full deployment and data streaming is expected by December 2016, and will be discussed during this presentation.

  14. Crustal seismic anisotropy: A localized perspective from surface waves at the Ruby Mountains Core Complex

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Schmandt, B.; Jiang, C.

    2017-12-01

    The relative importance of potential controls on crustal seismic anisotropy, such as deformational fabrics in polycrystalline crustal rocks and the contemporary state of stress, remain poorly constrained. Recent regional western US lithospheric seismic anisotropy studies have concluded that the distribution of strain in the lower crust is diffuse throughout the Basin and Range (BR) and that deformation in the crust and mantle are largely uncoupled. To further contribute to our understanding of crustal anisotropy we are conducting a detailed local study of seismic anisotropy within the BR using surface waves at the Ruby Mountain Core Complex (RMCC), located in northeast Nevada. The RMCC is one of many distinctive uplifts within the North American cordillera called metamorphic core complexes which consist of rocks exhumed from middle to lower crustal depths adjacent to mylonitic shear zones. The RMCC records exhumation depths up to 30 km indicating an anomalously high degree of extension relative to the BR average. This exhumation, the geologic setting of the RMCC, and the availability of dense broadband data from the Transportable Array (TA) and the Ruby Mountain Seismic Experiment (RMSE) coalesce to form an ideal opportunity to characterize seismic anisotropy as a function of depth beneath RMCC and evaluate the degree to which anisotropy deviates from regional scale properties of the BR. Preliminary azimuthal anisotropy results using Rayleigh waves reveal clear anisotropic signals at periods between 5-40 s, and demonstrate significant rotations of fast orientations relative to prior regional scale results. Moving forward we will focus on quantification of depth-dependent radial anisotropy from inversion of Rayleigh and Love waves. These results will be relevant to identification of the deep crustal distribution of strain associated with RMCC formation and may aid interpretation of controls on crustal anisotropy in other regions.

  15. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet), USA.

    NASA Astrophysics Data System (ADS)

    Savvaidis, Alexandros; Young, Bissett; Hennings, Peter; Rathje, Ellen; Zalachoris, George; Young, Michael H.; Walter, Jacob I.; DeShon, Heather R.; Frohlich, Cliff

    2017-04-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Deployment and data streaming started on September 2016, and will be discussed during this presentation.

  16. Multichannel seismic-reflection profiles collected in 1979 aboard M/V Seismic Explorer on the western Florida shelf

    USGS Publications Warehouse

    Ball, M.M.; Soderberg, N.K.

    1989-01-01

    In August 1979, the U.S. Geological Survey (USGS) aboard the M/V SEISMIC EXPLORER of Seismic Explorations International (SEI), ran 17 lines (1,270 km) of multichannel, seismic-reflection profiles on the western Florida Shelf. The main features of the SEI system were (1) a digital recorder with an instantaneous-floating-point-gain constant of 24 dB, (2) a 64-channel hydrophone streamer, 3,200 m long, and (3) a 21-airgun array that had a total volume of 2,000 in and a pressure of 2,000 psi. Sampling interval was array to the center of the farthest phone group was 3,338 m and to the nearest phone group, 188 m. Shot points were 5O m apart to obtain a 32-fold stack. Navigation was by an integrated satellite/Loran/doppler-sonar system.The SEI data were processed by Geophysical Data Processing Center, Inc. of Houston, Texas. Processing procedures were standard with the following exceptions: (1) a deringing deconvolution that had a 128-ms operator length was done prior to stacking. (2) a time-variant predictive deconvolution that had a filter operator length of 100 ms and automatic picking of the second zero-crossing was applied after stacking to further suppress multiple energy. (3) Velocity analyses were performed every 3 km, using a technique that included the determination and consideration of both the amount and direction of apparent dip. (4) Automatic gain ranging using a 750-ms window was applied pre- and post-stack. ( 5) Lines affected by sea floor's angle of slope were deconvolved again before stacking and time-variant filter parameters were adjusted to follow the sea-floor geometry.The data taken with the 3,200-m streamer and 2,000 in3 airgun array, aboard M/V SEISMIC EXPLORER (Arabic numerals) are vastly superior to those obtained by R/V GYRE using a much smaller streamer and source (Roman numerals). The former consistently show coherent primary events from within the units underlying the Mesozoic section on the western Florida Shelf, while the latter tend to do so only in the inshore area where pre-Mesozoic basement occurs at depths of less than 2 km. The R/V GYRE data were open filed previously (Ball and others, 1987). A synthesis of both sets of data is included in Ball and others (1988).Reflectors correlate to the full 8-s duration of recording time. A number of lines were restarted due to equipment failure; no areas were omitted, however, shotpoints overlap. The original records may be seen at the USGS branch of Atlantic marine geology offices in Woods Hole, Mass. Copies of the multichannel data may be purchased only from the National Geophysical Data Center, NOAA, Code E64, 325 Broadway, Boulder, CO 80303 (tel. 303/497-6345).

  17. Crustal and upper mantle structure of the Hangay Dome, central Mongolia

    NASA Astrophysics Data System (ADS)

    Stachnik, J. C.; Meltzer, A.; Tsaagan, B.; Munkhuu, U.; Russo, R.; Souza, S.; Martin, P.

    2013-12-01

    The origin and support of high topography within continental interiors away from active tectonic margins remains a fundamental question in the dynamics and deformation of continents. The Hangay Dome in central Mongolia is one such region that is a broad regional uplift with average elevation of about 2 km, sitting between two large strike-slip faults, the Bulnay Fault to the north and the Gobi-Altay Fault to the south. Both of these faults are seismically active and have experienced M8+ earthquakes as recently as 1957. This portion of the Mongolian Plateau is approximately 300 km south of the Baikal Rift and located at the northern margin of the diffuse-deformation field in Central Asia, adjacent to the Siberian Craton. From previous research, the dynamic support of the Hangay Dome has been attributed to both crustal thickening and low density upper mantle material. However, seismic data leading to these interpretations have been limited to global tomographic models and sparse regional sampling of the wave field leaving the question unresolved. To address this major question in plate tectonic theory, in June 2012 a temporary IRIS/PASSCAL/University of Florida array of 72 seismic stations was deployed around the Hangay Dome to determine lithospheric structure in the region. Preliminary results from the first of two years of data are shown from receiver function analysis, ambient noise surface wave tomography, and teleseismic travel time residual analysis. Using teleseismic waveform records from over 300 earthquakes above M5.5 between 30 and 90 degrees epicentral distance, crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. At each station the bulk crustal Vp/Vs ratio is also determined with median value for the array of 1.77, perhaps indicating a more mafic composition crust in the region.Teleseismic P-wave travel time residuals generally diminish from south to north across the array consistent with thinning crust, however the depth resolution and magnitude of seismic wavespeed anomalies will be further explored with three-dimensional finite-frequency tomography. Constraints on crustal shear wave velocity from ambient noise surface wave tomography complement both the receiver function analysis and teleseismic tomography. Initial inversions of phase velocity dispersion curves in the central Hangay indicate an average crustal Vs of 3.6 km/s within the Hangay Dome, which translates to an average Vp of 6.4 km/s using Vp/Vs of 1.77. Further refinement of current analysis and an additional year of recording will reveal the first high resolution lithospheric scale model in the region.

  18. Then and Now, 25 Years of Progress Using Portable Arrays: The IRIS-PASSCAL Program

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Allen, R. M.; Fowler, J. C.; Beaudoin, B. C.

    2009-12-01

    A new direction was taken back in 1984 when the Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL) program was formed. A coordinated plan defining the instrumentation, data collection and management structure to support a wide range of research in seismology was proposed to the National Science Foundation (NSF). Now 25 years later, a modern facility hosted at New Mexico Tech exists to support a vibrant community conducting portable seismic experiments around the world. The original PASSCAL goal, lofty as it seemed in 1984, was to acquire 6,000 data acquisition channels. This mark has been largely reached with a combination of instruments designed to image the near surface to the inner core. There is more, however, to the advancement of the program than the shear number of channels placed into service. A new way of conducting seismological field experiments was developed. Here we explore the evolution of the technology, field practices and the support provided by the PASSCAL facility from the formative period in the late 1980’s to the present day. The component of a seismic recording system affected most by technological advances over the last two decades has been the data acquisition system. Early systems were equipped with 16 bit digitizers and had onboard memory that required weekly service runs while recording at low sample rates. Accurate timing was achieved using OMEGA land based radio signals. Today, with the advancement in low power 24 bit digitizers, global positioning satellites, and advent of global communications, a typical broadband seismic station can operate autonomously, transmit high sample rate data, and have accurately timed data in near real-time. Compact single channel systems especially designed for active source crustal scale experiments have also been developed for efficient deployment in large numbers. Field practices have kept pace with the ever increasing need to deploy more higher quality stations for a given experiment. Whereas a 10 element broadband array was the norm in 1990, now it is not unusual for an array to consist of 100 stations. The same phenomena has occurred with active source experiments, where over 2700 single channel stations are deployed in a given deployment. To achieve this, instrumentation and field techniques have vastly improved. Essentially the same number of PI’s and students can install and operate a ten fold increase in equipment. The data archived from over 800 PASSCAL experiments at the IRIS Data Management Center in Seattle holds the legacy of the program. After a two year exclusive period for the PI’s, data are open to the community. Data from these open experiments are mined by seismologist worldwide and add a valuable resource for future researchers.

  19. Using the ENTLN lightning catalog to identify thunder signals in the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Tytell, J. E.; Reyes, J. C.; Vernon, F.; Sloop, C.; Heckman, S.

    2013-12-01

    Severe weather events can pose a challenge for seismic analysts who regularly see non-seismic signals recorded at the stations. Sometimes, the noise from thunder can be confused with signals from seismic events such as quarry blasts or earthquakes depending on where and when the noise is observed. Automatic analysis of data is also severely affected by big amplitude arrivals that we could safely ignore. A comprehensive lightning catalog for the continental US in conjunction with a travel time model for thunder arrivals can help analysts identify some of these unknown sources. Researchers from Earthscope's USArray Transportable Array (TA) have partnered with the Earth Networks Total Lightning Network (ENTLN) in an effort to create such a catalog. Predicted thunder arrivals from some powerful meteorological systems affecting the main TA footprint will undergo extensive evaluation. We will examine the veracity of the predicted arrivals at different distances and azimuths and the time accuracy of the model. A combination of barometric pressure and seismic signals will be use to verify these arrivals.

  20. Shear-wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L'Aquila

    NASA Astrophysics Data System (ADS)

    Di Giulio, Giuseppe; Gaudiosi, Iolanda; Cara, Fabrizio; Milana, Giuliano; Tallini, Marco

    2014-08-01

    Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50-100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong-motion target site located in the middle Aterno river valley. As a target site, we selected the strong-motion station of AQV 5 km away from downtown L'Aquila. For this site, the record of the 2009 L'Aquila main shock is available and its surface stratigraphy is adequately known making possible to propagate the deconvolved bedrock motion back to the surface, and to compare recorded and synthetic waveforms.

  1. Apollo lunar surface experiments package. Apollo 17 ALSEP (array E) familiarization course handout

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The familiarization course for the Apollo 17 ALSEP (ARRAY E) is presented. The subjects discussed are: (1) power and data subsystems, (2) lunar surface gravimeter, (3) lunar mass spectrometer, (4) lunar seismic profiling experiment, and (5) heat flow experiment.

  2. Seismic Migration Imaging of the Crust and Upper Mantle Discontinuity Structure beneath Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Y.-S.; Kuo, B.-Y.

    2009-04-01

    Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.

  3. Asymmetric radiation of seismic waves from an atoll: nuclear tests in French Polynesia

    USGS Publications Warehouse

    Weber, Michael J.; Wicks, Charles W.; Krüger, Frank; Jahnke, Gunnar; Schlittenhardt, Jörg

    1998-01-01

    Seismic records of nuclear tests detonated in the Mururoa Atoll in French Polynesia show large unpredicted arrivals 2.2 and 4.5 seconds (X1 and X2) after the P-wave at the Australian Warramunga Array. These arrivals are not observed at the Canadian Yellowknife Array. X1 and X2 are also absent on Warramunga Array recordings of tests carried out at the Fangataufa Atoll situated 40 km SSE of Mururoa. Array analysis shows that X1 and X2 are produced within the source area. The layered crustal structure of the atoll, significant local inhomogeneities, and focusing effects due to the elongated shape and the steep flanks of the Mururoa Atoll are most likely responsible for X1 and X2. The form of Mururoa (28 × 10 km) and its East-West orientation is due to its location on the Austral Fracture Zone (AFZ). The Fangataufa Atoll on the other hand is almost circular (10 km diameter) and is unaffected by the dynamics along the AFZ. Our observations demonstrate that complicated structures in the source area can significantly alter the wave field at teleseismic distances and produce a large magnitude (mb) bias. A better understanding of the exact cause of these unusual seismic observations will only become possible, if the coordinates of the tests and information on the detailed 3-D structure of the atolls are released.

  4. Structure and tectonics of the Main Himalayan Thrust and associated faults from recent earthquake and seismic imaging studies using the NAMASTE array

    NASA Astrophysics Data System (ADS)

    Karplus, M. S.; Pant, M.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Sapkota, S. N.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Klemperer, S. L.

    2017-12-01

    The India-Eurasia collision zone presents a significant earthquake hazard, as demonstrated by the recent, devastating April 25, 2015 M=7.8 Gorkha earthquake and the following May 12, 2015 M=7.3 earthquake. Important questions remain, including distinguishing possible geometries of the Main Himalayan Thrust (MHT), the role of other regional faults, the crustal composition and role of fluids in faulting, and the details of the rupture process, including structural causes and locations of rupture segmentation both along-strike and down-dip. These recent earthquakes and their aftershocks provide a unique opportunity to learn more about this collision zone. In June 2015, funded by NSF, we deployed the Nepal Array Measuring Aftershock Seismicity Trailing Earthquake (NAMASTE) array of 46 seismic stations distributed across eastern and central Nepal, spanning the region with most of the aftershocks. This array remained in place for 11 months from June 2015 to May 2016. We combine new results from this aftershock network in Nepal with previous geophysical and geological studies across the Himalaya to derive a new understanding of the tectonics of the Himalaya and southern Tibet in Nepal and surrounding countries. We focus on structure and composition of the Main Himalayan Thrust and compare this continent-continent subduction megathrust with megathrusts in other subduction zones.

  5. Digital processing of array seismic recordings

    USGS Publications Warehouse

    Ryall, Alan; Birtill, John

    1962-01-01

    This technical letter contains a brief review of the operations which are involved in digital processing of array seismic recordings by the methods of velocity filtering, summation, cross-multiplication and integration, and by combinations of these operations (the "UK Method" and multiple correlation). Examples are presented of analyses by the several techniques on array recordings which were obtained by the U.S. Geological Survey during chemical and nuclear explosions in the western United States. Seismograms are synthesized using actual noise and Pn-signal recordings, such that the signal-to-noise ratio, onset time and velocity of the signal are predetermined for the synthetic record. These records are then analyzed by summation, cross-multiplication, multiple correlation and the UK technique, and the results are compared. For all of the examples presented, analysis by the non-linear techniques of multiple correlation and cross-multiplication of the traces on an array recording are preferred to analyses by the linear operations involved in summation and the UK Method.

  6. Local Earthquake P-wave Tomography at Mount St. Helens with the iMUSH Broadband Array

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K. C.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Hansen, S. M.; Schmandt, B.; Kiser, E.; Levander, A.; Bachmann, O.

    2016-12-01

    We deployed 70 broadband seismometers in the summer of 2014 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. Our goal is to illuminate the MSH magmatic system by integrating all portions of the iMUSH experiment, including active- and passive-source tomography, ambient-noise tomography, seismicity, receiver functions, magnetotellurics, and petrology. The broadband array has a diameter of 100 km centered on MSH with an average station spacing of 10 km, and was deployed through summer 2016. It is augmented by dozens of permanent stations in the area. We determine P-wave arrival times and also incorporate picks from the permanent network. There were more than 250 local events during the first year of iMUSH broadband recording, which have provided over 11,000 high-quality arrival times. The iMUSH experiment included 23 active shots in 2014 that were recorded with good signal-to-noise ratios across the entire array. Direct raypaths from local earthquakes and active shots reach 15-20 km depth beneath MSH. We use the program struct3DP to iteratively invert travel times to obtain a 3-D seismic velocity model and relocate hypocenters. Travel times are computed using a 3-D eikonal-equation solver. We are expanding our analysis to include S-wave arrivals from local events. The preliminary 3-D model shows low P-wave speeds along the St. Helens seismic zone, striking NNW-SSE of MSH from near the surface to where we lose resolution at 15-20km depth. This seismic zone coincides with a sharp boundary in Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016, submitted). We speculate that the seismic zone and low wave speeds are related to fluids rising from the eastern boundary of the wedge.

  7. Spatiotemporal distribution of the seismicity along the Mid-Atlantic Ridge north of the Azores from hydroacoustic data: Insights into seismogenic processes in a ridge-hot spot context

    NASA Astrophysics Data System (ADS)

    Goslin, J.; Perrot, J.; Royer, J.-Y.; Martin, C.; LourençO, N.; Luis, J.; Dziak, R. P.; Matsumoto, H.; Haxel, J.; Fowler, M. J.; Fox, C. G.; Lau, A. T.-K.; Bazin, S.

    2012-02-01

    The seismicity of the North Atlantic was monitored from May 2002 to September 2003 by the `SIRENA array' of autonomous hydrophones. The hydroacoustic signals provide a unique data set documenting numerous low-magnitude earthquakes along the section of the Mid-Atlantic Ridge (MAR) located in a ridge-hot spot interaction context. During the experiment, 1696 events were detected along the MAR axis between 40°N and 51°N, with a magnitude of completeness level ofmb≈ 2.4. Inside the array, location errors are in the order of 2 km, and errors in the origin time are less than 1 s. From this catalog, 15 clusters were detected. The distribution of source level (SL) versus time within each cluster is used to discriminate clusters occurring in a tectonic context from those attributed to non-tectonic (i.e. volcanic or hydrothermal) processes. The location of tectonic and non-tectonic sequences correlates well with regions with positive and negative Mantle Bouguer Anomalies (MBAs), indicating the presence of thinner/colder and thicker/warmer crust respectively. At the scale of the entire array, both the complete and declustered catalogs derived from the hydroacoustic signals show an increase of the seismicity rate from the Azores up to 43°30'N suggesting a diminishing influence of the Azores hot spot on the ridge-axis temperature, and well correlated with a similar increase in the along-axis MBAs. The comparison of the MAR seismicity with the Residual MBA (RMBA) at different scales leads us to think that the low-magnitude seismicity rates are directly related to along-axis variations in lithosphere rheology and temperatures.

  8. The NSF Earthscope USArray Instrumentation Network

    NASA Astrophysics Data System (ADS)

    Davis, G. A.; Vernon, F.

