NASA Astrophysics Data System (ADS)
Okay, S.; Cifci, G.; Ozel, S.; Atgin, O.; Ozel, O.; Barin, B.; Er, M.; Dondurur, D.; Kucuk, M.; Gurcay, S.; Choul Kim, D.; Sung-Ho, B.
2012-04-01
Recently, the continental margins of Black Sea became important for its gas content. There are no scientific researches offshore Trabzon-Giresun area except the explorations of oil companies. This is the first survey that performed in that area. 1700 km high resolution multichannel seismic and chirp data simultaneously were collected onboard R/V K.Piri Reis . The seismic data reveal BSRs, bright spots and acoustic maskings especially on the eastern part of the survey area. The survey area in the Eastern Black Sea includes continental slope, apron and deep basin. Two mud volcanoes are discovered and named as Busan and Izmir. The observed fold belt is believed to be the main driving force for the growth of mud volcanoes.Faults are developed at the flanks of diapiric uplift. Seismic attributes and AVO analysis are applied to 9 seismic sections which have probable gassy sediments and BSR zones. In the seismic attribute analysis high amplitude horzions with reverse polarity are observed in instantaneous frequency, envelope and apparent polarity sections also with low frequency at instantaneous frequency sections. These analysis verify existence of gas accumulations in the sediments. AVO analysis and cross section drawing and Gradient analysis show Class 1 AVO anomaly and indicate gas in sediments. Keywords: BSR, Bright spot, Mud volcano, Seismic Attributes, AVO
Numerical simulation of bubble plumes and an analysis of their seismic attributes
NASA Astrophysics Data System (ADS)
Li, Canping; Gou, Limin; You, Jiachun
2017-04-01
To study the bubble plume's seismic response characteristics, the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume. The finite difference method is used for forward modelling, and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume. A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume. The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up, and changes in bubble radius will not cause seismic attributes to change, which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity, while the bubble radius has a weak impact on the acoustic velocity. The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration, as well as on distribution of the methane bubble in seawater.
Application of Visual Attention in Seismic Attribute Analysis
NASA Astrophysics Data System (ADS)
He, M.; Gu, H.; Wang, F.
2016-12-01
It has been proved that seismic attributes can be used to predict reservoir. The joint of multi-attribute and geological statistics, data mining, artificial intelligence, further promote the development of the seismic attribute analysis. However, the existing methods tend to have multiple solutions and insufficient generalization ability, which is mainly due to the complex relationship between seismic data and geological information, and undoubtedly own partly to the methods applied. Visual attention is a mechanism model of the human visual system which can concentrate on a few significant visual objects rapidly, even in a mixed scene. Actually, the model qualify good ability of target detection and recognition. In our study, the targets to be predicted are treated as visual objects, and an object representation based on well data is made in the attribute dimensions. Then in the same attribute space, the representation is served as a criterion to search the potential targets outside the wells. This method need not predict properties by building up a complicated relation between attributes and reservoir properties, but with reference to the standard determined before. So it has pretty good generalization ability, and the problem of multiple solutions can be weakened by defining the threshold of similarity.
NASA Astrophysics Data System (ADS)
Haris, A.; Nafian, M.; Riyanto, A.
2017-07-01
Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.
Seismic attribute analysis for reservoir and fluid prediction, Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansor, M.N.; Rudolph, K.W.; Richards, F.B.
1994-07-01
The Malay Basin is characterized by excellent seismic data quality, but complex clastic reservoir architecture. With these characteristics, seismic attribute analysis is a very important tool in exploration and development geoscience and is routinely used for mapping fluids and reservoir, recognizing and risking traps, assessment, depth conversion, well placement, and field development planning. Attribute analysis can be successfully applied to both 2-D and 3-D data as demonstrated by comparisons of 2-D and 3-D amplitude maps of the same area. There are many different methods of extracting amplitude information from seismic data, including amplitude mapping, horizon slice, summed horizon slice, isochronmore » slice, and horizon slice from AVO (amplitude versus offset) cube. Within the Malay Basin, horizon/isochron slice techniques have several advantages over simply extracting amplitudes from a picked horizon: they are much faster, permit examination of the amplitude structure of the entire cube, yield better results for weak/variable signatures, and aid summation of amplitudes. Summation in itself often yields improved results because it incorporates the signature from the entire reservoir interval, reducing any effects due to noise, mispicking, or waveform variations. Dip and azimuth attributes have been widely applied by industry for fault identification. In addition, these attributes can also be used to map signature variations associated with hydrocarbon contacts or stratigraphic changes, and this must be considered when using these attributes for structural interpretation.« less
NASA Astrophysics Data System (ADS)
Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta
2018-03-01
Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.
Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means
NASA Astrophysics Data System (ADS)
Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin
2017-12-01
Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.
4D seismic monitoring of the miscible CO2 flood of Hall-Gurney Field, Kansas, U.S
Raef, A.E.; Miller, R.D.; Byrnes, A.P.; Harrison, W.E.
2004-01-01
A cost-effective, highly repeatable, 4D-optimized, single-pattern/patch seismic data-acquisition approach with several 3D data sets was used to evaluate the feasibility of imaging changes associated with the " water alternated with gas" (WAG) stage. By incorporating noninversion-based seismic-attribute analysis, the time and cost of processing and interpreting the data were reduced. A 24-ms-thick EOR-CO 2 injection interval-using an average instantaneous frequency attribute (AIF) was targeted. Changes in amplitude response related to decrease in velocity from pore-fluid replacement within this time interval were found to be lower relative to background values than in AIF analysis. Carefully color-balanced AIF-attribute maps established the overall area affected by the injected EOR-CO2.
NASA Astrophysics Data System (ADS)
Haris, A.; Novriyani, M.; Suparno, S.; Hidayat, R.; Riyanto, A.
2017-07-01
This study presents the integration of seismic stochastic inversion and multi-attributes for delineating the reservoir distribution in term of lithology and porosity in the formation within depth interval between the Top Sihapas and Top Pematang. The method that has been used is a stochastic inversion, which is integrated with multi-attribute seismic by applying neural network Probabilistic Neural Network (PNN). Stochastic methods are used to predict the probability mapping sandstone as the result of impedance varied with 50 realizations that will produce a good probability. Analysis of Stochastic Seismic Tnversion provides more interpretive because it directly gives the value of the property. Our experiment shows that AT of stochastic inversion provides more diverse uncertainty so that the probability value will be close to the actual values. The produced AT is then used for an input of a multi-attribute analysis, which is used to predict the gamma ray, density and porosity logs. To obtain the number of attributes that are used, stepwise regression algorithm is applied. The results are attributes which are used in the process of PNN. This PNN method is chosen because it has the best correlation of others neural network method. Finally, we interpret the product of the multi-attribute analysis are in the form of pseudo-gamma ray volume, density volume and volume of pseudo-porosity to delineate the reservoir distribution. Our interpretation shows that the structural trap is identified in the southeastern part of study area, which is along the anticline.
Seismic data are rich in information about subsurface formations and fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfour, Mohammed; Yoon, Wang Jung; Kim, Dongshin
2016-06-08
Seismic attributes are defined as any measured or computed information derived from seismic data. Throughout the last decades extensive work has been done in developing variety of mathematical approaches to extract maximum information from seismic data. Nevertheless, geoscientists found that seismic is still mature and rich in information. In this paper a new seismic attribute is introduced. Instantaneous energy seismic attribute is an amplitude based attribute that has the potential to emphasize anomalous amplitude associated with hydrocarbons. Promising results have been obtained from applying the attribute on seismic section traversing hydrocarbon filled sand from Alberta, Canada.
NASA Astrophysics Data System (ADS)
Maurya, S. P.; Singh, K. H.; Singh, N. P.
2018-05-01
In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.
NASA Astrophysics Data System (ADS)
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
Incorporating seismic phase correlations into a probabilistic model of global-scale seismology
NASA Astrophysics Data System (ADS)
Arora, Nimar
2013-04-01
We present a probabilistic model of seismic phases whereby the attributes of the body-wave phases are correlated to those of the first arriving P phase. This model has been incorporated into NET-VISA (Network processing Vertically Integrated Seismic Analysis) a probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. In the earlier version of NET-VISA, seismic phase were assumed to be independent of each other. Although this didn't affect the quality of the inferred seismic bulletin, for the most part, it did result in a few instances of anomalous phase association. For example, an S phase with a smaller slowness than the corresponding P phase. We demonstrate that the phase attributes are indeed highly correlated, for example the uncertainty in the S phase travel time is significantly reduced given the P phase travel time. Our new model exploits these correlations to produce better calibrated probabilities for the events, as well as fewer anomalous associations.
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Yan; Chen, Tongjun; Yan, Qiuyan; Ma, Li
2017-04-01
The thickness of tectonically deformed coal (TDC) has positive correlation associations with gas outbursts. In order to predict the TDC thickness of coal beds, we propose a new quantitative predicting method using an extreme learning machine (ELM) algorithm, a principal component analysis (PCA) algorithm, and seismic attributes. At first, we build an ELM prediction model using the PCA attributes of a synthetic seismic section. The results suggest that the ELM model can produce a reliable and accurate prediction of the TDC thickness for synthetic data, preferring Sigmoid activation function and 20 hidden nodes. Then, we analyze the applicability of the ELM model on the thickness prediction of the TDC with real application data. Through the cross validation of near-well traces, the results suggest that the ELM model can produce a reliable and accurate prediction of the TDC. After that, we use 250 near-well traces from 10 wells to build an ELM predicting model and use the model to forecast the TDC thickness of the No. 15 coal in the study area using the PCA attributes as the inputs. Comparing the predicted results, it is noted that the trained ELM model with two selected PCA attributes yields better predication results than those from the other combinations of the attributes. Finally, the trained ELM model with real seismic data have a different number of hidden nodes (10) than the trained ELM model with synthetic seismic data. In summary, it is feasible to use an ELM model to predict the TDC thickness using the calculated PCA attributes as the inputs. However, the input attributes, the activation function and the number of hidden nodes in the ELM model should be selected and tested carefully based on individual application.
NASA Astrophysics Data System (ADS)
Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria
2017-12-01
Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.
NASA Astrophysics Data System (ADS)
Wawrzyniak-Guz, Kamila
2018-03-01
Seismic attributes calculated from full waveform sonic log were proposed as a method that may enhance the interpretation the data acquired at log and seismic scales. Though attributes calculated in the study were the mathematical transformations of amplitude, frequency, phase or time of the acoustic full waveforms and seismic traces, they could be related to the geological factors and/or petrophysical properties of rock formations. Attributes calculated from acoustic full waveforms were combined with selected attributes obtained for seismic traces recorded in the vicinity of the borehole and with petrophysical parameters. Such relations may be helpful in elastic and reservoir properties estimation over the area covered by the seismic survey.
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad Atif; Curtis, Andrew
2018-04-01
We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.
NASA Astrophysics Data System (ADS)
Bauer, Klaus; Pussak, Marcin; Stiller, Manfred; Bujakowski, Wieslaw
2014-05-01
Self-organizing maps (SOM) are neural network techniques which can be used for the joint interpretation of multi-disciplinary data sets. In this investigation we apply SOM within a geothermal exploration project using 3D seismic reflection data. The study area is located in the central part of the Polish basin. Several sedimentary target horizons were identified at this location based on fluid flow rate measurements in the geothermal research well Kompina-2. The general objective is a seismic facies analysis and characterization of the major geothermal target reservoir. A 3D seismic reflection experiment with a sparse acquisition geometry was carried out around well Kompina-2. Conventional signal processing (amplitude corrections, filtering, spectral whitening, deconvolution, static corrections, muting) was followed by normal-moveout (NMO) stacking, and, alternatively, by common-reflection-surface (CRS) stacking. Different signal attributes were then derived from the stacked images including root-mean-square (RMS) amplitude, instantaneous frequency and coherency. Furthermore, spectral decomposition attributes were calculated based on the continuous wavelet transform. The resulting attribute maps along major target horizons appear noisy after the NMO stack and clearly structured after the CRS stack. Consequently, the following SOM-based multi-parameter signal attribute analysis was applied only to the CRS images. We applied our SOM work flow, which includes data preparation, unsupervised learning, segmentation of the trained SOM using image processing techniques, and final application of the learned knowledge. For the Lower Jurassic target horizon Ja1 we derived four different clusters with distinct seismic attribute signatures. As the most striking feature, a corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and low frequencies. In our interpretation we assume that this combination of signal properties can be explained by increased fracture porosity and enhanced fluid saturation within this part of the Lower Jurassic sandstone horizon. Hence, we suggest that a future drilling should be carried out within this compartment of the reservoir.
Seismic facies analysis based on self-organizing map and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian
2015-01-01
Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, J.; Jones, G.L.
1996-01-01
Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, J.; Jones, G.L.
1996-12-31
Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less
NASA Astrophysics Data System (ADS)
Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw
2014-04-01
Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.
NASA Astrophysics Data System (ADS)
Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.
2017-12-01
The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.
MSSA de-noising of horizon time structure to improve the curvature attribute analysis
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rekapalli, R.; Vedanti, N.
2017-12-01
Although the seismic attributes are useful for identifying sub-surface structural features like faults, fractures, lineaments and sharp stratigraphy etc., the different kinds of noises arising from unknown physical sources during the data acquisition and processing creates acute problems in physical interpretation of complex crustal structures. Hence, we propose to study effect of noise on curvature attribute analysis of seismic time structure data. We propose here Multichannel Singular Spectrum Analysis (MSSA) de-noising algorithm as a pre filtering scheme to reduce effect of noise. To demonstrate the procedure, first, we compute the most positive and negative curvature on a synthetic time structure with surface features resembling anticlines, synclines and faults and then adding the known percentage of noise. We noticed that the curvatures estimated from the noisy data reveal considerable deviations from the curvature of pure synthetic data. This suggests that there is a strong impact of noise on the curvature estimates. Further, we have employed 2D median filter and MSSA methods to filter the noisy time structure and then computed the curvatures. The comparisons of curvatures estimated from de-noised data suggest that the results obtained from MSSA de-noised data match well with the curvatures of pure synthetic data. Finally, we present an example of real data analysis from Utsira Top (UT) horizon of Southern Viking Graben, Norway to identify the time-lapse changes in UT horizon after CO2 injection. We applied the MSSA de-noising algorithm on UT horizon time structure and amplitude data of pre and post CO2 injection. Our analyses suggest modest but clearly visible, structural changes in the UT horizon after CO2 injection at a few locations, which seem to be associated with the locations of change in seismic amplitudes. Thus, the results from both the synthetic and real field data suggest that the MSSA based de-noising algorithm is robust for filtering the horizon time structures for accurate curvature attributes analysis and better interpretation of structural changes in geological features. Key Words: Curvature attributes, MSSA, Seismic Horizon, 2D-median filter, Utsira Horizon.
Seismic Evidence And Complex Trace Attributes Of Shallow Gas Structures In The Sea Of Marmara
NASA Astrophysics Data System (ADS)
Aydemir, Seval; Okay, Seda; Cifci, Gunay; Dondurur, Derman; Sorlien, Christopher; Cormier, Marie-Helene
2015-04-01
Analysis of multi-channel seismic reflection, sparker and chirp data from Marmara Sea observed various shallow gas indicators including seismic chimneys, bright spots, mud diapirs, pockmarks, and acoustic blanking related to gas accumulations along North Anatolian Fault (NAF) system which branches out towards the west into the in Marmara Sea. Middle branch of the (NAF) is the place where distinct amount of seismic activity has occurred and gas deposits have been observed. This study is also devoted to evaluate the gas related structures with seismic attributes of multichannel seismic reflection data which have been collected at South Marmara shelf. The dataset was collected in September 2013 and July 2014 including nearly 1000 km high Resolution Multichannel Seismic and Chirp data and 967 km Sparker data in the frame of a bilateral TÜBİTAK Project onboard R/V K. Piri Reis. The streamer has 168 or 144 channel and group interval was 6.25 m. The source was 45+45 inch GI gun fired every 12.5 or 25 m producing high-resolution seismic signal between 10-250 Hz frequency bands. The Chirp data was collected with a transducer, which produced acoustic signal between 2.75-6.75 kHz. The source of sparker system was used to 1000 J. The data have been processed using a conventional data processing flow. In addition attributes were applied to final migration sections and than was tried to find gas accumulations with Reflection strength section, instantaneous frequency section and apparent polarity. Reflection strength section has strong reflections (bright spot). Also instantaneous frequency section has low-frequency zone depending on absorption where gas accumulations are expected. Apparent polarity section has negative polarity anamoly due to low acoustic impedance where gas accumulations are expected in sediments. In addition, attributes were coincided with sparker and chirp data where expected shallow gas accumulations.
NASA Astrophysics Data System (ADS)
Bellefleur, G.; Riedel, M.; Brent, T.
2005-12-01
Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.
CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne D. Pennington; Horacio Acevedo; Aaron Green
2002-10-01
The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation ormore » printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less
Calibration of Seismic Attributes for Reservoir Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne D. Pennington
2002-09-29
The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation ormore » printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.« less
Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.
2011-01-01
In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Hashemi, H.; Tax, D. M. J.; Duin, R. P. W.; Javaherian, A.; de Groot, P.
2008-11-01
Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA). In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP) and support vector classifier (SVC) are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.
"Geo-statistics methods and neural networks in geophysical applications: A case study"
NASA Astrophysics Data System (ADS)
Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.
2008-12-01
The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.
NASA Astrophysics Data System (ADS)
Heckels, R. EG; Savage, M. K.; Townend, J.
2018-05-01
Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.
NASA Astrophysics Data System (ADS)
Shakiba, Sima; Asghari, Omid; Khah, Nasser Keshavarz Faraj
2018-01-01
A combined geostatitical methodology based on Min/Max Auto-correlation Factor (MAF) analysis and Analytical Hierarchy Process (AHP) is presented to generate a suitable Fault Detection Map (FDM) through seismic attributes. Five seismic attributes derived from a 2D time slice obtained from data related to a gas field located in southwest of Iran are used including instantaneous amplitude, similarity, energy, frequency, and Fault Enhancement Filter (FEF). The MAF analysis is implemented to reduce dimension of input variables, and then AHP method is applied on three obtained de-correlated MAF factors as evidential layer. Three Decision Makers (DMs) are used to construct PCMs for determining weights of selected evidential layer. Finally, weights obtained by AHP were multiplied in normalized valued of each alternative (MAF layers) and the concluded weighted layers were integrated in order to prepare final FDM. Results proved that applying algorithm proposed in this study generate a map more acceptable than the each individual attribute and sharpen the non-surface discontinuities as well as enhancing continuity of detected faults.
NASA Astrophysics Data System (ADS)
Zou, G.
2016-12-01
Coal bed methane content (CBMC) is a measure of the quantity of methane stored in coals, and is important for many applications, including the quantitative assessment of methane resources and methane extraction and control. The coal bed methane content (CBMC) in the Zhaozhuang coalmine of Jincheng coalfield, northwestern Qinshui Basin, is studied based on seismic data and well-logs together with laboratory measurements. The amplitude versus offset (AVO) response from the log characteristics was analyzed and the seismic amplitude, after relative preserved amplitude processing, was corrected to maintain the relative amplitude characteristics. The AVO attributes were calculated based on AVO theory and the statistical relationship between AVO attributes and CBMC was established and used to predict the CBMC. The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result; the designed fold number for an ordinary seismic data is insufficient for pre-stack data regarding the signal to noise ratio (SNR). Therefore a larger grid analysis was created in order to improve the SNR. The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness. A reasonable distribution of the amplitude versus offset (AVO) attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution. Some AVO attributes have a close relationship with CBMC. The worst attribute is weighted polarization product, for which the correlation coefficient is 0.23; and the best attribute is the intercept, of which the correlation coefficient is -0.79. CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC; the validation error of the former is 12.5%, which is lower than that of the latter. CBMC of this area ranges from 7.1 m3/t to 21.4 m3/t.
Non Conventional Seismic Events Along the Himalayan Arc Detected in the Hi-Climb Dataset
NASA Astrophysics Data System (ADS)
Vergne, J.; Nàbĕlek, J. L.; Rivera, L.; Bollinger, L.; Burtin, A.
2008-12-01
From September 2002 to August 2005, more than 200 broadband seismic stations were operated across the Himalayan arc and the southern Tibetan plateau in the framework of the Hi-Climb project. Here, we take advantage of the high density of stations along the main profile to look for coherent seismic wave arrivals that can not be attributed to ordinary tectonic events. An automatic detection algorithm is applied to the continuous data streams filtered between 1 and 10 Hz, followed by a visual inspection of all detections. We discovered about one hundred coherent signals that cannot be attributed to local, regional or teleseismic earthquakes and which are characterized by emergent arrivals and long durations ranging from one minute to several hours. Most of these non conventional seismic events have a low signal to noise ratio and are thus only observed above 1 Hz in the frequency band where the seismic noise is the lowest. However, a small subset of them are strong enough to be observed in a larger frequency band and show an enhancement of long periods compared to standard earthquakes. Based on the analysis of the relative amplitude measured at each station or, when possible, on the correlation of the low frequency part of the signals, most of these events appear to be located along the High Himalayan range. But, because of their emergent character and the main orientation of the seismic profile, their longitude and depth remain poorly constrained. The origin of these non conventional seismic events is still unsealed but their seismic signature shares several characteristics with non volcanic tremors, glacial earthquakes and/or debris avalanches. All these phenomena may occur along the Himalayan range but were not seismically detected before. Here we discuss the pros and cons for each of these postulated candidates based on the analysis of the recorded waveforms and slip models.
NASA Astrophysics Data System (ADS)
Ohl, Derek; Raef, Abdelmoneam
2014-04-01
Higher resolution rock formation characterization is of paramount priority, amid growing interest in injecting carbon dioxide, CO2, into subsurface rock formations of depeleting/depleted hydrocarbon reservoirs or saline aquifers in order to reduce emissions of greenhouse gases. In this paper, we present a case study for a Mississippian carbonate characterization integrating post-stack seismic attributes, well log porosities, and seismic petrophysical facies classification. We evaluated changes in petrophysical lithofacies and reveal structural facies-controls in the study area. Three cross-plot clusters in a plot of well log porosity and acoustic impedance corroborated a Neural Network petrophysical facies classification, which was based on training and validation utilizing three petrophysically-different wells and three volume seismic attributes, extracted from a time window including the wavelet of the reservoir-top reflection. Reworked lithofacies along small-throw faults has been revealed based on comparing coherency and seismic petrophysical facies. The main objective of this study is to put an emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2 carbon geosequestration in a depleting reservoir and also in the deeper saline aquifer of the Arbuckle Group, south central Kansas. The 3D seismic coherency attribute, we calculated from a window embracing the Mississippian top reflection event, indicated anomalous features that can be interpreted as a change in lithofacies or faulting effect. An Artificial Neural Network (ANN) lithofacies modeling has been used to better understand these subtle features, and also provide petrophysical classes, which will benefit flow-simulation modeling and/or time-lapse seismic monitoring feasibility analysis. This paper emphasizes the need of paying greater attention to small-scale features when embarking upon characterization of a reservoir or saline-aquifer for CO2 based carbon geosequestration.
Instantaneous Frequency Attribute Comparison
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Ben Horin, Y.
2013-12-01
The instantaneous seismic data attribute provides a different means of seismic interpretation, for all types of seismic data. It first came to the fore in exploration seismology in the classic paper of Taner et al (1979), entitled " Complex seismic trace analysis". Subsequently a vast literature has been accumulated on the subject, which has been given an excellent review by Barnes (1992). In this research we will compare two different methods of computation of the instantaneous frequency. The first method is based on the original idea of Taner et al (1979) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method is based on the computation of the power centroid of the time-frequency spectrum, obtained using either the Gabor Transform as computed by Margrave et al (2011) or the Stockwell Transform as described by Stockwell et al (1996). We will apply both methods to exploration seismic data and the DPRK events recorded in 2006 and 2013. In applying the classical analytic signal technique, which is known to be unstable, due to the division of the square of the envelope, we will incorporate the stabilization and smoothing method proposed in the two paper of Fomel (2007). This method employs linear inverse theory regularization coupled with the application of an appropriate data smoother. The centroid method application is straightforward and is based on the very complete theoretical analysis provided in elegant fashion by Cohen (1995). While the results of the two methods are very similar, noticeable differences are seen at the data edges. This is most likely due to the edge effects of the smoothing operator in the Fomel method, which is more computationally intensive, when an optimal search of the regularization parameter is done. An advantage of the centroid method is the intrinsic smoothing of the data, which is inherent in the sliding window application used in all Short-Time Fourier Transform methods. The Fomel technique has a larger CPU run-time, resulting from the necessary matrix inversion. Barnes, Arthur E. "The calculation of instantaneous frequency and instantaneous bandwidth.", Geophysics, 57.11 (1992): 1520-1524. Fomel, Sergey. "Local seismic attributes.", Geophysics, 72.3 (2007): A29-A33. Fomel, Sergey. "Shaping regularization in geophysical-estimation problems." , Geophysics, 72.2 (2007): R29-R36. Stockwell, Robert Glenn, Lalu Mansinha, and R. P. Lowe. "Localization of the complex spectrum: the S transform."Signal Processing, IEEE Transactions on, 44.4 (1996): 998-1001. Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. "Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063. Cohen, Leon. "Time frequency analysis theory and applications."USA: Prentice Hall, (1995). Margrave, Gary F., Michael P. Lamoureux, and David C. Henley. "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data." Geophysics, 76.3 (2011): W15-W30.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
Oil Sands Characteristics and Time-Lapse and P-SV Seismic Steam Monitoring, Athabasca, Canada
NASA Astrophysics Data System (ADS)
Takahashi, A.; Nakayama, T.; Kashihara, K.; Skinner, L.; Kato, A.
2008-12-01
A vast amount of oil sands exists in the Athabasca area, Alberta, Canada. These oil sands consist of bitumen (extra-heavy oil) and unconsolidated sand distributed from surface to a depth of 750 meters. Including conventional crude oil, the total number of proved remaining oil reserves in Canada ranks second place in the world after Saudi Arabia. For the production of bitumen from the reservoir 200 to 500 meters in depth, the Steam Assisted Gravity Drainage (SAGD) method (Steam Injection EOR) has been adopted as bitumen is not movable at original temperatures. It is essential to understand the detailed reservoir distribution and steam chamber development extent for optimizing the field development. Oil sands reservoir characterization is conducted using 3D seismic data acquired in February 2002. Conducting acoustic impedance inversion to improve resolution and subsequent multi-attribute analysis integrating seismic data with well data facilitates an understanding of the detailed reservoir distribution. These analyses enable the basement shale to be imaged, and enables identification to a certain degree of thin shale within the reservoir. Top and bottom depths of the reservoir are estimated in the range of 2.0 meters near the existing wells even in such a complex channel sands environment characterized by abrupt lateral sedimentary facies changes. In March 2006, monitoring 3D seismic data was acquired to delineate steam-affected areas. The 2002 baseline data is used as a reference data and the 2006 monitoring data is calibrated to the 2002 seismic data. Apparent differences in the two 3D seismic data sets with the exception of production related response changes are removed during the calibration process. P-wave and S-wave velocities of oil sands core samples are also measured with various pressures and temperatures, and the laboratory measurement results are then combined to construct a rock physics model used to predict velocity changes induced by steam-injection. The differences of the seismic responses between the time-lapse seismic volumes can be quantitatively explained by P-wave velocity decrease of the oil sands layers due to steam-injection. In addition, the data suggests that a larger area would be influenced by pressure than temperature. We calculate several seismic attributes such as RMS values of amplitude difference, maximum cross correlations, and interval velocity differences. These attributes are integrated by using self-organization maps (SOM) and K-means methods. By this analysis, we are able to distinguish areas of steam chamber growth from transitional and non-affected areas. In addition, 3D P-SV converted-wave processing and analysis are applied on the second 3D data set (recorded with three-component digital sensor). Low Vp/Vs values in the P-SV volume show areas of steam chamber development, and high Vp/Vs values indicate transitional zones. Our analysis of both time-lapse 3D seismic and 3D P-SV data along with the rock physics model can be used to monitor qualitatively and quantitatively the rock property changes of the inter-well reservoir sands in the field.
NASA Astrophysics Data System (ADS)
Nita, B.; Perchuc, E.; Thybo, H.; Maguire, P.; Denton, P.
2004-12-01
We evaluate the existence and the depth of the '8° discontinuity' beneath the Alpine orogen using the natural seismicity of Europe and northern Africa as well as events induced by mining activity. For this analysis, the regional events (1) must have epicenters further than 1000 km from the structure being imaged, and (2) the magnitude of body waves must be higher than 4.0 to obtain a favourable signal to noise ratio. The events satisfying the above conditions have epicentres in Algeria, Spain, Bulgaria, Greece and in the Lubin Copper Basin in Poland. The last region is characterised by high seismicity resulting from mining activity. We base our analysis on P-wave traveltime residuals compared to the general iasp91 model. The 8° discontinuity seems to be attributed to the observed P-wave traveltime delays at epicentral distances around 800 km. The analysis of events from the Lubin Coper Basin and the events from other regions mentioned above, gives P-wave delays of 3 s at the Alpine stations in comparison with stations in the Variscan areas to further north. We attribute this variation in travel time to the difference between 'fast' and 'slow' uppermost mantle structures in Europe.
NASA Astrophysics Data System (ADS)
Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.
2010-12-01
Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.
Quantifying the similarity of seismic polarizations
NASA Astrophysics Data System (ADS)
Jones, Joshua P.; Eaton, David W.; Caffagni, Enrico
2016-02-01
Assessing the similarities of seismic attributes can help identify tremor, low signal-to-noise (S/N) signals and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values or known seismic sources. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in S/N ratio. Measuring polarization similarity allows easy identification of site noise and sensor misalignment and can help identify coherent noise and emergent or low S/N phase arrivals. Dissimilar azimuths during phase arrivals indicate misaligned horizontal components, dissimilar incidence angles during phase arrivals indicate misaligned vertical components and dissimilar linear polarization may indicate a secondary noise source. Using records of the Mw = 8.3 Sea of Okhotsk earthquake, from Canadian National Seismic Network broad-band sensors in British Columbia and Yukon Territory, Canada, and a vertical borehole array at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Time-frequency polarization similarities of borehole data suggest that a coherent noise source may have persisted above 8 Hz several months after peak resource extraction from a `flowback' type hydraulic fracture.
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang
2017-11-01
Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.
Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel; Haneberg, William C.
Principal component analysis of spectral decomposition results combined with amplitude and frequency seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling LWD data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio Pleistocene sandy channel deposits in the deepwater eastern Gulf ofmore » Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, J.; Luheshi, M.; Mackenzie, A.
Gyda field (operated by BP) is located in Block 2/1 of the Norwegian outer continental shelf. The reservoir comprises a thin, wedge-shaped Upper Jurassic sand, overlain by Lower Cretaceous mudstones. For field development, it is necessary to accurately map a laterally discontinuous high-porosity zone and thus to help site well locations. To this end, it was decided to invert the 3-D seismic data set over the field to the seismic attribute of absolute acoustic impedance (AAI). This was based on the observation that there is a good correlation between porosity and AII derived from well logs. Comparisons of core porosity,more » log-derived porosity, and seismic-derived porosity at several well locations showed this technique to be generally satisfactory. An additional problem in Gyda is the detection of the truncation edge of the reservoir along the southeastern part of the field. Deterministic methods based on AAI and on forward seismic modeling were not able to unambiguously define the edge of the reservoir. The truncation of th reservoir is not clear on normal seismic amplitude displays. In order to investigate the zone where the reservoir interval changes form sand to shale, certain special seismic attributes were computer over a gate of seismic data covering the top reservoir reflection. These attributes represented the energy, phase, and frequency content of the gate of seismic data. The area investigated was between wells where the reservoir sand was known to pinch out. These attributes were clustered using the statistical technique of projection pursuit. The cluster map correlates with the observations from the wells in this area of the field and appears to show the edge of the effective reservoir in the field.« less
NASA Astrophysics Data System (ADS)
Abidi, Oussama; Inoubli, Mohamed Hédi; Sebei, Kawthar; Amiri, Adnen; Boussiga, Haifa; Nasr, Imen Hamdi; Salem, Abdelhamid Ben; Elabed, Mahmoud
2017-05-01
The Maastrichtian-Paleocene El Haria formation was studied and defined in Tunisia on the basis of outcrops and borehole data; few studies were interested in its three-dimensional extent. In this paper, the El Haria formation is reviewed in the context of a tectono-stratigraphic interval using an integrated seismic stratigraphic analysis based on borehole lithology logs, electrical well logging, well shots, vertical seismic profiles and post-stack surface data. Seismic analysis benefits from appropriate calibration with borehole data, conventional interpretation, velocity mapping, seismic attributes and post-stack model-based inversion. The applied methodology proved to be powerful for charactering the marly Maastrichtian-Paleocene interval of the El Haria formation. Migrated seismic sections together with borehole measurements are used to detail the three-dimensional changes in thickness, facies and depositional environment in the Cap Bon and Gulf of Hammamet regions during the Maastrichtian-Paleocene time. Furthermore, dating based on their microfossil content divulges local and multiple internal hiatuses within the El Haria formation which are related to the geodynamic evolution of the depositional floor since the Campanian stage. Interpreted seismic sections display concordance, unconformities, pinchouts, sedimentary gaps, incised valleys and syn-sedimentary normal faulting. Based on the seismic reflection geometry and terminations, seven sequences are delineated. These sequences are related to base-level changes as the combination of depositional floor paleo-topography, tectonic forces, subsidence and the developed accommodation space. These factors controlled the occurrence of the various parts of the Maastrichtian-Paleocene interval. Detailed examinations of these deposits together with the analysis of the structural deformation at different time periods allowed us to obtain a better understanding of the sediment architecture in depth and the delineation of the geodynamic evolution of the region.
Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope
Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.
2011-01-01
In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.
NASA Astrophysics Data System (ADS)
Blumentritt, C. H.; Marfurt, K. J.
2005-05-01
We compute curvatures for 3-D seismic volumes covering 200+ mi2 of the Central Basin Platform in West Texas and find that these attributes illumination lineations not seen on other displays of the seismic data. We analyze the preferred orientations of these lineations defined by well imaged faults and fault zones and find that the patterns vary according to the nature of the faults bounding the blocks, mostly strike-slip, high angle reverse, or oblique slip. We perform the analysis in the pre-Mississippian section which is decoupled from the overburden by a Permian age unconformity. Our technique differs from that of previous workers in that we compute curvatures on each sample of a seismic volume using a moving subvolume rather than along surfaces interpreted from the data. In this way, we minimize high frequency variations in the results that arise from picking errors in the interpretation or noise in the data. We are able to extract and display values of curvature along time or depth slices, along horizon slices, and along poorly imaged horizons.
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
NASA Astrophysics Data System (ADS)
Birhanu, Yelebe; Wilks, Matthew; Biggs, Juliet; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias
2018-05-01
Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrological cycle. Here, we focus on the Aluto-Langano geothermal system, Ethiopia, where the climate is monsoonal and there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2-3 months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is commonly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsidence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.
NASA Astrophysics Data System (ADS)
Sarhan, Mohammad Abdelfattah
2017-12-01
The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.
Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach
NASA Astrophysics Data System (ADS)
Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata
2014-12-01
In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.
NASA Astrophysics Data System (ADS)
Pigeon, Karine E.; Anderson, Meghan; MacNearney, Doug; Cranston, Jerome; Stenhouse, Gordon; Finnegan, Laura
2016-11-01
Populations of boreal and southern mountain caribou in Alberta, Canada, are declining, and the ultimate cause of their decline is believed to be anthropogenic disturbance. Linear features are pervasive across the landscape, and of particular importance, seismic lines established in the 1900s (legacy seismic lines) are slow to regenerate. Off-highway vehicles are widely used on these seismic lines and can hamper vegetative re-growth because of ongoing physical damage, compaction, and active clearing. Restoration of seismic lines within caribou range is therefore a priority for the recovery of threatened populations in Alberta, but a triage-type approach is necessary to prioritize restoration and ensure conservation resources are wisely spent. To target restoration efforts, our objective was to determine factors that best explained levels of off-highway vehicles use on seismic lines intersecting roads. We investigated the relative importance of local topography, vegetation attributes of seismic lines, and broad-scale human factors such as the density of infrastructures and the proximity to recreation campsites and towns to explain the observed levels of off-highway vehicles use. We found that off-highway vehicles use was mainly associated with local topography and vegetation attributes of seismic lines that facilitated ease-of-travel. Broad-scale landscape attributes associated with industrial, recreation access, or hunting activities did not explain levels of off-highway vehicles use. Management actions aimed at promoting natural regeneration and reduce ease-of-travel on legacy seismic lines within caribou ranges can be beneficial to caribou recovery in Alberta, Canada, and we therefore recommend restrictions of off-highway vehicles use on low vegetation, dry seismic lines in caribou ranges.
NASA Astrophysics Data System (ADS)
Mochinaga, H.; Aoki, N.; Mouri, T.
2017-12-01
We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.
3D seismic attribute expressions of deep offshore Niger Delta
NASA Astrophysics Data System (ADS)
Anyiam, Uzonna Okenna
Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.
Characterization of rotary-percussion drilling as a seismic-while-drilling source
NASA Astrophysics Data System (ADS)
Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.
2018-04-01
This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.
NASA Astrophysics Data System (ADS)
Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.
2008-10-01
Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Yan, Ping; Hedin, Peter; Garcia Juanatey, Maria d. l. A.
2017-04-01
We introduce a new constrained 2D magnetotelluric (MT) inversion scheme, in which the local weights of the regularization operator with smoothness constraints are based directly on the envelope attribute of a reflection seismic image. The weights resemble those of a previously published seismic modification of the minimum gradient support method introducing a global stabilization parameter. We measure the directional gradients of the seismic envelope to modify the horizontal and vertical smoothness constraints separately. An appropriate choice of the new stabilization parameter is based on a simple trial-and-error procedure. Our proposed constrained inversion scheme was easily implemented in an existing Gauss-Newton inversion package. From a theoretical perspective, we compare our new constrained inversion to similar constrained inversion methods, which are based on image theory and seismic attributes. Successful application of the proposed inversion scheme to the MT field data of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project using constraints from the envelope attribute of the COSC reflection seismic profile (CSP) helped to reduce the uncertainty of the interpretation of the main décollement. Thus, the new model gave support to the proposed location of a future borehole COSC-2 which is supposed to penetrate the main décollement and the underlying Precambrian basement.
Using seismic derived lithology parameters for hydrocarbon indication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Riel, P.; Sisk, M.
1996-08-01
The last two decades have shown a strong increase in the use of seismic amplitude information for direct hydrocarbon indication. However, working with seismic amplitudes (and seismic attributes) has several drawbacks: tuning effects must be handled; quantitative analysis is difficult because seismic amplitudes are not directly related to lithology; and seismic amplitudes are reflection events, making it is unclear if amplitude changes relate to lithology variations above or below the interface. These drawbacks are overcome by working directly on seismic derived lithology data, lithology being a layer property rather than an interface property. Technology to extract lithology from seismic datamore » has made great strides, and a large range of methods are now available to users including: (1) Bandlimited acoustic impedance (AI) inversion; (2) Reconstruction of the low AI frequencies from seismic velocities, from spatial well log interpolation, and using constrained sparse spike inversion techniques; (3) Full bandwidth reconstruction of multiple lithology properties (porosity, sand fraction, density etc.,) in time and depth using inverse modeling. For these technologies to be fully leveraged, accessibility by end users is critical. All these technologies are available as interactive 2D and 3D workstation applications, integrated with seismic interpretation functionality. Using field data examples, we will demonstrate the impact of these different approaches on deriving lithology, and in particular show how accuracy and resolution is increased as more geologic and well information is added.« less
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.
2013-12-01
We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high-backscatter pockmarks and mounds on the seafloor, which are located atop folds and clustered along intersecting fault planes. Combining the fault and fluid-pathway attribute volumes reveals qualitative first order information on fault seal integrity within the CRISP survey region, highlighting which faults and/or fault sections appear to be sealing or leaking within the sedimentary section. These results provide 3D insight into the fluid-flow behavior offshore southern Costa Rica and suggest that fluids escaping through the deeper crustal rocks are predominantly channeled along faults in the sedimentary cover, especially at fault intersections.
Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Dan
Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydratesmore » and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.« less
Correlates of household seismic hazard adjustment adoption.
Lindell, M K; Whitney, D J
2000-02-01
This study examined the relationships of self-reported adoption of 12 seismic hazard adjustments (pre-impact actions to reduce danger to persons and property) with respondents' demographic characteristics, perceived risk, perceived hazard knowledge, perceived protection responsibility, and perceived attributes of the hazard adjustments. Consistent with theoretical predictions, perceived attributes of the hazard adjustments differentiated among the adjustments and had stronger correlations with adoption than any of the other predictors. These results identify the adjustments and attributes that emergency managers should address to have the greatest impact on improving household adjustment to earthquake hazard.
NASA Astrophysics Data System (ADS)
Nour, Abdoulshakour M.
Oil and gas exploration professionals have long recognized the importance of predicting pore pressure before drilling wells. Pre-drill pore pressure estimation not only helps with drilling wells safely but also aids in the determination of formation fluids migration and seal integrity. With respect to the hydrocarbon reservoirs, the appropriate drilling mud weight is directly related to the estimated pore pressure in the formation. If the mud weight is lower than the formation pressure, a blowout may occur, and conversely, if it is higher than the formation pressure, the formation may suffer irreparable damage due to the invasion of drilling fluids into the formation. A simple definition of pore pressure is the pressure of the pore fluids in excess of the hydrostatic pressure. In this thesis, I investigated the utility of advance computer algorithm called Support Vector Machine (SVM) to learn the pattern of high pore pressure regime, using seismic attributes such as Instantaneous phase, t*Attenuation, Cosine of Phase, Vp/Vs ratio, P-Impedance, Reflection Acoustic Impedance, Dominant frequency and one well attribute (Mud-Weigh) as the learning dataset. I applied this technique to the over pressured Qalibah formation of Northwest Saudi Arabia. The results of my research revealed that in the Qalibah formation of Northwest Saudi Arabia, the pore pressure trend can be predicted using SVM with seismic and well attributes as the learning dataset. I was able to show the pore pressure trend at any given point within the geographical extent of the 3D seismic data from which the seismic attributes were derived. In addition, my results surprisingly showed the subtle variation of pressure within the thick succession of shale units of the Qalibah formation.
Methods to enhance seismic faults and construct fault surfaces
NASA Astrophysics Data System (ADS)
Wu, Xinming; Zhu, Zhihui
2017-10-01
Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.
Lee, Myung W.
2005-01-01
In order to assess the resource potential of gas hydrate deposits in the North Slope of Alaska, 3-D seismic and well data at Milne Point were obtained from BP Exploration (Alaska), Inc. The well-log analysis has three primary purposes: (1) Estimate gas hydrate or gas saturations from the well logs; (2) predict P-wave velocity where there is no measured P-wave velocity in order to generate synthetic seismograms; and (3) edit P-wave velocities where degraded borehole conditions, such as washouts, affected the P-wave measurement significantly. Edited/predicted P-wave velocities were needed to map the gas-hydrate-bearing horizons in the complexly faulted upper part of 3-D seismic volume. The estimated gas-hydrate/gas saturations from the well logs were used to relate to seismic attributes in order to map regional distribution of gas hydrate inside the 3-D seismic grid. The P-wave velocities were predicted using the modified Biot-Gassmann theory, herein referred to as BGTL, with gas-hydrate saturations estimated from the resistivity logs, porosity, and clay volume content. The effect of gas on velocities was modeled using the classical Biot-Gassman theory (BGT) with parameters estimated from BGTL.
Modeling Wide-Angle Seismic Data from the Hi-CLIMB Experiment in Tibet
NASA Astrophysics Data System (ADS)
Nowack, R. L.; Griffin, J. D.; Tseng, T.; Chen, W.
2009-12-01
Using data from local and regional events recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes, including arrival times, Hilbert amplitudes and pulse frequencies, to constrain structures of seismic wave speed and attenuation in the crust and the upper mantle in western China. We construct more than 30 high-quality, regional seismic profiles, and select 14 of these, which show excellent crustal and Pn arrivals, for further analysis. Travel-times from events at regional distances constrain large-scale velocity structures, and four close-in events provide further details on crustal structure. We use the 3-D ray tracer, CRT, to model the travel-times. Initial results indicate that the Moho beneath the Lhasa terrane of southern Tibet is over 73 km deep with a high Pn speed of about 8.2 km/s. In contrast, the Qiangtang terrane farther north shows a thinner crust, by up to 10 km, and a low Pn speed of 7.8-7.9 km/s. Preliminary estimates of upper mantle velocity gradients are between .003 and .004 km/s per km, consistent with previous results by Phillips et al. (2007). We also use P to SV conversions from teleseismic earthquakes to independently constrain variations in speeds of Pn and depths of the Moho. For instance, amplitudes of the SsPmP phase, when its last reflection off the Moho is near-critical, are particularly sensitive to the contrast in seismic wave speeds across the crust-mantle interface; and results from these additional data are consistent with those from modeling of travel-times. Additional seismic attributes, extracted from wave-trains containing Pn and major crustal phases, are being compared with results of numerical modeling based on the spectral element method and asymptotic calculations in laterally varying media, where both lateral and vertical gradients in seismic wave speeds can strongly affect Pn amplitudes and pulse frequencies.
NASA Astrophysics Data System (ADS)
Zullo, Claudia Cristina
Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to short distances, contrary to correlations in previous studies that have indicated connection of sands at distances of at least 3 km. The results highlight the importance of integrating multiple sources of geologic information for the interpretation of the stratigraphic architecture of non-marine sediments, and the value of roadway-based land-streamer seismic data for the interpretation of near-surface (less than 300-m-depth) aquifer sand characteristics in developed areas.
NASA Astrophysics Data System (ADS)
Kozlowska, M.; Brudzinski, M.; Friberg, P. A.; Skoumal, R.; Baxter, N. D.; Currie, B.
2017-12-01
While induced seismicity in the United States has mainly been attributed to wastewater disposal, Eastern Ohio has provided cases of seismicity induced by both hydraulic fracturing (HF) and wastewater disposal. In this study, we investigate five cases of seismicity associated with HF in Harrison County, OH. Because of their temporal and spatial isolation from other injection activities, this provide an ideal setting for studying the relationships between high pressure injection and earthquakes. Our analysis reveals two distinct groups of seismicity. Deeper earthquakes occur in the Precambrian crystalline basement, reach larger magnitudes (M>2), have lower b-values (<1), and continue for weeks following stimulation shut down. Shallower earthquakes, on the other hand, occur in Paleozoic sedimentary rocks 400 m below HF, are limited to smaller magnitudes (M<1), have higher b-values (>1.5), and lack post-stimulation activity. We seek the physical explanation of observed difference in earthquakes character and hypothesize that the maturity of faults is the main factor determining sequences b-values. Based on published results of laboratory experiments and fault modeling, we interpret the deep seismicity as slip on more mature faults in the older crystalline rocks and the shallow seismicity as slip on immature faults in the younger, lower viscosity sedimentary rocks. This suggests that HF inducing seismicity on deeper, more mature faults poses higher seismic hazards. The analysis of water and gas production data from these wells suggests that wells inducing deeper seismicity produced more water than wells with shallow seismicity. This indicates more extensive hydrologic connections outside the target reservoir, which may explain why gas production drops more quickly for wells with deeper seismicity. Despite these indications that hydraulic pressure fluctuations induce seismicity, we also find only 2-3 hours between onset of stimulation of HF wells and seismicity that is too short for typical fluid pressure diffusion rates across distances of 1 km. We conclude that a combination of pore fluid pressure changes and poroelastic stress changes are responsible for inducing shear slip during HF.
NASA Astrophysics Data System (ADS)
Harryandi, Sheila
The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.
Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics
NASA Astrophysics Data System (ADS)
Cao, J.; Wu, S.; He, X.
2016-12-01
Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.
Advanced Gas Hydrate Reservoir Modeling Using Rock Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel
Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production. A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Legmore » II in 2009 and recently confirmed with coring in 2017. A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.« less
Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan
2016-09-01
Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.
NISHIDA, Kiwamu
2017-01-01
The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015
NASA Astrophysics Data System (ADS)
Yan, Ping; Kalscheuer, Thomas; Hedin, Peter; Garcia Juanatey, Maria A.
2017-04-01
We present a novel 2-D magnetotelluric (MT) inversion scheme, in which the local weights of the regularizing smoothness constraints are based on the envelope attribute of a reflection seismic image. The weights resemble those of a previously published seismic modification of the minimum gradient support method. We measure the directional gradients of the seismic envelope to modify the horizontal and vertical smoothness constraints separately. Successful application of the inversion to MT field data of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project using the envelope attribute of the COSC reflection seismic profile helped to reduce the uncertainty of the interpretation of the main décollement by demonstrating that the associated alum shales may be much thinner than suggested by a previous inversion model. Thus, the new model supports the proposed location of a future borehole COSC-2 which is hoped to penetrate the main décollement and the underlying Precambrian basement.
NASA Astrophysics Data System (ADS)
Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.
2012-04-01
The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian. There are typical tectonic and deep origin mechanisms for the moderate-strong earthquakes nearby SP Tuantian, and precaution should be added on this area in case of the potential earthquake. Our fusion image also clearly revealed that there exist two remarkable positions on the Moho discontinuity through which the heat from the upper mantle was transmitted upward, and this is attributed to the widely distributed hot material within the crust and upper mantle. We acknowledge the financial support of the Ministry of Land and Resources of China (SinoProbe-02-02), and the National Nature Science Foundation of China (No. 41074033 and No. 40830315). Key Words: Seismic Signature, Magma, Tengchong Volcanic Area, Deep Seismic Sounding, Seismic Attribute Fusion Li, Chang, van der Hilst, D., Meltzer, A.S., Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274. doi:10.1016/j.epsl.2008.07.016. Lebedev, S., van der Hilst, R.D., 2008. Global upper-mantle tomography with the automated multi-mode surface and S waveforms. Geophys. J. Int. 173 (2), 505-518. Wang C.Y. and Huangfu G.. 2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics, 380: 69-87.
