Micro-seismic imaging using a source function independent full waveform inversion method
NASA Astrophysics Data System (ADS)
Wang, Hanchen; Alkhalifah, Tariq
2018-03-01
At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Jürg; Slob, Evert; Thorbecke, Jan; Snieder, Roel
2011-06-01
Seismic interferometry, also known as Green's function retrieval by crosscorrelation, has a wide range of applications, ranging from surface-wave tomography using ambient noise, to creating virtual sources for improved reflection seismology. Despite its successful applications, the crosscorrelation approach also has its limitations. The main underlying assumptions are that the medium is lossless and that the wavefield is equipartitioned. These assumptions are in practice often violated: the medium of interest is often illuminated from one side only, the sources may be irregularly distributed, and losses may be significant. These limitations may partly be overcome by reformulating seismic interferometry as a multidimensional deconvolution (MDD) process. We present a systematic analysis of seismic interferometry by crosscorrelation and by MDD. We show that for the non-ideal situations mentioned above, the correlation function is proportional to a Green's function with a blurred source. The source blurring is quantified by a so-called interferometric point-spread function which, like the correlation function, can be derived from the observed data (i.e. without the need to know the sources and the medium). The source of the Green's function obtained by the correlation method can be deblurred by deconvolving the correlation function for the point-spread function. This is the essence of seismic interferometry by MDD. We illustrate the crosscorrelation and MDD methods for controlled-source and passive-data applications with numerical examples and discuss the advantages and limitations of both methods.
Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor
Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.
2013-01-01
The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.
NASA Astrophysics Data System (ADS)
Viens, L.; Miyake, H.; Koketsu, K.
2016-12-01
Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.
Coherency of seismic noise, Green functions and site effects
NASA Astrophysics Data System (ADS)
Prieto, G. A.; Beroza, G. C.
2007-12-01
The newly rediscovered methodology of cross correlating seismic noise (or seismic coda) to retrieve the Green function takes advantage of the coherency of the signals across a set of stations. Only coherent signals are expected to emerge after stacking over a long enough time. Cross-correlation has a significant disadvantage for this purpose, in that the Green function recovered is convolved with the source-time function of the noise source. For seismic waves, this can mean that the microseism peak dominates the signal. We show how the use of the transfer function between sensors provides a better resolved Green function (after inverse Fourier transform), because the deconvolution process removes the effect of the noise source-time function. In addition, we compute the coherence of the seismic noise as a function of frequency and distance, providing information about the effective frequency band over which Green function retrieval is possible. The coherence may also be used in resolution analysis for time reversal as a constraint on the de-coherence length (the distance between sensors over which the signals become uncorrelated). We use the information from the transfer function and the coherence to examine wave propagation effects (attenuation and site effects) for closely spaced stations compared to a reference station.
Producing data-based sensitivity kernels from convolution and correlation in exploration geophysics.
NASA Astrophysics Data System (ADS)
Chmiel, M. J.; Roux, P.; Herrmann, P.; Rondeleux, B.
2016-12-01
Many studies have shown that seismic interferometry can be used to estimate surface wave arrivals by correlation of seismic signals recorded at a pair of locations. In the case of ambient noise sources, the convergence towards the surface wave Green's functions is obtained with the criterion of equipartitioned energy. However, seismic acquisition with active, controlled sources gives more possibilities when it comes to interferometry. The use of controlled sources makes it possible to recover the surface wave Green's function between two points using either correlation or convolution. We investigate the convolutional and correlational approaches using land active-seismic data from exploration geophysics. The data were recorded on 10,710 vertical receivers using 51,808 sources (seismic vibrator trucks). The sources spacing is the same in both X and Y directions (30 m) which is known as a "carpet shooting". The receivers are placed in parallel lines with a spacing 150 m in the X direction and 30 m in the Y direction. Invoking spatial reciprocity between sources and receivers, correlation and convolution functions can thus be constructed between either pairs of receivers or pairs of sources. Benefiting from the dense acquisition, we extract sensitivity kernels from correlation and convolution measurements of the seismic data. These sensitivity kernels are subsequently used to produce phase-velocity dispersion curves between two points and to separate the higher mode from the fundamental mode for surface waves. Potential application to surface wave cancellation is also envisaged.
Seismic source models for very-long period seismic signals on White Island, New Zealand
NASA Astrophysics Data System (ADS)
Jiwani-Brown, Elliot; Neuberg, Jurgen; Jolly, Art
2015-04-01
Very-long-period seismic signals (VLP) from White Island have a duration of only a few tens of seconds and a waveform that indicates an elastic (or viscoelastic) interaction of a source region with the surrounding medium; unlike VLP signals on some other volcanoes that indicate a step function recorded in the near field of the seismic source, White Island VLPs exhibit a Ricker waveform. We explore a set of isotropic, seismic source models based on the interaction between magma and water/brine in direct contact. Seismic amplitude measurements are taken into account to estimate the volume changes at depth that can produce the observed displacement at the surface. Furthermore, the influence of different fluid types are explored.
An automated multi-scale network-based scheme for detection and location of seismic sources
NASA Astrophysics Data System (ADS)
Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.
2017-12-01
We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.
A GIS-based time-dependent seismic source modeling of Northern Iran
NASA Astrophysics Data System (ADS)
Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza
2017-01-01
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.
NASA Astrophysics Data System (ADS)
Mangeney, A.; Kuehnert, J.; Capdeville, Y.; Durand, V.; Stutzmann, E.; Kone, E. H.; Sethi, S.
2017-12-01
During their flow along the topography, landslides generate seismic waves in a wide frequency range. These so called landquakes can be recorded at very large distances (a few hundreds of km for large landslides). The recorded signals depend on the landslide seismic source and the seismic wave propagation. If the wave propagation is well understood, the seismic signals can be inverted for the seismic source and thus can be used to get information on the landslide properties and dynamics. Analysis and modeling of long period seismic signals (10-150s) have helped in this way to discriminate between different landslide scenarios and to constrain rheological parameters (e.g. Favreau et al., 2010). This was possible as topography poorly affects wave propagation at these long periods and the landslide seismic source can be approximated as a point source. In the near-field and at higher frequencies (> 1 Hz) the spatial extent of the source has to be taken into account and the influence of the topography on the recorded seismic signal should be quantified in order to extract information on the landslide properties and dynamics. The characteristic signature of distributed sources and varying topographies is studied as a function of frequency and recording distance.The time dependent spatial distribution of the forces applied to the ground by the landslide are obtained using granular flow numerical modeling on 3D topography. The generated seismic waves are simulated using the spectral element method. The simulated seismic signal is compared to observed seismic data from rockfalls at the Dolomieu Crater of Piton de la Fournaise (La Réunion).Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15):1-5.
NASA Astrophysics Data System (ADS)
Wang, Qian; Gao, Jinghuai
2018-02-01
As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.
NASA Astrophysics Data System (ADS)
Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.
2013-12-01
We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al., 2011; Ide at al., 2011; Yagi and Fukahata, 2011; Suzuki et al., 2011). The comparison of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms, suggested that there was the time period common to both seismic wave generation and tsunami generation followed by the time period unique to tsunami generation. At this point, we think that comparison of the absolute values of moment rates is not so meaningful between tsunami waveform inversion and seismic waveform inversion, because of general ambiguity of rigidity values of each subfault in the fault region (assuming the rigidity value of 30 GPa of Yoshida et al (2011)). Considering this, the normalized value of moment rate function was also evaluated and it does not change the general feature of two moment rate functions in terms of duration property. Furthermore, the results suggested that tsunami generation process apparently took more time than seismic wave generation process did. Tsunami can be generated even by "extra" motions resulting from many suggested abnormal mechanisms. These extra motions may be attribute to the relatively larger-scale tsunami generation than expected from the magnitude level from seismic ground motion, and attribute to the longer duration of tsunami generation process.
The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Vassiliou, M. S.
1983-01-01
Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.
NASA Astrophysics Data System (ADS)
Shang, Xueyi; Li, Xibing; Morales-Esteban, A.; Dong, Longjun
2018-03-01
Micro-seismic P-phase arrival picking is an elementary step into seismic event location, source mechanism analysis, and seismic tomography. However, a micro-seismic signal is often mixed with high frequency noises and power frequency noises (50 Hz), which could considerably reduce P-phase picking accuracy. To solve this problem, an Empirical Mode Decomposition (EMD)-cosine function denoising-based Akaike Information Criterion (AIC) picker (ECD-AIC picker) is proposed for picking the P-phase arrival time. Unlike traditional low pass filters which are ineffective when seismic data and noise bandwidths overlap, the EMD adaptively separates the seismic data and the noise into different Intrinsic Mode Functions (IMFs). Furthermore, the EMD-cosine function-based denoising retains the P-phase arrival amplitude and phase spectrum more reliably than any traditional low pass filter. The ECD-AIC picker was tested on 1938 sets of micro-seismic waveforms randomly selected from the Institute of Mine Seismology (IMS) database of the Chinese Yongshaba mine. The results have shown that the EMD-cosine function denoising can effectively estimate high frequency and power frequency noises and can be easily adapted to perform on signals with different shapes and forms. Qualitative and quantitative comparisons show that the combined ECD-AIC picker provides better picking results than both the ED-AIC picker and the AIC picker, and the comparisons also show more reliable source localization results when the ECD-AIC picker is applied, thus showing the potential of this combined P-phase picking technique.
Thunder-induced ground motions: 1. Observations
NASA Astrophysics Data System (ADS)
Lin, Ting-L.; Langston, Charles A.
2009-04-01
Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.
Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides
NASA Astrophysics Data System (ADS)
Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.
2016-12-01
Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.
100 years of seismic research on the Moho
NASA Astrophysics Data System (ADS)
Prodehl, Claus; Kennett, Brian; Artemieva, Irina M.; Thybo, Hans
2013-12-01
The detection of a seismic boundary, the “Moho”, between the outermost shell of the Earth, the Earth's crust, and the Earth's mantle by A. Mohorovičić was the consequence of increased insight into the propagation of seismic waves caused by earthquakes. This short history of seismic research on the Moho is primarily based on the comprehensive overview of the worldwide history of seismological studies of the Earth's crust using controlled sources from 1850 to 2005, by Prodehl and Mooney (2012). Though the art of applying explosions, so-called “artificial events”, as energy sources for studies of the uppermost crustal layers began in the early 1900s, its effective use for studying the entire crust only began at the end of World War II. From 1945 onwards, controlled-source seismology has been the major approach to study details of the crust and underlying crust-mantle boundary, the Moho. The subsequent description of history of controlled-source crustal seismology and its seminal results is subdivided into separate chapters for each decade, highlighting the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. Since the late 1980s, passive seismology using distant earthquakes has played an increasingly important role in studies of crustal structure. The receiver function technique exploiting conversions between P and SV waves at discontinuities in seismic wavespeed below a seismic station has been extensively applied to the increasing numbers of permanent and portable broad-band seismic stations across the globe. Receiver function studies supplement controlled source work with improved geographic coverage and now make a significant contribution to knowledge of the nature of the crust and the depth to Moho.
NASA Astrophysics Data System (ADS)
Ballmer, S.; Wolfe, C. J.; Okubo, P.; Haney, M. M.; Thurber, C. H.
2011-12-01
Green's functions calculated with ambient seismic noise may aid in volcano research and monitoring. The continuous character of ambient seismic noise and hence of the reconstructed Green's functions has enabled measurements of short-term (~days) temporal perturbations in seismic velocities. Very small but clear velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. We apply this method to Hawaiian volcanoes using data from the USGS Hawaiian Volcano Observatory (HVO) seismic network. In order to obtain geologically relevant and reliable results, stable Green's functions need to be recovered from the ambient noise. Station timing problems, changes in noise source directivity, as well as changes in the source's spectral content are known biases that critically affect the Green's functions' stability and hence need to be considered. Here we show that volcanic tremor is a potential additional bias. During the time period of our study (2007-present), we find that volcanic tremor is a common feature in the HVO seismic data. Pu'u O'o tremor is continuously present before a dike intrusion into Kilauea's east rift zone in June 2007 and Halema'uma'u tremor occurs before and during resumed Kilauea summit activity from early 2008 and onward. For the frequency band considered (0.1-0.9 Hz), we find that these active tremor sources can drastically modify the recovered Green's functions for station pairs on the entire island at higher (> 0.5 Hz) frequencies, although the effect of tremor appears diminished at lower frequencies. In this presentation, we perform measurements of temporal velocity changes using ambient noise Green's functions and explore how volcanic tremor affects the results. Careful quality assessment of reconstructed Green's functions appears to be essential for the desired high precision measurements.
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
NASA Astrophysics Data System (ADS)
Kwak, S.; Song, S. G.; Kim, G.; Shin, J. S.
2015-12-01
Recently many seismologists have paid attention to ambient seismic field, which is no more referred as noise and called as Earth's hum, but as useful signal to understand subsurface seismic velocity structure. It has also been demonstrated that empirical Green's functions can be constructed by retrieving both phase and amplitude information from ambient seismic field (Prieto and Beroza 2008). The constructed empirical Green's functions can be used to predict strong ground motions after focal depth and double-couple mechanism corrections (Denolle et al. 2013). They do not require detailed subsurface velocity model and intensive computation for ground motion simulation. In this study, we investigate the capability of predicting long period surface waves by the ambient seismic wave field with a seismic event of Mw 4.0, which occurred with a limestone mine collapse in South Korea on January 31, 2015. This limestone-mine event provides an excellent opportunity to test the efficiency of the ambient seismic wave field in retrieving both phase and amplitude information of Green's functions due to the single force mechanism of the collapse event. In other words, both focal depth and double-couple mechanism corrections are not required for this event. A broadband seismic station, which is about 5.4 km away from the mine event, is selected as a source station. Then surface waves retrieved from the ambient seismic wave field cross-correlation are compared with those generated by the event. Our preliminary results show some potential of the ambient seismic wave field in retrieving both phase and amplitude of Green's functions from a single force impulse source at the Earth's surface. More comprehensive analysis by increasing the time length of stacking may improve the results in further studies. We also aim to investigate the efficiency of retrieving the full empirical Green's functions with the 2007 Mw 4.6 Odaesan earthquake, which is one of the strongest earthquakes occurred in South Korea in the last decade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P.E.; Glenn, L.A.
This report presents a preliminary summary of the data recorded at three regional seismic stations from surface blasting at the Black Thunder Coal Mine in northeast Wyoming. The regional stations are part of a larger effort that includes many more seismic stations in the immediate vicinity of the mine. The overall purpose of this effort is to characterize the source function and propagation characteristics of large typical surface mine blasts. A detailed study of source and propagation features of conventional surface blasts is a prerequisite to attempts at discriminating this type of blasting activity from other sources of seismic events.more » The Black Thunder Seismic experiment is a joint verification effort to determine seismic source and path effects that result from very large, but routine ripple-fired surface mining blasts. Studies of the data collected will be for the purpose of understanding how the near-field and regional seismic waveforms from these surface mining blasts are similar to, and different from, point shot explosions and explosions at greater depth. The Black Hills Station is a Designated Seismic Station that was constructed for temporary occupancy by the Former Soviet Union seismic verification scientists in accordance with the Threshold Test Ban Treaty protocol.« less
Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations
NASA Astrophysics Data System (ADS)
Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel
2017-10-01
The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.
Noise-based body-wave seismic tomography in an active underground mine.
NASA Astrophysics Data System (ADS)
Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.
2014-12-01
Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the seismic waves are multiply scattered by the tunnels and excavations and used to determine the scattering properties of the medium. The results of this study should be useful for future imaging and exploration projects in mining and oil and gas industries.
ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.
Earthquake source parameters underpin several aspects of nuclear explosion monitoring. Such aspects are: calibration of moment magnitudes (including coda magnitudes) and magnitude and distance amplitude corrections (MDAC); source depths; discrimination by isotropic moment tensor components; and waveform modeling for structure (including waveform tomography). This project seeks to improve methods for and broaden the applicability of estimating source parameters from broadband waveforms using the Cut-and-Paste (CAP) methodology. The CAP method uses a library of Green’s functions for a one-dimensional (1D, depth-varying) seismic velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radialmore » components), Rayleigh (vertical and radial components) and Love (transverse component). Source parameters are estimated by grid search over strike, dip, rake and depth and seismic moment or equivalently moment magnitude, MW, are adjusted to fit the amplitudes. Key to the CAP method is allowing the synthetic seismograms to shift in time relative to the data in order to account for path-propagation errors (delays) in the 1D seismic velocity model used to compute the Green’s functions. The CAP method has been shown to improve estimates of source parameters, especially when delay and amplitude biases are calibrated using high signal-to-noise data from moderate earthquakes, CAP+.« less
Inverse and Forward Modeling of The 2014 Iquique Earthquake with Run-up Data
NASA Astrophysics Data System (ADS)
Fuentes, M.