    2012-12-01

    Since 2004, the Transportable Array component of the USArray Instrumentation Network has collected high resolution seismic data in near real-time from over 400 geographically distributed seismic stations. The deployed footprint of the array has steadily migrated across the continental United States, starting on the west coast and gradually moving eastward. As the network footprint shifts, stations from various regional seismic networks have been incorporated into the dataset. In 2009, an infrasound and barometric sensor component was added to existing core stations and to all new deployments. The ongoing success of the project can be attributed to a number of factors, including reliable communications to each site, on-site data buffering, largely homogenous data logging hardware, and a common phase-locked time reference between all stations. Continuous data quality is ensured by thorough human and automated review of data from the primary sensors and over 24 state-of-health parameters from each station. The staff at the Array Network Facility have developed a number of tools to visualize data and troubleshoot problematic stations remotely. In the event of an emergency or maintenance on the server hardware, data acquisition can be shifted to alternate data centers through the use of virtualization technologies.

  9. A Database of Tornado Events as Perceived by the USArray Transportable Array Network

    NASA Astrophysics Data System (ADS)

    Tytell, J. E.; Vernon, F.; Reyes, J. C.

    2015-12-01

    Over the course of the deployment of Earthscope's USArray Transportable Array (TA) network there have numerous tornado events that have occurred within the changing footprint of its network. The Array Network Facility based in San Diego, California, has compiled a database of these tornado events based on data provided by the NOAA Storm Prediction Center (SPC). The SPC data itself consists of parameters such as start-end point track data for each event, maximum EF intensities, and maximum track widths. Our database is Antelope driven and combines these data from the SPC with detailed station information from the TA network. We are now able to list all available TA stations during any specific tornado event date and also provide a single calculated "nearest" TA station per individual tornado event. We aim to provide this database as a starting resource for those with an interest in investigating tornado signatures within surface pressure and seismic response data. On a larger scale, the database may be of particular interest to the infrasound research community

  10. Seismic and Infrasound Energy Generation and Propagation at Local and Regional Distances Phase 1 - Divine Strake Experiment

    DTIC Science & Technology

    2007-10-11

    large mine collapse (M=3.9) and shallow earthquake (M=3.9) indicates that there were no signals generated by these events. A new type of infrasound ...provide data to document the propagation of the acoustic signals between the infrasound array sites and allow us to estimate group velocities since...in near-source acoustic and seismic signals . 10 Near-source acoustic and seismic signals recorded at UTTR3 Explosion generated infrasound signals

  11. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management. The low power detection mode is implemented by monitoring any of the sensor analog outputs at lower sample rates for detection over a software controllable threshold.

  12. Aftershock source properties of events following the 2013 Craig Earthquake: new evidence for structural heterogeneity on the northern Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; Walton, M. A. L.; Ruppert, N. A.; Gulick, S. P. S.; Christeson, G. L.; Haeussler, P. J.

    2014-12-01

    In January 2013, a Mw 7.5 earthquake ruptured a segment of the Queen Charlotte Fault offshore the town of Craig in southeast Alaska. The region of the fault that slipped during the Craig earthquake is adjacent to and possibly overlapping with the northern extent of the 1949 M 8.1 Queen Charlotte earthquake rupture (Canada's largest recorded earthquake), and is just south of the rupture area of the 1972 M 7.6 earthquake near Sitka, Alaska. Here we present aftershock locations and focal mechanisms for events that occurred four months following the mainshock using data recorded on an Ocean Bottom Seismometer (OBS) array that was deployed offshore of Prince of Wales Island. This array consisted of 9 short period instruments surrounding the fault segment, and recorded hundreds of aftershocks during the months of April and May, 2013. In addition to highlighting the primary mainshock rupture plane, aftershocks also appear to be occurring along secondary fault structures adjacent to the main fault trace, illuminating complicated structure, particularly toward the northern extent of the Craig rupture. Focal mechanisms for the larger events recorded during the OBS deployment show both near-vertical strike slip motion consistent with the mainshock mechanism, as well as events with varying strike and a component of normal faulting. Although fault structure along this northern segment of the QCF appears to be considerably simpler than to the south, where a higher degree of oblique convergence leads to sub-parallel compressional deformation structures, secondary faulting structures apparent in legacy seismic reflection data near the Craig rupture may be consistent with the observed seismicity patterns. In combination, these data may help to characterize structural heterogeneity along the northern segment of the Queen Charlotte Fault that contributes to rupture segmentation during large strike slip events.

  13. Seismic velocity change and slip rate during the 2006 Guerrero (Mexico) slow slip event

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Cotton, Fabrice; Shapiro, Nikolai; Krishna Singh, Shri; Kostoglodov, Vladimir

    2010-05-01

    We measure temporal change of the seismic velocity in the crust below the Guerrero region during the 2006 slow sleep event (SSE). We use repeated cross-correlations of ambient seismic noise recorded at 26 broad-band stations of the MesoAmerica Seismic Experiment (MASE). The cross-correlations are computed over 90 days with a moving window of 10 days from January 2005 to July 2007. To insure measurements independent of noise source variations, we only take into account the travel time change within the coda. For period of 8 to 20s, we observe a decrease in velocity starting in April 2006 with a maximum change of -0.3% of the initial velocity in June 2006. At these periods, the Rayleigh waves are sensitive to velocity changes down to the lower crust. In the other hand, we compute the deformation rate below the MASE array from a slip propagation model of the SSE observed by means of the displacement time-series of 15 continuous GPS stations. Slip initiates in the western part of the Guerrero Gap and propagates southeastward. The propagation velocity is of the order of 1 km/day. We then compare the seismic velocity change measured from continuous seismological data with the deformation rate inferred from geodetic measurements below the MASE array. We obtain a good agreement between the time of maximal seismic velocity change (July 2006) and the time of maximum deformation associated with the SSE (July to August 2006). This result shows that the long-term velocity change associated with the SSE can be detected using continuous seismic recordings. Since the SSE does not emit seismic waves, which interact with the superficial layers, the result indicates that the velocity change is due to deformation at depth.

  14. Three-component borehole wall-locking seismic detector

    DOEpatents

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  15. International Monitoring System Correlation Detection at the North Korean Nuclear Test Site at Punggye-ri with Insights from the Source Physics Experiment

    DOE PAGES

    Ford, Sean R.; Walter, William R.

    2015-05-06

    Seismic waveform correlation offers the prospect of greatly reducing event detection thresholds when compared with more conventional processing methods. Correlation is applicable for seismic events that in some sense repeat, that is they have very similar waveforms. A number of recent studies have shown that correlated seismic signals may form a significant fraction of seismicity at regional distances. For the particular case of multiple nuclear explosions at the same test site, regional distance correlation also allows very precise relative location measurements and could offer the potential to lower thresholds when multiple events exist. Using the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Internationalmore » Monitoring System (IMS) seismic array at Matsushiro, Japan (MJAR), Gibbons and Ringdal (2012) were able to create a multichannel correlation detector with a very low false alarm rate and a threshold below magnitude 3.0. They did this using the 2006 or 2009 Democratic People’s Republic of Korea (DPRK) nuclear explosion as a template to search through a data stream from the same station to find a match via waveform correlation. In this paper, we extend the work of Gibbons and Ringdal (2012) and measure the correlation detection threshold at several other IMS arrays. We use this to address three main points. First, we show the IMS array station at Mina, Nevada (NVAR), which is closest to the Nevada National Security Site (NNSS), is able to detect a chemical explosion that is well under 1 ton with the right template. Second, we examine the two IMS arrays closest to the North Korean (DPRK) test site (at Ussuriysk, Russian Federation [USRK] and Wonju, Republic of Korea [KSRS]) to show that similarly low thresholds are possible when the right templates exist. We also extend the work of Schaff et al. (2012) and measure the correlation detection threshold at the nearest Global Seismic Network (GSN) three-component station (MDJ) at Mudanjiang, Heilongjiang Province, China, from the New China Digital Seismograph Network (IC). To conclude, we use these results to explore the recent claim by Zhang and Wen (2015) that the DPRK conducted “…a low-yield nuclear test…” on 12 May 2010.« less

  16. The Central and Eastern U.S. Seismic Network: Legacy of USArray

    NASA Astrophysics Data System (ADS)

    Eakins, J. A.; Astiz, L.; Benz, H.; Busby, R. W.; Hafner, K.; Reyes, J. C.; Sharer, G.; Vernon, F.; Woodward, R.

    2014-12-01

    As the USArray Transportable Array entered the central and eastern United States, several Federal agencies (National Science Foundation, U.S. Geological Survey, U.S. Nuclear Regulatory Commission, and Department of Energy) recognized the unique opportunity to retain TA stations beyond the original timeline. The mission of the CEUSN is to produce data that enables researchers and Federal agencies alike to better understand the basic geologic questions, background earthquake rates and distribution, seismic hazard potential, and associated societal risks of this region. The selected long-term sub-array from Transportable Array (TA) stations includes nearly 200 sites, complemented by 100 broadband stations from the existing regional seismic networks to form the Central and Eastern United States Network (CEUSN). Multiple criteria for site selection were weighed by an inter-agency TA Station Selection (TASS) Working Group: seismic noise characteristics, data availability in real time, proximity to nuclear power plants, and homogeneous distribution throughout the region. The Array Network Facility (ANF) started collecting data for CEUSN network stations since late 2013, with all stations collected since May 2014. Regional seismic data streams are collected in real-time from the IRIS Data Management Center (DMC). TA stations selected to be part of CEUSN, retain the broadband sensor to which a 100 sps channel is added, the infrasound and environmental channels, and, at some stations, accelerometers are deployed. The upgraded sites become part of the N4 network for which ANF provides metadata and can issue remote commands to the station equipment. Stations still operated by TA, but planned for CEUSN, are included in the virtual network so all stations are currently available now. By the end of 2015, the remaining TA stations will be upgraded. Data quality control procedures developed for TA stations at ANF and at the DMC are currently performed on N4 data. However, teleseismic and regional events are only picked a few times a month to fulfill data quality checks on the data. The assembled CEUSN data sets can be requested from the DMC with the _CEUSN virtual network code. Acknowledgments to Seismic Regional Network Operators: C. Ammon, J. Ebel, D. Doser, R. Hermann, A. Holland, W-Y. Kim, C. Langston, T. Owens, and M. Withers.

  17. Search for Long Period Solar Normal Modes in Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Caton, R.; Pavlis, G. L.

    2016-12-01

    We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.

  18. Unsuccessful initial search for a midmantle chemical boundary with seismic arrays

    USGS Publications Warehouse

    Vidale, J.E.; Schubert, G.; Earle, P.S.

    2001-01-01

    Compositional layering of the midmantle has been proposed to account for seismic and geochemical patterns [van der Hilst and Karason, 1999], and inferred radiogenic heat source concentrations [Kellogg et al., 1999]. Compositional layering would require thermal boundary layers both above and below an interface. We construct a minimal 1-D model of a mid-mantle boundary consistent with the observed nearly adiabatic compressional velocity structure [Dziewonksi and Anderson, 1981] and the proposed high heat flow from the lower mantle [Albarede and van der Hilst, 1999; Kellogg et al., 1999]. Ray tracing and reflectivity synthetic seismograms show that a distinct triplication is predicted for short-period P waves. Although topography on a boundary would cause uncertainty in the strength and the range of the triplication, many clear observations would be expected. We examine data from the US West Coast regional networks in the most likely distance range of 60?? to 70?? for a 1770-km-depth boundary, and find no evidence for P wave triplications.

  19. The upper mantle shear wave velocity structure of East Africa derived from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.; Nyblade, A.; Adams, A. N.; Weeraratne, D. S.; Mulibo, G.; Tugume, F.

    2012-12-01

    An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa has been developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset consists of 331 events recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this latest study, 149 events were used to determine fundamental mode Rayleigh wave phase velocities at periods ranging from 20 to 182 seconds using the two-plane-wave method. These were subsequently combined with the similarly processed published measurements and inverted for an updated upper mantle three-dimensional shear wave velocity model. Newly imaged features include a substantial fast anomaly in eastern Zambia that may have exerted a controlling influence on the evolution of the Western Rift Branch. Furthermore, there is a suggestion that the Eastern Rift Branch trends southeastward offshore eastern Tanzania.

  20. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    PubMed

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  1. Continental Assembly and Anisotropy Beneath the CANOE Array

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Gaherty, J. B.; Revenaugh, J.

    2007-12-01

    The Canadian Northwest Experiment (CANOE) is an array of nearly sixty broadband seismometers reaching from the Slave Craton in the Northwest Territories (NWT), across a series of Proterozoic orogens and the Canadian Rockies in the NWT, northern British Columbia, and southern Yukon, and across the Churchill Province south to Edmonton, Alberta. The array traverses a wide variety of continental settings, allowing the study of mantle variability associated with the formation of continental cratons and continental assembly over a time span of nearly 4 Ga. The close spacing of instruments in the CANOE array provides a detailed view of the mantle and lithosphere across these transitions. We examine splitting of the shear phases SKS, SKKS, and sSKS to study anisotropy beneath the region. The dataset consists of ~~70 teleseismic events of either magnitude > 5.6 and depth > 500 km or magnitude > 6.4 with depth < 500 km. All earthquakes were recorded at CANOE or nearby Canadian National Seismic Network stations between May 2003 and September 2005. Splitting times derived from multi-event station averages average ~1.4 s, and fast directions are coherent yet suggestive of strong variability of mantle anisotropy across the region. Stations on the craton show a dominant NE-SW fast direction that is roughly consistent with mantle flow dominated by plate motion. At the Cordillera boundary, fast directions flip abruptly to NW-SE, and continuing west across the Cordillera the fast directions rotate from NW-SE to roughly E-W before returning to NW-SE near the edge of the continent. These patterns are suggestive of dominant transpressional deformation through the lithosphere during continental accretion. Within the craton, there is an anomalous cluster of stations with N-S fast directions; these stations sit astride an apparent ancient suture zone (subducted slab?) detected through previous scattered-wave and seismic reflection studies. We will explore the possible relationship between this slab-like feature and the anomalous anisotropy. In addition to describing the general patterns of anisotropy beneath the region, we also investigate variations in the fast directions and delay times suggestive of complexity in the region. A number of stations exhibit "null" behavior even in the multi-event average analysis, and individual event solutions are highly variable. Critical factors to be evaluated include back azimuth, the phase of interest, and frequency content.

  2. Crustal structure of the Izu Collision zone, central Japan, revealed by dense seismic array observations

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.

    2009-12-01

    In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with permanent seismic station data. P- and S-wave arrival time data were obtained from 247 events and 16,144 P- and 13,723 S-wave arrival times were used for the inversion analysis. Arrival times of local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The P-wave velocity structure shows that low velocity zones exist along the estimated deeper extension of the active faults and high velocity zones exist beneath the Tanzawa Mountains and Misaka Mountains. The Tanzawa Mountains and the Misaka Mountains are considered as fragments of the IBA (e.g. Niitsuma, 1989). We obtained a seismic velocity model revealing good correlations with the surface geology along the profile. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.

  3. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.

  4. Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: Implications for infrasonic monitoring of remote explosive volcanism

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Le Pichon, Alexis; Vergoz, Julien; Herry, Pascal; Lalande, Jean-Marie; Lee, Hee-il; Che, Il-Young; Rybin, Alexander

    2011-02-01

    Sarychev Peak (SP), located on Ostrov Matua, Kurils, erupted explosively during 11-16 June 2009. Whereas remote seismic stations did not record the eruption, we report atmospheric infrasound (acoustic wave ~ 0.01-20 Hz) observations of the eruption at seven infrasound arrays located at ranges of ~ 640-6400 km from SP. The infrasound arrays consist of stations of the International Monitoring System global infrasound network and additional stations operated by the Korea Institute of Geoscience and Mineral Resources. Signals at the three closest recording stations IS44 (643 km, Petropavlovsk-Kamchatskiy, Kamchatka Krai, Russia), IS45 (1690 km, Ussuriysk, Russia), and IS30 (1774 km, Isumi, Japan) represent a detailed record of the explosion chronology that correlates well with an eruption chronology based on satellite data (TERRA, NOAA, MTSAT). The eruption chronology inferred from infrasound data has a higher temporal resolution than that obtained with satellite data. Atmosphere-corrected infrasonic source locations determined from backazimuth cross-bearings of first-arrivals have a mean centroid ~ 15 km from the true location of SP. Scatter in source locations of up to ~ 100 km result from currently unresolved details of atmospheric propagation and source complexity. We observe systematic time-variations in trace-velocity, backazimuth deviation, and signal frequency content at IS44. Preliminary investigation of atmospheric propagation from SP to IS44 indicates that these variations can be attributed to solar tide variability in the thermosphere. It is well known that additional information about active volcanic processes can be learned by deploying infrasonic sensors with seismometers at erupting volcanoes. This study further highlights the significant potential of infrasound arrays for monitoring volcanic regions such as the Kurils that have only sparse seismic network coverage.

  5. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments in the ALSEP program are reported. A summary of the status for the total ALSEP program is included. Other areas discussed include: (1) status of Apollo 16 (array D) and Apollo 17 (array E), (2) lunar seismic profiling experiment, (3) lunar ejecta and meteorites experiment, and (4) lunar mass spectrometer experiments.

  6. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  7. The Seismic Event in North Korea on 12 May 2010: an assessment from available seismological data

    NASA Astrophysics Data System (ADS)

    Koch, Karl; Kim, Won-Young; Richards, Paul G.; Schaff, David P.

    2016-04-01

    North Korea conducted underground nuclear explosions in October 2006, May 2009, February 2013, and January 2016 that were subsequently officially announced. Based on a number of detections of radionuclides and noble gas elements in May 2010, claims were raised that North Korea conducted a small clandestine nuclear test on its test site on 11 or 12 May 2010, which, however, lacked any signs of an associated seismic event in IMS and non-IMS seismic data. First evidence was presented in fall 2014 and published in February 2015 that data from a Chinese seismic network showed signals that could be related to the claimed underground nuclear explosion in May 2010. Unfortunately, these data have not become openly available for further and wider seismological assessments. First openly available data were found for this seismic event from stations of the North-East China Extended SeiSmic (NECESS) Array consistent with an event on or near the North Korean test site. Later, additional data were obtained from stations of the nearby Dongbei Broadband Seismographic Network (DBSN), for the event of 12 May 2010 and for the underground nuclear tests conducted in 2006 and 2009. Together with data from the open GSN station Mudanjiang (MDJ) in northeastern China we developed a framework for relative location of the event, event characterization by measuring P/S amplitude ratios at different frequencies and by independently assessing the magnitude of the event. While the location of the event can be shown to be within several kilometers of previous nuclear tests, event characterization for frequencies between 5 and 10 Hz indicates that the known nuclear tests are explosion-like; the 12 May 2010 event is in contrast characterized as earthquake-like. Our assessment also indicates that seismic events about three-thousand times smaller than the UNEs in 2013 or 2016 may be monitored on or near the North Korean test site.