Lindell, Michael K; Arlikatti, Sudha; Prater, Carla S
2009-08-01
This study examined respondents' self-reported adoption of 16 hazard adjustments (preimpact actions to reduce danger to persons and property), their perceptions of those adjustments' attributes, and the correlations of those perceived attributes with respondents' demographic characteristics. The sample comprised 561 randomly selected residents from three cities in Southern California prone to high seismic risk and three cities from Western Washington prone to moderate seismic risks. The results show that the hazard adjustment perceptions were defined by hazard-related attributes and resource-related attributes. More significantly, the respondents had a significant degree of consensus in their ratings of those attributes and used them to differentiate among the hazard adjustments, as indicated by statistically significant differences among the hazard adjustment profiles. Finally, there were many significant correlations between respondents' demographic characteristics and the perceived characteristics of hazard adjustments, but there were few consistent patterns among these correlations.
NASA Astrophysics Data System (ADS)
Orlando, Luciana; Contini, Paolo; De Girolamo, Paolo
2017-06-01
Of fundamental importance for any major beach nourishment project using marine quarries is a correct sedimentary classification. The main purpose of such a classification is to identify sand with the appropriate features for beach nourishment. This task is more onerous when quarry sediments are heterogeneous and mixed with silt. This is typical of nearshore marine quarries. The presence of excess silt compromises the use of marine quarries because of the water turbidity that may be induced in the nourished beaches, especially when the beaches are protected by defense structures. Here we discuss the use of scattering amplitude of seismic data, acquired with a pinger source (2-10 kHz), to detect and classify the unconsolidated sediment of a marine quarry. A robust correlation was found between this seismic attribute and the silt content in the sediment. The scattering amplitude was numerically calculated from the seismic data and used to map slices of silt content at different depths. The results have been validated with sedimentary analysis of vibra- and rotary cores, and by the dredged material used for the beach nourishment. The marine quarry produced about 1.200.000 m3 of sand used to nourish eight different beach sites along the Adriatic coasts of the Regione Abruzzo (Italy). The large-scale sedimentary assessment of the area was based on seismic boomer data and the evaluation of the volume of dredged sediments on multibeam data surveyed before and after the exploitation of the quarry. The study shows that this approach is effective in sites with high lateral and vertical variations in the percentage of sand in the sediments.
NASA Astrophysics Data System (ADS)
Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.
2015-12-01
Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research are an improved subsurface image of the seismic data (model), a porosity prediction for the reservoir, a reservoir quality map and also a fault map. The result shows a complex geologic model which may contribute to the economic potential of the field. For better understanding, 3D seismic survey, uncertainty and attributes analysis are necessary.
Calibration of Seismic Attributes for Reservoir Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron
2002-01-29
This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures,more » to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.« less
Multiple timescales of cyclical behaviour observed at two dome-forming eruptions
NASA Astrophysics Data System (ADS)
Lamb, Oliver D.; Varley, Nick R.; Mather, Tamsin A.; Pyle, David M.; Smith, Patrick J.; Liu, Emma J.
2014-09-01
Cyclic behaviour over a range of timescales is a well-documented feature of many dome-forming volcanoes, but has not previously been identified in high resolution seismic data from Volcán de Colima (Mexico). Using daily seismic count datasets from Volcán de Colima and Soufrière Hills volcano (Montserrat), this study explores parallels in the long-term behaviour of seismicity at two long-lived systems. Datasets are examined using multiple techniques, including Fast-Fourier Transform, Detrended Fluctuation Analysis and Probabilistic Distribution Analysis, and the comparison of results from two systems reveals interesting parallels in sub-surface processes operating at both systems. Patterns of seismicity at both systems reveal complex but broadly similar long-term temporal patterns with cycles on the order of ~ 50- to ~ 200-days. These patterns are consistent with previously published spectral analyses of SO2 flux time-series at Soufrière Hills volcano, and are attributed to variations in the movement of magma in each system. Detrended Fluctuation Analysis determined that both volcanic systems showed a systematic relationship between the number of seismic events and the relative ‘roughness' of the time-series, and explosions at Volcán de Colima showed a 1.5-2 year cycle; neither observation has a clear explanatory mechanism. At Volcán de Colima, analysis of repose intervals between seismic events shows long-term behaviour that responds to changes in activity at the system. Similar patterns for both volcanic systems suggest a common process or processes driving the observed signal but it is not clear from these results alone what those processes may be. Further attempts to model conduit processes at each volcano must account for the similarities and differences in activity within each system. The identification of some commonalities in the patterns of behaviour during long-lived dome-forming eruptions at andesitic volcanoes provides a motivation for investigating further use of time-series analysis as a monitoring tool.
Evaluating geophysical lithology determination methods in the central offshore Nile Delta, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nada, H.; Shrallow, J.
1994-12-31
Two post stack and one prestack geophysical techniques were used to extract lithology and fluid information from seismic data. The purpose of this work was to evaluate the effectiveness of such methods in helping to find more hydrocarbons and reduce exploration risk in Egypt`s Nile Delta. Amplitude Variations with Offset (AVO) was used as a direct hydrocarbon indicator. CDP gathers were sorted into common angle gathers. The angle traces from 0--10 degrees were stacked to form a near angle stack and those from 30--40 degrees were stacked to form a far angle stack. Comparison of the far and near anglemore » stacks indicate areas which have seismic responses that match gas bearing sand models in the Pliocene and Messinian. Seismic Sequence Attribute mapping was used to measure the reflectivity of a seismic sequence. The specific sequence attribute measured in this study was the Maximum Absolute Amplitude of the seismic reflections within a sequence. Post stack seismic inversion was used to convert zero phase final migrated data to pseudo acoustic impedance data to interpret lithology from seismic data. All three methods are useful in the Nile Delta for identifying sand prone areas, but only AVO can be used to detect fluid content.« less
NASA Astrophysics Data System (ADS)
Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.
2017-07-01
This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.
Identification Method of Mud Shale Fractures Base on Wavelet Transform
NASA Astrophysics Data System (ADS)
Xia, Weixu; Lai, Fuqiang; Luo, Han
2018-01-01
In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.
Evaluating the Relationship Between Seismicity and Subsurface Well Activity in Utah
NASA Astrophysics Data System (ADS)
Lajoie, L. J.; Bennett, S. E. K.
2014-12-01
Understanding the relationship between seismicity and subsurface well activity is crucial to evaluating the seismic hazard of transient, non-tectonic seismicity. Several studies have demonstrated correlations between increased frequency of earthquake occurrence and the injection/production of fluids (e.g. oil, water) in nearby subsurface wells in intracontinental settings (e.g. Arkansas, Colorado, Ohio, Oklahoma, Texas). Here, we evaluate all earthquake magnitudes for the past 20-30 years across the diverse seismotectonic settings of Utah. We explore earthquakes within 5 km and subsequent to completion dates of oil and gas wells. We compare seismicity rates prior to well establishment with rates after well establishment in an attempt to discriminate between natural and anthropogenic earthquakes in areas of naturally high background seismicity. In a few central Utah locations, we find that the frequency of shallow (0-10 km) earthquakes increased subsequent to completion of gas wells within 5 km, and at depths broadly similar to bottom hole depths. However, these regions typically correspond to mining regions of the Wasatch Plateau, complicating our ability to distinguish between earthquakes related to either well activity or mining. We calculate earthquake density and well density and compare their ratio (earthquakes per area/wells per area) with several published metrics of seismotectonic setting. Areas with a higher earthquake-well ratio are located in relatively high strain regions (determined from GPS) associated with the Intermountain Seismic Belt, but cannot be attributed to any specific Quaternary-active fault. Additionally, higher ratio areas do not appear to coincide with anomalously high heat flow values, where rocks are typically thermally weakened. Incorporation of timing and volume data for well injection/production would allow for more robust temporal statistical analysis and hazard analysis.
Time lapse (4D) and AVO analysis: A case study of Gullfaks field, Northern North Sea
NASA Astrophysics Data System (ADS)
Umoren, Emmanuel Bassey; George, Nyakno Jimmy
2018-06-01
A 4D seismic or time lapse survey has been used to investigate the amplitude versus offset (AVO) effects on seismic data in order to identify anomalies in the Gullfaks field for three different reservoir intervals namely the Tarbert, Cook and Statfjord reservoirs. Repeatability analysis has shown that the earlier seismic vintages are the most unreliable for amplitude anomaly analysis as normalised root-mean square (NRMS) values are greater than 50%. This is above the threshold of good and medium repeatability. Fluid substitution models show increases in both P-wave velocity and density for increasing water saturations with a maximum change of 7.33% in the P-wave velocity, and this is in line with predictions from previous work using the Biot - Gassman equations. AVO modelling for the top Tarbert Formation interface produced scenarios of increasing amplitudes with offset for the presence of hydrocarbons, which dim out with 100% brine saturation. This correlates to class III gas sands for different situations of varying Poisson's ratio across an interface, which has been previously modelled. Two anomalies were identified with one being related to increasing pressure due to water injection correlating to poor permeability around injector well 34/10-B-33. The second anomaly is a case of potential unswept hydrocarbons that displayed a consistent bright spot throughout all of the seismic vintages (in-inlines and crosslines). AVO attribute analysis of this event produced a class II anomaly. However, when comparing near and far offset seismic data, dimming effect was observed producing contrasting evidence. The dimming offset is viewed to have been as a result of poor repeatability values at far offsets. The modelling of the fluid contents in the studied formations to conform to existing literatures justifies the efficacy of the method.
Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.
1996-12-17
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.
Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei
1996-01-01
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
NASA Astrophysics Data System (ADS)
Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe
2017-04-01
In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of mass movements and other environmental sources at the local, regional and even global scale.
Nonlinear Classification of AVO Attributes Using SVM
NASA Astrophysics Data System (ADS)
Zhao, B.; Zhou, H.
2005-05-01
A key research topic in reservoir characterization is the detection of the presence of fluids using seismic and well-log data. In particular, partial gas discrimination is very challenging because low and high gas saturation can result in similar anomalies in terms of Amplitude Variation with Offset (AVO), bright spot, and velocity sag. Hence, a successful fluid detection will require a good understanding of the seismic signatures of the fluids, high-quality data, and good detection methodology. Traditional attempts of partial gas discrimination employ the Neural Network algorithm. A new approach is to use the Support Vector Machine (SVM) (Vapnik, 1995; Liu and Sacchi, 2003). While the potential of the SVM has not been fully explored for reservoir fluid detection, the current nonlinear methods classify seismic attributes without the use of rock physics constraints. The objective of this study is to improve the capability of distinguishing a fizz-water reservoir from a commercial gas reservoir by developing a new detection method using AVO attributes and rock physics constraints. This study will first test the SVM classification with synthetic data, and then apply the algorithm to field data from the King-Kong and Lisa-Anne fields in Gulf of Mexico. While both field areas have high amplitude seismic anomalies, King-Kong field produces commercial gas but Lisa-Anne field does not. We expect that the new SVM-based nonlinear classification of AVO attributes may be able to separate commercial gas from fizz-water in these two fields.
NASA Astrophysics Data System (ADS)
Mhuder, J. J.; Muhlhl, A. A.; Basra Geologiests
2013-05-01
The Garraf Field is situated in Southern Iraq in Nasiriya area, is located in Mesopotamian basin. The carbonate facies are dominant in main reservoirs in Garraf field (Mishrif and Yammama Formations) which is Cretaceous in age. The structure of the reservoir in this field are low relief gentle anticlinal structure aligned in NW to SE direction, and No fault were observed and interpreted in 3D seismic section. 3D seismic survey by Iraqi Oil Exploration Company No 2 was successfully conducted on the Garraf field at 2008-2009 using recording system SERCEL 408UL and Vibrators Nomad 65. Bin size: 25*25, Fold: 36, SP Interval: 50m, Lines Interval: 300m, 3 wells were drilled Ga (1, 2, 3) and it used for seismic to well tie in Petrel. Data analysis was conducted for each reservoirs for Lithological and sedimentological studies were based on core and well data .The study showed That the Mishrif Formation deposited in a broad carbonate platform with shallowing upward regressive succession and The depositional environment is extending from outer marine to shallow middle-inner shelf settings with restricted lagoons as supported by the present of Miliolid fossils. The fragmented rudist biostromes accumulated in the middle shelf. No rudist reef is presence in the studied cores. While the Major sequences are micritic limestone of lagoonal and oolitic/peloidal grainstone sandy shoal separated by mudstone of Yamama formation. Sedimentation feature are seen on seismic attributes and it is help for understanding of sedimentation environment and suitable structure interpretation. There is good relationship between Acustic Impedance and porosity, Acustic Impedance reflects porosity or facies change of carbonate rather than fluid content. Data input used for 3D Modeling include 3D seismic and AI data, petrophysical analysis, core and thin section description. 3D structure modeling were created base on the geophysical data interpretation and Al analysis. Data analysis for Al data were run as secondary input for 3D properties modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.N.
1995-11-01
Within the Global Basins Research Network, we have developed 4-D seismic analysis techniques that, when integrated with pressure and temperature mapping, production history, geochemical monitoring, and finite element modeling, allow for the imaging of active fluid migration in the subsurface. We have imaged fluid flow pathways that are actively recharging shallower hydrocarbon reservoirs in the Eugene Island 330 field, offshore Louisiana. The hydrocarbons appear to be sourcing from turbidite stacks within the salt-withdrawal mini-basin buried deep within geopressure. Fault zone conduits provide transient migration pathways out of geopressure. To accomplish this 4-D imaging, we use multiple 3-D seismic surveys donemore » several years apart over the same blocks. 3-D volume processing and attribute analysis algorithms are used to identify significant seismic amplitude interconnectivity and changes over time that result from active fluid migration. Pressures and temperatures are then mapped and modeled to pro- vide rate and timing constraints for the fluid movement. Geochemical variability observed in the shallow reservoirs is attributed to the mixing of new with old oils. The Department of Energy has funded an industry cost-sharing project to drill into one of these active conduits in Eugene Island Block 330. Active fluid flow was encountered within the fault zone in the field demonstration experiment, and hydrocarbons were recovered. The active migration events connecting shallow reservoirs to deep sourcing regions imply that large, heretofore undiscovered hydrocarbon reserves exist deep within geopressures along the deep continental shelf of the northern Gulf of Mexico.« less
Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)
NASA Astrophysics Data System (ADS)
karimzadeh Naghshineh, S.; Askan, A.; Erberik, M. A.; Yakut, A.
2015-12-01
Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected which is located in the conjunction of three active strike-slip faults as North Anatolian Fault, North East Anatolian Fault and Ovacik fault. Erzincan city center is in a pull-apart basin underlain by soft sediments that has experienced devastating earthquakes such as the 27 December 1939 (Ms=8.0) and the 13 March 1992 (Mw=6.6) events, resulting in extensive amount of physical as well as economical losses. These losses are attributed to not only the high seismicity of the area but also as a result of the seismic vulnerability of the constructed environment. This study focuses on the seismic damage estimation of Erzincan using both regional seismicity and local building information. For this purpose, first, ground motion records are selected from a set of scenario events simulated with the stochastic finite fault methodology using regional seismicity parameters. Then, existing building stock are classified into specified groups represented with equivalent single-degree-of-freedom systems. Through these models, the inelastic dynamic structural responses are investigated with non-linear time history analysis. To assess the potential seismic damage in the study area, fragility curves for the classified structural types are derived. Finally, the estimated damage is compared with the observed damage during the 1992 Erzincan earthquake. The results are observed to have a reasonable match indicating the efficiency of the ground motion simulations and building analyses.
NASA Astrophysics Data System (ADS)
Kroenke, Samantha E.
In June 2009, a 2.2 square mile 3-D high resolution seismic reflection survey was shot in southeastern Illinois in the Phillipstown Consolidated oilfield. A well was drilled in the 3-D survey area to tie the seismic to the geological data with a synthetic seismogram from the sonic log. The objectives of the 3-D seismic survey were three-fold: (1) To image and interpret faulting of the Herald-Phillipstown Fault using drillhole-based geological and seismic cross-sections and structural contour maps created from the drillhole data and seismic reflection data, (2) To test the effectiveness of imaging the faults by selected seismic attributes, and (3) To compare spectral decomposition amplitude maps with an isochron map and an isopach map of a selected geologic interval (VTG interval). Drillhole and seismic reflection data show that various formation offsets increase near the main Herald-Phillipstown fault, and that the fault and its large offset subsidiary faults penetrate the Precambrian crystalline basement. A broad, northeast-trending 10,000 feet wide graben is consistently observed in the drillhole data. Both shallow and deep formations in the geological cross-sections reveal small horst and graben features within the broad graben created possibly in response to fault reactivations. The HPF faults have been interpreted as originally Precambrian age high-angle, normal faults reactivated with various amounts and types of offset. Evidence for strike-slip movement is also clear on several faults. Changes in the seismic attribute values in the selected interval and along various time slices throughout the whole dataset correlate with the Herald-Phillipstown faults. Overall, seismic attributes could provide a means of mapping large offset faults in areas with limited or absent drillhole data. Results of the spectral decomposition suggest that if the interval velocity is known for a particular formation or interval, high-resolution 3-D seismic reflection surveys could utilize these amplitudes as an alternative seismic interpretation method for estimating formation thicknesses. A VTG isopach map was compared with an isochron map and a spectral decomposition amplitude map. The results reveal that the isochron map strongly correlates with the isopach map as well as the spectral decomposition map. It was also found that thicker areas in the isopach correlated with higher amplitude values in the spectral decomposition amplitude map. Offsets along the faults appear sharper in these amplitudes and isochron maps than in the isopach map, possibly as a result of increased spatial sampling.
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2012-02-01
We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.
NASA Astrophysics Data System (ADS)
Ansari, Hamid Reza
2014-09-01
In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.
NASA Astrophysics Data System (ADS)
Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig
2015-10-01
The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes
2007-06-30
The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less
Application of seismic interpretation in the development of Jerneh Field, Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Z.
1994-07-01
Development of the Jerneh gas field has been significantly aided by the use of 3-D and site survey seismic interpretations. The two aspects that have been of particular importance are identification of sea-floor and near-surface safety hazards for safe platform installation/development drilling and mapping of reservoirs/hydrocarbons within gas-productive sands of the Miocene groups B, D, and E. Choice of platform location as well as casing design require detailed analysis of sea-floor and near-surface safety hazards. At Jerneh, sea-floor pockmarks near-surface high amplitudes, distributary channels, and minor faults were recognized as potential operational safety hazards. The integration of conventional 3-D andmore » site survey seismic data enabled comprehensive understanding of the occurrence and distribution of potential hazards to platform installation and development well drilling. Three-dimensional seismic interpretation has been instrumental not only in the field structural definition but also in recognition of reservoir trends and hydrocarbon distribution. Additional gas reservoirs were identified by their DHI characteristics and subsequently confirmed by development wells. The innovative use of seismic attribute mapping techniques has been very important in defining both fluid and reservoir distribution in groups B and D. Integration of 3-D seismic data and well-log interpretations has helped in optimal field development, including the planning of well locations and drilling sequence.« less
Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun
2012-01-01
A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.
NASA Astrophysics Data System (ADS)
Othman, Adel A. A.; Fathy, M.; Negm, Adel
2018-06-01
The Temsah field is located in eastern part of the Nile delta to seaward. The main reservoirs of the area are Middle Pliocene mainly consist from siliciclastic which associated with a close deep marine environment. The Distribution pattern of the reservoir facies is limited scale indicating fast lateral and vertical changes which are not easy to resolve by applying of conventional seismic attribute. The target of the present study is to create geophysical workflows to a better image of the channel sand distribution in the study area. We apply both Average Absolute Amplitude and Energy attribute which are indicated on the distribution of the sand bodies in the study area but filled to fully described the channel geometry. So another tool, which offers more detailed geometry description is needed. The spectral decomposition analysis method is an alternative technique focused on processing Discrete Fourier Transform which can provide better results. Spectral decomposition have been done over the upper channel shows that the frequency in the eastern part of the channel is the same frequency in places where the wells are drilled, which confirm the connection of both the eastern and western parts of the upper channel. Results suggest that application of the spectral decomposition method leads to reliable inferences. Hence, using the spectral decomposition method alone or along with other attributes has a positive impact on reserves growth and increased production where the reserve in the study area increases to 75bcf.
NASA Astrophysics Data System (ADS)
Jeanne, Pierre; Rutqvist, Jonny; Hutchings, Lawrence; Singh, Ankit; Dobson, Patrick F.; Walters, Mark; Hartline, Craig; Garcia, Julio
2015-03-01
Using coupled thermal-hydro-mechanical (THM) modeling, we evaluated new seismic tomography results associated with stimulation injection at an EGS demonstration project at the Northwest Geysers geothermal steam field, California. We studied high resolution seismic tomography images built from data recorded during three time periods: a period of two months prior to injection and during two consecutive one month periods after injection started in October 2011. Our analysis shows that seismic velocity decreases in areas of most intense induced microseismicity and this is also correlated with the spatial distribution of calculated steam pressure changes. A detailed analysis showed that shear wave velocity decreases with pressure in areas where pressure is sufficiently high to cause shear reactivation of pre-existing fractures. The analysis also indicates that cooling in a liquid zone around the injection well contributes to reduced shear wave velocity. A trend of reducing compressional wave velocity with fluid pressure was also found, but at pressures much above the pressure required for shear reactivation. We attribute the reduction in shear wave velocity to softening in the rock mass shear modulus associated with shear dislocations and associated changes in fracture surface properties. Also, as the rock mass become more fractured and more deformable this favors reservoir expansion caused by the pressure increase, and so the fracture porosity increases leading to a decrease in bulk density, a decrease in Young modulus and finally a decrease in Vp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefeuvre, F.E.; Wrolstad, K.H.; Zou, Ke Shan
Total and Unocal estimated sand-shale ratios in gas reservoirs from the upper Tertiary clastics of Myanmar. They separately used deterministic pre-stack and statistical post-stack seismic attribute analysis calibrated at two wells to objectively extrapolate the lithologies and reservoir properties several kilometers away from the wells. The two approaches were then integrated and lead to a unique distribution of the sands and shales in the reservoir which fit in the known regional geological model. For the sands, the fluid distributions (gas and brine) were also estimated as well as the porosity, water saturation, thickness and clay content of the sands. Thismore » was made possible by using precise elastic modeling based on the Biot-Gassmann equation in order to integrate the effects of reservoir properties on seismic signatures.« less
Seismic signature of turbulence during the 2017 Oroville Dam spillway erosion crisis
NASA Astrophysics Data System (ADS)
Goodling, Phillip J.; Lekic, Vedran; Prestegaard, Karen
2018-05-01
Knowing the location of large-scale turbulent eddies during catastrophic flooding events improves predictions of erosive scour. The erosion damage to the Oroville Dam flood control spillway in early 2017 is an example of the erosive power of turbulent flow. During this event, a defect in the simple concrete channel quickly eroded into a 47 m deep chasm. Erosion by turbulent flow is difficult to evaluate in real time, but near-channel seismic monitoring provides a tool to evaluate flow dynamics from a safe distance. Previous studies have had limited ability to identify source location or the type of surface wave (i.e., Love or Rayleigh wave) excited by different river processes. Here we use a single three-component seismometer method (frequency-dependent polarization analysis) to characterize the dominant seismic source location and seismic surface waves produced by the Oroville Dam flood control spillway, using the abrupt change in spillway geometry as a natural experiment. We find that the scaling exponent between seismic power and release discharge is greater following damage to the spillway, suggesting additional sources of turbulent energy dissipation excite more seismic energy. The mean azimuth in the 5-10 Hz frequency band was used to resolve the location of spillway damage. Observed polarization attributes deviate from those expected for a Rayleigh wave, though numerical modeling indicates these deviations may be explained by propagation up the uneven hillside topography. Our results suggest frequency-dependent polarization analysis is a promising approach for locating areas of increased flow turbulence. This method could be applied to other erosion problems near engineered structures as well as to understanding energy dissipation, erosion, and channel morphology development in natural rivers, particularly at high discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Toelle
This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects,more » such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO{sub 2} injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO{sub 2} was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO{sub 2} sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.« less
NASA Astrophysics Data System (ADS)
Fazio, Marco; De Siena, Luca; Benson, Phillip
2016-04-01
Seismic attenuation and scattering are two attributes that can be linked with porosity and permeability in laboratory experiments. When measuring these two quantities using seismic waveforms recorder at lithospheric and volcanic scales the areas of highest heterogeneity, as batches of melt and zones of high deformation, produce anomalous values of the measured quantities, the seismic quality factor and scattering coefficient. When employed as indicators of heterogeneity and absorption in volcanic areas these anomalous effects become strong indicators of magma accumulation and tectonic boundaries, shaping magmatic chambers and conduit systems. We perform attenuation and scattering measurements and imaging using seismic waveforms produced in laboratory experiments, at frequencies ranging between the kHz and MHz. As attenuation and scattering are measured from the shape of the envelopes, disregarding phases, we are able to connect the observations with the micro fracturing and petrological quantities previously measured on the sample. Connecting the imaging of dry and saturated samples via these novel attributes with the burst of low-period events with increasing saturation and deformation is a challenge. Its solution could plant the seed for better relating attenuation and scattering tomography measurements to the presence of fluids and gas, therefore creating a novel path for reliable porosity and permeability tomography. In particular for volcanoes, being able to relate attenuation/scattering measurements with low-period micro seismicity could deliver new data to settle the debate about if both source and medium can produce seismic resonance.
NASA Astrophysics Data System (ADS)
Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.
2003-04-01
Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grana, Dario; Verma, Sumit; Pafeng, Josiane
We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less
Grana, Dario; Verma, Sumit; Pafeng, Josiane; ...
2017-06-20
We present a reservoir geophysics study, including rock physics modeling and seismic inversion, of a carbon dioxide sequestration site in Southwestern Wyoming, namely the Rock Springs Uplift, and build a petrophysical model for the potential injection reservoirs for carbon dioxide sequestration. Our objectives include the facies classification and the estimation of the spatial model of porosity and permeability for two sequestration targets of interest, the Madison Limestone and the Weber Sandstone. The available dataset includes a complete set of well logs at the location of the borehole available in the area, a set of 110 core samples, and a seismicmore » survey acquired in the area around the well. The proposed study includes a formation evaluation analysis and facies classification at the well location, the calibration of a rock physics model to link petrophysical properties and elastic attributes using well log data and core samples, the elastic inversion of the pre-stack seismic data, and the estimation of the reservoir model of facies, porosity and permeability conditioned by seismic inverted elastic attributes and well log data. In particular, the rock physics relations are facies-dependent and include granular media equations for clean and shaley sandstone, and inclusion models for the dolomitized limestone. The permeability model has been computed by applying a facies-dependent porosity-permeability relation calibrated using core sample measurements. Finally, the study shows that both formations show good storage capabilities. The Madison Limestone includes a homogeneous layer of high-porosity high-permeability dolomite; the Weber Sandstone is characterized by a lower average porosity but the layer is thicker than the Madison Limestone.« less
NASA Astrophysics Data System (ADS)
Cao, Zhanning; Li, Xiangyang; Sun, Shaohan; Liu, Qun; Deng, Guangxiao
2018-04-01
Aiming at the prediction of carbonate fractured-vuggy reservoirs, we put forward an integrated approach based on seismic and well data. We divide a carbonate fracture-cave system into four scales for study: micro-scale fracture, meso-scale fracture, macro-scale fracture and cave. Firstly, we analyze anisotropic attributes of prestack azimuth gathers based on multi-scale rock physics forward modeling. We select the frequency attenuation gradient attribute to calculate azimuth anisotropy intensity, and we constrain the result with Formation MicroScanner image data and trial production data to predict the distribution of both micro-scale and meso-scale fracture sets. Then, poststack seismic attributes, variance, curvature and ant algorithms are used to predict the distribution of macro-scale fractures. We also constrain the results with trial production data for accuracy. Next, the distribution of caves is predicted by the amplitude corresponding to the instantaneous peak frequency of the seismic imaging data. Finally, the meso-scale fracture sets, macro-scale fractures and caves are combined to obtain an integrated result. This integrated approach is applied to a real field in Tarim Basin in western China for the prediction of fracture-cave reservoirs. The results indicate that this approach can well explain the spatial distribution of carbonate reservoirs. It can solve the problem of non-uniqueness and improve fracture prediction accuracy.
Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.
2017-12-08
Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight sequence stratigraphic cycles that compose the Eocene to Miocene Oldsmar, Avon Park, and Arcadia Formations. The mapping of these seismic-reflection and well data has produced a refined Cenozoic sequence stratigraphic, seismic stratigraphic, and hydrogeologic framework of southeastern Florida. The upward transition from the Oldsmar Formation to the Avon Park Formation and the Arcadia Formation embodies the evolution from (1) a tropical to subtropical, shallow-marine, carbonate platform, represented by the Oldsmar and Avon Park Formations, to (2) a broad, temperate, mixed carbonate-siliciclastic shallow marine shelf, represented by the lower part of the Arcadia Formation, and to (3) a temperate, distally steepened carbonate ramp represented by the upper part of the Arcadia Formation.In the study area, the depositional sequences and seismic sequences have a direct correlation with hydrogeologic units. The approximate upper boundary of four principal permeable units of the Floridan aquifer system (Upper Floridan aquifer, Avon Park permeable zone, uppermost major permeable zone of the Lower Floridan aquifer, and Boulder Zone) have sequence stratigraphic and seismic-reflection signatures that were identified on cross sections, mapped, or both, and therefore the sequence stratigraphy and seismic stratigraphy were used to guide the development of a refined spatial representation of these hydrogeologic units. In all cases, the permeability of the four permeable units is related to stratiform megaporosity generated by ancient dissolution of carbonate rock associated with subaerial exposure and unconformities at the upper surfaces of carbonate depositional cycles of several hierarchical scales ranging from high-frequency cycles to depositional sequences. Additionally, interparticle porosity also contributes substantially to the stratiform permeability in much of the Upper Floridan aquifer. Information from seismic stratigraphy allowed 3D geomodeling of hydrogeologic units—an approach never before applied to this area. Notably, the 3D geomodeling provided 3D visualizations and geocellular models of the depositional sequences, hydrostratigraphy, and structural features. The geocellular data could be used to update the hydrogeologic structure inherent to groundwater flow simulations that are designed to address the sustainability of the water resources of the Floridan aquifer system.Two kinds of pathways that could enable upward cross-formational flow of injected treated wastewater from the Boulder Zone have been identified in the 80 miles of high-resolution seismic data collected for this study: a near-vertical reverse fault and karst collapse structures. The single reverse fault, inferred to be of tectonic origin, is in extreme northeastern Broward County and has an offset of about 19 feet at the level of the Arcadia Formation. Most of the 17 karst collapse structures identified manifest as columniform, vertically stacked sagging seismic reflections that span early Eocene to Miocene age rocks equivalent to much of the Floridan aquifer system and the lower part of the overlying intermediate confining unit. In some cases, the seismic-sag structures extend upward into strata of Pliocene age. The seismic-sag structures are interpreted to have a semicircular shape in plan view on the basis of comparison to (1) other seismic-sag structures in southeastern Florida mapped with two 2D seismic cross lines or 3D data, (2) comparison to these structures located in other carbonate provinces, and (3) plausible extensional ring faults detected with multi-attribute analysis. The seismic-sag structures in the study area have heights as great as 2,500 vertical feet, though importantly, one spans about 7,800 feet. Both multi-attribute analysis and visual detection of offset of seismic reflections within the seismic-sag structures indicate faults and fractures are associated with many of the structures. Multi-attribute analysis highlighting chimney fluid pathways also indicates that the seismic-sag structures have a high probability for potential vertical cross-formational fluid flow along the faulted and fractured structures. A collapse of the seismic-sag structures within a deep burial setting evokes an origin related to hypogenic karst processes by ascending flow of subsurface fluids. In addition, paleo-epigenic karst related to major regional subaerial unconformities within the Florida Platform generated collapse structures (paleo-sinkholes) that are much smaller in scale than the cross-formational seismic-sag structures.
NASA Astrophysics Data System (ADS)
Maity, Debotyam
This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.
NASA Astrophysics Data System (ADS)
Cunningham, Craig
Investigations into the relationship between geologic structure and seismicity in and around the meizoseismal area of the 1886 Charleston earthquake have been ongoing since the 1970s. Seismic reflection profiles collected in this area display a prominent, laterally continuous, high amplitude, low frequency, two cycle reflection at ~0.7-1.2 s TWT, termed the "J" reflector, which has been correlated with Lower to Middle Jurassic tholeiitic basalt flows encountered in the Clubhouse Crossroads wells. The "J" reflector was also extended offshore onto the continental shelf. Recent reevaluation of sub Coastal Plain wells within the South Georgia Rift (SGR) Basin, including wells around the meizoseismal area of the 1886 Charleston earthquake, has shown most do not encounter basalt rising suspicions as to the true lithology of the "J"-reflector. Moreover, this same reflector has been interpreted to be the unconformity at the base of the Cretaceous-age Coastal Plain sediments. In order to define the regional extent of the Clubhouse Crossroads basalt, seismic inversion and attribute analysis were performed on two recently acquired reflection profiles, SC02_1 and SC02_5. Beginning in December 2010 through February 2011, seven 2D reflection profiles: SC02_1 - SC02_7 (total length 240 km) were acquired to the immediate west and northwest of the Charleston meizoseismal zone and legacy seismic data as part of DOE Award DE-FE0001965: Geologic Characterization of the South Georgia Rift Basin for Source Proximal C02 Storage project. The first profile, SC02_1, passes Norris Lightsey #1 and Rizer #1, two wells that never encountered basalt at the base of coastal plain. SC02_5, passes Dorchester 211, a well that bottomed into basalt at the base of the coastal plain. Variations in seismic attributes provides evidence for a western termination of the clubhouse crossroads basalt flow on SC02_1 and key support for visible amplitude variations at the contact between coastal plain-unconformity and coastal plain-basalt. Amplitude variations were then used to reinterpret the extent of the clubhouse crossroads basalt flow on vintage seismic profiles. Given new interpretations, the clubhouse crossroads basalt flow is much smaller in extent than previously estimated, covering approximately 20.4 x 105 km2.
An overview of results from the CO2SINK 3D baseline seismic survey at Ketzin, Germany
NASA Astrophysics Data System (ADS)
Juhlin, C.; Giese, R.; Cosma, C.; Kazemeini, H.; Juhojuntti, N.; Lüth, S.; Norden, B.; Förster, A.; Yordkayhun, S.
2009-04-01
A 3D seismic survey was acquired at the CO2SINK project site over the Ketzin anticline in the fall of 2005. Main objectives of the survey were (1) to verify earlier geological interpretations of the structure based on vintage 2D seismic and borehole data, (2) to provide, if possible, an understanding of the structural geometry for flow pathways within the reservoir, (3) a baseline for later evaluation of the time evolution of rock properties as CO2 is injected into the reservoir, and (4) detailed sub-surface images near the injection borehole for planning of the drilling operations. Overlapping templates with 5 receiver lines containing 48 active channels in each template were used for the acquisition. In each template, 200 nominal source points were activated using an accelerated weight drop, giving a nominal fold of 25. Due to logistics, the number of actual source points in each template varied. In spite of the relatively low fold and the simple source used, data quality is generally good with the uppermost 1000 m being well imaged. Data processing results clearly show a fault system across the top of the Ketzin anticline that is termed the Central Graben Fault Zone (CGFZ). The fault zone consists of west-southwest-east-northeast- to east-west-trending normal faults bounding a 600-800 m wide graben. Within the Jurassic section, discrete faults are well developed, and the main graben-bounding faults have throws of up to 30 m. At shallower levels, the fault system appears to disappear in the Tertiary Rupelian clay. The main bounding faults of the CGFZ can be traced downwards to the top of the Weser Formation and possibly to the Stuttgart level, the target formation for CO2 injection. No faults were imaged near the injection site on the southern limb of the anticline. Remnant gas, cushion and residual gas from a previous natural gas storage facility at the site, is present near the top of the anticline in the depth interval of about 250-400 m and has a clear seismic signature. In addition to the standard processing and interpretation applied, attribute analysis, detailed shallow reflection seismic processing, tomographic inversion of first arrival times, and initial seismic modeling of the CO2 response have been performed. Attribute analysis of the target horizon using the continuous wavelet transform indicates that the injection site penetrates the target reservoir near the edge of a north-northwest-south-southeast striking channel.
Seismic hazard in the eastern United States
Mueller, Charles; Boyd, Oliver; Petersen, Mark D.; Moschetti, Morgan P.; Rezaeian, Sanaz; Shumway, Allison
2015-01-01
The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updated catalogs and/or smoothing.
NASA Astrophysics Data System (ADS)
Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej
2017-08-01
The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.
Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano
2017-12-12
Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.
NASA Astrophysics Data System (ADS)
Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.
2013-12-01
We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al., 2011; Ide at al., 2011; Yagi and Fukahata, 2011; Suzuki et al., 2011). The comparison of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms, suggested that there was the time period common to both seismic wave generation and tsunami generation followed by the time period unique to tsunami generation. At this point, we think that comparison of the absolute values of moment rates is not so meaningful between tsunami waveform inversion and seismic waveform inversion, because of general ambiguity of rigidity values of each subfault in the fault region (assuming the rigidity value of 30 GPa of Yoshida et al (2011)). Considering this, the normalized value of moment rate function was also evaluated and it does not change the general feature of two moment rate functions in terms of duration property. Furthermore, the results suggested that tsunami generation process apparently took more time than seismic wave generation process did. Tsunami can be generated even by "extra" motions resulting from many suggested abnormal mechanisms. These extra motions may be attribute to the relatively larger-scale tsunami generation than expected from the magnitude level from seismic ground motion, and attribute to the longer duration of tsunami generation process.
Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions.
Gibbons, Steven J; Ringdal, Frode; Kvaerna, Tormod
2007-11-01
A database has been established of seismic and infrasonic recordings from more than 100 well-constrained surface explosions, conducted by the Finnish military to destroy old ammunition. The recorded seismic signals are essentially identical and indicate that the variation in source location and magnitude is negligible. In contrast, the infrasonic arrivals on both seismic and infrasound sensors exhibit significant variation both with regard to the number of detected phases, phase travel times, and phase amplitudes, which would be attributable to atmospheric factors. This data set provides an excellent database for studies in sound propagation, infrasound array detection, and direction estimation.
NASA Astrophysics Data System (ADS)
Itzá Balam, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2018-03-01
Two main stages of seismic modeling are geological model building and numerical computation of seismic response for the model. The quality of the computed seismic response is partly related to the type of model that is built. Therefore, the model building approaches become as important as seismic forward numerical methods. For this purpose, three petrophysical facies (sands, shales and limestones) are extracted from reflection seismic data and some seismic attributes via the clustering method called Self-Organizing Maps (SOM), which, in this context, serves as a geological model building tool. This model with all its properties is the input to the Optimal Implicit Staggered Finite Difference (OISFD) algorithm to create synthetic seismograms for poroelastic, poroacoustic and elastic media. The results show a good agreement between observed and 2-D synthetic seismograms. This demonstrates that the SOM classification method enables us to extract facies from seismic data and allows us to integrate the lithology at the borehole scale with the 2-D seismic data.
NASA Astrophysics Data System (ADS)
Reynen, Andrew; Audet, Pascal
2017-09-01
A new method using a machine learning technique is applied to event classification and detection at seismic networks. This method is applicable to a variety of network sizes and settings. The algorithm makes use of a small catalogue of known observations across the entire network. Two attributes, the polarization and frequency content, are used as input to regression. These attributes are extracted at predicted arrival times for P and S waves using only an approximate velocity model, as attributes are calculated over large time spans. This method of waveform characterization is shown to be able to distinguish between blasts and earthquakes with 99 per cent accuracy using a network of 13 stations located in Southern California. The combination of machine learning with generalized waveform features is further applied to event detection in Oklahoma, United States. The event detection algorithm makes use of a pair of unique seismic phases to locate events, with a precision directly related to the sampling rate of the generalized waveform features. Over a week of data from 30 stations in Oklahoma, United States are used to automatically detect 25 times more events than the catalogue of the local geological survey, with a false detection rate of less than 2 per cent. This method provides a highly confident way of detecting and locating events. Furthermore, a large number of seismic events can be automatically detected with low false alarm, allowing for a larger automatic event catalogue with a high degree of trust.
NASA Astrophysics Data System (ADS)
Mastouri, Raja; Guerin, Antoine; Marchant, Robin; Derron, Marc-Henri; Boulares, Achref; Lazzez, Marzouk; Marillier, François; Jaboyedoff, Michel; Bouaziz, Samir
2015-04-01
It is usually not possible to study in situ fractures and faults of oil reservoirs. Then outcropping reservoir analogues are used instead. For this purpose, Terrestrial Laser Scanning (TLS) has been increasingly used for some years in the petroleum sector. The formations El Garia and Reineche make the Eocene oil reservoir of Eastern Tunisia. The fracturing of these formations has been analyzed on the surface by TLS on a reservoir analogue outcrop and in the depth by 3D seismic data. TLS datasets provide clear information on fracture geometry distribution (spacing and persistence), connectivity and joint orientation. These results were then compared to structures observed in depth with seismic data. The reservoir analogues are the Ousselat cliff (formation El Garia) and the Damous quarry (formation Reineche). Those two sites are made of marine limestone rich in large foraminifers, gastropods and nummulites. Fieldwork, TLS acquisitions and high-resolution GigaPan panoramas were put together to create digital outcrop models. A total of 9 scans at 3 different survey positions were carried out. Firstly, the data processing (cleaning, alignment and georeferencing of the raw point clouds) was carried out using the Polyworks software. Secondly, we draped Gigapixel pictures on the triangular mesh generated with 3DReshaper to produce relief shading. This process produces a photorealistic model that gives a 3D representation of the outcrop. Finally, Coltop3D was used to identify the different sets of discontinuities and to measure their orientations. Furthermore, we used some 3D seismic attribute data to interpret approximately 60 fractures and faults at the top of the Eocene reservoir. The Coltop3D analysis of the Ousselat cliff shows 5 sets of joints and fractures, with different dips and dip directions. They all strike in directions NW-SE, NNE-SSW, NE-SW and ENE-WSW. Using the photorealistic model, we measured approximately 120 fracture spacings ranging from 1.75m to 10m. For Reineche formation outcrop, the structural analog indicates 8 sets of joints and fractures. In Total, we measured 150 fracture spacings. The most part of fracture spacings range from 0.05m to 1m. The results show that many joints of the quarry rocks are interconnected with other small-scale fractures. The comparison between the stereonets obtained by Coltop3D and the seismic attributes indicated that fractures striking NW-SE to NNW-SSE and NE-SW to NNE-SSW are represented in all surveys position. The majority of the faults and fractures observed in TLS data and 3D seismic data can be explained by a combination of extension and shear. Moreover, in this study, we found that there is no correlation between fractures density or fracture distribution and lithology. Finally, the density and the geometry of the fractures have been also interpreted at the outcrop level and in depth, this comparison allows to better characterize the relationship between permeability, secondary porosity and fracture density of the Eocene reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Hachey
2007-09-30
The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal moundsmore » for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wells in the project area. Multivariate regressions of seismic attributes versus engineering parameters, such as porosity, were then used to guide interpolation away from well control. These formed the basis for dynamic reservoir simulations. The simulations were used to assess the potential for additional reservoir development, and to provide insight as to how well the multivariate approach worked for assigning more realistic values of internal mound reservoir properties.« less
NASA Astrophysics Data System (ADS)
Beck, C.; Reyss, J.; Feuillet, N.; Leclerc, F.; Moreno, E.
2012-12-01
Improvements of active fault surveying have shown that creep, or alternating creep and co-seismic displacements, are not rare. Nevertheless, either on land (trenching), or in subaqueous setting (seismic imaging and coring), active fault offsets, investigated for paleoseismic purpose, are sometimes assumed as co-seismic without direct evidences. At the opposite, within adequate sedimentary archives, some gravity reworking events may be attributed to earthquake triggering, but often do not permit to locate the responsible fault and the co-seismic rupture. In the here-discussed example, both types of observations could be associated: faulting offsets and specific sedimentary events "sealing" them. Several very high resolution (VHR) seismic profiles obtained during The GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) evidenced frequent "ponding" of reworked sediments in the deepest areas. These bodies are acoustically transparent (few ms t.w.t. thick) and often deposited on the hanging walls of dominantly normal faults, at the base of scarps, as previously observed along the North Anatolian Fault (Beck et al., 2007, doi:10.1016/j.sedgeo.2005.12.031). Their thicknesses appear sufficient to compensate (i.e. bury) successive offsets, resulting in a flat and horizontal sea floor through time. Offshore Montserrat and Nevis islands, piston coring (4 to 7 m long) was dedicated to characterize the most recent of these particular layers. An up to 2m-thick "homogenite" appears capping the RedOx water/sediment interface. 210Pb and 137Cs activities lack in the homogenite, while a normal unsupported 210Pb decrease profile and a 137Cs peak, corresponding to the Atmospheric Nuclear Experiments (1962), are present below (Beck et al. 2012, doi:10.5194/nhess-12-1-2012). This sedimentary event and the coeval scarp are post-1970 AD, and attributed either to the March 16th 1985 earthquake or to the October 8th 1974 one (respectively Mw6.3 and Mw7.4). Based on the sedimentological interpretation and their geometrical relationships with ruptures, a co-seismic origin is attributed to older homogenites. Associated co-seismic offsets could be estimated for a 45 m-thick pile. With respect to VHR imaging precision, the total observed offset equals the sum of successive co-seismic offsets, each of them compensated (sealed) by a homogenite. Using the sedimentation rate deduced from 210Pb decrease curve and taking into account minor reworking events only detected in cores, we conclude that the Redonda fault system has been responsible for five >M6 events during the last 34 000 years.
Midplate seismicity exterior to former rift-basins
Dewey, J.W.
1988-01-01
Midplate seismicity associated with some former rift-zones is distributed diffusely near, but exterior to, the rift basins. This "basin-exterior' seismicity cannot be attributed to reactivation of major basin-border faults on which uppercrustal extension was concentrated at the time of rifting, because the border faults dip beneath the basins. The seismicity may nonetheless represent reactivation of minor faults that were active at the time of rifting but that were located outside of the principal zones of upper-crustal extension; the occurrence of basin-exterior seismicity in some present-day rift-zones supports the existence of such minor basin-exterior faults. Other hypotheses for seismicity exterior to former rift-basins are that the seismicity reflects lobes of high stress due to lithospheric-bending that is centered on the axis of the rift, that the seismicity is localized on the exteriors of rift-basins by basin-interiors that are less deformable in the current epoch than the basin exteriors, and that seismicity is localized on the basin-exteriors by the concentration of tectonic stress in the highly elastic basin-exterior upper-crust. -from Author
NASA Astrophysics Data System (ADS)
Inbal, A.; Clayton, R. W.; Ampuero, J. P.
2015-12-01
Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.
Measuring the seismic velocity in the top 15 km of Earth's inner core
NASA Astrophysics Data System (ADS)
Godwin, Harriet; Waszek, Lauren; Deuss, Arwen
2018-01-01
We present seismic observations of the uppermost layer of the inner core. This was formed most recently, thus its seismic features are related to current solidification processes. Previous studies have only constrained the east-west hemispherical seismic velocity structure in the Earth's inner core at depths greater than 15 km below the inner core boundary. The properties of shallower structure have not yet been determined, because the seismic waves PKIKP and PKiKP used for differential travel time analysis arrive close together and start to interfere. Here, we present a method to make differential travel time measurements for waves that turn in the top 15 km of the inner core, and measure the corresponding seismic velocity anomalies. We achieve this by generating synthetic seismograms to model the overlapping signals of the inner core phase PKIKP and the inner core boundary phase PKiKP. We then use a waveform comparison to attribute different parts of the signal to each phase. By measuring the same parts of the signal in both observed and synthetic data, we are able to calculate differential travel time residuals. We apply our method to data with ray paths which traverse the Pacific hemisphere boundary. We generate a velocity model for this region, finding lower velocity for deeper, more easterly ray paths. Forward modelling suggests that this region contains either a high velocity upper layer, or variation in the location of the hemisphere boundary with depth and/or latitude. Our study presents the first direct seismic observation of the uppermost 15 km of the inner core, opening new possibilities for further investigating the inner core boundary region.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
NASA Astrophysics Data System (ADS)
Langston, C. A.
2017-12-01
The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Hoversten, G.M.
2011-09-15
Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less
NASA Astrophysics Data System (ADS)
Verma, R. K.; Kumar, G. V. R. Krishna
1987-03-01
The Himalaya together with Arakan-Yoma form a well defined seismic belt to the north and east of the Indian Peninsula. The Seismicity along this belt is attributed mostly to collision between the Indian and the Eurasian plates. However, the exact nature of activity along the major thrusts and faults is not well understood. The seismicity along the entire Himalaya and Northern Burma has been studied in detail. It has been found that besides the Main Boundary Fault and the Main Central Thrust several transverse features are also very active. Some of these behave like steeply dipping fracture zones. Along the Arakan-Yoma most of the seismicity appears to be due to subduction of the Indian lithosphere to the east. Analysis of focal mechanism solutions for the Himalaya shows that although thrust movements are predominant, normal and strike-slip faulting is taking place along some of the transverse features. In addition to thrusting, strike-slip faulting is also taking place along the Arakan-Yoma. Orientation of P-axes for all thrust solutions show a sharp change from predominantly east-west along the Burmese arc to N-S and NE-SW along the Himalaya. The direction further changes to NW-SE along the Baluchistan arc. It appears that the Indian lithosphere is under compression from practically all sides. The present day seismicity of Northeast India and Northern Burma can be explained in terms of a plate tectonics model after Nandy (1976). No simple model appears to be applicable for the entire Himalaya.
NASA Astrophysics Data System (ADS)
Price, D. C.; Angus, D. A.; Garcia, A.; Fisher, Q. J.; Parsons, S.; Kato, J.