2015-12-01
The April 1, 2014 Mw 8.2 Iquique earthquake excited a moderate tsunami which turned on the national alert of tsunami threat. This earthquake was located in the well-known seismic gap in northern Chile which had a high seismic potential (~ Mw 9.0) after the two main large historic events of 1868 and 1877. Nonetheless, studies of the seismic source performed with seismic data inversions suggest that the event exhibited a main patch located around 19.8° S at 40 km of depth with a seismic moment equivalent to Mw = 8.2. Thus, a large seismic deficit remains in the gap being capable to release an event of Mw = 8.8-8.9. To understand the importance of the tsunami threat in this zone, a seismic source modeling of the Iquique Earthquake is performed. A new approach based on stochastic k2 seismic sources is presented. A set of those sources is generated and for each one, a full numerical tsunami model is performed in order to obtain the run-up heights along the coastline. The results are compared with the available field run-up measurements and with the tide gauges that registered the signal. The comparison is not uniform; it penalizes more when the discrepancies are larger close to the peak run-up location. This criterion allows to identify the best seismic source from the set of scenarios that explains better the observations from a statistical point of view. By the other hand, a L2 norm minimization is used to invert the seismic source by comparing the peak nearshore tsunami amplitude (PNTA) with the run-up observations. This method searches in a space of solutions the best seismic configuration by retrieving the Green's function coefficients in order to explain the field measurements. The results obtained confirm that a concentrated down-dip patch slip adequately models the run-up data.
Dissipative Intraplate Faulting During the 2016 Mw 6.2 Tottori, Japan Earthquake
NASA Astrophysics Data System (ADS)
Ross, Zachary E.; Kanamori, Hiroo; Hauksson, Egill; Aso, Naofumi
2018-02-01
The 2016 Mw 6.2 Tottori earthquake occurred on 21 October 2016 and produced thousands of aftershocks. Here we analyze high-resolution-relocated seismicity together with source properties of the mainshock to better understand the rupture process and energy budget. We use a matched-filter algorithm to detect and precisely locate >10,000 previously unidentified aftershocks, which delineate a network of sharp subparallel lineations exhibiting significant branching and segmentation. Seismicity below 8 km depth forms highly localized fault structures subparallel to the mainshock strike. Shallow seismicity near the main rupture plane forms more diffuse clusters and lineations that often are at a high angle (in map view) to the mainshock strike. An empirical Green's function technique is used to derive apparent source time functions for the mainshock, which show a large amplitude pulse 2-4 s long. We invert the apparent source time functions for a slip distribution and observe a 16 km2 patch with average slip 3.2 m. 93% of the seismic moment is below 8 km depth, which is approximately the depth below which the seismicity becomes very localized. These observations suggest that the mainshock rupture area was entirely within the lower half of the seismogenic zone. The radiated seismic energy is estimated to be 5.7 × 1013 J, while the static stress drop is estimated to be 18-27 MPa. These values yield a radiation efficiency of 5-7%, which indicates that the Tottori mainshock was extremely dissipative. We conclude that this inefficiency in energy radiation is likely a product of the immature intraplate environment and the underlying geometric complexity.
Classifying elephant behaviour through seismic vibrations.
Mortimer, Beth; Rees, William Lake; Koelemeijer, Paula; Nissen-Meyer, Tarje
2018-05-07
Seismic waves - vibrations within and along the Earth's surface - are ubiquitous sources of information. During propagation, physical factors can obscure information transfer via vibrations and influence propagation range [1]. Here, we explore how terrain type and background seismic noise influence the propagation of seismic vibrations generated by African elephants. In Kenya, we recorded the ground-based vibrations of different wild elephant behaviours, such as locomotion and infrasonic vocalisations [2], as well as natural and anthropogenic seismic noise. We employed techniques from seismology to transform the geophone recordings into source functions - the time-varying seismic signature generated at the source. We used computer modelling to constrain the propagation ranges of elephant seismic vibrations for different terrains and noise levels. Behaviours that generate a high force on a sandy terrain with low noise propagate the furthest, over the kilometre scale. Our modelling also predicts that specific elephant behaviours can be distinguished and monitored over a range of propagation distances and noise levels. We conclude that seismic cues have considerable potential for both behavioural classification and remote monitoring of wildlife. In particular, classifying the seismic signatures of specific behaviours of large mammals remotely in real time, such as elephant running, could inform on poaching threats. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fully probabilistic earthquake source inversion on teleseismic scales
NASA Astrophysics Data System (ADS)
Stähler, Simon; Sigloch, Karin
2017-04-01
Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters but also estimates of their uncertainties are of great practical importance. We have developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. These unknowns are parameterised efficiently by harnessing as prior knowledge solutions from a large number of non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. References: Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source inversion - Part 1: Efficient parameterisation, Solid Earth, 5, 1055-1069, doi:10.5194/se-5-1055-2014, 2014. Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances, Solid Earth, 7, 1521-1536, doi:10.5194/se-7-1521-2016, 2016.
Wireless acquisition of multi-channel seismic data using the Seismobile system
NASA Astrophysics Data System (ADS)
Isakow, Zbigniew
2017-11-01
This paper describes the wireless acquisition of multi-channel seismic data using a specialized mobile system, Seismobile, designed for subsoil diagnostics for transportation routes. The paper presents examples of multi-channel seismic records obtained during system tests in a configuration with 96 channels (4 landstreamers of 24-channel) and various seismic sources. Seismic waves were generated at the same point using different sources: a 5-kg hammer, a Gisco's source with a 90-kg pile-driver, and two other the pile-drivers of 45 and 70 kg. Particular attention is paid to the synchronization of source timing, the measurement of geometry by autonomous GPS systems, and the repeatability of triggering measurements constrained by an accelerometer identifying the seismic waveform. The tests were designed to the registration, reliability, and range of the wireless transmission of survey signals. The effectiveness of the automatic numbering of measuring modules was tested as the system components were arranged and fixed to the streamers. After measurements were completed, the accuracy and speed of data downloading from the internal memory (SDHC 32GB WiFi) was determined. Additionally, the functionality of automatic battery recharging, the maximum survey duration, and the reliability of battery discharge signalling were assessed.
Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan
2011-01-01
The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.
A Study of Regional Wave Source Time Functions of Central Asian Earthquakes
NASA Astrophysics Data System (ADS)
Xie, J.; Perry, M. R.; Schult, F. R.; Wood, J.
2014-12-01
Despite the extensive use of seismic regional waves in seismic event identification and attenuation tomography, very little is known on how seismic sources radiate energy into these waves. For example, whether regional Lg wave has the same source spectrum as that of the local S has been questioned by Harr et al. and Frenkel et al. three decades ago; many current investigators assume source spectra in Lg, Sn, Pg, Pn and Lg coda waves have either the same or very similar corner frequencies, in contrast to local P and S spectra whose corner frequencies differ. The most complete information on how the finite source ruptures radiate energy into regional waves is contained in the time domain source time functions (STFs). To estimate the STFs of regional waves using the empirical Green's function (EGF) method, we have been substantially modifying a semi-automotive computer procedure to cope with the increasingly diverse and inconsistent naming patterns of new data files from the IRIS DMC. We are applying the modified procedure to many earthquakes in central Asia to study the STFs of various regional waves to see whether they have the same durations and pulse shapes, and how frequently source directivity occur. When applicable, we also examine the differences between STFs of local P and S waves and those of regional waves. The result of these analyses will be presented at the meeting.
McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.
2015-01-01
We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.
NASA Astrophysics Data System (ADS)
Bayliss, T. J.
2016-02-01
The southeastern European cities of Sofia and Thessaloniki are explored as example site-specific scenarios by geographically zoning their individual localized seismic sources based on the highest probabilities of magnitude exceedance. This is with the aim of determining the major components contributing to each city's seismic hazard. Discrete contributions from the selected input earthquake catalogue are investigated to determine those areas that dominate each city's prevailing seismic hazard with respect to magnitude and source-to-site distance. This work is based on an earthquake catalogue developed and described in a previously published paper by the author and components of a magnitude probability density function. Binned magnitude and distance classes are defined using a joint magnitude-distance distribution. The prevailing seismicity to each city-as defined by a child data set extracted from the parent earthquake catalogue for each city considered-is divided into distinct constrained data bins of small discrete magnitude and source-to-site distance intervals. These are then used to describe seismic hazard in terms of uni-variate modal values; that is, M* and D* which are the modal magnitude and modal source-to-site distance in each city's local historical seismicity. This work highlights that Sofia's dominating seismic hazard-that is, the modal magnitudes possessing the highest probabilities of occurrence-is located in zones confined to two regions at 60-80 km and 170-180 km from this city, for magnitude intervals of 5.75-6.00 Mw and 6.00-6.25 Mw respectively. Similarly, Thessaloniki appears prone to highest levels of hazard over a wider epicentral distance interval, from 80 to 200 km in the moment magnitude range 6.00-6.25 Mw.
Dominant seismic sources for the cities in South Sumatra
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya
2017-07-01
Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.
Dynamics of the Wulong Landslide Revealed by Broadband Seismic Records
NASA Astrophysics Data System (ADS)
Huang, X.; Dan, Y.
2016-12-01
Long-period seismic signals are frequently used to trace the dynamic process of large scale landslides. The catastrophic WuLong landslide occurred at 14:51 on 5 June 2009 (Beijing time, UTC+8) in Wulong Prefecture, Southwest China. The topography in landslide area varies dramatically, enhancing the complexity in its movement characteristics. The mass started sliding northward on the upper part of the cliff located upon the west slope of the Tiejianggou gully, and shifted its movement direction to northeastward after being blocked by stable bedrock in front, leaving a scratch zone. The sliding mass then moved downward along the west slope of the gully until it collided with the east slope, and broke up into small pieces after the collision, forming a debris flow along the gully. We use long-period seismic signals extracted from eight broadband seismic stations within 250 km of the landslide to estimate its source time functions. Combining with topographic surveys done before and after the event, we can also resolve kinematic parameters of sliding mass, i.e. velocities, displacements and trajectories, perfectly characterizing its movement features. The runout trajectory deduced from source time functions is consistent with the sliding path, including two direction changing processes, corresponding to scratching the western bedrock and collision with the east slope respectively. Topographic variations can be reflected from estimated velocities. The maximum velocity of the sliding mass reaches 35 m/s before the collision with the east slope of the Tiejianggou gully, resulting from the height difference between the source zone and the deposition zone. What is important is that dynamics of scratching and collision can be characterized by source time functions. Our results confirm that long-period seismic signals are sufficient to characterize dynamics and kinematics of large scale landslides which occur in a region with complex topography.
Rupture Complexities of Fluid Induced Microseismic Events at the Basel EGS Project
NASA Astrophysics Data System (ADS)
Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.; Häring, Markus; Asanuma, Hiroshi
2016-04-01
Microseismic data sets of excellent quality, such as the seismicity recorded in the Basel-1 enhanced geothermal system, Switzerland, in 2006-2007, provide the opportunity to analyse induced seismic events in great detail. It is important to understand in how far seismological insights on e.g. source and rupture processes are scale dependent and how they can be transferred to fluid induced micro-seismicity. We applied the empirical Green's function (EGF) method in order to reconstruct the relative source time functions of 195 suitable microseismic events from the Basel-1 reservoir. We found 93 solutions with a clear and consistent directivity pattern. The remaining events display either no measurable directivity, are unfavourably oriented or exhibit non consistent or complex relative source time functions. In this work we focus on selected events of M ˜ 1 which show possible rupture complexities. It is demonstrated that the EGF method allows to resolve complex rupture behaviour even if it is not directly identifiable in the seismograms. We find clear evidence of rupture directivity and multi-phase rupturing in the analysed relative source time functions. The time delays between consecutive subevents lies in the order of 10ms. Amplitudes of the relative source time functions of the subevents do not always show the same azimuthal dependence, indicating dissimilarity in the rupture directivity of the subevents. Our observations support the assumption that heterogeneity on fault surfaces persists down to small scale (few tens of meters).
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Seismic Source Scaling and Characteristics of Six North Korean Underground Nuclear Explosions
NASA Astrophysics Data System (ADS)
Park, J.; Stump, B. W.; Che, I. Y.; Hayward, C.
2017-12-01
We estimate the range of yields and source depths for the six North Korean underground nuclear explosions in 2006, 2009, 2013, 2016 (January and September), and 2017, based on regional seismic observations in South Korea and China. Seismic data used in this study are from three seismo-acoustic stations, BRDAR, CHNAR, and KSGAR, cooperatively operated by SMU and KIGAM, the KSRS seismic array operated by the Comprehensive Nuclear Test Ban Treaty Organization, and MDJ, a station in the Global Seismographic Network. We calculate spectral ratios for event pairs using seismograms from the six explosions observed along the same paths and at the same receivers. These relative seismic source scaling spectra for Pn, Pg, Sn, and surface wave windows provide a basis for a grid search source solution that estimates source yield and depth for each event based on both the modified Mueller and Murphy (1971; MM71) and Denny and Johnson (1991; DJ91) source models. The grid search is used to identify the best-fit empirical spectral ratios subject to the source models by minimizing the goodness-of-fit (GOF) in the frequency range of 0.5-15 Hz. For all cases, the DJ91 model produces higher ratios of depth and yield than MM71. These initial results include significant trade-offs between depth and yield in all cases. In order to better take the effect of source depth into account, a modified grid search was implemented that includes the propagation effects for different source depths by including reflectivity Greens functions in the grid search procedure. This revision reduces the trade-offs between depth and yield, results in better model fits to frequencies as high as 15 Hz, and GOF values smaller than those where the depth effects on the Greens functions were ignored. The depth and yield estimates for all six explosions using this new procedure will be presented.
A generalized formulation for noise-based seismic velocity change measurements
NASA Astrophysics Data System (ADS)
Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.
2017-12-01
The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Juerg; Slob, Evert; Thorbecke, Jan; Snieder, Roel
2010-05-01
In recent years, seismic interferometry (or Green's function retrieval) has led to many applications in seismology (exploration, regional and global), underwater acoustics and ultrasonics. One of the explanations for this broad interest lies in the simplicity of the methodology. In passive data applications a simple crosscorrelation of responses at two receivers gives the impulse response (Green's function) at one receiver as if there were a source at the position of the other. In controlled-source applications the procedure is similar, except that it involves in addition a summation along the sources. It has also been recognized that the simple crosscorrelation approach has its limitations. From the various theoretical models it follows that there are a number of underlying assumptions for retrieving the Green's function by crosscorrelation. The most important assumptions are that the medium is lossless and that the waves are equipartitioned. In heuristic terms the latter condition means that the receivers are illuminated isotropically from all directions, which is for example achieved when the sources are regularly distributed along a closed surface, the sources are mutually uncorrelated and their power spectra are identical. Despite the fact that in practical situations these conditions are at most only partly fulfilled, the results of seismic interferometry are generally quite robust, but the retrieved amplitudes are unreliable and the results are often blurred by artifacts. Several researchers have proposed to address some of the shortcomings by replacing the correlation process by deconvolution. In most cases the employed deconvolution procedure is essentially 1-D (i.e., trace-by-trace deconvolution). This compensates the anelastic losses, but it does not account for the anisotropic illumination of the receivers. To obtain more accurate results, seismic interferometry by deconvolution should acknowledge the 3-D nature of the seismic wave field. Hence, from a theoretical point of view, the trace-by-trace process should be replaced by a full 3-D wave field deconvolution process. Interferometry by multidimensional deconvolution is more accurate than the trace-by-trace correlation and deconvolution approaches but the processing is more involved. In the presentation we will give a systematic analysis of seismic interferometry by crosscorrelation versus multi-dimensional deconvolution and discuss applications of both approaches.
The analysis and interpretation of very-long-period seismic signals on volcanoes
NASA Astrophysics Data System (ADS)
Sindija, Dinko; Neuberg, Jurgen; Smith, Patrick
2017-04-01
The study of very long period (VLP) seismic signals became possible with the widespread use of broadband instruments. VLP seismic signals are caused by transients of pressure in the volcanic edifice and have periods ranging from several seconds to several minutes. For the VLP events recorded in March 2012 and 2014 at Soufriere Hills Volcano, Montserrat, we model the ground displacement using several source time functions: a step function using Richards growth equation, Küpper wavelet, and a damped sine wave to which an instrument response is then applied. This way we get a synthetic velocity seismogram which is directly comparable to the data. After the full vector field of ground displacement is determined, we model the source mechanism to determine the relationship between the source mechanism and the observed VLP waveforms. Emphasis of the research is on how different VLP waveforms are related to the volcano environment and the instrumentation used and on the processing steps in this low frequency band to get most out of broadband instruments.