  8. The Investigation of a Sinkhole Area in Germany by Near-Surface Active Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Tschache, S.; Becker, D.; Wadas, S. H.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    In November 2010, a 30 m wide and 17 m deep sinkhole occurred in a residential area of Schmalkalden, Germany, which fortunately did not harm humans, but led to damage of buildings and property. Subsequent geoscientific investigations showed that the collapse was naturally caused by the subrosion of sulfates in a depth of about 80 m. In 2012, an early warning system was established including 3C borehole geophones deployed in 50 m depth around the backfilled sinkhole. During the acquisition of two shallow 2D shear wave seismic profiles, the signals generated by a micro-vibrator at the surface were additionally recorded by the four borehole geophones of the early warning system and a VSP probe in a fifth borehole. The travel time analysis of the direct arrivals enhanced the understanding of wave propagation in the area. Seismic velocity anomalies were detected and related to structural seismic images of the 2D profiles. Due to the promising first results, the experiment was further extended by distributing vibration points throughout the whole area around the sinkhole. This time, micro-vibrators for P- and S-wave generation were used. The signals were recorded by the borehole geophones and temporary installed seismometers at surface positions close to the boreholes. The travel times and signal attenuations are evaluated to detect potential instable zones. Furthermore, array analyses are performed. The first results reveal features in the active tomography datasets consistent with structures observed in the 2D seismic images. The advantages of the presented method are the low effort and good repeatability due to the permanently installed borehole geophones. It has the potential to determine P-wave and S-wave velocities in 3D. It supports the interpretation of established investigation methods as 2D surface seismics and VSP. In our further research we propose to evaluate the suitability of the method for the time lapse monitoring of changes in the seismic wave propagation, which could be related to subrosion processes.

  9. Characterizing seismic noise in the 2-20 Hz band at a gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Coward, D.; Turner, J.; Blair, D.; Galybin, K.

    2005-04-01

    We present a study of seismic noise, using an array of seismic sensors, at the Australian International Gravitational Observatory. We show that despite excellent attenuation of 2-20 Hz seismic waves from the soil properties of the site, which is confirmed by a specific experiment, there are important technical issues associated with local sources of vibration originating from within the laboratory buildings. In particular, we identify vibrations from air-filtration equipment propagating throughout the site. We find significant building resonances in the 2-13 Hz band and identify seismic noise originating from regional mine blasts hundreds of kilometers distant. All these noise sources increase the performance requirements on vibration isolation in the 2-20 Hz frequency band.

  10. High-resolution seismic data regularization and wavefield separation

    NASA Astrophysics Data System (ADS)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  11. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions.

    PubMed

    Gibbons, Steven J; Ringdal, Frode; Kvaerna, Tormod

    2007-11-01

    A database has been established of seismic and infrasonic recordings from more than 100 well-constrained surface explosions, conducted by the Finnish military to destroy old ammunition. The recorded seismic signals are essentially identical and indicate that the variation in source location and magnitude is negligible. In contrast, the infrasonic arrivals on both seismic and infrasound sensors exhibit significant variation both with regard to the number of detected phases, phase travel times, and phase amplitudes, which would be attributable to atmospheric factors. This data set provides an excellent database for studies in sound propagation, infrasound array detection, and direction estimation.

  12. Thirty Years Supporting Portable Arrays: The IRIS Passcal Instrument Center

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Woodward, R.

    2014-12-01

    Thirty years have passed since establishment of the IRIS Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL). PASSCAL was part of a coordinated plan proposed to the National Science Foundation (NSF) defining the instrumentation, data collection and management structure to support a wide range of research in seismology. The PASSCAL program has surpassed the early goal of 6000 data acquisition channels with a current inventory of instrumentation capable of imaging from the near surface to the inner core. Here we present the evolution of the PASSCAL program from instrument depot to full service community resource. PASSCAL has supported close to 1100 PI driven seismic experiments since its inception. Instruments from PASSCAL have covered the globe and have contributed over 7400 SEED stations and 242 assembled data sets to the IRIS Data Management Center in Seattle. Since the combination in 1998 of the Stanford and Lamont instrument centers into the single PASSCAL Instrument Center (PIC) at New Mexico Tech, the facility has grown in scope by adding the EarthScope Array Operations Facility in 2005, the incorporation of the EarthScope Flexible Array, and a Polar support group in 2006. The polar support group enhances portable seismic experiments in extremely harsh polar environments and also extends to special projects such as the Greenland Ice Sheet Monitoring Network (GLISN) and the recent development effort for Geophysical Earth Observatory for Ice Covered Environments (GEOICE). Through these support efforts the PIC has established itself as a resource for field practices, engineered solutions for autonomous seismic stations, and a pioneer in successful seismic recording in polar environments. We are on the cusp of a new generation of instrumentation driven in part by the academic community's desire to record unaliased wavefields in multiple frequency bands and industry's interest in utilizing lower frequency data. As part of the recently funded IRIS proposal to NSF for support of Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE), IRIS is developing plans for this new instrumentation that will ensure that the PASSCAL program continues to provide state-of-the-art observing capabilities into the coming decades.

  13. Seismicity patterns during a period of inflation at Sierra Negra volcano, Galápagos Ocean Island Chain

    NASA Astrophysics Data System (ADS)

    Davidge, Lindsey; Ebinger, Cynthia; Ruiz, Mario; Tepp, Gabrielle; Amelung, Falk; Geist, Dennis; Coté, Dustin; Anzieta, Juan

    2017-03-01

    Basaltic shield volcanoes of the western Galápagos islands are among the most rapidly deforming volcanoes worldwide, but little was known of the internal structure and brittle deformation processes accompanying inflation and deflation cycles. A 15-station broadband seismic array was deployed on and surrounding Sierra Negra volcano, Galápagos from July 2009 through June 2011 to characterize seismic strain patterns during an inter-eruption inflation period and to evaluate single and layered magma chamber models for ocean island volcanoes. We compare precise earthquake locations determined from a 3D velocity model and from a double difference cluster method. Using first-motion of P-arrivals, we determine focal mechanisms for 8 of the largest earthquakes (ML ≤ 1.5) located within the array. Most of the 2382 earthquakes detected by the array occurred beneath the broad (∼9 km-wide) Sierra Negra caldera, at depths from surface to about 8 km below sea level. Although outside our array, frequent and larger magnitude (ML ≤ 3.4) earthquakes occurred at Alcedo and Fernandina volcano, and in a spatial cluster beneath the shallow marine platform between Fernandina and Sierra Negra volcanoes. The time-space relations and focal mechanism solutions from a 4-day long period of intense seismicity June 4-9, 2010 along the southeastern flank of Sierra Negra suggests that the upward-migrating earthquake swarm occurred during a small volume intrusion at depths 5-8 km subsurface, but there was no detectable signal in InSAR data to further constrain geometry and volume. Focal mechanisms of earthquakes beneath the steep intra-caldera faults and along the ring fault system are reverse and strike-slip. These new seismicity data integrated with tomographic, geodetic, and petrological models indicate a stratified magmatic plumbing system: a shallow sill beneath the large caldera that is supplied by magma from a large volume deeper feeding system. The large amplitude inter-eruption inflation of the shallow sill beneath the Sierra Negra caldera is accompanied by only very small magnitude earthquakes, although historical records indicate that larger magnitude earthquakes (Mw <6) occur during eruptions, trapdoor faulting episodes without eruptions, and large volume flank intrusions.

  14. Characterizing Micro- and Macro-Scale Seismicity from Bayou Corne, Louisiana

    NASA Astrophysics Data System (ADS)

    Baig, A. M.; Urbancic, T.; Karimi, S.

    2013-12-01

    The initiation of felt seismicity in Bayou Corne, Louisiana, coupled with other phenomena detected by residents on the nearby housing development, prompted a call to install a broadband seismic network to monitor subsurface deformation. The initial deployment was in place to characterize the deformation contemporaneous with the formation of a sinkhole located in close proximity to a salt dome. Seismic events generated during this period followed a swarm-like behaviour with moment magnitudes culminating around Mw2.5. However, the seismic data recorded during this sequence suffer from poor signal to noise, onsets that are very difficult to pick, and the presence of a significant amount of energy arriving later in the waveforms. Efforts to understand the complexity in these waveforms are ongoing, and involve invoking the complexities inherent in recording in a highly attenuating swamp overlying a complex three-dimensional structure with the strong material property contrast of the salt dome. In order to understand the event character, as well as to locally lower the completeness threshold of the sequence, a downhole array of 15 Hz sensors was deployed in a newly drilled well around the salt dome. Although the deployment lasted a little over a month in duration, over 1000 events were detected down to moment magnitude -Mw3. Waveform quality tended to be excellent, with very distinct P and S wave arrivals observable across the array for most events. The highest magnitude events were seen as well on the surface network and allowed for the opportunity to observe the complexities introduced by the site effects, while overcoming the saturation effects on the higher-frequency downhole geophones. This hybrid downhole and surface array illustrates how a full picture of subsurface deformation is only made possible by combining the high-frequency downhole instrumentation to see the microseismicity complemented with a broadband array to accurately characterize the source parameters for the larger magnitude events. Our presentation is focused on investigating this deformation, characterizing the scaling behaviour and the other source processes by taking advantage of the wide-band afforded to us through the deployment.

  15. The Effects of Heterogeneities on Seismic Wave Propagation in the Climax Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan Webb, C., Snelson, C. M., White, R., Emmitt, R., Barker, D., Abbott, R., Bonal, N.

    2011-12-01

    The Comprehensive Nuclear Test-Ban Treaty requires the ability to detect low-yield (less than 150kton) nuclear events. This kind of monitoring can only be done seismically on a regional scale (within 2000km). At this level, it is difficult to distinguish between low-yield nuclear events and non-nuclear events of similar magnitude. In order to confidently identify a nuclear event, a more detailed understanding of nuclear seismic sources is needed. In particular, it is important to know the effects of local geology on the seismic signal. This study focuses on P-wave velocity in heterogeneous granitoid. The Source Physics Experiment (SPE) is currently performingmore » low-yield tests with chemical explosives at the Nevada National Security Site (NNSS). The exact test site was chosen to be in the Climax Stock, a cretaceous granodiorite and quartz-monzonite pluton located in Area 15 of the NNSS. It has been used in the past for the Hard Hat and Pile Driver nuclear tests, which provided legacy data that can be used to simulate wave propagation. The Climax Stock was originally chosen as the site of the SPE partly because of its assumed homogeneity. It has since been discovered that the area of the stock where the SPE tests are being performed contains a perched water table. In addition, the stock is known to contain an extensive network of faults, joints, and fractures, but the exact effect of these structural features on seismic wave velocity is not fully understood. The SPE tests are designed to seismically capture the explosion phenomena from the near- to the far-field transition of the seismic waveform. In the first SPE experiment, 100kg of chemical explosives were set off at a depth of 55m. The blast was recorded with an array of sensors and diagnostics, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment, Time of Arrival, Velocity of Detonation, and infrasound sensors. The focus of this study is two-fold: (1) the geophone array that was focused over the SPE shot and (2) a high-resolution seismic profile that was recently acquired at the field site. The geophone array was placed radially around the SPE shot in five directions with 100m spacing and out to a distance of 2 km. The high-resolution profile was about 475m in length with station and shot spacing of 5m using a 7000lb mini-vibe as a source. In both data sets, the first arrivals will be used to develop velocity models. For the geophone array, 1-D P-wave velocity models will be developed to determine an average apparent velocity of the Climax Stock. The high-resolution data will be used to develop a 2-D P-wave velocity model along the seismic profile. This is in an effort to elucidate the water table in more detail and provide additional information on the near-surface structure. These results will be used in the overall modeling effort to fully characterize the test bed and develop a physics-based model to simulate seismic energy from the SPE events.« less

  16. The contribution of the seismic component of Topo-Iberia to the imaging of the deep structure of the Iberian Peninsula and North Morocco

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gallart, Josep; de Lis Mancilla, Flor; Villaseñor, Antonio; Bonatto, Luciana; Schimmel, Martin; Harnafi, Mimoun; El Moudnib, Lahcen

    2015-04-01

    Topo-Iberia has been a large-scale Spanish project running from 2007 to 2013 that integrated more than 150 researchers on Earth Sciences. One of its key assets was the management of an observatory platform, named IberArray, aimed to provide new geophysical datasets (seismic, GPS, MT) to constrain the structure of Iberia with unprecedented resolution. The IberArray seismic pool was composed by 70+ BB stations, covering the study area in 3 deployments with a site-density of 60km x 60km. The data base holds ~300 sites, including the permanent networks in the area. Hence it forms a unique seismic database in Europe that allows for multiple analyses to constrain the complex geodinamics of the Western Mediterranean. A summary of new results coming from different techniques is presented here. The SKS splitting analysis has provided a spectacular image of the rotation of the fast velocity direction along the Gibraltar Arc. In central and northern Iberia, the fast polarization directions are close to EW, consistently with global mantle flow models considering contributions of surface plate motion, density variations and net lithosphere rotation. Those results suggest an asthenospheric origin of the observed anisotropy related to present-day mantle flow. Receiver functions have revealed the crustal thickness variations beneath the Atlas, Rif and southern Iberia, evidencing a relevant crustal root beneath the Rif, in agreement with recent, high-density active seismic experiments. The Variscan Iberian massif shows a flat Moho discontinuity, while the areas reworked in the Alpine orogeny show a slightly thicker crust. Beneath N Iberia, the imbrication of the Iberian and Eurasian crusts results in complex receiver functions. Depths exceeding 45 km are observed along the Pyrenean range, while the crust thins to values of 26-28 km close to the Atlantic coasts. The geometry of the 410-km and 660-km discontinuities has been investigated using novel cross-correlation/stacking techniques. Ambient noise tomography allows to identify the main sedimentary basins and to discriminate between the Variscan and the Alpine reworked areas. Local body-wave tomography in North Morocco has improved the location of the small magnitude events on the area and the details of the crustal structure. Teleseismic tomography has confirmed, using an independent data set, the presence of a high-velocity slab beneath the Gibraltar Arc.

  17. Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data

    NASA Astrophysics Data System (ADS)

    Oye, Volker; Chavarria, J. Andres; Malin, Peter E.

    2004-05-01

    In August 2002, an array of 32 three-component geophones was installed in the San Andreas Fault Observatory at Depth (SAFOD) Pilot Hole (PH) at Parkfield, CA. As an independent test of surface-observation-based microearthquake locations, we have located such events using only data recorded on the PH array. We then compared these locations with locations from a combined set of PH and Parkfield High Resolution Seismic Network (HRSN) observations. We determined the uncertainties in the locations as they relate to errors in the travel time picks and the velocity model by the bootstrap method. Based on the PH and combined locations, we find that the ``C2'' cluster to the northeast of the PH has the smallest location uncertainties. Events in this cluster also have the most similar waveforms and largest magnitudes. This confirms earlier suggestions that the C2 cluster is a promising target for the SAFOD Main Hole.

  18. H-fractal seismic metamaterial with broadband low-frequency bandgaps

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Yi; Xu, Yang; Yang, Hongwu; Zeng, Zuoxun

    2018-03-01

    The application of metamaterial in civil engineering to achieve isolation of a building by controlling the propagation of seismic waves is a substantial challenge because seismic waves, a superposition of longitudinal and shear waves, are more complex than electromagnetic and acoustic waves. In this paper, we design a broadband seismic metamaterial based on H-shaped fractal pillars and report numerical simulation of band structures for seismic surface waves propagating. Comparative study on the band structures of H-fractal seismic metamaterials with different levels shows that a new level of fractal structure creates new band gap, widens the total band gaps and shifts the same band gap towards lower frequencies. Moreover, the vibration modes for H-fractal seismic metamaterials are computed and analyzed to clarify the mechanism of widening band gaps. A numerical investigation of seismic surface waves propagation on a 2D array of fractal unit cells on the surface of semi-infinite substrate is proposed to show the efficiency of earthquake shielding in multiple complete band gaps.

  19. Short-Period Seismic Noise in Vorkuta (Russia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design,more » construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.« less

  20. Finite-Difference Numerical Simulation of Seismic Gradiometry

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Haney, M. M.

    2006-12-01

    We use the phrase seismic gradiometry to refer to the developing research area involving measurement, modeling, analysis, and interpretation of spatial derivatives (or differences) of a seismic wavefield. In analogy with gradiometric methods used in gravity and magnetic exploration, seismic gradiometry offers the potential for enhancing resolution, and revealing new (or hitherto obscure) information about the subsurface. For example, measurement of pressure and rotation enables the decomposition of recorded seismic data into compressional (P) and shear (S) components. Additionally, a complete observation of the total seismic wavefield at a single receiver (including both rectilinear and rotational motions) offers the possibility of inferring the type, speed, and direction of an incident seismic wave. Spatially extended receiver arrays, conventionally used for such directional and phase speed determinations, may be dispensed with. Seismic wave propagation algorithms based on the explicit, time-domain, finite-difference (FD) numerical method are well-suited for investigating gradiometric effects. We have implemented in our acoustic, elastic, and poroelastic algorithms a point receiver that records the 9 components of the particle velocity gradient tensor. Pressure and particle rotation are obtained by forming particular linear combinations of these tensor components, and integrating with respect to time. All algorithms entail 3D O(2,4) FD solutions of coupled, first- order systems of partial differential equations on uniformly-spaced staggered spatial and temporal grids. Numerical tests with a 1D model composed of homogeneous and isotropic elastic layers show isolation of P, SV, and SH phases recorded in a multiple borehole configuration, even in the case of interfering events. Synthetic traces recorded by geophones and rotation receivers in a shallow crosswell geometry with randomly heterogeneous poroelastic models also illustrate clear P (fast and slow) and S separation. Finally, numerical tests of the "point seismic array" concept are oriented toward understanding its potential and limitations. Sandia National Laboratories is a multiprogram science and engineering facility operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy under contract DE- AC04-94AL85000.

  1. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt.

    PubMed

    Eilon, Zachary C; Abers, Geoffrey A

    2017-05-01

    At most mid-ocean ridges, a wide region of decompression melting must be reconciled with a narrow neovolcanic zone and the establishment of full oceanic crustal thickness close to the rift axis. Two competing paradigms have been proposed to explain melt focusing: narrow mantle upwelling due to dynamic effects related to in situ melt or wide mantle upwelling with lateral melt transport in inclined channels. Measurements of seismic attenuation provide a tool for identifying and characterizing the presence of melt and thermal heterogeneity in the upper mantle. We use a unique data set of teleseismic body waves recorded on the Cascadia Initiative's Amphibious Array to simultaneously measure seismic attenuation and velocity across an entire oceanic microplate. We observe maximal differential attenuation and the largest delays ([Formula: see text] s and δ T S ~ 2 s) in a narrow zone <50 km from the Juan de Fuca and Gorda ridge axes, with values that are not consistent with laboratory estimates of temperature or water effects. The implied seismic quality factor ( Q s ≤ 25) is among the lowest observed worldwide. Models harnessing experimentally derived anelastic scaling relationships require a 150-km-deep subridge region containing up to 2% in situ melt. The low viscosity and low density associated with this deep, narrow melt column provide the conditions for dynamic mantle upwelling, explaining a suite of geophysical observations at ridges, including electrical conductivity and shear velocity anomalies.