2018-03-01
Time-lapse seismic attributes are used extensively in the history matching of production simulator models. However, although proven to contain information regarding production induced stress change, it is typically only loosely (i.e. qualitatively) used to calibrate geomechanical models. In this study we conduct a multimethod Global Sensitivity Analysis (GSA) to assess the feasibility and aid the quantitative calibration of geomechanical models via near-offset time-lapse seismic data. Specifically, the calibration of mechanical properties of the overburden. Via the GSA, we analyse the near-offset overburden seismic traveltimes from over 4000 perturbations of a Finite Element (FE) geomechanical model of a typical High Pressure High Temperature (HPHT) reservoir in the North Sea. We find that, out of an initially large set of material properties, the near-offset overburden traveltimes are primarily affected by Young's modulus and the effective stress (i.e. Biot) coefficient. The unexpected significance of the Biot coefficient highlights the importance of modelling fluid flow and pore pressure outside of the reservoir. The FE model is complex and highly nonlinear. Multiple combinations of model parameters can yield equally possible model realizations. Consequently, numerical calibration via a large number of random model perturbations is unfeasible. However, the significant differences in traveltime results suggest that more sophisticated calibration methods could potentially be feasible for finding numerous suitable solutions. The results of the time-varying GSA demonstrate how acquiring multiple vintages of time-lapse seismic data can be advantageous. However, they also suggest that significant overburden near-offset seismic time-shifts, useful for model calibration, may take up to 3 yrs after the start of production to manifest. Due to the nonlinearity of the model behaviour, similar uncertainty in the reservoir mechanical properties appears to influence overburden traveltime to a much greater extent. Therefore, reservoir properties must be known to a suitable degree of accuracy before the calibration of the overburden can be considered.
Probabilistic seismic loss estimation via endurance time method
NASA Astrophysics Data System (ADS)
Tafakori, Ehsan; Pourzeynali, Saeid; Estekanchi, Homayoon E.
2017-01-01
Probabilistic Seismic Loss Estimation is a methodology used as a quantitative and explicit expression of the performance of buildings using terms that address the interests of both owners and insurance companies. Applying the ATC 58 approach for seismic loss assessment of buildings requires using Incremental Dynamic Analysis (IDA), which needs hundreds of time-consuming analyses, which in turn hinders its wide application. The Endurance Time Method (ETM) is proposed herein as part of a demand propagation prediction procedure and is shown to be an economical alternative to IDA. Various scenarios were considered to achieve this purpose and their appropriateness has been evaluated using statistical methods. The most precise and efficient scenario was validated through comparison against IDA driven response predictions of 34 code conforming benchmark structures and was proven to be sufficiently precise while offering a great deal of efficiency. The loss values were estimated by replacing IDA with the proposed ETM-based procedure in the ATC 58 procedure and it was found that these values suffer from varying inaccuracies, which were attributed to the discretized nature of damage and loss prediction functions provided by ATC 58.
Identifying High Potential Well Targets with 3D Seismic and Mineralogy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellors, R. J.
2015-10-30
Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and mapmore » permeable zones in a hydrothermal area.« less
Specific Signature of Seismic Shaking in Landslide Inventories: Case of the Chichi Earthquake
NASA Astrophysics Data System (ADS)
Meunier, P.; Rault, C.; Marc, O.; Hovius, N.
2017-12-01
The 1999 Chichi earthquake triggered 10 000 landslides in its epicentral area. In addition to coseismic landsliding, directly induced by the shaking, the hillslopes response extended to several years after the main shock, during which landslide susceptibility remained higher than during the pre-seismic period. We attribute this elevated rate to weakening effects caused by the shaking. The characteristics of the coseismic landslide catalogues (clustering,slope and azimuth distribution) bears the signature of the seismic triggering. Extended landslide mapping (1994-2004) allows to track changes in these signatures in order to better interpret them. We present a summary of the change of these signatures through time and space. At the scale of the epicentral area, we show that coseismic landslide clustering did clearly occur along the fault where the shaking is strong. In 3 sub-catchments of the Choshui river, a finer analysis of the landslide time series reveals a mixed signature of both geology and shaking. Pre-quake rain-induced landslides preferentially occurred down slope and along the bedding planes while coseismic landslides locate higher in the landscape, on slopes strongly affected by site effects. However, during the post seismic period, the signature of the shaking is not present while landslide rate remains high, suggesting that weakening effects seemed homogeneously distributed in the landscape.
NASA Astrophysics Data System (ADS)
Gross, L.; Shaw, S.
2016-04-01
Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.
Specific signature of seismic shaking in landslide catalogues: Case of the Chichi earthquake
NASA Astrophysics Data System (ADS)
Meunier, Patrick; Rault, Claire; Marc, Odin; Hovius, Niels
2017-04-01
The 1999 Chichi earthquake triggered 10 000 landslides in its epicentral area. In addition to coseismic landsliding, directly induced by the shaking, the hillslopes response extended to several years after the main shock, during which landslide susceptibility remained higher than during the pre-seismic period. We attribute this elevated rate to weakening effects caused by the shaking. The characteristics of the coseismic landslide catalogues (clustering, slope and azimuth distribution) bears the signature of the seismic triggering. Extended landslide mapping (1994-2004) allows to track changes in these signatures in order to better interpret them. We present a summary of the change of these signatures through time and space. At the scale of the epicentral area, we show that coseismic landslide clustering did clearly occur along the fault where the shaking is strong. In 3 sub-catchments of the Choshui river, a finer analysis of the landslide time series reveals a mixed signature of both geology and shaking. Pre-quake rain-induced landslides preferentially occurred down slope and along the bedding planes while coseismic landslides locate higher in the landscape, on slopes strongly affected by site effects. However, during the post seismic period, the signature of the shaking is not present while landslide rate remains high, suggesting that weakening effects seemed homogeneously distributed in the landscape.
NASA Astrophysics Data System (ADS)
Jung, H.; HA, Y.; Raymond, L. A.
2016-12-01
In many subduction zones, strong seismic anisotropy is observed. A part of the seismic anisotropy can be attributed to the subducting oceanic crust, which is transformed to blueschist facies rocks under high-pressure, high-temperature conditions. Because glaucophane, epidote, and phengite constituting the glaucophane schists are very anisotropic elastically, seismic anisotropy in the oceanic crust in hot subduction zones can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied deformation fabrics and seismic properties of phengite-rich, epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The blueschist samples are mainly composed of glaucophane, epidote, and phengite, with minor garnet, titanite, and chlorite. Some samples contain abundant phengite (up to 40 %). We determined LPOs of minerals using SEM/EBSD and calculated seismic anisotropy of minerals and whole rocks. LPOs of glaucophane have [001] axes aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles subparallel to lineation. LPOs of phengite are characterized by maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes aligned in a girdle subparallel to foliation. Phengite showed much stronger seismic anisotropy (AVP = 42%, max.AVS = 37%) than glaucophane or epidote. Glaucophane schist with abundant phengite showed much stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than epidote-glaucophane schist without phengite (AVP = 13%, max.AVS = 9%). Therefore, phengite clearly can significantly affect seismic anisotropy of whole rocks. When the subduction angle of phengite-rich blueschist facies rocks is considered for a 2-D corner flow model, the polarization direction of fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction angle of 45-70° and shear wave anisotropy (AVS) became stronger for vertically propagating S-waves with increasing subduction angle. Our data showed that phengite-rich blueschist, therefore, can contribute to strong trench-parallel seismic anisotropy observed in many subduction zones.
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.
2016-05-01
An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
The Seismic component of the IBERARRAY: Placing constraints on the Lithosphere and Mantle.
NASA Astrophysics Data System (ADS)
Carbonell, R.; Diaz, J.; Villaseñor, A.; Gallart, J.; Morales, J.; Pazos, A.; Cordoba, D.; Pulgar, J.; Garcia-Lobon, J.; Harnafi, M.
2008-12-01
TOPOIBERIA, is a multidisciplinary large scale research project which aims to study the links between the deep and superficial processes within the Iberian Peninsula.One of its main experimental components is the deployment of the IBERARRAY seismic network. This is a dense array (60x60 km) of new generation dataloggers equipped with broad-band seismometers which will cover Iberia and North Morocco in three successive deployments, each lasting for about 18 months. The first leg, deployed since late 2007, covers the southern part of Iberia (35 stations) and northern Morocco (20 stations). Two data centers have been established one at the CSIC-Institute of Earth Sciences (CSIC-Barcelona) and a second at the Geologic and Mining Insititute (IGME-Madrid) the data follows a standard-conventional flow from recovery to archival. The field teams collect the recorded hard disk on the field and send data and metadata to a processing center, where raw data is collected and stored and a quality control checking is performed. This include a systematic inspection of the experimental parameters (batteries charge, thermal insulation, time adjustments, geophone leveling etc), the visual verification of the seismic waveforms and the analysis, using power density spectra (PSD), of the noise level of each station. All this information is disseminated between the research teams involved in the project using a dedicated website and the continuous seismic data is made accessible through FTP and CWQ servers. Some of the nodes of the theoretical network are covered by permanent stations of the national broad-band network (IGN) or other networks operating in the region (IAG-UGR, ROA). Data from those stations will also be integrated to the Iberarray database. This Iberarray network will provide a large database of both waveform and catalogued events, with an unprecedented resolution. Earthquake data at local, regional and teleseismic scales will be analyzed using different methodologies. The first result would be an increase in the accuracy of the location of regional seismicity and the termination of focal mechanisms. A special emphasis will be attributed to seismic tomographic techniques using travel times and waveforms of P and S arrivals at different scales as well as surface waves, using dispersion measurements as well as studies dealing with background/environmental noise. In addition, receiver function analysis for seismic imaging of deep lithospheric features and splitting analysis of shear-wave arrivals will also be developed.
Temporal Delineation and Quantification of Short Term Clustered Mining Seismicity
NASA Astrophysics Data System (ADS)
Woodward, Kyle; Wesseloo, Johan; Potvin, Yves
2017-07-01
The assessment of the temporal characteristics of seismicity is fundamental to understanding and quantifying the seismic hazard associated with mining, the effectiveness of strategies and tactics used to manage seismic hazard, and the relationship between seismicity and changes to the mining environment. This article aims to improve the accuracy and precision in which the temporal dimension of seismic responses can be quantified and delineated. We present a review and discussion on the occurrence of time-dependent mining seismicity with a specific focus on temporal modelling and the modified Omori law (MOL). This forms the basis for the development of a simple weighted metric that allows for the consistent temporal delineation and quantification of a seismic response. The optimisation of this metric allows for the selection of the most appropriate modelling interval given the temporal attributes of time-dependent mining seismicity. We evaluate the performance weighted metric for the modelling of a synthetic seismic dataset. This assessment shows that seismic responses can be quantified and delineated by the MOL, with reasonable accuracy and precision, when the modelling is optimised by evaluating the weighted MLE metric. Furthermore, this assessment highlights that decreased weighted MLE metric performance can be expected if there is a lack of contrast between the temporal characteristics of events associated with different processes.
NASA Astrophysics Data System (ADS)
Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard
2014-05-01
Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that this carbonate platform was possibly originated from two or more connected reef build-ups. The platform evolution in terms of tectonic influences on carbonate growth and development may serve as a case example for re-evaluation of pre-Late Miocene structures as a new potential target for hydrocarbon exploration in Central Luconia Province. Eventually, techniques used in this study might be of interest to oil and gas explorers in carbonate system.
Holocene deposition and megathrust splay fault geometries within Prince William Sound, Alaska
NASA Astrophysics Data System (ADS)
Finn, S.; Liberty, L. M.; Haeussler, P. J.; Pratt, T. L.
2011-12-01
New high resolution sparker seismic reflection data, in conjunction with reprocessed legacy seismic data, provide the basis for a new fault, fold, and Holocene sediment thickness database for Prince William Sound, Alaska. Additionally, legacy airgun seismic data in Prince William Sound and the Gulf of Alaska tie features on these new sparker data to deeper portions of megathrust splay faults. We correlate regionally extensive bathymetric lineaments within Prince William Sound to megathrust splay faults, such as the ones that ruptured in the 1964 M9.2 earthquake. Lastly, we estimate Holocene sediment thickness within Prince William Sound to better constrain the Holocene fault history throughout the region. We identify three seismic facies related to Holocene, Quaternary, and Tertiary strata that are crosscut by numerous high angle normal faults in the hanging wall of the megathrust splay faults. The crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A change in exhumation rates, slip rates, and fault orientation appears near Hinchinbrook that we attribute to differences in subducted slab geometry. Based on our slip rate analysis, we calculate average Holocene displacements of 20 m and 100 m in eastern and western Prince William Sound, respectively. Landward of two splay faults exposed on Montague Island, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes.
Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics
NASA Astrophysics Data System (ADS)
Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.
2005-05-01
Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.
Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.
2001-01-01
The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and thick beds, can be validated in deviated wells with thin beds. Sand thickness models constrained by this logand core-based petrophysical analysis were used to build impedance seismic synthetic sections from which seismic attributes could be extracted and calibrated. The model-based attribute calibration was then applied to the seismic impedance 3-D cube permitting sand thickness to be mapped and reservoir geology to be modeled with significantly more detail than previously possible. These results will guide the field''s reservoir management and assist in the delineation of new targets.
NASA Astrophysics Data System (ADS)
Yang, H.; Sinha, S. K.; Feng, Y.; Jeremic, B.
2016-12-01
The M5.8 earthquake occurred in Pawnee, Oklahoma on September 3rd 2016 is the strongest seismic event recorded in Oklahoma. Soil structure interaction (SSI) played an important role in this tragic event. As a major aspect of SSI analysis, the propagation and dissipation of seismic energy will be studied in depth, with particular focus on the ground motion recorded in this earthquake. Seismic energy propagates from seismic source to the SSI system and is dissipated within and around the SSI system. Energy dissipation with the SSI system is related to inelastic behavior of soil, rock, contact zone (foundation-soil/rock), structural components and energy dissipators. Accurate evaluation of seismic energy can be used to optimize SSI system for safety and economy. The SSI system can be designed so that majority of seismic energy is dissipated within soil and soil-foundation contact zone, away from the structure.Accurate and theoretically sound modeling of propagation and dissipation is essential to use of seismic energy for design and assessment. The rate of plastic work is defined as the product of stress and the rate of plastic strain. On the other hand, plastic dissipation is defined as a form of heat transfer. The difference between these two quantities, which has been neglected in many studies, is a plastic part of the free energy. By considering energy storage and dissipation at both micro (particle) scale and macro (continuum) scale, it can be shown that the plastic free energy is an intrinsic attribute at the continuum scale due to particle rearrangement. Proper application of thermodynamics to finite element simulations, plastic dissipation can be correctly modeled. Examples will be used to illustrate above point on both constitutive, single element and SSI model scales. In addition, propagation of seismic energy, its dissipation (timing and location) will be used to illustrate use in design and assessment.
How wind turbines affect the performance of seismic monitoring stations and networks
NASA Astrophysics Data System (ADS)
Neuffer, Tobias; Kremers, Simon
2017-12-01
In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.
Gas Hydrate Characterization from a 3D Seismic Dataset in the Eastern Deepwater Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Dan
The presence of a gas hydrate petroleum system and seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling (LWD) data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio-Pleistocene sandy channel deposits in the deepwater eastern Gulf of Mexico is screened formore » direct hydrocarbon indicators for gas hydrate saturated sands.« less
Regularization of Instantaneous Frequency Attribute Computations
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
NASA Astrophysics Data System (ADS)
Shirmohamadi, Mohamad; Kadkhodaie, Ali; Rahimpour-Bonab, Hossain; Faraji, Mohammad Ali
2017-04-01
Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks based on a combination of the sonic log with neutron-density logs. The current study proposes a two step approach to create a map of porosity and pore types by integrating the results of petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created from the combination of the sonic log with the neutron-density log. The results allowed identifying negative, zero and positive deviations based on the created synthetic velocity log. Negative velocity deviations (below - 500 m/s) indicate connected or interconnected pores and fractures, while positive deviations (above + 500 m/s) are related to isolated pores. Zero deviations in the range of [- 500 m/s, + 500 m/s] are in good agreement with intercrystalline and microporosities. The results of petrographic studies were used to validate the main pore type derived from velocity deviation log. In the next step, velocity deviation log was estimated from seismic data by using a probabilistic neural network model. For this purpose, the inverted acoustic impedance along with the amplitude based seismic attributes were formulated to VDL. The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic attributes is an instrumental way for understanding the spatial distribution of main reservoir pore types.
Detection and analysis of a transient energy burst with beamforming of multiple teleseismic phases
NASA Astrophysics Data System (ADS)
Retailleau, Lise; Landès, Matthieu; Gualtieri, Lucia; Shapiro, Nikolai M.; Campillo, Michel; Roux, Philippe; Guilbert, Jocelyn
2018-01-01
Seismological detection methods are traditionally based on picking techniques. These methods cannot be used to analyse emergent signals where the arrivals cannot be picked. Here, we detect and locate seismic events by applying a beamforming method that combines multiple body-wave phases to USArray data. This method explores the consistency and characteristic behaviour of teleseismic body waves that are recorded by a large-scale, still dense, seismic network. We perform time-slowness analysis of the signals and correlate this with the time-slowness equivalent of the different body-wave phases predicted by a global traveltime calculator, to determine the occurrence of an event with no a priori information about it. We apply this method continuously to one year of data to analyse the different events that generate signals reaching the USArray network. In particular, we analyse in detail a low-frequency secondary microseismic event that occurred on 2010 February 1. This event, that lasted 1 d, has a narrow frequency band around 0.1 Hz, and it occurred at a distance of 150° to the USArray network, South of Australia. We show that the most energetic phase observed is the PKPab phase. Direct amplitude analysis of regional seismograms confirms the occurrence of this event. We compare the seismic observations with models of the spectral density of the pressure field generated by the interferences between oceanic waves. We attribute the observed signals to a storm-generated microseismic event that occurred along the South East Indian Ridge.
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.
2015-12-01
An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.
Regional Small-Event Identification Using Networks and Arrays of Seismic and Acoustic Sensors
2006-04-01
ground displacement and excite infra - sonic waves in the atmosphere (Blanc, 1989) near-surface explosions are much more efficient sources of...valuable advice on the portable infrasonic deployment at MNTA. Several of the images in this report are attributable to David Anderson at Southern...populations. This study has focused on seismic observations from mining explosions. There is increasing evidence that infrasonic observations may help in
Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico
NASA Astrophysics Data System (ADS)
Chavez-Perez, S.; Vargas-Meleza, L.
2007-05-01
We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.
NASA Astrophysics Data System (ADS)
Naseer, Muhammad Tayyab; Asim, Shazia
2017-10-01
Unconventional resource shales can play a critical role in economic growth throughout the world. The hydrocarbon potential of faults/fractured shales is the most significant challenge for unconventional prospect generation. The continuous wavelet transforms (CWT) of spectral decomposition (SD) technology is applied for shale gas prospects on high-resolution 3D seismic data from the Miano area in the Indus platform, SW Pakistan. Schmoker' technique reveals high-quality shales with total organic carbon (TOC) of 9.2% distributed in the western regions. The seismic amplitude, root-mean-square (RMS), and most positive curvature attributes show limited ability to resolve the prospective fractured shale components. The CWT is used to identify the hydrocarbon-bearing faulted/fractured compartments encased within the non-hydrocarbon bearing shale units. The hydrocarbon-bearing shales experience higher amplitudes (4694 dB and 3439 dB) than the non-reservoir shales (3290 dB). Cross plots between sweetness, 22 Hz spectral decomposition, and the seismic amplitudes are found more effective tools than the conventional seismic attribute mapping for discriminating the seal and reservoir elements within the incised-valley petroleum system. Rock physics distinguish the productive sediments from the non-productive sediments, suggesting the potential for future shale play exploration.
78 FR 59732 - Revisions to Design of Structures, Components, Equipment, and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
...,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... Analysis,'' (Accession No. ML13198A223); Section 3.7.3, ``Seismic Subsystem Analysis,'' (Accession No..., ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1, ``Concrete...
The social psychology of seismic hazard adjustment: re-evaluating the international literature
NASA Astrophysics Data System (ADS)
Solberg, C.; Rossetto, T.; Joffe, H.
2010-08-01
The majority of people at risk from earthquakes do little or nothing to reduce their vulnerability. Over the past 40 years social scientists have tried to predict and explain levels of seismic hazard adjustment using models from behavioural sciences such as psychology. The present paper is the first to synthesise the major findings from the international literature on psychological correlates and causes of seismic adjustment at the level of the individual and the household. It starts by reviewing research on seismic risk perception. Next, it looks at norms and normative beliefs, focusing particularly on issues of earthquake protection responsibility and trust between risk stakeholders. It then considers research on attitudes towards seismic adjustment attributes, specifically beliefs about efficacy, control and fate. It concludes that an updated model of seismic adjustment must give the issues of norms, trust, power and identity a more prominent role. These have been only sparsely represented in the social psychological literature to date.
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
NASA Astrophysics Data System (ADS)
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Detailed seismicity analysis in the SE of Romania (Dobrogea region)
NASA Astrophysics Data System (ADS)
Rogozea, Maria; Radulian, Mircea; Ghica, Daniela; Popa, Mihaela
2014-05-01
The purpose of this paper is to analyze the seismicity in the south-eastern part of Romania, in the Dobrogea region (namely the Predobrogean Depression and Black Sea area). Predobrogean Depression is the name attributed to the structures belonging to the Scythian Platform. The seismic activity is moderate with most significant earthquakes at the boundary between the North Dobrogea Orogen and Scythian Platform (Sf. Gheorghe fault). The largest magnitude event was recorded in 02.11.1871 (Mw = 5.3). Other events with magnitude above 4 were observed close to Tulcea city (13.11.1981, Mw = 5.1, 03.09.204, Mw =5.1) and Galati city (11.09.1980, Mw = 4.2). Recently, an earthquake swarm of 406 events extended over two months and a half (23 September - 5 December 2013) was produced in the Galati area (maximum magnitude 3.9). The deformation field has an extensional regime, as resulted from fault plane solutions and geotectonic investigations. The maximum expected magnitude in this area is estimated at Mw = 5.5. The seismic activity in the Black Sea area, close to Romania seashore and north-east Bulgarian seashore, concentrates along Shabla fault system. Large shocks (magnitude above 7) are reported here at intervals of a few centuries. The most recent major shock was recorded on 31 January 1901 (Mw = 7.2) in Shabla region, Bulgaria. To characterize seismicity parameters, the Romanian catalogue of the National Institute of Earth Physics was used as a basic input. The catalogue was revised as concerns historical information by reanalyzing macroseismic data and for the recent events, by applying up-to-date tools to relocate and re-parametrize the seismic sources.
Is Seismically Determined Q an Intrinsic Material Property?
NASA Astrophysics Data System (ADS)
Langston, C. A.
2003-12-01
The seismic quality factor, Q, has a well-defined physical meaning as an intrinsic material property associated with a visco-elastic or a non-linear stress-strain constitutive relation for a material. Measurement of Q from seismic waves, however, involves interpreting seismic wave amplitude and phase as deviations from some ideal elastic wave propagation model. Thus, assumptions in the elastic wave propagation model become the basis for attributing anelastic properties to the earth continuum. Scientifically, the resulting Q model derived from seismic data is no more than a hypothesis that needs to be verified by other independent experiments concerning the continuum constitutive law and through careful examination of the truth of the assumptions in the wave propagation model. A case in point concerns the anelasticity of Mississippi embayment sediments in the central U.S. that has important implications for evaluation of earthquake strong ground motions. Previous body wave analyses using converted Sp phases have suggested that Qs is ~30 in the sediments based on simple ray theory assumptions. However, detailed modeling of 1D heterogeneity in the sediments shows that Qs cannot be resolved by the Sp data. An independent experiment concerning the amplitude decay of surface waves propagating in the sediments shows that Qs must be generally greater than 80 but is also subject to scattering attenuation. Apparent Q effects seen in direct P and S waves can also be produced by wave tunneling mechanisms in relatively simple 1D heterogeneity. Heterogeneity is a general geophysical attribute of the earth as shown by many high-resolution data sets and should be used as the first litmus test on assumptions made in seismic Q studies before a Q model can be interpreted as an intrinsic material property.
An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng
2017-12-01
Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.
NASA Astrophysics Data System (ADS)
Cunningham, K. J.; Kluesner, J.; Westcott, R. L.; Ebuna, D. R.; Walker, C.
2016-12-01
Numerous large, semicircular, deep submarine depressions on the seafloor of the Miami Terrace (a bathymetric bench that interrupts the Atlantic continental slope on the southeastern carbonate Florida Platform) have been described as submarine sinkholes resulting from freshwater discharge at the seafloor and dissolution of carbonate rock. Multibeam-bathymetry and marine, high-resolution, multichannel 2D and 3D seismic-reflection data acquired over two of these depressions at water depths of about 250 m ("Miami sinkhole") and 336 m ("Key Biscayne sinkhole") indicate the depressions are pockmarks. Seafloor pockmarks are concave, crater-like depressions that form through the outburst or venting of fluid (gas, liquid) at the sea floor and are important seabed features that provide information about fluid flow on continental margins. Both the "Miami sinkhole" and "Key Biscayne sinkhole" (about 25 and 48m deep, respectively) have a seismic-chimney structure beneath them that indicates an origin related to seafloor fluid expulsion, as supported by multi-attribute analysis of the "Key Biscayne sinkhole". Further, there is no widening of the depressions with depth, as in the Fort Worth Basin, where downward widening of seismic, sub-circular, karst-collapse structures is common. However, hypogenic karst dissolution is not ruled out as part of the evolution of the two depressions. Indeed, a hypogenic karst pipe plausibly extends downward from the bottom of "Key Biscayne sinkhole", providing a passageway for focused upward flow of fluids to the seafloor. In "Key Biscayne sinkhole", the proposed karst pipe occurs above the underlying seismic chimney that contains flat bright spots (a hydrocarbon indicator) in the seismic data plausibly showing fluids are currently trapped beneath the pockmark within a tightly folded popup structure. The Miami Terrace depressions have seismic-reflection features similar to modern pockmarks imaged on the Maldives carbonate platform. The seismic-reflection data also show that ancient satellite expulsions formed buried pockmarks, slumps, and paleo-collapse structures in the carbonate sediments near the "Key Biscayne sinkhole". Additional processing of the 3D seismic data will aid in elucidation of the origin of these seafloor depressions.
Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India
Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A.
2010-01-01
Gas hydrate was discovered in the Krishna-Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ~2.5 km2 defined using seismic attributes of the seafloor reflection, as well as " seismic sweetness" at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ~6 km NW of Site NGHP-01-10. ?? 2010.
The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution
NASA Astrophysics Data System (ADS)
Feng, Ye; Steinberg, Josh; Reshef, Moshe
2017-04-01
The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin. Feng, Y. E., & Reshef, M. (2016). The Eastern Mediterranean Messinian salt-depth imaging and velocity analysis considerations. Petroleum Geoscience, 22(4), 2-19. doi:http://dx.doi.org/10.1144/petgeo2015-088 Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118-131. doi:http://dx.doi.org/10.1016/j.margeo.2016.04.004
NASA Astrophysics Data System (ADS)
Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.
2015-01-01
We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.
Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.
2016-08-18
This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.
Three-component seismic data in thin interbedded reservoir exploration
NASA Astrophysics Data System (ADS)
Zhang, Li-Yan; Wang, Yan-Chun; Pei, Jiang-Yun
2015-03-01
We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fluids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/ V S, λρ, and µ ρ and map the lithology changes by using density, λρ, and µ ρ. The 3D-3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.
SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model
NASA Astrophysics Data System (ADS)
Grelle, G.; Bonito, L.; Lampasi, A.; Revellino, P.; Guerriero, L.; Sappa, G.; Guadagno, F. M.
2015-06-01
SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear equivalent analysis produces acceleration response spectra of shear wave velocity-thickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg-Marquardt Algorithm (LMA) as the final optimizer. In the final step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
NASA Astrophysics Data System (ADS)
Schiltz, Kelsey Kristine
Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a SAGD project in the Athabasca oil sands deposit of Alberta reveals that the SAGD steam chamber has not developed uniformly. Core data confirm the presence of low permeability shale bodies within the reservoir. These shales can act as barriers and baffles to steam and limit production by prohibiting steam from accessing the full extent of the reservoir. Seismic data can be used to identify these shale breaks prior to siting new SAGD well pairs in order to optimize field development. To identify shale breaks in the study area, three types of seismic inversion and a probabilistic neural network prediction were performed. The predictive value of each result was evaluated by comparing the position of interpreted shales with the boundaries of the steam chamber determined through time-lapse analysis. The P-impedance result from post-stack inversion did not contain enough detail to be able to predict the vertical boundaries of the steam chamber but did show some predictive value in a spatial sense. P-impedance from pre-stack inversion exhibited some meaningful correlations with the steam chamber but was misleading in many crucial areas, particularly the lower reservoir. Density estimated through the application of a probabilistic neural network (PNN) trained using both PP and PS attributes identified shales most accurately. The interpreted shales from this result exhibit a strong relationship with the boundaries of the steam chamber, leading to the conclusion that the PNN method can be used to make predictions about steam chamber growth. In this study, reservoir characterization incorporating multicomponent seismic data demonstrated a high predictive value and could be useful in evaluating future well placement.
NASA Astrophysics Data System (ADS)
Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi
2018-03-01
Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.
NASA Astrophysics Data System (ADS)
Provost, F.; Malet, J. P.; Hibert, C.; Doubre, C.
2017-12-01
The Super-Sauze landslide is a clay-rich landslide located the Southern French Alps. The landslide exhibits a complex pattern of deformation: a large number of rockfalls are observed in the 100 m height main scarp while the deformation of the upper part of the accumulated material is mainly affected by material shearing along stable in-situ crests. Several fissures are locally observed. The shallowest layer of the accumulated material tends to behave in a brittle manner but may undergo fluidization and/or rapid acceleration. Previous studies have demonstrated the presence of a rich endogenous micro-seismicity associated to the deformation of the landslide. However, the lack of long-term seismic records and suitable processing chains prevented a full interpretation of the links between the external forcings, the deformation and the recorded seismic signals. Since 2013, two permanent seismic arrays are installed in the upper part of the landslide. We here present the methodology adopted to process this dataset. The processing chain consists of a set of automated methods for automatic and robust detection, classification and location of the recorded seismicity. Thousands of events are detected and further automatically classified. The classification method is based on the description of the signal through attributes (e.g. waveform, spectral content properties). These attributes are used as inputs to classify the signal using a Random Forest machine-learning algorithm in four classes: endogenous micro-quakes, rockfalls, regional earthquakes and natural/anthropogenic noises. The endogenous landslide sources (i.e. micro-quake and rockfall) are further located. The location method is adapted to the type of event. The micro-quakes are located with a 3D velocity model derived from a seismic tomography campaign and an optimization of the first arrival picking with the inter-trace correlation of the P-wave arrivals. The rockfalls are located by optimizing the inter-trace correlation of the whole signal. We analyze the temporal relationships of the endogenous seismic events with rainfall and landslide displacements. Sub-families of landslide micro-quakes are also identified and an interpretation of their source mechanism is proposed from their signal properties and spatial location.
NASA Astrophysics Data System (ADS)
Jafri, Muhammad Kamran; Lashin, Aref; Ibrahim, El-Khedr Hassan; Hassanein, Kamal A.; Al Arifi, Nassir; Naeem, Muhammad
2017-06-01
There is a tendency for applying different integrated geophysical approaches for better hydrocarbon reservoir characterisation and interpretation. In this study, petrophysical properties, seismic structural and poststack seismic inversion results are integrated using the fuzzy logic AND operator to characterise the Tensleep Sandstone Formation (TSF) at Powder River Basin (PRB), Wyoming, USA. TSF is deposited in a coastal plain setting during the Pennsylvanian era, and contains cross-bedded sandstone of Aeolian origin as a major lithology with alternative sabkha dolomite/carbonates. Wireline logging datasets from 17 wells are used for the detailed petrophysical evaluation. Three units of the TSF (A-sandstone, B-dolomite and B-sandstone) are targeted and their major rock properties estimated (i.e. shale/clay volume, Vsh; porosity, φEff permeability, K; fluid saturations, Sw and SH; and bulk volume water, BVW). The B-sandstone zone, with its petrophysical properties of 5-20% effective porosity, 0.10-250 mD permeability and hydrocarbon potential up to 72%, is considered the best reservoir zone among the three studied units. Distributions of the most important petrophysical parameters of the B-sandstone reservoir (Vsh, φEff, K, Sw) are generated as GIS thematic layers. The two-dimensional (2D) and three-dimensional (3D) seismic structural interpretations revealed that the hydrocarbons are entrapped in an anticlinal structure bounded with fault closures at the west of the study area. Poststack acoustic impedance (PSAI) inversion is performed on 3D seismic data to extract the inverted acoustic impedance (AI) cube. Two attribute slices (inverted AI and seismic amplitude) were extracted at the top of the B-sandstone unit as GIS thematic layers. The reservoir properties and inverted seismic attributes were then integrated using fuzzy AND operator. Finally, a fuzzy reservoir quality map was produced, and a prospective reservoir area with best reservoir characteristics is proposed for future exploration. The current study showed that integration of petrophysical, seismic structural and poststack inversion under a fuzzy logic platform can be used as an effective tool for interpreting multiple reservoir zones.
NASA Astrophysics Data System (ADS)
Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco
2017-04-01
In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and development, cycling through classical fluid escape pipes evoking non-Darcy flow to Darcy flow exploiting surrounding permeable bodies (during low fluid recharge period). Limit and uncertainty of the seismic data imaging the internal structure are still controlled by illumination factor, the lateral and vertical resolution (Fresnel. Tuning thickness) and scattering/noise effect of seismic wave when they interact with the plumbing system.
Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years
NASA Astrophysics Data System (ADS)
Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.
2017-12-01
In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.
Kinematics of the New Madrid seismic zone, central United States, based on stepover models
Pratt, Thomas L.
2012-01-01
Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Rawlinson, Nicholas
2016-04-01
Non-standard seismic imaging (velocity, attenuation, and scattering tomography) of the North Sea basins by using unexploited seismic intensities from previous passive and active surveys are key for better imaging and monitoring fluid under the subsurface. These intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the crust and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability with as key output a novel computational code with strong commercial potential.
NASA Astrophysics Data System (ADS)
El Fellah, Younes; El-Aal, Abd El-Aziz Khairy Abd; Harnafi, Mimoun; Villaseñor, Antonio
2017-05-01
In the current work, we constructed new comprehensive standard seismic noise models and 3D temporal-spatial seismic noise level cubes for Morocco in north-west Africa to be used for seismological and engineering purposes. Indeed, the original global standard seismic noise models published by Peterson (1993) and their following updates by Astiz and Creager (1995), Ekström (2001) and Berger et al. (2003) had no contributing seismic stations deployed in North Africa. Consequently, this preliminary study was conducted to shed light on seismic noise levels specific to north-west Africa. For this purpose, 23 broadband seismic stations recently installed in different structural domains throughout Morocco are used to study the nature and characteristics of seismic noise and to create seismic noise models for Morocco. Continuous data recorded during 2009, 2010 and 2011 were processed and analysed to construct these new noise models and 3D noise levels from all stations. We compared the Peterson new high-noise model (NHNM) and low-noise model (NLNM) with the Moroccan high-noise model (MHNM) and low-noise model (MLNM). These new noise models are comparable to the United States Geological Survey (USGS) models in the short period band; however, in the period range 1.2 s to 1000 s for MLNM and 10 s to 1000 s for MHNM display significant variations. This variation is attributed to differences in the nature of seismic noise sources that dominate Morocco in these period bands. The results of this study have a new perception about permanent seismic noise models for this spectacular region and can be considered a significant contribution because it supplements the Peterson models and can also be used to site future permanent seismic stations in Morocco.
Induced seismicity in Carbon and Emery counties, Utah
NASA Astrophysics Data System (ADS)
Brown, Megan R. M.
Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry have been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah, where seismicity has increased during the same period. In this study, I investigated whether or not wastewater injection is related to the increased seismicity. Previous studies have attributed all of the seismicity in central Utah to coal mining activity. I found that water injection might be a more important cause. In the coal mining area, seismicity rate increased significantly 1-5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3, and is localized in areas seismically active prior to the injection. I have established the spatiotemporal correlations between the coal mining activities, the wastewater injection, and the increased seismicity. I used simple groundwater models to estimate the change in pore pressure and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells. To ascertain that the increased seismicity is not fluctuation of background seismicity, I analyzed the magnitude-frequency relation of these earthquakes and found a clear increase in the b-value following the wastewater injection. I conclude that the marked increase of seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along pre-existing faults.
Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems
NASA Astrophysics Data System (ADS)
Fry, C.; Dix, J.
2017-12-01
Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are sub-seismic in conventional imaging techniques. These unseen faults could create additional unseen pathways that impact construction in London via water ingress and influence fluid migration within hydrocarbon basins.
Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo
2014-01-01
Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.
NASA Astrophysics Data System (ADS)
Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.
2013-02-01
Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.
NASA Astrophysics Data System (ADS)
Alkan, Engin
It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different Swave modes (P-SV, SV-SV) in addition to the conventional P-P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University's Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents.
Introducing Seismic Tomography with Computational Modeling
NASA Astrophysics Data System (ADS)
Neves, R.; Neves, M. L.; Teodoro, V.
2011-12-01
Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.
NASA Astrophysics Data System (ADS)
Marjanovic, M.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Nedimovic, M. R.; Canales, J.
2012-12-01
Multichannel seismic (MCS) data collected in 2008 along the crest of the East Pacific Rise (EPR) 8°20'-10°10'N offer an excellent opportunity for studying along-axis variations in seismic properties of the mid-crustal magma sill imaged at ˜1.6 km below seafloor and inferring along-axis variations in the physical properties of this melt body. Locally, pre-stack data show a clear decrease in the amplitude of the P-wave reflection off the top of the magma sill as a function of angle of incidence, an observation reminiscent of the amplitude response of some hydrocarbon-saturated reservoirs, which may imply that within these regions the sill contains fully molten material. In oil and gas exploration, a technique known as amplitude variation with angle of incidence (AVA) analysis has been developed to derive reservoir properties from amplitude behavior. One such method, developed recently, uses intercept (derived from near-angle of incidence information, A) vs. slope (derived from mid-angle of incidence information, B) as seismic attributes to infer reservoir properties. Here, for the first time, we apply this approach to the mid-ocean ridge environment to infer variations in melt content of the axial magma sill. Using the presence of a converted P- to S- phase at the AMC as the first-order proxy for melt, we limit the application of AVA analysis to the region between ~9°30' and 10°00'N along the EPR axis. Prior to conducting the AVA analysis properly, data preparation steps are required (Kirchhoff pre-stack time migration, Radon filtering, velocity analysis of the AMC event for its accurate normal move-out correction, conversion of CMP gathers from offset domain to angle of incidence domain, and near and mid angle stacking were carried out here) and an interpretation scheme adequate for the mid-ocean ridge environment is established. The individual regions for conducting the A vs. B AVA analysis were based on previously-defined small-scale segmentation of the axial magma sill. The AVA behavior suggests the presence of melt within the four segments (each 5 to 10 km in length) spanning between ~9°42.3'N and 9°56.2'N. Drainage related to the 2005-06 eruption appears to be limited to a narrow area (~500 m in length) centered at 9°50.6'N. Furthermore, data from the 9°53'N area shows increased scatter of the seismic attributes A and B that can be explained by the anomalous density/velocity relationship for iron-enriched rocks; within this same region, seafloor lavas show a relatively higher concentration of Fe. The intercept vs. slope AVA method tested here thus seems a very promising tool for the study of mid-ocean ridge magma systems.
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
NASA Astrophysics Data System (ADS)
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
High resolution seismic reflection profiling at Aberdeen Proving Grounds, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.D.; Xia, Jianghai; Swartzel, S.
1996-11-01
The effectiveness of shallow high resolution seismic reflection (i.e., resolution potential) to image geologic interfaces between about 70 and 750 ft at the Aberdeen Proving Grounds, Maryland (APG), appears to vary locally with the geometric complexity of the unconsolidated sediments that overlay crystalline bedrock. The bedrock surface (which represents the primary geologic target of this study) was imaged at each of three test areas on walkaway noise tests and CDP (common depth point) stacked data. Proven high resolution techniques were used to design and acquire data on this survey. Feasibility of the technique and minimum acquisition requirements were determined throughmore » evaluation and correlation of walkaway noise tests, CDP survey lines, and a downhole velocity check shot survey. Data processing and analysis revealed several critical attributes of shallow seismic data from APG that need careful consideration and compensation on reflection data sets. This survey determined: (1) the feasibility of the technique, (2) the resolution potential (both horizontal and vertical) of the technique, (3) the optimum source for this site, (4) the optimum acquisition geometries, (5) general processing flow, and (6) a basic idea of the acoustic variability across this site. Source testing involved an accelerated weight drop, land air gun, downhole black powder charge, sledge hammer/plate, and high frequency vibrator. Shallow seismic reflection profiles provided for a more detailed picture of the geometric complexity and variability of the distinct clay sequences (aquatards), previously inferred from drilling to be present, based on sparse drill holes and basewide conceptual models. The seismic data also reveal a clear explanation for the difficulties previously noted in correlating individual, borehole-identified sand or clay units over even short distances.« less
A pilot study of the Earthquake Precursors in the Southwest Peloponnes, Greece
NASA Astrophysics Data System (ADS)
Velez, A. P.; Tsinganos, K.; Karastathis, V. K.; Kafatos, M.; Ouzounov, D.; Papadopoulos, G. A.; Tselentis, A.; Eleftheriou, G.; Mouzakiotis, E.; Gika, F.; Aspiotis, T.; Liakopoulos, S.; Voulgaris, N.
2016-12-01
A seismic array of the most contemporary technology has been recently installed in the area of Southwest Peloponnese, Greece, an area well known for its high seismic activity. The tectonic regime of the Hellenic arc was the reason for many lethal earthquakes with considerable damage to the broader area of East Mediterranean sea. The seismic array is based on nine 32-bit stations with broadband borehole seismometers. The seismogenic region, monitored by the array, is offshore. At this place the earthquake location suffers by poor azimuthal coverage and the stations of the national seismic network are very distant to this area. Therefore, the existing network cannot effectively monitor the microseismicity. The new array achieved a detailed monitoring of the small events dropping considerably the magnitude of completeness. The detectability of the microearthquakes has been drastically improved permitting so the statistical assessment of earthquake sequences in the area. In parallel the monitored seismicity is directly related with Radon measurement in the soil, taken at three stations in the area.. Radon measurements are performed indirectly by means γ-ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively). NaI(Tl) detectors have been installed at 1 m depth, at sites in vicinity of faults providing continuous real time data. Local meteorological records for atmospheric corrections are also continuously recorded. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model atmospheric thermal anomalies observed before strong events can be attributed to increased radon concentration. This is also supported by the statistical analysis of AVHRR/NOAA-18 satellite thermal infrared (TIR) daily records. A combined study of precursor's signals is expected to provide a reliable assessment of their ability on short-term forecasting.
Fine structure of the landers fault zone: Segmentation and the rupture process
Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.
1994-01-01
Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.
Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastrukov, S.; Xu, R.-X.; Molodtsova, I.
2010-11-15
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst fluxmore » from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.« less
Infrasonic component of volcano-seismic eruption tremor
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Fee, David
2014-03-01
Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Staff Guidance on Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic... Seismic Margin Analysis for New Reactors Based on Probabilistic Risk Assessment,'' (Agencywide Documents.../COL-ISG-020 ``Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic Risk...
Field study of integral backwall with elastic inclusion.
DOT National Transportation Integrated Search
2005-01-01
Jointless construction is considered an effective design option to reduce bridge maintenance costs and resist seismic loads. Although these attributes make the integral bridge an increasingly popular choice, soil-structure interaction issues unique t...
NASA Astrophysics Data System (ADS)
Piedade, Aldina; Alves, Tiago; Luís Zêzere, José
2017-04-01
Mass-transport deposits form a significant part of the stratigraphic record of ancient and modern deep-water basins worldwide. Three-dimensional (3D) seismic data is used to analyse two different types of buried mass-transport deposits offshore Espírito Santo Basin (SE Brazil. Both types are developed within Early Miocene to Holocene stratigraphic units composed of sandstones, calcarenites, turbidite sands and marls. The high resolution images provided by the interpreted 3D seismic data allowed a detailed analysis of the seismic stratigraphy and internal structure of mass-transport deposits. In addition, improvements in visualisation techniques were used to compute simple morphometric attributes of buried mass-transport deposits in continental slopes. This study classifies the interpreted mass-transport deposits in two different types according to the relationship between the morphology of mass-transport deposits and the surrounding topography. Locally confined mass-transport deposits are laterally constrained by non-deformed strata that surrounds the mass-transport deposit and by the local topography of the depositional surface. Their dimensions are relatively small (area of 5.251 km2). Unconfined mass-transport deposits show a much larger volume compared to the previously type ( 87.180 km2), and local topography does not have control on their geometry. The analysis proves that local topography and geometry of the depositional surface are key controlling factors on the spatial distribution and dimensions of the two types of mass-transport deposits. However, the two types differ in size, geomorphological expression, local structural controls and run-out distance. This work importance is relate variations in the character of the depositional surface with the morphology mass-transport deposits and run-out distance. As a result of the methodology used, two different styles of mass-transport run-out are identified and local factors controlling their morphology are addressed, such as roughness and local morphology of the depositional surface. Separating these two styles, or types, of mass-transport deposits it is of critical importance to understand their mechanisms of gliding, downslope spreading and emplacement.
NASA Astrophysics Data System (ADS)
Ha, Yoonhae; Jung, Haemyeong; Raymond, Loren
2016-04-01
Seismic anisotropy has been observed in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite were very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.
Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore
NASA Astrophysics Data System (ADS)
Sain, K.
2017-12-01
Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.
New insights into the North Taranaki Basin from New Zealand's first broadband 3D survey
NASA Astrophysics Data System (ADS)
Uzcategui, Marjosbet; Francis, Malcolm; Kong, Wai Tin Vincent; Patenall, Richard; Fell, Dominic; Paxton, Andrea; Allen, Tristan
2016-06-01
The Taranaki Basin is the only hydrocarbon producing basin in New Zealand. The North Taranaki Basin has widespread two-dimensional (2D) seismic coverage and numerous wells that have not encountered commercial accumulations. This is attributed to the structural complexity in the central graben and the absence of necessary information to help understand the basin's evolution. An active petroleum system has been confirmed by hydrocarbon shows and non-commercial oil and gas discoveries (Karewa-1 and Kora-1). A broadband long offset three-dimensional (3D) seismic survey was acquired and processed by Schlumberger in 2013 to evaluate the hydrocarbon potential of the North Taranaki Basin. Innovative acquisition techniques were combined with advanced processing and imaging methods. Raypath distortions and depth uncertainty were significantly reduced by processing through tilted transverse isotropy (TTI) anisotropic Kirchhoff prestack depth migration with a geologically constrained velocity model. The survey provided the necessary information to understand the petroleum system and provide evidence for material hydrocarbon accumulations. In this investigation, we assessed the hydrocarbon potential of the North Taranaki Basin using the newly acquired data. 3D seismic interpretation and amplitude-versus-offset (AVO) analysis support the renewed potential of the basin and demonstrate effectiveness of these technologies that together can achieve encouraging results for hydrocarbon exploration.
Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin
2016-01-01
A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.
Reducing Uncertainties in Hydrocarbon Prediction through Application of Elastic Domain
NASA Astrophysics Data System (ADS)
Shamsuddin, S. Z.; Hermana, M.; Ghosh, D. P.; Salim, A. M. A.
2017-10-01
The application of lithology and fluid indicators has helped the geophysicists to discriminate reservoirs to non-reservoirs from a field. This analysis is conducted to select the most suitable lithology and fluid indicator for the Malaysian basins that could lead to better eliminate pitfalls of amplitude. This paper uses different rock physics analysis such as elastic impedance, Lambda-Mu-Rho, and SQp-SQs attribute. Litho-elastic impedance log is generated by correlating the gamma ray log with extended elastic impedance log. The same application is used for fluid-elastic impedance by correlation of EEI log with water saturation or resistivity. The work is done on several well logging data collected from different fields in Malay basin and its neighbouring basin. There's an excellent separation between hydrocarbon sand and background shale for Well-1 from different cross-plot analysis. Meanwhile, the Well-2 shows good separation in LMR plot. The similar method is done on the Well-3 shows fair separation of silty sand and gas sand using SQp-SQs attribute which can be correlated with well log. Based on the point distribution histogram plot, different lithology and fluid can be separated clearly. Simultaneous seismic inversion results in acoustic impedance, Vp/Vs, SQp, and SQs volumes. There are many attributes available in the industry used to separate the lithology and fluid, however some of the methods are not suitable for the application to the basins in Malaysia.
NASA Astrophysics Data System (ADS)
Murria, J.
2009-04-01
The lack of success, not to say failure, of seismic microzonation projects in the Latin America and Caribbean nations-and for that matter elsewhere in the world-should not be attributed to the lack of technical and scientific expertise of our engineers and scientists as there exists in our continent sufficient knowledge and information about the techniques and procedures that have been successfully used elsewhere in the world in the implementation of seismic microzonation projects. The main constrains to the implementation of seismic microzonation projects in Latin America and the Caribbean are of an economic, social, political, and cultural aspects rather than the purely scientific and engineering aspects. Another very important factor contributing to this lack of success has been the apparent failure of the scientific and technical community to convince decision makers (both official and private) that the sound implementation of seismic microzonation projects are a valid instrument to mitigate the negative effects that earthquakes have on the population, on the physical infrastructure and on the environment. An attempt will be made in this paper to analyze these "non technical" aspects and try to arrive at some conclusions as well as to some possible lines of action for the successful implementation of seismic microzonation projects in the seismic risk prone Latin American and Caribbean nations.
Seismic expression of Red Fork channels in Major and Kay Counties, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanoch, C.A.