Earthquake source properties of a shallow induced seismic sequence in SE Brazil
NASA Astrophysics Data System (ADS)
Agurto-Detzel, Hans; Bianchi, Marcelo; Prieto, Germán. A.; Assumpção, Marcelo
2017-04-01
We study source parameters of a cluster of 21 very shallow (<1 km depth) small-magnitude (Mw < 2) earthquakes induced by percolation of water by gravity in SE Brazil. Using a multiple empirical Green's functions (meGf) approach, we estimate seismic moments, corner frequencies, and static stress drops of these events by inversion of their spectral ratios. For the studied magnitude range (-0.3 < Mw < 1.9), we found an increase of stress drop with seismic moment. We assess associated uncertainties by considering different signal time windows and by performing a jackknife resampling of the spectral ratios. We also calculate seismic moments by full waveform inversion to independently validate our moments from spectral analysis. We propose repeated rupture on a fault patch at shallow depth, following continuous inflow of water, as the cause for the observed low absolute stress drop values (<1 MPa) and earthquake size dependency. To our knowledge, no other study on earthquake source properties of shallow events induced by water injection with no added pressure is available in the literature. Our study suggests that source parameter characterization may provide additional information of induced seismicity by hydraulic stimulation.
NASA Astrophysics Data System (ADS)
Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo
2016-12-01
We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.
Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances
NASA Astrophysics Data System (ADS)
Stähler, Simon C.; Sigloch, Karin
2016-11-01
Seismic source inversion, a central task in seismology, is concerned with the estimation of earthquake source parameters and their uncertainties. Estimating uncertainties is particularly challenging because source inversion is a non-linear problem. In a companion paper, Stähler and Sigloch (2014) developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements, a problem we address here. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D = 1 - CC of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. By identifying and quantifying this likelihood function, we make D and thus waveform cross-correlation measurements usable for fully probabilistic sampling strategies, in source inversion and related applications such as seismic tomography.
NASA Astrophysics Data System (ADS)
Kromskii, S. D.; Pavlenko, O. V.; Gabsatarova, I. P.
2018-03-01
Based on the Anapa (ANN) seismic station records of 40 earthquakes ( M W > 3.9) that occurred within 300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth's crust ( Q( f)) and upper mantle are estimated for the S-waves in the 1-8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q( f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q( f) = 90 × f1.0 for r > 120 km. The established Q( f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9-5.6; however, the radiation of the high-frequency components ( f > 4-5 Hz) is enhanced with the depth of the source (down to h 60 km). The estimates Q( f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q( f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth's crust in the other regions of the Northern Caucasus.
NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
Focal mechanism determination for induced seismicity using the neighbourhood algorithm
NASA Astrophysics Data System (ADS)
Tan, Yuyang; Zhang, Haijiang; Li, Junlun; Yin, Chen; Wu, Furong
2018-06-01
Induced seismicity is widely detected during hydraulic fracture stimulation. To better understand the fracturing process, a thorough knowledge of the source mechanism is required. In this study, we develop a new method to determine the focal mechanism for induced seismicity. Three misfit functions are used in our method to measure the differences between observed and modeled data from different aspects, including the waveform, P wave polarity and S/P amplitude ratio. We minimize these misfit functions simultaneously using the neighbourhood algorithm. Through synthetic data tests, we show the ability of our method to yield reliable focal mechanism solutions and study the effect of velocity inaccuracy and location error on the solutions. To mitigate the impact of the uncertainties, we develop a joint inversion method to find the optimal source depth and focal mechanism simultaneously. Using the proposed method, we determine the focal mechanisms of 40 stimulation induced seismic events in an oil/gas field in Oman. By investigating the results, we find that the reactivation of pre-existing faults is the main cause of the induced seismicity in the monitored area. Other observations obtained from the focal mechanism solutions are also consistent with earlier studies in the same area.
NASA Astrophysics Data System (ADS)
Kwak, Sangmin; Song, Seok Goo; Kim, Geunyoung; Cho, Chang Soo; Shin, Jin Soo
2017-10-01
Using recordings of a mine collapse event (Mw 4.2) in South Korea in January 2015, we demonstrated that the phase and amplitude information of impulse response functions (IRFs) can be effectively retrieved using seismic interferometry. This event is equivalent to a single downward force at shallow depth. Using quantitative metrics, we compared three different seismic interferometry techniques—deconvolution, coherency, and cross correlation—to extract the IRFs between two distant stations with ambient seismic noise data. The azimuthal dependency of the source distribution of the ambient noise was also evaluated. We found that deconvolution is the best method for extracting IRFs from ambient seismic noise within the period band of 2-10 s. The coherency method is also effective if appropriate spectral normalization or whitening schemes are applied during the data processing.
NASA Astrophysics Data System (ADS)
Lim, Hobin; Kim, YoungHee; Song, Teh-Ru Alex; Shen, Xuzhang
2018-03-01
Accurate determination of the seismometer orientation is a prerequisite for seismic studies including, but not limited to seismic anisotropy. While borehole seismometers on land produce seismic waveform data somewhat free of human-induced noise, they might have a drawback of an uncertain orientation. This study calculates a harmonic decomposition of teleseismic receiver functions from the P and PP phases and determines the orientation of a seismometer by minimizing a constant term in a harmonic expansion of tangential receiver functions in backazimuth near and at 0 s. This method normalizes the effect of seismic sources and determines the orientation of a seismometer without having to assume for an isotropic medium. Compared to the method of minimizing the amplitudes of a mean of the tangential receiver functions near and at 0 s, the method yields more accurate orientations in cases where the backazimuthal coverage of earthquake sources (even in the case of ocean bottom seismometers) is uneven and incomplete. We apply this method to data from the Korean seismic network (52 broad-band velocity seismometers, 30 of which are borehole sensors) to estimate the sensor orientation in the period of 2005-2016. We also track temporal changes in the sensor orientation through the change in the polarity and the amplitude of the tangential receiver function. Six borehole stations are confirmed to experience a significant orientation change (10°-180°) over the period of 10 yr. We demonstrate the usefulness of our method by estimating the orientation of ocean bottom sensors, which are known to have high noise level during the relatively short deployment period.
1988-01-22
Final Report 19 January 1987 Army Research OfficeM Contract No. DAAL03..87-K-0052 National Center for Physical Acoustics D T ! C " Naioal P. 0. Box 847...black . umberJ FIELO I GROUP I SU9GROU-p Acoustic , Seismic, Acoustic seismic coupling, porefluid, pulse echo, propagation, soils, sound speed...seismic transfer function. /’An acoustic scheme for buried object detection is thought to involve a sound source above the ground and a microphone as a
SEISRISK II; a computer program for seismic hazard estimation
Bender, Bernice; Perkins, D.M.
1982-01-01
The computer program SEISRISK II calculates probabilistic ground motion values for use in seismic hazard mapping. SEISRISK II employs a model that allows earthquakes to occur as points within source zones and as finite-length ruptures along faults. It assumes that earthquake occurrences have a Poisson distribution, that occurrence rates remain constant during the time period considered, that ground motion resulting from an earthquake is a known function of magnitude and distance, that seismically homogeneous source zones are defined, that fault locations are known, that fault rupture lengths depend on magnitude, and that earthquake rates as a function of magnitude are specified for each source. SEISRISK II calculates for each site on a grid of sites the level of ground motion that has a specified probability of being exceeded during a given time period. The program was designed to process a large (essentially unlimited) number of sites and sources efficiently and has been used to produce regional and national maps of seismic hazard.}t is a substantial revision of an earlier program SEISRISK I, which has never been documented. SEISRISK II runs considerably [aster and gives more accurate results than the earlier program and in addition includes rupture length and acceleration variability which were not contained in the original version. We describe the model and how it is implemented in the computer program and provide a flowchart and listing of the code.
Small-scale seismic inversion using surface waves extracted from noise cross correlation.
Gouédard, Pierre; Roux, Philippe; Campillo, Michel
2008-03-01
Green's functions can be retrieved between receivers from the correlation of ambient seismic noise or with an appropriate set of randomly distributed sources. This principle is demonstrated in small-scale geophysics using noise sources generated by human steps during a 10-min walk in the alignment of a 14-m-long accelerometer line array. The time-domain correlation of the records yields two surface wave modes extracted from the Green's function between each pair of accelerometers. A frequency-wave-number Fourier analysis yields each mode contribution and their dispersion curve. These dispersion curves are then inverted to provide the one-dimensional shear velocity of the near surface.
Constraining the crustal root geometry beneath the Rif Cordillera (North Morocco)
NASA Astrophysics Data System (ADS)
Diaz, Jordi; Gil, Alba; Carbonell, Ramon; Gallart, Josep; Harnafi, Mimoun
2016-04-01
The analyses of wide-angle reflections of controlled source experiments and receiver functions calculated from teleseismic events provide consistent constraints of an over-thickened crust beneath the Rif Cordillera (North Morocco). Regarding active source data, we investigate now offline arrivals of Moho-reflected phases recorded in RIFSIS project to get new estimations of 3D crustal thickness variations beneath North Morocco. Additional constrains on the onshore-offshore transition are derived from onland recording of marine airgun shots from the coeval Gassis-Topomed profiles. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain teleseismic receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. The use of a larger dataset including new stations covering the complex areas beneath the Rif Cordillera allow us to improve the resolution of previous contributions, revealing abrupt crustal changes beneath the region. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large modest root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favor models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area beneath western Alboran Sea and the superficial seismicity in Alhoceima area. Therefore, the presence of a crustal root seems to play also a major role in the seismicity distribution in northern Morocco.
NASA Astrophysics Data System (ADS)
Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.
2017-12-01
Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.
Observation of the seismic nucleation phase in the Ridgecrest, California, earthquake sequence
Ellsworth, W.L.; Beroza, G.C.
1998-01-01
Near-source observations of five M 3.8-5.2 earthquakes near Ridgecrest, California are consistent with the presence of a seismic nucleation phase. These earthquakes start abruptly, but then slow or stop before rapidly growing again toward their maximum rate of moment release. Deconvolution of instrument and path effects by empirical Green's functions demonstrates that the initial complexity at the start of the earthquake is a source effect. The rapid growth of the P-wave arrival at the start of the seismic nucleation phase supports the conclusion of Mori and Kanamori [1996] that these earthquakes begin without a magnitude-scaled slow initial phase of the type observed by Iio [1992, 1995].
A phase coherence approach to identifying co-located earthquakes and tremor
NASA Astrophysics Data System (ADS)
Hawthorne, J. C.; Ampuero, J.-P.
2018-05-01
We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green's function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a M 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.
Nakahara, Hisashi; Haney, Matt
2015-01-01
Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.
Investigating source processes of isotropic events
NASA Astrophysics Data System (ADS)
Chiang, Andrea
This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region . This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve the fit to the data. When we apply the 3D model to real data, at long periods (20-50 seconds), we see good agreement in the solutions between the 1D and 3D models and slight improvement in waveform fits when using the 3D velocity model Green's functions. (Abstract shortened by ProQuest.).
Radiated Seismic Energy of Earthquakes in the South-Central Region of the Gulf of California, Mexico
NASA Astrophysics Data System (ADS)
Castro, Raúl R.; Mendoza-Camberos, Antonio; Pérez-Vertti, Arturo
2018-05-01
We estimated the radiated seismic energy (ES) of 65 earthquakes located in the south-central region of the Gulf of California. Most of these events occurred along active transform faults that define the Pacific-North America plate boundary and have magnitudes between M3.3 and M5.9. We corrected the spectral records for attenuation using nonparametric S-wave attenuation functions determined with the whole data set. The path effects were isolated from the seismic source using a spectral inversion. We computed radiated seismic energy of the earthquakes by integrating the square velocity source spectrum and estimated their apparent stresses. We found that most events have apparent stress between 3 × 10-4 and 3 MPa. Model independent estimates of the ratio between seismic energy and moment (ES/M0) indicates that this ratio is independent of earthquake size. We conclude that in general the apparent stress is low (σa < 3 MPa) in the south-central and southern Gulf of California.
NASA Astrophysics Data System (ADS)
Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien
2015-04-01
Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.
Rapid determination of the energy magnitude Me
NASA Astrophysics Data System (ADS)
di Giacomo, D.; Parolai, S.; Bormann, P.; Saul, J.; Grosser, H.; Wang, R.; Zschau, J.
2009-04-01
The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake's damage potential. However, many magnitude scales developed over the past years have different meanings. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy ES (e.g. Bormann et al., 2002): Me = 2/3(log10 ES - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. The calculation of ES requires the integration over frequency of the squared P-waves velocity spectrum corrected for the energy loss experienced by the seismic waves along the path from the source to the receivers. To accout for the frequency-dependent energy loss, we computed spectral amplitude decay functions for different frequenciesby using synthetic Green's functions (Wang, 1999) based on the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We analyse teleseismic broadband P-waves signals in the distance range 20°-98°. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake's origin time. Indeed, we use time variable cumulative energy windows starting 4 s after the first P-wave arrival in order to include the earthquake rupture duration, which is calculated according to Bormann and Saul (2008). We tested our procedure for a large dataset composed by about 750 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of the seismic source, and a combined use of these two magnitude scales would allow a better assessment of the tsunami and shaking potential of an earthquake.. References Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G. L., and Boatwright, J. (2002). Seismic sources and source parameters, in IASPEI New Manual of Seismological Observatory Practice, P. Bormann (Editor), Vol. 1, GeoForschungsZentrum, Potsdam, Chapter 3, 1-94. Bormann, P., and Saul, J. (2008). The new IASPEI standard broadband magnitude mB. Seism. Res. Lett., 79(5), 699-705. Choy, G. L., and Kirby, S. (2004). Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int., 159, 991-1012. Kennett, B. L. N., Engdahl, E. R., and Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122, 108-124. Montagner, J.-P., and Kennett, B. L. N. (1996). How to reconcile body-wave and normal-mode reference Earth models?. Geophys. J. Int., 125, 229-248. Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green's functions. Bull. Seism. Soc. Am., 89(3), 733-741.
Updated Colombian Seismic Hazard Map
NASA Astrophysics Data System (ADS)
Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.
2013-05-01
The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is possible to determinate environments and scenarios where the seismic hazard is a function of distance and magnitude and also the principal seismic sources that contribute to the seismic hazard at each site (dissagregation). This project was conducted by the Servicio Geológico Colombiano (Colombian Geological Survey) and the Universidad Nacional de Colombia (National University of Colombia), with the collaboration of national and foreign experts and the National System of Prevention and Attention of Disaster (SNPAD). It is important to stand out that this new seismic hazard map was used in the updated national building code (NSR-10). A new process is ongoing in order to improve and present the Seismic Hazard Map in terms of intensity. This require new knowledge in site effects, in both local and regional scales, checking the existing and develop new acceleration to intensity relationships, in order to obtain results more understandable and useful for a wider range of users, not only in the engineering field, but also all the risk assessment and management institutions, research and general community.
Infrasonic induced ground motions
NASA Astrophysics Data System (ADS)
Lin, Ting-Li
On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.
Controlled-source seismic interferometry with one way wave fields
NASA Astrophysics Data System (ADS)
van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.
2008-12-01
In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.
NASA Astrophysics Data System (ADS)
Rougier, Esteban; Patton, Howard J.
2015-05-01
Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.
NASA Astrophysics Data System (ADS)
Nayak, Avinash; Dreger, Douglas S.