  2. 75 FR 16202 - Office of New Reactors; Interim Staff Guidance on Ensuring Hazard-Consistent Seismic Input for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Staff Guidance on Ensuring Hazard-Consistent Seismic Input for Site Response and Soil Structure...-Consistent Seismic Input for Site Response and Soil Structure Interaction Analyses,'' (Agencywide Documents... Soil Structure Interaction Analyses,'' (ADAMS Accession No. ML092230455) to solicit public and industry...

  3. Experiments on Adaptive Self-Tuning of Seismic Signal Detector Parameters

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Chael, E. P.; Peterson, M. G.; Lawry, B.; Phillips-Alonge, K. E.; Balch, R. S.; Ziegler, A.

    2016-12-01

    Scientific applications, including underground nuclear test monitoring and microseismic monitoring can benefit enormously from data-driven dynamic algorithms for tuning seismic and infrasound signal detection parameters since continuous streams are producing waveform archives on the order of 1TB per month. Tuning is a challenge because there are a large number of data processing parameters that interact in complex ways, and because the underlying populating of true signal detections is generally unknown. The largely manual process of identifying effective parameters, often performed only over a subset of stations over a short time period, is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. We present improvements to an Adaptive Self-Tuning algorithm for continuously adjusting detection parameters based on consistency with neighboring sensors. Results are shown for 1) data from a very dense network ( 120 stations, 10 km radius) deployed during 2008 on Erebus Volcano, Antarctica, and 2) data from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Performance is assessed in terms of missed detections and false detections relative to human analyst detections, simulated waveforms where ground-truth detections exist and visual inspection.

  4. A landslide-quake detection algorithm with STA/LTA and diagnostic functions of moving average and scintillation index: A preliminary case study of the 2009 Typhoon Morakot in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Jie; Lin, Guan-Wei

    2017-04-01

    Since 1999, Taiwan has experienced a rapid rise in the number of landslides, and the number even reached a peak after the 2009 Typhoon Morakot. Although it is proved that the ground-motion signals induced by slope processes could be recorded by seismograph, it is difficult to be distinguished from continuous seismic records due to the lack of distinct P and S waves. In this study, we combine three common seismic detectors including the short-term average/long-term average (STA/LTA) approach, and two diagnostic functions of moving average and scintillation index. Based on these detectors, we have established an auto-detection algorithm of landslide-quakes and the detection thresholds are defined to distinguish landslide-quake from earthquakes and background noises. To further improve the proposed detection algorithm, we apply it to seismic archives recorded by Broadband Array in Taiwan for Seismology (BATS) during the 2009 Typhoon Morakots and consequently the discrete landslide-quakes detected by the automatic algorithm are located. The detection algorithm show that the landslide-detection results are consistent with that of visual inspection and hence can be used to automatically monitor landslide-quakes.

  5. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    NASA Astrophysics Data System (ADS)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  6. Background Lamb waves in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Kobayashi, N.; Fukao, Y.

    2013-12-01

    Lamb waves of the Earth's atmosphere in the millihertz band have been considered as transient phenomena excited only by large events [e.g. the major volcanic eruption of Krakatoa in 1833, the impact of Siberian meteorite in 1908, the testing of large nuclear tests and the huge earthquakes, Garrett1969]. In a case of the solid Earth, observation of background free oscillations in the millihertz band-now known as Earth's background free oscillations or seismic hum, has been firmly established. Above 5 mHz, their dominant excitation sources are oceanic infragravity waves. At 3.7 and 4.4 mHz an elasto-acoustic resonance between the solid Earth and the atmosphere was observed [Nishida et al., 2000]. These seismic observations show that the contribution of atmospheric disturbances to the seismic hum is dominant below 5 mHz. Such contribution implies background excitations of acoustic-gravity waves in this frequency range. For direct detection of the background acoustic-gravity waves, our group conducted observations using an array of barometers [Nishida et al. 2005]. However, the spatial scale of the array of about 10 km was too small to detect acoustic modes below 10 mHz. Since then, no direct observations of these waves have been reported. In 2011, 337 high-resolution microbarometers were installed on a continental scale at USArray Transportable Array. The large and dense array enables us to detect the background atmospheric waves. Here, we show the first evidence of background Lamb waves in the Earth's atmosphere from 0.2 to 10 mHz, based on the array analysis of microbarometer data from the USArray in 2012. The observations suggest that the excitation sources are atmospheric disturbances in the troposphere. Theoretically, their energy in the troposphere tunnels into the thermosphere at a resonant frequency via thermospheric gravity wave, where the observed amplitudes indeed take a local minimum. The energy leak through the frequency window could partly contribute to thermospheric wave activity. Tropospheric disturbances exciting background Lamb waves may also be responsible for seismic hum at frequencies below 5 mHz.

  7. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    NASA Astrophysics Data System (ADS)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  8. A Two-Radius Circular Array Method: Extracting Independent Information on Phase Velocities of Love Waves From Microtremor Records From a Simple Seismic Array

    NASA Astrophysics Data System (ADS)

    Tada, T.; Cho, I.; Shinozaki, Y.

    2005-12-01

    We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce estimates for the phase velocities of Love waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. We have also conducted a check of the estimated spectral ratios against the "model" spectral ratios, where we mean by "spectral ratio" an intermediary quantity that is calculated from observed records prior to the estimation of the phase velocity in the data analysis procedure of our TR method. In most cases, the estimated phase velocities coincided well with the model phase velocities within a wavelength range extending roughly from 3r to 6r (r: array radius). It was found out that, outside the upper and lower resolution limits of the TR method, the discrepancy between the estimated and model phase velocities, as well as the discrepancy between the estimated and model spectral ratios, were accounted for satisfactorily by theoretical consideration of three factors: the presence of higher surface-wave modes, directional aliasing effects related to the finite number of sensors in the seismic array, and the presence of incoherent noise.

  9. Seismic Discrimination

    DTIC Science & Technology

    1977-03-31

    J\\ "’l \\ UBO \\ NUR UINTA * BASIN ARRAY. UTAH \\ NURMIJARVI, FINLAND »X 1964-1971 ^ • A...Gs N 1 i 1 1 , 1. 50 60 STATION mK UBO UINTA BASIN ARRAY, UTAH 1964-1970 s...appropriate to the Basin and Range geologic province. This comparison indicates that the Colorado Plateau structure is significantly different than

  10. High resolution P-wave velocity structure beneath Northeastern Tibet from multiscale seismic tomography

    NASA Astrophysics Data System (ADS)

    Guo, B.; Gao, X.; Chen, J.; Liu, Q.; Li, S.

    2016-12-01

    The continuing collision of the northward advancing Indian continent with the Eurasia results in the high elevations and thickened Tibetan Plateau. Numerous geologic and geophysical studies engaged in the mechanics of the Tibetan Plateau deformation and uplift. Many seismic experiments were deployed in south and central Tibet, such as INDEPTH and Hi-climb, but very few in northeastern Tibet. Between 2013 and 2015, The China Seismic Array-experiment operated 670 broadband seismic stations with an average station spacing of 35km. This seismic array located in northeastern Tibet and covered the Qilian Mountains, Qaidam Basin, and part of Songpan-Ganzi, Gobi-Alashan, Yangzi, and Ordos. A new multiscale seismic traveltime tomography technique with sparsity constrains were used to map the upper mantle P-wave velocity structure beneath northeastern Tibet. The seismic tomography algorithm employs sparsity constrains on the wavelet representation velocity model via the L1-norm regularization. This algorithm can efficiently deal with the uneven-sampled volume, and give multiscale images of the model. Our preliminary results can be summarized as follows: 1) in the upper mantle down to 200km, significate low-velocity anomalies exist beneath the northeastern Tibet, and slight high-velocity anomalies beneath the Qaidam basin; 2) under Gobi-Alashan, Yangzi, and Ordos, high-velocity anomalies appear to extend to a depth of 250km, this high-velocity may correspond to the lithosphere; 3) there exist relative high-velocity anomalies at depth of 250km-350km underneath north Tibet, which suggests lithospheric delamination; 4) the strong velocity contrast between north Tibet and Yangzi, Gabi-Alashan is visible down to 200km, which implies the north Tibet boundary.

  11. Advances in Mixed Signal Processing for Regional and Teleseismic Arrays

    DTIC Science & Technology

    2006-08-15

    1: Mixture of signals from two earthquakes from south of Africa and the Philippines observed at USAEDS long-period seismic array in Korea. Correct...window where the detector will miss valid signals . 2 Approaches to detecting signals on arrays all focus on the basic model that expresses the observed...possible use in detecting infrasound signals . The approach is based on orthogonal- ity properties of the eigen vectors of the spectral matrix under a

  12. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  13. Observed Melt Season Seismicity of Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Pettit, E. C.; Creager, K. C.

    2006-12-01

    Sufficient evidence exists to suggest that interaction of crevasses and meltwater accelerates ice cliff disintegration of tidewater glaciers. It is not clear what role meltwater plays in calving characteristics from dry- based polar glaciers. We have obtained seismic data from a six-sensor seismic array deployed in October of 2004 near the terminus cliffs of Taylor Glacier, West Antarctica, to analyze near-cliff seismicity throughout a melt season. Discharge data from the adjacent Lawson stream suggests that dramatic increases in meltwater volume temporally correlate with changes in seismic character near ice cliffs. We calculated source-locations for ice-quake during hours of melting and re-freezing and found most large energy events to be located near the ice cliffs. The associated spectra and waveform characteristics are indicative of literature descriptions of crevassing events.

  14. Noise reduction in long‐period seismograms by way of array summing

    USGS Publications Warehouse

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  15. The source of infrasound associated with long-period events at mount St. Helens

    USGS Publications Warehouse

    Matoza, R.S.; Garces, M.A.; Chouet, B.A.; D'Auria, L.; Hedlin, M.A.H.; De Groot-Hedlin, C.; Waite, G.P.

    2009-01-01

    During the early stages of the 2004-2008 Mount St. Helens eruption, the source process that produced a sustained sequence of repetitive long-period (LP) seismic events also produced impulsive broadband infrasonic signals in the atmosphere. To assess whether the signals could be generated simply by seismic-acoustic coupling from the shallow LP events, we perform finite difference simulation of the seismo-acoustic wavefield using a single numerical scheme for the elastic ground and atmosphere. The effects of topography, velocity structure, wind, and source configuration are considered. The simulations show that a shallow source buried in a homogeneous elastic solid produces a complex wave train in the atmosphere consisting of P/SV and Rayleigh wave energy converted locally along the propagation path, and acoustic energy originating from , the source epicenter. Although the horizontal acoustic velocity of the latter is consistent with our data, the modeled amplitude ratios of pressure to vertical seismic velocity are too low in comparison with observations, and the characteristic differences in seismic and acoustic waveforms and spectra cannot be reproduced from a common point source. The observations therefore require a more complex source process in which the infrasonic signals are a record of only the broadband pressure excitation mechanism of the seismic LP events. The observations and numerical results can be explained by a model involving the repeated rapid pressure loss from a hydrothermal crack by venting into a shallow layer of loosely consolidated, highly permeable material. Heating by magmatic activity causes pressure to rise, periodically reaching the pressure threshold for rupture of the "valve" sealing the crack. Sudden opening of the valve generates the broadband infrasonic signal and simultaneously triggers the collapse of the crack, initiating resonance of the remaining fluid. Subtle waveform and amplitude variability of the infrasonic signals as recorded at an array 13.4 km to the NW of the volcano are attributed primarily to atmospheric boundary layer propagation effects, superimposed upon amplitude changes at the source. Copyright 2009 by the American Geophysical Union.

  16. Viterbi sparse spike detection and a compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel Paul

    Accurate interpretation of seismic travel times and amplitudes in both the exploration and global scales is complicated by the band-limited nature of seismic data. We present a stochastic method, Viterbi sparse spike detection (VSSD), to reduce a seismic waveform into a most probable constituent spike train. Model waveforms are constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) is constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. The Viterbi algorithm is employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data, and to assign a score to each candidate spike train. The most probable travel times and amplitudes are inferred from the alignments of the highest scoring models. Our analyses show that the method can resolve closely spaced arrivals below traditional resolution limits and that travel time estimates are robust in the presence of random noise and source wavelet errors. We applied the VSSD method to constrain the elastic properties of a ultralow- velocity zone (ULVZ) at the core-mantle boundary beneath the Coral Sea. We analyzed vertical component short period ScP waveforms for 16 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array (ASAR) in central Australia. These waveforms show strong pre and postcursory seismic arrivals consistent with ULVZ layering. We used the VSSD method to measure differential travel-times and amplitudes of the post-cursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of approximately 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S-wave velocity reduction of 24%, a P-wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. We simultaneously constrain both P- and S-wave velocity reductions as a 1:1 ratio inside this ULVZ. This 1:1 ratio is not consistent with a partial melt origin to ULVZs. Rather, we demonstrate that a compositional origin is more likely.

  17. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.

  18. Mushy Magma beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Chu, R.; Helmberger, D. V.; Sun, D.; Jackson, J. M.; Zhu, L.

    2009-12-01

    A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies on regional earthquake data which suggests a high degree of crystallization of the underlying magma body. In this study, we analyzed P-wave receiver functions recorded by broadband stations above the caldera from 100 teleseismic earthquakes between January and November 2008. After applying a number of waveform modeling tools, we obtained much lower seismic velocities than previous estimates, 2.3 km/sec (Vp) and 1.1 km/sec (Vs), with a thickness of 3.6 km in the upper crust. This shallow low velocity zone is severe enough to cause difficulties with seismic tool applications. In particular, seismologists expect teleseismic P-waves to arrive with motions up and away or down and back. Many of the observations recorded by the Yellowstone Intermountain Seismic Array, however, violate this assumption. We show that many of the first P-wave arrivals observed at seismic stations on the edge of the caldera do not travel through the magma body but have taken longer but faster paths around the edge or wrap-around phases. Three stations near the trailing edge have reversal radial-component motions, while stations near the leading edge do not. Adding our constraints on geometry, we conclude that this relatively shallow magma body has a volume of over 4,300 km3. We estimate the magma body by assuming a fluid-saturated porous material consisting of granite and a mixture of rhyolite melt and supercritical water and CO2 at temperatures of 800 oC and pressure at 5 km (0.1 GPa).Theoretical calculations of seismic wave speed suggests that the magma body beneath the Yellowstone Caldera has a porosity of 32% filled with 92% rhyolite melt and 8% water-CO2 by volume.

  19. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Lim, H.; Kim, Y.; Clayton, R. W.

    2015-12-01

    We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).

  20. A kinematic model of patchy slip at depth explains observed tremor waveforms on the San Andreas fault near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Gottschaemmer, E.; Harrington, R. M.; Cochran, E. S.; Bohlen, T.

    2011-12-01

    Recent observations of both triggered and ambient tremor suggest that tremor results from simple shear-failure. Tremor episodes on the San Andreas fault near Parkfield are thought to be comprised of clusters of individual events with frequencies between 2-8 Hz. Such low frequency earthquakes (LFEs) occur at depths where the frictional properties of the fault surface are primarily slip-strengthening with imbedded patches of slip weakening material that slip seismically when the surrounding fault creeps in a slow-slip event. Here we show new tremor waveforms from a temporary deployment of 13 broadband seismometers spaced at a maximum on the order of 30 km near Cholame, California are consistent with a series of small seismically slipping patches surrounded by an aseismic region along a fault surface. We model individual seismic events kinematically as small shear failures (M ~ 1) at depths exceeding 15 km. We use stress drop values of 1 MPa, based on a slip to fault area ratio. We simulate tremor recorded at the surface by our temporary array centered near Cholame, for frequencies up to 8 Hz using a staggered-grid finite-difference scheme to solve the elastic equations of motion, and the 3D velocity and density model from Thurber et al. (2006). Our simulations indicate that multiple seismically slipping patches in an aseismic region successfully recreate tremor characteristics observed in multiple studies, including individual tremor bursts, individual events, and episodic behavior. The kinematic model presented here will help to constrain the distribution and amplitude of the seismically slipping patches at depth, which will then be used in a dynamic model with variable frictional properties.

  1. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world's most respected scientific and educational production companies that have included a segment about EarthScope and the Transportable Array.

  2. Seismic and Infrasound Recordings from Kilauea Volcano: Volcanic Tremor, Lava Outbreaks, and Fissure Eruptions

    NASA Astrophysics Data System (ADS)

    Fee, D.; Garces, M.; Orr, T.

    2007-12-01

    The continuous effusion from the Pu'u 'O'o crater complex, the active vent of Kilauea Volcano, Hawaii, produced nearly continuous tremor for years. Recently this tremor was recorded by two infrasound arrays, one at 12.5 km and one at 2.5 km, as well as a broadband seismometer at the closer array. These recordings exhibit significant temporal changes. A sharp, complex spectral peak of ~0.6 Hz is present in nearly the entire dataset, and tends to bifurcate and shift frequency over time. Although the seismic wavefield at Kilauea is complex and path effects appear to play a significant role, this spectral peak is also weakly manifested in the seismic recordings. Array processing of the infrasonic data reveals an abundance of broadband signal as well. Most of the signal appears to originate from the main crater region. However, the 2.5 km array detected the presence of a skylight with growing hornitos ~400 m south of Pu'u 'O'o on the active lava tube system. On June 19th, 2007, the magmatic system at Pu'u 'O'o changed. An intrusion of magma reached the surface 6 km west of the crater complex. The timing and location of the lava outbreak were determined acoustically using array processing. Two distinct acoustic pulses were recorded from the correct azimuth, both exhibiting harmonics. The 7/21 fissure eruption also produced clear infrasound signals. The onset of the fissure eruption east of P'u' 'O'o was apparent beginning around midnight on 7/21 and was focused between ~1.5-5 Hz. Although the fissure eruption continued to produce infrasound, the character of the recorded signal changes over time. A third infrasound array was placed closer to P'u' 'O'o and the fissure to help further constrain the eruption. More detailed results on acoustic signals from the Father's Day Intrusion and Fissure eruption will be presented.

  3. The seismic traffic footprint: Tracking trains, aircraft, and cars seismically

    NASA Astrophysics Data System (ADS)

    Riahi, Nima; Gerstoft, Peter

    2015-04-01

    Although naturally occurring vibrations have proven useful to probe the subsurface, the vibrations caused by traffic have not been explored much. Such data, however, are less sensitive to weather and low visibility compared to some common out-of-road traffic sensing systems. We study traffic-generated seismic noise measured by an array of 5200 geophones that covered a 7 × 10 km area in Long Beach (California, USA) with a receiver spacing of 100 m. This allows us to look into urban vibrations below the resolution of a typical city block. The spatiotemporal structure of the anthropogenic seismic noise intensity reveals the Blue Line Metro train activity, departing and landing aircraft in Long Beach Airport and their acceleration, and gives clues about traffic movement along the I-405 highway at night. As low-cost, stand-alone seismic sensors are becoming more common, these findings indicate that seismic data may be useful for traffic monitoring.