1987-08-01
This paper investigates the application of regional seismic to exploration and development Red Fork sands of the Cherokee Group, in Major and Kay Counties, Oklahoma. A computer-aided exploration system (CAEX) was used to justify the subtle seismic expressions with the geological interpretation. Modeling shows that the low-velocity shales are the anomalous rock in the Cherokee package, which is most represented by siltstone and thin sands. Because the Red Fork channel sands were incised into or deposited with laterally time-equivalent siltstones, no strong reflection coefficient is associated with the top of the sands. The objective sands become a seismic anomaly onlymore » when they cut into and replace a low-velocity shale. This knowledge allows mapping the channel thickness by interpreting the shale thickness from seismic data. A group shoot line in Major County, Oklahoma, has been tied to the geologic control, and the channel thicknesses have been interpreted assuming a detectable vertical resolution of 10 ft. A personal computer-based geophysical work station is used to construct velocity logs representative of the geology to produce forward-modeled synthetic seismic sections, and to display, in color, the seismic trace attributes. These synthetic sections are used as tools to compare with and interpret the seismic line and to evaluate the interpretative value of lowest cost, lesser quality data versus reprocessing or new data acquisition.« less
Modeling continuous seismic velocity changes due to ground shaking in Chile
NASA Astrophysics Data System (ADS)
Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik
2015-04-01
In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over 1 day which is the discretization interval of the velocity measurements. In our model the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with the two free scaling parameters for the shaking induced velocity variation fits the data in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. For the Tocopilla earthquake in 2007 and the Iquique earthquake in 2014 velocity reductions are also observed at other stations of the IPOC network. However, a clear relationship between the ground shaking and the induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking to the special geological setting of the station, where the material consists of relatively loose conglomerate with high pore volume.
Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears.
Finnegan, Laura; Pigeon, Karine E; Cranston, Jerome; Hebblewhite, Mark; Musiani, Marco; Neufeld, Lalenia; Schmiegelow, Fiona; Duval, Julie; Stenhouse, Gordon B
2018-01-01
Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation <0.7 m. Seismic lines with lower vegetation height were preferred by grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural regeneration, if any, wolves cease to respond to seismic lines. To reduce wolf response to seismic lines, active restoration tactics like blocking seismic lines and tree planting, along with management of alternate prey, could be evaluated.
Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears
Pigeon, Karine E.; Cranston, Jerome; Hebblewhite, Mark; Musiani, Marco; Neufeld, Lalenia; Schmiegelow, Fiona; Duval, Julie; Stenhouse, Gordon B.
2018-01-01
Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation <0.7 m. Seismic lines with lower vegetation height were preferred by grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural regeneration, if any, wolves cease to respond to seismic lines. To reduce wolf response to seismic lines, active restoration tactics like blocking seismic lines and tree planting, along with management of alternate prey, could be evaluated. PMID:29659615
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-06-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-09-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
NASA Astrophysics Data System (ADS)
Zhao, H.; Wu, L.; Xiao, A.
2016-12-01
We present a detailed structural analysis on the fault geometry and Cenozoic development in the Dongping area, northwestern Qaidam Basin, based on the precise 3-D seismic interpretation, remote sensing images and seismic attribute analysis. Two conflicting fault systems distributed in different orientations ( EW-striking and NNW-striking) with opposing senses of shear are recognized and discussed, and the interaction between them provides new insights to the intracontinental deformation of the Qaidam Basin within the NE Tibetan Plateau. The EW-striking fault system constitutes the south part of the Altyn left-slip positive flower structure. Faulting on the EW-striking faults dominated the northwestern Qaidam since 40 Ma in respond to the inception of the Altyn Tagh fault system as a ductile shear zone, tilting the south slope of the Altyn Tagh. Whereas the NNW-striking fault system became the dominant structures since the mid-Miocene ( 15 Ma), induced by the large scale strike-slip of the Altyn Tagh fault which leads to the NE-SW directed compression of the Qaidam Basin. Thus it evidently implies a structural conversion taking place within the NE Tibetan Plateau since the mid-Miocece ( 15 Ma). Interestingly, the preexisting faults possibly restrained the development of the later period faults, while the latter tended to track and link to the former fault traces. Taken the large scale sinistral striking-slip East Kunlun fault system into account, the late Cenozoic intracontinental deformation in the Qaidam Basin showing the dextral transpressional attribute is suggested to be the consequence of the combined effect of its two border sinistral strike-slip faults, which furthermore favors a continuous and lateral-extrusion mechanism of the growth of the NE Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Huang, Xinghui; Li, Zhengyuan; Yu, Dan; Xu, Qiang; Fan, Junyi; Hao, Zhen; Niu, Yanping
2017-10-01
The catastrophic Sanyanyu and Luojiayu debris flows, which were induced by heavy rainfall, occurred at approximately midnight, August 7th, 2010 (Beijing time, UTC + 8) and claimed 1,765 lives. Most seismic stations located within 150 km did not detect the debris flows except for the closest seismic station, ZHQ, indicating that the seismic signals generated by the debris flows decayed rapidly. We analyzed broadband seismic signals from the ZHQ seismic station, beginning approximately 20 min before the outbreak of the Sanyanyu debris flow, to rebuild its evolution processes. Seismic signals can detect development of the Sanyanyu debris flow approximately 20 min after a heavy rain started falling in its initiation area; this time was characterized by a gradual increase in seismic amplitude accompanied by a series of spike signals that were probably generated by rock collapses within the catchment. The frequency contents and the characteristics of seismic signals before and after 23:33:15 (T1) are distinctively different, which we interpret as being generated by a large quantity of flowing material entering the main channel, marking the formation of the Sanyanyu debris flow. We attribute seismic amplitude increases between 23:33:15 (T1) and 23:34:26 (T2) and between 23:35:40 (T3) and 23:36:49 (T4) to entrainment of the deposit material after initiation of the debris flow and to its flow through a colluvial deposit area, respectively. The main frequency band broadening of seismic signals after 23:37:30 (T5) is believed to have been induced by impacts between the flowing material and check dams.
Ultrasonic laboratory measurements of the seismic velocity changes due to CO2 injection
NASA Astrophysics Data System (ADS)
Park, K. G.; Choi, H.; Park, Y. C.; Hwang, S.
2009-04-01
Monitoring the behavior and movement of carbon dioxide (CO2) in the subsurface is a quite important in sequestration of CO2 in geological formation because such information provides a basis for demonstrating the safety of CO2 sequestration. Recent several applications in many commercial and pilot scale projects and researches show that 4D surface or borehole seismic methods are among the most promising techniques for this purpose. However, such information interpreted from the seismic velocity changes can be quite subjective and qualitative without petrophysical characterization for the effect of CO2 saturation on the seismic changes since seismic wave velocity depends on various factors and parameters like mineralogical composition, hydrogeological factors, in-situ conditions. In this respect, we have developed an ultrasonic laboratory measurement system and have carried out measurements for a porous sandstone sample to characterize the effects of CO2 injection to seismic velocity and amplitude. Measurements are done by ultrasonic piezoelectric transducer mounted on both ends of cylindrical core sample under various pressure, temperature, and saturation conditions. According to our fundamental experiments, injected CO2 introduces the decrease of seismic velocity and amplitude. We identified that the velocity decreases about 6% or more until fully saturated by CO2, but the attenuation of seismic amplitude is more drastically than the velocity decrease. We also identified that Vs/Vp or elastic modulus is more sensitive to CO2 saturation. We note that this means seismic amplitude and elastic modulus change can be an alternative target anomaly of seismic techniques in CO2 sequestration monitoring. Thus, we expect that we can estimate more quantitative petrophysical relationships between the changes of seismic attributes and CO2 concentration, which can provide basic relation for the quantitative assessment of CO2 sequestration by further researches.
Imaging of magma intrusions beneath Harrat Al-Madinah in Saudi Arabia
NASA Astrophysics Data System (ADS)
Abdelwahed, Mohamed F.; El-Masry, Nabil; Moufti, Mohamed Rashad; Kenedi, Catherine Lewis; Zhao, Dapeng; Zahran, Hani; Shawali, Jamal
2016-04-01
High-resolution tomographic images of the crust and upper mantle beneath Harrat Al-Madinah, Saudi Arabia, are obtained by inverting high-quality arrival-time data of local earthquakes and teleseismic events recorded by newly installed borehole seismic stations to investigate the AD 1256 volcanic eruption and the 1999 seismic swarm in the study region. Our tomographic images show the existence of strong heterogeneities marked with low-velocity zones extending beneath the AD 1256 volcanic center and the 1999 seismic swarm area. The low-velocity zone coinciding with the hypocenters of the 1999 seismic swarm suggests the presence of a shallow magma reservoir that is apparently originated from a deeper source (60-100 km depths) and is possibly connected with another reservoir located further north underneath the NNW-aligned scoria cones of the AD 1256 eruption. We suggest that the 1999 seismic swarm may represent an aborted volcanic eruption and that the magmatism along the western margin of Arabia is largely attributed to the uplifting and thinning of its lithosphere by the Red Sea rifting.
Preliminary Results From the Chile-Illapel Aftershock Experiment (CHILLAX)
NASA Astrophysics Data System (ADS)
Roecker, S. W.; Russo, R. M.; Comte, D.; Carrizo, D.; Peyrat, S.; Opazo, T.; Peña, G.; Farrell, M. E.; Moore, J.; Glick, R.; Rodriguez, E. E.
2016-12-01
On September 16, 2015, the Mw 8.3 Illapel earthquake ruptured a segment of the Nazca-South America subduction zone directly to the north of the 2010 Maule Mw 8.8 earthquake. Soon afterwards, a team from the Departamento de Geofisica, University of Chile, installed 18 short period sensors on land above the rupture to record aftershocks. A month later, the network was upgraded and expanded with funding from NSF RAPID to 20 broad band stations, loaned by IRIS PASSCAL. The installation of the Chile-Illapel Aftershock Experiment (CHILLAX) was completed in mid-November, 2015, and will operate until November, 2016. Preliminary analysis of data collected to date indicates an average detection rate of about 1000 locatable aftershocks per month. The combined CHILLAX and Maule aftershock deployments will yield the first modern-instrumentation observations of the zone of along-strike rupture termination that separates these temporally related and spatially adjacent megathrust rupture zones. Additionally, seismic observations of this part of the Nazca subduction zone are relatively sparse, and an aftershock sequence provides an opportunity to fill this gap efficiently. Preliminary analysis of CHILLAX network data revealed unexpected patterns in seismicity down dip from the rupture zone, in the unusual "flat slab" region to the east. Compared to the Maule event, the Illapel rupture apparently generated a more significant increase in seismicity in the 60-200 km depth range, suggesting that it "lit up" the subducted Nazca plate. Although high strain rates due to rupture might extend brittle failure into normally ductile regions, such an effect at these depths by the relatively low magnitude Illapel event is unusual. A perhaps more intriguing result is the frequent occurrence of events at depths significantly below that of the "flat slab". Attribution of this apparent second, deeper slab segment to event mislocations would require unrealistic seismic heterogeneity, We hypothesize that either the subduction of thick, buoyant crust of the Juan Fernandez Ridge has resulted in a slab tear, or that the "flat" seismicity is not occuring within the Nazca slab, but instead within the overriding South American lithosphere. In the latter case, the shallower flat slab earthquakes may represent a nascent delamination event.
Blind Source Separation of Seismic Events with Independent Component Analysis: CTBT related exercise
NASA Astrophysics Data System (ADS)
Rozhkov, Mikhail; Kitov, Ivan
2015-04-01
Blind Source Separation (BSS) methods used in signal recovery applications are attractive for they use minimal a priori information about the signals they are dealing with. Homomorphic deconvolution and cepstrum estimation are probably the only methods used in certain extent in CTBT applications that can be attributed to the given branch of technology. However Expert Technical Analysis (ETA) conducted in CTBTO to improve the estimated values for the standard signal and event parameters according to the Protocol to the CTBT may face problems which cannot be resolved with certified CTBTO applications and may demand specific techniques not presently used. The problem to be considered within the ETA framework is the unambiguous separation of signals with close arrival times. Here, we examine two scenarios of interest: (1) separation of two almost co-located explosions conducted within fractions of seconds, and (2) extraction of explosion signals merged with wavetrains from strong earthquake. The importance of resolving the problem related to case 1 is connected with the correct explosion yield estimation. Case 2 is a well-known scenario of conducting clandestine nuclear tests. While the first case can be approached somehow with the means of cepstral methods, the second case can hardly be resolved with the conventional methods implemented at the International Data Centre, especially if the signals have close slowness and azimuth. Independent Component Analysis (in its FastICA implementation) implying non-Gaussianity of the underlying processes signal's mixture is a blind source separation method that we apply to resolve the mentioned above problems. We have tested this technique with synthetic waveforms, seismic data from DPRK explosions and mining blasts conducted within East-European platform as well as with signals from strong teleseismic events (Sumatra, April 2012 Mw=8.6, and Tohoku, March 2011 Mw=9.0 earthquakes). The data was recorded by seismic arrays of the International Monitoring System of CTBTO and by small-aperture seismic array Mikhnevo (MHVAR) operated by the Institute of Geosphere Dynamics, Russian Academy of Sciences. Our approach demonstrated a good ability of separation of seismic sources with very close origin times and locations (hundreds of meters), and/or having close arrival times (fractions of seconds), and recovering their waveforms from the mixture. Perspectives and limitations of the method are discussed.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, F.W.
1994-03-28
This bibliography is divided into the following four sections: Seismicity of Hawaii and Kilauea Volcano; Occurrence, locations and accelerations from large historical Hawaiian earthquakes; Seismic hazards of Hawaii; and Methods of seismic hazard analysis. It contains 62 references, most of which are accompanied by short abstracts.
On Strong Positive Frequency Dependencies of Quality Factors in Local-Earthquake Seismic Studies
NASA Astrophysics Data System (ADS)
Morozov, Igor B.; Jhajhria, Atul; Deng, Wubing
2018-03-01
Many observations of seismic waves from local earthquakes are interpreted in terms of the frequency-dependent quality factor Q( f ) = Q0 f^{η } , where η is often close to or exceeds one. However, such steep positive frequency dependencies of Q require careful analysis with regard to their physical consistency. In particular, the case of η = 1 corresponds to frequency-independent (elastic) amplitude decays with time and consequently requires no Q-type attenuation mechanisms. For η > 1, several problems with physical meanings of such Q-factors occur. First, contrary to the key premise of seismic attenuation, high-frequency parts of the wavefield are enhanced with increasing propagation times relative to the low-frequency ones. Second, such attenuation cannot be implemented by mechanical models of wave-propagating media. Third, with η > 1, the velocity dispersion associated with such Q(f) occurs over unrealistically short frequency range and has an unexpected oscillatory shape. Cases η = 1 and η > 1 are usually attributed to scattering; however, this scattering must exhibit fortuitous tuning into the observation frequency band, which appears unlikely. The reason for the above problems is that the inferred Q values are affected by the conventional single-station measurement procedure. Both parameters Q 0 and are apparent, i.e., dependent on the selected parameterization and inversion method, and they should not be directly attributed to the subsurface. For η ≈ 1, parameter Q 0 actually describes the frequency-independent amplitude decay in access of some assumed geometric spreading t -α , where α is usually taken equal one. The case η > 1 is not allowed physically and could serve as an indicator of problematic interpretations. Although the case 0 < η < 1 is possible, its parameters Q 0 and may also be biased by the measurement procedure. To avoid such difficulties of Q-based approaches, we recommend measuring and interpreting the amplitude-decay rates (such as parameter α) directly.
NASA Astrophysics Data System (ADS)
Hameed El Redini, Naser A.; Ali Bakr, Ali M.; Dahroug, Said M.
2017-12-01
Safwa/Sabbar oil field located in the East Ghazalat Concession in the proven and prolific Abu Gharadig basin, Western Desert, Egypt, and about 250 km to the southwest of Cairo, it's located in the vicinity of several producing oil fields ranging from small to large size hydrocarbon accumulation, adjacent to the NW-SE trending major Abu Gharadig fault which is throwing to the Southwest. All the geological, "structure and stratigraphic" elements, have been identified after interpreting the recent high quality 3D seismic survey for prospect generation, evaluation and their relation to the hydrocarbon exploration. Synthetic seismograms have been carried out for all available wells to tie horizons to seismic data and to define the lateral variation characters of the beds. The analysis has been done using the suitable seismic attributes to understand the characteristics of different types of the reservoir formations, type of trap system, identify channels and faults, and delineating the stratigraphic plays of good reservoirs such as Eocene Apollonia Limestone, AR "F", AR "G" members, Upper Bahariya, Jurassic Khatatba Sandstone, upper Safa and Lower Safa Sandstone. The top Cenomanian Bahariya level is the main oil reservoir in the Study area, which consist of Sandstone, Siltstone and Shale, the thickness is varying from 1 to 50 ft along the study area. In addition to Upper-Bahariya there are a good accessibility of hydrocarbon potential within the Jurassic Khatatba Sandstone and the Eocene Apollonia Limestone. More exploring of these reservoirs are important to increase productivity of Oil and/or Gas in the study area.
NASA Astrophysics Data System (ADS)
Rudini; Nasir Matori, Abd; Talib, Jasmi Ab; Balogun, Abdul-Lateef
2018-03-01
The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS). Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM) was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.
Geomorphic response to tectonically-induced ground deformation in the Wabash Valley
Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.
1997-01-01
Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.
Deformation of phase D and Earth's deep water cycle
NASA Astrophysics Data System (ADS)
Walker, A.; Skelton, R.; Nowacki, A.
2016-12-01
The stability of dense hydrous magnesium silicates such as phase D in subducting slabs provide a potential path for hydrogen transport from the Earth's surface environment into the lower mantle. Recent analysis of source-side shear wave splitting for rays from deep earthquakes around slabs detected a signal of anisotropy that could be attributed to the deformation of phase D [Nowacki et al. 2015; Geochem. Geophys. Geosyst., 16, 764-784]. If this is the case these observations could provide an estimate of the hydrogen flux into the lower mantle at depths beyond shallow recycling through the volcanic arc. However, the processes leading to the deformation of phase D and the generation of seismic anisotropy are not well known and this is a barrier to progress. Here we present initial results of simulations designed to reveal how easily different dislocations move in phase D during deformation and lead to the generation of seismic anisotropy measured by shear wave splitting. In particular, we use atomic scale simulations to calculate the energies of generalised stacking faults in phase D, which are used to parameterise Peierls-Nabarro models of dislocation structures and Peierls stresses at pressures up to 60 GPa. We then use results from these calculations as parameters for models of texture development in polycrystalline aggregates during deformation using the visco-plastic self-consistent approach. In combination with measurement of the distribution of seismic anisotropy around subducting slabs, and an analysis of the strain pattern expected as slabs pass through the transition zone, these results could constrain an important part of Earth's deep water cycle.
Seismic Wavefield Imaging of Long-Period Ground Motion in the Tokyo Metropolitan Area, Japan
NASA Astrophysics Data System (ADS)
Nagao, H.; Kano, M.; Nagata, K.; Ito, S. I.; Sakai, S.; Nakagawa, S.; Hori, M.; Hirata, N.
2017-12-01
Long-period ground motions due to large earthquakes can cause devastating disasters, especially in urbanized areas located on sedimentary basins. To assess and mitigate such damage, it is essential to rapidly evaluate seismic hazards for infrastructures, which can be simulated by seismic response analyses that use waveforms at the base of each infrastructure as an input ground motion. The present study reconstructs the seismic wavefield in the Tokyo metropolitan area located on the Kanto sedimentary basin, Japan, from seismograms of the Metropolitan Seismic Observation network (MeSO-net). The obtained wavefield fully explains the observed waveforms in the frequency band of 0.10-0.20 Hz. This is attributed to the seismic wavefield imaging technique proposed by Kano et al. (2017), which implements the replica exchange Monte Carlo method to simultaneously estimate model parameters related to the subsurface structure and source information. Further investigation shows that the reconstructed seismic wavefield lower than 0.30 Hz is of high quality in terms of variance reduction (VR), which quantifies a misfit in waveforms but that the VR rapidly worsens in higher frequencies. Meanwhile, the velocity response spectra show good agreement with observations up to 0.90 Hz in terms of the combined goodness of fit (CGOF), which is a measure of misfit in the velocity response spectra. Inputting the reconstructed wavefield into seismic response analyses, we can rapidly assess the overall damage to infrastructures immediately after a large earthquake.
Seismic hazard assessment: Issues and alternatives
Wang, Z.
2011-01-01
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.
NASA Astrophysics Data System (ADS)
Davis, P. M.; Foote, E. J.; Stubailo, I.; Phillips, K. E.; Clayton, R. W.; Skinner, S.; Audin, L.; Tavera, H.; Dominguez Ramirez, L. A.; Lukac, M. L.
2010-12-01
This work describes preliminary tomography results from the Peru Seismic Experiment (PERUSE) a 100 station broadband seismic network installed in Peru. The network consists a linear array of broadband seismic stations that was installed mid-2008 that runs from the Peruvian coast near Mollendo to Lake Titicaca. A second line was added in late 2009 between Lake Titicaca and Cusco. Teleseismic and local earthquake travel time residuals are being combined in the tomographic inversions. The crust under the Andes is found to be 70-80 km thick decreasing to 30 km near the coast. The morphology of the Moho is consistent with the receiver function images (Phillips et al., 2010; this meeting) and also gravity. Ray tracing through the heterogeneous structure is used to locate earthquakes. However the rapid spatial variation in crustal thickness, possibly some of the most rapid in the world, generates shadow zones when using conventional ray tracing for the tomography. We use asymptotic ray theory that approximates effects from finite frequency kernels to model diffracted waves in these regions. The observation of thickened crust suggests that models that attribute the recent acceleration of the Altiplano uplift to crustal delamination are less likely than those that attribute it to crustal compression.
Moving towards persistent identification in the seismological community
NASA Astrophysics Data System (ADS)
Quinteros, Javier; Evans, Peter; Strollo, Angelo; Ulbricht, Damian; Elger, Kirsten; Bertelmann, Roland
2016-04-01
The GEOFON data centre and others in the seismological community have been archiving seismic waveforms for many years. The amount of seismic data available continuously increases due to the use of higher sampling rates and the growing number of stations. In recent years, there is a trend towards standardization of the protocols and formats to improve and homogenise access to these data [FDSN, 2013]. The seismological community has begun assigning a particular persistent identifier (PID), the Digital Object Identifier (DOI), to seismic networks as a first step for properly and consistently attributing the use of data from seismic networks in scientific articles [Evans et al., 2015]. This was codified in a recommendation by the international Federation of Digital Seismic Networks [FDSN, 2014]; DOIs for networks now appear in community web pages. However, our community, in common with other fields of science, still struggles with issues such as: supporting reproducibility of results; providing proper attribution (data citation) for data sets; and measuring the impact (by tracking their use) of, those data sets. Seismological data sets used for research are frequently created "on-the-fly" based on particular user requirements such as location or time period; users prepare requests to select subsets of the data held in seismic networks; the data actually provided may even be held at many different data centres [EIDA, 2016]. These subsets also require careful citation. For persistency, a request must receive exactly the same data when repeated at a later time. However, if data are curated between requests, the data set delivered may differ, severely complicating the ability to reproduce a result. Transmission problems or configuration problems may also inadvertently modify the response to a request. With this in mind, our next step is the assignment of additional EPIC-PIDs to daily data files (currently over 28 million in the GEOFON archive) for use within the data centre. These will be used for replication and versioning of the data. This will support reproducible, fine-grained citation of seismic waveform data in a consistent fashion. Moreover, we plan to create also PIDs for collections of PIDs, in order to support the citation of a set of many data files with a single identifier. The technical information describing the instruments used to acquire the data and their location will most probably be also identified with a PID (to a StationXML record) and pointed to from the metadata of the waveform PID. StationXML will also include the DOI of the network for citation purposes. With all these elements, progress towards reproducibility and better attribution are gained. References - EIDA (2016): European Integrated Data Archive (EIDA) . http://www.orfeus-eu.org/eida/eida.html - Evans, P., Strollo, A., Clark, A., Ahern, T., Newman, R., Clinton, J. F., Pedersen, H., Pequegnat, C. (2015 online): Why Seismic Networks Need Digital Object Identifiers. - Eos, Transactions American Geophysical Union, 96. http://doi.org/10.1029/2015EO036971 - International Federation of Digital Seismograph Networks (FDSN) (2013): FDSN Web Service Specifications, Version 1.1b, 2013/10/25. http://www.fdsn.org/webservices/FDSN-WS-Specifications-1.1.pdf - International Federation of Digital Seismograph Networks (FDSN) (2014), FDSN recommendations for seismic network DOIs and related FDSN services [WG3 recommendation], http://doi.org/10.7914/D11596.
Seismic velocity uncertainties and their effect on geothermal predictions: A case study
NASA Astrophysics Data System (ADS)
Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group
2017-04-01
Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.
Dominant seismic sources for the cities in South Sumatra
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya
2017-07-01
Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.
Multiple field-based methods to assess the potential impacts of seismic surveys on scallops.
Przeslawski, Rachel; Huang, Zhi; Anderson, Jade; Carroll, Andrew G; Edmunds, Matthew; Hurt, Lynton; Williams, Stefan
2018-04-01
Marine seismic surveys are an important tool to map geology beneath the seafloor and manage petroleum resources, but they are also a source of underwater noise pollution. A mass mortality of scallops in the Bass Strait, Australia occurred a few months after a marine seismic survey in 2010, and fishing groups were concerned about the potential relationship between the two events. The current study used three field-based methods to investigate the potential impact of marine seismic surveys on scallops in the region: 1) dredging and 2) deployment of Autonomous Underwater Vehicles (AUVs) were undertaken to examine the potential response of two species of scallops (Pecten fumatus, Mimachlamys asperrima) before, two months after, and ten months after a 2015 marine seismic survey; and 3) MODIS satellite data revealed patterns of sea surface temperatures from 2006-2016. Results from the dredging and AUV components show no evidence of scallop mortality attributable to the seismic survey, although sub-lethal effects cannot be excluded. The remote sensing revealed a pronounced thermal spike in the eastern Bass Strait between February and May 2010, overlapping the scallop beds that suffered extensive mortality and coinciding almost exactly with dates of operation for the 2010 seismic survey. The acquisition of in situ data coupled with consideration of commercial seismic arrays meant that results were ecologically realistic, while the paired field-based components (dredging, AUV imagery) provided a failsafe against challenges associated with working wholly in the field. This study expands our knowledge of the potential environmental impacts of marine seismic survey and will inform future applications for marine seismic surveys, as well as the assessment of such applications by regulatory authorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
St. Fleur, Sadrac; Bertrand, Etienne; Courboulex, Francoise; Mercier de Lépinay, Bernard; Deschamps, Anne; Hough, Susan E.; Cultrera, Giovanna; Boisson, Dominique; Prepetit, Claude
2016-01-01
To provide better insight into seismic ground motion in the Port‐au‐Prince metropolitan area, we investigate site effects at 12 seismological stations by analyzing 78 earthquakes with magnitude smaller than 5 that occurred between 2010 and 2013. Horizontal‐to‐vertical spectral ratio on earthquake recordings and a standard spectral ratio were applied to the seismic data. We also propose a simplified lithostratigraphic map and use available geotechnical and geophysical data to construct representative soil columns in the vicinity of each station that allow us to compute numerical transfer functions using 1D simulations. At most of the studied sites, spectral ratios are characterized by weak‐motion amplification at frequencies above 5 Hz, in good agreement with the numerical transfer functions. A mismatch between the observed amplifications and simulated response at lower frequencies shows that the considered soil columns could be missing a deeper velocity contrast. Furthermore, strong amplification between 2 and 10 Hz linked to local topographic features is found at one station located in the south of the city, and substantial amplification below 5 Hz is detected near the coastline, which we attribute to deep and soft sediments as well as the presence of surface waves. We conclude that for most investigated sites in Port‐au‐Prince, seismic amplifications due to site effects are highly variable but seem not to be important at high frequencies. At some specific locations, however, they could strongly enhance the low‐frequency content of the seismic ground shaking. Although our analysis does not consider nonlinear effects, we thus conclude that, apart from sites close to the coast, sediment‐induced amplification probably had only a minor impact on the level of strong ground motion, and was not the main reason for the high level of damage in Port‐au‐Prince.
NASA Astrophysics Data System (ADS)
Bascunan, S. A.; Maksymowicz, A.; Martínez, F.; Becerra, J.; Rubilar, J. F.; Arriagada, C.; Peña Gomez, M. A.; Gómez, I.
2016-12-01
Multiple studies of industry seismic lines across the Salar de Atacama Basin, in the Central Andes of northern Chile (22°-24°S), have led to opposite interpretations regarding its internal architecture, particularly for the Cenozoic successions. These differences can be attributed to the yet uncertain stratigraphy of the 5425 m-deep Toconao-1 well, its relation to outcrops around the El Bordo Escarpment, the tie between the well and the seismic lines, and the lack of a depth conversion of these lines. An analysis of these data allows for the proper location in the depth domain of the most important reflectors found in line Z-1G010, which intersects the borehole. The vertical seismic profile and the density log show that the most significant change in lithological properties occurs at ca. 1 s TWT (1580 m), at the transition from mainly evaporitic deposits to more clastic units, presumably belonging to the Loma Amarilla Formation. This modification in velocity and density can be seen in the seismic line as a major west-dipping surface, dubbed the San Pedro Reflector (SPR). The use of 3D software and the depth conversion allow following the SPR along most of the basin. The surface shows an east-to-west, south-to-north increase in depth, reaching a maximum close to 8 km. The geometry of the surface closely follows the trend of the El Bordo Escarpment. Based on paleomagnetic data, recent mapping and geochronology data, the reflector is estimated to have formed during the Oligocene. Additional extensional features confirm its origin due to small-scale collapse of the Cordillera de Domeyko after the Eocene Incaic Event, after which the deformation front migrated eastwards, thus explaining the presence of extension and compression along the margin at the same time. This change in stress state also affected other parts of the range, such as the Calama Basin.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Sketsiou, Panayiota
2017-04-01
We plan the application of a joint velocity, attenuation, and scattering tomography to the North Sea basins. By using seismic phases and intensities from previous passive and active surveys our aim is to image and monitor fluids under the subsurface. Seismic intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the volcanoes and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island), continental calderas (Campi Flegrei) and Quaternary Volcanoes (Mount. St. Helens) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability, with as key output a novel computational code with strong commercial potential. Data are readily available in the framework of the NERC CDT Oil & Gas project.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
NASA Astrophysics Data System (ADS)
HA, Y.; Jung, H.; Raymond, L. A.; Bero, D.
2015-12-01
Seismic anisotropy has been found in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD technique and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a weak girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite was very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.
Earthquakes in southern Dalmatia and coastal Montenegro before the large 6 April 1667 event
NASA Astrophysics Data System (ADS)
Albini, Paola; Rovida, Andrea
2018-05-01
The fourteenth to seventeenth century seismicity of southern Dalmatia (Croatia) and coastal Montenegro deserved to be fully reappraised because of the ascertained imperfect knowledge offered by modern seismological studies and of the awareness of the smokescreen effect due to the large 6 April 1667 M 6.4 earthquake that impacted exactly the area of study. The investigation consisted of (i) a reconsideration of earthquake records made available by previous studies and (ii) a systematic analysis of historical sources contemporary to the earthquakes, especially those not yet taken into account in seismological studies. The 168 contemporary and independent records collected cast a different light on more than 300 years of seismicity of this area. Records are reckoned to be unevenly distributed among the 39 studied earthquakes, out of which 15 still rely upon a single testimony. Each record has been reevaluated with respect to its content and attributed a level of reliability, which for those reporting other 14 events was so low to prevent us from confirming their real occurrence. Completely unreliable records have been identified and discussed, to conclude that they are at the root of five fake earthquakes. Altogether, 34 intensity values in EMS-98 were assessed related to 15 moderate and five damaging earthquakes. Existing and newly obtained data contributed to putting the pre-1667 seismicity of southern Dalmatia and coastal Montenegro into a substantially different perspective.
Earthquakes in southern Dalmatia and coastal Montenegro before the large 6 April 1667 event
NASA Astrophysics Data System (ADS)
Albini, Paola; Rovida, Andrea
2018-02-01
The fourteenth to seventeenth century seismicity of southern Dalmatia (Croatia) and coastal Montenegro deserved to be fully reappraised because of the ascertained imperfect knowledge offered by modern seismological studies and of the awareness of the smokescreen effect due to the large 6 April 1667 M 6.4 earthquake that impacted exactly the area of study. The investigation consisted of (i) a reconsideration of earthquake records made available by previous studies and (ii) a systematic analysis of historical sources contemporary to the earthquakes, especially those not yet taken into account in seismological studies. The 168 contemporary and independent records collected cast a different light on more than 300 years of seismicity of this area. Records are reckoned to be unevenly distributed among the 39 studied earthquakes, out of which 15 still rely upon a single testimony. Each record has been reevaluated with respect to its content and attributed a level of reliability, which for those reporting other 14 events was so low to prevent us from confirming their real occurrence. Completely unreliable records have been identified and discussed, to conclude that they are at the root of five fake earthquakes. Altogether, 34 intensity values in EMS-98 were assessed related to 15 moderate and five damaging earthquakes. Existing and newly obtained data contributed to putting the pre-1667 seismicity of southern Dalmatia and coastal Montenegro into a substantially different perspective.
Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment
2012-09-01
ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow
Remote Sensing of Subsurface Fractures in the Otway Basin, South Australia
NASA Astrophysics Data System (ADS)
Bailey, Adam; King, Rosalind; Holford, Simon; Hand, Martin
2013-04-01
A detailed understanding of naturally occurring fracture networks within the subsurface is becoming increasingly important to the energy sector, as the focus of exploration has expanded to include unconventional reservoirs such as coal seam gas, shale gas, tight gas, and engineered geothermal systems. Successful production from such reservoirs, where primary porosity and permeability is often negligible, is heavily reliant on structural permeability provided by naturally occurring and induced fracture networks, permeability, which is often not provided for through primary porosity and permeability. In this study the Penola Trough, located within the onshore Otway Basin in South Australia, is presented as a case study for remotely detecting and defining subsurface fracture networks that may contribute to secondary permeability. This area is prospective for shale and tight gas and geothermal energy. The existence and nature of natural fractures is verified through an integrated analysis of geophysical logs (including wellbore image logs) and 3D seismic data. Wellbore image logs from 11 petroleum wells within the Penola Trough were interpreted for both stress indicators and natural fractures. A total of 507 naturally occurring fractures were identified, striking approximately WNE-ESE. Fractures which are aligned in the in-situ stress field are optimally oriented for reactivation, and are hence likely to be open to fluid flow. Fractures are identifiable as being either resistive or conductive sinusoids on the resistivity image logs used in this study. Resistive fractures, of which 239 were identified, are considered to be cemented with electrically resistive cements (such as quartz or calcite) and thus closed to fluid flow. Conductive fractures, of which 268 were identified, are considered to be uncemented and open to fluid flow, and thus important to geothermal exploration. Fracture susceptibility diagrams constructed for the identified fractures illustrate that the conductive fractures are optimally oriented for reactivation in the present-day strike-slip fault regime, and so are likely to be open to fluid flow. To gain an understanding of the broader extent of these natural fractures, it is necessary to analyse more regional 3D seismic data. It is well documented that fault and fracture networks like those generally observed in image logs lie well below seismic amplitude resolution, making them difficult to observe directly on amplitude data. However, seismic attributes can be calculated to provide some information on sub-seismic scale structural and stratigraphic features. Using the merged Balnaves/Haselgrove 3D seismic cube acquired over the Penola Trough, attribute maps of complex multi-trace dip-steered coherency and most positive curvature, among others, were used to document the presence of discontinuities within the seismic data which area likely to represent natural fractures, and to best constrain the likely extent of the fracture network which they form. The resulting fracture network model displays relatively good connectivity surrounding structural features intersecting the studied horizons, although large areas lacking significant discontinuities are observed. These areas make it unlikely that the fracture network contributes to permeability on a basin-wide scale, though observed features are optimally oriented for reactivation under contemporary stress conditions and are thus likely to provide at least local increases in permeability.
Morton, Robert
1993-01-01
Submarine slides exhibit landward-dipping, wavy, mounded, and chaotic seismic reflections that are manifestations of slump blocks and other mass transport material. Composition of these internally derived slide deposits depends on the composition of the preexisting shelf margin. Embayment fill above the slide consists mostly of externally derived mudstones and sandstones deposited by various disorganized slope processes, as well as more organized submarine channel-levee systems. Thickest slope sandstones, which are potential hydrocarbon reservoirs, commonly occur above the basal slide mudstones where seismic reflections change from chaotic patterns to overlying wavy or subhorizontal reflections.
Evidence of Quaternary and recent activity along the Kyaukkyan Fault, Myanmar
NASA Astrophysics Data System (ADS)
Crosetto, Silvia; Watkinson, Ian M.; Soe Min; Gori, Stefano; Falcucci, Emanuela; Nwai Le Ngal
2018-05-01
Cenozoic right-lateral shear between the eastern Indian margin and Eurasia is expressed by numerous N-S trending fault systems inboard of the Sunda trench, including the Sagaing Fault. The most easterly of these fault systems is the prominent ∼500 km long Kyaukkyan Fault, on the Shan Plateau. Myanmar's largest recorded earthquake, Mw 7.7 on 23rd May 1912, focused near Maymyo, has been attributed to the Kyaukkyan Fault, but the area has experienced little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, questions remain about the Kyaukkyan Fault's neotectonic history.
Chaves, Esteban J; Schwartz, Susan Y
2016-01-01
In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.
78 FR 13911 - Proposed Revision to Design of Structures, Components, Equipment and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... Analysis Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.1, ``Seismic Design Parameters,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... and analysis issues, (2) updates to review interfaces to improve the efficiency and consistency of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. BEGNAUD; ET AL
2000-09-01
Obtaining accurate seismic event locations is one of the most important goals for monitoring detonations of underground nuclear teats. This is a particular challenge at small magnitudes where the number of recording stations may be less than 20. Although many different procedures are being developed to improve seismic location, most procedures suffer from inadequate testing against accurate information about a seismic event. Events with well-defined attributes, such as latitude, longitude, depth and origin time, are commonly referred to as ground truth (GT). Ground truth comes in many forms and with many different levels of accuracy. Interferometric Synthetic Aperture Radar (InSAR)more » can provide independent and accurate information (ground truth) regarding ground surface deformation and/or rupture. Relating surface deformation to seismic events is trivial when events are large and create a significant surface rupture, such as for the M{sub w} = 7.5 event that occurred in the remote northern region of the Tibetan plateau in 1997. The event, which was a vertical strike slip even appeared anomalous in nature due to the lack of large aftershocks and had an associated surface rupture of over 180 km that was identified and modeled using InSAR. The east-west orientation of the fault rupture provides excellent ground truth for latitude, but is of limited use for longitude. However, a secondary rupture occurred 50 km south of the main shock rupture trace that can provide ground truth with accuracy within 5 km. The smaller, 5-km-long secondary rupture presents a challenge for relating the deformation to a seismic event. The rupture is believed to have a thrust mechanism; the dip of the fimdt allows for some separation between the secondary rupture trace and its associated event epicenter, although not as much as is currently observed from catalog locations. Few events within the time period of the InSAR analysis are candidates for the secondary rupture. Of these, we have identified six possible secondary rupture events (mb range = 3.7-4.8, with two magnitudes not reported), based on synthetic tests and residual analysis. All of the candidate events are scattered about the main and secondary rupture. A Joint Hypocenter Determination (JHD) approach applied to the aftershocks using global picks was not able to identify the secondary event. We added regional data and used propagation path corrections to reduce scatter and remove the 20-km bias seen in the main shock location. A&r preliminary analysis using several different velocity models, none of the candidate events proved to relocate on the surface trace of the secondary rupture. However, one event (mb = not reported) moved from a starting distance of {approximately}106 km to a relocated distance of {approximately}28 km from the secondary rupture, the only candidate event to relocate in relative proximity to the secondary rupture.« less
NASA Astrophysics Data System (ADS)
Efstathiou, Angeliki; Tzanis, Andreas; Vallianatos, Filippos
2014-05-01
The context of Non Extensive Statistical Physics (NESP) has recently been suggested to comprise an appropriate tool for the analysis of complex dynamic systems with scale invariance, long-range interactions, long-range memory and systems that evolve in a fractal-like space-time. This is because the active tectonic grain is thought to comprise a (self-organizing) complex system; therefore, its expression (seismicity) should be manifested in the temporal and spatial statistics of energy release rates. In addition to energy release rates expressed by the magnitude M, measures of the temporal and spatial interactions are the time (Δt) and hypocentral distance (Δd) between consecutive events. Recent work indicated that if the distributions of M, Δt and Δd are independent so that the joint probability p(M,Δt,Δd) factorizes into the probabilities of M, Δt and Δd, i.e. p(M,Δt,Δd)= p(M)p(Δt)p(Δd), then the frequency of earthquake occurrence is multiply related, not only to magnitude as the celebrated Gutenberg - Richter law predicts, but also to interevent time and distance by means of well-defined power-laws consistent with NESP. The present work applies these concepts to investigate the self-organization and temporal/spatial dynamics of seismicity in Greece and western Turkey, for the period 1964-2011. The analysis was based on the ISC earthquake catalogue which is homogenous by construction with consistently determined hypocenters and magnitude. The presentation focuses on the analysis of bivariate Frequency-Magnitude-Time distributions, while using the interevent distances as spatial constraints (or spatial filters) for studying the spatial dependence of the energy and time dynamics of the seismicity. It is demonstrated that the frequency of earthquake occurrence is multiply related to the magnitude and the interevent time by means of well-defined multi-dimensional power-laws consistent with NESP and has attributes of universality,as its holds for a broad range of spatial, temporal and magnitude scales. Provided that the multivariate empirical frequency distributions are based on a sufficient number of observations as an empirical lower limit, the results are stable and consistent with the established ken, irrespective of the magnitude and spatio-temporal range of the earthquake catalogue, or operations pertaining to re-sampling, bootstrapping or re-arrangement of the catalogue. It is also demonstrated that that the expression of the regional active tectonic grain may comprise a mixture of processes significantly dependent on Δd. The analysis of the size (energy) distribution of earthquakes yielded results consistent with a correlated sub-extensive system; the results are also consistent with conventional determinations of Frequency-Magnitude distributions. The analysis of interevent times, has determined the existence of sub-extensivity and near-field interaction (correlation) in the complete catalogue of Greek and western Turkish seismicity (mixed background earthquake activity and aftershock processes),as well as in the pure background process (declustered catalogue).This could be attributed to the joint effect of near-field interaction between neighbouring earthquakes or seismic areas and interaction within aftershock sequences. The background process appears to be moderately - weakly correlated at the far field. Formal random temporal processes have not been detected. A general syllogism affordable by the above observations is that aftershock sequences may be an integral part of the seismogenetic process, as they appear to partake in long-range interaction. A formal explanation of such an effect is pending, but may nevertheless involve delayed remote triggering of seismic activity by (transient or static) stress transfer from the main shocks and large aftershocks and/or cascading effects already discussed by Marsan and Lengliné (2008). In this view, the effect weakens when aftershocks are removed because aftershocks are the link between the main shocks and their remote offshoot. Overall, the above results compare well to the results of North Californian seismicity which have shown that the expression of seismicity at Northern California is generally consistent with non-extensive (sub-extensive) thermodynamics. Acknowledgments: This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project "Integrated understanding of Seismicity, using innovative methodologies of Fracture Mechanics along with Earthquake and Non-Extensive Statistical Physics - Application to the geodynamic system of the Hellenic Arc - SEISMO FEAR HELLARC". References: Tzanis A., Vallianatos F., Efstathiou A., Multidimensional earthquake frequency distributions consistent with Non-Extensive Statistical Physics: the interdependence of magnitude, interevent time and interevent distance in North California. Bulletin of the Geological Society of Greece, vol. XLVII 2013. Proceedings of the 13th International Congress, Chania, Sept. 2013 Tzanis A., Vallianatos F., Efstathiou A., Generalized multidimensional earthquake frequency distributions consistent with Non-Extensive Statistical Physics: An appraisal of the universality in the interdependence of magnitude, interevent time and interevent distance Geophysical Research Abstracts, Vol. 15, EGU2013-628, 2013, EGU General Assembly 2013 Marsan, D. and Lengliné, O., 2008. Extending earthquakes's reach through cascading, Science, 319, 1076; doi: 10.1126/science.1148783 On-line Bulletin, http://www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom, 2011.
American Marten Respond to Seismic Lines in Northern Canada at Two Spatial Scales
Tigner, Jesse; Bayne, Erin M.; Boutin, Stan
2015-01-01
Development of hydrocarbon resources across northwest Canada has spurred economic prosperity and generated concerns over impacts to biodiversity. To balance these interests, numerous jurisdictions have adopted management thresholds that allow for limited energy development but minimize undesirable impacts to wildlife. Used for exploration, seismic lines are the most abundant linear feature in the boreal forest and exist at a variety of widths and recovery states. We used American marten (Martes americana) as a model species to measure how line attributes influence species’ response to seismic lines, and asked whether responses to individual lines trigger population impacts. Marten response to seismic lines was strongly influenced by line width and recovery state. Compared to forest interiors, marten used open seismic lines ≥ 3 m wide less often, but used open lines ≤ 2 m wide and partially recovered lines ≥ 6 m wide similarly. Marten response to individual line types appeared to trigger population impacts. The probability of occurrence at the home range scale declined with increasing seismic line density, and the inclusion of behavioral response to line density calculations improved model fit. In our top performing model, we excluded seismic lines ≤ 2 m from our calculation of line density, and the probability of occurrence declined > 80% between home ranges with the lowest and highest line densities. Models that excluded seismic lines did not strongly explain occurrence. We show how wildlife-derived metrics can inform regulatory guidelines to increase the likelihood those guidelines meet intended management objectives. With respect to marten, not all seismic lines constitute disturbances, but avoidance of certain line types scales to population impacts. This approach provides the ecological context required to understand cause and effect relationships among socio-economic and ecological conservation goals. PMID:25768848
NASA Astrophysics Data System (ADS)
Shinevar, William J.; Behn, Mark D.; Hirth, Greg; Jagoutz, Oliver
2018-07-01
We investigate the role of composition on the viscosity of the lower crust through a joint inversion of seismic P-wave (Vp) and S-wave (Vs) velocities. We determine the efficacy of using seismic velocity to constrain viscosity, extending previous research demonstrating robust relationships between seismic velocity and crustal composition, as well as crustal composition and viscosity. First, we calculate equilibrium mineral assemblages and seismic velocities for a global compilation of crustal rocks at relevant pressures and temperatures. Second, we use a rheological mixing model that incorporates single-phase flow laws for major crust-forming minerals to calculate aggregate viscosity from predicted mineral assemblages. We find a robust correlation between crustal viscosity and Vp together with Vs in the α-quartz regime. Using seismic data, geodetic surface strain rates, and heat flow measurements from Southern California, our method predicts that lower crustal viscosity varies regionally by four orders of magnitude, and lower crustal stress varies by three orders of magnitude at 25 km depth. At least half of the total variability in stress can be attributed to composition, implying that regional lithology has a significant effect on lower crustal geodynamics. Finally, we use our method to predict the depth of the brittle-ductile transition and compare this to regional variations of the seismic-aseismic transition. The variations in the seismic-aseismic transition are not explained by the variations in our model rheology inferred from the geophysical observations. Thus, we conclude that fabric development, in conjunction with compositional variations (i.e., quartz and mica content), is required to explain the regional changes in the seismic-aseismic transition.
Induced Seismicity Potential of Energy Technologies
NASA Astrophysics Data System (ADS)
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
Evaluation of the deformation parameters of the northern part of Eg
NASA Astrophysics Data System (ADS)
Mohamed, Abdel-Monem S.; Radwan, Ali M.; Sharf, Mohamed; Hamimi, Zakaria; Hegazy, Esraa E.; Abou Aly, Nadia; Gomaa, Mahmoud
2016-06-01
The northern part of Egypt is a rapidly growing development accompanied by the increased levels of standard living particularly in its urban areas. From tectonic and seismic point of views, the northern part of Egypt is one of the interested regions. It shows an active geologic structure attributed to the tectonic movements of the African and Eurasian plates from one side and the Arabian plate from the other side. From historical point of view and recent instrumental records, the northern part of Egypt is one of the seismo-active regions in Egypt. The investigations of the seismic events and their interpretations had led to evaluate the seismic hazard for disaster mitigation, for the safety of the densely populated regions and the vital projects. In addition to the monitoring of the seismic events, the most powerful technique of Global Navigation Satellite System (GNSS) will be used in determining crustal deformation where a geodetic network covers the northern part of Egypt. Joining the GPS Permanent stations of the northern part of Egypt with the Southern part of Europe will give a clear picture about the recent crustal deformation and the African plate velocity. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. Final compiled output from the seismological and geodetic analysis will throw lights upon the geodynamical regime of these seismo-active regions. This work will throw lights upon the geodynamical regime and to delineate the crustal stress and strain fields in the study region. This also enables to evaluate the active tectonics and surface deformation with their directions from repeated geodetic observations. The results show that the area under study suffers from continuous seismic activity related to the crustal movements taken place along trends of major faults
Full-waveform seismic tomography of the Vrancea, Romania, subduction region
NASA Astrophysics Data System (ADS)
Baron, Julie; Morelli, Andrea
2017-12-01
The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful, information.
Akhter, Gulraiz; Farid, Asim; Ahmad, Zulfiqar
2012-01-01
Velocity and density measured in a well are crucial for synthetic seismic generation which is, in turn, a key to interpreting real seismic amplitude in terms of lithology, porosity and fluid content. Investigations made in the water wells usually consist of spontaneous potential, resistivity long and short normal, point resistivity and gamma ray logs. The sonic logs are not available because these are usually run in the wells drilled for hydrocarbons. To generate the synthetic seismograms, sonic and density logs are required, which are useful to precisely mark the lithology contacts and formation tops. An attempt has been made to interpret the subsurface soil of the aquifer system by means of resistivity to seismic inversion. For this purpose, resistivity logs and surface resistivity sounding were used and the resistivity logs were converted to sonic logs whereas surface resistivity sounding data transformed into seismic curves. The converted sonic logs and the surface seismic curves were then used to generate synthetic seismograms. With the utilization of these synthetic seismograms, pseudo-seismic sections have been developed. Subsurface lithologies encountered in wells exhibit different velocities and densities. The reflection patterns were marked by using amplitude standout, character and coherence. These pseudo-seismic sections were later tied to well synthetics and lithologs. In this way, a lithology section was created for the alluvial fill. The cross-section suggested that the eastern portion of the studied area mainly consisted of sandy fill and the western portion constituted clayey part. This can be attributed to the depositional environment by the Indus and the Kabul Rivers.