2018-05-01
The formation of a large sinkhole at the Napoleonville salt dome (NSD), Assumption Parish, Louisiana, caused by the collapse of a brine cavern, was accompanied by an intense and complex sequence of seismic events. We implement a grid-search approach to compute centroid locations and point-source moment tensor (MT) solutions of these seismic events using ˜0.1-0.3 Hz displacement waveforms and synthetic Green's functions computed using a 3D velocity model of the western edge of the NSD. The 3D model incorporates the currently known approximate geometry of the salt dome and the overlying anhydrite-gypsum cap rock, and features a large velocity contrast between the high velocity salt dome and low velocity sediments overlying and surrounding it. For each possible location on the source grid, Green's functions (GFs) to each station were computed using source-receiver reciprocity and the finite-difference seismic wave propagation software SW4. We also establish an empirical method to rigorously assess uncertainties in the centroid location, MW and source type of these events under evolving network geometry, using the results of synthetic tests with hypothetical events and real seismic noise. We apply the methods on the entire duration of data (˜6 months) recorded by the temporary US Geological Survey network. During an energetic phase of the sequence from 24-31 July 2012 when 4 stations were operational, the events with the best waveform fits are primarily located at the western edge of the salt dome at most probable depths of ˜0.3-0.85 km, close to the horizontal positions of the cavern and the future sinkhole. The data are fit nearly equally well by opening crack MTs in the high velocity salt medium or by isotropic volume-increase MTs in the low velocity sediment layers. We find that data recorded by 6 stations during 1-2 August 2012, right before the appearance of the sinkhole, indicate that some events are likely located in the lower velocity media just outside the salt dome at slightly shallower depth ˜0.35-0.65 km, with preferred isotropic volume-increase MT solutions. We find that GFs computed using the 3D velocity model generally result in better fits to the data than GFs computed using 1D velocity models, especially for the smaller amplitude tangential and vertical components, and result in better resolution of event locations. The dominant seismicity during 24-30 July 2012 is characterized by steady occurrence of seismic events with similar locations and MT solutions at a near-characteristic inter-event time. The steady activity is sometimes interrupted by tremor-like sequences of multiple events in rapid succession, followed by quiet periods of little of no seismic activity, in turn followed by the resumption of seismicity with a reduced seismic moment-release rate. The dominant volume-increase MT solutions and the steady features of the seismicity indicate a crack-valve-type source mechanism possibly driven by pressurized natural gas.
NASA Astrophysics Data System (ADS)
Hejrani, Babak; Tkalčić, Hrvoje; Fichtner, Andreas
2017-07-01
Although both earthquake mechanism and 3-D Earth structure contribute to the seismic wavefield, the latter is usually assumed to be layered in source studies, which may limit the quality of the source estimate. To overcome this limitation, we implement a method that takes advantage of a 3-D heterogeneous Earth model, recently developed for the Australasian region. We calculate centroid moment tensors (CMTs) for earthquakes in Papua New Guinea (PNG) and the Solomon Islands. Our method is based on a library of Green's functions for each source-station pair for selected Geoscience Australia and Global Seismic Network stations in the region, and distributed on a 3-D grid covering the seismicity down to 50 km depth. For the calculation of Green's functions, we utilize a spectral-element method for the solution of the seismic wave equation. Seismic moment tensors were calculated using least squares inversion, and the 3-D location of the centroid is found by grid search. Through several synthetic tests, we confirm a trade-off between the location and the correct input moment tensor components when using a 1-D Earth model to invert synthetics produced in a 3-D heterogeneous Earth. Our CMT catalogue for PNG in comparison to the global CMT shows a meaningful increase in the double-couple percentage (up to 70%). Another significant difference that we observe is in the mechanism of events with depth shallower then 15 km and Mw < 6, which contributes to accurate tectonic interpretation of the region.
NASA Astrophysics Data System (ADS)
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
Using Network Theory to Understand Seismic Noise in Dense Arrays
NASA Astrophysics Data System (ADS)
Riahi, N.; Gerstoft, P.
2015-12-01
Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.
NASA Astrophysics Data System (ADS)
Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang
2017-09-01
Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.
NASA Astrophysics Data System (ADS)
Zhu, H.
2017-12-01
Recently, seismologists observed increasing seismicity in North Texas and Oklahoma. Based on seismic observations and other geophysical measurements, some studies suggested possible links between the increasing seismicity and wastewater injection during unconventional oil and gas exploration. To better monitor seismic events and investigate their mechanisms, we need an accurate 3D crustal wavespeed model for North Texas and Oklahoma. Considering the uneven distribution of earthquakes in this region, seismic tomography with local earthquake records have difficulties to achieve good illumination. To overcome this limitation, in this study, ambient noise cross-correlation functions are used to constrain subsurface variations in wavespeeds. I use adjoint tomography to iteratively fit frequency-dependent phase differences between observed and predicted band-limited Green's functions. The spectral-element method is used to numerically calculate the band-limited Green's functions and the adjoint method is used to calculate misfit gradients with respect to wavespeeds. 25 preconditioned conjugate gradient iterations are used to update model parameters and minimize data misfits. Features in the new crustal model M25 correlates with geological units in the study region, including the Llano uplift, the Anadarko basin and the Ouachita orogenic front. In addition, these seismic anomalies correlate with gravity and magnetic observations. This new model can be used to better constrain earthquake source parameters in North Texas and Oklahoma, such as epicenter location and moment tensor solutions, which are important for investigating potential relations between seismicity and unconventional oil and gas exploration.
Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA
NASA Astrophysics Data System (ADS)
Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.
2017-12-01
Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new pseudo-dynamic rupture modeling approach for computing broadband ground-motion time-histories for simulation-based PSHA
The 2017 North Korea M6 seismic sequence: moment tensor, source time function, and aftershocks
NASA Astrophysics Data System (ADS)
Ni, S.; Zhan, Z.; Chu, R.; He, X.
2017-12-01
On September 3rd, 2017, an M6 seismic event occurred in North Korea, with location near previous nuclear test sites. The event features strong P waves and short period Rayleigh waves are observed in contrast to weak S waves, suggesting mostly explosion mechanism. We performed joint inversion for moment tensor and depth with both local and teleseismic waveforms, and find that the event is shallow with mostly isotropic yet substantial non-isotropic components. Deconvolution of seismic waveforms of this event with respect to previous nuclear test events shows clues of complexity in source time function. The event is followed by smaller earthquakes, as early as 8.5 minutes and lasted at least to October. The later events occurred in a compact region, and show clear S waves, suggesting double couple focal mechanism. Via analyzing Rayleigh wave spectrum, these smaller events are found to be shallow. Relative locations, difference in waveforms of the events are used to infer their possible links and generation mechanism.
NASA Astrophysics Data System (ADS)
Hellman, S. B.; Lisowski, S.; Baker, B.; Hagerty, M.; Lomax, A.; Leifer, J. M.; Thies, D. A.; Schnackenberg, A.; Barrows, J.
2015-12-01
Tsunami Information technology Modernization (TIM) is a National Oceanic and Atmospheric Administration (NOAA) project to update and standardize the earthquake and tsunami monitoring systems currently employed at the U.S. Tsunami Warning Centers in Ewa Beach, Hawaii (PTWC) and Palmer, Alaska (NTWC). While this project was funded by NOAA to solve a specific problem, the requirements that the delivered system be both open source and easily maintainable have resulted in the creation of a variety of open source (OS) software packages. The open source software is now complete and this is a presentation of the OS Software that has been funded by NOAA for benefit of the entire seismic community. The design architecture comprises three distinct components: (1) The user interface, (2) The real-time data acquisition and processing system and (3) The scientific algorithm library. The system follows a modular design with loose coupling between components. We now identify the major project constituents. The user interface, CAVE, is written in Java and is compatible with the existing National Weather Service (NWS) open source graphical system AWIPS. The selected real-time seismic acquisition and processing system is open source SeisComp3 (sc3). The seismic library (libseismic) contains numerous custom written and wrapped open source seismic algorithms (e.g., ML/mb/Ms/Mwp, mantle magnitude (Mm), w-phase moment tensor, bodywave moment tensor, finite-fault inversion, array processing). The seismic library is organized in a way (function naming and usage) that will be familiar to users of Matlab. The seismic library extends sc3 so that it can be called by the real-time system, but it can also be driven and tested outside of sc3, for example, by ObsPy or Earthworm. To unify the three principal components we have developed a flexible and lightweight communication layer called SeismoEdex.
Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model
Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua
2015-01-01
We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.
Global assessment of human losses due to earthquakes
Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen
2014-01-01
Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.
NASA Astrophysics Data System (ADS)
Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.
2016-06-01
Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.
NASA Astrophysics Data System (ADS)
Onwuemeka, J.; Liu, Y.; Harrington, R. M.; Peña-Castro, A. F.; Rodriguez Padilla, A. M.; Darbyshire, F. A.
2017-12-01
The Charlevoix Seismic Zone (CSZ), located in eastern Canada, experiences a high rate of intraplate earthquakes, hosting more than six M >6 events since the 17th century. The seismicity rate is similarly high in the Western Quebec seismic zone (WQSZ) where an MN 5.2 event was reported on May 17, 2013. A good understanding of seismicity and its relation to the St-Lawrence paleorift system requires information about event source properties, such as static stress drop and fault orientation (via focal mechanism solutions). In this study, we conduct a systematic estimate of event source parameters using 1) hypoDD to relocate event hypocenters, 2) spectral analysis to derive corner frequency, magnitude, and hence static stress drops, and 3) first arrival polarities to derive focal mechanism solutions of selected events. We use a combined dataset for 817 earthquakes cataloged between June 2012 and May 2017 from the Canadian National Seismograph Network (CNSN), and temporary deployments from the QM-III Earthscope FlexArray and McGill seismic networks. We first relocate 450 events using P and S-wave differential travel-times refined with waveform cross-correlation, and compute focal mechanism solutions for all events with impulsive P-wave arrivals at a minimum of 8 stations using the hybridMT moment tensor inversion algorithm. We then determine corner frequency and seismic moment values by fitting S-wave spectra on transverse components at all stations for all events. We choose the final corner frequency and moment values for each event using the median estimate at all stations. We use the corner frequency and moment estimates to calculate moment magnitudes, static stress-drop values and rupture radii, assuming a circular rupture model. We also investigate scaling relationships between parameters, directivity, and compute apparent source dimensions and source time functions of 15 M 2.4+ events from second-degree moment estimates. To the first-order, source dimension estimates from both methods generally agree. We observe higher corner frequencies and higher stress drops (ranging from 20 to 70 MPa) typical of intraplate seismicity in comparison with interplate seismicity. We follow similar approaches to studying 25 MN 3+ events reported in the WQSZ using data recorded by the CNSN and USArray Transportable Array.
NASA Astrophysics Data System (ADS)
Gao, Lingli; Pan, Yudi
2018-05-01
The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.
NASA Astrophysics Data System (ADS)
Wapenaar, K.; van der Neut, J.; Ruigrok, E.; Draganov, D.; Hunziker, J.; Slob, E.; Thorbecke, J.; Snieder, R.
2008-12-01
It is well-known that under specific conditions the crosscorrelation of wavefields observed at two receivers yields the impulse response between these receivers. This principle is known as 'Green's function retrieval' or 'seismic interferometry'. Recently it has been recognized that in many situations it can be advantageous to replace the correlation process by deconvolution. One of the advantages is that deconvolution compensates for the waveform emitted by the source; another advantage is that it is not necessary to assume that the medium is lossless. The approaches that have been developed to date employ a 1D deconvolution process. We propose a method for seismic interferometry by multidimensional deconvolution and show that under specific circumstances the method compensates for irregularities in the source distribution. This is an important difference with crosscorrelation methods, which rely on the condition that waves are equipartitioned. This condition is for example fulfilled when the sources are regularly distributed along a closed surface and the power spectra of the sources are identical. The proposed multidimensional deconvolution method compensates for anisotropic illumination, without requiring knowledge about the positions and the spectra of the sources.
Rapid determination of the energy magnitude Me
NASA Astrophysics Data System (ADS)
di Giacomo, D.; Parolai, S.; Bormann, P.; Grosser, H.; Saul, J.; Wang, R.; Zschau, J.
2009-12-01
The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake’s damage potential. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy Es (e.g. Bormann et al., 2002): Me = 2/3(log10 Es - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. We analyse teleseismic broadband P-waves signals in the distance range 20°-98° to calculate Es. To correct the frequency-dependent energy loss experienced by the P-waves during the propagation path, we use pre-calculated spectral amplitude decay functions for different frequencies obtained from numerical simulations of Green’s functions (Wang, 1999) given the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake’s origin time, even in case of great earthquakes. We tested our procedure for a large dataset composed by about 770 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of the seismic source, and a combined use of these two magnitude scales would allow a better assessment of the tsunami and shaking potential of an earthquake. Representative case studies will be also shown and discussed. References Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G. L., and Boatwright, J. (2002). Seismic sources and source parameters, in IASPEI New Manual of Seismological Observatory Practice, P. Bormann (Editor), Vol. 1, GeoForschungsZentrum, Potsdam, Chapter 3, 1-94. Choy, G. L., and Kirby, S. (2004). Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int., 159, 991-1012. Kennett, B. L. N., Engdahl, E. R., and Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122, 108-124. Montagner, J.-P., and Kennett, B. L. N. (1996). How to reconcile body-wave and normal-mode reference Earth models?. Geophys. J. Int., 125, 229-248. Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull. Seism. Soc. Am., 89(3), 733-741.
NASA Astrophysics Data System (ADS)
Stump, B. W.; Hayward, C.; Zhou, R.; House, S. M.
2001-12-01
Mining explosions designed to fragment rock are known to be regular sources of seismic waves as exemplified by the routine identification of these events in the USGS Mining Seismicity Report. Near-surface explosions can also generate low frequency acoustic waves or infrasound that can propagate through the atmosphere to regional distances. An understanding of source contributions to the size and character of waves initiated in the solid earth and atmosphere can be used to interpret propagation path effects as well as provide a physical understanding of characteristics that can be used for identifying the source type from the regional observations. The porphyry copper district of the SW United States was chosen for the study of these effects because of the existence of mining explosions that are routinely included in the USGS Mining Seismicity Report and an abundance of high quality regional seismic stations. A regional network of infrasound arrays was installed in order to quantify the accompanying low-frequency acoustic signals. In-mine seismic and acoustic measurements were made to quantify the source. These observations were supplemented with GPS locked video and in-mine documentation of the explosion design parameters. This comprehensive data set has been used to estimate source parameters that can be used to interpret the regional signals. Infrasound signals observed over a one-year time period indicate that the direction of atmospheric winds controls the amplitude and thus detection of these signals. Regional seismic observations are strongly affected by the style of blasting. The largest of the ground truth events (~250,000 kg explosive) are detonated in relatively long blasting sequences (~2 seconds) and produce some of the smallest regional signals. Smaller blasts (~25,000 to 50,000 kg) are detonated over relatively shorter time periods (`~0.2 to 0.4 seconds) and produce the largest regional signals. This source time function signature in the regional seismograms results in little relation between total explosive weight and peak regional amplitudes. Event locations based on the regional seismic network produces a location bias that is magnitude dependent and spans a region with a radius of over 30 km. Part of the location bias appears to be a result of improper identification of the emergent onset of the smaller events.
Constraining the crustal root geometry beneath Northern Morocco
NASA Astrophysics Data System (ADS)
Díaz, J.; Gil, A.; Carbonell, R.; Gallart, J.; Harnafi, M.
2016-10-01
Consistent constraints of an over-thickened crust beneath the Rif Cordillera (N. Morocco) are inferred from analyses of recently acquired seismic datasets including controlled source wide-angle reflections and receiver functions from teleseismic events. Offline arrivals of Moho-reflected phases recorded in RIFSIS project provide estimations of the crustal thicknesses in 3D. Additional constraints on the onshore-offshore transition are inferred from shots in a coeval experiment in the Alboran Sea recorded at land stations in northern Morocco. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. This larger dataset provides better resolution constraints and reveals a number of abrupt crustal changes. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large crustal root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favors models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area beneath western Alboran Sea and the superficial seismicity in Alhoceima area. Therefore, the presence of a crustal root seems to play also a major role in the seismicity distribution in northern Morocco.
A probabilistic approach for the estimation of earthquake source parameters from spectral inversion
NASA Astrophysics Data System (ADS)
Supino, M.; Festa, G.; Zollo, A.
2017-12-01
The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to investigate the robustness of the method and uncertainty propagation from the data-space to the parameter space. Finally, the method is applied to characterize the source parameters of the earthquakes occurring during the 2016-2017 Central Italy sequence, with the goal of investigating the source parameter scaling with magnitude.
Comparison of Seismic Sources and Frequencies in West Texas
NASA Astrophysics Data System (ADS)
Kaip, G.; Harder, S. H.; Karplus, M. S.
2017-12-01
During October 2017 the Seismic Source Facility (SSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at SSF test facility located near Fabens, TX. The project objective was to compare source amplitudes and frequencies of various seismic sources available through the SSF. Selecting the appropriate seismic source is important to reach geological objectives. We compare seismic sources between explosive sources (pentolite and shotgun) and mechanical sources (accelerated weight drop and hammer on plate), focusing on amplitude and frequency. All sources were tested in same geologic environment. Although this is not an ideal geologic formation for source coupling, it does allow an "apples to apples" comparison. Twenty Reftek RT125A seismic recorders with 4.5 Hz geophones were laid out in a line with 3m station separation. Mechanical sources were tested first to minimize changes in the subsurface related to explosive sources Explosive sources, while yielding higher amplitudes, have lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Mechanical sources yield higher frequencies allowing better resolution at shallower depths, but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.