  4. Detection and location of earthquakes along the west coast of Chile: Examining seismicity in the 2010 M 8.8 Maule and 2014 M 8.1 Iquique earthquake rupture zones.

    NASA Astrophysics Data System (ADS)

    Diniakos, R. S.; Bilek, S. L.; Rowe, C. A.; Draganov, D.

    2015-12-01

    The subduction of the Nazca Plate beneath the South American Plate along Chile has led to some of the largest earthquakes recorded on modern seismic instrumentation. These include the 1960 M 9.5 Valdivia, 2010 M 8.8 Maule, and 2014 M 8.1 Iquique earthquakes. Slip heterogeneity for both the 2010 and 2014 earthquakes has been noted in various studies. In order to explore both spatial variations in the continued aftershocks of the 2010 event, and also seismicity to the north along Iquique prior to the 2014 earthquake relative to the high slip regions, we are expanding the catalog of small earthquakes using template matching algorithms to find other small earthquakes in the region. We start with an earthquake catalog developed from regional and local array data; these events provide the templates used to search through waveform data from a temporary seismic array in Malargue, Argentina, located ~300 km west of the Maule region, which operated in 2012. Our template events are first identified on the array stations, and we use a 10-s window around the P-wave arrival as the template. We then use a waveform cross-correlation algorithm to compare the template with day-long seismograms from Malargue stations. The newly detected events are then located using the HYPOINVERSE2000 program. Initial results for 103 templates on 19 of the array stations show that we find 275 new events ,with an average of three new events for each template correlated. For these preliminary results, events from the Maule region appear to provide the most new detections, with an average of ten new events. We will present our locations for the detected events and we will compare them to patterns of high slip along the 2010 rupture zone of the M 8.8 Maule earthquake and the 2014 M 8.1 Iquique event.

  5. Monitoring hydrofrac-induced seismicity by surface arrays - the DHM-Project Basel case study

    NASA Astrophysics Data System (ADS)

    Blascheck, P.; Häge, M.; Joswig, M.

    2012-04-01

    The method "nanoseismic monitoring" was applied during the hydraulic stimulation at the Deep-Heat-Mining-Project (DHM-Project) Basel. Two small arrays in a distance of 2.1 km and 4.8 km to the borehole recorded continuously for two days. During this time more than 2500 seismic events were detected. The method of the surface monitoring of induced seismicity was compared to the reference which the hydrofrac monitoring presented. The latter was conducted by a network of borehole seismometers by Geothermal Explorers Limited. Array processing provides a outlier resistant, graphical jack-knifing localization method which resulted in a average deviation towards the reference of 850 m. Additionally, by applying the relative localization master-event method, the NNW-SSE strike direction of the reference was confirmed. It was shown that, in order to successfully estimate the magnitude of completeness as well as the b-value at the event rate and detection sensibility present, 3 h segments of data are sufficient. This is supported by two segment out of over 13 h of evaluated data. These segments were chosen so that they represent a time during the high seismic noise during normal working hours in daytime as well as the minimum anthropogenic noise at night. The low signal-to-noise ratio was compensated by the application of a sonogram event detection as well as a coincidence analysis within each array. Sonograms allow by autoadaptive, non-linear filtering to enhance signals whose amplitudes are just above noise level. For these events the magnitude was determined by the master-event method, allowing to compute the magnitude of completeness by the entire-magnitude-range method provided by the ZMAP toolbox. Additionally, the b-values were determined and compared to the reference values. An introduction to the method of "nanoseismic monitoring" will be given as well as the comparison to reference data in the Basel case study.

  6. Digital seismo-acoustic signal processing aboard a wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.

    2006-12-01

    We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we envision this product to be a useful tool for assessing the state of unrest at remote volcanoes.

  7. Modeling the Excitation of Seismic Waves by the Joplin Tornado

    NASA Astrophysics Data System (ADS)

    Valovcin, Anne; Tanimoto, Toshiro

    2017-10-01

    Tornadoes generate seismic signals when they contact the ground. Here we examine the signals excited by the Joplin tornado, which passed within 2 km of a station in the Earthscope Transportable Array. We model the tornado-generated vertical seismic signal at low frequencies (0.01-0.03 Hz) and solve for the strength of the seismic source. The resulting source amplitude is largest when the tornado was reported to be strongest (EF 4-5), and the amplitude is smallest when the tornado was weak (EF 0-2). A further understanding of the relationship between source amplitude and tornado intensity could open up new ways to study tornadoes from the ground.

  8. Automatic Processing and Interpretation of Long Records of Endogenous Micro-Seismicity: the Case of the Super-Sauze Soft-Rock Landslide.

    NASA Astrophysics Data System (ADS)

    Provost, F.; Malet, J. P.; Hibert, C.; Doubre, C.

    2017-12-01

    The Super-Sauze landslide is a clay-rich landslide located the Southern French Alps. The landslide exhibits a complex pattern of deformation: a large number of rockfalls are observed in the 100 m height main scarp while the deformation of the upper part of the accumulated material is mainly affected by material shearing along stable in-situ crests. Several fissures are locally observed. The shallowest layer of the accumulated material tends to behave in a brittle manner but may undergo fluidization and/or rapid acceleration. Previous studies have demonstrated the presence of a rich endogenous micro-seismicity associated to the deformation of the landslide. However, the lack of long-term seismic records and suitable processing chains prevented a full interpretation of the links between the external forcings, the deformation and the recorded seismic signals. Since 2013, two permanent seismic arrays are installed in the upper part of the landslide. We here present the methodology adopted to process this dataset. The processing chain consists of a set of automated methods for automatic and robust detection, classification and location of the recorded seismicity. Thousands of events are detected and further automatically classified. The classification method is based on the description of the signal through attributes (e.g. waveform, spectral content properties). These attributes are used as inputs to classify the signal using a Random Forest machine-learning algorithm in four classes: endogenous micro-quakes, rockfalls, regional earthquakes and natural/anthropogenic noises. The endogenous landslide sources (i.e. micro-quake and rockfall) are further located. The location method is adapted to the type of event. The micro-quakes are located with a 3D velocity model derived from a seismic tomography campaign and an optimization of the first arrival picking with the inter-trace correlation of the P-wave arrivals. The rockfalls are located by optimizing the inter-trace correlation of the whole signal. We analyze the temporal relationships of the endogenous seismic events with rainfall and landslide displacements. Sub-families of landslide micro-quakes are also identified and an interpretation of their source mechanism is proposed from their signal properties and spatial location.

  9. Influence of wind turbines on seismic stations in the upper rhine graben, SW Germany

    NASA Astrophysics Data System (ADS)

    Zieger, Toni; Ritter, Joachim R. R.

    2018-01-01

    By analysing long- and short-term seismological measurements at wind farms close to the town of Landau, SW Germany, we present new insights into ground motion signals from wind turbines (WTs) at local seismic stations. Because of their need to be located in similar regions with sparsely anthropogenic activities, wind turbines impact seismic stations and their recordings in a way that is not yet fully understood by researchers. To ensure the undisturbed recording tasks of a regional seismic array or a single station by a protected area around those endangered stations, it is very important to investigate the behavior of WTs as a seismic source. For that reason, we calculate averaged one-hour long spectra of the power spectral density (PSD) before and after the installation of a new wind farm within the investigated area. These PSD are ordered according to the rotation speed. We observe a clear increase of the PSD level after the WT installation in a frequency range of 0.5 to 10 Hz up to a distance of 5.5 km away from the WT. By analysing seismic borehole data, we also observe a decrease of the PSD of wind dependent signals with depth. The impact of wind-dependent signals is found to be much more pronounced for the shallower station (150 m depth) than for the deeper one (305 m depth). Using short-term profile measurements, we fit a power-law decay proportional to 1/ r b to the main WT-induced PSD peaks and differentiate between near-field and far-field effects of ground motions. For low frequencies in the range from 1 to 4 Hz, we determine a b value of 0.78 to 0.85 for the far field, which is consistent with surface waves. The b value increases (up to 1.59) with increasing frequencies (up to 5.5 Hz), which is obviously due to attenuating effects like scattering or anelasticity. These results give a better understanding of the seismic wavefield interactions between wind turbines (or wind farms) with nearby seismic stations, including borehole installations, in a sedimentary setting.

  10. Montana: Filling A Gap In The GeoSwath

    NASA Astrophysics Data System (ADS)

    Jensen, B.; Keller, G. R.

    2010-12-01

    The proposed Geoswath transect crosses southern Montana, and the swath of MT stations deployed as part of EarthScope cover all but a small portion of eastern Montana. USArray broadband stations of course cover the entire region. However, modern controlled-source seismic data are very sparse in this large state, and most of it dates from the 1960’s. In this study, we have taken an integrated approach to analyzing lithospheric structure by compiling and analyzing all the public domain geophysical results and data we could locate and combining them with industry seismic reflection data that were released for our study. This information was employed to interpret a suite of filtered regional maps gravity and magnetic data and to construct integrated gravity models of long profiles that reflect crustal structure and deeper features within the upper mantle of the region. Our analysis included previous seismic refraction/reflection results, EarthScope Automated Array receiver functions, new 2D seismic reflection data, seismic tomography, potential field data, and previous geological studies in order to investigate structural and compositional variations within the crust and upper mantle. Our targets included Precambrian structure and tectonics, Sevier and Laramide features, and Late Cenozoic extension. Our main conclusions are: 1) Receiver function and seismic refraction/reflection crustal thickness estimates show a W-E crustal thickening with thicknesses greater than 50 km in the central and eastern Montana; 2) Seismic reflection data reveal Laramide basement-involved structures as far east as central Montana. These structures also show that the western edge of the North American craton was affected by late Mesozoic to Cenozoic deformation and has thus been decratonized; 3) Potential field filtering methods revealed regional trends and tectonic province outlines. The tilt derivative of the reduced-to-pole magnetic data enhances crystalline basement patterns that reflect tectonic province boundary locations. The upward continuation of the complete Bouguer anomaly grid revealed a gravity high in the northeast portion of the region, which is interpreted to be associated with density variations in the upper mantle. This interpretation is consistent with seismic tomography that reveals a “wedge-like” zone fast material beneath the craton in this region.

  11. Reflection Response of the Parnaíba Basin (NE Brazil) from Seismic Ambient Noise Autocorrelation Functions

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Schimmel, Martin; Cedraz, Victória

    2017-04-01

    Reflected-wave interferometry relies on the recording of transient seismic signals from random wavefields located beneath recording stations. Under vertical incidence, the recordings contain the full transmission response, which includes the direct wave as well as multiple reverberations from seismic discontinuities located between the wavefields and the receiver. It has been shown that, under those assumptions, the reflection response of the medium can be recovered from the autocorrelation function (ACF) of the transmission response at a given receiver, as if the wavefields had originated themselves at the free surface. This passive approach to seismic reflection profiling has the obvious advantage of being low-cost and non-invasive when compared to its active-source counterpart, and it has been successfully utilized in other sedimentary basins worldwide. In this paper we evaluate the ability of the autocorrelation of ambient seismic noise recorded in the Parnaíba basin - a large Paleozoic basin in NE Brazil - to recover the reflection response of the basin. The dataset was acquired by the Universidade Federal do Rio Grande do Norte during 2015 and 2016 under the Parnaíba Basin Analysis Project (PBAP), a multi-disciplinary and multi-institutional effort funded by BP Energy do Brasil aimed at improving our current understanding of the architecture of this cratonic basin. The dataset consists of about 1 year of continuous ground motion data from 10 short-period, 3-component stations located in the central portion of the basin. The stations were co-located with an existing (active-source) seismic reflection profile that was shot in 2012, making a linear array of about 100 km in aperture and about 10 km inter-station spacing. To develop the autocorrelation at a given station we considered the vertical component of ground motion only, which should result in the P-wave response. The vertical recordings were first split into 10 min-long windows, demeaned, de-trended, re-sampled, and band-pass filtered between 8 and 16 Hz before autocorrelation, and then stacked with phase-weighting to enhance coherency of the retrieved signal. The ACFs show coherent signal is recovered at lag times between 0.5 and 2 s, which we interpret as P- and S-wave energy reflected on top of an intra-sedimentary discontinuity. Our results are consistent, to first-order, with a previously developed active-source reflection response of the basin.

  12. Broadening the Quality and Capabilities of the EarthScope Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Busby, R. W.

    2016-12-01

    In 2016, the EarthScope Transportable Array (TA) program will have 195 broadband seismic stations operating in Alaska and western Canada. This ambitious project will culminate in a network of 268 new or upgraded real-time seismic stations operating through 2019. The challenging environmental conditions and the remoteness of Alaska have motivated a new method for constructing a high-quality, temporary seismic network. The Alaska TA station design builds on experience of the Lower 48 TA deployment and adds design requirements because most stations are accessible only by helicopter. The stations utilize new high-performance posthole sensors, a specially built hammer/auger drill, and lightweight lithium ion batteries to minimize sling loads. A uniform station design enables a modest crew to build the network on a short timeline and operate them through the difficult conditions of rural Alaska. The Alaska TA deployment has increased the quality of seismic data, with some well-sited 2-3 m posthole stations approaching the performance of permanent Global Seismic Network stations emplaced in 100 m boreholes. The real-time data access, power budget, protective enclosure and remote logistics of these TA stations has attracted collaborations with NASA, NOAA, USGS, AVO and other organizations to add auxiliary sensors to the suite of instruments at many TA stations. Strong motion sensors have been added to (18) stations near the subduction trench to complement SM stations operated by AEC, ANSS and GSN. All TA and most upgraded stations have pressure and infrasound sensors, and 150 TA stations are receiving a Vaisala weather sensor, supplied by the National Weather Service Alaska Region and NASA, capable of measuring temperature, pressure, relative humidity, wind speed/direction, and precipitation intensity. We are also installing about (40) autonomous soil temperature profile kits adjacent to northern stations. While the priority continues to be collecting seismic data, these additional strong motion, atmospheric, and soil temperature sensors may motivate the desire extend the operation of certain stations in cooperation with these organizations. The TA has always been amenable to partnerships in the research and education communities that extend the capabilities and reach of the EarthScope Transportable Array.

  13. Location of the Green Canyon (Offshore Southern Louisiana) Seismic Event of February 10, 2006

    USGS Publications Warehouse

    Dewey, James W.; Dellinger, Joseph A.

    2008-01-01

    We calculated an epicenter for the Offshore Southern Louisiana seismic event of February 10, 2006 (the 'Green Canyon event') that was adopted as the preferred epicenter for the event by the USGS/NEIC. The event is held at a focal depth of 5 km; the focal depth could not be reliably calculated but was most likely between 1 km and 15 km beneath sea level. The epicenter was calculated with a radially symmetric global Earth model similar to that routinely used at the USGS/NEIC for all earthquakes worldwide. The location was calculated using P-waves recorded by seismographic stations from which the USGS/NEIC routinely obtains seismological data, plus data from two seismic exploration arrays, the Atlantis ocean-bottom node array, operated by BP in partnership with BHP Billiton Limited, and the CGG Green Canyon phase VIII multi-client towed-streamer survey. The preferred epicenter is approximately 26 km north of an epicenter earlier published by the USGS/NEIC, which was obtained without benefit of the seismic exploration arrays. We estimate that the preferred epicenter is accurate to within 15 km. We selected the preferred epicenter from a suite of trial calculations that attempted to fit arrival times of seismic energy associated with the Green Canyon event and that explored the effect of errors in the velocity model used to calculate the preferred epicenter. The various trials were helpful in confirming the approximate correctness of the preferred epicenter and in assessing the accuracy of the preferred epicenter, but none of the trial calculations, including that of the preferred epicenter, was able to reconcile arrival-time observations and assumed velocity model as well as is typical for the vast majority of earthquakes in and near the continental United States. We believe that remaining misfits between the preferred solution and the observations reflect errors in interpreted arrival times of emergent seismic phases that are due partly to a temporally extended source-time function and partly to failure of our travel-time model to account for the extremely complicated velocity structure of the sedimentary section in which the event occurred.

  14. Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy radiation interfere constructively while background noise signals interfere destructively, such that the most likely source locations of the observed seismicity are illuminated. We compile results to analyze changes in the distribution and prevalence of these sources throughout a systems entire eruptive cycle.

  15. Observing the San Andreas Fault at Depth

    NASA Astrophysics Data System (ADS)

    Ellsworth, W.; Hickman, S.; Zoback, M.; Davis, E.; Gee, L.; Huggins, R.; Krug, R.; Lippus, C.; Malin, P.; Neuhauser, D.; Paulsson, B.; Shalev, E.; Vajapeyam, B.; Weiland, C.; Zumberge, M.

    2005-12-01

    Extending 4 km into the Earth along a diagonal path that crosses the divide between Salinian basement accreted to the Pacific Plate and Cretaceous sediments of North America, the main hole at the San Andreas Fault Observatory at Depth (SAFOD) was designed to provide a portal into the inner workings of a major plate boundary fault. The successful drilling and casing of the main hole in the summer of 2005 to a total vertical depth of 3.1 km make it possible to conduct spatially extensive and long-duration observations of active tectonic processes within the actively deforming core of the San Andreas Fault. In brief, the observatory consists of retrievable seismic, deformation and environmental sensors deployed inside the casing in both the main hole (maximum temperature 135 C) and the collocated pilot hole (1.1 km depth), and a fiber optic strainmeter installed behind casing in the main hole. By using retrievable systems deployed on either wire line or rigid tubing, each hole can be used for a wide range of scientific purposes, with instrumentation that takes maximum advantage of advances in sensor technology. To meet the scientific and technical challenges of building the observatory, borehole instrumentation systems developed for use in the petroleum industry and by the academic community in other deep research boreholes have been deployed in the SAFOD pilot hole and main hole over the past year. These systems included 15Hz omni-directional and 4.5 Hz gimbaled seismometers, micro-electro-mechanical accelerometers, tiltmeters, sigma-delta digitizers, and a fiber optic interferometeric strainmeter. A 1200-m-long, 3-component 80-level clamped seismic array was also operated in the main hole for 2 weeks of recording in May of 2005, collecting continuous seismic data at 4000 sps. Some of the observational highlights include capturing one of the M 2 SAFOD target repeating earthquakes in the near-field at a distance of 420 m, with accelerations of up to 200 cm/s and a static displacement of a few microns. Numerous other local events were observed over the summer by the tilt and seismic instruments in the pilot hole, some of which produced strain offsets of several nanostrain on the fiber optic strainmeter. We were fortunate to observe several episodes of non-volcanic tremor on the 80-level seismic array in May, 2005. These spatially unaliased recordings of the tremor wavefield reveal that the complex tremor time series is comprised of up-and down-going shear waves that produce a spatially stationary interference pattern over time scales of 10s of seconds. All data collected at SAFOD as part of the EarthScope project are open and freely available to all. The Northern California Earthquake Data Center at U.C. Berkeley is the principal data repository for SAFOD. The more than 2 TB of 80-level array data are also available at the IRIS DMC as an assembled data collection.