NASA Astrophysics Data System (ADS)
Goswami, Bedanta K.; Weitemeyer, Karen A.; Bünz, Stefan; Minshull, Timothy A.; Westbrook, Graham K.; Ker, Stephan; Sinha, Martin C.
2017-03-01
The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Ωm2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Ωm2. Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.
NASA Astrophysics Data System (ADS)
Nishikawa, T.; Ide, S.
2014-12-01
There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and tectonic properties may be useful for seismic risk assessment.
Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data
NASA Astrophysics Data System (ADS)
Wang, Z.; Gani, M. R.
2016-12-01
Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2) absence of sediment waves on the basin floor, which is covered mainly by muds and hemipelagic sediments with a low sand-mud ratio; and (3) presence of sediment waves on the lower slope with a moderate sand-mud ratio.
Prehistoric earthquake history revealed by lacustrine slump deposits
NASA Astrophysics Data System (ADS)
Schnellmann, Michael; Anselmetti, Flavio S.; Giardini, Domenico; McKenzie, Judith A.; Ward, Steven N.
2002-12-01
Five strong paleoseismic events were recorded in the past 15 k.y. in a series of slump deposits in the subsurface of Lake Lucerne, central Switzerland, revealing for the first time the paleoseismic history of one of the most seismically active areas in central Europe. Although many slump deposits in marine and lacustrine environments were previously attributed to historic earthquakes, the lack of detailed three-dimensional stratigraphic correlation in combination with accurate dating hampered the use of multiple slump deposits as paleoseismic indicators. This study investigated the fingerprint of the well-described A.D. 1601 earthquake (I = VII VIII, Mw ˜ 6.2) in the sediments of Lake Lucerne. The earthquake triggered numerous synchronous slumps and megaturbidites within different subbasins of the lake, producing a characteristic pattern that can be used to assign a seismic triggering mechanism to prehistoric slump events. For each seismic event horizon, the slump synchronicity was established by seismic-stratigraphic correlation between individual slump deposits through a quasi-three-dimensional high-resolution seismic survey grid. Four prehistoric events, dated by accelerator mass spectrometry, 14C measurements, and tephrochronology on a series of long gravity cores, occurred at 2420, 9770, 13,910, and 14,560 calendar yr ago. These recurrence times are essential factors for assessing seismic hazard in the area. The seismic hazard for lakeshore communities is additionally amplified by slump-induced tsunami and seiche waves. Numerical modeling of such tsunami waves revealed wave heights to 3 m, indicating tsunami risk in lacustrine environments.
An integrated investigation of the induced seismicity near Crooked Lake, Alberta, Canada in 2016
NASA Astrophysics Data System (ADS)
Wang, R.; Gu, Y. J.; Shen, J.; Schultz, R.
2016-12-01
In the past three years, the Crooked Lake (or Fox Creek) region has become one of the most seismically active areas in the Western Canada Sedimentary Basin (WCSB), mostly attributable to hydraulic-fracturing operations on shale gas. Among the human-related earthquakes, the January 12, 2016 event (M = 4.1) not only triggered the "red light" provincial protocol, leading to the temporary suspension of a near-by injection well, but also set a new magnitude record for earthquakes in Alberta in the last decade. In this study, we determine the source parameters (e.g., magnitude, hypocenter location) of this earthquake and its aftershocks using full moment tensor inversions. Our findings are consistent with the anthropogenic origin of this earthquake and the source solution of the main shock shows a strike-slip mechanism with limited non-double-couple components ( 22%). The candidate fault orientations, which are predominantly N-S and E-W trending, are consistent with those of earlier events in this region but different from induced events in other parts in the WCSB. The inferred compressional axis is supported by crustal stress orientations extracted from bore-hole breakouts and the right-lateral fault is preferred by both seismic and aeromagnetic data. A further analysis of the waveforms from the near-source stations (<10 km) detected nearly 100 pre-/aftershocks within a week of this earthquake. Systematic differences in the waveforms between earthquake multiples before and after the master event suggest moderate changes of seismic velocity structures at the injection depth around the source area, possibly a reflection of fluid migration and/or changes in stress field. In short, our integrated study on the January 2016 earthquake cluster offers critical insights on the nature of induced earthquakes in the Crooked Lake region and other parts of the WCSB.
NASA Astrophysics Data System (ADS)
Brudzinski, M.; Skoumal, R.; Currie, B.
2016-12-01
Over the past decade, the dramatic rise in seismicity in the central and eastern US has been attributed to industry operations associated with wastewater injection and hydraulic fracturing. While most of the observed seismicity has occurred in sedimentary basins that have experienced overall increases in oil and gas development (e.g. the Anadarko and Ft. Worth basins), other basins with similar activity (e.g. the Williston and northern Appalachian basins) have experienced very little, if any, induced seismicity. While hydro-geomechanical modeling indicates that induced seismicity may be related to the proximity of critically stressed faults in the crystalline basement, recent studies have found fluid injection rate to be the dominant factor controlling induced seismicity. To test these interpretations we evaluated water disposal and well completion records from the Appalachian, Illinois, and Williston basins, and compared them with induced seismic sequences identified through seismic template matching of all cataloged earthquakes in these regions. Our results indicate a strong correspondence between induced seismic events and the proximity of subsurface wastewater injection/hydraulic fracturing targets to crystalline basement rocks. For example, in the northern Appalachian Basin, of the >20 identified induced seismic sequences, all but two were associated with injection/completion targets located at depths within 1 km of the basement. In parts of the basin where target intervals are at depths >1 km from basement, induced events have been recorded only in proximity to basement-involved faults. In addition, in the Williston Basin most disposal interval/hydraulic fracturing targets are >1 km above the crystalline basement which may explain the lack of induced seismic events in the region despite high rate fluid injection. Collectively, the results of our investigation suggest that proximity to basement is an important variable in considering the likelihood of induced seismicity associated with wastewater disposal and hydraulic fracturing. This has important implications regarding induced-seismic risk assessment related to the siting of new disposal wells and/or the production of hydrocarbon from near-basement reservoirs.
Quantitative risk analysis of oil storage facilities in seismic areas.
Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto
2005-08-31
Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.
NASA Astrophysics Data System (ADS)
Iturrarán-Viveros, Ursula; Parra, Jorge O.
2014-08-01
Permeability and porosity are two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. The intrinsic attenuation is another important parameter since it is related to porosity, permeability, oil and gas saturation and these parameters significantly affect the seismic signature of a reservoir. We apply Artificial Neural Network (ANN) models to predict permeability (k) and porosity (ϕ) for a carbonate aquifer in southeastern Florida and to predict intrinsic attenuation (1/Q) for a sand-shale oil reservoir in northeast Texas. In this study, the Gamma test (a revolutionary estimator of the noise in a data set) has been used as a mathematically non-parametric nonlinear smooth modeling tool to choose the best input combination of seismic attributes to estimate k and ϕ, and the best combination of well-logs to estimate 1/Q. This saves time during the construction and training of ANN models and also sets a lower bound for the mean squared error to prevent over-training. The Neural Network method successfully delineates a highly permeable zone that corresponds to a high water production in the aquifer. The Gamma test found nonlinear relations that were not visible to linear regression allowing us to generalize the ANN estimations of k, ϕ and 1/Q for their respective sets of patterns that were not used during the learning phase.
Fault Weakening due to Erosion by Fluids: A Possible Origin of Intraplate Earthquake Swarms
NASA Astrophysics Data System (ADS)
Vavrycuk, V.; Hrubcova, P.
2016-12-01
The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity is controlled by fluid flow due to diffusion in a permeable rock and/or by the redistribution of Coulomb stress. The `fluid-injection model', however, is not valid universally. We provide evidence that this model is inconsistent with observations of earthquake swarms in West Bohemia, Czech Republic. Full seismic moment tensors of micro-earthquakes in the 1997 and 2008 swarms in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a `fluid-erosion model', when the essential role in the swarm triggering is attributed to chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers and a new cycle begins.
NASA Astrophysics Data System (ADS)
Nyamwandha, Cecilia A.; Powell, Christine A.; Langston, Charles A.
2016-05-01
Detailed, upper mantle P and S wave velocity (Vp and Vs) models are developed for the northern Mississippi Embayment (ME), a major physiographic feature in the Central United States (U.S.) and the location of the active New Madrid Seismic Zone (NMSZ). This study incorporates local earthquake and teleseismic data from the New Madrid Seismic Network, the Earthscope Transportable Array, and the FlexArray Northern Embayment Lithospheric Experiment stations. The Vp and Vs solutions contain anomalies with similar magnitudes and spatial distributions. High velocities are present in the lower crust beneath the NMSZ. A pronounced low-velocity anomaly of ~ -3%--5% is imaged at depths of 100-250 km. High-velocity anomalies of ~ +3%-+4% are observed at depths of 80-160 km and are located along the sides and top of the low-velocity anomaly. The low-velocity anomaly is attributed to the presence of hot fluids upwelling from a flat slab segment stalled in the transition zone below the Central U.S.; the thinned and weakened ME lithosphere, still at slightly higher temperatures from the passage of the Bermuda hotspot in mid-Cretaceous, provides an optimal pathway for the ascent of the fluids. The observed high-velocity anomalies are attributed to the presence of mafic rocks emplaced beneath the ME during initial rifting in the early Paleozoic and to remnants of the depleted, lower portion of the lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is amore » stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.« less
Streamflow Changes Induced by the 1999 MW 7.6 Chi-Chi Earthquake
NASA Astrophysics Data System (ADS)
Chia, Yeeping; Liu, Ching-Yi; Chuang, Po-Yu
2016-04-01
Anomalous streamflow changes have often been observed after strong earthquakes. These changes have been used to study crustal deformation induced by earthquakes. Previous studies indicated that co-seismic groundwater-level changes, ranging from a fall of 11.1 m to a rise of 7.42 m, were recorded in 152 monitoring wells near the seismogenic fault during the 1999 MW 7.6 Chi-Chi earthquake. Here we report anomalous streamflow changes due to the earthquake in central Taiwan. There are 32 stream gauges in the vicinity of the fault, mostly in the mountainous hanging wall area. Of those, 22 recorded anomalous streamflow increases, ranging from 60% to 732%, one to four days after the earthquake. Unlike a rapid decrease in discharge after heavy rainfall, the post-seismic increase is followed by a slow decline which may last for several months. Only one gauge recorded a sudden decrease in discharge immediately after the earthquake. Besides, the decrease was preceded by a large and abrupt streamflow increase over the four days before the earthquake. We attribute the post-seismic increase to fracturing in the mountainous area due to seismic shaking, while the decrease to co-seismic pore pressure drop induced by crustal extension. However, more evidence is needed to consider the pre-seismic streamflow changes as a potential precursory indicator of earthquakes.
NASA Astrophysics Data System (ADS)
Che, Il-Young; Jeon, Jeong-Soo
2010-05-01
Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.
NASA Astrophysics Data System (ADS)
Silva, Pablo G.; Rodríguez Pascua, M. A.; Pérez López, R.; Giner Robles, J. L.; Roquero, E.; Tapias, F.; López Recio, M.; Rus, I.; Morin, J.
2010-05-01
Multiple evidences of soft-sediment to brittle deformation within the Pleistocene fluvial terraces of the Tagus, Jarama, Tajuña and Manzanares river valleys have been described since the middle 20th Century. Cryoturbation, hydroplastic deformations due to underlying karstic collapses or halokinesis on the substratum of neogene gypsums, and seismic shaking have been proposed to interpret these structures. These deformations are typically concentrated in the +18-20 m terrace levels, and closely linked to well-known Palaeolithic sites, in some cases overlaying and/or affecting true prehistoric settlements (i.e. Arganda, Arriaga and Tafesa sites) within the Jarama and Manzanares valleys. The affected settlements typically display acheulian lithic industry linked to the scavenging of large Pleistocene mammals (i.e. Elephas antiquus). Commonly, deformational structures are concentrated in relatively thin horizons (10-50 cm thick) bracketed by undeformed fluvial sands and gravels. The soft-sediment deformations usually consist on medium to fine sized sands injected and protruded in overlaying flood-plain clayey silts, showing a wide variety of convolutes, injections, sand-dikes, dish and pillar structures, mud volcanoes, faults and folds, some times it is possible to undertake their 3D geometrical analysis due to the exceptional conservation of the structures (Tafesa). Recent geo-archaeological prospecting on the for the Palaeolithic Site of Arriaga (South Madrid City) conducted during the year 2009, let to find out an exceptional horizon of deformation of about 1.20 m thick. It consisted on highly disturbed and pervasively liquefacted sands, which hardly can be attributed to no-seismic processes. The acheulian lithic industry of the Madrid Region have been classically attributed the Late Middle Pleistocene (< 350 kyr BP), but recent OSL dating indicate that the basal horizons of the +18-20 m fluvial terraces hold ages younger than c.a. 120-100 kyr BP in this zone. All the evidences point to the occurrence of concentrated seismic activity during the OIS 5 (Last Interglaciar) interfering early human activity in the zone. Presently, the Tagus Basin is subject to moderate seismic activity with strongest seismic events not exceeding intensity VI MSK (1954 AD), but most of them related to the Jarama, Tajuña and Tagus river valleys, which are bounded by large linear escarpments carved in Miocene gypsums. These escarpments display a wide variety of brittle and ductile deformations, as well as clear geomorphological indicators of late Quaternary tectonic activity. Considering the recent ESI-2007 Scale, the reported structures indicate the occurrence of larger paleoearthquakes during the Middle-Late Pleistocene of at least local intensity VIII. This study has been supported by the DGPH de la Comunidad de Madrid, AUDEMA S.A. (Proyecto Arriaga-2009). This is a contribution of GQM-AEQUA.
NASA Astrophysics Data System (ADS)
Exley, R. J. K.; Westbrook, G. K.; Haacke, R. R.; Peacock, S.
2010-10-01
Azimuthal seismic anisotropy has been identified from the analysis of S-waves generated by P to S mode conversion in the Pleistocene sediments that form the northern headwall of the Storegga Slide, which were investigated with a seismic experiment employing a seabed array of ocean-bottom seismometers and a grid of airgun shots. The principal technique used to detect the anisotropy was azimuthal stacking of the radial and transverse horizontal geophone components, after the application of moveout, to show the variations in amplitude, phase and cumulative traveltime effects of S-waves, ultimately providing information that identified the `fast' and `slow' S-wave polarization orientations. Particle-motion analysis was used to corroborate the results and provide further information on the magnitudes of cumulative S-wave splitting. A 2-D ray-traced inversion of the traveltimes of pre-critical P and PS arrivals provided a velocity model from which the variation with depth of Vp, Vs and anisotropy could be compared with lithological and stratigraphic data from a borehole at the centre of the OBS array. Increased anisotropic response was observed to be coincident with high velocity units, which have high mica but low water content and are interpreted to be of glacial origin. The analysis of azimuthal seismic anisotropy shows clear evidence for horizontal transverse isotropy or an orthorhombic symmetry. The distribution in orientations of the fast plane of symmetry is broadly bimodal (E-W and NE-SW) across the OBS array. The E-W group showed correlation with the headwalls of old, buried slides and other faults visible within coherency attributes calculated from an accompanying 3-D seismic data set and with the strike of some of the headwalls of slides shown in multibeam bathymetry. However, the pattern of headwall fractures shown in the bathymetry is complicated and reticulate, and the NE-SW orientation is also well represented. We infer that the cause of the anisotropy is the presence of vertical to sub-vertical, fluid-filled fractures and micro-cracks, partially held open by high pore-fluid pressure. The fracture orientations are controlled primarily by the present-day gravitationally induced down-slope stress, which is mediated by the heterogeneous nature of sub-surface, causing local changes in the orientation of the principal stresses at the margins of incipient or failed slides. The fractures, if connected, are likely to increase vertical permeability within the sediment column significantly, and influence the distribution of gas hydrate within the strata.
Wavefront attributes in anisotropic media
NASA Astrophysics Data System (ADS)
Vanelle, C.; Abakumov, I.; Gajewski, D.
2018-07-01
Surface-measured wavefront attributes are the key ingredient to multiparameter methods, which are nowadays standard tools in seismic data processing. However, most operators are restricted to application to isotropic media. Whereas application of an isotropic operator will still lead to satisfactory stack results, further processing steps that interpret isotropic stacking parameters in terms of wavefront attributes will lead to erroneous results if anisotropy is present but not accounted for. In this paper, we derive relationships between the stacking parameters and anisotropic wavefront attributes that allow us to apply the common reflection surface type operator to 3-D media with arbitrary anisotropy for the zero-offset and finite-offset configurations including converted waves. The operator itself is expressed in terms of wavefront attributes that are measured in the acquisition surface, that is, no model assumptions are made. Numerical results confirm that the accuracy of the new anisotropic operator is of the same magnitude as that of its isotropic counterpart.
Linking Incoming Plate Faulting and Intermediate Depth Seismicity
NASA Astrophysics Data System (ADS)
Kwong, K. B.; van Zelst, I.; Tong, X.; Eimer, M. O.; Naif, S.; Hu, Y.; Zhan, Z.; Boneh, Y.; Schottenfels, E.; Miller, M. S.; Moresi, L. N.; Warren, J. M.; Wiens, D. A.
2017-12-01
Intermediate depth earthquakes, occurring between 70-350 km depth, are often attributed to dehydration reactions within the subducting plate. It is proposed that incoming plate normal faulting associated with plate bending at the trench may control the amount of hydration in the plate by producing large damage zones that create pathways for the infiltration of seawater deep into the subducting mantle. However, a relationship between incoming plate seismicity, faulting, and intermediate depth seismicity has not been established. We compiled a global dataset consisting of incoming plate earthquake moment tensor (CMT) solutions, focal depths, bend fault spacing and offset measurements, along with plate age and convergence rates. In addition, a global intermediate depth seismicity dataset was compiled with parameters such as the maximum seismic moment and seismicity rate, as well as thicknesses of double seismic zones. The maximum fault offset in the bending region has a strong correlation with the intermediate depth seismicity rate, but a more modest correlation with other parameters such as convergence velocity and plate age. We estimated the expected rate of seismic moment release for the incoming plate faults using mapped fault scarps from bathymetry. We compare this with the cumulative moment from normal faulting earthquakes in the incoming plate from the global CMT catalog to determine whether outer rise fault movement has an aseismic component. Preliminary results from Tonga and the Middle America Trench suggest there may be an aseismic component to incoming plate bending faulting. The cumulative seismic moment calculated for the outer rise faults will also be compared to the cumulative moment from intermediate depth earthquakes to assess whether these parameters are related. To support the observational part of this study, we developed a geodynamic numerical modeling study to systematically explore the influence of parameters such as plate age and convergence rate on the offset, depth, and spacing of outer rise faults. We then compare these robust constraints on outer rise faulting to the observed widths of intermediate depth earthquakes globally.
NASA Astrophysics Data System (ADS)
Savage, M. K.; Heckels, R.; Townend, J.
2015-12-01
Quantifying seismic velocity changes following large earthquakes can provide insights into the crustal response of the earth. The use of ambient seismic noise to monitor these changes is becoming increasingly widespread. Cross-correlations of long-duration ambient noise records can be used to give stable impulse response functions without the need for repeated seismic events. Temporal velocity changes were detected in the four months following the September 2010 Mw 7.1 Darfield event in South Island, New Zealand, using temporary seismic networks originally deployed to record aftershocks in the region. The arrays consisted of stations lying on and surrounding the fault, with a maximum inter-station distance of 156km. The 2010-2011 Canterbury earthquake sequence occurred largely on previously unknown and buried faults. The Darfield earthquake was the first and largest in a sequence of events that hit the region, rupturing the Greendale Fault. A surface rupture of nearly 30km was observed. The sequence also included the Mw 6.3 February 2011 Christchurch event, which caused widespread damage throughout the city and resulted in almost 200 deaths. Nine-component, day-long Green's functions were computed for frequencies between 0.1 - 1.0 Hz for full waveform seismic data from immediately after the 4th September 2010 earthquake until mid-January 2011. Using the moving window cross-spectral method, stacks of daily functions covering the study period (reference functions), were compared to consecutive 10 day stacks of cross-correlations to measure time delays between them. These were then inverted for seismic velocity changes with respect to the reference functions. Over the study period an increase in seismic velocity of 0.25% ± 0.02% was determined proximal to the Greendale fault. These results are similar to studies in other regions, and we attribute the changes to post-seismic relaxation through crack-healing of the Greendale Fault and throughout the region.
NASA Astrophysics Data System (ADS)
Martinelli, Bruno
1990-07-01
The seismic activity of the Nevado del Ruiz volcano was monitored during August-September 1985 using a three-component portable seismograph station placed on the upper part of the volcano. The objective was to investigate the frequency content of the seismic signals and the possible sources of the volcanic tremor. The seismicity showed a wide spectrum of signals, especially at the beginning of September. Some relevant patterns from the collected records, which have been analyzed by spectrum analysis, are presented. For the purpose of analysis, the records have been divided into several categories such as long-period events, tremor, cyclic tremor episodes, and strong seismic activity on September 8, 1985. The origin of the seismic signals must be considered in relation to the dynamical and acoustical properties of fluids and the shape and dimensions of the volcano's conduits. The main results of the present experiment and analysis show that the sources of the seismic signals are within the volcanic edifice. The signal characteristics indicate that the sources lie in fluid-phase interactions rather than in brittle fracturing of solid components.
A seismic hazard uncertainty analysis for the New Madrid seismic zone
Cramer, C.H.
2001-01-01
A review of the scientific issues relevant to characterizing earthquake sources in the New Madrid seismic zone has led to the development of a logic tree of possible alternative parameters. A variability analysis, using Monte Carlo sampling of this consensus logic tree, is presented and discussed. The analysis shows that for 2%-exceedence-in-50-year hazard, the best-estimate seismic hazard map is similar to previously published seismic hazard maps for the area. For peak ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 s (0.2 and 1.0 s Sa), the coefficient of variation (COV) representing the knowledge-based uncertainty in seismic hazard can exceed 0.6 over the New Madrid seismic zone and diminishes to about 0.1 away from areas of seismic activity. Sensitivity analyses show that the largest contributor to PGA, 0.2 and 1.0 s Sa seismic hazard variability is the uncertainty in the location of future 1811-1812 New Madrid sized earthquakes. This is followed by the variability due to the choice of ground motion attenuation relation, the magnitude for the 1811-1812 New Madrid earthquakes, and the recurrence interval for M>6.5 events. Seismic hazard is not very sensitive to the variability in seismogenic width and length. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Murat, M.
2017-12-01
Color-blended frequency decomposition is a seismic attribute that can be used to educe or draw out and visualize geomorphological features enabling a better understanding of reservoir architecture and connectivity for both exploration and field development planning. Color-blended frequency decomposition was applied to seismic data in several areas of interest in the Deepwater Gulf of Mexico. The objective was stratigraphic characterization to better define reservoir extent, highlight depositional features, identify thicker reservoir zones and examine potential connectivity issues due to stratigraphic variability. Frequency decomposition is a technique to analyze changes in seismic frequency caused by changes in the reservoir thickness, lithology and fluid content. This technique decomposes or separates the seismic frequency spectra into discrete bands of frequency limited seismic data using digital filters. The workflow consists of frequency (spectral) decomposition, RGB color blending of three frequency slices, and horizon or stratal slicing of the color blended frequency data for interpretation. Patterns were visualized and identified in the data that were not obvious on standard stacked seismic sections. These seismic patterns were interpreted and compared to known geomorphological patterns and their environment of deposition. From this we inferred the distribution of potential reservoir sand versus non-reservoir shale and even finer scale details such as the overall direction of the sediment transport and relative thickness. In exploratory areas, stratigraphic characterization from spectral decomposition is used for prospect risking and well planning. Where well control exists, we can validate the seismic observations and our interpretation and use the stratigraphic/geomorphological information to better inform decisions on the need for and placement of development wells.
Seismic Analysis Capability in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.
1984-01-01
Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.
Seismic definition of Lower Cretaceous delta, south Whale subbasin, offshore Newfoundland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasinghe, N.R.; Stokes, R.E.
1986-05-01
Recognition of stratigraphic traps in areas where previous prospects were structural is a trend attributable partly to the availability of new, high-quality seismic data. In the South Whale subbasin, offshore Newfoundland, Canada, such a change in exploration philosophy is presently being evaluated. Exploratory drilling offshore eastern Canada began in 1966 in the South Whale subbasin. By the end of 1973, 13 wells were drilled in this subbasin; however, lack of success discouraged further drilling. These wells evaluated large, salt-related structures, well defined by seismic data. Although an adequate reservoir was encountered in a number of these wells, faulting associated withmore » halokinesis may have resulted in petroleum migration out of the reservoir. Interpretation of recently acquired high-quality seismic data indicate a delta in the Lower Cretaceous Missisauga Formation in the study area. Seismic dip sections across the delta show a shingled progradation pattern suggesting a wave-dominated depositional environment. The delta comprises approximately 400 km/sup 2/, with closure in the eastern half. Data from wells in the area indicate that adequate source and sealing beds could be present. Furthermore, rocks of similar age in the nearby Avalon basin contain significant petroleum accumulations, the most notable being within the Hibernia oil field.« less
The Calabrian Arc: three-dimensional modelling of the subduction interface.
Maesano, Francesco E; Tiberti, Mara M; Basili, Roberto
2017-08-21
The Calabrian Arc is a one-of-a-kind subduction zone, featuring one of the shortest slab segments (<150 km), one of the thickest accretionary wedges, and one of the oldest oceanic crust in the world. Despite a convergence rate of up to 5 mm/y and well-known intraslab seismicity below 40 km, its shallow interface shows little signs of seismic activity. Nonetheless, it has been attributed as generating historical large earthquakes and tsunamis. To gain insights into this subduction zone, we first made a geological reconstruction of the shallower slab interface (<20 km) and its overlying accretionary wedge by interpreting a grid of 54 seismic reflection lines (8,658 km) with 438 intersections within an area of 10 5 km 2 . Then, we constrained a deeper portion of the slab surface (40-350 km) using the seismicity distribution. Finally, we interpolated the two parts to obtain a seamless 3D surface highlighting geometric details of the subduction interface, its lateral terminations and down-dip curvature, and a slab tear at 70-100 km depth. Our 3D slab model of the Calabrian Arc will contribute to understanding of the geodynamics of a cornerstone in the Mediterranean tectonic puzzle and estimates of seismic and tsunami hazards in the region.
Introduction of digital object identifiers (DOI) for seismic networks
NASA Astrophysics Data System (ADS)
Evans, Peter; Strollo, Angelo; Clark, Adam; Ahern, Tim; Newman, Rob; Clinton, John; Pequegnat, Catherine; Pedersen, Helle
2015-04-01
Proper attribution for scientific source data is important in promoting transparency and recognising the role of data providers in science. Data sets such as those produced by seismic networks now need to be citable and permanently locatable for research users. Recently the EIDA and IRIS-DMC communities have worked together on development of methods for generation, maintenance and promotion of persistent identifiers for seismic networks. This resulted in a 2014 Recommendation by the International Federation of Digital Seismograph Networks (FDSN) on the use of Digital Object Identifiers (DOI) for seismic networks. These can be cited equivalently to scientific papers, and tools such as DataCite allow the tracking of citations to these datasets. The GEOFON, IRIS and RESIF data centres have now begun to roll-out of these seismic network DOIs. This has involved working with principal investigators to prepare metadata consistent with the FDSN recommendation, preparation of landing pages, and changes to the web sites to promote DOIs where available. This has involved preparing improved descriptions of the data (metadata) and clarifying how individuals and institutions should best be recognised for their contributions to making the data available. We illustrate this process for a few representative networks. We will be in contact with additional network operators to help them establish DOIs for their networks in future.
The Bayesian Approach to Association
NASA Astrophysics Data System (ADS)
Arora, N. S.
2017-12-01
The Bayesian approach to Association focuses mainly on quantifying the physics of the domain. In the case of seismic association for instance let X be the set of all significant events (above some threshold) and their attributes, such as location, time, and magnitude, Y1 be the set of detections that are caused by significant events and their attributes such as seismic phase, arrival time, amplitude etc., Y2 be the set of detections that are not caused by significant events, and finally Y be the set of observed detections We would now define the joint distribution P(X, Y1, Y2, Y) = P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2) ; where the last term simply states that Y1 and Y2 are a partitioning of Y. Given the above joint distribution the inference problem is simply to find the X, Y1, and Y2 that maximizes posterior probability P(X, Y1, Y2| Y) which reduces to maximizing P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2). In this expression P(X) captures our prior belief about event locations. P(Y1 | X) captures notions of travel time, residual error distributions as well as detection and mis-detection probabilities. While P(Y2) captures the false detection rate of our seismic network. The elegance of this approach is that all of the assumptions are stated clearly in the model for P(X), P(Y1|X) and P(Y2). The implementation of the inference is merely a by-product of this model. In contrast some of the other methods such as GA hide a number of assumptions in the implementation details of the inference - such as the so called "driver cells." The other important aspect of this approach is that all seismic knowledge including knowledge from other domains such as infrasound and hydroacoustic can be included in the same model. So, we don't need to separately account for misdetections or merge seismic and infrasound events as a separate step. Finally, it should be noted that the objective of automatic association is to simplify the job of humans who are publishing seismic bulletins based on this output. The error metric for association should accordingly count errors such as missed events much higher than spurious events because the former require more work from humans. Furthermore, the error rate needs to be weighted higher during periods of high seismicity such as an aftershock sequence when the human effort tends to increase.
AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)
NASA Astrophysics Data System (ADS)
Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael
2018-05-01
We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.
Comparing Low-Frequency Earthquakes During Triggered and Ambient Tremor in Taiwan
NASA Astrophysics Data System (ADS)
Alvarado Lara, F., Sr.; Ledezma, C., Sr.
2014-12-01
In South America, larger magnitude seismic events originate in the subduction zone between the Nazca and Continental plates, as opposed to crustal events. Crustal seismic events are important in areas very close to active fault lines; however, seismic hazard analyses incorporate crust events related to a maximum distance from the site under study. In order to use crustal events as part of a seismic hazard analysis, it is necessary to use the attenuation relationships which represent the seismic behavior of the site under study. Unfortunately, in South America the amount of compiled crustal event historical data is not yet sufficient to generate a firm regional attenuation relationship. In the absence of attenuation relationships for crustal earthquakes in the region, the conventional approach is to use attenuation relationships from other regions which have a large amount of compiled data and which have similar seismic conditions to the site under study. This practice permits the development of seismic hazard analysis work with a certain margin of accuracy. In South America, in the engineering practice, new generation attenuation relationships (NGA-W) are used among other alternatives in order to incorporate the effect of crustal events in a seismic hazard analysis. In 2014, the NGA-W Version 2 (NGA-W2) was presented with a database containing information from Taiwan, Turkey, Iran, USA, Mexico, Japan, and Alaska. This paper examines whether it is acceptable to utilize the NGA-W2 in seismic hazard analysis in South America. A comparison between response spectrums of the seismic risk prepared in accordance with NGA-W2 and actual response spectrums of crustal events from Argentina is developed in order to support the examination. The seismic data were gathered from equipment installed in the cities of Santiago, Chile and Mendoza, Argentina.
Revision of the Applicability of the NGA's in South America, Chile - Argentina.
NASA Astrophysics Data System (ADS)
Alvarado Lara, F., Sr.; Ledezma, C., Sr.
2015-12-01
In South America, larger magnitude seismic events originate in the subduction zone between the Nazca and Continental plates, as opposed to crustal events. Crustal seismic events are important in areas very close to active fault lines; however, seismic hazard analyses incorporate crust events related to a maximum distance from the site under study. In order to use crustal events as part of a seismic hazard analysis, it is necessary to use the attenuation relationships which represent the seismic behavior of the site under study. Unfortunately, in South America the amount of compiled crustal event historical data is not yet sufficient to generate a firm regional attenuation relationship. In the absence of attenuation relationships for crustal earthquakes in the region, the conventional approach is to use attenuation relationships from other regions which have a large amount of compiled data and which have similar seismic conditions to the site under study. This practice permits the development of seismic hazard analysis work with a certain margin of accuracy. In South America, in the engineering practice, new generation attenuation relationships (NGA-W) are used among other alternatives in order to incorporate the effect of crustal events in a seismic hazard analysis. In 2014, the NGA-W Version 2 (NGA-W2) was presented with a database containing information from Taiwan, Turkey, Iran, USA, Mexico, Japan, and Alaska. This paper examines whether it is acceptable to utilize the NGA-W2 in seismic hazard analysis in South America. A comparison between response spectrums of the seismic risk prepared in accordance with NGA-W2 and actual response spectrums of crustal events from Argentina is developed in order to support the examination. The seismic data were gathered from equipment installed in the cities of Santiago, Chile and Mendoza, Argentina.
Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo Presti, D.; Fontana, T.; Marchetti, D.
2008-07-08
Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less
Spatial pattern recognition of seismic events in South West Colombia
NASA Astrophysics Data System (ADS)
Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber
2013-09-01
Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.
Signal-to-noise ratio application to seismic marker analysis and fracture detection
NASA Astrophysics Data System (ADS)
Xu, Hui-Qun; Gui, Zhi-Xian
2014-03-01
Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.
Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Sullivan, T. J.
2012-04-01
The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework consists of the following four main analysis stages: (i) probabilistic seismic hazard analysis to give the mean occurrence rate of earthquake events having an intensity greater than a threshold value, (ii) structural analysis to estimate the global structural response, given a certain value of seismic intensity, (iii) damage analysis, in which fragility functions are used to express the probability that a building component exceeds a damage state, as a function of the global structural response, (iv) loss analysis, in which the overall performance is assessed based on the damage state of all components. This final step gives estimates of the mean annual frequency with which various repair cost levels (or other decision variables) are exceeded. The realisation of this framework does suggest that risk-based seismic design is now possible. However, comparing current code approaches with the proposed PBEE framework, it becomes apparent that mainstream consulting engineers would have to go through a massive learning curve in order to apply the new procedures in practice. With this in mind, it is proposed that simplified loss-based seismic design procedures are a logical means of helping the engineering profession transition from what are largely deterministic seismic design procedures in current codes, to more rational risk-based seismic design methodologies. Examples are provided to illustrate the likely benefits of adopting loss-based seismic design approaches in practice.
Structural vibration passive control and economic analysis of a high-rise building in Beijing
NASA Astrophysics Data System (ADS)
Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying
2009-12-01
Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.
Analysis of the Earthquake Impact towards water-based fire extinguishing system
NASA Astrophysics Data System (ADS)
Lee, J.; Hur, M.; Lee, K.
2015-09-01
Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.
Research on the spatial analysis method of seismic hazard for island
NASA Astrophysics Data System (ADS)
Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying
2017-05-01
Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.
Teresa E. Jordan
2015-11-15
This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria or ‘risks’: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain “item description” documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations. Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015. Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted.
Spatial Temporal Analysis Of Mine-induced Seismicity
NASA Astrophysics Data System (ADS)
Fedotova, I. V.; Yunga, S. L.
The results of analysis of influence mine-induced seismicity on state of stress of a rock mass are represented. The spatial-temporal analysis of influence of mass explosions on rock massif deformation is carried out in the territory of a mine field Yukspor of a wing of the Joined Kirovsk mine JSC "Apatite". Estimation of influence of mass explosions on a massif were determined based firstly on the parameters of natural seismicic regime, and secondly taking into consideration change of seismic energy release. After long series of explosions variations in average number of seismic events was fixed. Is proved, that with increase of a volume of rocks, involved in a deforma- tion the released energy of seismic events, and characteristic intervals of time of their preparation are also varied. At the same time, the mechanism of destruction changes also: from destruction's, of a type shift - separation before destruction's, in a quasi- solid heterogeneous massif (in oxidized zones and zones of actuated faults). Analysis of a database seismicity of a massif from 1993 to 1999 years has confirmed, that the response of a massif on explosions is connected to stress-deformations state a mas- sif and parameters of a mining working. The analysis of spatial-temporal distribution of hypocenters of seismic events has allowed to allocate migration of fissile regions of destruction after mass explosions. The researches are executed at support of the Russian foundation for basic research, - projects 00-05-64758, 01-05-65340.
Accessing seismic data through geological interpretation: Challenges and solutions
NASA Astrophysics Data System (ADS)
Butler, R. W.; Clayton, S.; McCaffrey, B.
2008-12-01
Between them, the world's research programs, national institutions and corporations, especially oil and gas companies, have acquired substantial volumes of seismic reflection data. Although the vast majority are proprietary and confidential, significant data are released and available for research, including those in public data libraries. The challenge now is to maximise use of these data, by providing routes to seismic not simply on the basis of acquisition or processing attributes but via the geology they image. The Virtual Seismic Atlas (VSA: www.seismicatlas.org) meets this challenge by providing an independent, free-to-use community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed by extensive metadata trees, using not only existing survey and geographical data but also the geology they portray. The solution uses a Documentum database interrogated through Endeca Guided Navigation, to search, discover and retrieve images. The VSA allows users to compare contrasting interpretations of clean data thereby exploring the ranges of uncertainty in the geometric interpretation of subsurface structure. The metadata structures can be used to link reports and published research together with other data types such as wells. And the VSA can link to existing data libraries. Searches can take different paths, revealing arrays of geological analogues, new datasets while providing entirely novel insights and genuine surprises. This can then drive new creative opportunities for research and training, and expose the contents of seismic data libraries to the world.
A classification of morphoseismic features in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, R.; Stewart, D.
1993-03-01
The New Madrid Seismic Zone (NMSZ) contains thousands of surface features distributed over 5,000 square miles in four states. These are attributable to some combination of (1) seismically-induced liquefaction (SIL), (2) secondary deformation, and (3) seismically-induced slope failures. Most of these features were produced by the 1811--12 series of great earthquakes, but some predate and some postdate 1811--12. Subsequent non-seismic factors, such as hydrologically-induced liquefaction (HIL), mechanically-induced liquefaction (MIL), human activities, mass wasting, eolian and fluvial processes have modified all of these features. Morphoseismic features are new landforms produced by earthquakes, or are pre-existing landforms modified by them. Involved aremore » complex interrelationships among several variables, including: (1) intensity and duration of seismic ground motion, (2) surface wave harmonics, (3) depth to water table, (4) depth to basement, (5) particle size, composition, and sorting of sediment making up the liquefied (LZ) and non-liquefied zones (NLZ), (6) topographic parameters, and (7) attitudes of beds and lenses susceptible to liquefaction. Morphoseismic features are depicted as results of a time-flow sequence initiated by primary basement disturbances which produce three major categories of surface response: secondary deformation, liquefaction and slope failure. Nine subcategories incorporate features produced by or resulting in: extruded sand, intruded sand, lateral spreading, faulting, subsidence of large areas, uplift of large areas, altered streams, coherent landslides, and incoherent landslides. The total morphoseismic features identified by this classification are 34 in number.« less
NASA Astrophysics Data System (ADS)
Sun, H.; Jiang, T.; Wang, Z.; Zhang, Y.
2014-12-01
Submarine channel is one of key conduits for coarse terrigenous clastic sediments to abyssal plain, which provides the possibility for deepwater hydrocarbon exploration. Recently, a new high-quality 3D seismic data is acquired in south Yinggehai basin (YGHB) and the detailed interpretations on those seismic profiles as well as RMS amplitude attributes and variance slices reveal a submarine channel system developed in late Miocene, which could be supplied from Hainan Island via turbidity currents so that it would be filled with sand-rich turbidites as good hydrocarbon reservoir. Based on the integration between regional seismic survey and some boreholes, the investigations on its infilling architectures and depositional processes are carried out. The results show that it composes two converged submarine channels with two channelized submarine fans to their west and the main submarine channel (MSC) is characterized by a downstream increasing width and is infilled by sediments with high amplitude seismic facies, which could be originated from channelized submarine fans. Furthermore, the complicated depositional processes around the confluence region of these two channels are pointed out and the interactions between the submarine channel system and nearby channelized submarine fans are discussed. The detailed illustration on the seismic features and depositional processes of the subsurface submarine system provides us better understanding deepwater sedimentary dynamics and would be more benefit for the hydrocarbon exploration in similar deepwater area around the world.
Regional Observation of Seismic Activity in Baekdu Mountain
NASA Astrophysics Data System (ADS)
Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol
2015-04-01
Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.
NASA Astrophysics Data System (ADS)
Dutta, Tanima
This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically improves the predictions of shear wave velocities. In addition, we provide empirical relations on normal compaction depth trends of porosity, velocities, and VP/VS ratio for shale and clean sands in shallow, supra-salt sediments in the Gulf of Mexico. Next, we identify probable spatial trends of sand/shale ratio and sorting as predicted by the conventional sequence stratigraphic model in minibasin settings (spill-and-fill model). These spatial trends are evaluated using well data from offshore West Africa, and the same well data are used to calibrate rock physics models (modified soft-sand model) that provide links between P-impedance and quartz/clay ratio, and sorting. The spatial increase in sand/shale ratio and sorting corresponds to an overall increase in P-impedance, and AVO intercept and gradient. The results are used as a guide to interpret sedimentological parameters from seismic attributes, away from the well locations. We present a quantitative link between carbonate cement and seismic attributes by combining stratigraphie cycles and the rock physics model (modified differential effective medium model). The variation in carbonate cement volume in West Africa can be linked with two distinct stratigraphic cycles: the coarsening-upward cycles and the fining-upward cycles. Cemented sandstones associated with these cycles exhibit distinct signatures on P-impedance vs. porosity and AVO intercept vs. gradient crossplots. These observations are important for assessing reservoir properties in the West Africa as well as in other analogous depositional environments. Finally, we investigate the relationship between seismic velocities and time temperature index (TTI) using basin and petroleum system modeling at Rio Muni basin, West Africa. We find that both VP and VS increase exponentially with TTI. The results can be applied to predict TTI, and thereby thermal maturity, from observed velocities.
NASA Astrophysics Data System (ADS)
Gu, Y. J.; Schultz, R.
2013-12-01
Knowledge of upper mantle transition zone stratification and composition is highly dependent on our ability to efficiently extract and properly interpret small seismic arrivals. A promising high-frequency seismic phase group particularly suitable for a global analysis is P'P' precursors, which are capable of resolving mantle structures at vertical and lateral resolution of approximately 5 and 200 km, respectively, owing to their shallow incidence angle and small, quasi-symmetric Fresnel zones. This study presents a simultaneous analysis of SS and P'P' precursors based on deconvolution, Radon transform and depth migration. Our multi-resolution survey of the mantle near Nazca-South America subduction zone reveals both olivine and garnet related transitions at depth below 400 km. We attribute a depressed 660 to thermal variations, whereas compositional variations atop the upper-mantle transition zone are needed to explain the diminished or highly complex reflected/scattered signals from the 410 km discontinuity. We also observe prominent P'P' reflections within the transition zone, especially near the plate boundary zone where anomalously high reflection amplitudes result from a sharp (~10 km thick) mineral phase change resonant with the dominant frequency of the P'P' precursors. Near the base of the upper mantle, the migration of SS precursors shows no evidence of split reflections near the 660-km discontinuity, but potential majorite-ilmenite (590-640 km) and ilmenite-perovskite transitions (740-750 km) are identified based on similarly processed high-frequency P'P' precursors. At nominal mantle temperatures these two phase changes may be seismically indistinguishable, but colder mantle conditions from the descending Nazca plate, the presence of water and variable Fe contents may cause sufficient separation for a reliable analysis. In addition, our preliminary results provide compelling evidence for multiple shallow lower-mantle reflections (at ~800 km) along the elongated plate boundary zones of South America. Slab stagnation at the base of the transition zone could play a key role, though a proper interpretation of this finding would likely entail compositional (rather than strictly thermal) variations in the vicinity of the descending oceanic crust and lithosphere. Overall, the resolution and sensitivity differences between low/intermediate- S and high-frequency P wave reflections are key considerations toward reconciling seismic and mineralogical models of transition zone structure, both at the study location and worldwide.
Mega-pockmarks surrounding IODP Site U1414: Insights from the CRISP 3D seismic survey
NASA Astrophysics Data System (ADS)
Nale, S. M.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.
2013-12-01
Visualization of neural network meta-attribute analyses reveals fluid migration pathways associated with mega-pockmarks within the CRISP 3D seismic volume offshore southern Costa Rica, near site U1414 of IODP Expedition 344. A 245km2 field of mega-pockmarks was imaged on the Cocos Ridge using EM122 multibeam bathymetry, backscatter and 3D seismic reflection aboard R/V Marcus G. Langseth during the 2011 CRISP seismic survey. We utilize the OpendTect software package to calculate supervised neural network meta-attributes within the 3D seismic volume, in order to detect and visualize probable faults and fluid-migration pathways within the sedimentary section of the incoming Cocos plate [see Kluesner et al., this meeting]. Pockmarks imaged within the 3D volume near the trench commonly show a two-tier structure with upper pockmarks located above the steep walls of deeper, older pockmarks. The latter appear to truncate surrounding strata, including widespread high-amplitude reverse polarity reflectors (RPRs), interpreted as trapping horizons. In addition, RPRs are also truncated by positive polarity crosscutting reflections (CCRs), most of which form the base and sides of lens-like structures below the RPRs that are frequently located next to imaged pockmarks. Site U1414 intersects one of these lens-like structures and this appears to correlate to a sharp density and porosity swing observed at ~255 mbsf. In addition, preliminary geochemical analyses from site U1414 show evidence of lateral fluid flow through sediments below the RPR [Expedition 344 Scientists, 2013]. Thus, we interpret the 3D lens-like structures to be pockets of trapped gas and/or over-pressured fluid. Based on 3D imaging we propose a 3-stage pockmark evolution: (1) Overpressure and blowout along RPRs, resulting in pockmark formation, (2) sustained seepage along pockmark walls, resulting in preferential deposition near the center of the pockmark, and (3) rapid burial as pockmarks near the trench axis. On the seafloor, small high-backscatter mounds are found near the walls of a subset of pockmarks, suggesting recent or active seafloor seepage. Further geochemical analyses are needed to determine the source of fluid/gas migration associated with the pockmark structures.
NASA Astrophysics Data System (ADS)
Riviere, J.; Roux, P.
2017-12-01
The use of seismic noise in seismology enables one to detect small velocity changes induced by earthquakes, earth tides or volcanic activity. In particular, co-seismic drops in velocity followed by a slow relaxation back (or partially back) to the original velocity have been observed across various tectonic regions. The co-seismic drop is typically attributed to the creation of damage within the fault zone, while the slow recovery is attributed to post-seismic healing processes. At the laboratory scale, a dynamic perturbation of strain amplitude as low as 10-6 in rocks also results in a transient elastic softening, followed by a log(t)-type relaxation back to the initial state once the perturbation is turned off. This suggests that radiated waves produced during unstable slip are partially responsible for the co-seismic velocity drops. The main objective of this work is to help interpret the elastic changes observed in the field and in particular to disentangle velocity drops that originate from damage creation along the slip surface from the ones produced during radiation of finite-amplitude waves. To do so, we use a technique called Dynamic Acousto-Elastic Testing that provides comprehensive details on the nonlinear elastic response of consolidated granular media (e.g. rocks), including tension/compression asymmetry, hysteretic behaviors as well as conditioning and relaxation effects. Such technique uses a pump-probe scheme where a high frequency, low amplitude wave probes the state of a sample that is dynamically disturbed by a low frequency, large amplitude pump wave. While previous work typically involved a single pair of probing transducers, here we use two dense arrays of ultrasonic transducers to image a sample of Westerly granite with a complex fracture. We apply double beamforming to disentangle complex arrivals and conduct ray-based and finite-frequency tomography using both travel time and amplitude information. By comparing images obtained before, during and after the pump wave disturbance, we are able to locate and characterize elastic changes within the sample. We discuss their locations with regard to low velocity/high attenuation zones and relate our observations to large-scale data.
NASA Astrophysics Data System (ADS)
Haris, A.; Pradana, G. S.; Riyanto, A.
2017-07-01
Tectonic setting of the Bird Head Papua Island becomes an important model for petroleum system in Eastern part of Indonesia. The current exploration has been started since the oil seepage finding in Bintuni and Salawati Basin. The biogenic gas in shallow layer turns out to become an interesting issue in the hydrocarbon exploration. The hydrocarbon accumulation appearance in a shallow layer with dry gas type, appeal biogenic gas for further research. This paper aims at delineating the sweet spot hydrocarbon potential in shallow layer by applying the spectral decomposition technique. The spectral decomposition is decomposing the seismic signal into an individual frequency, which has significant geological meaning. One of spectral decomposition methods is Continuous Wavelet Transform (CWT), which transforms the seismic signal into individual time and frequency simultaneously. This method is able to make easier time-frequency map analysis. When time resolution increases, the frequency resolution will be decreased, and vice versa. In this study, we perform low-frequency shadow zone analysis in which the amplitude anomaly at a low frequency of 15 Hz was observed and we then compare it to the amplitude at the mid (20 Hz) and the high-frequency (30 Hz). The appearance of the amplitude anomaly at a low frequency was disappeared at high frequency, this anomaly disappears. The spectral decomposition by using CWT algorithm has been successfully applied to delineate the sweet spot zone.
NASA Astrophysics Data System (ADS)
Weatherill, Graeme; Burton, Paul W.
2010-09-01
The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard mapping calculations. These hazard maps are in general agreement with previous maps for the Aegean, recognising the highest hazard in the Ionian Islands, Gulf of Corinth and Hellenic Arc. Peak Ground Accelerations for some sites in these regions reach as high as 500-600 cm s -2 using European/NGA attenuation models, and 400-500 cm s -2 using Greek attenuation models.