Wiens, Douglas A; Anandakrishnan, Sridhar; Winberry, J Paul; King, Matt A
2008-06-05
Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.
Using Seismic Interferometry to Investigate Seismic Swarms
NASA Astrophysics Data System (ADS)
Matzel, E.; Morency, C.; Templeton, D. C.
2017-12-01
Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other's uncertainty ellipse. We use ANC to create a 3D model of the crust in the region. VSM provides better illumination of the active fault zone. Measures of amplitude and shape are used to refine source properties and locations in space and waveform modeling allows us to estimate near-fault seismic structure.
A phase coherence approach to estimating the spatial extent of earthquakes
NASA Astrophysics Data System (ADS)
Hawthorne, Jessica C.; Ampuero, Jean-Paul
2016-04-01
We present a new method for estimating the spatial extent of seismic sources. The approach takes advantage of an inter-station phase coherence computation that can identify co-located sources (Hawthorne and Ampuero, 2014). Here, however, we note that the phase coherence calculation can eliminate the Green's function and give high values only if both earthquakes are point sources---if their dimensions are much smaller than the wavelengths of the propagating seismic waves. By examining the decrease in coherence at higher frequencies (shorter wavelengths), we can estimate the spatial extents of the earthquake ruptures. The approach can to some extent be seen as a simple way of identifying directivity or variations in the apparent source time functions recorded at various stations. We apply this method to a set of well-recorded earthquakes near Parkfield, CA. We show that when the signal to noise ratio is high, the phase coherence remains high well above 50 Hz for closely spaced M<1.5 earthquake. The high-frequency phase coherence is smaller for larger earthquakes, suggesting larger spatial extents. The implied radii scale roughly as expected from typical magnitude-corner frequency scalings. We also examine a second source of high-frequency decoherence: spatial variation in the shape of the Green's functions. This spatial decoherence appears to occur on a similar wavelengths as the decoherence associated with the apparent source time functions. However, the variation in Green's functions can be normalized away to some extent by comparing observations at multiple components on a single station, which see the same apparent source time functions.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, S. A.
2011-10-01
2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called `the perturbation method' and `the matrix method', to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green's function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green's function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green's function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.
NASA Astrophysics Data System (ADS)
Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria
2017-09-01
Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We then showed the impact that each source parameter characterizing the k-2 model has on ground motion amplitude. Finally we performed ground motion simulations showing results for different probable earthquake scenarios in the URG. Dependency of ground motions and of their variability are analyzed at different frequencies in respect of rupture velocity, roughness degree of slip distribution (stress drop), and hypocenter location. In near-source conditions, ground motion variability is shown to be mostly governed by the uncertainty on source parameters. In our specific configuration (magnitude, distance), the directivity effect is only observed in a limited frequency range. Rather, broadband ground motions are shown to be sensitive to both average rupture velocity and its possible variability, and to slip roughness. Ending up with a comparison of simulation results and GMPEs, we conclude that source parameters and their variability should be set up carefully to obtain reliable broadband ground motion estimations. In particular, our study shows that slip roughness should be set up in respect of the target stress drop. This entails the need for a better understanding of the physics of earthquake source and its incorporation in the ground motion modeling.
The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves
NASA Technical Reports Server (NTRS)
Song, Tony Y.; Ji, Chen; Fu, L. -L.; Zlotnicki, Victor; Shum, C. K.; Yi, Yuchan; Hjorleifsdottir, Vala
2005-01-01
The 26 December 2004 Indian Ocean tsunami was the first earthquake tsunami of its magnitude to occur since the advent of both digital seismometry and satellite radar altimetry. Both have independently recorded the event from different physical aspects. The seismic data has then been used to estimate the earthquake fault parameters, and a three-dimensional ocean-general-circulation-model (OGCM) coupled with the fault information has been used to simulate the satellite-observed tsunami waves. Here we show that these two datasets consistently provide the tsunami source using independent methodologies of seismic waveform inversion and ocean modeling. Cross-examining the two independent results confirms that the slip function is the most important condition controlling the tsunami strength, while the geometry and the rupture velocity of the tectonic plane determine the spatial patterns of the tsunami.
Infrasound Generation from the HH Seismic Hammer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kyle Richard
2014-10-01
The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.
Wald, D.J.; Graves, R.W.
2001-01-01
Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.
Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models
NASA Astrophysics Data System (ADS)
Patlan, E.; Velasco, A. A.; Konter, J.
2009-12-01
The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.
Effects of Source RDP Models and Near-source Propagation: Implication for Seismic Yield Estimation
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Helmberger, D. V.; Stead, R. J.; Woods, B. B.
- It has proven difficult to uniquely untangle the source and propagation effects on the observed seismic data from underground nuclear explosions, even when large quantities of near-source, broadband data are available for analysis. This leads to uncertainties in our ability to quantify the nuclear seismic source function and, consequently the accuracy of seismic yield estimates for underground explosions. Extensive deterministic modeling analyses of the seismic data recorded from underground explosions at a variety of test sites have been conducted over the years and the results of these studies suggest that variations in the seismic source characteristics between test sites may be contributing to the observed differences in the magnitude/yield relations applicable at those sites. This contributes to our uncertainty in the determination of seismic yield estimates for explosions at previously uncalibrated test sites. In this paper we review issues involving the relationship of Nevada Test Site (NTS) source scaling laws to those at other sites. The Joint Verification Experiment (JVE) indicates that a magnitude (mb) bias (δmb) exists between the Semipalatinsk test site (STS) in the former Soviet Union (FSU) and the Nevada test site (NTS) in the United States. Generally this δmb is attributed to differential attenuation in the upper-mantle beneath the two test sites. This assumption results in rather large estimates of yield for large mb tunnel shots at Novaya Zemlya. A re-examination of the US testing experiments suggests that this δmb bias can partly be explained by anomalous NTS (Pahute) source characteristics. This interpretation is based on the modeling of US events at a number of test sites. Using a modified Haskell source description, we investigated the influence of the source Reduced Displacement Potential (RDP) parameters ψ ∞ , K and B by fitting short- and long-period data simultaneously, including the near-field body and surface waves. In general, estimates of B and K are based on the initial P-wave pulse, which various numerical analyses show to be least affected by variations in near-source path effects. The corner-frequency parameter K is 20% lower at NTS (Pahute) than at other sites, implying larger effective source radii. The overshoot parameter B appears to be low at NTS (although variable) relative to other sites and is probably due to variations in source conditions. For a low B, the near-field data require a higher value of ψ ∞ to match the long-period MS and short-period mb observations. This flexibility in modeling proves useful in comparing released FSU yields against predictions based on mb and MS.
NASA Astrophysics Data System (ADS)
Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.
2018-05-01
Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.
Deaggregation of Probabilistic Ground Motions in the Central and Eastern United States
Harmsen, S.; Perkins, D.; Frankel, A.
1999-01-01
Probabilistic seismic hazard analysis (PSHA) is a technique for estimating the annual rate of exceedance of a specified ground motion at a site due to known and suspected earthquake sources. The relative contributions of the various sources to the total seismic hazard are determined as a function of their occurrence rates and their ground-motion potential. The separation of the exceedance contributions into bins whose base dimensions are magnitude and distance is called deaggregation. We have deaggregated the hazard analyses for the new USGS national probabilistic ground-motion hazard maps (Frankel et al., 1996). For points on a 0.2?? grid in the central and eastern United States (CEUS), we show color maps of the geographical variation of mean and modal magnitudes (M??, M??) and distances (D??, D??) for ground motions having a 2% chance of exceedance in 50 years. These maps are displayed for peak horizontal acceleration and for spectral response accelerations of 0.2, 0.3, and 1.0 sec. We tabulate M??, D??, M??, and D?? for 49 CEUS cities for 0.2- and 1.0-sec response. Thus, these maps and tables are PSHA-derived estimates of the potential earthquakes that dominate seismic hazard at short and intermediate periods in the CEUS. The contribution to hazard of the New Madrid and Charleston sources dominates over much of the CEUS; for 0.2-sec response, over 40% of the area; for 1.0-sec response, over 80% of the area. For 0.2-sec response, D?? ranges from 20 to 200 km, for 1.0 sec, 30 to 600 km. For sites influenced by New Madrid or Charleston, D is less than the distance to these sources, and M?? is less than the characteristic magnitude of these sources, because averaging takes into account the effect of smaller magnitude and closer sources. On the other hand, D?? is directly the distance to New Madrid or Charleston and M?? for 0.2- and 1.0-sec response corresponds to the dominating source over much of the CEUS. For some cities in the North Atlantic states, short-period seismic hazard is apt to be controlled by local seismicity, whereas intermediate period (1.0 sec) hazard is commonly controlled by regional seismicity, such as that of the Charlevoix seismic zone.
Cranswick, E.
1988-01-01
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.
Repeated Earthquakes in the Vrancea Subcrustal Source and Source Scaling
NASA Astrophysics Data System (ADS)
Popescu, Emilia; Otilia Placinta, Anica; Borleasnu, Felix; Radulian, Mircea
2017-12-01
The Vrancea seismic nest, located at the South-Eastern Carpathians Arc bend, in Romania, is a well-confined cluster of seismicity at intermediate depth (60 - 180 km). During the last 100 years four major shocks were recorded in the lithosphere body descending almost vertically beneath the Vrancea region: 10 November 1940 (Mw 7.7, depth 150 km), 4 March 1977 (Mw 7.4, depth 94 km), 30 August 1986 (Mw 7.1, depth 131 km) and a double shock on 30 and 31 May 1990 (Mw 6.9, depth 91 km and Mw 6.4, depth 87 km, respectively). The probability of repeated earthquakes in the Vrancea seismogenic volume is relatively large taking into account the high density of foci. The purpose of the present paper is to investigate source parameters and clustering properties for the repetitive earthquakes (located close each other) recorded in the Vrancea seismogenic subcrustal region. To this aim, we selected a set of earthquakes as templates for different co-located groups of events covering the entire depth range of active seismicity. For the identified clusters of repetitive earthquakes, we applied spectral ratios technique and empirical Green’s function deconvolution, in order to constrain as much as possible source parameters. Seismicity patterns of repeated earthquakes in space, time and size are investigated in order to detect potential interconnections with larger events. Specific scaling properties are analyzed as well. The present analysis represents a first attempt to provide a strategy for detecting and monitoring possible interconnections between different nodes of seismic activity and their role in modelling tectonic processes responsible for generating the major earthquakes in the Vrancea subcrustal seismogenic source.
Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals
NASA Astrophysics Data System (ADS)
Ducellier, A.; Creager, K.
2017-12-01
Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic crust under the arrays. Identifying zones with lower S-wave velocity and a high Poisson's ratio will then help detecting the presence of water in the subducted oceanic crust. Our ultimate goal is contributing to a better understanding of the mechanism of ETS and subduction zone processes.
NASA Astrophysics Data System (ADS)
Zolfaghari, Mohammad R.
2009-07-01
Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.
Auger, E.; D'Auria, L.; Martini, M.; Chouet, B.; Dawson, P.
2006-01-01
We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green's functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano. Copyright 2006 by the American Geophysical Union.
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
NASA Astrophysics Data System (ADS)
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreger, Douglas S.; Ford, Sean R.; Walter, William R.
Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.
NASA Astrophysics Data System (ADS)
Nakahara, H.
2003-12-01
The 2003 Miyagi-Oki earthquake (M 7.0) took place on May 26, 2003 in the subducting Pacific plate beneath northeastern Japan. The focal depth is around 70km. The focal mechanism is reverse type on a fault plane dipping to the west with a high angle. There was no fatality, fortunately. However, this earthquake caused more than 100 injures, 2000 collapsed houses, and so on. To the south of this focal area by about 50km, an interplate earthquake of M7.5, the Miyagi-Ken-Oki earthquake, is expected to occur in the near future. So the relation between this earthquake and the expected Miyagi-Ken-Oki earthquake attracts public attention. Seismic-energy distribution on earthquake fault planes estimated by envelope inversion analyses can contribute to better understanding of the earthquake source process. For moderate to large earthquakes, seismic energy in frequencies higher than 1 Hz is sometimes much larger than a level expected from the omega-squared model with source parameters estimated by lower-frequency analyses. Therefore, an accurate estimation of seismic energy in such high frequencies has significant importance on estimation of dynamic source parameters such as the seismic energy or the apparent stress. In this study, we execute an envelope inversion analysis based on the method by Nakahara et al. (1998) and clarify the spatial distribution of high-frequency seismic energy radiation on the fault plane of this earthquake. We use three-component sum of mean squared velocity seismograms multiplied by a density of earth medium, which is called envelopes here, for the envelope inversion analysis. Four frequency bands of 1-2, 2-4, 4-8, and 8-16 Hz are adopted. We use envelopes in the time window from the onset of S waves to the lapse time of 51.2 sec. Green functions of envelopes representing the energy propagation process through a scattering medium are calculated based on the radiative transfer theory, which are characterized by parameters of scattering attenuation and intrinsic absorption. We use the values obtained for the northeastern Japan (Sakurai, 1995). We assume the fault plane as follows: strike=193,a, dip=69,a, rake=87,a, length=30km, width=25km with referrence to a waveform inversion analysis in low-frequencies (e.g. Yagi, 2003). We divide this fault plane into 25 subfaults, each of which is a 5km x 5km square. Rupture velocity is assumed to be constant. Seismic energy is radiated from a point source as soon as the rupture front passes the center of each subfault. Time function of energy radiation is assumed as a box-car function. The amount of seismic energy from all the subfaults and site amplification factors for all the stations are estimated by the envelope inversion method. Rupture velocity and the duration time of a box-car function should be estimated by a grid search. Theoretical envelopes calculated with best-fit parameters generally fit to observed ones. The rupture velocity and duration time were estimated as 3.8 km/s and 1.6 sec, respectively. The high-frequency seismic energy was found to be radiated mainly from two spots on the fault plane: The first one is around the initial rupture point and the second is the northern part of the fault plane. These two spots correspond to observed two peaks on envelopes. Amount of seismic energy increases with increasing frequency in the 1-16Hz band, which contradicts an expectation from the omega-squared model. Therefore, stronger radiation of higher-frequency seismic energy is a prominent character of this earthquake. Acknowledgements: We used strong-motion seismograms recorded by the K-NET and KiK-net of NIED, JAPAN.
Global high-frequency source imaging accounting for complexity in Green's functions
NASA Astrophysics Data System (ADS)
Lambert, V.; Zhan, Z.
2017-12-01
The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.
The 2006 Java Earthquake revealed by the broadband seismograph network in Indonesia
NASA Astrophysics Data System (ADS)
Nakano, M.; Kumagai, H.; Miyakawa, K.; Yamashina, T.; Inoue, H.; Ishida, M.; Aoi, S.; Morikawa, N.; Harjadi, P.
2006-12-01
On May 27, 2006, local time, a moderate-size earthquake (Mw=6.4) occurred in central Java. This earthquake caused severe damages near Yogyakarta City, and killed more than 5700 people. To estimate the source mechanism and location of this earthquake, we performed a waveform inversion of the broadband seismograms recorded by a nationwide seismic network in Indonesia (Realtime-JISNET). Realtime-JISNET is a part of the broadband seismograph network developed by an international cooperation among Indonesia, Germany, China, and Japan, aiming at improving the capabilities to monitor seismic activity and tsunami generation in Indonesia. 12 stations in Realitme-JISNET were in operation when the earthquake occurred. We used the three-component seismograms from the two closest stations, which were located about 100 and 300 km from the source. In our analysis, we assumed pure double couple as the source mechanism, thus reducing the number of free parameters in the waveform inversion. Therefore we could stably estimate the source mechanism using the signals observed by a small number of seismic stations. We carried out a grid search with respect to strike, dip, and rake angles to investigate fault orientation and slip direction. We determined source-time functions of the moment-tensor components in the frequency domain for each set of strike, dip, and rake angles. We also conducted a spatial grid search to find the best-fit source location. The best-fit source was approximately 12 km SSE of Yogyakarta at a depth of 10 km below sea level, immediately below the area of extensive damage. The focal mechanism indicates that this earthquake was caused by compressive stress in the NS direction and strike-slip motion was dominant. The moment magnitude (Mw) was 6.4. We estimated the seismic intensity in the areas of severe damage using the source paramters and an empirical attenuation relation for averaged peak ground velocity (PGV) of horizontal seismic motion. We then calculated the instrumental modified Mercalli intensity (Imm) from the estimated PGV values. Our result indicates that strong ground motion with Imm of 7 or more occurred within 10 km of the earthquake fault, although the actual seismic intensity can be affected by shallow structural heterogeneity. We therefore conclude that the severe damages of the Java earthquake are attributed to the strong ground motion, which was primarily caused by the source located immediately below the populated areas.