  16. Shallow Water Propagation

    DTIC Science & Technology

    2010-02-26

    bottom waveguide. The lower contour plot demonstrates that this method, unlike other parabolic equations, can treat seismic sources. 20100308162...solitons. One illustration in Figure 8 shows depth-averaged data at the Naval Research Laboratory vertical line array (VLA) [dashed blue curves...vertical line array about 15 km from the source. The right panel [blue curves] compares corresponding simulations from a three-dimensional adiabatic mode

  17. Earthquake Source Parameters Inferred from T-Wave Observations

    NASA Astrophysics Data System (ADS)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T-wave propagation.

  18. Interpretation of Microseismicity Observed From Surface and Borehole Seismic Arrays During Hydraulic Fracturing in Shale - Bedding Plane Slip Model

    NASA Astrophysics Data System (ADS)

    Stanek, F.; Jechumtalova, Z.; Eisner, L.

    2017-12-01

    We present a geomechanical model explaining microseismicity induced by hydraulic fracturing in shales developed from many datasets acquired with two most common types of seismic monitoring arrays, surface and dual-borehole arrays. The geomechanical model explains the observed source mechanisms and locations of induced events from two stimulated shale reservoirs. We observe shear dip-slip source mechanisms with nodal planes aligned with location trends. We show that such seismicity can be explained as a shearing along bedding planes caused by aseismic opening of vertical hydraulic fractures. The source mechanism inversion was applied only to selected high-quality events with sufficient signal-to-noise ratio. We inverted P- and P- and S-wave arrival amplitudes to full-moment tensor and decomposed it to shear, volumetric and compensated linear vector dipole components. We also tested an effect of noise presented in the data to evaluate reliability of non-shear components. The observed seismicity from both surface and downhole monitoring of shale stimulations is very similar. The locations of induced microseismic events are limited to narrow depth intervals and propagate along distinct trend(s) showing fracture propagation in direction of maximum horizontal stress from injection well(s). The source mechanisms have a small non-shear component which can be partly explained as an effect of noise in the data, i.e. events represent shearing on faults. We observe predominantly dip-slip events with a strike of the steeper (almost vertical) nodal plane parallel to the fracture propagation. Therefore the other possible nodal plane is almost horizontal. The rake angles of the observed mechanisms divide these dip-slips into two groups with opposite polarities. It means that we observe opposite movements on the nearly identically oriented faults. Realizing a typical structural weakness of shale in horizontal planes, we interpret observed microseismicity as a result of shearing along bedding planes caused by seismically silent (aseismic) vertical fracture opening.

  19. High-resolution lithospheric imaging with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees

    2010-10-01

    In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the data. On the final reflectivity image, we observe a discontinuity in the reflections. We interpret this discontinuity as the Cheyenne Belt, a suture zone between Archean and Proterozoic terranes.

  20. Using Ambient Noise for Investigating Cultural Heritage Sites and Evaluating Seismic Site Response

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Farrugia, D.; Galea, P. M.; Ruben, B. P., Sr.

    2016-12-01

    Recordings of ambient noise as well as use of the HVSR technique represent a common tool for evaluating seismic site response. In this study we applied such techniques to several cultural heritage sites located on the Maltese archipelago (Central Mediterranean). In particular, two of the Maltese watchtowers, built by the Knights of St. John between 1637 and 1659, were investigated together with the megalithic temple site of Mnajdra. Array data were acquired using the Micromed SoilSpy Rosina™ equipped with 4.5 Hz vertical geophones, setting the array in an L-shaped configuration. The Extended Spatial Autocorrelation (ESAC) technique was used to extract Rayleigh-wave dispersion curves. Moreover, single-station data close to the array was collected using a Tromino 3-component seismograph (www.tromino.eu), and the H/V curves were extracted. The dispersion curves and the H/V curves were jointly inverted using the Genetic Algorithm (GA) to obtain the shear-wave velocity profile. A fixed number of layers was used in the inversion and ranges for the layer thickness, P-wave and S-wave velocity, and density were specified. The obtained velocity profiles were used to compute the amplification function for the site based on the square root of the effective seismic impedance, also known as the quarter-wavelength approximation. This was used in the simulation of ground motion parameters at the site for various earthquakes using the stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM). In addition, the fundamental period and the damping ratio of the watchtowers was obtained by recording ambient vibrations. In the megalithic temples we were also able to evaluate the coverage of the soil deposits within the structure, comparing our results with previous study that used different geophysical techniques. In conclusion, this study enables us to map the seismic amplification hazard and provides primary data on the seismic risk assessment of each cultural heritage site.

  1. Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory

    2016-04-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.

  2. Studying local earthquakes in the area Baltic-Bothnia Megashear using the data of the POLENET/LAPNET temporary array

    NASA Astrophysics Data System (ADS)

    Usoltseva, Olga; Kozlovskaya, Elena

    2016-07-01

    Earthquakes in areas within continental plates are still not completely understood, and progress on understanding intraplate seismicity is slow due to a short history of instrumental seismology and sparse regional seismic networks in seismically non-active areas. However, knowledge about position and depth of seismogenic structures in such areas is necessary in order to estimate seismic hazard for such critical facilities such as nuclear power plants and nuclear waste deposits. In the present paper we address the problem of seismicity in the intraplate area of northern Fennoscandia using the information on local events recorded by the POLENET/LAPNET (Polar Earth Observing Network) temporary seismic array during the International Polar Year 2007-2009. We relocate the seismic events using the program HYPOELLIPS (a computer program for determining local earthquake hypocentral parameters) and grid search method. We use the first arrivals of P waves of local events in order to calculate a 3-D tomographic P wave velocity model of the uppermost crust (down to 20 km) for a selected region inside the study area and show that the velocity heterogeneities in the upper crust correlate well with known tectonic units. We compare the position of the velocity heterogeneities with the seismogenic structures delineated by epicentres of relocated events and demonstrate that these structures generally do not correlate with the crustal units formed as a result of crustal evolution in the Archaean and Palaeoproterozoic. On the contrary, they correlate well with the postglacial faults located in the area of the Baltic-Bothnia Megashear (BBMS). Hypocentres of local events have depths down to 30 km. We also obtain the focal mechanism of a selected event with good data quality. The focal mechanism is of oblique type with strike-slip prevailing. Our results demonstrate that the Baltic-Bothnia Megashear is an important large-scale, reactivated tectonic structure that has to be taken into account when estimating seismic hazard in northern Fennoscandia.

  3. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    NASA Astrophysics Data System (ADS)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  4. Investigation of Earthquake and Geyser Events in the Upper Geyser Basin of Yellowstone National Park from a Nodal Array

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Karplus, M. S.; Farrell, J.; Lin, F. C.; Smith, R. B.

    2017-12-01

    A large seismic nodal array incorporating 133 three-component, 5-Hz geophones deployed for two weeks in early November 2015 in the Upper Geyser Basin recorded earthquake and hydrothermal activity. The University of Utah, the University of Texas at El Paso, and Yellowstone National Park collaborated to deploy Fairfield Nodal ZLand 3-C geophones concentrically centered around the Old Faithful Geyser with an average station spacing of 50 m and an aperture of 1 km. The array provided a unique dataset to investigate wave propagation through various fractures and active geysers in a hydrothermal field located over the Yellowstone hotspot. The complicated sub-surface features associated with the hydrothermal field appear to impact earthquake wave propagation in the Upper Geyser Basin and to generate seismic signals. Previous work using ambient noise cross-correlation has found an intricately fractured sub-surface that provides pathways for water beneath parts of the Upper Geyser Basin that likely feed Old Faithful and other nearby geysers and hot springs. For this study, we used the data to create visualizations of local earthquake, teleseismic earthquake, and hydrothermal events as they propagate through the array. These ground motion visualizations allow observation of wave propagation through the geyser field, which may indicate the presence of anomalous structure impacting seismic velocities and attenuation. Three teleseismic events were observed in the data, two 6.9MW earthquakes that occurred off the coast of Coquimbo, Colombia 9,000km from the array and one 6.5MW near the Aleutian Islands 4,500km from the array. All three teleseismic events observed in the data exhibited strong direct P-wave arrivals and several additional phases. One local earthquake event (2.5ML) 100km from the Upper Geyser Basin was also well-recorded by the array. Time-domain spectrograms show the dominant frequencies present in the recordings of these events. The two 6.9MW earthquakes in Chile were one hour apart and offered interesting signals that also included a geyser tremor between the two events.

  5. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.

  6. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived from Thermodynamically Self-Consistent Modelling of Magnetotelluric, Surface-Wave Dispersion, S-wave Receiver Function, Heat-flow, Elevation and Xenolith Observations

    NASA Astrophysics Data System (ADS)

    Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola

    2013-04-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 µWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model, with lithospheric thickness in excess of 230 km, is required to match all geophysical and xenolith constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs indicate that this chemical transition is able to account for the reported S-to-P conversion event at 160 km depth. In this this instance the 160 km deep SRF event does not represent the petrological/thermal LAB.

  7. Dipping fossil fabrics of continental mantle lithosphere as tectonic heritage of oceanic paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena

    2016-04-01

    Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  8. Far-Field Effects of Large Earthquakes on South Florida's Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Voss, N. K.; Wdowinski, S.

    2012-12-01

    The similarity between a seismometer and a well hydraulic head record during the passage of a seismic wave has long been documented. This is true even at large distances from earthquake epicenters. South Florida lacks a dense seismic array but does contain a comparably dense network of monitoring wells. The large spatial distribution of deep monitoring wells in South Florida provides an opportunity to study the variance of aquifer response to the passage of seismic waves. We conducted a preliminary study of hydraulic head data, provided by the South Florida Water Management District, from 9 deep wells in South Florida's confined Floridian Aquifer in response to 27 main shock events (January 2010- April 2012) with magnitude 6.9 or greater. Coseismic hydraulic head response was observed in 7 of the 27 events. In order to determine what governs aquifer response to seismic events, earthquake parameters were compared for the 7 positive events. Seismic energy density (SED), an empirical relationship between distance and magnitude, was also used to compare the relative energy between the events at each well site. SED is commonly used as a parameter for establishing thresholds for hydrologic events in the near and intermediate fields. Our analysis yielded a threshold SED for well response in South Florida as 8 x 10-3 J m-3, which is consistent with other studies. Deep earthquakes, with SED above this threshold, did not appear to trigger hydraulic head oscillations. The amplitude of hydraulic head oscillations had no discernable relationship to SED levels. Preliminary results indicate a need for a modification of the SED equation to better accommodate depth in order to be of use in the study of hydrologic response in the far field. We plan to conduct a more comprehensive study incorporating a larger subset (~60) of wells in South Florida in order to further examine the spatial variance of aquifers to the passing of seismic waves as well as better confine the relationship between earthquake depth and aquifer response.

  9. The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy)

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Collettini, C.; Cattaneo, M.; Monachesi, G.

    2014-04-01

    As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200-250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified.

  10. Constraints on Inner Core Anisotropy Using Array Observations of P'P'

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Romanowicz, Barbara

    2017-11-01

    Recent studies of PKPdf travel times suggest strong anisotropy (4% or more) in the quasi-western inner core hemisphere. However, the availability of paths sampling at low angles to the Earth's rotation axis (the fast axis) is limited. To augment this sampling, we collected a travel time data set for the phase P'P'df (PKPPKPdf), for which at least one inner core leg is quasi-polar, at two high latitude seismic arrays. We find that the inferred anisotropy is weak (on the order of 0.5 to 1.5%), confirming previous results based on a much smaller P'P' data set. While previous models of inner core anisotropy required very strong alignment of anisotropic iron grains, our results are more easily explained by current dynamic models of inner core growth. We observe large travel time anomalies when one leg of P'P'df is along the South Sandwich to Alaska path, consistent with PKPdf observations, and warranting further investigation.

  11. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    NASA Astrophysics Data System (ADS)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  12. Detection and Identification of Small Seismic Events Following the 3 September 2017 UNT Around North Korean Nuclear Test Site

    NASA Astrophysics Data System (ADS)

    Kim, W. Y.; Richards, P. G.

    2017-12-01

    At least four small seismic events were detected around the North Korean nuclear test site following the 3 September 2017 underground nuclear test. The magnitude of these shocks range from 2.6 to 3.5. Based on their proximity to the September 3 UNT, these shocks may be considered as aftershocks of the UNT. We assess the best method to classify these small events based on spectral amplitude ratios of regional P and S wave from the shocks. None of these shocks are classified as explosion-like based on P/S spectral amplitude ratios. We examine additional possible small seismic events around the North Korean test site by using seismic data from stations in southern Korea and northeastern China including IMS seismic arrays, GSN stations, and regional network stations in the region.

  13. Seismic refraction and GPR measurements of depth to bedrock: A case study from Randolph College, Virginia

    NASA Astrophysics Data System (ADS)

    Datta, A.; Pokharel, R.; Toteva, T.

    2007-12-01

    Randolph College is located in Lynchburg, VA, in the eastern edge of the Blue Ridge Mountains. Lynchburg city lies in the James River Synclinorium and consists of metasedimentary and metaigneous rocks. As part of College's plan to expand, a new soccer field will be build. For that purpose, part of a hill has to be excavated. Information was needed on the depth to the bedrock at the site. We conducted a seismic refraction experiment as part of an eight week summer research program for undergraduate students. We used 24 vertical geophones, spaced at 1.5 m interval. Our recording device was a 12 channel Geometrics geode (ES 3000). The source was an 8 pound sledge hummer. Source positions were chosen to be at 5, 10, 15 and 20 m on both sides of the array. We collected data along a tree line (in two segments) and across a hockey field. The data collected from the hockey field had very low signal to noise ratio and clear refraction arrivals. The other two acquisition lines were much noisier and difficult to interpret. Our results are consistent with data from seven bore holes in close proximity to the field site. We interpreted depth to bedrock to be between 4 and 12 m. The bedrock velocities are consistent with weathered gneiss. To improve the interpretation of the tree line records, we conducted a GPR survey. The preliminary radar images are showing highly heterogeneous subsurface with multiple point reflectors.

  14. Seismic survey probes urban earthquake hazards in Pacific Northwest

    USGS Publications Warehouse

    Fisher, M.A.; Brocher, T.M.; Hyndman, R.D.; Trehu, A.M.; Weaver, C.S.; Creager, K.C.; Crosson, R.S.; Parsons, T.; Cooper, A. K.; Mosher, D.; Spence, G.; Zelt, B.C.; Hammer, P.T.; Childs, J. R.; Cochrane, G.R.; Chopra, S.; Walia, R.

    1999-01-01

    A multidisciplinary seismic survey earlier this year in the Pacific Northwest is expected to reveal much new information about the earthquake threat to U.S. and Canadian urban areas there. A disastrous earthquake is a very real possibility in the region. The survey, known as the Seismic Hazards Investigation in Puget Sound (SHIPS), engendered close cooperation among geologists, biologists, environmental groups, and government agencies. It also succeeded in striking a fine balance between the need to prepare for a great earthquake and the requirement to protect a coveted marine environment while operating a large airgun array.

  15. Three-Dimensional Magnetotelluric Imaging of the Cascadia Subduction Zone with an Amphibious Array

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.; Yang, B.; Bedrosian, P.; Kelbert, A.; Key, K.; Livelybrooks, D.; Parris, B. A.; Schultz, A.

    2017-12-01

    We present results from three-dimensional inversion of an amphibious magnetotelluric (MT) array consisting of 71 offshore and 75 onshore sites in the central part of Cascadia, to image down-dip and along strike variations of electrical conductivity, and to constrain the 3D distribution of fluids and melt in the subduction zone. The array is augmented by EarthScope TA MT data and legacy 2D profiles providing sparser coverage of western WA, OR, and northern CA. The prior model for the inversion includes ocean bathymetry, conductive marine sediments, and a resistive subducting plate, with geometry derived from the model of McCrory et al. (2012) and seismic tomography. Highly conductive features appear just above the interface with the a priori resistive plate in three zones. (1) In the area with marine MT data a conductive layer, which we associate with fluid-rich decollement and subduction channel sediments, extends eastward from the trench to underthrust the seaward edge of Siletzia, which is clearly seen as a thick crustal resistor. The downdip extent of the underthrust conductive layer is a remarkably uniform 35 km. (2) High conductivities, consistent with metamorphic fluids associated with eclogitization, occur near the forearc mantle corner. Conductivity is highly variable along strike, organized in a series of E-W to diagonal elongated conductive/resistive structures, whose significance remains enigmatic. (3) High conductivities associated with fluids and melts are found in the backarc, again exhibiting substantial along strike variability.

  16. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  17. Crustal and uppermost mantle S-wave velocity below the East European Craton in northern Poland from the inversion of ambient-noise records

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Polkowski, Marcin; Grad, Marek

    2018-02-01

    The P-wave velocities (V p) within the East European Craton in Poland are well known through several seismic experiments which permitted to build a high-resolution 3D model down to 60 km depth. However, these seismic data do not provide sufficient information about the S-wave velocities (V s). For this reason, this paper presents the values of lithospheric V s and P-wave-to-S-wave velocity ratios (V p/V s) calculated from the ambient noise recorded during 2014 at "13 BB star" seismic array (13 stations, 78 midpoints) located in northern Poland. The 3D V p model in the area of the array consists of six sedimentary layers having total thickness within 3-7 km and V p in the range 1.85.3 km/s, a three-layer crystalline crust of total thickness 40 km and V p within 6.15-7.15 km/s, and the uppermost mantle, where V p is about 8.25 km/s. The V s and V p/V s values are calculated by the inversion of the surface-wave dispersion curves extracted from the noise cross correlation between all the station pairs. Due to the strong velocity differences among the layers, several modes are recognized in the 0.021 Hz frequency band: therefore, multimodal Monte Carlo inversions are applied. The calculated V s and V p/V s values in the sedimentary cover range within 0.992.66 km/s and 1.751.97 as expected. In the upper crust, the V s value (3.48 ± 0.10 km/s) is very low compared to the starting value of 3.75 ± 0.10 km/s. Consequently, the V p/V s value is very large (1.81 ± 0.03). To explain that the calculated values are compared with the ones for other old cratonic areas.

  18. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise, results are and compatible with the results obtained from the previous study. This tool is extremely practical and very effective in imaging the shallow subsurface. Next step, an integrated GPS receiver will be added to recorder to obtain shot and receiver station position information during data acquisition. Also, some mechanical parts will be placed to further improve the stability and durability of the land streamer. In addition, nonlinear geophone layout will be added after completion of test. We are planning to use this land streamer not only in landslide areas but also in archaeological sites, engineering applications such as detection of buried pipelines and faults. This equipment will make it possible to perform these studies both in urban and territory areas.