NASA Astrophysics Data System (ADS)
Wong-Ortega, V.; Castro, R. R.; Gonzalez-Huizar, H.; Velasco, A. A.
2013-05-01
We analyze possible variations of seismicity in the northern Baja California due to the passage of seismic waves from the 2011, M9.0, Tohoku-Oki, Japan earthquake. The northwestern area of Baja California is characterized by a mountain range composed of crystalline rocks. These Peninsular Ranges of Baja California exhibits high microseismic activity and moderate size earthquakes. In the eastern region of Baja California shearing between the Pacific and the North American plates takes place and the Imperial and Cerro-Prieto faults generate most of the seismicity. The seismicity in these regions is monitored by the seismic network RESNOM operated by the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). This network consists of 13 three-component seismic stations. We use the seismic catalog of RESNOM to search for changes in local seismic rates occurred after the passing of surface waves generated by the Tohoku-Oki, Japan earthquake. When we compare one month of seismicity before and after the M9.0 earthquake, the preliminary analysis shows absence of triggered seismicity in the northern Peninsular Ranges and an increase of seismicity south of the Mexicali valley where the Imperial fault jumps southwest and the Cerro Prieto fault continues.
NASA Technical Reports Server (NTRS)
Larsen, Shawn; Reilinger, Robert; Neugebauer, Helen; Strange, William
1991-01-01
Large station displacements observed from Imperial Valley Global Positioning System (GPS) campaigns are attributed to the November 24, 1987 Superstition Hills earthquake sequence. Thirty sites from a 42 station GPS network established in 1986 were reoccupied during 1988 and/or 1990. Displacements at three sites within 3 kilometers of the surface rupture approach 0.5 m. Eight additional stations within 20 km of the seismic zone are displaced at least 10 cm. This is the first occurrence of a large earthquake (M(sub S) 6.6) within a preexisting GPS network. Best-fitting uniform slip models of rectangular dislocations in an elastic half-space indicate 130 + or - 8 cm right-lateral displacement along the northwest-trending Superstition Hills fault and 30 + or - 10 cm left-lateral displacement along the conjugate northeast-trending Elmore Ranch fault. The geodetic moments are 9.4 x 10(exp 25) dyne-cm and 2.3 x 10(exp 25) dyne-cm for the Superstition Hills and Elmore Ranch faults, respectively, consistent with teleseismic source parameters. The data also suggest the post seismic slip along the Superstition Hills fault is concentrated at shallow depths. Distributed slip solutions using Singular Value Decomposition indicate near uniform displacement along the Elmore Ranch fault and concentrated slip to the northwest and southeast along the Superstition Hills fault. A significant component of non-seismic displacement is observed across the Imperial Valley, which is attributed in part to interseismic plate-boundary deformation.
NASA Astrophysics Data System (ADS)
Luo, Cong; Li, Xiangyang; Huang, Guangtan
2017-08-01
Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.
Imaging of karsts on buried carbonate platform in Central Luconia Province, Malaysia
NASA Astrophysics Data System (ADS)
Nur Fathiyah Jamaludin, Siti; Mubin, Mukhriz; Latiff, Abdul Halim Abdul
2017-10-01
Imaging of carbonate rocks in the subsurface through seismic method is always challenging due to its heterogeneity and fast velocity compared to the other rock types. Existence of karsts features on the carbonate rocks make it more complicated to interpret the reflectors. Utilization of modern interpretation software such as PETREL and GeoTeric® to image the karsts morphology make it possible to model the karst network within the buried carbonate platform used in this study. Using combination of different seismic attributes such as Variance, Conformance, Continuity, Amplitude, Frequency and Edge attributes, we are able to image the karsts features that are available in the proven gas-field in Central Luconia Province, Malaysia. The mentioned attributes are excellent in visualize and image the stratigraphic features based on the difference in their acoustic impedance as well as structural features, which include karst. 2D & 3D Karst Models were developed to give a better understanding on the characteristics of the identified karsts. From the models, it is found that the karsts are concentrated in the top part of the carbonate reservoir (epikarst) and the middle layer with some of them becomes extensive and create karst networks, either laterally or vertically. Most of the vertical network karst are related to the existence of faults that displaced all the horizons in the carbonate platform.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
NASA Astrophysics Data System (ADS)
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Truini, Margot; Fleming, John B.; Pierce, Herb A.
2004-01-01
Pipe Spring National Monument, near the border of Arizona and Utah, includes several low-discharge springs that are the primary natural features of the monument. The National Park Service is concerned about the declines in spring discharge. Seismic-refraction and frequency-domain electromagnetic-induction methods were employed in an attempt to better understand the relation between spring discharge and geologic structure. The particular method used for the seismic-refraction surveys was unable to resolve structural features in the monument. Electromagnetic surveys delineated differences in apparent conductivity of the shallow subsurface deposits. The differences are attributable to differences in saturation, lithology, and structure of these deposits.
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan; ...
2017-08-23
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
The 2006 Java Earthquake revealed by the broadband seismograph network in Indonesia
NASA Astrophysics Data System (ADS)
Nakano, M.; Kumagai, H.; Miyakawa, K.; Yamashina, T.; Inoue, H.; Ishida, M.; Aoi, S.; Morikawa, N.; Harjadi, P.
2006-12-01
On May 27, 2006, local time, a moderate-size earthquake (Mw=6.4) occurred in central Java. This earthquake caused severe damages near Yogyakarta City, and killed more than 5700 people. To estimate the source mechanism and location of this earthquake, we performed a waveform inversion of the broadband seismograms recorded by a nationwide seismic network in Indonesia (Realtime-JISNET). Realtime-JISNET is a part of the broadband seismograph network developed by an international cooperation among Indonesia, Germany, China, and Japan, aiming at improving the capabilities to monitor seismic activity and tsunami generation in Indonesia. 12 stations in Realitme-JISNET were in operation when the earthquake occurred. We used the three-component seismograms from the two closest stations, which were located about 100 and 300 km from the source. In our analysis, we assumed pure double couple as the source mechanism, thus reducing the number of free parameters in the waveform inversion. Therefore we could stably estimate the source mechanism using the signals observed by a small number of seismic stations. We carried out a grid search with respect to strike, dip, and rake angles to investigate fault orientation and slip direction. We determined source-time functions of the moment-tensor components in the frequency domain for each set of strike, dip, and rake angles. We also conducted a spatial grid search to find the best-fit source location. The best-fit source was approximately 12 km SSE of Yogyakarta at a depth of 10 km below sea level, immediately below the area of extensive damage. The focal mechanism indicates that this earthquake was caused by compressive stress in the NS direction and strike-slip motion was dominant. The moment magnitude (Mw) was 6.4. We estimated the seismic intensity in the areas of severe damage using the source paramters and an empirical attenuation relation for averaged peak ground velocity (PGV) of horizontal seismic motion. We then calculated the instrumental modified Mercalli intensity (Imm) from the estimated PGV values. Our result indicates that strong ground motion with Imm of 7 or more occurred within 10 km of the earthquake fault, although the actual seismic intensity can be affected by shallow structural heterogeneity. We therefore conclude that the severe damages of the Java earthquake are attributed to the strong ground motion, which was primarily caused by the source located immediately below the populated areas.
NASA Astrophysics Data System (ADS)
Allstadt, K.; Moretti, L.; Mangeney, A.; Stutzmann, E.; Capdeville, Y.
2014-12-01
The time series of forces exerted on the earth by a large and rapid landslide derived remotely from the inversion of seismic records can be used to tie post-slide evidence to what actually occurred during the event and can be used to tune numerical models and test theoretical methods. This strategy is applied to the 48.5 Mm3 August 2010 Mount Meager rockslide-debris flow in British Columbia, Canada. By inverting data from just five broadband seismic stations less than 300 km from the source, we reconstruct the time series of forces that the landslide exerted on the Earth as it occurred. The result illuminates a complex retrogressive initiation sequence and features attributable to flow over a complicated path including several curves and runup against a valley wall. The seismically derived force history also allows for the estimation of the horizontal acceleration (0.39 m/s^2) and average apparent coefficient of basal friction (0.38) of the rockslide, and the speed of the center of mass of the debris flow (peak of 92 m/s). To extend beyond these simple calculations and to test the interpretation, we also use the seismically derived force history to guide numerical modeling of the event - seeking to simulate the landslide in a way that best fits both the seismic and field constraints. This allows for a finer reconstruction of the volume, timing, and sequence of events, estimates of friction, and spatiotemporal variations in speed and flow thickness. The modeling allowed us to analyze the sensitivity of the force to the different parameters involved in the landslide modeling to better understand what can and cannot be constrained from seismic source inversions of landslide signals.
Assessing Gas-Hydrate Prospects on the North Slope of Alaska - Theoretical Considerations
Lee, Myung W.; Collett, Timothy S.; Agena, Warren F.
2008-01-01
Gas-hydrate resource assessment on the Alaska North Slope using 3-D and 2-D seismic data involved six important steps: (1) determining the top and base of the gas-hydrate stability zone, (2) 'tying' well log information to seismic data through synthetic seismograms, (3) differentiating ice from gas hydrate in the permafrost interval, (4) developing an acoustic model for the reservoir and seal, (5) developing a method to estimate gas-hydrate saturation and thickness from seismic attributes, and (6) assessing the potential gas-hydrate prospects from seismic data based on potential migration pathways, source, reservoir quality, and other relevant geological information. This report describes the first five steps in detail using well logs and provides theoretical backgrounds for resource assessments carried out by the U.S. Geological Survey. Measured and predicted P-wave velocities enabled us to tie synthetic seismograms to the seismic data. The calculated gas-hydrate stability zone from subsurface wellbore temperature data enabled us to focus our effort on the most promising depth intervals in the seismic data. A typical reservoir in this area is characterized by the P-wave velocity of 1.88 km/s, porosity of 42 percent, and clay volume content of 5 percent, whereas seal sediments encasing the reservoir are characterized by the P-wave velocity of 2.2 km/s, porosity of 32 percent, and clay volume content of 20 percent. Because the impedance of a reservoir without gas hydrate is less than that of the seal, a complex amplitude variation with respect to gas-hydrate saturation is predicted, namely polarity change, amplitude blanking, and high seismic amplitude (a bright spot). This amplitude variation with gas-hydrate saturation is the physical basis for the method used to quantify the resource potential of gas hydrates in this assessment.
NASA Astrophysics Data System (ADS)
Zhao, J. K.; Xu, X. S.
2017-11-01
The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.
Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C
2011-04-01
The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structuresmore » and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5 and Appendices G through I.« less
Jaiswal, Kishor
2013-01-01
This memo lays out a procedure for the GEM software to offer an available vulnerability function for any acceptable set of attributes that the user specifies for a particular building category. The memo also provides general guidelines on how to submit the vulnerability or fragility functions to the GEM vulnerability repository, stipulating which attributes modelers must provide so that their vulnerability or fragility functions can be queried appropriately by the vulnerability database. An important objective is to provide users guidance on limitations and applicability by providing the associated modeling assumptions and applicability of each vulnerability or fragility function.
Stress/strain changes and triggered seismicity following the MW7.3 Landers, California, earthquake
Gomberg, J.
1996-01-01
Calculations of dynamic stresses and strains, constrained by broadband seismograms, are used to investigate their role in generating the remotely triggered seismicity that followed the June 28, 1992, MW7.3 Landers, California earthquake. I compare straingrams and dynamic Coulomb failure functions calculated for the Landers earthquake at sites that did experience triggered seismicity with those at sites that did not. Bounds on triggering thresholds are obtained from analysis of dynamic strain spectra calculated for the Landers and MW,6.1 Joshua Tree, California, earthquakes at various sites, combined with results of static strain investigations by others. I interpret three principal results of this study with those of a companion study by Gomberg and Davis [this issue]. First, the dynamic elastic stress changes themselves cannot explain the spatial distribution of triggered seismicity, particularly the lack of triggered activity along the San Andreas fault system. In addition to the requirement to exceed a Coulomb failure stress level, this result implies the need to invoke and satisfy the requirements of appropriate slip instability theory. Second, results of this study are consistent with the existence of frequency- or rate-dependent stress/strain triggering thresholds, inferred from the companion study and interpreted in terms of earthquake initiation involving a competition of processes, one promoting failure and the other inhibiting it. Such competition is also part of relevant instability theories. Third, the triggering threshold must vary from site to site, suggesting that the potential for triggering strongly depends on site characteristics and response. The lack of triggering along the San Andreas fault system may be correlated with the advanced maturity of its fault gouge zone; the strains from the Landers earthquake were either insufficient to exceed its larger critical slip distance or some other critical failure parameter; or the faults failed stably as aseismic creep events. Variations in the triggering threshold at sites of triggered seismicity may be attributed to variations in gouge zone development and properties. Finally, these interpretations provide ready explanations for the time delays between the Landers earthquake and the triggered events.
Hydraulic Fracturing and the Environment
NASA Astrophysics Data System (ADS)
Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.
2013-12-01
In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used in HF fluids are carcinogenic and may pose risk to humans. In addition, recovered HF fluids can be contaminated. We illustrate how different pathways can lead to the risk of aquifer contamination and consequently, risk to human health.
Is the co-seismic slip distribution fractal?
NASA Astrophysics Data System (ADS)
Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James
2015-04-01
Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large cumulative displacement faults and compare these slip distributions to those from immature fault systems. Our results have fundamental implications for an understanding of slip heterogeneity and the behavior of the rupture process.
Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California
NASA Astrophysics Data System (ADS)
Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.
2017-12-01
Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.
NASA Astrophysics Data System (ADS)
Krzywiec, P.; Gągała, Ł.; Mazur, S.; Słonka, Ł.; Kufrasa, M.; Malinowski, M.; Pietsch, K.; Golonka, J.
2017-10-01
Recently acquired seismic reflection data provide better insight in the structural style of extensive sedimentary series overlying the SW slope of the East European Craton (EEC) in Poland. The two main seismic datasets - the POLCRUST-01 profile and PolandSPAN survey - yielded contrasting thick - and thin-skinned structural models for the same structural units in SE Poland. We reattempt an interpretation of the POLCRUST-01 profile using techniques of cross-section balancing and restoration aided by 2D forward seismic modelling. An outcome is the thin-skinned structural model is. This solution relies on a continuous top of the EEC crystalline basement well represented in the seismic data as well as on fragmentary, yet conclusive seismic geometries in shallow depth intervals proving the Ediacaran-Palaeozoic series to be thrust and folded. A Variscan (late Carboniferous) compressional regime is consequently invoked to explain thin-skinned structuring of the pre-Permian sedimentary pile and > 20 km of calculated shortening. We demonstrate an ambiguous nature of the top-basement irregularities previously used as indicators of basement-rooted vertical faulting. The tilt and abrupt increase of the top-basement taper under the thin-skinned belt are attributed to pre-Ordovician tectonic processes operating along the SW margin of the EEC. Post-rift subsidence and/or flexural loading giving rise to a broken foreland plate are invoked.
Mantle P wave travel time tomography of Eastern and Southern Africa: New images of mantle upwellings
NASA Astrophysics Data System (ADS)
Benoit, M. H.; Li, C.; van der Hilst, R.
2006-12-01
Much of Eastern Africa, including Ethiopia, Kenya, and Tanzania, has undergone extensive tectonism, including rifting, uplift, and volcanism during the Cenozoic. The cause of this tectonism is often attributed to the presence of one or more mantle upwellings, including starting thermal plumes and superplumes. Previous regional seismic studies and global tomographic models show conflicting results regarding the spatial and thermal characteristics of these upwellings. Additionally, there are questions concerning the extent to which the Archean and Proterozoic lithosphere has been altered by possible thermal upwellings in the mantle. To further constrain the mantle structure beneath Southern and Eastern Africa and to investigate the origin of the tectonism in Eastern Africa, we present preliminary results of a large-scale P wave travel time tomographic study of the region. We invert travel time measurements from the EHB database with travel time measurements taken from regional PASSCAL datasets including the Ethiopia Broadband Seismic Experiment (2000-2002); Kenya Broadband Seismic Experiment (2000-2002); Southern Africa Seismic Experiment (1997- 1999); Tanzania Broadband Seismic Experiment (1995-1997), and the Saudi Arabia PASSCAL Experiment (1995-1997). The tomographic inversion uses 3-D sensitivity kernels to combine different datasets and is parameterized with an irregular grid so that high spatial resolution can be obtained in areas of dense data coverage. It uses an adaptive least-squares context using the LSQR method with norm and gradient damping.
NASA Astrophysics Data System (ADS)
García-Mayordomo, Julián; Martín-Banda, Raquel; Insua-Arévalo, Juan M.; Álvarez-Gómez, José A.; Martínez-Díaz, José J.; Cabral, João
2017-08-01
Active fault databases are a very powerful and useful tool in seismic hazard assessment, particularly when singular faults are considered seismogenic sources. Active fault databases are also a very relevant source of information for earth scientists, earthquake engineers and even teachers or journalists. Hence, active fault databases should be updated and thoroughly reviewed on a regular basis in order to keep a standard quality and uniformed criteria. Desirably, active fault databases should somehow indicate the quality of the geological data and, particularly, the reliability attributed to crucial fault-seismic parameters, such as maximum magnitude and recurrence interval. In this paper we explain how we tackled these issues during the process of updating and reviewing the Quaternary Active Fault Database of Iberia (QAFI) to its current version 3. We devote particular attention to describing the scheme devised for classifying the quality and representativeness of the geological evidence of Quaternary activity and the accuracy of the slip rate estimation in the database. Subsequently, we use this information as input for a straightforward rating of the level of reliability of maximum magnitude and recurrence interval fault seismic parameters. We conclude that QAFI v.3 is a much better database than version 2 either for proper use in seismic hazard applications or as an informative source for non-specialized users. However, we already envision new improvements for a future update.
The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation
Wang, Wenming
2014-01-01
The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157
A Revised Earthquake Catalogue for South Iceland
NASA Astrophysics Data System (ADS)
Panzera, Francesco; Zechar, J. Douglas; Vogfjörd, Kristín S.; Eberhard, David A. J.
2016-01-01
In 1991, a new seismic monitoring network named SIL was started in Iceland with a digital seismic system and automatic operation. The system is equipped with software that reports the automatic location and magnitude of earthquakes, usually within 1-2 min of their occurrence. Normally, automatic locations are manually checked and re-estimated with corrected phase picks, but locations are subject to random errors and systematic biases. In this article, we consider the quality of the catalogue and produce a revised catalogue for South Iceland, the area with the highest seismic risk in Iceland. We explore the effects of filtering events using some common recommendations based on network geometry and station spacing and, as an alternative, filtering based on a multivariate analysis that identifies outliers in the hypocentre error distribution. We identify and remove quarry blasts, and we re-estimate the magnitude of many events. This revised catalogue which we consider to be filtered, cleaned, and corrected should be valuable for building future seismicity models and for assessing seismic hazard and risk. We present a comparative seismicity analysis using the original and revised catalogues: we report characteristics of South Iceland seismicity in terms of b value and magnitude of completeness. Our work demonstrates the importance of carefully checking an earthquake catalogue before proceeding with seismicity analysis.
NASA Astrophysics Data System (ADS)
Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz
2017-04-01
Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY TC; ABBOTT FG; CARPENTER BG
2007-02-16
The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.
Fracture network topology and characterization of structural permeability
NASA Astrophysics Data System (ADS)
Hansberry, Rowan; King, Rosalind; Holford, Simon
2017-04-01
There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with other permeability indicators such as drilling fluid losses, and pore pressure measurements. Initial work with these techniques has led to new developments in our ability to image subsurface faults and fractures at a variety of scales from independent datasets. We establish a strong relationship between features identified using seismic attribute analysis and interpreted natural fractures. However, care must be taken to use these methods in a case-by-case basis, as controls on fracture distribution and orientation can vary significantly with both regional and local influences. These results outline and effective method by which structural permeability can be assessed with existing petroleum datasets. However, unlike the broad stress field, mapping fracture orientation and characteristics within the Australian Continent is complicated as the distribution, geometry, areal extent and connectivity of fracture networks can vary significantly.
Seismic Hazard Analysis — Quo vadis?
NASA Astrophysics Data System (ADS)
Klügel, Jens-Uwe
2008-05-01
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies. Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.
Automated Fault Interpretation and Extraction using Improved Supplementary Seismic Datasets
NASA Astrophysics Data System (ADS)
Bollmann, T. A.; Shank, R.
2017-12-01
During the interpretation of seismic volumes, it is necessary to interpret faults along with horizons of interest. With the improvement of technology, the interpretation of faults can be expedited with the aid of different algorithms that create supplementary seismic attributes, such as semblance and coherency. These products highlight discontinuities, but still need a large amount of human interaction to interpret faults and are plagued by noise and stratigraphic discontinuities. Hale (2013) presents a method to improve on these datasets by creating what is referred to as a Fault Likelihood volume. In general, these volumes contain less noise and do not emphasize stratigraphic features. Instead, planar features within a specified strike and dip range are highlighted. Once a satisfactory Fault Likelihood Volume is created, extraction of fault surfaces is much easier. The extracted fault surfaces are then exported to interpretation software for QC. Numerous software packages have implemented this methodology with varying results. After investigating these platforms, we developed a preferred Automated Fault Interpretation workflow.
Modification of the Western Gondwana craton by plume-lithosphere interaction
NASA Astrophysics Data System (ADS)
Hu, Jiashun; Liu, Lijun; Faccenda, Manuele; Zhou, Quan; Fischer, Karen M.; Marshak, Stephen; Lundstrom, Craig
2018-03-01
The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.
Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release
NASA Astrophysics Data System (ADS)
Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio
2017-12-01
The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.
NASA Astrophysics Data System (ADS)
Fang, Yi; Huang, Yahong
2017-12-01
Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.
Site Transfer Functions of Three-Component Ground Motion in Western Turkey
NASA Astrophysics Data System (ADS)
Ozgur Kurtulmus, Tevfik; Akyol, Nihal; Camyildiz, Murat; Gungor, Talip
2015-04-01
Because of high seismicity accommodating crustal deformation and deep graben structures, on which have, urbanized and industrialized large cities in western Turkey, the importance of site-specific seismic hazard assessments becomes more crucial. Characterizing source, site and path effects is important for both assessing the seismic hazard in a specific region and generation of the building codes/or renewing previous ones. In this study, we evaluated three-component recordings for micro- and moderate-size earthquakes with local magnitudes ranging between 2.0 and 5.6. This dataset is used for site transfer function estimations, utilizing two different spectral ratio approaches 'Standard Spectral Ratio-(SSR)' and 'Horizontal to Vertical Spectral Ratio-(HVSR)' and a 'Generalized Inversion Technique-(GIT)' to highlight site-specific seismic hazard potential of deep basin structures of the region. Obtained transfer functions revealed that the sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment-bedrock interface near the basin edges. Comparison of HVSR and SSR estimates for the sites located on the grabens showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects. However, large amplitude values of vertical component GIT site transfer functions were observed at varying frequency ranges for some of the stations. These results imply that vertical component of ground motion is not amplification free. Contamination of HVSR site transfer function estimates at different frequency bands could be related to complexities in the wave field caused by deep or shallow heterogeneities in the region such as differences in the basin geometries, fracturing and fluid saturation along different propagation paths. The results also show that, even if the site is located on a horst, the presence of weathered zones near the surface could cause moderate frequency dependent site effects.
NASA Astrophysics Data System (ADS)
Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir
2015-01-01
Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.
Permeability, storage and hydraulic diffusivity controlled by earthquakes
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; Fulton, P. M.; Xue, L.
2016-12-01
Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones may evolve to a preferred diffusivity in a dynamic equilibrium.
(Multi)fractality of Earthquakes by use of Wavelet Analysis
NASA Astrophysics Data System (ADS)
Enescu, B.; Ito, K.; Struzik, Z. R.
2002-12-01
The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability distribution function. One of the most attractive features of wavelet analysis is its ability to determine a local Hurst exponent. We show that this feature together with the possibility of extending the analysis to spatial patterns may constitute a valuable approach to search for anomalous (precursory?) patterns of seismic activity.
Interactive Model Visualization for NET-VISA
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Arora, N. S.
2013-12-01
NET-VISA is a probabilistic system developed for seismic network processing of data measured on the International Monitoring System (IMS) of the Comprehensive nuclear Test Ban Treaty Organization (CTBTO). NET-VISA is composed of a Generative Model (GM) and an Inference Algorithm (IA). The GM is an explicit mathematical description of the relationships between various factors in seismic network analysis. Some of the relationships inside the GM are deterministic and some are statistical. Statistical relationships are described by probability distributions, the exact parameters of which (such as mean and standard deviation) are found by training NET-VISA using recent data. The IA uses the GM to evaluate the probability of various events and associations, searching for the seismic bulletin which has the highest overall probability and is consistent with a given set of measured arrivals. An Interactive Model Visualization tool (IMV) has been developed which makes 'peeking into' the GM simple and intuitive through a web-based interfaced. For example, it is now possible to access the probability distributions for attributes of events and arrivals such as the detection rate for each station for each of 14 phases. It also clarifies the assumptions and prior knowledge that are incorporated into NET-VISA's event determination. When NET-VISA is retrained, the IMV will be a visual tool for quality control both as a means of testing that the training has been accomplished correctly and that the IMS network has not changed unexpectedly. A preview of the IMV will be shown at this poster presentation. Homepage for the IMV IMV shows current model file and reference image.
NASA Astrophysics Data System (ADS)
Heinrichs, Till; Salameh, Elias; Khouri, Hani
2014-01-01
The deeply eroded Waqf as Suwwan ring structure was recently discovered to be a large impact, the first identified in the near east. Large-scale reflection seismic structure shows the impact situated high on the northeastern flank of the Jordan Uplift sloping into Wadi Sirhan Basin. If exhumation is linked to the Arabia-Eurasia collision, a likely time window for the impact event may be latest Eocene to Late Oligocene. Impact into a shallow sea seems an optional scenario. Old reflection seismic lines offer limited insight into the deep structure of the rim and part of the central uplift of the complex crater. An important structural clue is provided by a well-resolved seismic horizon of a yet tentative correlation with a Paleozoic black shale. The central gravity high is compatible with a mass surplus by the uplift of denser Paleozoic basement below the central uplift. The gravity model further indicates a ring of dense Paleozoic sediments rising from below into the ring syncline. Seismics show presumably radial synclines in the central uplift which are interpreted by centripetal constrictional flow during crater collapse. Beneath the final crater's outer boundary, a shallow-dip normal fault zone, subtle seismic structure in uncollapsed footwall segments reveal an asymmetry of strain. The asymmetry is attributed to the cratering flow by an oblique impact directed toward NE. The finding provides independent support to an earlier suggestion of impact obliquity based on vergency of folds exposed on the central uplift.
Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano
NASA Astrophysics Data System (ADS)
Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.
2013-12-01
Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2014-01-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2013-08-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Kobayashi, T.; Fujii, T.
2017-12-01
Mass-transport deposits (MTDs) are widely observed from many continental margins and are a significant component of both slope and basin-floor settings. Although MTDs are typically mud-prone, some MTDs above certain porosity thresholds can act as important hydrocarbon reservoirs. MTDs associated with gas hydrate occurrence in the Ulleung basin were documented. The recovery of gas hydrate by drilling and piston coring has confirmed the gas hydrate accumulations in the basin. Gas hydrate dissociation may have played a role in the slide-initiation at the Storegga Slide offshore Norway. In this study, to identify the gas hydrate reservoir potential of MTDs, we focus on seismic characteristics (seismic facies, attributes, and velocity) of MTDs associated with bottom simulating reflectors (BSR). Our study area is in the forearc region along the central Ryukyu Islands (southeast Japan). In this area, BSR have been widely observed. However, the studies were insufficient for the evaluation of gas hydrate due to poor-quality 2-D seismic data. We use high-quality 3-D seismic volumes in water depths ranging from approximately 150 to 2000 m between Okinawa Island and Miyako Island. BSR in the eastern region of the study area was interpreted within Neogene to Quaternary MTDs. Strata in MTDs are correlated with the upper Shimajiri group based on the characteristics of well data outside of the seismic exploration area and stratigraphy of land areas. The Shimajiri group is composed of homogeneous siltstone intercalated with lenticular, thin-bedded, fine sandstone. Their group is water-dissolved gas reservoir in Okinawa Island and Miyako Island. On our seismic data, MTDs are shown as chaotic, poorly discontinuous strata of low amplitude, partially continuous moderate- to high-amplitude reflections. The seismic velocity profile shows a relative increase in MTD intervals above the BSR, similar to gas hydrate-bearing sediments. It is also indicative of over-consolidation that was result of compression caused by slumping.
Crystal preferred orientation of amphibole and implications for seismic anisotropy in the crust
NASA Astrophysics Data System (ADS)
Jung, Haemyeong
2016-04-01
Strong seismic anisotropy is often observed in the middle to lower crust and it has been considered to be originated from the crystal preferred orientation (CPO) of anisotropic minerals such as amphibole. Amphibolite is one of the dominant rocks in the middle to lower crust. In this study, crystal preferred orientations of hornblende in amphibolites at Yeoncheon and Chuncheon areas in South Korea were determined by using the electron backscattered diffraction (EBSD)/SEM with HKL Channel 5 software. In Yeoncheon area, hornblende showed two types of CPOs. Type-I CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and [001] axes aligned subparallel to lineation. Type-II CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and (010) poles aligned subparallel to lineation (refer to Ko and Jung, 2015, Nature Communications). In Chuncheon area, three types of CPOs of hornblende were observed. In addition to the type-I and -II CPOs described above, type-III CPO of hornblende was observed in Chuncheon area and it is characterized as (100) poles of hornblende aligned subnormal to foliation and both [001] axes and (010) poles aligned as a girdle subparallel to foliation. Using the observed CPO and the single crystal elastic constant of hornblende, seismic anisotropy of hornblende was calculated. Seismic anisotropy of P-wave was strong in the range of 10.2 - 13.5 %. Seismic anisotropy of S-wave was also strong in the range of 6.9 - 11.2 %. These results show that hornblende deformed in nature can produce a strong CPO, resulting in a strong seismic anisotropy in the middle to lower crust. Taking into account of the CPO of plagioclase in the rock, seismic anisotropies of whole rock turned out to be maximum P-wave anisotropy (Vp) of 9.8% and maximum S-wave anisotropy (Vs) of 8.2%. Therefore, strong seismic anisotropy found in the middle to lower crust in nature can be attributed to the CPO of hornblende in amphibolite.
Kernel Smoothing Methods for Non-Poissonian Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Woo, Gordon
2017-04-01
For almost fifty years, the mainstay of probabilistic seismic hazard analysis has been the methodology developed by Cornell, which assumes that earthquake occurrence is a Poisson process, and that the spatial distribution of epicentres can be represented by a set of polygonal source zones, within which seismicity is uniform. Based on Vere-Jones' use of kernel smoothing methods for earthquake forecasting, these methods were adapted in 1994 by the author for application to probabilistic seismic hazard analysis. There is no need for ambiguous boundaries of polygonal source zones, nor for the hypothesis of time independence of earthquake sequences. In Europe, there are many regions where seismotectonic zones are not well delineated, and where there is a dynamic stress interaction between events, so that they cannot be described as independent. From the Amatrice earthquake of 24 August, 2016, the subsequent damaging earthquakes in Central Italy over months were not independent events. Removing foreshocks and aftershocks is not only an ill-defined task, it has a material effect on seismic hazard computation. Because of the spatial dispersion of epicentres, and the clustering of magnitudes for the largest events in a sequence, which might all be around magnitude 6, the specific event causing the highest ground motion can vary from one site location to another. Where significant active faults have been clearly identified geologically, they should be modelled as individual seismic sources. The remaining background seismicity should be modelled as non-Poissonian using statistical kernel smoothing methods. This approach was first applied for seismic hazard analysis at a UK nuclear power plant two decades ago, and should be included within logic-trees for future probabilistic seismic hazard at critical installations within Europe. In this paper, various salient European applications are given.
NASA Astrophysics Data System (ADS)
Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy
2018-04-01
Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.
NASA Astrophysics Data System (ADS)
Garcia, Alicia; Fernandez-Ros, Alberto; Berrocoso, Manuel; Marrero, Jose Manuel; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramon
2014-05-01
In July 2011 at El Hierro (Canary Islands, Spain), a volcanic unrest was detected, with significant deformations followed by increased seismicity. A submarine eruption started on 10 October 2011 and ceased on 5 March 2012, after the volcanic tremor signals persistently weakened through February 2012. However, the seismic activity did not end when the eruption, as several other seismic crises followed since. The seismic episodes presented a characteristic pattern: over a few days the number and magnitude of seismic event increased persistently, culminating in seismic events severe enough to be felt all over the island. In all cases the seismic activity was preceded by significant deformations measured on the island's surface that continued during the whole episode. Analysis of the available GNSS-GPS and seismic data suggests that several magma injection processes occurred at depth from the beginning of the unrest. A model combining the geometry of the magma injection process and the variations in seismic energy released has allowed successful forecasting of the new-vent opening. The model presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself.
NASA Technical Reports Server (NTRS)
Kovach, R. L.; Watkins, J. S.; Talwani, P.
1972-01-01
The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.
NASA Astrophysics Data System (ADS)
Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki
The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.
NASA Astrophysics Data System (ADS)
Armas, Iuliana; Dumitrascu, Silvia; Bostenaru, Maria
2010-05-01
In the context of an explosive increase in value of the damage caused by natural disasters, an alarming challenge in the third millennium is the rapid growth of urban population in vulnerable areas. Cities are, by definition, very fragile socio-ecological systems with a high level of vulnerability when it comes to environmental changes and that are responsible for important transformations of the space, determining dysfunctions shown in the state of the natural variables (Parker and Mitchell, 1995, The OFDA/CRED International Disaster Database). A contributing factor is the demographic dynamic that affects urban areas. The aim of this study is to estimate the overall vulnerability of the urban area of Bucharest in the context of the seismic hazard, by using environmental, socio-economic, and physical measurable variables in the framework of a spatial multi-criteria analysis. For this approach the capital city of Romania was chosen based on its high vulnerability due to the explosive urban development and the advanced state of degradation of the buildings (most of the building stock being built between 1940 and 1977). Combining these attributes with the seismic hazard induced by the Vrancea source, Bucharest was ranked as the 10th capital city worldwide in the terms of seismic risk. Over 40 years of experience in the natural risk field shows that the only directly accessible way to reduce the natural risk is by reducing the vulnerability of the space (Adger et al., 2001, Turner et al., 2003; UN/ISDR, 2004, Dayton-Johnson, 2004, Kasperson et al., 2005; Birkmann, 2006 etc.). In effect, reducing the vulnerability of urban spaces would imply lower costs produced by natural disasters. By applying the SMCA method, the result reveals a circular pattern, signaling as hot spots the Bucharest historic centre (located on a river terrace and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic conditions). In effect, the example of Bucharest demonstrates how the results shape the ‘vulnerability to seismic hazard profile of the city, based on which decision makers could develop proper mitigation strategies. To sum up, the use of an analytical framework as the standard Spatial Multi-Criteria Analysis (SMCA) - despite all difficulties in creating justifiable weights (Yeh et al., 1999) - results in accurate estimations of the state of the urban system. Although this method was often mistrusted by decision makers (Janssen, 2001), we consider that the results can represent, based on precisely the level of generalization, a decision support framework for policy makers to critically reflect on possible risk mitigation plans. Further study will lead to the improvement of the analysis by integrating a series of daytime and nighttime scenarios and a better definition of the constructed space variables.
NASA Astrophysics Data System (ADS)
Caudron, Corentin; Taisne, Benoit; Kugaenko, Yulia; Saltykov, Vadim
2015-12-01
In contrast of the 1975-76 Tolbachik eruption, the 2012-13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.
NASA Astrophysics Data System (ADS)
Kossobokov, Vladimir G.; Nekrasova, Anastasia K.
2018-05-01
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10 N(M, L) = A + B·(5 - M) + C·log10 L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.
Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio
1997-11-01
A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).
What defines an Expert? - Uncertainty in the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Bond, C. E.
2008-12-01
Studies focusing on the elicitation of information from experts are concentrated primarily in economics and world markets, medical practice and expert witness testimonies. Expert elicitation theory has been applied in the natural sciences, most notably in the prediction of fluid flow in hydrological studies. In the geological sciences expert elicitation has been limited to theoretical analysis with studies focusing on the elicitation element, gaining expert opinion rather than necessarily understanding the basis behind the expert view. In these cases experts are defined in a traditional sense, based for example on: standing in the field, no. of years of experience, no. of peer reviewed publications, the experts position in a company hierarchy or academia. Here traditional indicators of expertise have been compared for significance on affective seismic interpretation. Polytomous regression analysis has been used to assess the relative significance of length and type of experience on the outcome of a seismic interpretation exercise. Following the initial analysis the techniques used by participants to interpret the seismic image were added as additional variables to the analysis. Specific technical skills and techniques were found to be more important for the affective geological interpretation of seismic data than the traditional indicators of expertise. The results of a seismic interpretation exercise, the techniques used to interpret the seismic and the participant's prior experience have been combined and analysed to answer the question - who is and what defines an expert?
Seismic risk assessment and application in the central United States
Wang, Z.
2011-01-01
Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saucier, R.T.
1991-04-01
Sand blows and fissures that cover >10,500 km{sup 2} in northeastern Arkansas and southeastern Missouri attest to the severity of the 1811-1812 earthquake series in the New Madrid seismic zone. However, except for one occurence near New Madrid, Missouri, the region has been devoid of any evidence of other major shocks for at least 1.3 ka prior to 1811 and possibly for >9 ka. Stratigraphic relations and radiocarbon dating at a recently excavated archaeological site near East Prairie, Missouri, have revealed liquifaction phenomena attributable to a shock dated to within about 100 yr prior to A.D. 539 and a probablemore » second one dated between about A.D. 539 and 991.« less
Benz, H.M.; Smith, R.B.
1988-01-01
The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors
Maps of upper Mississippi embayment Paleozoic and Precambrian rocks
Dart, Richard L.
1995-01-01
The Mississippi Embayment regional seismic hazard (Fuller, 1912; Nuttli, 1973, 1982, 1983), associated with the New Madrid seismic zone (NMSZ) is attributed to displacement on seismogenic structures primarily within the failed Reelfoot rift (Burke and Dewey, 1973; Ervin and McGinnis, 1975; Hildenbrand, 1977; Johnston and Shedlock, 1992). Hildenbrand and others (1977) and Hildenbrand (1985) used potential field data to show the northeast trend of the buried rift and the existence of related intrusive bodies. The Mississippi Valley graben (Hildenbrand and others, 1977; Kane and others, 1981; Hildenbrand, 1985; Wheeler and others, 1993), also referred to as the Reelfoot graben (Hildenbrand and Hendricks, 1995), is here considered to be the structural expression of the Reelfoot rift at the Precambrian basement surface.
Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory
NASA Astrophysics Data System (ADS)
Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi
2018-03-01
With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.
NASA Astrophysics Data System (ADS)
Setiawan, Jody; Nakazawa, Shoji
2017-10-01
This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.
NASA Astrophysics Data System (ADS)
Gehrmann, R. A. S.; Schwalenberg, K.; Hölz, S.; Zander, T.; Dettmer, J.; Bialas, J.
2016-12-01
In 2014 an interdisciplinary survey was conducted as part of the German SUGAR project in the Western Black Sea targeting gas hydrate occurrences in the Danube Delta. Marine controlled source electromagnetic (CSEM) data were acquired with an inline seafloor-towed array (BGR), and a two-polarization horizontal ocean-bottom source and receiver configuration (GEOMAR). The CSEM data are co-located with high-resolution 2-D and 3-D seismic reflection data (GEOMAR). We present results from 2-D regularized inversion (MARE2DEM by Kerry Key), which provides a smooth model of the electrical resistivity distribution beneath the source and multiple receivers. The 2-D approach includes seafloor topography and structural constraints from seismic data. We estimate uncertainties from the regularized inversion and compare them to 1-D Bayesian inversion results. The probabilistic inversion for a layered subsurface treats the parameter values and the number of layers as unknown by applying reversible-jump Markov-chain Monte Carlo sampling. A non-diagonal data covariance matrix obtained from residual error analysis accounts for correlated errors. The resulting resistivity models show generally high resistivity values between 3 and 10 Ωm on average which can be partly attributed to depleted pore water salinities due to sea-level low stands in the past, and locally up to 30 Ωm which is likely caused by gas hydrates. At the base of the gas hydrate stability zone resistivities rise up to more than 100 Ωm which could be due to gas hydrate as well as a layer of free gas underneath. However, the deeper parts also show the largest model parameter uncertainties. Archie's Law is used to derive estimates of the gas hydrate saturation, which vary between 30 and 80% within the anomalous layers considering salinity and porosity profiles from a distant DSDP bore hole.
Hardin, E.L.; Cheng, C.H.; Paillet, F.L.; Mendelson, J.D.
1987-01-01
Results are presented from experiments carried out in conjunction with the U. S. Geological Survey at the Hubbard Brook Experimental Forest near Mirror Lake, New Hampshire. The study focuses on our ability to obtain orientation and transmissivity estimates of naturally occurring fractures. The collected data set includes a four-offset hydrophone vertical seismic profile, full waveform acoustic logs at 5, 15, and 34 kHz, borehole televiewer, temperature, resistivity, and self-potential logs, and borehole-to-borehole pump test data. Borehole televiewer and other geophysical logs indicate that permeable fractures intersect the Mirror Lake boreholes at numerous depths, but less than half of these fractures appear to have significant permeability beyond the annulus of drilling disturbance on the basis of acoustic waveform log analysis. The vertical seismic profiling (VSP) data indicate a single major permeable fracture near a depth of 44 m, corresponding to one of the most permeable fractures identified in the acoustic waveform log analysis. VSP data also indicate a somewhat less permeable fracture at 220 m and possible fractures at depths of 103 and 135 m; all correspond to major permeable fractures in the acoustic waveform data set. Pump test data confirm the presence of a hydraulic connection between the Mirror Lake boreholes through a shallow dipping zone of permeability at 44 m in depth. Effective fracture apertures calculated from modeled transmissivities correspond to those estimated for the largest fractures indicated on acoustic waveform logs but are over an order of magnitude larger than effective apertures calculated from tube waves in the VSP data set. This discrepancy is attributed to the effect of fracture stiffness. A new model is presented to account for the mechanical strength of asperities in resisting fracture closure during the passage of seismic waves during the generation of VSPs.
Slip Potential of Faults in the Fort Worth Basin
NASA Astrophysics Data System (ADS)
Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.
2017-12-01
Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.
Probabilistic seismic vulnerability and risk assessment of stone masonry structures
NASA Astrophysics Data System (ADS)
Abo El Ezz, Ahmad
Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.
NASA Astrophysics Data System (ADS)
Shirley, Matthew Richard
I analyzed seismic data from the Ozarks-Illinois-Indiana-Kentucky (OIINK) seismic experiment that operated in eastern Missouri, southern Illinois, southern Indiana, and Kentucky from July 2012 through March 2015. A product of this analysis is a new catalog of earthquake locations and magnitudes for small-magnitude local events during this study period. The analysis included a pilot study involving detailed manual analysis of all events in a ten-day test period and determination of the best parameters for a suite of automated detection and location programs. I eliminated events that were not earthquakes (mostly quarry and surface mine blasts) from the output of the automated programs, and reprocessed the locations for the earthquakes with manually picked P- and S-wave arrivals. This catalog consists of earthquake locations, depths, and local magnitudes. The new catalog consists of 147 earthquake locations, including 19 located within the bounds of the OIINK array. Of these events, 16 were newly reported events, too small to be reported in the Center for Earthquake Research and Information (CERI) regional seismic network catalog. I compared the magnitudes reported by CERI for corresponding earthquakes to establish a magnitude calibration factor for all earthquakes recorded by the OIINK array. With the calibrated earthquake magnitudes, I incorporate the previous OIINK results from Yang et al. (2014) to create magnitude-frequency distributions for the seismic zones in the region alongside the magnitude-frequency distributions made from CERI data. This shows that Saint Genevieve and Wabash Valley seismic zones experience seismic activity at an order magnitude lower rate than the New Madrid seismic zone, and the Rough Creek Graben experiences seismic activity two orders of magnitude less frequently than New Madrid.
An integrated approach to characterization of fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta-Gupta, A.; Majer, E.; Vasco, D.
1995-12-31
This paper summarizes an integrated hydrologic and seismic characterization of a fractured limestone formation at the Conoco Borehole Test Facility (CBTF) in Kay County, Oklahoma. Transient response from pressure interference tests were first inverted in order to identify location and orientation of dominant fractures at the CBTF. Subsequently, high resolution (1000 to 10000 Hz) cross-well and single-well seismic surveys were conducted to verify the preferential slow paths indicated by hydrologic analysis. Seismic surveys were conducted before and after an air injection in order to increase the visibility of the fracture zone to seismic imaging. Both Seismic and hydrologic analysis weremore » found to yield consistent results in detecting the location of a major fracture zone.« less
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array
NASA Astrophysics Data System (ADS)
Langston, C. A.
2016-12-01
The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early warning for large regional events on North America's west coast.
Using geologic maps and seismic refraction in pavement-deflection analysis
DOT National Transportation Integrated Search
1999-10-01
The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-10-01
Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.
Seismic imaging of post-glacial sediments - test study before Spitsbergen expedition
NASA Astrophysics Data System (ADS)
Szalas, Joanna; Grzyb, Jaroslaw; Majdanski, Mariusz
2017-04-01
This work presents results of the analysis of reflection seismic data acquired from testing area in central Poland. For this experiment we used total number of 147 vertical component seismic stations (DATA-CUBE and Reftek "Texan") with accelerated weight drop (PEG-40). The profile was 350 metres long. It is a part of pilot study for future research project on Spitsbergen. The purpose of the study is to recognise the characteristics of seismic response of post-glacial sediments in order to design the most adequate survey acquisition parameters and processing sequence for data from Spitsbergen. Multiple tests and comparisons have been performed to obtain the best possible quality of seismic image. In this research we examine the influence of receiver interval size, front mute application and surface wave attenuation attempts. Although seismic imaging is the main technique we are planning to support this analysis with additional data from traveltime tomography, MASW and other a priori information.
Back analysis of fault-slip in burst prone environment
NASA Astrophysics Data System (ADS)
Sainoki, Atsushi; Mitri, Hani S.
2016-11-01
In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.
NASA Astrophysics Data System (ADS)
Contreras, Arturo Javier
This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.
NASA Astrophysics Data System (ADS)
Montoya-Noguera, Silvana; Wang, Yu
2017-04-01
The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.
Systematic detection and classification of earthquake clusters in Italy
NASA Astrophysics Data System (ADS)
Poli, P.; Ben-Zion, Y.; Zaliapin, I. V.
2017-12-01
We perform a systematic analysis of spatio-temporal clustering of 2007-2017 earthquakes in Italy with magnitudes m>3. The study employs the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b] with basic data-driven parameters. The results indicate that seismicity in Italy (an extensional tectonic regime) is dominated by clustered events, with smaller proportion of background events than in California. Evaluation of internal cluster properties allows separation of swarm-like from burst-like seismicity. This classification highlights a strong geographical coherence of cluster properties. Swarm-like seismicity are dominant in regions characterized by relatively slow deformation with possible elevated temperature and/or fluids (e.g. Alto Tiberina, Pollino), while burst-like seismicity are observed in crystalline tectonic regions (Alps and Calabrian Arc) and in Central Italy where moderate to large earthquakes are frequent (e.g. L'Aquila, Amatrice). To better assess the variation of seismicity style across Italy, we also perform a clustering analysis with region-specific parameters. This analysis highlights clear spatial changes of the threshold separating background and clustered seismicity, and permits better resolution of different clusters in specific geological regions. For example, a large proportion of repeaters is found in the Etna region as expected for volcanic-induced seismicity. A similar behavior is observed in the northern Apennines with high pore pressure associated with mantle degassing. The observed variations of earthquakes properties highlight shortcomings of practices using large-scale average seismic properties, and points to connections between seismicity and local properties of the lithosphere. The observations help to improve the understanding of the physics governing the occurrence of earthquakes in different regions.
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Nekrasova, A.
2017-12-01
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.
Analysis of Magnitude Correlations in a Self-Similar model of Seismicity
NASA Astrophysics Data System (ADS)
Zambrano, A.; Joern, D.
2017-12-01
A recent model of seismicity that incorporates a self-similar Omori-Utsu relation, which is used to describe the temporal evolution of earthquake triggering, has been shown to provide a more accurate description of seismicity in Southern California when compared to epidemic type aftershock sequence models. Forecasting of earthquakes is an active research area where one of the debated points is whether magnitude correlations of earthquakes exist within real world seismic data. Prior to this work, the analysis of magnitude correlations of the aforementioned self-similar model had not been addressed. Here we present statistical properties of the magnitude correlations for the self-similar model along with an analytical analysis of the branching ratio and criticality parameters.