NASA Astrophysics Data System (ADS)
Behm, M.; Snieder, R.; Tomic, J.
2012-12-01
In regions where active source seismic data are inadequate for imaging purposes due to energy penetration and recovery, cost and logistical concerns, or regulatory restrictions, analysis of natural source and ambient seismic data may provide an alternative. In this study, we investigate the feasibility of using locally-generated seismic noise and teleseismic events in the 2-10 Hz band to obtain a subsurface model. We apply different techniques to 3-component data recorded during the LaBarge Passive Seismic Experiment, a local deployment in southwestern Wyoming in a producing hydrocarbon basin. Fifty-five broadband instruments with an inter-station distance of 250 m recorded continuous seismic data between November 2008 and June 2009. The consistency and high quality of the data set make it an ideal test ground to determine the value of passive seismology techniques for exploration purposes. The near surface is targeted by interferometric analysis of ambient noise. Our results indicate that traffic noise from a state highway generates coherent Rayleigh and Love waves that can then be inverted for laterally varying velocities. The results correlate well with surface geology, and are thought to represent the average of the few upper hundred meters. The autocorrelation functions (ACF) of teleseismic body waves provide information on the uppermost part (1 to 5 km depth) of the crust. ACFs from P-waves correlate with the shallow structure as known from active source studies. The analysis of S-waves exhibits a pronounced azimuthal dependency, which might be used to gain insights on anisotropy.
NASA Astrophysics Data System (ADS)
Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.
2015-12-01
Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and infrasound sensors will offer a unique confirmation in 2016-2017. We conclude with the seismic/infrasounds coupling on Venus which make the detection from space of seismic waves possible through the perturbation of the infrared airglow by infrassounds. Detection threshold as low as Magnitude 5.5 can be reached with existing technologies.
Monte Carlo Volcano Seismic Moment Tensors
NASA Astrophysics Data System (ADS)
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Exploiting IoT Technologies and Open Source Components for Smart Seismic Network Instrumentation
NASA Astrophysics Data System (ADS)
Germenis, N. G.; Koulamas, C. A.; Foundas, P. N.
2017-12-01
The data collection infrastructure of any seismic network poses a number of requirements and trade-offs related to accuracy, reliability, power autonomy and installation & operational costs. Having the right hardware design at the edge of this infrastructure, embedded software running inside the instruments is the heart of pre-processing and communication services implementation and their integration with the central storage and processing facilities of the seismic network. This work demonstrates the feasibility and benefits of exploiting software components from heterogeneous sources in order to realize a smart seismic data logger, achieving higher reliability, faster integration and less development and testing costs of critical functionality that is in turn responsible for the cost and power efficient operation of the device. The instrument's software builds on top of widely used open source components around the Linux kernel with real-time extensions, the core Debian Linux distribution, the earthworm and seiscomp tooling frameworks, as well as components from the Internet of Things (IoT) world, such as the CoAP and MQTT protocols for the signaling planes, besides the widely used de-facto standards of the application domain at the data plane, such as the SeedLink protocol. By using an innovative integration of features based on lower level GPL components of the seiscomp suite with higher level processing earthworm components, coupled with IoT protocol extensions to the latter, the instrument can implement smart functionality such as network controlled, event triggered data transmission in parallel with edge archiving and on demand, short term historical data retrieval.
NASA Astrophysics Data System (ADS)
Zhu, Hejun
2018-04-01
Recently, seismologists observed increasing seismicity in North Texas and Oklahoma. Based on seismic observations and other geophysical measurements, numerous studies suggested links between the increasing seismicity and wastewater injection during unconventional oil and gas exploration. To better monitor seismic events and investigate their triggering mechanisms, we need an accurate 3D crustal wavespeed model for the study region. Considering the uneven distribution of earthquakes in this area, seismic tomography with local earthquake records have difficulties achieving even illumination. To overcome this limitation, in this study, ambient noise cross-correlation functions are used to constrain subsurface variations in wavespeeds. I use adjoint tomography to iteratively fit frequency-dependent phase differences between observed and predicted band-limited Green's functions. The spectral-element method is used to numerically calculate the band-limited Green's functions and the adjoint method is used to calculate misfit gradients with respect to wavespeeds. Twenty five preconditioned conjugate gradient iterations are used to update model parameters and minimize data misfits. Features in the new crustal model TO25 correlates well with geological provinces in the study region, including the Llano uplift, the Anadarko basin and the Ouachita orogenic front, etc. In addition, there are relatively good correlations between seismic results with gravity and magnetic observations. This new crustal model can be used to better constrain earthquake source parameters in North Texas and Oklahoma, such as epicenter location as well as moment tensor solutions, which are important for investigating triggering mechanisms between these induced earthquakes and unconventional oil and gas exploration activities.
NASA Astrophysics Data System (ADS)
Kaip, G.; Harder, S. H.; Karplus, M. S.; Vennemann, A.
2016-12-01
In May 2016, the National Seismic Source Facility (NSSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at the Indio Ranch located 30 km southwest of Van Horn, Texas. Both hammer on an aluminum plate and explosive sources were used. The project objective was to image subsurface structures at the ranch, owned by UTEP. Selecting the appropriate seismic source is important to reach project objectives. We compare seismic sources between explosions and hammer on plate, focusing on amplitude and frequency. The seismic line was 1 km long, trending WSW to ENE, with 200 4.5 Hz geophones at 5m spacing and shot locations at 10m spacing. Clay slurry was used in shot holes to increase shot coupling around booster. Trojan Spartan cast boosters (150g) were used in explosive sources in each shot hole (1 hole per station). The end of line shots had 5 shot holes instead of 1 (750g total). The hammer source utilized a 5.5 kg hammer and an aluminum plate. Five hammer blows were stacked at each location to improve signal-to-noise ratio. Explosive sources yield higher amplitude, but lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Hammer sources yield higher frequencies, allowing better resolution at shallower depths but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.
NASA Astrophysics Data System (ADS)
Crone, T. J.; Tolstoy, M.; Carton, H. D.
2013-12-01
In the summer of 2012, two multi-channel seismic (MCS) experiments, Cascadia Open-Access Seismic Transects (COAST) and Ridge2Trench, were conducted in the offshore Cascadia region. An area of growing environmental concern with active source seismic experiments is the potential impact of the received sound on marine mammals, but data relating to this issue is limited. For these surveys sound level 'mitigation radii' are established for the protection of marine mammals, based on direct arrival modeling and previous calibration experiments. Propagation of sound from seismic arrays can be accurately modeled in deep-water environments, but in shallow and sloped environments the complexity of local geology and bathymetry can make it difficult to predict sound levels as a function of distance from the source array. One potential solution to this problem is to measure the received levels in real-time using the ship's streamer (Diebold et al., 2010), which would allow the dynamic determination of suitable mitigation radii. We analyzed R/V Langseth streamer data collected on the shelf and slope off the Washington coast during the COAST experiment to measure received levels in situ up to 8 km away from the ship. Our analysis shows that water depth and bathymetric features can affect received levels in shallow water environments. The establishment of dynamic mitigation radii based on local conditions may help maximize the safety of marine mammals while also maximizing the ability of scientists to conduct seismic research. With increasing scientific and societal focus on subduction zone environments, a better understanding of shallow water sound propagation is essential for allowing seismic exploration of these hazardous environments to continue. Diebold, J. M., M. Tolstoy, L. Doermann, S. Nooner, S. Webb, and T. J. Crone (2010) R/V Marcus G. Langseth Seismic Source: Modeling and Calibration. Geochemistry, Geophysics, Geosystems, 11, Q12012, doi:10.1029/2010GC003216.
NASA Astrophysics Data System (ADS)
Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.
2012-12-01
After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by National Research Institute for Earth Science and Disaster Prevention Japan. This study is supported by Multidisciplinary research project for Niigata-Kobe tectonic zone promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S; Dreger, D; Hellweg, P
2007-08-08
We have performed a complete moment tensor analysis of the seismic event, which occurred on Monday August 6, 2007 at 08:48:40 UTC 21 km from Mt.Pleasant, Utah. In our analysis we utilized complete three-component seismic records recorded by the USArray, University of Utah, and EarthScope seismic arrays. The seismic waveform data was integrated to displacement and filtered between 0.02 to 0.10 Hz following instrument removal. We used the Song et al. (1996) velocity model to compute Green's functions used in the moment tensor inversion. A map of the stations we used and the location of the event is shown inmore » Figure 1. In our moment tensor analysis we assumed a shallow source depth of 1 km consistent with the shallow depth reported for this event. As shown in Figure 2 the results point to a source mechanism with negligible double-couple radiation and is composed of dominant CLVD and implosive isotropic components. The total scalar seismic moment is 2.12e22 dyne cm corresponding to a moment magnitude (Mw) of 4.2. The long-period records are very well matched by the model (Figure 2) with a variance reduction of 73.4%. An all dilational (down) first motion radiation pattern is predicted by the moment tensor solution, and observations of first motions are in agreement.« less
Borehole prototype for seismic high-resolution exploration
NASA Astrophysics Data System (ADS)
Giese, Rüdiger; Jaksch, Katrin; Krauß, Felix; Krüger, Kay; Groh, Marco; Jurczyk, Andreas
2014-05-01
Target reservoirs for the exploitation of hydrocarbons or hot water for geothermal energy supply can comprise small layered structures, for instance thin layers or faults. The resolution of 2D and 3D surface seismic methods is often not sufficient to determine and locate these structures. Borehole seismic methods like vertical seismic profiling (VSP) and seismic while drilling (SWD) use either receivers or sources within the borehole. Thus, the distance to the target horizon is reduced and higher resolution images of the geological structures can be achieved. Even these methods are limited in their resolution capabilities with increasing target depth. To localize structures more accuracy methods with higher resolution in the range of meters are necessary. The project SPWD -- Seismic Prediction While Drilling aims at s the development of a borehole prototype which combines seismic sources and receivers in one device to improve the seismic resolution. Within SPWD such a prototype has been designed, manufactured and tested. The SPWD-wireline prototype is divided into three main parts. The upper section comprises the electronic unit. The middle section includes the upper receiver, the upper clamping unit as well as the source unit and the lower clamping unit. The lower section consists of the lower receiver unit and the hydraulic unit. The total length of the prototype is nearly seven meters and its weight is about 750 kg. For focusing the seismic waves in predefined directions of the borehole axis the method of phased array is used. The source unit is equipped with four magnetostrictive vibrators. Each can be controlled independently to get a common wave front in the desired direction of exploration. Source signal frequencies up to 5000 Hz are used, which allows resolutions up to one meter. In May and September 2013 field tests with the SPWD-wireline prototype have been carried out at the KTB Deep Crustal Lab in Windischeschenbach (Bavaria). The aim was to proof the pressure-tightness and the functionality of the hydraulic system components of the borehole device. To monitor the prototype four cameras and several moisture sensors were installed along the source and receiver units close to the extendable coupling stamps where an infiltration of fluid is most probably. The tests lasted about 48 hours each. It was possible to extend and to retract the coupling stamps of the prototype up to a depth of 2100 m. No infiltration of borehole fluids in the SPWD-tool was observed. In preparation of the acoustic calibration measurements in the research and education mine of the TU Bergakademie Freiberg seismic sources and receivers as well as the recording electronic devices were installed in the SPWD-wireline prototype at the GFZ. Afterwards, the SPWD-borehole device was transported to the GFZ-Underground-Lab and preliminary test measurements to characterize the radiation pattern characteristics have been carried out in the newly drilled vertical borehole in December 2013. Previous measurements with a laboratory borehole prototype have demonstrated a dependency of the radiated seismic energy from the predefined amplification direction, the wave type and the signal frequencies. SPWD is funded by the German Federal Environment Ministry
NASA Astrophysics Data System (ADS)
Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.
2017-12-01
When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).
Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry
NASA Astrophysics Data System (ADS)
Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan
2016-04-01
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).
Development of Towed Marine Seismic Vibrator as an Alternative Seismic Source
NASA Astrophysics Data System (ADS)
Ozasa, H.; Mikada, H.; Murakami, F.; Jamali Hondori, E.; Takekawa, J.; Asakawa, E.; Sato, F.
2015-12-01
The principal issue with respect to marine impulsive sources to acquire seismic data is if the emission of acoustic energy inflicts harm on marine mammals or not, since the volume of the source signal being released into the marine environment could be so large compared to the sound range of the mammals. We propose a marine seismic vibrator as an alternative to the impulsive sources to mitigate a risk of the impact to the marine environment while satisfying the necessary conditions of seismic surveys. These conditions include the repeatability and the controllability of source signals both in amplitude and phase for high-quality measurements. We, therefore, designed a towed marine seismic vibrator (MSV) as a new type marine vibratory seismic source that employed the hydraulic servo system for the controllability condition in phase and in amplitude that assures the repeatability as well. After fabricating a downsized MSV that requires the power of 30 kVA at a depth of about 250 m in water, several sea trials were conducted to test the source characteristics of the downsized MSV in terms of amplitude, frequency, horizontal and vertical directivities of the generated field. The maximum sound level satisfied the designed specification in the frequencies ranging from 3 to 300 Hz almost omnidirectionally. After checking the source characteristics, we then conducted a trial seismic survey, using both the downsized MSV and an airgun of 480 cubic-inches for comparison, with a streamer cable of 2,000m long right above a cabled earthquake observatory in the Japan Sea. The result showed that the penetration of seismic signals generated by the downsized MSV was comparable to that by the airgun, although there was a slight difference in the signal-to-noise ratio. The MSV could become a versatile source that will not harm living marine mammals as an alternative to the existing impulsive seismic sources such as airgun.
Risk-targeted maps for Romania
NASA Astrophysics Data System (ADS)
Vacareanu, Radu; Pavel, Florin; Craciun, Ionut; Coliba, Veronica; Arion, Cristian; Aldea, Alexandru; Neagu, Cristian
2018-03-01
Romania has one of the highest seismic hazard levels in Europe. The seismic hazard is due to a combination of local crustal seismic sources, situated mainly in the western part of the country and the Vrancea intermediate-depth seismic source, which can be found at the bend of the Carpathian Mountains. Recent seismic hazard studies have shown that there are consistent differences between the slopes of the seismic hazard curves for sites situated in the fore-arc and back-arc of the Carpathian Mountains. Consequently, in this study we extend this finding to the evaluation of the probability of collapse of buildings and finally to the development of uniform risk-targeted maps. The main advantage of uniform risk approach is that the target probability of collapse will be uniform throughout the country. Finally, the results obtained are discussed in the light of a recent study with the same focus performed at European level using the hazard data from SHARE project. The analyses performed in this study have pointed out to a dominant influence of the quantile of peak ground acceleration used for anchoring the fragility function. This parameter basically alters the shape of the risk-targeted maps shifting the areas which have higher collapse probabilities from eastern Romania to western Romania, as its exceedance probability increases. Consequently, a uniform procedure for deriving risk-targeted maps appears as more than necessary.
Seismic Source Scaling and Discrimination in Diverse Tectonic Environments
2009-09-30
3349-3352. Imanishi, K., W. L. Ellsworth, and S. G. Prejean (2004). Earthquake source parameters determined by the SAFOD Pilot Hole seismic array ... seismic discrimination by performing a thorough investigation of* earthquake source scaling using diverse, high-quality datascts from varied tectonic...these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity
Attenuation - The Ugly Stepsister of Velocity in the Noise Correlation Family
NASA Astrophysics Data System (ADS)
Lawrence, J. F.; Prieto, G.; Denolle, M.; Seats, K. J.
2012-12-01
Noise correlation functions and noise transfer functions have shown in practice to preserve the relative amplitude information, despite the challenge to reliably resolve it compared to phase information. Yet amplitude contains important information about wavefield interactions with the subsurface structure, including focusing/defocusing and seismic attenuation. To focus on the anelastic effects, or attenuation, we measure amplitude decay with increased station separation (distance). We present numerical results showing that the noise correlation functions (NCFs) preserve the relative amplitude information and properly retrieve seismic attenuation for sufficient noise source distribution and appropriate processing. Attenuation is only preserved through the relative decay of distinct waves from multiple simultaneous source locations. With appropriate whitening (and no time domain normalization), the coherency preserves correlation amplitudes proportional to the relative decay expected with all the inter-station spacing. We present new attenuation results for the United States, and particularly the Yellowstone region that illustrate lateral variations that strongly correlate with known geological features such as sedimentary basins, crustal blocks and active volcanism.