  19. Regional Small-Event Identification Using Networks and Arrays of Seismic and Acoustic Sensors

    DTIC Science & Technology

    2006-04-01

    ground displacement and excite infra - sonic waves in the atmosphere (Blanc, 1989) near-surface explosions are much more efficient sources of...valuable advice on the portable infrasonic deployment at MNTA. Several of the images in this report are attributable to David Anderson at Southern...populations. This study has focused on seismic observations from mining explosions. There is increasing evidence that infrasonic observations may help in

  20. Integration of Infrasound, Atmospheric Pressure, and Seismic Observations with the NSF EarthScope USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Tytell, J.; Hedlin, M. A. H.; Walker, K.; Busby, R.; Woodward, R.

    2012-04-01

    Earthscope's USArray Transportable Array (TA) network serves as a real-time monitoring and recording platform for both seismic and weather phenomena. To date, most of the approximately 500 TA stations have been retrofitted with VTI SCP1000 MEMS barometric pressure gauges capable of recording data at 1 sample per second (sps). Additionally, over 300 of the TA stations have also been retrofitted with Setra 278 barometric gauges and NCPA infrasound sensors capable of recording data at 1 and 40 sps. While individual seismic events have been successfully researched via the TA network, observations of powerful weather events by the TA network have yet to be embraced by the scientific community. This presentation will focus on case studies involving severe weather passage across portions of the TA network throughout 2011 in order to highlight its viability as a platform for real-time weather monitoring and research. It will also highlight the coupling of atmospheric signals into the seismic observations. Examples of gust front passages and pressure couplets from severe thunderstorms will be presented, as will observations of multiple tornados occurred in the Spring of 2011. These data will demonstrate the overall viability of the TA network for monitoring severe weather events in real-time.

  1. Stress Regime in the Nepalese Himalaya from Recent Earthquakes.

    NASA Astrophysics Data System (ADS)

    Pant, M.; Karplus, M. S.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Sapkota, S. N.; Klemperer, S. L.; Patlan, E.

    2017-12-01

    The two recent earthquakes, April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2, at the Indo-Eurasian plate margin killed thousands of people and caused billion dollars of property loss. In response to these events, we deployed a dense array of seismometers to record the aftershocks along Gorkha earthquake rupture area. Our network NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake) included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) covering a large area from north-central Nepal to south of the Main Frontal Thrust at a spacing of 20 km. The instruments recorded aftershocks from June 2015 to May 2016. We used time domain short term average (STA) and long term average (LTA) algorithms (1/10s and 4/40s) respectively to detect the arrivals and then developed an earthquake catalog containing 9300 aftershocks. We are manually picking the P-wave first motion arrival polarity to develop a catalog of focal mechanisms for the larger magnitude (>M3.0) events with adequate (>10) arrivals. We hope to characterize the seismicity and stress mechanisms of the complex fault geometries in the Nepalese Himalaya and to address the geophysical processes controlling seismic cycles in the Indo-Eurasian plate margin.

  2. A Centerless Circular Array Method: Extracting Maximal Information on Phase Velocities of Rayleigh Waves From Microtremor Records From a Simple Seismic Array

    NASA Astrophysics Data System (ADS)

    Cho, I.; Tada, T.; Shinozaki, Y.

    2005-12-01

    We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given microtremor field, and have applied it to real data. Theory predicts that our CCA method underestimates the phase velocities when noise is present. Using the evaluated SN ratio and the phase velocity dispersion curve model, we have calculated the apparent values of phase velocities which theory expects should be obtained by our CCA method in long-wavelength ranges, and have confirmed that the outcome agreed very well with the phase velocities estimated from real data. This demonstrates that the mathematical assumptions, on which our CCA method relies, remains valid over a wide range of wavelengths which we are examining, and also implies that, even in the absence of a priori knowledge of the phase velocity dispersion curve, the SN ratio evaluated with our mathematical model could be used to identify the resolution limit of our CCA method in long-wavelength ranges. We have thus been able to demonstrate, on the basis of theoretical considerations and real data analysis, both the capabilities and limitations of our CCA method.

  3. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.6 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). Simultaneously with the fiber optic based seismic 3C vector sensors we are using the lead-in fiber to acquire Distributed Acoustic Sensor (DAS) data from the surface to the bottom of the vector array. While the DAS data is of much lower quality than the vector sensor data it provides a 1 m spatial sampling of the downgoing wavefield which will be used to build the high resolution velocity model which is an essential component in high resolution imaging and monitoring.« less

  4. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  5. Earthquake early warning for Romania - most recent improvements

    NASA Astrophysics Data System (ADS)

    Marmureanu, Alexandru; Elia, Luca; Martino, Claudio; Colombelli, Simona; Zollo, Aldo; Cioflan, Carmen; Toader, Victorin; Marmureanu, Gheorghe; Marius Craiu, George; Ionescu, Constantin

    2014-05-01

    EWS for Vrancea earthquakes uses the time interval (28-32 sec.) between the moment when the earthquake is detected by the local seismic network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area (Bucharest) to send earthquake warning to users. In the last years, National Institute for Earth Physics (NIEP) upgraded its seismic network in order to cover better the seismic zones of Romania. Currently the National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Ranger, gs21, Mark l22) and acceleration sensors (Episensor). Recent improvement of the seismic network and real-time communication technologies allows implementation of a nation-wide EEWS for Vrancea and other seismic sources from Romania. We present a regional approach to Earthquake Early Warning for Romania earthquakes. The regional approach is based on PRESTo (Probabilistic and Evolutionary early warning SysTem) software platform: PRESTo processes in real-time three channel acceleration data streams: once the P-waves arrival have been detected, it provides earthquake location and magnitude estimations, and peak ground motion predictions at target sites. PRESTo is currently implemented in real- time at National Institute for Earth Physics, Bucharest for several months in parallel with a secondary EEWS. The alert notification is issued only when both systems validate each other. Here we present the results obtained using offline earthquakes originating from Vrancea area together with several real-time detection of significant earthquakes from Vrancea and Transylvania areas that occurred in the last months. Currently the warning notification is sent to several users including emergency response units from 12 counties, a big bridge located in Bucharest, a nuclear sterilization facility in Măgurele city and to the nuclear power plant from Cernavoda.

  6. Teleseismic P-wave polarization analysis at the Gräfenberg array

    NASA Astrophysics Data System (ADS)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-12-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.

  7. Observations of the R Reflector and Sediment Interface Reflection at the Shallow Water 󈧊 Central Site

    DTIC Science & Technology

    2008-08-28

    line array position of Woods Hole Oceanographic Institution (WHOI) during the SWARM experiment by 26 km, and southeast of the AMCOR borehole No. 6010...guided by the stratigraphic constraints provided by closely spaced 50 m chirp seismic reflection profiles that provide pseudo three-dimensional... array is at the center of set of stations at location M. c Geometry showing source position R/V KNORR with respect to the receiving array and the

  8. Active and passive seismic imaging of a hydraulic fracture in diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinegar, H.J.; Wills, P.B.; De Martini, D.C.

    1992-01-01

    This paper reports on a comprehensive set of experiments including remote- and treatment-well microseismic monitoring, interwell shear-wave shadowing, and surface tiltmeter arrays, that was used to monitor the growth of a hydraulic fracture in the Belridge diatomite. To obtain accurate measurements, and extensive subsurface network of geophones was cemented spanning the diatomite formation in three closely spaced observation wells around the well to be fracture treated. Data analysis indicates that the minifracture and main hydraulic fracture stimulations resulted in a nearly vertical fracture zone (striking N26{degrees}E) vertically segregated into two separate elements, the uppermost of which grew 60 ft abovemore » the perforated interval. The interwell seismic effects are consistent with a side process zone of reduced shear velocity, which remote-well microseismic data independently suggest may be as wide as 40 ft. The experiments indicate complicated processes occurring during hydraulic fracturing that have significant implications for stimulation, waterflooding, in fill drilling, and EOR. These processes are neither well understood nor included in current hydraulic fracture models.« less

  9. On the difficulties of detecting PP precursors

    NASA Astrophysics Data System (ADS)

    Lessing, Stephan; Thomas, Christine; Saki, Morvarid; Schmerr, Nicholas; Vanacore, Elizabeth

    2015-06-01

    The PP precursors are seismic waves that form from underside reflections of P waves off discontinuities in the upper mantle transition zone (MTZ). These seismic phases are used to map discontinuity topography, sharpness, and impedance contrasts; the resulting structural variations are then often interpreted as evidence for temperature and/or mineralogy variations within the mantle. The PP precursors as well as other seismic phases have been used to establish the global presence of seismic discontinuities at 410 and 660 km depth. Intriguingly, in more than 80 per cent of PP precursor observations the seismic wave amplitudes are significantly weaker than the amplitudes predicted by seismic reference models. Even more perplexing is the observation that 1-5 per cent of all earthquakes (which are 20-25 per cent of earthquakes with clear PP waveforms) do not show any evidence for the PP precursors from the discontinuities even in the presence of well-developed PP waveforms. Non-detections are found in six different data sets consisting of tens to hundreds of events. We use synthetic modelling to examine a suite of factors that could be responsible for the absence of the PP precursors. The take-off angles for PP and the precursors differ by only 1.2-1.5°; thus source-related complexity would affect PP and the precursors. A PP wave attenuated in the upper mantle would increase the relative amplitude of the PP precursors. Attenuation within the transition zone could reduce precursor amplitudes, but this would be a regional phenomenon restricted to particular source receiver geometries. We also find little evidence for deviations from the theoretical travel path of seismic rays expected for scattered arrivals. Factors that have a strong influence include the stacking procedures used in seismic array techniques in the presence of large, interfering phases, the presence of topography on the discontinuities on the order of tens of kilometres, and 3-D lateral heterogeneity in the velocity and density changes with depth across the transition zone. We also compare the observed precursors' amplitudes with seismic models from calculations of phase equilibria and find that a seismic velocity model derived from a pyrolite composition reproduces the data better than the currently available 1-D earth models. This largely owes to the pyrolite models producing a stronger minimum in the reflection coefficient across the epicentral distances where the reduction in amplitudes of the PP precursors is observed. To suppress the precursors entirely in a small subset of earthquakes, other effects, such as localized discontinuity topography and seismic signal processing effects are required in addition to the changed velocity model.

  10. Improving time-lapse seismic repeatability: CO2CRC Otway site permanent geophone array field trials

    NASA Astrophysics Data System (ADS)

    Pevzner, Roman; Dupuis, Christian; Shulakova, Valeriya; Urosevic, Milovan; Lumley, David

    2013-04-01

    The proposed Stage 2C of the CO2CRC Otway project involves injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into saline acquifer (Paaratte formation) at the depth of ~1.5 km. The seismic time-lapse signal will depend largely on the formation properties and the injection scenario, but is likely to be relatively weak. In order to improve time-lapse seismic monitoring capabilities by decreasing the noise level, a buried receiver arrays can be used. A small-scale trial of such an array was conducted at Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1 to 12 m depth. In order to assess the gain in the signal-to-noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms increasing the noise level. We found that noise level for buried geophones is on average 20 dB lower compared to the surface ones. Furthermore, the combination of active and passive experiments has allowed us to perform a detailed classification of various noise sources. Acknowledgement The authors acknowledge the funding provided by the Australian government through its CRC program to support this CO2CRC research project. We also acknowledge the CO2CRC's corporate sponsors and the financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.

  11. Bedload transport from spectral analysis of seismic noise near rivers

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or impossible. In addition to supplying information about sediment transport, the measure of energy transfer to the bed is useful for other applications such as potential for channel bed scour and erosion. Preliminary calculations indicate that the radiated energy sensed by a seismometer 1 km from a large mountain stream is of order 10^2 joules/s. This is similar in magnitude to the gravitational potential energy supply per time of the river, and therefore suggests that in these steep landscapes, a significant fraction of the energy from rivers is transmitted to the bed and can be documented by seismic noise.

  12. The intermediate-depth Tonga double-seismic zone and relationship to slab thermal structure

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Wiens, D.; Van Keken, P. E.; Adams, A. N.; Cai, C.

    2015-12-01

    We used data from the ocean bottom seismographs and island-based stations deployed in the Tonga-Fiji area from 2009 to 2010 to investigate the seismicity of the Tonga subducting slab. We relocated 785 events from the Reviewed ISC Bulletin with local array data, 379 newly detected intermediate-depth events, as well as 1976-2012 events with Global Centroid-Moment-Tensor (CMT) solutions. The events were relocated with both local and teleseismic P, pP, and S arrivals using a hypocentroidal decomposition relative location algorithm. The results show a double-seismic zone (DSZ) with a separation of about 30 km along the Tonga slab within a depth range of about 70 - 300 km. The upper plane is more seismically active and characterized by downdip compressional stress whereas the lower plane is characterized by downdip tensional stress, consistent with the slab unbending model. Accordingly, focal mechanisms of the earthquakes along the surface of the slab show downdip extension above the depth of 80 km, but turn to compression below it, coinciding with the change of the slab dip angle from 30˚ to 60˚ at the same depth. The lower limit of the DSZ beneath Tonga is significantly deeper than that in Japan and Mariana (about 200 km), implying the importance of thermal variations in controlling the DSZ. Since the Tonga slab, with the fastest subduction rate, is cooler than other slabs, thermally controlled processes such as dehydration embrittlement can occur at greater depths, resulting in a deeper depth extent of the DSZ.

  13. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  14. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Li, Wei; Yuan, Xiaohui; Badal, José; Teng, Jiwen

    2015-03-01

    Shear wave birefringence is a direct diagnostic of seismic anisotropy. It is often used to infer the northern limit of the underthrusting Indian lithosphere, based on the seismic anisotropy contrast between the Indian and Eurasian plates. Most studies have been made through several near north-south trending passive-source seismic experiments in southern Tibet. To investigate the geometry and the nature of the underthrusting Indian lithosphere, an east-west trending seismic array consisting of 48 seismographs was operated in the central Lhasa block from September 2009 to November 2010. Splitting of SKS waves was measured and verified with different methods. Along the profile, the direction of fast wave polarization is about 60° in average with small fluctuations. The delay time generally increases from east to west between 0.2 s and 1.0 s, and its variation correlates spatially with north-south oriented rifts in southern Tibet. The SKS wave arrives 1.0-2.0 s later at stations in the eastern part of the profile than in the west. The source of the anisotropy, estimated by non-overlapped parts of the Fresnel zones at stations with different splitting parameters, is concentrated above ca. 195 km depth. All the first-order features suggest that the geometry of the underthrusting Indian lithospheric slab in the Himalayan-Tibetan collision zone beneath southern Tibet is characterized by systematic lateral variations. A slab tearing and/or breakoff model of Indian lithosphere with different subduction angles is likely a good candidate to explain the observations.

  15. Foreshocks during the nucleation of stick-slip instability

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-01-01

    We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ −6.5 to −5.0) can occur in this slowly slipping zone 5–50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  16. Quantitative measures of air-gun pulses recorded on sperm whales (Physeter macrocephalus) using acoustic tags during controlled exposure experiments.

    PubMed

    Madsen, P T; Johnson, M; Miller, P J O; Aguilar Soto, N; Lynch, J; Tyack, P

    2006-10-01

    The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.

  17. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    NASA Astrophysics Data System (ADS)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  18. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  19. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 3-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Safa Arslan, Mehmet; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Behiye Aksahin, Bengi; Hatayama, Ken; Sahin, Abdurrahman; Ohori, Michihiro; Safak, Erdal; Hori, Muneo

    2017-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 140 sites on October 2013, September 2014, 2015 and 2016. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  20. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area) for hazard assessment purposes

    NASA Astrophysics Data System (ADS)

    Manea, Elena Florinela; Michel, Clotaire; Hobiger, Manuel; Fäh, Donat; Cioflan, Carmen Ortanza; Radulian, Mircea

    2017-09-01

    During large earthquakes generated at intermediate depth in the Vrancea seismic zone, the ground motion recorded in Bucharest (Romania) is characterized by predominant long periods with strong amplification. Time-frequency analysis highlights the generation of low frequency surface waves (<1 Hz) for sufficiently strong and superficial events. This phenomenon has been explained by the influence of both source mechanism (radiation pattern, directivity effects) and mechanical properties of the local geological structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wavefield produced by earthquakes in the area of Bucharest, taking into account its location in the centre of the Moesian Platform, a large sedimentary basin (450 km long, 300 km wide and up to 20 km deep). To this aim, we identify the contribution of different seismic surface waves, such as the ones produced at the edges of this large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves), on ground motion. The data from a 35 km diameter array (URS experiment) were used. The array was installed by the National Institute for Earth Physics in cooperation with the Karlsruhe Institute for Technology and operated during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones. The earthquake wavefield recorded by the URS array was analysed using the MUSIQUE technique. This technique analyses the three-component signals of all sensors of a seismic array together. The analysis includes 19 earthquakes with epicentral distances from 100 to 1560 km and with various backazimuths with enough energy at low frequencies (0.1-1 Hz), within the resolution range of the array. For all events, the largest portion of energy is arriving from the source direction and the wavefield is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2-D or 3-D effects of the Moesian Platform. The azimuthal distribution shows that the scattering comes primarily from the southern and northern edges of the basin. The Airy phase of Love waves was clearly identified as the main contributor in the range of the fundamental frequency of resonance of the basin (0.15-0.25 Hz), with directionality along the backazimuth and its opposite direction. Moreover, two further distinct frequency bands around 0.4 and 0.7 Hz with higher amplitudes were identified. Their complex nature is a combination of the higher modes of Rayleigh waves, Airy phases of Love waves and SH waves. Love and Rayleigh wave dispersion curves were successfully retrieved by combining the information of all events and show a good match with the ones obtained using ambient vibrations. Additionally, the first higher mode of Rayleigh waves could be retrieved using data from earthquakes. Also, the prograde and retrograde Rayleigh wave ellipticity was computed.

  1. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  2. Anomalous Induced Seismicity due to Hydraulic Fracturing. Case of study in the Montney Formation, Northeast British Columbia.

    NASA Astrophysics Data System (ADS)

    Longobardi, M.; Bustin, A. M. M.; Johansen, K.; Bustin, R. M.