Attenuation Characteristics of High Frequency Seismic Waves in Southern India
NASA Astrophysics Data System (ADS)
Sivaram, K.; Utpal, Saikia; Kanna, Nagaraju; Kumar, Dinesh
2017-07-01
We present a systematic study of seismic attenuation and its related Q structure derived from the spectral analysis of P-, S-waves in the southern India. The study region is separated into parts of EDC (Eastern Dharwar Craton), Western Dharwar Craton (WDC) and Southern Granulite Terrain (SGT). The study is carried out in the frequency range 1-20 Hz, using a single-station spectral ratio technique. We make use of about 45 earthquakes, recorded in a network of about 32 broadband 3-component seismograph-stations, having magnitudes ( M L) varying from 1.6 to 4.5, to estimate the average seismic body wave attenuation quality factors; Q P and Q S. Their estimated average values are observed to be fitting to the power law form of Q = Q 0 f n . The averaged power law relations for Southern Indian region (as a whole) are obtained as Q P = (95 ± 1.12) f (1.32±0.01); Q S = (128 ± 1.84) f (1.49±0.01). Based on the stations and recorded local earthquakes, for parts of EDC, WDC and SGT, the average power law estimates are obtained as: Q P = (97 ± 5) f (1.40±0.03), Q S = (116 ± 1.5) f (1.48±0.01) for EDC region; Q P = (130 ± 7) f (1.20±0.03), Q S = (103 ± 3) f (1.49±0.02) for WDC region; Q P = (68 ± 2) f (1.4±0.02), Q S = (152 ± 6) f (1.48±0.02) for SGT region. These estimates are weighed against coda Q ( Q C) estimates, using the coda decay technique, which is based on a weak backscattering of S-waves. A major observation in the study of body wave analysis is the low body wave Q ( Q 0 < 200), moderately high value of the frequency-exponent, ` n' (>0.5) and Q S/ Q P ≫ 1, suggesting lateral stretches of dominant scattering mode of seismic wave propagation. This primarily could be attributed to possible thermal anomalies and spread of partially fluid-saturated rock-masses in the crust and upper mantle of the southern Indian region, which, however, needs further laboratory studies. Such physical conditions might partly be correlated to the active seismicity and intraplate tectonism, especially in SGT and EDC regions, as per the observed low- Q P and Q S values. Additionally, the enrichment of coda waves and significance of scattering mechanisms is evidenced in our observation of Q C > Q S estimates. Lapse time study shows Q C values increasing with lapse time. High Q C values at 40 s lapse times in WDC indicate that it may be a relatively stable region. In the absence of detailed body wave attenuation studies in this region, the frequency dependent Q relationships developed here are useful for the estimation of earthquake source parameters of the region. Also, these relations may be used for the simulation of earthquake strong ground motions which are required for the estimation of seismic hazard, geotechnical and retrofitting analysis of critical structures in the region.
Assessing the seismic risk potential of South America
Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.
2016-01-01
We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.
Pattern Informatics Approach to Earthquake Forecasting in 3D
NASA Astrophysics Data System (ADS)
Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.
2009-05-01
Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.
Impacts of potential seismic landslides on lifeline corridors.
DOT National Transportation Integrated Search
2015-02-01
This report presents a fully probabilistic method for regional seismically induced landslide hazard analysis and : mapping. The method considers the most current predictions for strong ground motions and seismic sources : through use of the U.S.G.S. ...
LANL seismic screening method for existing buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.
1997-01-01
The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method andmore » will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method.« less
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, Q.; SHI, Y.
2017-12-01
There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].
Complex deformation associated with anhydrite layers in the Tromsø Basin, SW Barents Sea.
NASA Astrophysics Data System (ADS)
Marfo, George; Olakunle Omosanya, Kamaldeen; Johansen, Ståle Emil; Zervas, Ioannis
2017-04-01
Internal and external deformation associated with salt structures is of prime interest due to their economic importance as hydrocarbon seals, reservoirs, repositories for chemical waste and their implication on drilling. Salt structures are often associated with anhydrites, which may 'cap' or are enclosed within the allochthonous salt structures. Despite their economic importance, the internal and external structures of evaporites remain poorly studied from field and seismic data due to the sparse outcrops of evaporites and poor seismic imaging. The zero-phased, normal polarity, high resolution multiple 2D seismic data, in combination with detailed interpretation of wireline logs provide an excellent study into the salt structures, and offers a good opportunity to investigate the dynamics, geometries and mechanisms driving deformation of internal and external salt layers associated with the Late Carboniferous to Early Permian Salt structures in the Tromsø Basin. The methods include seismic interpretation and the application of multiple seismic attributes to map stratigraphic units and discontinuities. Our results show that the anhydrite layers are marked by high amplitude reflections at the crests and flanks or fully enclosed within the salt diapirs. Crestal and lateral anhydrite caprocks represent external salt structures whilst the entrained anhydrites or stringers are intrasalt structures. Anhydrite caprocks generally show structural styles such as faults and large-scale folds which are harmonic to the top salt structure. In contrast, anhydrite stringers show folds of varying scale, which are harmonic to disharmonic to the top salt structure. Boudins and steeply dipping stringer fragments are also interpreted within the stringers. Caprock deformation is attributed to salt upwelling. Folding and boudinaging of originally horizontal and continuous stringer layers formed from a multiphase superimposed sequence of ductile and brittle deformation in response to complex multi-dimensional salt flow. Internal salt flow involves radial and tangential compression, which leads to dominant fold structures near the margins. Boudins on the lower flanks of the diapir formed due radial extension. Our study further demonstrates that differential geometries exhibited by the different anhydrite groups imply that the mechanisms deforming internal and external salt structures are different. The results from this study are comparable to observations from salt mines, field exposures, scaled physical and numerical models.
NASA Astrophysics Data System (ADS)
Ketiyot, Rattapon; Hansapinyo, Chayanon
2018-04-01
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.
Alao, P A; Olabode, S O; Opeloye, S A
2013-01-01
In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.
MASW on the standard seismic prospective scale using full spread recording
NASA Astrophysics Data System (ADS)
Białas, Sebastian; Majdański, Mariusz; Trzeciak, Maciej; Gałczyński, Edward; Maksym, Andrzej
2015-04-01
The Multichannel Analysis of Surface Waves (MASW) is one of seismic survey methods that use the dispersion curve of surface waves in order to describe the stiffness of the surface. Is is used mainly for geotechnical engineering scale with total length of spread between 5 - 450 m and spread offset between 1 - 100 m, the hummer is the seismic source on this surveys. The standard procedure of MASW survey is: data acquisition, dispersion analysis and inversion of extracting dispersion curve to obtain the closest theoretical curve. The final result includes share-wave velocity (Vs) values at different depth along the surveyed lines. The main goal of this work is to expand this engineering method to the bigger scale with the length of standard prospecting spread of 20 km using 4.5 Hz version of vertical component geophones. The standard vibroseis and explosive method are used as the seismic source. The acquisition were conducted on the full spread all the time during each single shoot. The seismic data acquisition used for this analysis were carried out on the Braniewo 2014 project in north of Poland. The results achieved during standard MASW procedure says that this method can be used on much bigger scale as well. The different methodology of this analysis requires only much stronger seismic source.
3-D Structure and Morphology of the S-reflector Detachment Fault, Offshore Galicia, Spain
NASA Astrophysics Data System (ADS)
Schuba, C. N.; Sawyer, D. S.; Gray, G. G.; Morgan, J.; Bull, J.; Shillington, D. J.; Jordan, B.; Reston, T. J.
2017-12-01
The crustal architecture of passive continental margins provides valuable clues for understanding rift initiation and evolution. The Galicia margin is an archetypal magma-poor margin displaying exhumed serpentinized mantle, and is an optimal setting in which to examine rift-related processes. A new 3-D seismic reflection volume images this margin in great detail. The S-reflector detachment fault, one of the most prominent structural features associated with the Galicia margin, is imaged as a continuous interface over an area of 600 km2. The top and base of the fault zone can be mapped independently, which enables seismic attribute analysis of this significant structure. RMS amplitude maps extracted from this interface show localized patches of high amplitude stripes that coincide with thickness variations of the fault zone and undulations in the bounding surfaces of the fault. These variations bear similarities to grooves on the fault surface such as slickensides, and appear to have developed as the fault zone evolved. These features thus represent good indicators of the kinematics of the fault system. In general, there is good correlation between S-reflector morphology and the overriding fault intersections; however this relationship does not appear to be present with the fault gouge thickness.
Seismic signatures of carbonate caves affected by near-surface absorptions
NASA Astrophysics Data System (ADS)
Rao, Ying; Wang, Yanghua
2015-12-01
The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.
NASA Astrophysics Data System (ADS)
Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris
2018-05-01
The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.
Amplification of seismic waves beneath active volcanoes
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Collier, L.; Neuberg, J.; Lyakhovsky, V.
2003-04-01
Long-period (LP) seismic events are typical of many volcanoes and are attributed to energy leaking from waves traveling through the volcanic conduit or along the conduit - country-rock interface. The LP events are triggered locally, at the volcanic edifice, but the source of energy for the formation of tens of events per day is not clear. Energy may be supplied by volatile-release from a supersaturated melt. If bubbles are present in equilibrium with the melt in the conduit, and the melt is suddenly decompressed, transfer of volatiles from the supersaturated melt into the bubbles transforms stored potential energy into expansion work. For example, small dome collapses may decompress the conduit by a few bars and lead to solubility decrease, exsolution of volatiles and, consequently, to work done by the expansion of the bubbles under pressure. This energy is released over a timescale that is similar to that of LP events and may amplify the original weak seismic signals associated with the collapse. Using the formulation of Lensky et al. (2002), following the decompression, when the transfer of volatiles into bubbles is fast enough, expansion accelerates and the bulk viscosity of the bubbly magma is negative. New calculations show that under such conditions a sinusoidal P-wave is amplified. We note that seismic waves created by tectonic earthquakes that are not associated with net decompression, do not lead to net release of volatiles or to net expansion. In this case, the bulk viscosity is positive and waves traveling through the magma should attenuate. The proposed model explains how weak seismic signals may be amplified as they travel through a conduit that contains supersaturated bubbly magma. It provides the general framework for amplifying volcanic seismicity such as the signals associated with long-period events.
Geophysical anomalies of Osage County and its relationship to Oklahoma seismicity
NASA Astrophysics Data System (ADS)
Crain, K.; Chang, J. C.; Walter, J. I.
2017-12-01
Substantial increases in seismicity across northcentral Oklahoma in the last decade have been generally attributed to human activity. During the last oil and gas boom, the Cherokee Platform was generally targeted by many energy companies. However, these new production wells yielded sometimes as much as 90% (or more) formation saltwater, along with hydrocarbons, which was commonly disposed of into deeper formations of the Arbuckle Group. Wastewater injection into the Arbuckle group, which directly overlies crystalline basement, has been proposed to hydraulically or elastically perturb the stresses on basement faults, causing them to slip. An Oklahoma seismicity map shows Osage County as an anomalously "quiet" region. Seismicity in counties surrounding Osage County experienced hundreds of earthquakes during the past couple of years, yet the area of Osage experienced less than a dozen earthquakes in the decades-long history of the Oklahoma seismic network. This is surprising since the fundamental geologic settings and possible anthropogenic triggers are essentially the same for these seismically active and quiet areas. We present a possible geologic explanation for the anomalously quiescent Osage County. We model gravity and magnetics data to show that there are dense bodies beneath the study area, and use vitrinite reflectance data from the sedimentary strata to constrain the relative age of a possible intrusion event, which might have produced the dense bodies. We propose that the intrusion of dense bodies could have caused significant basement alteration thereby reducing the seismogenic potential for basement faults to host larger, detectable earthquakes such as is observed in other regions of Oklahoma. If our hypothesis is correct, researchers may be able to use geologic criteria to identify anthropogenic earthquake-triggering mechanisms, which in turn could help to delineate areas where wastewater injection is, or is not, expected to induce earthquakes.
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2009-07-01
In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.
NASA Astrophysics Data System (ADS)
Pino, Nicola Alessandro
2012-06-01
Post-seismic relaxation is known to occur after large or moderate earthquakes, on time scales ranging from days to years or even decades. In general, long-term deformation following seismic events has been detected by means of standard geodetic measurements, although seismic instruments are only used to estimate short timescale transient processes. Albeit inertial seismic sensors are also sensitive to rotation around their sensitive axes, the recording of very slow inclination of the ground surface at their standard output channels is practically impossible, because of their design characteristics. However, modern force-balance, broad-band seismometers provide the possibility to detect and measure slow surface inclination, through the analysis of the mass position signal. This output channel represents the integral of the broad-band velocity and is generally considered only for state-of-health diagnostics. In fact, the analysis of mass position data recorded at the time of the 2009 April 6, L'Aquila (MW= 6.3) earthquake, by a closely located STS-2 seismometer, evidenced the occurrence of a very low frequency signal, starting right at the time of the seismic event. This waveform is only visible on the horizontal components and is not related to the usual drift coupled with the temperature changes. This analysis suggests that the observed signal is to be ascribed to slowly developing ground inclination at the station site, caused by post-seismic relaxation following the main shock. The observed tilt reached 1.7 × 10-5 rad in about 2 months. This estimate is in very good agreement with the geodetic observations, giving comparable tilt magnitude and direction at the same site. This study represents the first seismic analysis ever for the mass position signal, suggesting useful applications for usually neglected data.
Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil
NASA Astrophysics Data System (ADS)
de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.
2018-05-01
A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.
Improvement of Epicentral Direction Estimation by P-wave Polarization Analysis
NASA Astrophysics Data System (ADS)
Oshima, Mitsutaka
2016-04-01
Polarization analysis has been used to analyze the polarization characteristics of waves and developed in various spheres, for example, electromagnetics, optics, and seismology. As for seismology, polarization analysis is used to discriminate seismic phases or to enhance specific phase (e.g., Flinn, 1965)[1], by taking advantage of the difference in polarization characteristics of seismic phases. In earthquake early warning, polarization analysis is used to estimate the epicentral direction using single station, based on the polarization direction of P-wave portion in seismic records (e.g., Smart and Sproules(1981) [2], Noda et al.,(2012) [3]). Therefore, improvement of the Estimation of Epicentral Direction by Polarization Analysis (EEDPA) directly leads to enhance the accuracy and promptness of earthquake early warning. In this study, the author tried to improve EEDPA by using seismic records of events occurred around Japan from 2003 to 2013. The author selected the events that satisfy following conditions. MJMA larger than 6.5 (JMA: Japan Meteorological Agency). Seismic records are available at least 3 stations within 300km in epicentral distance. Seismic records obtained at stations with no information on seismometer orientation were excluded, so that precise and quantitative evaluation of accuracy of EEDPA becomes possible. In the analysis, polarization has calculated by Vidale(1986) [4] that extended the method proposed by Montalbetti and Kanasewich(1970)[5] to use analytical signal. As a result of the analysis, the author found that accuracy of EEDPA improves by about 15% if velocity records, not displacement records, are used contrary to the author's expectation. Use of velocity records enables reduction of CPU time in integration of seismic records and improvement in promptness of EEDPA, although this analysis is still rough and further scrutiny is essential. At this moment, the author used seismic records that obtained by simply integrating acceleration records and applied no filtering. Further study on optimal type of filter and its application frequency band is necessary. In poster presentation, the results of aforementioned study shall be shown. [1] Flinn, E. A. (1965) , Signal analysis using rectilinearity and direction of particle motion. Proceedings of the IEEE, 53(12), 1874-1876. [2] Smart, E., & Sproules, H. (1981), Regional phase processors (No. SDAC-TR-81-1). TELEDYNE GEOTECH ALEXANDRIA VA SEISMIC DATA ANALYSIS CENTER. [3] Noda, S., Yamamoto, S., Sato, S., Iwata, N., Korenaga, M., & Ashiya, K. (2012). Improvement of back-azimuth estimation in real-time by using a single station record. Earth, planets and space, 64(3), 305-308. [4] Vidale, J. E. (1986). Complex polarization analysis of particle motion. Bulletin of the Seismological society of America, 76(5), 1393-1405. [5] Montalbetti, J. F., & Kanasewich, E. R. (1970). Enhancement of teleseismic body phases with a polarization filter. Geophysical Journal International, 21(2), 119-129.
NASA Astrophysics Data System (ADS)
Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.
2008-05-01
In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and basement gravity (green) highlight domains with common geophysical characteristics and, by inference, lithology. The observed patterns suggest that much of the basin is underlain by Devonian to Jurassic oceanic rocks that probably have little or no potential for hydrocarbon generation. The coastal plain surficial deposits in the northern part of ANWR conceal another frontier basin with hydrocarbon potential. Proprietary aeromagnetic and gravity data were used, along with seismic reflection profiles, to construct a structural and stratigraphic model of this highly deformed sedimentary basin for use in an energy resource assessment. Matched-filtering techniques were used to separate short-wavelength magnetic and gravity anomalies attributed to sources near the top of the sedimentary section from longer-wavelength anomalies attributed to deeper basin and basement sources. Models along the seismic reflection lines indicate that the primary sources of the short-wavelength anomalies are folded and faulted sedimentary beds truncated at the Pleistocene erosion surface. In map view, the aeromagnetic and gravity anomalies produced by the sedimentary units were used to identify possible structural trapping features and geometries, but they also indicated that these features may be significantly disrupted by faulting.
Effects of Source RDP Models and Near-source Propagation: Implication for Seismic Yield Estimation
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Helmberger, D. V.; Stead, R. J.; Woods, B. B.
- It has proven difficult to uniquely untangle the source and propagation effects on the observed seismic data from underground nuclear explosions, even when large quantities of near-source, broadband data are available for analysis. This leads to uncertainties in our ability to quantify the nuclear seismic source function and, consequently the accuracy of seismic yield estimates for underground explosions. Extensive deterministic modeling analyses of the seismic data recorded from underground explosions at a variety of test sites have been conducted over the years and the results of these studies suggest that variations in the seismic source characteristics between test sites may be contributing to the observed differences in the magnitude/yield relations applicable at those sites. This contributes to our uncertainty in the determination of seismic yield estimates for explosions at previously uncalibrated test sites. In this paper we review issues involving the relationship of Nevada Test Site (NTS) source scaling laws to those at other sites. The Joint Verification Experiment (JVE) indicates that a magnitude (mb) bias (δmb) exists between the Semipalatinsk test site (STS) in the former Soviet Union (FSU) and the Nevada test site (NTS) in the United States. Generally this δmb is attributed to differential attenuation in the upper-mantle beneath the two test sites. This assumption results in rather large estimates of yield for large mb tunnel shots at Novaya Zemlya. A re-examination of the US testing experiments suggests that this δmb bias can partly be explained by anomalous NTS (Pahute) source characteristics. This interpretation is based on the modeling of US events at a number of test sites. Using a modified Haskell source description, we investigated the influence of the source Reduced Displacement Potential (RDP) parameters ψ ∞ , K and B by fitting short- and long-period data simultaneously, including the near-field body and surface waves. In general, estimates of B and K are based on the initial P-wave pulse, which various numerical analyses show to be least affected by variations in near-source path effects. The corner-frequency parameter K is 20% lower at NTS (Pahute) than at other sites, implying larger effective source radii. The overshoot parameter B appears to be low at NTS (although variable) relative to other sites and is probably due to variations in source conditions. For a low B, the near-field data require a higher value of ψ ∞ to match the long-period MS and short-period mb observations. This flexibility in modeling proves useful in comparing released FSU yields against predictions based on mb and MS.
Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.
2013-01-01
The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures characteristic of constraining and releasing bends and stepovers, (4) changes in the sense and magnitude of vertical separation along strike within the fault zone, and (5) changes in downdip geometry between the major traces and segments of the fault zone. Characteristics indicative of reverse slip include (1) reverse fault geometries that occur across major strands of the fault zone and (2) fault-bend folds and localized thrust faults that occur along the northern and southern reaches of the fault. Analyses of high-resolution, subbottom profiler and side-scan sonar records indicate localized Holocene activity along most of the extent of the fault zone. Collectively, these features are the basis of our characterization of the Hosgri Fault Zone as an active, 110-km-long, convergent right-oblique slip (transpressional) fault with identified northern and southern terminations. This interpretation is consistent with recently published analyses of onshore geologic data, regional tectonic kinematic models, and instrumental seismicity.
Seismic slope-performance analysis: from hazard map to decision support system
Miles, Scott B.; Keefer, David K.; Ho, Carlton L.
1999-01-01
In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.
2017-12-01
Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase velocities of multiple, interfering arrivals in one time window. We demonstrate how this property can be exploited to separate the wavefield into its elastic wave-modes and to isolate or suppress waves arriving from specific directions (directional filtering), both in a fully automated fashion.
DOT National Transportation Integrated Search
2011-01-01
The need to maintain the functionality of critical transportation lifelines after a large seismic event motivates the : strategy to design certain bridges for performance standards beyond the minimum required by bridge design codes. : To design a bri...
A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva
2018-03-01
The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.
Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel; Haneberg, William C.
Seismic stratigraphic features are delineated using principal component analysis of the band limited data at potential gas hydrate sands, and compared and calibrated with spectral decomposition thickness to constrain thickness in the absence of well control. Layers in the abyssal fan sediments are thinner than can be resolved with 50 Hz seismic and thus comprise composite thin-bed reflections. Amplitude vs frequency analysis are used to indicate gas and gas hydrate reflections. Synthetic seismic wedge models show that with 50Hz seismic data, a 40% saturation of a Plio Pleistocene GoM sand in the hydrate stability zone with no subjacent gas canmore » produce a phase change (negative to positive) with a strong correlation between amplitude and hydrate saturation. The synthetic seismic response is more complicated if the gas hydrate filled sediments overlie gassy sediments. Hydrate (or gas) saturation in thin beds enhances the amplitude response and can be used to estimate saturation. Gas hydrate saturation from rock physics, amplitude, and frequency analysis is compared to saturation derived from inversion at several interpreted gas hydrate accumulations in the eastern Gulf of Mexico.« less
NASA Astrophysics Data System (ADS)
Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha
2017-05-01
Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).
Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems
NASA Astrophysics Data System (ADS)
Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.
2011-12-01
The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed technique to a training dataset of induced earthquakes recorded by Berkeley-Geysers network, which is installed in The Geysers geothermal area in Northern California. The reliability of the techniques is then tested by using a different dataset performing seismic hazard analysis in a time-evolving approach, which provides with ground-motion values having fixed probabilities of exceedence. Those values can be finally compared with the observations by using appropriate statistical tests.
NASA Astrophysics Data System (ADS)
Huerta, F. V.; Granados, I.; Aguirre, J.; Carrera, R. Á.
2017-12-01
Nowadays, in hydrocarbon industry, there is a need to optimize and reduce exploration costs in the different types of reservoirs, motivating the community specialized in the search and development of alternative exploration geophysical methods. This study show the reflection response obtained from a shale gas / oil deposit through the method of seismic interferometry of ambient vibrations in combination with Wavelet analysis and conventional seismic reflection techniques (CMP & NMO). The method is to generate seismic responses from virtual sources through the process of cross-correlation of records of Ambient Seismic Vibrations (ASV), collected in different receivers. The seismic response obtained is interpreted as the response that would be measured in one of the receivers considering a virtual source in the other. The acquisition of ASV records was performed in northern of Mexico through semi-rectangular arrays of multi-component geophones with instrumental response of 10 Hz. The in-line distance between geophones was 40 m while in cross-line was 280 m, the sampling used during the data collection was 2 ms and the total duration of the records was 6 hours. The results show the reflection response of two lines in the in-line direction and two in the cross-line direction for which the continuity of coherent events have been identified and interpreted as reflectors. There is certainty that the events identified correspond to reflections because the time-frequency analysis performed with the Wavelet Transform has allowed to identify the frequency band in which there are body waves. On the other hand, the CMP and NMO techniques have allowed to emphasize and correct the reflection response obtained during the correlation processes in the frequency band of interest. The results of the processing and analysis of ASV records through the seismic interferometry method have allowed us to see interesting results in light of the cross-correlation process in combination with the Wavelet analysis and conventional seismic reflection techniques. Therefore it was possible to recover the seismic response on each analyzed source-receiver pair, allowing us to obtain the reflection response of each analyzed seismic line.
Seismic sample areas defined from incomplete catalogues: an application to the Italian territory
NASA Astrophysics Data System (ADS)
Mulargia, F.; Tinti, S.
1985-11-01
The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.
NASA Astrophysics Data System (ADS)
Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.
2017-12-01
We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.
Mass-transport deposits and the advantages of a real three-dimensional perspective (Invited)
NASA Astrophysics Data System (ADS)
Moscardelli, L. G.; Wood, L. J.
2010-12-01
Mass-transport deposits (MTDs) form a significant component of the stratigraphic record in ancient and modern deepwater basins worldwide. However, the difficulties encountered when performing direct observations of these submarine units, the limited area covered by geophysical surveys acquired by research institutions, and the often surficial nature of seafloor data collected by federal agencies represent major hurdles in understanding submarine mass-movement dynamics. Three-dimensional seismic reflectivity imaging, drawn mainly from energy exploration in deepwater regions of the world, has allowed researchers to describe the architecture of MTDs at unprecedented spatial and temporal scales. In this talk, we present observations made using thousands of square kilometers of three-dimensional seismic data acquired by the oil and gas industry in offshore Trinidad, Morocco, and the Gulf of Mexico, where MTDs are a common occurrence in the stratigraphic record. Detailed mapping of MTD architecture has allowed us to better understand the role that MTDs have in continental-margin evolution. Morphometric data obtained from the mapping of MTDs is used to model tsunamigenic waves and their potential affect of coastal areas. The effect of low permeability MTDs on reservoir and aquifer fluid behavior has important implications, enhancing the economic importance of understanding the occurrence and distribution of these deposits. The recognition of MTD processes and morphology leads to new understanding of the processes possibly active in shaping other planets. Such analogs speak to a possible deepwater origin for features on Mars previously attributed to subaerial events. As industry-quality 3D seismic data become increasingly available to academic institutions, current studies become important bell weathers for future analysis of MTDs and processes in oceans of this planet and beyond.
NASA Astrophysics Data System (ADS)
Torres, Y.; Escalante, M. P.
2009-04-01
This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-04-01
We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.
Ischia Island: Historical Seismicity and Dynamics
NASA Astrophysics Data System (ADS)
Carlino, S.; Cubellis, E.; Iannuzzi, R.; Luongo, G.; Obrizzo, F.
2003-04-01
The seismic energy release in volcanic areas is a complex process and the island of Ischia provides a significant scenario of historical seismicity. This is characterized by the occurence of earthquakes with low energy and high intensity. Information on the seismicity of the island spans about eight centuries, starting from 1228. With regard to effects, the most recent earthquake of 1883 is extensively documented both in the literature and unpublished sources. The earthquake caused 2333 deaths and the destruction of the historical and environmental heritage of some areas of the island. The most severe damage occurred in Casamicciola. This event, which was the first great catastrophe after the unification of Italy in the 1860s (Imax = XI degree MCS), represents an important date in the prevention of natural disasters, in that it was after this earthquake that the first Seismic Safety Act in Italy was passed by which lower risk zones were identified for new settlements. Thanks to such detailed analysis, reliable modelling of the seismic source was also obtained. The historical data onwards makes it possible to identify the area of the epicenter of all known earthquakes as the northern slope of Monte Epomeo, while analysis of the effects of earthquakes and the geological structures allows us to evaluate the stress fields that generate the earthquakes. In a volcanic area, interpretation of the mechanisms of release and propagation of seismic energy is made even more complex as the stress field that acts at a regional level is compounded by that generated from migration of magmatic masses towards the surface, as well as the rheologic properties of the rocks dependent on the high geothermic gradient. Such structural and dynamic conditions make the island of Ischia a seismic area of considerable interest. It would appear necessary to evaluate the expected damage caused by a new event linked to the renewal of dynamics of the island, where high population density and the high economic value concerned, the island is a tourist destination and holiday resort, increase the seismic risk. A seismic hazard map of the island is proposed according to a comparative analysis of various types of data: the geology, tectonics, historical seismicity and damage caused by the 28 July 1883 Casamicciola earthquake. The analysis was essentially based on a GIS-aided cross-correlation of these data. The GIS is thus able to provide support both for in-depth analysis of the dynamic processes on the island and extend the assessment to other natural risks (volcanic, landslides, flooding, etc.).
Analysis of the 2003-2004 microseismic sequence in the western part of the Corinth Rift
NASA Astrophysics Data System (ADS)
Godano, Maxime; Bernard, Pascal; Dublanchet, Pierre; Canitano, Alexandre; Marsan, David
2013-04-01
The Corinth rift is one of the most seismically active zones in Europe. The seismic activity follows a swarm organization with alternation of intensive crisis and more quiescent periods. The seismicity mainly occurs under the Gulf of Corinth in a 3-4 km north-dipping layer between 5 and 12 km. Several hypotheses have been proposed to explain this seismic layer. Nevertheless, the relationships between seismicity, deep structures and faults mapped at the surface remain unclear. Moreover, fluids seem to play a key role in the occurrence of the seismic activity (Bourouis and Cornet 2009, Pacchiani and Lyon-Caen 2009). Recently, a detailed analysis of the microseismicity (multiplets identification, precise relocation, focal mechanisms determination) between 2000 and 2007 in the western part of the Corinth rift have highlighted north-dipping (and some south-dipping) planar active microstructures in the seismic layer with normal fault mechanisms (Lambotte et al., in preparation; Godano et al., in preparation). A multiplet (group of earthquakes with similar waveform) can be interpreted as repeated ruptures on the same asperity due to transient forcing as silent creep on fault segment or fluid circulation. The detailed analysis of the multiplets in the Corinth rift is an opportunity to better understand coupling between seismic and aseismic processes. In the present study we focus on the seismic crisis that occurred from October 2003 to July 2004 in the western part of the Corinth Gulf. This crisis consists in 2431 relocated events with magnitude ranging from 0.5 to 3.1 (b-value = 1.4). The joint analysis of (1) the position of the multiplets with respect to the faults mapped at the surface, (2) the geometry of the main multiplets and (3) the fault plane solutions shows that the seismic crisis is probably related to the activation in depth of the Fassouleika and Aigion faults. The spatio-temporal analysis of the microseismicity highlights an overall migration from south-east to north-west characterized by the successive activation of the multiplets. We next perform a spectral analysis to determine source parameters for each multiplet in order to estimate size of the asperities and cumulative coseismic slip. From the preceding observations and results we finally try to reproduce the 2003-2004 microseismic sequence using rate-and-state 3D asperity model (Dublanchet et al., submitted). The deformation measured during the crisis by the strainmeter installed in the Trizonia island is used in the modeling to constrain the maximum slip amplitude.
Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis
NASA Astrophysics Data System (ADS)
Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.
2014-03-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.
NASA Astrophysics Data System (ADS)
Montazeri, Mahboubeh; Moreau, Julien; Uldall, Anette; Nielsen, Lars
2015-04-01
This study aims at understanding seismic wave propagation in the fine-layered Chalk Group, which constitutes the main reservoir for oil and gas production in the Danish North Sea. The starting point of our analysis is the Nana-1XP exploration well, which shows strong seismic contrasts inside the Chalk Group. For the purposes of seismic waveform modelling, we here assume a one-dimensional model with homogeneous and isotropic layers designed to capture the main fluctuations in petrophysical properties observed in the well logs. The model is representative of the stratigraphic sequences of the area and it illustrates highly contrasting properties of the Chalk Group. Finite-difference (FD) full wave technique, both acoustic and elastic equations are applied to the model. Velocity analysis of seismic data is a crucial step for stacking, multiple suppression, migration, and depth conversion of the seismic record. Semblance analysis of the synthetic seismic records shows strong amplitude peaks outside the expected range for the time interval representing the Chalk Group, especially at the base. The various synthetic results illustrate the occurrence and the impact of different types of waves including multiples, converted waves and refracted waves. The interference of these different wave types with the primary reflections can explain the strong anomalous amplitudes in the semblance plot. In particular, the effect of strongly contrasting thin beds plays an important role in the generation of the high anomalous amplitude values. If these anomalous amplitudes are used to pick the velocities, it would impede proper stacking of the data and may result in sub-optimal migration and depth conversion. Consequently this may lead to erroneous or sub-optimal seismic images of the Chalk Group and the underlying layers. Our results highlight the importance of detailed velocity analysis and proper picking of velocity functions in the Chalk Group intervals. We show that application of standard front mutes in the mid- and far-offset ranges does not significantly improve the results of the standard semblance analysis. These synthetic modelling results could be used as starting points for defining optimized processing flows for the seismic data sets acquired in the study area with the aim of improving the imaging of the Chalk Group.
Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry
NASA Astrophysics Data System (ADS)
Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan
2016-04-01
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).
Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand
NASA Astrophysics Data System (ADS)
van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila
2017-03-01
Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available.
Crustal and upper mantle structure of the Hangay Dome, central Mongolia
NASA Astrophysics Data System (ADS)
Stachnik, J. C.; Meltzer, A.; Tsaagan, B.; Munkhuu, U.; Russo, R.; Souza, S.; Martin, P.
2013-12-01
The origin and support of high topography within continental interiors away from active tectonic margins remains a fundamental question in the dynamics and deformation of continents. The Hangay Dome in central Mongolia is one such region that is a broad regional uplift with average elevation of about 2 km, sitting between two large strike-slip faults, the Bulnay Fault to the north and the Gobi-Altay Fault to the south. Both of these faults are seismically active and have experienced M8+ earthquakes as recently as 1957. This portion of the Mongolian Plateau is approximately 300 km south of the Baikal Rift and located at the northern margin of the diffuse-deformation field in Central Asia, adjacent to the Siberian Craton. From previous research, the dynamic support of the Hangay Dome has been attributed to both crustal thickening and low density upper mantle material. However, seismic data leading to these interpretations have been limited to global tomographic models and sparse regional sampling of the wave field leaving the question unresolved. To address this major question in plate tectonic theory, in June 2012 a temporary IRIS/PASSCAL/University of Florida array of 72 seismic stations was deployed around the Hangay Dome to determine lithospheric structure in the region. Preliminary results from the first of two years of data are shown from receiver function analysis, ambient noise surface wave tomography, and teleseismic travel time residual analysis. Using teleseismic waveform records from over 300 earthquakes above M5.5 between 30 and 90 degrees epicentral distance, crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. At each station the bulk crustal Vp/Vs ratio is also determined with median value for the array of 1.77, perhaps indicating a more mafic composition crust in the region.Teleseismic P-wave travel time residuals generally diminish from south to north across the array consistent with thinning crust, however the depth resolution and magnitude of seismic wavespeed anomalies will be further explored with three-dimensional finite-frequency tomography. Constraints on crustal shear wave velocity from ambient noise surface wave tomography complement both the receiver function analysis and teleseismic tomography. Initial inversions of phase velocity dispersion curves in the central Hangay indicate an average crustal Vs of 3.6 km/s within the Hangay Dome, which translates to an average Vp of 6.4 km/s using Vp/Vs of 1.77. Further refinement of current analysis and an additional year of recording will reveal the first high resolution lithospheric scale model in the region.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group
2017-04-01
Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.
Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin
2013-04-01
Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.
Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali
Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less
Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.
NASA Astrophysics Data System (ADS)
Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam
2017-04-01
The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.
Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.
2015-01-01
The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after further consideration of the reliability and scientific acceptability of each alternative input model. Forecasting the seismic hazard from induced earthquakes is fundamentally different from forecasting the seismic hazard for natural, tectonic earthquakes. This is because the spatio-temporal patterns of induced earthquakes are reliant on economic forces and public policy decisions regarding extraction and injection of fluids. As such, the rates of induced earthquakes are inherently variable and nonstationary. Therefore, we only make maps based on an annual rate of exceedance rather than the 50-year rates calculated for previous U.S. Geological Survey hazard maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C.
2010-06-30
The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structuresmore » and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.« less
5 years of continuous seismic monitoring of a mountain river in the Pyrenees
NASA Astrophysics Data System (ADS)
Diaz, Jordi; Sanchez-Pastor, Pilar S.; Gallart, Josep
2017-04-01
The analysis of background seismic noise variations in the proximity of river channels has revealed as a useful tool to monitor river flow, even for modest discharges. Nevertheless, this monitoring is usually carried on using temporal deployments of seismic stations. The CANF seismic broad-band station, acquiring data continuously since 2010 and located inside an old railway tunnel in the Central Pyrenees, at about 400 m of the Aragón River channel, provides an excellent opportunity to enlarge this view and present a long term monitoring of a mountain river. Seismic signals in the 2-10 Hz band clearly related to river discharges have been identified in the seismic records. Discharge increases due to rainfall, large storms resulting in floods and snowmelt periods can be discriminated from the analysis of the seismic data. Up to now, two large rainfall events resulting in large discharge and damaging floods have been recorded, both sharing similar properties which can be used to implement automatic procedures to identify seismically potentially damaging floods. Another natural process that can be characterized using continuouly acquired seismic data is mountain snowmelt, as this process results in characteristic discharge patterns which can be identified in the seismic data. The time occurrence and intensity of the snowmelt stages for each season can be identified and the 5 seasons available so far compared to detect possible trends The so-called fluvial seismology can also provide important clues to evaluate the beadload transport in rivers, an important parameter to evaluate erosion rates in mountain environments. Analyzing both the amplitude and frequency variations of the seismic data and its hysteresis cycles, it seems possible to estimate the relative contribution of water flow and bedload transport to the seismic signal. The available results suggest that most of the river-generated seismic signal seems related to bed load transportation, while water turbulence is only significant above a discharge thres.hold Since 2015 we are operating 2 additional stations located beside the Cinca and Segre Rivers, also in the Pyrenean range. First results confirm that the river-generated signal can also be identified at these sites, although wind-related signals are recorded in a close frequency band and hence some further analysis is required to discern between both processes. (Founding: MISTERIOS project, CGL2013-48601-C2-1-R)
NASA Astrophysics Data System (ADS)
Hanson, K. L.; Angell, M.; Foxall, W.; Rietman, J.
2002-12-01
Alternative source characterizations for seismic hazard analysis are developed to capture the range of plausible fault geometries and interactions between postulated thrusts (i.e., the Oceanside blind thrust (OBT) and San Joaquin Hills blind fault (SJBF)) and strike-slip faults (Rose Canyon (RC)-Newport Inglewood (NI) faults) along the Southern California inner borderlands. Evaluation of 2D and high-resolution shallow seismic data show evidence for a relatively continuous zone of deformation (OZD) linking the RC and NI, both of which are active strike-slip faults, based on seismicity and paleoseismic data. Geodetic data are consistent with NNW-shear and show little or no convergence across the inner borderland, or evidence of a regional "driving" force that would reactivate a large seismogenic thrust (see Moriwaki and others, this volume). Fault and fold deformation observed along the OZD between the RC and NI is consistent with transpressional right lateral slip along a N20W-trending fault zone. Evidence to support reactivation of the entire OBT in the current tectonic environment is not demonstrated. Seismicity and possible late Pleistocene/Holocene reverse faults and associated folding can be explained by localized contraction in left steps or bends in a transpressional right-slip tectonic environment. Clockwise rotation of crustal blocks in the inner borderland (which is not inconsistent with geodetic data suggesting a component of extension across the southern inner borderland) could account for the greater intensity of contractional structures in the hanging wall of the northern OBT west of the OZD. This might explain the local reactivation of portions of the OBT, but would not require reactivation of the entire detachment. Much of the contractional deformation observed in the inner borderland (e.g., the San Mateo thrust belt) could have occurred during the Pliocene. Regional coastal uplift, which has been cited as evidence that the Oceanside and Thirtymile Bank thrusts are active on a regional basis, may be attributed to other processes, such as rift shoulder thermal isostasy (e.g., Kier et.al, Tectonics 2002). We present relative weights for three alternative source models that consider a throughgoing strike-slip fault system (inactive OBT), a regional blind thrust (OBT), or an oblique fault in which strain is partitioned updip onto a strike-slip (offshore strike-slip fault) and reactivated thrust (OBT).
NASA Astrophysics Data System (ADS)
Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.
2011-12-01
Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image of velocity structure from scattered wave migration, we can test whether the thrust zone is above the Yakutat terrane or between the Yakutat terrane and the subducting Pacific plate. Our refined relocations will also improve our understanding of other active faults (e.g., splay faults) and their relationship to the plate boundary.
NASA Astrophysics Data System (ADS)
Kim, J.; Jung, H.
2016-12-01
Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation(LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Labratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. For amphibole, P-wave velocity anisotropy was in the range of 15.9 - 20.9% and maximum S-wave anisotropy was in the range of 13.1 - 19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy(AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2-D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications. 6:6586.
NASA Astrophysics Data System (ADS)
Kim, Junha; Jung, Haemyeong
2017-04-01
Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation (LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Laboratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. P-wave velocity anisotropy of amphibole was in the range of 15.9‒20.9% and maximum S-wave anisotropy was in the range of 13.1‒19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy (AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear, Nature Communications, 6:6586.
NASA Astrophysics Data System (ADS)
Aghaei, Omid; Nedimović, Mladen R.; Marjanović, Milena; Carbotte, Suzanne M.; Pablo Canales, J.; Carton, Hélène; Nikić, Nikola
2017-06-01
We use 3-D multichannel seismic data to form partial angle P wave stacks and apply amplitude variation with angle (AVA) crossplotting to assess melt content and melt distribution within two large midcrustal off-axis magma lenses (OAMLs) found along the East Pacific Rise from 9°37.5'N to 9°57'N. The signal envelope of the partial angle stacks suggests that both OAMLs are partially molten with higher average melt content and more uniform melt distribution in the southern OAML than in the northern OAML. For AVA crossplotting, the OAMLs are subdivided into seven 1 km2 analysis windows. The AVA crossplotting results indicate that the OAMLs contain a smaller amount of melt than the axial magma lens (AML). For both OAMLs, a higher melt fraction is detected within analysis windows located close to the ridge axis than within the most distant windows. The highest average melt concentration is interpreted for the central sections of the OAMLs. The overall low OAML melt content could be indicative of melt lost due to recent off-axis eruptions, drainage to the AML, or limited mantle melt supply. Based on the results of this and earlier bathymetric, morphological, geochemical, and geophysical investigations, we propose that the melt-poor OAML state is largely the result of limited melt supply from the underlying mantle source reservoir with smaller contribution attributed to melt leakage to the AML. We hypothesize that the investigated OAMLs have a longer period of melt replenishment, lower eruption recurrence rates, and lower eruption volumes than the AML, though some could be single intrusion events.
NASA Astrophysics Data System (ADS)
Ghica, D.; Ionescu, C.
2012-04-01
Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency-wave number analysis). Spectrograms of the recorded infrasonic and seismic data were examined, showing that an earthquake produces acoustic signals with a high energy in the 1 to 5 Hz frequency range, while, for the explosion, this range lays below 0.6 Hz. Using the combined analysis of the seismic and acoustic data, Plostina array can greatly enhance the event detection and localization in the region. The analysis can be, as well, particularly important in identifying sources of industrial explosion, and therefore, in monitoring of the hazard created both by earthquakes and anthropogenic sources of pollution (chemical factories, nuclear and power plants, refineries, mines).
Seismic data compression speeds exploration projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galibert, P.Y.
As part of an ongoing commitment to ensure industry-wide distribution of its revolutionary seismic data compression technology, Chevron Petroleum Technology Co. (CPTC) has entered into licensing agreements with Compagnie Generale de Geophysique (CGG) and other seismic contractors for use of its software in oil and gas exploration programs. CPTC expects use of the technology to be far-reaching to all of its industry partners involved in seismic data collection, processing, analysis and storage. Here, CGG--one of the world`s leading seismic acquisition and processing companies--talks about its success in applying the new methodology to replace full on-board seismic processing. Chevron`s technology ismore » already being applied on large off-shore 3-D seismic surveys. Worldwide, CGG has acquired more than 80,000 km of seismic data using the data compression technology.« less
A stochastic approach to uncertainty quantification in residual moveout analysis
NASA Astrophysics Data System (ADS)
Johng-Ay, T.; Landa, E.; Dossou-Gbété, S.; Bordes, L.
2015-06-01
Oil and gas exploration and production relies usually on the interpretation of a single seismic image, which is obtained from observed data. However, the statistical nature of seismic data and the various approximations and assumptions are sources of uncertainties which may corrupt the evaluation of parameters. The quantification of these uncertainties is a major issue which supposes to help in decisions that have important social and commercial implications. The residual moveout analysis, which is an important step in seismic data processing is usually performed by a deterministic approach. In this paper we discuss a Bayesian approach to the uncertainty analysis.
Structural Identification And Seismic Analysis Of An Existing Masonry Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara
2008-07-08
The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings.
An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.
Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes
NASA Astrophysics Data System (ADS)
Morozov, Yu. V.; Spektor, A. A.
2017-11-01
A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.
NASA Astrophysics Data System (ADS)
Gnyp, Andriy
2009-06-01
Based on the results of application of correlation analysis to records of the 2005 Mukacheve group of recurrent events and their subsequent relocation relative to the reference event of 7 July 2005, a conclusion has been drawn that all the events had most likely occurred on the same rup-ture plane. Station terms have been estimated for seismic stations of the Transcarpathians, accounting for variation of seismic velocities beneath their locations as compared to the travel time tables used in the study. In methodical aspect, potentials and usefulness of correlation analysis of seismic records for a more detailed study of seismic processes, tectonics and geodynamics of the Carpathian region have been demonstrated.
Forecasting induced seismicity rate and Mmax using calibrated numerical models
NASA Astrophysics Data System (ADS)
Dempsey, D.; Suckale, J.
2016-12-01
At Groningen, The Netherlands, several decades of induced seismicity from gas extraction has culminated in a M 3.6 event (mid 2012). From a public safety and commercial perspective, it is desirable to anticipate future seismicity outcomes at Groningen. One way to quantify earthquake risk is Probabilistic Seismic Hazard Analysis (PSHA), which requires an estimate of the future seismicity rate and its magnitude frequency distribution (MFD). This approach is effective at quantifying risk from tectonic events because the seismicity rate, once measured, is almost constant over timescales of interest. In contrast, rates of induced seismicity vary significantly over building lifetimes, largely in response to changes in injection or extraction. Thus, the key to extending PSHA to induced earthquakes is to estimate future changes of the seismicity rate in response to some proposed operating schedule. Numerical models can describe the physical link between fluid pressure, effective stress change, and the earthquake process (triggering and propagation). However, models with predictive potential of individual earthquakes face the difficulty of characterizing specific heterogeneity - stress, strength, roughness, etc. - at locations of interest. Modeling catalogs of earthquakes provides a means of averaging over this uncertainty, focusing instead on the collective features of the seismicity, e.g., its rate and MFD. The model we use incorporates fluid pressure and stress changes to describe nucleation and crack-like propagation of earthquakes on stochastically characterized 1D faults. This enables simulation of synthetic catalogs of induced seismicity from which the seismicity rate, location and MFD are extracted. A probability distribution for Mmax - the largest event in some specified time window - is also computed. Because the model captures the physics linking seismicity to changes in the reservoir, earthquake observations and operating information can be used to calibrate a model at a specific site (or, ideally, many models). This restricts analysis of future seismicity to likely parameter sets and provides physical justification for linking operational changes to subsequent seismicity. To illustrate these concepts, a recent study of prior and forecast seismicity at Groningen will be presented.
NASA Astrophysics Data System (ADS)
Jeanne, Pierre; Rutqvist, Jonny; Rinaldi, Antonio Pio; Dobson, Patrick F.; Walters, Mark; Hartline, Craig; Garcia, Julio
2015-11-01
In this paper, we use the Seismicity-Based Reservoir Characterization approach to study the spatiotemporal dynamics of an injection-induced microseismic cloud, monitored during the stimulation of an enhanced geothermal system, and associated with the Northwest Geysers Enhanced Geothermal System (EGS) Demonstration project (California). We identified the development of a seismically quiet domain around the injection well surrounded by a seismically active domain. Then we compare these observations with the results of 3-D Thermo-Hydro-Mechanical simulations of the EGS, which accounts for changes in permeability as a function of the effective normal stress and the plastic strain. The results of our modeling show that (1) the aseismic domain is caused by both the presence of the injected cold water and by thermal processes. These thermal processes cause a cooling-stress reduction, which prevent shear reactivation and favors fracture opening by reducing effective normal stress and locally increasing the permeability. This process is accompanied by aseismic plastic shear strain. (2) In the seismic domain, microseismicity is caused by the reactivation of the preexisting fractures, resulting from an increase in injection-induced pore pressure. Our modeling indicates that in this domain, permeability evolves according to the effective normal stress acting on the shear zones, whereas shearing of preexisting fractures may have a low impact on permeability. We attribute this lack of permeability gain to the fact that the initial permeabilities of these preexisting fractures are already high (up to 2 orders of magnitude higher than the host rock) and may already be fully dilated by past tectonic straining.
Amplification of seismic waves beneath active volcanoes
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Collier, L.; Neuberg, J.; Lyakhovsky, V.
2003-04-01
Long-period (LP) seismic events are typical for many volcanoes and are attributed to energy leaking from waves traveling along the conduit - country-rock interface. While the wave propagation is well understood, their actual trigger mechanism and their energy source are not. Here we test the hypothesis that energy may be supplied by volatile-release from a supersaturated melt. If bubbles are initially in equilibrium with the melt in the conduit, and the melt is suddenly decompressed, the transfer of volatiles from the supersaturated melt into the bubbles transforms stored potential energy into expansion work. For example, small dome collapse, opening of a crack or a displacement along the brittle part of the conduit may decompress the magma by a few bars and create the needed supersaturation. This energy is released over the timescale of accelerated expansion, which is longer than a typical LP event. Following decompression, when the transfer of volatiles into bubbles is fast enough, expansion accelerates and the bulk viscosity of the bubbly magma is negative (Lensky et al., 2002). New calculations show that under such conditions a sinusoidal P-wave is amplified. We note that seismic waves created by tectonic earthquakes that are not associated with net decompression, do not lead to net release of volatiles or to net expansion. In this case, the bulk viscosity is positive and waves traveling through the magma should attenuate. The proposed model explains how weak seismic signals may be amplified as they travel through a conduit that contains supersaturated bubbly magma. It provides the general framework for amplifying volcanic seismicity such as long-period events.
Seismic evidence for depth-dependent metasomatism in cratons
NASA Astrophysics Data System (ADS)
Eeken, Thomas; Goes, Saskia; Pedersen, Helle A.; Arndt, Nicholas T.; Bouilhol, Pierre
2018-06-01
The long-term stability of cratons has been attributed to low temperatures and depletion in iron and water, which decrease density and increase viscosity. However, steady-state thermal models based on heat flow and xenolith constraints systematically overpredict the seismic velocity-depth gradients in cratonic lithospheric mantle. Here we invert for the 1-D thermal structure and a depth distribution of metasomatic minerals that fit average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To match the seismic profiles, we need a significant amount of hydrous and/or carbonate minerals in the shallow lithospheric mantle, starting between the Moho and 70 km depth and extending down to at least 100-150 km. The metasomatic component can consist of 0.5-1 wt% water bound in amphibole, antigorite and chlorite, ∼0.2 wt% water plus potassium to form phlogopite, or ∼5 wt% CO2 plus Ca for carbonate, or a combination of these. Lithospheric temperatures that fit the seismic data are consistent with heat flow constraints, but most are lower than those inferred from xenolith geothermobarometry. The dispersion data require differences in Moho heat flux between individual cratons, and sublithospheric mantle temperatures that are 100-200 °C less beneath Yilgarn, Slave and Finland than beneath Kaapvaal. Significant upward-increasing metasomatism by water and CO2-rich fluids is not only a plausible mechanism to explain the average seismic structure of cratonic lithosphere but such metasomatism may also lead to the formation of mid-lithospheric discontinuities and would contribute to the positive chemical buoyancy of cratonic roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.; Kimball, B.; Davis, R.A.