NASA Astrophysics Data System (ADS)
Nakano, M.; Kumagai, H.; Inoue, H.
2008-06-01
We propose a method of waveform inversion to rapidly and routinely estimate both the moment function and the centroid moment tensor (CMT) of an earthquake. In this method, waveform inversion is carried out in the frequency domain to obtain the moment function more rapidly than when solved in the time domain. We assume a pure double-couple source mechanism in order to stabilize the solution when using data from a small number of seismic stations. The fault and slip orientations are estimated by a grid search with respect to the strike, dip and rake angles. The moment function in the time domain is obtained from the inverse Fourier transform of the frequency components determined by the inversion. Since observed waveforms used for the inversion are limited in a particular frequency band, the estimated moment function is a bandpassed form. We develop a practical approach to estimate the deconvolved form of the moment function, from which we can reconstruct detailed rupture history and the seismic moment. The source location is determined by a spatial grid search using adaptive grid spacings, which are gradually decreased in each step of the search. We apply this method to two events that occurred in Indonesia by using data from a broad-band seismic network in Indonesia (JISNET): one northeast of Sulawesi (Mw = 7.5) on 2007 January 21, and the other south of Java (Mw = 7.5) on 2006 July 17. The source centroid locations and mechanisms we estimated for both events are consistent with those determined by the Global CMT Project and the National Earthquake Information Center of the U.S. Geological Survey. The estimated rupture duration of the Sulawesi event is 16 s, which is comparable to a typical duration for earthquakes of this magnitude, while that of the Java event is anomalously long (176 s), suggesting that this event was a tsunami earthquake. Our application demonstrates that this inversion method has great potential for rapid and routine estimations of both the CMT and the moment function, and may be useful for identification of tsunami earthquakes.
NASA Astrophysics Data System (ADS)
Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean
2016-04-01
A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.
New methods for engineering site characterization using reflection and surface wave seismic survey
NASA Astrophysics Data System (ADS)
Chaiprakaikeow, Susit
This study presents two new seismic testing methods for engineering application, a new shallow seismic reflection method and Time Filtered Analysis of Surface Waves (TFASW). Both methods are described in this dissertation. The new shallow seismic reflection was developed to measure reflection at a single point using two to four receivers, assuming homogeneous, horizontal layering. It uses one or more shakers driven by a swept sine function as a source, and the cross-correlation technique to identify wave arrivals. The phase difference between the source forcing function and the ground motion due to the dynamic response of the shaker-ground interface was corrected by using a reference geophone. Attenuated high frequency energy was also recovered using the whitening in frequency domain. The new shallow seismic reflection testing was performed at the crest of Porcupine Dam in Paradise, Utah. The testing used two horizontal Vibroseis sources and four receivers for spacings between 6 and 300 ft. Unfortunately, the results showed no clear evidence of the reflectors despite correction of the magnitude and phase of the signals. However, an improvement in the shape of the cross-correlations was noticed after the corrections. The results showed distinct primary lobes in the corrected cross-correlated signals up to 150 ft offset. More consistent maximum peaks were observed in the corrected waveforms. TFASW is a new surface (Rayleigh) wave method to determine the shear wave velocity profile at a site. It is a time domain method as opposed to the Spectral Analysis of Surface Waves (SASW) method, which is a frequency domain method. This method uses digital filtering to optimize bandwidth used to determine the dispersion curve. Results from testings at three different sites in Utah indicated good agreement with the dispersion curves measured using both TFASW and SASW methods. The advantage of TFASW method is that the dispersion curves had less scatter at long wavelengths as a result from wider bandwidth used in those tests.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals.
Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals
HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062
GDP: A new source for shallow high-resolution seismic exploration
NASA Astrophysics Data System (ADS)
Rashed, Mohamed A.
2009-06-01
Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.
Hydraulic transients: a seismic source in volcanoes and glaciers.
Lawrence, W S; Qamar, A
1979-02-16
A source for certain low-frequency seismic waves is postulated in terms of the water hammer effect. The time-dependent displacement of a water-filled sub-glacial conduit is analyzed to demonstrate the nature of the source. Preliminary energy calculations and the observation of hydraulically generated seismic radiation from a dam indicate the plausibility of the proposed source.
Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling
NASA Astrophysics Data System (ADS)
Dȩbski, Wojciech
2008-07-01
Many aspects of earthquake source dynamics like dynamic stress drop, rupture velocity and directivity, etc. are currently inferred from the source time functions obtained by a deconvolution of the propagation and recording effects from seismograms. The question of the accuracy of obtained results remains open. In this paper we address this issue by considering two aspects of the source time function deconvolution. First, we propose a new pseudo-spectral parameterization of the sought function which explicitly takes into account the physical constraints imposed on the sought functions. Such parameterization automatically excludes non-physical solutions and so improves the stability and uniqueness of the deconvolution. Secondly, we demonstrate that the Bayesian approach to the inverse problem at hand, combined with an efficient Markov Chain Monte Carlo sampling technique, is a method which allows efficient estimation of the source time function uncertainties. The key point of the approach is the description of the solution of the inverse problem by the a posteriori probability density function constructed according to the Bayesian (probabilistic) theory. Next, the Markov Chain Monte Carlo sampling technique is used to sample this function so the statistical estimator of a posteriori errors can be easily obtained with minimal additional computational effort with respect to modern inversion (optimization) algorithms. The methodological considerations are illustrated by a case study of the mining-induced seismic event of the magnitude M L ≈3.1 that occurred at Rudna (Poland) copper mine. The seismic P-wave records were inverted for the source time functions, using the proposed algorithm and the empirical Green function technique to approximate Green functions. The obtained solutions seem to suggest some complexity of the rupture process with double pulses of energy release. However, the error analysis shows that the hypothesis of source complexity is not justified at the 95% confidence level. On the basis of the analyzed event we also show that the separation of the source inversion into two steps introduces limitations on the completeness of the a posteriori error analysis.
Using Seismic and Infrasonic Data to Identify Persistent Sources
NASA Astrophysics Data System (ADS)
Nava, S.; Brogan, R.
2014-12-01
Data from seismic and infrasound sensors were combined to aid in the identification of persistent sources such as mining-related explosions. It is of interest to operators of seismic networks to identify these signals in their event catalogs. Acoustic signals below the threshold of human hearing, in the frequency range of ~0.01 to 20 Hz are classified as infrasound. Persistent signal sources are useful as ground truth data for the study of atmospheric infrasound signal propagation, identification of manmade versus naturally occurring seismic sources, and other studies. By using signals emanating from the same location, propagation studies, for example, can be conducted using a variety of atmospheric conditions, leading to improvements to the modeling process for eventual use where the source is not known. We present results from several studies to identify ground truth sources using both seismic and infrasound data.
Present Kinematic Regime and Recent Seismicity of Gulf Suez, Egypt
NASA Astrophysics Data System (ADS)
Mohamed, G.-E. A.; Abd El-Aal, A. K.
2018-01-01
In this study we computed recent seismicity and present kinematic regime in the northern and middle zones of Gulf of Suez as inferred from moment tensor settlings and focal mechanism of local earthquakes that happened in this region. On 18 and 22 of July, 2014 two moderate size earthquakes of local magnitudes 4.2 and 4.1 struck the northern zone of Gulf of Suez near Suez City. These events are instrumentally recorded by Egyptian National Seismic Network (ENSN). The earthquakes have been felt at Suez City and greater Cairo metropolitan zone while no losses were reported. The source mechanism and source parameters of the calculated events were considered by the near-source waveform data listed at very broadband stations of ENSN and supported by the P-wave polarity data of short period stations. The new settling method and software used deem the action of the source time function, which has been ignored in most of the program series of the moment tensor settling analysis with near source seismograms. The obtained results from settling technique indicate that the estimated seismic moments of both earthquakes are 0.6621E + 15 and 0.4447E + 15 Nm conforming to a moment magnitude Mw 3.8 and 3.7 respectively. The fault plan settlings obtained from both settling technique and polarity of first-arrival indicate the dominance of normal faulting. We also evaluated the stress field in north and middle zones of Gulf of Suez using a multiple inverse method. The prime strain axis shows that the deformation is taken up mainly as stretching in the E-W and NE-SW direction.
Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions
NASA Astrophysics Data System (ADS)
Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.
2016-10-01
Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability of body and surface wave phases created by different sizes and types of impacts all over Mars.
Studying temporal velocity changes with ambient seismic noise at Hawaiian volcanoes
NASA Astrophysics Data System (ADS)
Ballmer, S.; Wolfe, C. J.; Okubo, P. G.; Haney, M. M.; Thurber, C. H.
2012-04-01
In order to understand the dynamics of volcanoes and to assess the associated hazards, the analysis of ambient seismic noise - a continuous passive source - has been used for both imaging and monitoring temporal changes in seismic velocity. Between pairs of seismic stations, surface wave Green's functions can be retrieved from the background ocean-generated noise being sensitive to the shallow subsurface. Such Green's functions allow the measurement of very small temporal perturbations in seismic velocity with a variety of applications. In particular, velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. Here we perform ambient seismic noise interferometry to study temporal changes in seismic velocities within the shallow (<5km) subsurface of the Hawaiian volcanoes. Our study is the first to assess the potential for using ambient noise analyses as a tool for Hawaiian volcano monitoring. Five volcanoes comprise the island of Hawaii, of which two are active: Mauna Loa volcano, which last erupted in 1984, and Kilauea volcano, where the Pu'u'O'o-Kupaianaha eruption along the east rift zone has been ongoing since 1983. For our analysis, we use data from the USGS Hawaiian Volcano Observatory (HVO) seismic network from 05/2007 to 12/2009. Our study period includes the Father's Day dike intrusion into Kilauea's east rift zone in mid-June 2007 as well as increased summit activity commencing in late 2007 and leading to several minor explosions in early 2008. These volcanic events are of interest for the study of potential associated seismic velocity changes. However, we find that volcanic tremor complicates the measurement of velocity changes. Volcanic tremor is continuously present during most of our study period, and contaminates the recovered Green's functions for station pairs across the entire island. Initial results suggest that a careful quality assessment (i.e. visually inspecting the Green's functions and filtering to remove tremor) diminishes the effects of tremor and allows for resolution of relative velocity changes on the order of less than 1%. The observed velocity changes will be compared with known volcanic activity in space and time, and interpreted in view of underlying processes.
NASA Astrophysics Data System (ADS)
Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.
2016-12-01
The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.
2017-09-01
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
Radtke, Robert P; Stokes, Robert H; Glowka, David A
2014-12-02
A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.
Regularized wave equation migration for imaging and data reconstruction
NASA Astrophysics Data System (ADS)
Kaplan, Sam T.
The reflection seismic experiment results in a measurement (reflection seismic data) of the seismic wavefield. The linear Born approximation to the seismic wavefield leads to a forward modelling operator that we use to approximate reflection seismic data in terms of a scattering potential. We consider approximations to the scattering potential using two methods: the adjoint of the forward modelling operator (migration), and regularized numerical inversion using the forward and adjoint operators. We implement two parameterizations of the forward modelling and migration operators: source-receiver and shot-profile. For both parameterizations, we find requisite Green's function using the split-step approximation. We first develop the forward modelling operator, and then find the adjoint (migration) operator by recognizing a Fredholm integral equation of the first kind. The resulting numerical system is generally under-determined, requiring prior information to find a solution. In source-receiver migration, the parameterization of the scattering potential is understood using the migration imaging condition, and this encourages us to apply sparse prior models to the scattering potential. To that end, we use both a Cauchy prior and a mixed Cauchy-Gaussian prior, finding better resolved estimates of the scattering potential than are given by the adjoint. In shot-profile migration, the parameterization of the scattering potential has its redundancy in multiple active energy sources (i.e. shots). We find that a smallest model regularized inverse representation of the scattering potential gives a more resolved picture of the earth, as compared to the simpler adjoint representation. The shot-profile parameterization allows us to introduce a joint inversion to further improve the estimate of the scattering potential. Moreover, it allows us to introduce a novel data reconstruction algorithm so that limited data can be interpolated/extrapolated. The linearized operators are expensive, encouraging their parallel implementation. For the source-receiver parameterization of the scattering potential this parallelization is non-trivial. Seismic data is typically corrupted by various types of noise. Sparse coding can be used to suppress noise prior to migration. It is a method that stems from information theory and that we apply to noise suppression in seismic data.
A New Seismic Hazard Model for Mainland China
NASA Astrophysics Data System (ADS)
Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.
2017-12-01
We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.
Rapid estimate of earthquake source duration: application to tsunami warning.
NASA Astrophysics Data System (ADS)
Reymond, Dominique; Jamelot, Anthony; Hyvernaud, Olivier
2016-04-01
We present a method for estimating the source duration of the fault rupture, based on the high-frequency envelop of teleseismic P-Waves, inspired from the original work of (Ni et al., 2005). The main interest of the knowledge of this seismic parameter is to detect abnormal low velocity ruptures that are the characteristic of the so called 'tsunami-earthquake' (Kanamori, 1972). The validation of the results of source duration estimated by this method are compared with two other independent methods : the estimated duration obtained by the Wphase inversion (Kanamori and Rivera, 2008, Duputel et al., 2012) and the duration calculated by the SCARDEC process that determines the source time function (M. Vallée et al., 2011). The estimated source duration is also confronted to the slowness discriminant defined by Newman and Okal, 1998), that is calculated routinely for all earthquakes detected by our tsunami warning process (named PDFM2, Preliminary Determination of Focal Mechanism, (Clément and Reymond, 2014)). Concerning the point of view of operational tsunami warning, the numerical simulations of tsunami are deeply dependent on the source estimation: better is the source estimation, better will be the tsunami forecast. The source duration is not directly injected in the numerical simulations of tsunami, because the cinematic of the source is presently totally ignored (Jamelot and Reymond, 2015). But in the case of a tsunami-earthquake that occurs in the shallower part of the subduction zone, we have to consider a source in a medium of low rigidity modulus; consequently, for a given seismic moment, the source dimensions will be decreased while the slip distribution increased, like a 'compact' source (Okal, Hébert, 2007). Inversely, a rapid 'snappy' earthquake that has a poor tsunami excitation power, will be characterized by higher rigidity modulus, and will produce weaker displacement and lesser source dimensions than 'normal' earthquake. References: CLément, J. and Reymond, D. (2014). New Tsunami Forecast Tools for the French Polynesia Tsunami Warning System. Pure Appl. Geophys, 171. DUPUTEL, Z., RIVERA, L., KANAMORI, H. and HAYES, G. (2012). Wphase source inversion for moderate to large earthquakes. Geophys. J. Intl.189, 1125-1147. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6, 246-259. Kanamori, H. and Rivera, L. (2008). Source inversion of W phase : speeding up seismic tsunami warning. Geophys. J. Intl. 175, 222-238. Newman, A. and Okal, E. (1998). Teleseismic estimates of radiated seismic energy : The E=M0 discriminant for tsunami earthquakes. J. Geophys. Res. 103, 26885-26898. Ni, S., H. Kanamori, and D. Helmberger (2005), Energy radiation from the Sumatra earthquake, Nature, 434, 582. Okal, E.A., and H. Hébert (2007), Far-field modeling of the 1946 Aleutian tsunami, Geophys. J. Intl., 169, 1229-1238. Vallée, M., J. Charléty, A.M.G. Ferreira, B. Delouis, and J. Vergoz, SCARDEC : a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body wave deconvolution, Geophys. J. Int., 184, 338-358, 2011.
NASA Astrophysics Data System (ADS)
Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.
2016-12-01
Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
NASA Astrophysics Data System (ADS)
Baena, M.; Perton, M.; Molina-Villegas, J. C.; Sanchez-Sesma, F. J.