    2017-12-01

    One of our goals is to investigate the variables and processes controlling the anomalous induced seismicity and its associated ground motions, to better understand the anomalous induced seismicity (AIS) due to hydraulic fracturing in Northeast British Columbia. Our other main objective is to optimize-completions and well design. Although the vast majority of earthquakes that occur in the world each year have natural causes, some of these earthquakes and a number of lesser magnitude seismic events are induced by human activities. The recorded induced seismicity resulting from the fluid injection during hydraulic fracturing is generally small in magnitude (< M 1). Shale gas operations in Northeast British Columbia (BC) have induced the largest recorded occurrence and magnitude of AIS because of hydraulic fracturing. Anomalous induced seismicity have been recorded in seven clusters within the Montney area, with magnitudes up to ML 4.6. Five of these clusters have been linked to hydraulic fracturing. To analyse our AIS data, we first have calculated the earthquakes hypocenters. The data was recorded on an array of real-time accelerometers. We built the array based on our modified design from the early earthquake detectors installed in BC schools for the Earthquake Early Warning System for British Columbia. We have developed a new technique for locating hypocenters and applied it to our dataset. The technique will enable near real-time event location, aiding in both mitigating induced events and adjusting completions to optimize the stimulation. Our hypocenter program assumes to consider a S wave speed, fitting the arrival times to the hypocenter, and using an "amoebae method" multivariate. We have used this method because it is well suited to minimizing of the chi-squared function of the arrival time deviation. We show some preliminary results on the Montney dataset.

  3. Detecting Moho Boundary under Taiwan with Wide-angle Data by Ray-tracing Method - The TAIGER Project

    NASA Astrophysics Data System (ADS)

    Kuo, Y. N.; Wang, C.; Okaya, D. A.

    2009-12-01

    Taiwan is located at the converging boundary of the Eurasian plate and the Philippine Sea plate, and is one of the most rapidly uplifting orogeny in the world. The geological structure is relatively complicated. There exist several models of tectonic collisions from the thin-skinned thrust, the lithospheric collision, to uplifting by buoyancy. The shape of Moho should be a key factor to evaluate these models. In this study, we try to detect the Moho beneath Taiwan using the newly collected wide-angle data from the Taiwan Integrated Geodynamic Research (TAIGER) project. The results could be of help to set up some constrains for the Taiwan tectonics. The TAIGER project is a collaboration between America and Taiwan. The land stations collected two parts of data (land and marine) generated by active sources. The land part was carried out in 2008/2~3, which created 6 kinds of data from explosion sources including: 1) 3 E-W wide-angle reflections of Texans arrays; 2) 2 N-S seismometer arrays; 3) the seismic networks of Central Weather Bureau(CWB) and Institute of Earth Science(IES) over the island; 4) a short array of RT130; 5) 2 short period OBS arrays in the Taiwan Strait; 6) 2 temporary seismic arrays in Fujan, mainland China. The marine part was carried out in 2009/4~6, which provided 4 kinds of data from air-gun sources including: 1) 4 wide-angle refractions of E-W RT130 arrays; 2) 2 N-S seismometer arrays; 3) the CWB network; 4) the broad band array in Taiwan for Seismology(BATS). In this study, we focus on analyzing the wide-angle data, which contain land explosion data, onshore-offshore data, OBS data and mainland data, especially concentrate on the line in the southern Taiwan (Transect T4). We make a summary of the TAIGER project and show several plots of real data and arrivals. A 2D E-W velocity model was constructed from the mainland side to the ocean side about 600 km long using the ray-tracing method with layer-striping technique. The preliminary results are: 1) the distribution of Moho depth is basically getting deeper from the west to the east, but becoming shallower rapidly in the area of Coast Range; 2) the crust thickens to the range of 40 km in the mountain area; 3) the Moho depth is shallower than 30 km in the Peikang High and deeper than 32 km at the coast line of Fujan, no crust bulge in the Taiwan Strait; 4) the structures derived from PmP phase and Pn phase from land explosions and onshore-offshore air-gun shots are highly consistent.

  4. A compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel P.; Thorne, Michael S.; Miyagi, Lowell; Rost, Sebastian

    2015-02-01

    We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional origin and is most consistent with highly iron enriched ferropericlase.

  5. Moho depth across the Trans-European Suture Zone from ambient vibration autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, Gesa; Knapmeyer-Endrun, Brigitte

    2017-04-01

    In 2018 the InSight mission to Mars will deploy a seismic station on the planet. This seismic station will consist of a three-component very broadband seismic sensor and a collocated three-component short period seismometer. Single station methods are therefore needed to extract information from the data and learn more about the interior structure of Mars. One potential method is the extraction of reflected phases from autocorrelations. Here autocorrelations are derived from ambient seismic noise to make the most of the data expected, as seismicity on Mars is likely less abundant than on Earth. These autocorrelations are calculated using a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking as the main processing steps in addition to smoothing the spectrum of the data with a short term-long term average algorithm. Afterward the obtained results are filtered and analyzed in the frequency range of 1-2 Hz. The developed processing scheme is applied to data from permanent seismic stations located in different geological provinces across Europe, i.e. the Upper Rhine Graben, Central European Platform, Bohemian Massif, Northern German and Polish Basin, and the East European Craton, with varying Moho depths between 25-50 km. These crustal thicknesses are comparable to various estimates for Mars, therefore providing a good reference and indication of resolvability for Moho depths that might be encountered at the landing site. Changes in reflectivity can be observed in the calculated autocorrelations. The lag times of these changes are converted into depths with the help of available velocity information (EPcrust and local models for Poland and the Czech Republic, respectively) and the results are compared to existing information on Moho depths, which show good agreement. The results are temporarily stable, but show a clear correlation with the existence of cultural noise. Based on the closely located broadband and short period stations of the GERESS-array, it is shown that the processing scheme is also applicable to short period stations. Subsequently it is applied to the mainly short period and temporary stations of the PASSEQ network along the seismic profile POLONAISE P4, running from Eastern Germany to Lithuania crossing the Trans-European Suture Zone.

  6. Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.

    2011-12-01

    We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.

  7. Earthquake source parameter and focal mechanism estimates for the Western Quebec Seismic Zone in eastern Canada

    NASA Astrophysics Data System (ADS)

    Rodriguez Padilla, A. M.; Onwuemeka, J.; Liu, Y.; Harrington, R. M.

    2017-12-01

    The Western Quebec Seismic Zone (WQSZ) is a 160-km-wide band of intraplate seismicity extending 500 km from the Adirondack Highlands (United States) to the Laurentian uplands (Canada). Historically, the WQSZ has experienced over fifteen earthquakes above magnitude 5, with the noteworthy MN5.2 Ladysmith event on May 17, 2013. Previous studies have associated seismicity in the area to the reactivation of Early Paleozoic normal faults within a failed Iapetan rift arm, or strength contrasts between mafic intrusions and felsic rocks due to the Mesozoic track of the Great Meteor hotspot. A good understanding of seismicity and its relation to pre-existing structures requires information about event source properties, such as static stress drop and fault plane orientation, which can be constrained via spectral analysis and focal mechanism solutions. Using data recorded by the CNSN and USArray Transportable Array, we first characterize b-value for 709 events between 2012 and 2016 in WQSZ, obtaining a value of 0.75. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for 35 events MN 2.7+. We select event pairs with highly similar waveforms, proximal hypocenters, and magnitudes differing by 1-2 units. Our preliminary results using single-station spectra show corner frequencies of 15 to 40 Hz and stress drop values between 7 and 130 MPa, typical of intraplate seismicity. Last, we solve focal mechanism solutions of 35 events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. Our preliminary results suggest predominantly thrust faulting mechanisms, and at times oblique thrust faulting. The P-axis trend of the focal mechanism solutions suggests a principal stress orientation of NE-SW, which is consistent with that derived from focal mechanisms of earthquakes prior to 2013. We plan to fit the event pair spectral ratios to correct for attenuation effects and more accurately constrain the corner frequency values which can lead to more accurate static stress drop estimates, particularly of the larger events within an event pair.

  8. Multi-mode phase speed measurements with array-based analysis: Application to the North American continent

    NASA Astrophysics Data System (ADS)

    Matsuzawa, H.; Yoshizawa, K.

    2017-12-01

    Recent high-density broad-band seismic networks allow us to construct improved 3-D upper mantle models with unprecedented horizontal resolution using surface waves. Such dispersion measurements have been primarily based on the analysis of fundamental mode. Higher-mode information can be of help in enhancing vertical resolution of 3-D models, but their dispersion analysis is intrinsically difficult, since wave-packets of several modes are overlapped each other in an observed seismogram. In this study, we measure phase dispersion of multi-mode surface waves with an array-based analysis. Our method is modeled on a one-dimensional frequency-wavenumber method originally developed by Nolet (1975, GRL), which can be applied to a set of broadband seismic records observed in a linear array along a great circle path. Through this analysis, we can obtain a spectrogram in c-T (phase speed - period) domain, which is characterized by mode-branch dispersion curves and relative spectral powers for each mode. Synthetic experiments indicate that we can separate the modal contribution using a long linear array with typical array length of about 2000 to 4000 km. The method is applied to a large data set from USArray using nearly 400 seismic events in 2007 - 2014 with Mw 6.5 or greater. Our phase-speed maps for the fundamental-mode Love and Rayleigh waves and the first higher-mode Rayleigh waves match well with the earlier models. The phase speed maps reflect typical large-scale features of regional seismic structure in North America, but smaller-scale variations are less constrained in our model, since our measured phase speeds represent path-average features over a long path (about a few thousands kilometers). Our multi-mode dispersion measurements can also be used for the extraction of mode-branch waveforms for the first a few modes. This can be done by applying a narrow filter around the dispersion curves of a target mode in c-T spectrogram. The mode-branch waveforms can then be reconstructed based on a linear Radon transform (e.g., Luo et al., 2015, GJI). Synthetic experiments suggest that we can successfully retrieve the mode-branch waveforms for several mode branches, which can be used in the secondary analysis for constraining local-scale heterogeneity with enhanced depth resolution.

  9. Estimation of Velocity Structure Using Microtremor Recordings from Arrays: Comparison of Results from the SPAC and the F-K Analysis Methods

    NASA Astrophysics Data System (ADS)

    Flores-Estrella, H.; Aguirre, J.; Boore, D.; Yussim, S.

    2001-12-01

    Microtremor recordings have become a useful tool for microzonation studies in countries with low to moderate seismicity and also in countries where there are few seismographs or the recurrence time for an earthquake is quite long. Microtremor recordings can be made at almost any time and any place without needing to wait for an earthquake. The measurements can be made using one station or an array of stations. Microtremor recordings can be used to estimate site response directly (e.g. by using Nakamura's technique), or they can be used to estimate shear-wave velocities, from which site response can be calculated. A number of studies have found that the direct estimation of site response may be unreliable, except for identifying the fundamental resonant period of a site. Obtaining shear-wave velocities requires inverting measurements of Rayleigh wave phase velocities from microtremors, which are obtained by using the Spatial Autocorrelation (SPAC) (Aki, 1957) or the Frequency-Wave Number (F-K) (Horike, 1985) methods. Estimating shear-wave velocities from microtremor recordings is a cheaper alternative than direct methods, such as the logging of boreholes. In this work we use simultaneous microtremor recordings from triangular arrays located at two sites in Mexico City, Mexico, one ("Texcoco") with a lacustrine sediment layer of about 200 m depth, and the other one ("Ciudad Universitaria") underlain by 2,000 year old basaltic flows from Xitle volcano. The data are analyzed using both the SPAC method and by the standard F-K method. The results obtained from the SPAC method are more consistent with expectations from the geological conditions and an empirical transfer function (Montalvo et al., 2001) than those from F-K method. We also analyze data from the Hollister Municipal Airport in California. The triangular array at this site is located near a borehole from which seismic velocities have been obtained using a downhole logging method (Liu et al., 2000). We compare results from the microtremor recordings analyzed using both the SPAC and F-K methods with those obtained from the downhole logging.

  10. Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.

    2017-12-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.

  11. Geophysical Tracking of a Subglacial Flood in Near Real-Time

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Jóhannesson, Tómas; Ofeigsson, Benedikt G.; Roberts, Matthew J.; Bean, Christopher J.; Vogfjörd, Kristin S.; Jones, Morgan T.; Pfeffer, Melissa A.; Bergsson, Baldur; Pálsson, Finnur

    2017-04-01

    Subglacial lakes and volcanoes in Iceland pose a risk to people, livestock and infrastructure when water drains in subglacial floods. Many of these floods occur every year and efforts are made to forecast them and evacuate in time. The two Skaftá cauldrons are located at the southwestern part of Vatnajökull glacier and usually drain once every two years. However, following drainage in 2010, the eastern cauldron did not drain before October 2015. While water accumulated over these five years, scientists - within the EU-funded project FutureVolc - improved the monitoring network around southwest Vatnajökull in order to record the flood in great detail. The network finally comprised two seismic arrays, a GPS instrument on top of the cauldron, two GPS instruments above the flood path, gas measurements at the glaciers' edge, hydrological measurements at river gauges and osmotic sampler data. We present how the GPS, gas and hydrological instruments allow us to detect the start of and subglacial propagation of the flood. The derived timing is consistent with the approximate time of rupturing of the ice close to the glacier edge and the source movement observed in the seismic signals. The subglacial flow of water is accompanied by seismic tremor, whose source location moves downslope with the flood front. This tremor is followed by about 24 hours of stronger tremor bursts from the direction of the empty cauldron.

  12. Anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda in China Regional Seismic Networks

    NASA Astrophysics Data System (ADS)

    Xia, H.; Song, X.; Wang, T.

    2014-12-01

    The Earth's inner core possesses strong cylindrical anisotropy with the fast symmetry axis parallel to the rotation axis. However, recent study has suggested that the inner part of the inner core has a fast symmetry axis near the equator with a different form of anisotropy from the outer part (Wang et al., this session). To confirm the observation, we use data from dense seismic arrays of the China Regional Seismic Networks. We perform autocorrelation (ACC) of the coda after major earthquakes (Mw>=7.0) at each station and then stack the ACCs at each cluster of stations. The PKIKP2 and PKIIKP2 phases (round-trip phase from the Earth's surface reflections) can be clearly extracted from the stacked empirical Green's functions. We observe systematic variation of the differential times between PKIKP2 and PKIIKP2 phases, which are sensitive to the bulk anisotropy of the inner core. The differential times show large variations with both latitudes and longitudes, even though our ray paths are not polar (with our stations at mid-range latitudes of about 20 to 45 degrees). The observations cannot be explained by an averaged anisotropy model with the fast axis along the rotation axis. The pattern appears consistent with an inner inner core that has a fast axis near the equator.

  13. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkoç, Ebru Aktepe, E-mail: ebru.aktepe@deu.edu.tr; Uluğ, Atilla, E-mail: atilla.ulug@deu.edu.tr

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the controlmore » of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.« less

  14. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  15. Solar-Array Deployment Test for InSight

    NASA Image and Video Library

    2015-05-27

    Engineers and technicians at Lockheed Martin Space Systems, Denver, run a test of deploying the solar arrays on NASA's InSight lander in this April 30, 2015 image. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19665

  16. Constraints on Fault Damage Zone Properties and Normal Modes from a Dense Linear Array Deployment along the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Lin, F. C.; Share, P. E.; Ben-Zion, Y.; Vernon, F.; Schuster, G. T.; Karplus, M. S.

    2016-12-01

    We present earthquake data and statistical analyses from a month-long deployment of a linear array of 134 Fairfield three-component 5 Hz seismometers along the Clark strand of the San Jacinto fault zone in Southern California. With a total aperture of 2.4km and mean station spacing of 20m, the array locally spans the entire fault zone from the most intensely fractured core to relatively undamaged host rock on the outer edges. We recorded 36 days of continuous seismic data at 1000Hz sampling rate, capturing waveforms from 751 local events with Mw>0.5 and 43 teleseismic events with M>5.5, including two 600km deep M7.5 events along the Andean subduction zone. For any single local event on the San Jacinto fault, the central stations of the array recorded both higher amplitude and longer duration waveforms, which we interpret as the result of damage-related low-velocity structure acting as a broad waveguide. Using 271 San Jacinto events, we compute the distributions of three quantities for each station: maximum amplitude, mean amplitude, and total energy (the integral of the envelope). All three values become statistically lower with increasing distance from the fault, but in addition show a nonrandom zigzag pattern which we interpret as normal mode oscillations. This interpretation is supported by polarization analysis which demonstrates that the high-amplitude late-arriving energy is strongly vertically polarized in the central part of the array, consistent with Love-type trapped waves. These results, comprising nearly 30,000 separate coseismic waveforms, support the consistent interpretation of a 450m wide asymmetric damage zone, with the lowest velocities offset to the northeast of the mapped surface trace by 100m. This asymmetric damage zone has important implications for the earthquake dynamics of the San Jacinto and especially its ability to generate damaging multi-segment ruptures.

  17. Synthetic Seismogram Modeling.

    DTIC Science & Technology

    1982-11-15

    various phases ( designated A, B, C, etc.) are indicated on the seismic record section at the top of the diagram. The observed travel times show a good...structure of the Yellowstone aperture seismic array (LAS), Moatana, U.S. region and experiment design , J. Geophys. Geol. Suwv. Open File Rep. 1671, 1972. Res...also display little For clarity in both typography and conitext, we coherence in waveform or even in the envelope of shall henceforth write -P-bar in

  18. The CAFE Experiment: A Joint Seismic and MT Investigation of the Cascadia Subduction System

    DTIC Science & Technology

    2013-02-01

    In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia...implicit in the standard MT inversion provides tools that enable us to generate a more accurate MT model. This final MT model clearly demonstrates...references within, Hacker, 2008) have given us the tools to better interpret geophysical evidence. Improvements in the thermal modeling of subduction zones

  19. Imaging the Moon's Core with Seismology

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.; Lin, Pei-Ying Patty; Garnero, Ed J.; Williams, Quetin C.; Lognonne, Philippe

    2011-01-01

    Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon s core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar orbiter and SELENE 2 lunar lander missions.

  20. Celebrating 10 Years of Delivering EarthScope USArray Transportable Array Data from the Array Network Facility (ANF)

    NASA Astrophysics Data System (ADS)

    Eakins, J. A.; Vernon, F.; Astiz, L.; Davis, G. A.; Reyes, J. C.; Martynov, V. G.; Tytell, J.; Cox, T. A.; Meyer, J.

    2013-12-01

    Since 2004, the Array Network Facility (ANF) has been responsible for generation and delivery of the metadata as well as collection and initial quality control and the transmission of the seismic, and more recently infrasound and meteorological data, for the Earthscope USArray Transportable Array. As of August 2013, we have managed data from over 1600 stations. Personnel at the ANF provide immediate eyes on the data to improve quality control as well as interact with the individual stations via calibrations, mass recentering, baler data retrieval and event analysis. Web-based tools have been developed, and rewritten over the years, to serve the needs of both station engineers and the public. Many lessons on the needs for scalability have been learned. Analysts continue to review all seismic events recorded on 7 or more TA stations making associations against externally available bulletins and/or generating ANF authored locations which are available at both the ANF and IRIS-DMC. The US Array pressure data have several unique characteristics that are allowing us to conduct a rigorous analysis of the spatio-temporal variations in the pressure field on time scales of less than an hour across the eastern United States. With the installation of the infrasound and atmospheric pressure sensors, starting in 2010, observations of gust fronts, near misses of tornados at individual stations, and of the mesoscale gravity waves showing the value and utility of the US Array pressure data will be presented.

Top