1984-01-01
The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed. (MHR)
NASA Astrophysics Data System (ADS)
Mauk, F. J.; Kimball, B.; Davis, R. A.
The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed.
75 FR 36715 - Advisory Committee on Reactor Safeguards; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Seismic Input for Site Response and Soil Structure Interaction Analyses'' (Open)--The Committee will hold... Seismic Input for Site Response and Soil Structure Interaction Analyses.'' 9:30 a.m.-10:30 a.m.: Interim Staff Guidance (ISG) DC/COL-ISG-020, ``Implementation of Seismic Margin Analysis for New Reactors Based...
Design and development of digital seismic amplifier recorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com
2015-04-16
A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩmore » and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.« less
Seismic hazards in Thailand: a compilation and updated probabilistic analysis
NASA Astrophysics Data System (ADS)
Pailoplee, Santi; Charusiri, Punya
2016-06-01
A probabilistic seismic hazard analysis (PSHA) for Thailand was performed and compared to those of previous works. This PSHA was based upon (1) the most up-to-date paleoseismological data (slip rates), (2) the seismic source zones, (3) the seismicity parameters ( a and b values), and (4) the strong ground-motion attenuation models suggested as being suitable models for Thailand. For the PSHA mapping, both the ground shaking and probability of exceedance (POE) were analyzed and mapped using various methods of presentation. In addition, site-specific PSHAs were demonstrated for ten major provinces within Thailand. For instance, a 2 and 10 % POE in the next 50 years of a 0.1-0.4 g and 0.1-0.2 g ground shaking, respectively, was found for western Thailand, defining this area as the most earthquake-prone region evaluated in Thailand. In a comparison between the ten selected specific provinces within Thailand, the Kanchanaburi and Tak provinces had comparatively high seismic hazards, and therefore, effective mitigation plans for these areas should be made. Although Bangkok was defined as being within a low seismic hazard in this PSHA, a further study of seismic wave amplification due to the soft soil beneath Bangkok is required.
NASA Astrophysics Data System (ADS)
Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin
2016-04-01
Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.
NASA Astrophysics Data System (ADS)
Zobin, Vyacheslav M.
2018-02-01
The 10-11 July 2015 partial collapses of the lava dome in the crater of Volcán de Colima, México, were accompanied by a sequence of two-stage multiple PDCs, separated by a 15-h interval, with a total bulk volume of 14.2 × 106 m3 of fragmentary material and runout distances reaching 9.1 and 10.3 km, respectively (Reyes-Dávila et al., 2016). Broad-band seismic signals, associated with the PDCs and recorded at seismic station EZ5 installed at a distance of 4 km from the crater, were used for analysis of the 20-h eruption process. This process included two stages of the multiple PDCs emplacements, two one-hour periods of preliminary events to each of the stages, and the inter-stage period. Analysis of seismic signals allowed us to identify the types of volcanic events composing this eruption episode and estimate their quantitative characteristics and spectral parameters of generated seismic signals. It was shown that the seismic signals produced by PDCs emplacements, recorded during the two stages, were characterized by different characteristics. The second stage PDCs had radiated greater seismic energy than the PDCs emplaced during the first stage. Spectral analysis of the seismic signals, produced by PDCs, indicates a clearly separation in frequency content at 1.95 Hz between the higher-frequency events of the first stage and the lower-frequency events of the second stage of the PDCs emplacements. The obtained difference in the spectral contents of the seismic signals, produced by the movement of two multiple PDCs, may be supposed as a consequence of the proposed relative difference in the volumes of the PDCs of two multiple sequences due to a difference in the level of radiated seismic energy and a change in bottom conditions of the ravines during their passing along the ravines. Results of seismic study were used in discussion of the nature of the two-stage eruptive process.
Rockfall induced seismic signals: case study in Montserrat, Catalonia
NASA Astrophysics Data System (ADS)
Vilajosana, I.; Suriñach, E.; Abellán, A.; Khazaradze, G.; Garcia, D.; Llosa, J.
2008-08-01
After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10-4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 A rockfall event generates seismic signals with specific characteristics in the time domain; 2 the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 particle motion plot analysis shows that the procedure to locate the rock impact using two stations is feasible; 4 The feasibility and validity of seismic methods for the detection of rockfall events, their localization and size determination are comfirmed.
NASA Astrophysics Data System (ADS)
Satriano, C.; Mejia Uquiche, A. R.; Saurel, J. M.
2016-12-01
The Lesser Antilles are situated at a convergent plate boundary where the North- and South-American plates subduct below the Caribbean Plate at a rate of about 2 cm/y. The subduction forms the volcanic arc of Lesser Antilles and generates three types of seismicity: subduction earthquakes at the plate interface, intermediate depth earthquakes within the subducting oceanic plates and crustal earthquakes associated with the deformation of the Caribbean Plate. Even if the seismicity rate is moderate, this zone has generated in the past major earthquakes, like the subduction event on February 8, 1843, estimated M 8.5 (Beauducel et Feuillet, 2012), the Mw 6.3 "Les Saintes" crustal earthquake of November 24, 2004 (Drouet et al., 2011), and the Mw 7.4 Martinique intermediate earthquake of November 29, 2007 (Bouin et al., 2010). The seismic catalogue produced by the Volcanological and Seismological Observatories of Guadeloupe and Martinique comprises about 1000 events per year, most of them of moderate magnitude (M < 5.0). The observation and characterization of this background seismicity has a fundamental role in understanding the processes of energy accumulation and liberation preparing major earthquakes. For this reason, the catalogue needs to be completed by information like seismic moment, corner frequency and radiated energy which give access to important fault properties like the rupture size, the static and the apparent stress drop. So far, this analysis has only been performed for the "Les Saintes" sequence (Drouet et al., 2011). Here we present a systematic study of the Lesser Antilles merged seismic catalogue (http://www.seismes-antilles.fr), between 2002 and 2013, using broadband data from the West Indies seismic network and recordings from the French Accelerometric Network. The analysis is aimed at determining, from the inversion of S-wave displacement spectra, source parameters like seismic moment, corner frequency and radiated energy, as well as the inelastic attenuation factor. The results are discussed, for each type of seismicity in terms of scaling of corner frequency and energy release with seismic moment. We further discuss the steps realized to implement spectral analysis as an automated processing routine at the observatories of Guadeloupe and Martinique.
Expert systems in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostem, C.N.; Maher, M.L.
1986-01-01
This book presents the papers given at a symposium on expert systems in civil engineering. Topics considered at the symposium included problem solving using expert system techniques, construction schedule analysis, decision making and risk analysis, seismic risk analysis systems, an expert system for inactive hazardous waste site characterization, an expert system for site selection, knowledge engineering, and knowledge-based expert systems in seismic analysis.
Beyond Single Images: Combining the Geosciences in Geothermal Exploration
NASA Astrophysics Data System (ADS)
Malin, P. E.
2012-12-01
Geothermal exploration routinely includes a variety of field surveys, the interpretations of which are usually done separately and then combined in some ad hoc way. Instead, because these data share numerous constraints, combining them in a systematic, quantitative way is far preferable. Aside from the shared geological background, a "joint" analysis can dampen errors and noise in one data set by less sensitive responses in another. In this presentation case histories from several surveys will be used to illustrate these points. By way of background, an example of this type of integrated approach is the improvement in earthquake location when P-wave data are supplemented with S-wave data. These two waves share the effects of the S-wave velocity structure through its shear modulus, which the S-wave measures independent of the P-wave. Using only P-waves travel times for event location is thus equivalent to making the acoustic approximation for the elastic rock velocities. When earthquake location combines both phases, not only is this approximation improved, but errors in picking these times are reduced as well. The case histories include 1) mapping fracture orientations -primarily using seismic shear wave splitting and magnetotelluric polarization directions, but supplemented with surface geology and 2) deriving combined porosity and permeability from seismic velocity and resistivity. Shear wave splitting is routinely used to detect fracture orientation since S-waves propagate faster parallel to their direction. However shear wave splitting can also be caused by other features such as 2-D layering. Magnetotelluric polarizations can be the result of fracture orientation, but also with 3-D structural effects. However, combined, the non-fracture related effects are notably different between the two data types. As a result, detecting similar polarization effects in both makes the case for aligned fractures strong. In a similar vein, porosity and permeability play different roles in determining the relationships between seismic velocities and electrical conductivities. Velocities are more sensitive to rocks with different lithology and porosity while electrical conductivities are more sensitive to rocks with different permeability. Change in seismic velocity due to rock density or lithology have less of an effect on electrical conductivity as compared to a similar change in seismic velocity due to porosity. Similarly, a large fluctuation in electrical conductivity is more logically attributed to variation in permeability. The joint quantitative analysis of such data sets includes using, for example, simple linear and more advanced inversion schemes. Combining their inversion creates a subsurface map that is more robust than with either method alone. The combination of sensitivities helps constrain local fluctuations in these properties as well as background noise. The final test is of course in the drilling, recent results of which support the approach described here.
NASA Astrophysics Data System (ADS)
Czaplinska, Daria; Piazolo, Sandra; Almqvist, Bjarne
2015-04-01
Seismic anisotropy observed in Earth's interior is caused by the presence of aligned anisotropic minerals (crystallographic and shape preferred orientation; CPO and SPO respectively), and fluid and/or melt inclusions related to deformation. Therefore, the variations in seismic anisotropy carry valuable information about the structure of the mantle and crust. For example, anisotropy observed in the upper mantle is mainly attributed to the CPO of olivine, and provides strong evidence for the flow within the upper mantle. Seismic anisotropy in the crust is still poorly constrained, mostly due to the much larger heterogeneity of the crustal rocks in comparison with the more homogenous mantle. Anisotropy in the crust will be affected by the variations in rock composition, microstructure, texture (presence or lack of CPO), brittle structures (e.g. fracture systems) and chemical composition of the minerals. However, once the relationships between those variables and seismic properties of the crustal rocks are established, seismic anisotropy can be used to derive characteristics of rocks otherwise out of reach. Our study focuses on two sets of samples of middle to lower crustal rocks collected in Fiordland (New Zealand) and in Sweden. Samples from Fiordland represent a root of a thick (ca. 80 km) magmatic arc and comprise igneous rocks, which crystallized at high P and T conditions and were subsequently metamorphosed and deformed. Samples from Sweden are derived from a metasedimentary nappe in the Caledonian orogenic belt, which is mostly composed of gneisses, amphibolites and calc-silicates that have experienced different amounts of strain. We use large area EBSD mapping to measure the CPO of the constituent phases and record the geometric relationships of the rock microstructure. Data is then used to calculate the elastic properties of the rock from single-crystal stiffnesses. Here, we utilize the EBSD GUI software (Cook et al., 2013), which offers varied homogenization techniques, including Voigt, Reuss, Hill, geometric mean and self-consistent and Asymptotic Expansion Homogenization (AEH) methods. To test the advantages and disadvantages of the method, results are compared to measured geophysical properties of equivalent rocks. Such comparison, allows refinement of seismic data interpretation for mid to lower crustal rocks. References: Cook, A., Vel., S., Johnson, S.E., Gerbi, C., Song, W.J., 2013. Elastic and Seismic Properties (ESP) Toolbox (beta version); http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/
The Hierarchical Data Format as a Foundation for Community Data Sharing
NASA Astrophysics Data System (ADS)
Habermann, T.
2017-12-01
Hierarchical Data Format (HDF) formats and libraries have been used by individual researchers and major science programs across many Earth and Space Science disciplines and sectors to provide high-performance information storage and access for several decades. Generic group, dataset, and attribute objects in HDF have been combined in many ways to form domain objects that scientists understand and use. Well-known applications of HDF in the Earth Sciences include thousands of global satellite observations and products produced by NASA's Earth Observing System using the HDF-EOS conventions, navigation quality bathymetry produced as Bathymetric Attributed Grids (BAGs) by the OpenNavigationSurface project and others, seismic wave collections written into the Adoptable Seismic Data Format (ASDF) and many oceanographic and atmospheric products produced using the climate-forecast conventions with the netCDF4 data model and API to HDF5. This is the modus operandi of these communities: 1) develop a model of scientific data objects and associated metadata used in a domain, 2) implement that model using HDF, 3) develop software libraries that connect that model to tools and 4) encourage adoption of those tools in the community. Understanding these domain object implementations and facilitating communication across communities is an important goal of The HDF Group. We will discuss these examples and approaches to community outreach during this session.
Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean.
Nieukirk, Sharon L; Stafford, Kathleen M; Mellinger, David K; Dziak, Robert P; Fox, Christopher G
2004-04-01
Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 degrees N-15 degrees N, 50 degrees W-33 degrees W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.
Seismic performance for vertical geometric irregularity frame structures
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahmud, N. A.; Ishak, I. S.
2018-04-01
This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.
NASA Astrophysics Data System (ADS)
Assumpção, M.; Dourado, J. C.; Ribotta, L. C.; Mohriak, W. U.; Dias, Fábio L.; Barbosa, J. R.
2011-12-01
The continental margin and shelf of most stable intraplate regions tend to be relatively more seismically active than the continental interior. In the southeast continental margin of Brazil, a seismic zone extends from Rio Grande do Sul to Espírito Santo, with seismic activity occurring mainly along the continental slope and suggesting a close relationship with flexural stresses caused by the weight of the sediments. In this region, earthquakes with magnitudes larger than 5 mb occur every 20-25 yr, on average. The focal mechanism solutions of previous earthquakes in this zone indicated reverse faulting on planes dipping approximately 45° with horizontal P-axes. The recent 5.2 mb earthquake of 2008 April 23 occurred 125 km south of São Vicente and was well recorded by many stations in SE Brazil, as well as at teleseismic distances in North America and Africa. Its focal depth was 17 km, locating the hypocentre in the lower crust. A well-determined focal mechanism solution shows one vertical nodal plane and one subhorizontal nodal plane. The P- and T-axes exhibit large dips, which were confirmed by a regional moment tensor inversion. This unusual orientation of the fault mechanism can be attributed to a rotation of the principal stress directions in the lower crust caused by flexural effects due to the load of recent sedimentation.
A seismic reflection image for the base of a tectonic plate.
Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T
2015-02-05
Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.
Scaling of the critical slip distance for seismic faulting with shear strain in fault zones
Marone, Chris; Kilgore, Brian D.
1993-01-01
THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.
Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, R.J.; Rashid, Y.R.; Cherry, J.L.
Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC),more » through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.« less
Johnson, S R; Richardson, W J; Yazvenko, S B; Blokhin, S A; Gailey, G; Jenkerson, M R; Meier, S K; Melton, H R; Newcomer, M W; Perlov, A S; Rutenko, S A; Würsig, B; Martin, C R; Egging, D E
2007-11-01
The introduction of anthropogenic sounds into the marine environment can impact some marine mammals. Impacts can be greatly reduced if appropriate mitigation measures and monitoring are implemented. This paper concerns such measures undertaken by Exxon Neftegas Limited, as operator of the Sakhalin-1 Consortium, during the Odoptu 3-D seismic survey conducted during 17 August-9 September 2001. The key environmental issue was protection of the critically endangered western gray whale (Eschrichtius robustus), which feeds in summer and fall primarily in the Piltun feeding area off northeast Sakhalin Island. Existing mitigation and monitoring practices for seismic surveys in other jurisdictions were evaluated to identify best practices for reducing impacts on feeding activity by western gray whales. Two buffer zones were established to protect whales from physical injury or undue disturbance during feeding. A 1 km buffer protected all whales from exposure to levels of sound energy potentially capable of producing physical injury. A 4-5 km buffer was established to avoid displacing western gray whales from feeding areas. Trained Marine Mammal Observers (MMOs) on the seismic ship Nordic Explorer had the authority to shut down the air guns if whales were sighted within these buffers. Additional mitigation measures were also incorporated: Temporal mitigation was provided by rescheduling the program from June-August to August-September to avoid interference with spring arrival of migrating gray whales. The survey area was reduced by 19% to avoid certain waters <20 m deep where feeding whales concentrated and where seismic acquisition was a lower priority. The number of air guns and total volume of the air guns were reduced by about half (from 28 to 14 air guns and from 3,390 in(3) to 1,640 in(3)) relative to initial plans. "Ramp-up" (="soft-start") procedures were implemented. Monitoring activities were conducted as needed to implement some mitigation measures, and to assess residual impacts. Aerial and vessel-based surveys determined the distribution of whales before, during and after the seismic survey. Daily aerial reconnaissance helped verify whale-free areas and select the sequence of seismic lines to be surveyed. A scout vessel with MMOs aboard was positioned 4 km shoreward of the active seismic vessel to provide better visual coverage of the 4-5 km buffer and to help define the inshore edge of the 4-5 km buffer. A second scout vessel remained near the seismic vessel. Shore-based observers determined whale numbers, distribution, and behavior during and after the seismic survey. Acoustic monitoring documented received sound levels near and in the main whale feeding area. Statistical analyses of aerial survey data indicated that about 5-10 gray whales moved away from waters near (inshore of) the seismic survey during seismic operations. They shifted into the core gray whale feeding area farther south, and the proportion of gray whales observed feeding did not change over the study period. Five shutdowns of the air guns were invoked for gray whales seen within or near the buffer. A previously unknown gray whale feeding area (the Offshore feeding area) was discovered south and offshore from the nearshore Piltun feeding area. The Offshore area has subsequently been shown to be used by feeding gray whales during several years when no anthropogenic activity occurred near the Piltun feeding area.Shore-based counts indicated that whales continued to feed inshore of the Odoptu block throughout the seismic survey, with no significant correlation between gray whale abundance and seismic activity. Average values of most behavioral parameters were similar to those without seismic surveys. Univariate analysis showed no correlation between seismic sound levels and any behavioral parameter. Multiple regression analyses indicated that, after allowance for environmental covariates, 5 of 11 behavioral parameters were statistically correlated with estimated seismic survey-related variables; 6 of 11 behavioral parameters were not statistically correlated with seismic survey-related variables. Behavioral parameters that were correlated with seismic variables were transient and within the range of variation attributable to environmental effects. Acoustic monitoring determined that the 4-5 km buffer zone, in conjunction with reduction of the air gun array to 14 guns and 1,640 in(3), was effective in limiting sound exposure. Within the Piltun feeding area, these mitigation measures were designed to insure that western gray whales were not exposed to received levels exceeding the 163 dB re 1 microPa (rms) threshold. This was among the most complex and intensive mitigation programs ever conducted for any marine mammal. It provided valuable new information about underwater sounds and gray whale responses during a nearshore seismic program that will be useful in planning future work. Overall, the efforts in 2001 were successful in reducing impacts to levels tolerable by western gray whales. Research in 2002-2005 suggested no biologically significant or population-level impacts of the 2001 seismic survey.
Seismic risk management solution for nuclear power plants
Coleman, Justin; Sabharwall, Piyush
2014-12-01
Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less
Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Molino, Erik; Lopez, Carmen
2013-04-01
A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S; Dreger, D; Hellweg, P
2007-08-08
We have performed a complete moment tensor analysis of the seismic event, which occurred on Monday August 6, 2007 at 08:48:40 UTC 21 km from Mt.Pleasant, Utah. In our analysis we utilized complete three-component seismic records recorded by the USArray, University of Utah, and EarthScope seismic arrays. The seismic waveform data was integrated to displacement and filtered between 0.02 to 0.10 Hz following instrument removal. We used the Song et al. (1996) velocity model to compute Green's functions used in the moment tensor inversion. A map of the stations we used and the location of the event is shown inmore » Figure 1. In our moment tensor analysis we assumed a shallow source depth of 1 km consistent with the shallow depth reported for this event. As shown in Figure 2 the results point to a source mechanism with negligible double-couple radiation and is composed of dominant CLVD and implosive isotropic components. The total scalar seismic moment is 2.12e22 dyne cm corresponding to a moment magnitude (Mw) of 4.2. The long-period records are very well matched by the model (Figure 2) with a variance reduction of 73.4%. An all dilational (down) first motion radiation pattern is predicted by the moment tensor solution, and observations of first motions are in agreement.« less
NASA Astrophysics Data System (ADS)
Convertito, Vincenzo; Zollo, Aldo
2011-08-01
In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.
Ground Motion Characteristics of Induced Earthquakes in Central North America
NASA Astrophysics Data System (ADS)
Atkinson, G. M.; Assatourians, K.; Novakovic, M.
2017-12-01
The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in close proximity (<10 km) to oil and gas operations.
NASA Astrophysics Data System (ADS)
Norbeck, J. H.; Rubinstein, J. L.
2018-04-01
The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. We develop a reservoir model to calculate the hydrologic conditions associated with the activity of 902 saltwater disposal wells injecting into the Arbuckle aquifer. Estimates of basement fault stressing conditions inform a rate-and-state friction earthquake nucleation model to forecast the seismic response to injection. Our model replicates many salient features of the induced earthquake sequence, including the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. We present evidence for variable time lags between changes in injection and seismicity rates, consistent with the prediction from rate-and-state theory that seismicity rate transients occur over timescales inversely proportional to stressing rate. Given the efficacy of the hydromechanical model, as confirmed through a likelihood statistical test, the results of this study support broader integration of earthquake physics within seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.
2017-12-01
This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic displacements. Another earthquake comparable to the Pawnee earthquake should be well recorded by the system. Recordings of ambient vibration data collected to date describing noise characteristics and measurement error levels will be presented. Any recordings of seismic motions will be discussed, should a significant event occur.
NASA Astrophysics Data System (ADS)
Dinske, C.; Langenbruch, C.; Shapiro, S. A.
2017-12-01
We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence we utilize non-stationary ETAS modeling (Kumazawa and Ogata, 2013, 2014) which results in a good agreement with the observation. But the required non-stationarity of the process of seismicity triggering complicates an implementation of ETAS modeling in induced seismicity forecast models.
NASA Astrophysics Data System (ADS)
Yu, H.; Gu, H.
2017-12-01
A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.
Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis
NASA Astrophysics Data System (ADS)
Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.
2017-12-01
Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long-term memory of the seismic crisis. These results are a part of the Spanish project SISMOSIMA (CGL2013-47412-C2-2P).
NASA Astrophysics Data System (ADS)
Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M.
2016-04-01
This work is devoted to the analysis of seismic signals continuously recorded at Campi Flegrei Caldera (Italy) during the entire year 2006. The radiation pattern associated with the Long-Period energy release is investigated. We adopt an innovative Independent Component Analysis algorithm for convolutive seismic series adapted and improved to give automatic procedures for detecting seismic events often buried in the high-level ambient noise. The extracted waveforms characterized by an improved signal-to-noise ratio allows the recognition of Long-Period precursors, evidencing that the seismic activity accompanying the mini-uplift crisis (in 2006), which climaxed in the three days from 26-28 October, had already started at the beginning of the month of October and lasted until mid of November. Hence, a more complete seismic catalog is then provided which can be used to properly quantify the seismic energy release. To better ground our results, we first check the robustness of the method by comparing it with other blind source separation methods based on higher order statistics; secondly, we reconstruct the radiation patterns of the extracted Long-Period events in order to link the individuated signals directly to the sources. We take advantage from Convolutive Independent Component Analysis that provides basic signals along the three directions of motion so that a direct polarization analysis can be performed with no other filtering procedures. We show that the extracted signals are mainly composed of P waves with radial polarization pointing to the seismic source of the main LP swarm, i.e. a small area in the Solfatara, also in the case of the small-events, that both precede and follow the main activity. From a dynamical point of view, they can be described by two degrees of freedom, indicating a low-level of complexity associated with the vibrations from a superficial hydrothermal system. Our results allow us to move towards a full description of the complexity of the source, which can be used, by means of the small-intensity precursors, for hazard-model development and forecast-model testing, showing an illustrative example of the applicability of the CICA method to regions with low seismicity in high ambient noise.
High Resolution Seismic Study of the Holocene Infill of the Elkhorn Slough, Central California
The seismic analysis of the sedimentary infill of the Elkhorn Slough, central California, reveals a succession of three main seismic units: U1, U2, U3, with their correspondent discontinuities d2, d3. These units are deposited over a paleorelief representing the channel location ...
NASA Astrophysics Data System (ADS)
Leptokaropoulos, Konstantinos; Staszek, Monika; Lasocki, Stanisław; Martínez-Garzón, Patricia; Kwiatek, Grzegorz
2018-02-01
The Geysers geothermal field located in California, USA, is the largest geothermal site in the world, operating since the 1960s. We here investigate and quantify the correlation between temporal seismicity evolution and variation of the injection data by examination of time-series through specified statistical tools (binomial test to investigate significant rate changes, cross correlation between seismic and injection data, b-value variation analysis). To do so, we utilize seismicity and operational data associated with two injection wells (Prati-9 and Prati-29) which cover a time period of approximately 7 yr (from November 2007 to August 2014). The seismicity is found to be significantly positively correlated with the injection rate. The maximum correlation occurs with a seismic response delay of ˜2 weeks, following injection operations. Those results are very stable even after considering hypocentral uncertainties, by applying a vertical shift of the events foci up to 300 m. Our analysis indicates also time variations of b-value, which exhibits significant positive correlation with injection rates.
Monitoring the hydrothermal system in Long Valley caldera, California
Farrar, C.D.; Sorey, M.L.
1985-01-01
An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Chiumiento, Giovanni; Fabbrocino, Francesco; Landolfo, Raffaele
2017-07-01
The general objective of the work is to draw attention to the issue of seismic vulnerability analysis of masonry building compounds, which characterise most of the Italian historic towns. The study is based on the analysis of an aggregated construction falling in the town of Arsita (Teramo, Italy) damaged after the 2009 L'Aquila earthquake. A comparison between the seismic verifications carried out by using the 3Muri commercial software and those deriving from the application of the Italian Guidelines on Cultural Heritage has been performed. The comparison has shown that Guidelines provide results on the safe side in predicting the seismic behaviour of the building compound under study. Further analyses should be performed aiming at suggesting some modifications of the used simplified calculation method to better interpret the behaviour of building compounds under earthquake.
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
Improving resolution of crosswell seismic section based on time-frequency analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, H.; Li, Y.
1994-12-31
According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less
NASA Astrophysics Data System (ADS)
Fortin, Will F. J.
The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear internal wave pulses in the South China Sea. Coupling observations from the seismic images with turbulent patterns, we find no evidence for hydraulic jumps in the Luzon passage. Our data suggests geometric resonance may be the underlying physics behind large amplitude nonlinear internal wave pulses seen in the region. We find increased levels of turbulent diffusivity in deep water below 1000 m, associated with internal tide pulses, and near the steep slopes of both the Heng-Chun and Lan-Yu ridges.
Seismotectonics investigations in the internal Cottian Alps (Italian Western Alps)
NASA Astrophysics Data System (ADS)
Perrone, Gianluigi; Eva, Elena; Solarino, Stefano; Cadoppi, Paola; Balestro, Gianni; Fioraso, Gianfranco; Tallone, Sergio
2010-05-01
The inner Cottian Alps represent an area of a low- to moderate- magnitude seismicity (Eva et al., 1990) even though some historical earthquakes reached VIII degree of the Mercalli's scale. Although the frame of seismicity is quite well known, the relation between faults and earthquake sources is still under debate. The low deformation rates and the occurrence of several glacial-interglacial cycles during the Pleistocene partly masked the geomorphological evidences of the recent tectonic activity. Recent studies based on field mapping and structural analysis (Balestro et al., 2009; Perrone et al., 2009) allowed characterizing the size and extension of the regional-scale faults dissecting this area of the Western Alps. Here, we combine the results of these novel studies and updated seismological data with the aim to investigate the relations between mapped faults and seismic activity. In the analyzed area both continental crust and oceanic tectonic units, belonging to the Penninic Domain of the Western Alps, crop out. The main brittle tectonic feature of this area is represented by the Lis-Trana Deformation Zone (LTZ), an N-S striking, steep structure that extends for about 35 km from the Lower Lanzo valleys to the Lower Sangone Valley. The occurrence of steep faults displacing the metamorphic basement, showed in seismic sections carried out for oil exploration (Bertotti & Mosca, 2009), suggests that the LTZ may be prolonged Southward beneath the Plio-Quaternary deposits of the Po Plain. West of the LTZ some other minor E-W and N-S faults are also present. Zircon and apatite fission-track data indicate that the activity of these faults started since the Oligocene. Two main faulting stages characterize the post-metamorphic structural evolution of this area: the earlier (faulting stage A; Oligocene?-Early Miocene?) is associated to right-lateral movements along the LTZ and sinistral movements along E-W faults; the subsequent faulting stage (faulting stage B; post-Early Miocene) is related to transtensive/extensional movements along the LTZ and the development of minor sub-parallel N-S faults. This kinematic evolution fits in a model of dextral-transtension at regional scale. The more recent activity of the LTZ may have caused the development of Pleistocene lacustrine basin, several hundred metres thick, in the Lower Chisone and Pellice valleys, which did not hosted glacial tongues. Along the LTZ, however, Pleistocene deposits showing evidence of brittle deformation were also found. With the aim to better understand the relation between the current seismic activity and faults, an analysis was carried out by selecting the best located earthquakes (location error less than 3 km) recorded by the seismic network of the North Western Italy (RSNI). This selection is made necessary by the relatively small size of the structures under investigations in order to avoid fake attributions. In addition to get qualitative information about the seismogenic source, the focal mechanisms of four earthquakes occurring along the mapped faults were calculated sorting out the best locatable events among those occurred in the area. The good geometric and kinematic agreement between structural and seismological data indicates a possible dependence of the seismicity of the inner Cottian Alps with the current tectonic activity of the LTZ and its associated minor structures. Balestro G. et al. (2009) Ital. J. Geosci., 128(2), 331-339. Bertotti G., Mosca P. (2009) Tectonophysics, 475, 117-127. Eva C. et al. (1990) Atti del Convegno Gruppo Nazionale Difesa dai terremoti, Ed. Ambiente, Pisa, 1, 25-34. Perrone G. et al. (2009) Ital. J. Geosci., 128(2), 541-549.
Quantitative geophysical investigations at the Diamond M field, Scurry County, Texas
NASA Astrophysics Data System (ADS)
Davogustto Cataldo, Oswaldo Ernesto
The Diamond M field over the Horseshoe Atoll reservoir of west Texas has produced oil since 1942. Even with some 210 well penetrations, complex reservoir compartmentalization has justified an ongoing drilling program with three wells drilled within the last three years. Accurate reservoir characterization requires accurate description of the geometry, geological facies, and petrophysical property distribution ranging from core, through log to the seismic scale. The operator has conducted a careful logging and coring process including dipole sonic logs in addition to acquiring a modern 3D vertical phone - vertical vibrator "P-wave" seismic data volume and an equivalent size 2-component by 2-componet "S-wave" seismic data volume. I analyze these data at different scales, integrating them into a whole. I begin with core analysis of the petrophysical properties of the Horseshoe Atoll reservoir. Measuring porosity, permeability, NMR T2 relaxation and velocities (Vp and Vs) as a function of pressure and find that porosity measurements are consistent when measured with different techniques. When upscaled, these measurements are in excellent agreement with properties measured at the log scale. Together, these measurements provide a lithology-porosity template against which I correlate my seismic P- and S-impedance measurements. Careful examination of P- and S-impedances as well as density from prestack inversion of the P-wave survey of the original time migrated gathers showed lower vertical resolution for S-impedance and density. These latter two parameters are controlled by the far-offset data, which suffers from migration stretch. I address this shortcoming by applying a recently developed non-stretch NMO technique which not only improved the bandwidth of the data but also resulted in inversions that better match the S-impedance and density well log data. The operator hypothesized that 2C by 2C S-wave data would better delineate lithology than conventional P-wave seismic data. Although introduced in the mid-1980s, 2C by 2C data are rarely acquired, with most surveys showing less vertical resolution than conventional (and prior to slip-sweep technology more economically acquired) P-wave data. Initial processing by the service company showed a comparable, but lower frequency, image for the "transverse" component, and poor images for the "radial" component. Although the dipole sonic logs did not indicate the presence of significant anisotropy, shear wave splitting is readily observed on the surface seismic stacks. I therefore developed a prestack Alford rotation algorithm that minimizes the cross-talk between components, resulting vertical resolution comparable to the P-wave data, and independent measure of lithology, and also a direct measure of the direction of the principal axes of anisotropy. The direction of azimuthal anisotropy is aligned N45E consistent with the regional maximum horizontal stress axis obtained from the world stress map database. On average, the Cisco Formation appears 10% thicker on the slow shear (S2) volume than on the fast shear (S1 ) volume and between 70% and 100% thicker on the P-wave volume. Cross-plotting cumulative production against the various seismic attributes, I find a strong negative correlation to S-impedance and P-impedance. Zones of low S-impedance and low P-impedance correlate to better producing wells. More quantitative correlation will require the analysis of the role fractures versus porosity contribute to production.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena
2016-04-01
Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen
NASA Astrophysics Data System (ADS)
Yenier, E.; Baturan, D.; Karimi, S.
2016-12-01
Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.
NASA Astrophysics Data System (ADS)
Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu
2016-11-01
A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.
Ma, Shaochun; Jiang, Nan
2015-01-01
In order to evaluate the seismic performance of new-type composite exterior wallboard, a total of six exterior and interior wallboards were incorporated in the experiment of seismic performance. Seismic performance such as the stress process, damage mode, hysteresis and skeleton curve, load-carrying and ductility coefficient, damping and energy dissipation, stiffness degradation as well as material strain of the exterior wallboards were analyzed with emphasis and compared with interior wallboards. Results of the experiment and analysis showed that both interior and exterior wallboards exhibited outstanding seismic performance. Due to the existence of insulation layer and externally bonded single gypsum board, the capacity of elastoplastic deformation and seismic energy dissipation of the exterior wallboards was improved and each seismic performance indicator of the exterior wallboards outperformed the interior wallboards.
Very-long-period seismic signals - filling the gap between deformation and seismicity
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen; Smith, Paddy
2013-04-01
Good broadband seismic sensors are capable to record seismic transients with dominant wavelengths of several tens or even hundreds of seconds. This allows us to generate a multi-component record of seismic volcanic events that are located in between the conventional high to low-frequency seismic spectrum and deformation signals. With a much higher temporal resolution and accuracy than e.g. GPS records, these signals fill the gap between seismicity and deformation studies. In this contribution we will review the non-trivial processing steps necessary to retrieve ground deformation from the original velocity seismogram and explore which role the resulting displacement signals have in the analysis of volcanic events. We use examples from Soufriere Hills volcano in Montserrat, West Indies, to discuss the benefits and shortcomings of such methods regarding new insights into volcanic processes.
Forecasting volcanic unrest using seismicity: The good, the bad and the time consuming
NASA Astrophysics Data System (ADS)
Salvage, Rebecca; Neuberg, Jurgen W.
2013-04-01
Volcanic eruptions are inherently unpredictable in nature, with scientists struggling to forecast the type and timing of events, in particular in real time scenarios. Current understanding suggests that the use of statistical patterns within precursory datasets of seismicity prior to eruptive events could hold the potential to be used as real time forecasting tools. They allow us to determine times of clear deviation in data, which might be indicative of volcanic unrest. The identification of low frequency seismic swarms and the acceleration of this seismicity prior to observed volcanic unrest may be key in developing forecasting tools. The development of these real time forecasting models which can be implemented at volcano observatories is of particular importance since the identification of early warning signals allows danger to the proximal population to be minimized. We concentrate on understanding the significance and development of these seismic swarms as unrest develops at the volcano. In particular, analysis of accelerations in event rate, amplitude and energy rates released by seismicity prior to eruption suggests that these are important indicators of developing unrest. Real time analysis of these parameters simultaneously allows possible improvements to forecasting models. Although more time and computationally intense, cross correlation techniques applied to continuous seismicity prior to volcanic unrest scenarios allows all significant seismic events to be analysed, rather than only those which can be detected by an automated identification system. This may allow a more accurate forecast since all precursory seismicity can be taken into account. In addition, the classification of seismic events based on spectral characteristics may allow us to isolate individual types of signals which are responsible for certain types of unrest. In this way, we may be able to better forecast the type of eruption that may ensue, or at least some of its prevailing characteristics.
Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS
NASA Astrophysics Data System (ADS)
Ahmad, Raed; Adris, Ahmad; Singh, Ramesh
2016-07-01
In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.
A Novel Approach to Constrain Near-Surface Seismic Wave Speed Based on Polarization Analysis
NASA Astrophysics Data System (ADS)
Park, S.; Ishii, M.
2016-12-01
Understanding the seismic responses of cities around the world is essential for the risk assessment of earthquake hazards. One of the important parameters is the elastic structure of the sites, in particular, near-surface seismic wave speed, that influences the level of ground shaking. Many methods have been developed to constrain the elastic structure of the populated sites or urban basins, and here, we introduce a new technique based on analyzing the polarization content or the three-dimensional particle motion of seismic phases arriving at the sites. Polarization analysis of three-component seismic data was widely used up to about two decades ago, to detect signals and identify different types of seismic arrivals. Today, we have good understanding of the expected polarization direction and ray parameter for seismic wave arrivals that are calculated based on a reference seismic model. The polarization of a given phase is also strongly sensitive to the elastic wave speed immediately beneath the station. This allows us to compare the observed and predicted polarization directions of incoming body waves and infer the near-surface wave speed. This approach is applied to High-Sensitivity Seismograph Network in Japan, where we benchmark the results against the well-log data that are available at most stations. There is a good agreement between our estimates of seismic wave speeds and those from well logs, confirming the efficacy of the new method. In most urban environments, where well logging is not a practical option for measuring the seismic wave speeds, this method can provide a reliable, non-invasive, and computationally inexpensive estimate of near-surface elastic properties.
NASA Astrophysics Data System (ADS)
Alawdin, Piotr; Bulanov, George
2017-06-01
In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.
NASA Astrophysics Data System (ADS)
Bragato, P. L.
2017-10-01
The strong earthquakes that occurred in Italy between 2009 and 2016 represent an abrupt acceleration of seismicity in respect of the previous 30 years. Such behavior seems to agree with the periodic rate change I observed in a previous paper. The present work improves that study by extending the data set up to the end of 2016, adopting the latest version of the historical seismic catalog of Italy, and introducing Schuster spectrum analysis for the detection of the oscillatory period and the assessment of its statistical significance. Applied to the declustered catalog of M w ≥ 6 earthquakes that occurred between 1600 and 2016, the analysis individuates a marked periodicity of 46 years, which is recognized above the 95% confidence level. Monte Carlo simulation shows that the oscillatory behavior is stable in respect of random errors on magnitude estimation. A parametric oscillatory model for the annual rate of seismicity is estimated by likelihood maximization under the hypothesis of inhomogeneous Poisson point process. According to the Akaike Information Criterion, such model outperforms the simpler homogeneous one with constant annual rate. A further element emerges form the analysis: so far, despite recent earthquakes, the Italian seismicity is still within a long-term decreasing trend established since the first half of the twentieth century.
Building Inventory Database on the Urban Scale Using GIS for Earthquake Risk Assessment
NASA Astrophysics Data System (ADS)
Kaplan, O.; Avdan, U.; Guney, Y.; Helvaci, C.
2016-12-01
The majority of the existing buildings are not safe against earthquakes in most of the developing countries. Before a devastating earthquake, existing buildings need to be assessed and the vulnerable ones must be determined. Determining the seismic performance of existing buildings which is usually made with collecting the attributes of existing buildings, making the analysis and the necessary queries, and producing the result maps is very hard and complicated procedure that can be simplified with Geographic Information System (GIS). The aim of this study is to produce a building inventory database using GIS for assessing the earthquake risk of existing buildings. In this paper, a building inventory database for 310 buildings, located in Eskisehir, Turkey, was produced in order to assess the earthquake risk of the buildings. The results from this study show that 26% of the buildings have high earthquake risk, 33% of the buildings have medium earthquake risk and the 41% of the buildings have low earthquake risk. The produced building inventory database can be very useful especially for governments in dealing with the problem of determining seismically vulnerable buildings in the large existing building stocks. With the help of this kind of methods, determination of the buildings, which may collapse and cause life and property loss during a possible future earthquake, will be very quick, cheap and reliable.
Ren, Zhikun; Zhang, Zhuqi; Dai, Fuchu; Yin, Jinhui; Zhang, Huiping
2013-01-01
Hillslope instability has been thought to be one of the most important factors for landslide susceptibility. In this study, we apply geomorphic analysis using multi-temporal DEM data and shake intensity analysis to evaluate the topographic characteristics of the landslide areas. There are many geomorphologic analysis methods such as roughness, slope aspect, which are also as useful as slope analysis. The analyses indicate that most of the co-seismic landslides occurred in regions with roughness, hillslope and slope aspect of >1.2, >30, and between 90 and 270, respectively. However, the intersection regions from the above three methods are more accurate than that derived by applying single topographic analysis method. The ground motion data indicates that the co-seismic landslides mainly occurred on the hanging wall side of Longmen Shan Thrust Belt within the up-down and horizontal peak ground acceleration (PGA) contour of 150 PGA and 200 gal, respectively. The comparisons of pre- and post-earthquake DEM data indicate that the medium roughness and slope increased, the roughest and steepest regions decreased after the Wenchuan earthquake. However, slope aspects did not even change. Our results indicate that co-seismic landslides mainly occurred at specific regions of high roughness, southward and steep sloping areas under strong ground motion. Co-seismic landslides significantly modified the local topography, especially the hillslope and roughness. The roughest relief and steepest slope are significantly smoothed; however, the medium relief and slope become rougher and steeper, respectively.
2007-09-01
The data are recorded at depth (1–5 km) by arrays of three-component geophones operated by AngloGold Ashanti, Ltd. and Integrated Seismic Systems...case-based event identification using regional arrays , Bull. Seism. Soc. Am. 80: 1874–1892. Bennett, T. J. and J. R. Murphy, Analysis of seismic ... seismic event classification at the NORESS array : seismological measurements and the use of trained neural networks, Bull. Seism. Soc. Am. 80: 1910
Appalachian Play Fairway Analysis Seismic Hazards Supporting Data
Frank Horowitz
2016-07-20
These are the data used in estimating the seismic hazards (both natural and induced) for candidate direct use geothermal locations in the Appalachian Basin Play Fairway Analysis by Jordan et al. (2015). xMin,yMin -83.1407,36.7461 : xMax,yMax -71.5175,45.1729
Seismic reflection constraints on the glacial dynamics of Johnsons Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Teixidó, Teresa
2001-01-01
During two Antarctic summers (1996-1997 and 1997-1998), five seismic refraction and two reflection profiles were acquired on the Johnsons Glacier (Livingston Island, Antarctica) in order to obtain information about the structure of the ice, characteristics of the ice-bed contact and basement topography. An innovative technique has been used for the acquisition of reflection data to optimise the field survey schedule. Different shallow seismic sources were used during each field season: Seismic Impulse Source System (SISSY) for the first field survey and low-energy explosives (pyrotechnic noisemakers) during the second one. A comparison between these two shallow seismic sources has been performed, showing that the use of the explosives is a better seismic source in this ice environment. This is one of the first studies where this type of source has been used. The analysis of seismic data corresponding to one of the reflection profiles (L3) allows us to delineate sectors with different glacier structure (accumulation and ablation zones) without using glaciological data. Moreover, vertical discontinuities were detected by the presence of back-scattered energy and the abrupt change in frequency content of first arrivals shown in shot records. After the raw data analysis, standard processing led us to a clear seismic image of the underlying bed topography, which can be correlated with the ice flow velocity anomalies. The information obtained from seismic data on the internal structure of the glacier, location of fracture zones and the topography of the ice-bed interface constrains the glacial dynamics of Johnsons Glacier.
NASA Astrophysics Data System (ADS)
Shahrokhi, H.; Malehmir, A.; Sopher, D.
2012-04-01
The BABEL project (Baltic And Bothnian Echoes from the Lithosphere) was a collaboration among British, Danish, Finnish, German and Swedish geoscientists to collect deep-crustal reflection and wide-angle refraction profiles in Baltic Shield and Gulf of Bothnia. The acquisition of 2,268km of deep marine reflection seismic data was carried out in 1989. The BABEL line 7 runs in E-W direction in the Bothnian Sea, north of the Åland islands and east of the city of Gävle. Several authors presented the seismic results but with a main focus of imaging and interpreting deep crustal geological structures and the nature and the depth of Moho discontinuity along line 7. Based on this seismic data, several publications about velocity distributions within the crust, the depth and texture of Moho discontinuity and seismic reflectivity patterns in the crust were presented. Some evidence from the reflection seismic data was also presented to suggest Early Proterozoic plate tectonics in the Baltic Shield. Previous seismic images of the BABEL line 7 reflection data show a dramatic change in the reflectivity pattern from weakly reflective lower crust in the west to a more reflective lower crust in the east, which was attributed to a change from a rigid crust to a plastic crust from the west to the east. The BABEL line 7 reflection data were acquired with a total profile length of 174km, a set of 48 airguns towed at 7.5m depth, and 3000m long streamer with 60 channels spaced with 50m intervals and towed at 15m depth. Seismic data were recorded for 25s using 4ms sampling interval and 75m shot interval. Seismic data is characterized by strong source-generated noise at shallow travel times and strong but randomly distributed spurious spikes at later arrival times. In this study, we have recovered and reprocessed the seismic data along BABEL line 7. Using modern processing and imaging techniques, which were not available at the time, and with a focus on the shallow parts of the seismic data, we have managed to reveal reflections as shallow as 1s in the data. Some of these reflections appear to be a continuation of deeper reflections but now they appear to reach to the surface, allowing correlation with the near-surface geology. At least two major moderately dipping shear zones are visible in the reprocessed data in comparison with the previous results. Deeper reflections are also improved which together with the improvements in the shallow parts of the data should allow small-scale geological structures encounter along the BABEL line 7 to be refined.
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo
2014-05-01
This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"
NASA Astrophysics Data System (ADS)
Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.
2017-12-01
The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude greater than 3.5 beneath the Aburra Valley, and the neotectonic evidence are limited, so it is expected that this network helps to characterize the seismic hazards.
Global regionalized seismicity in view of Non-Extensive Statistical Physics
NASA Astrophysics Data System (ADS)
Chochlaki, Kalliopi; Vallianatos, Filippos; Michas, Georgios
2018-03-01
In the present work we study the distribution of Earth's shallow seismicity on different seismic zones, as occurred from 1981 to 2011 and extracted from the Centroid Moment Tensor (CMT) catalog. Our analysis is based on the subdivision of the Earth's surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. For this, we use the Flinn-Engdahl regionalization (FE) (Flinn and Engdahl, 1965), which consists of fifty seismic zones as modified by Lombardi and Marzocchi (2007). The latter authors grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method, resulting into thirty-nine seismic zones. In each one of these seismic zones we study the distribution of seismicity in terms of the frequency-magnitude distribution and the inter-event time distribution between successive earthquakes, a task that is essential for hazard assessments and to better understand the global and regional geodynamics. In our analysis we use non-extensive statistical physics (NESP), which seems to be one of the most adequate and promising methodological tools for analyzing complex systems, such as the Earth's seismicity, introducing the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). The qE parameter is significantly greater than one for all the seismic regions analyzed with value range from 1.294 to 1.504, indicating that magnitude correlations are particularly strong. Furthermore, the qT parameter shows some temporal correlations but variations with cut-off magnitude show greater temporal correlations when the smaller magnitude earthquakes are included. The qT for earthquakes with magnitude greater than 5 takes values from 1.043 to 1.353 and as we increase the cut-off magnitude to 5.5 and 6 the qT value ranges from 1.001 to 1.242 and from 1.001 to 1.181 respectively, presenting a significant decrease. Our findings support the ideas of universality within the Tsallis approach to describe Earth's seismicity and present strong evidence ontemporal clustering and long-range correlations of seismicity in each of the tectonic zonesanalyzed.
Multi-Phenomenological Analysis of the 12 August 2015 Tianjin, China Chemical Explosion
NASA Astrophysics Data System (ADS)
Pasyanos, M.; Kim, K.; Park, J.; Stump, B. W.; Hayward, C.; Che, I. Y.; Zhao, L.; Myers, S. C.
2016-12-01
We perform a multi-phenomenological analysis of the massive near-surface chemical explosions that occurred in Tianjin, China on 12 August 2015. A recent assessment of these events was performed by Zhao et al. (2016) using local (< 100 km) seismic data. This study considers a regional assessment of the same sequence in the absence of having any local data. We provide additional insight by combining regional seismic analysis with the use of infrasound signals and an assessment of the event crater. Event locations using infrasound signals recorded at Korean and IMS arrays are estimated based on the Bayesian Infrasonic Source Location (BISL) method (Modrak et al., 2010), and improved with azimuthal corrections using a raytracing (Blom and Waxler, 2012) and the Ground-to-Space (G2S) atmospheric models (Drob et al., 2003). The location information provided from the infrasound signals is then merged with the regional seismic arrivals to produce a joint event location. The yields of the events are estimated from seismic and infrasonic observations. Seismic waveform envelope method (Pasyanos et al., 2012) including the free surface effect (Pasyanos and Ford, 2015) is applied to regional seismic signals. Waveform inversion method (Kim and Rodgers, 2016) is used for infrasound signals. A combination of the seismic and acoustic signals can provide insights on the energy partitioning and break the tradeoffs between the yield and the depth/height of explosions, resulting in a more robust estimation of event yield. The yield information from the different phenomenologies are combined through the use of likelihood functions.