2013-12-01
In order to improve the understanding of the seismic response of Mexico City Valley, we have proposed to perform a tomography study of the seismic wave velocities. For that purpose, we used a collection of acceleration seismograms (corresponding to earthquakes with magnitudes ranging from 4.5 to 8.1 and various epicentral distances to the City) recorded since 1985 in 83 stations distributed across the Valley. The H/V spectral ratios (obtained from average autocorrelations) strongly suggest these movements belong to a 3D generalized diffuse field. Thus, we interpret that cross-correlations between the signals of station pairs are proportional to the imaginary part of the corresponding Green function. Finally, the dispersion curves are constructed from the Green function which lead to the tomography. Other tomographies have already been made around the world using either the seismic coda or seismic noise. We used instead the ensemble of many earthquakes from distant sources that have undergone multiple scattering by the heterogeneities of the Earth and assume the wave fields are equipartitioned. The purpose of the present study is to describe the different steps of the data processing by using synthetic models. The wave propagation within an alluvial basin is simulated using the Indirect Boundary Element Method (IBEM) in 2D configuration for the propagation of P and SV waves. The theoretical Green function for a station pair is obtained by placing a unit force at one station and a receiver at the other. The valley illumination is composed by incoming waves which are simulated using distant independent sources and several diffractors. Data process is validated by the correct retrieval the theoretical Green function. We present here the in-plane Green function for the P-SV case and show the dispersion curves constructed from the cross-correlations compared with analytic results for a layer over a half-space. ACKNOWLEDGEMENTS. This study is partially supported by AXA Research Fund and by DGAPA-UNAM under Project IN104712.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, Tom; Majer, Ernie
2007-04-30
Seismic stimulation is a proposed enhanced oil recovery(EOR) technique which uses seismic energy to increase oil production. Aspart of an integrated research effort (theory, lab and field studies),LBNL has been measuring the seismic amplitude of various stimulationsources in various oil fields (Majer, et al., 2006, Roberts,et al.,2001, Daley et al., 1999). The amplitude of the seismic waves generatedby a stimulation source is an important parameter for increased oilmobility in both theoretical models and laboratory core studies. Theseismic amplitude, typically in units of seismic strain, can be measuredin-situ by use of a borehole seismometer (geophone). Measuring thedistribution of amplitudes within amore » reservoir could allow improved designof stimulation source deployment. In March, 2007, we provided in-fieldmonitoring of two stimulation sources operating in Occidental (Oxy)Permian Ltd's South Wasson Clear Fork (SWCU) unit, located near DenverCity, Tx. The stimulation source is a downhole fluid pulsation devicedeveloped by Applied Seismic Research Corp. (ASR). Our monitoring used aborehole wall-locking 3-component geophone operating in two nearbywells.« less
NASA Astrophysics Data System (ADS)
Zhu, Lupei; Zhou, Xiaofeng
2016-10-01
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.
He, W.; Anderson, R.N.
1998-08-25
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.
He, Wei; Anderson, Roger N.
1998-01-01
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.
Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment
2012-09-01
ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow
Earthquake source parameters determined by the SAFOD Pilot Hole seismic array
Imanishi, K.; Ellsworth, W.L.; Prejean, S.G.
2004-01-01
We estimate the source parameters of #3 microearthquakes by jointly analyzing seismograms recorded by the 32-level, 3-component seismic array installed in the SAFOD Pilot Hole. We applied an inversion procedure to estimate spectral parameters for the omega-square model (spectral level and corner frequency) and Q to displacement amplitude spectra. Because we expect spectral parameters and Q to vary slowly with depth in the well, we impose a smoothness constraint on those parameters as a function of depth using a linear first-differenfee operator. This method correctly resolves corner frequency and Q, which leads to a more accurate estimation of source parameters than can be obtained from single sensors. The stress drop of one example of the SAFOD target repeating earthquake falls in the range of typical tectonic earthquakes. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément
2017-04-01
The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.
Deterministic Seismic Hazard Assessment of Center-East IRAN (55.5-58.5˚ E, 29-31˚ N)
NASA Astrophysics Data System (ADS)
Askari, M.; Ney, Beh
2009-04-01
Deterministic Seismic Hazard Assessment of Center-East IRAN (55.5-58.5˚E, 29-31˚N) Mina Askari, Behnoosh Neyestani Students of Science and Research University,Iran. Deterministic seismic hazard assessment has been performed in Center-East IRAN, including Kerman and adjacent regions of 100km is selected. A catalogue of earthquakes in the region, including historical earthquakes and instrumental earthquakes is provided. A total of 25 potential seismic source zones in the region delineated as area sources for seismic hazard assessment based on geological, seismological and geophysical information, then minimum distance for every seismic sources until site (Kerman) and maximum magnitude for each source have been determined, eventually using the N. A. ABRAHAMSON and J. J. LITEHISER '1989 attenuation relationship, maximum acceleration is estimated to be 0.38g, that is related to the movement of blind fault with maximum magnitude of this source is Ms=5.5.
NASA Astrophysics Data System (ADS)
D'Amico, Sebastiano; Akinci, Aybige; Pischiutta, Marta
2018-03-01
In this paper we characterize the high frequency (1.0 - 10 Hz) seismic wave crustal attenuation and the source excitation in the Sicily Channel and surrounding regions using background seismicity from weak-motion database. The data set includes 15995 waveforms related to earthquakes having local magnitude ranging from 2.0 to 4.5 recorded between 2006 and 2012. The observed and predicted ground motions form the weak-motion data are evaluated in several narrow frequency bands from 0.25 to 20.0 Hz. The filtered observed peaks are regressed to specify a proper functional form for the regional attenuation, excitation and site specific term separately. The results are then used to calibrate effective theoretical attenuation and source excitation models using the Random Vibration Theory (RVT). In the log-log domain, the regional seismic wave attenuation and the geometrical spreading coefficient are modeled together. The geometrical spreading coefficient, g (r), modeled with a bilinear piecewise functional form and given as g (r) ∝ r-1.0 for the short distances (r < 50 km) and as g (r) ∝ r-0.8 for the larger distances (r < 50 km). A frequency-dependent quality factor, inverse of the seismic attenuation parameter, Q(f) = 160 f/fref 0. 35 (where fref = 1.0 Hz), is combined to the geometrical spreading. The source excitation terms are defined at a selected reference distance with a magnitude independent roll-off spectral parameter, κ 0.04 s and with a Brune stress drop parameter increasing with moment magnitude, from Δσ = 2 MPa for Mw = 2.0 to Δσ = 13 MPa for Mw = 4.5. For events M≤4.5 (being Mwmax = 4.5 available in the dataset) the stress parameters are obtained by correlating the empirical/excitation source spectra with the Brune spectral model as function of magnitude. For the larger magnitudes (Mw>4.5) outside the range available in the calibration dataset where we do not have recorded data, we extrapolate our results through the calibration of the stress parameters of the Brune source spectrum over the Bindi et al. (2011) ground motion prediction equation (GMPE) selected as a reference model (hereafter also ITA10).
Frozen Gaussian approximation for 3D seismic tomography
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
A FORTRAN source library for quaternion algebra. Application to multicomponent seismic data
NASA Astrophysics Data System (ADS)
Benaïssa, A.; Benaïssa, Z.; Ouadfeul, S.
2012-04-01
The quaternions, named also hypercomplex numbers, constituted of a real part and three imaginary parts, allow a representation of multi-component physical signals in geophysics. In FORTRAN, the need for programming new applications and extend programs to quaternions requires to enhance capabilities of this language. In this study, we develop, in FORTRAN 95, a source library which provides functions and subroutines making development and maintenance of programs devoted to quaternions, equivalent to those developed for the complex plane. The systematic use of generic functions and generic operators: 1/ allows using FORTRAN statements and operators extended to quaternions without renaming them and 2/ makes use of this statements transparent to the specificity of quaternions. The portability of this library is insured by the standard FORTRAN 95 strict norm which is independent of operating systems (OS). The execution time of quaternion applications, sometimes crucial for huge data sets, depends, generally, of compilers optimizations by the use of in lining and parallelisation. To show the use of the library, Fourier transform of a real one dimensional quaternionic seismic signal is presented. Furthermore, a FORTRAN code, which computes the quaternionic singular values decomposition (QSVD), is developed using the proposed library and applied to wave separation in multicomponent vertical seismic profile (VSP) synthetic and real data. The extracted wavefields have been highly enhanced, compared to those obtained with median filter, due to QSVD which takes into account the correlation between the different components of the seismic signal. Taken in total, these results demonstrate that use of quaternions can bring a significant improvement for some processing on three or four components seismic data. Keywords: Quaternion - FORTRAN - Vectorial processing - Multicomponent signal - VSP - Fourier transform.
Global Seismic Event Detection Using Surface Waves: 15 Possible Antarctic Glacial Sliding Events
NASA Astrophysics Data System (ADS)
Chen, X.; Shearer, P. M.; Walker, K. T.; Fricker, H. A.
2008-12-01
To identify overlooked or anomalous seismic events not listed in standard catalogs, we have developed an algorithm to detect and locate global seismic events using intermediate-period (35-70s) surface waves. We apply our method to continuous vertical-component seismograms from the global seismic networks as archived in the IRIS UV FARM database from 1997 to 2007. We first bandpass filter the seismograms, apply automatic gain control, and compute envelope functions. We then examine 1654 target event locations defined at 5 degree intervals and stack the seismogram envelopes along the predicted Rayleigh-wave travel times. The resulting function has spatial and temporal peaks that indicate possible seismic events. We visually check these peaks using a graphical user interface to eliminate artifacts and assign an overall reliability grade (A, B or C) to the new events. We detect 78% of events in the Global Centroid Moment Tensor (CMT) catalog. However, we also find 840 new events not listed in the PDE, ISC and REB catalogs. Many of these new events were previously identified by Ekstrom (2006) using a different Rayleigh-wave detection scheme. Most of these new events are located along oceanic ridges and transform faults. Some new events can be associated with volcanic eruptions such as the 2000 Miyakejima sequence near Japan and others with apparent glacial sliding events in Greenland (Ekstrom et al., 2003). We focus our attention on 15 events detected from near the Antarctic coastline and relocate them using a cross-correlation approach. The events occur in 3 groups which are well-separated from areas of cataloged earthquake activity. We speculate that these are iceberg calving and/or glacial sliding events, and hope to test this by inverting for their source mechanisms and examining remote sensing data from their source regions.
The excitation of long period seismic waves by a source spanning a structural discontinuity
NASA Astrophysics Data System (ADS)
Woodhouse, J. H.
Simple theoretical results are obtained for the excitation of seismic waves by an indigenous seismic source in the case that the source volume is intersected by a structural discontinuity. In the long wavelength approximation the seismic radiation is identical to that of a point source placed on one side of the discontinuity or of a different point source placed on the other side. The moment tensors of these two equivalent sources are related by a specific linear transformation and may differ appreciably both in magnitude and geometry. Either of these sources could be obtained by linear inversion of seismic data but the physical interpretation is more complicated than in the usual case. A source which involved no volume change would, for example, yield an isotropic component if, during inversion, it were assumed to lie on the wrong side of the discontinuity. The problem of determining the true moment tensor of the source is indeterminate unless further assumptions are made about the stress glut distribution; one way to resolve this indeterminancy is to assume proportionality between the integrated stress glut on each side of the discontinuity.
NASA Astrophysics Data System (ADS)
Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe
2017-04-01
In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of mass movements and other environmental sources at the local, regional and even global scale.
Correlating Near-Source Rock Damage from Single-Hole Explosions to Seismic Waves (Postprint)
2012-05-07
Technical Paper APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate...Space Vehicles Directorate 3550 Aberdeen Ave SE 3550 Aberdeen Ave SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776...function of pressure, • Fluid permeability as a function of pressure, • Electrical resistivity as a function of pressure, and • Rock strength. The
Seismic Sources for the Territory of Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, N. S.; Varazanashvili, O.
2011-12-01
The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources will be obtained on the bases of structural geology, parameters of seismicity and seismotectonics. This last approach was used by us. For achievement of this purpose it was necessary to solve following problems: to calculate the parameters of seismotectonic deformation; to reveal regularities in character of earthquake fault plane solution; use obtained regularities to develop principles of an establishment of borders between various hierarchical and scale levels of seismic deformations fields and to give their geological interpretation; Three dimensional matching of active faults with real geometrical dimension and earthquake sources have been investigated. Finally each zone have been defined with the parameters: the geometry, the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes
NASA Astrophysics Data System (ADS)
Novakovic, M.; Atkinson, G. M.
2015-12-01
We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.
NASA Astrophysics Data System (ADS)
Tülüveli, Güçlü
2015-10-01
Considerable academic effort has been given to chart the history of the seismic activity in Middle East region. This short survey intends to contribute to these scientific attempts by analyzing Ottoman primary sources. There had been previous studies which utilized similar primary sources from Ottoman archives, yet 15 new earthquakes emerged from these sources. Moreover, the seismic impact of five known earthquakes will be analyzed in the light of new data from Ottoman primary sources. A possible tsunami case is also included in this section. The sources cover the period between sixteenth to the end of the eighteenth century. This article intends to foster interdisciplinary dialogue for the purpose of initiating further detailed studies on past seismic events.
Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems
NASA Astrophysics Data System (ADS)
Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.
2017-12-01
Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy radiation interfere constructively while background noise signals interfere destructively, such that the most likely source locations of the observed seismicity are illuminated. We compile results to analyze changes in the distribution and prevalence of these sources throughout a systems entire eruptive cycle.
NASA Astrophysics Data System (ADS)
Spada, M.; Bianchi, I.; Kissling, E.; Agostinetti, N. Piana; Wiemer, S.
2013-08-01
The accurate definition of 3-D crustal structures and, in primis, the Moho depth, are the most important requirement for seismological, geophysical and geodynamic modelling in complex tectonic regions. In such areas, like the Mediterranean region, various active and passive seismic experiments are performed, locally reveal information on Moho depth, average and gradient crustal Vp velocity and average Vp/Vs velocity ratios. Until now, the most reliable information on crustal structures stems from controlled-source seismology experiments. In most parts of the Alpine region, a relatively large number of controlled-source seismology information are available though the overall coverage in the central Mediterranean area is still sparse due to high costs of such experiments. Thus, results from other seismic methodologies, such as local earthquake tomography, receiver functions and ambient noise tomography can be used to complement the controlled-source seismology information to increase coverage and thus the quality of 3-D crustal models. In this paper, we introduce a methodology to directly combine controlled-source seismology and receiver functions information relying on the strengths of each method and in relation to quantitative uncertainty estimates for all data to derive a well resolved Moho map for Italy. To obtain a homogeneous elaboration of controlled-source seismology and receiver functions results, we introduce a new classification/weighting scheme based on uncertainty assessment for receiver functions data. In order to tune the receiver functions information quality, we compare local receiver functions Moho depths and uncertainties with a recently derived well-resolved local earthquake tomography-derived Moho map and with controlled-source seismology information. We find an excellent correlation in the Moho information obtained by these three methodologies in Italy. In the final step, we interpolate the controlled-source seismology and receiver functions information to derive the map of Moho topography in Italy and surrounding regions. Our results show high-frequency undulation in the Moho topography of three different Moho interfaces, the European, the Adriatic-Ionian, and the Liguria-Corsica-Sardinia-Tyrrhenia, reflecting the complexity of geodynamical evolution.
NASA Astrophysics Data System (ADS)
Gu, N.; Zhang, H.
2017-12-01
Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.
Diffuse Waves and Energy Densities Near Boundaries
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of this energy spectrum, ruling out non linear effects, may influence the seismic response for future earthquakes. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.
Waveform inversion of volcano-seismic signals for an extended source
Nakano, M.; Kumagai, H.; Chouet, B.; Dawson, P.
2007-01-01
We propose a method to investigate the dimensions and oscillation characteristics of the source of volcano-seismic signals based on waveform inversion for an extended source. An extended source is realized by a set of point sources distributed on a grid surrounding the centroid of the source in accordance with the source geometry and orientation. The source-time functions for all point sources are estimated simultaneously by waveform inversion carried out in the frequency domain. We apply a smoothing constraint to suppress short-scale noisy fluctuations of source-time functions between adjacent sources. The strength of the smoothing constraint we select is that which minimizes the Akaike Bayesian Information Criterion (ABIC). We perform a series of numerical tests to investigate the capability of our method to recover the dimensions of the source and reconstruct its oscillation characteristics. First, we use synthesized waveforms radiated by a kinematic source model that mimics the radiation from an oscillating crack. Our results demonstrate almost complete recovery of the input source dimensions and source-time function of each point source, but also point to a weaker resolution of the higher modes of crack oscillation. Second, we use synthetic waveforms generated by the acoustic resonance of a fluid-filled crack, and consider two sets of waveforms dominated by the modes with wavelengths 2L/3 and 2W/3, or L and 2L/5, where W and L are the crack width and length, respectively. Results from these tests indicate that the oscillating signature of the 2L/3 and 2W/3 modes are successfully reconstructed. The oscillating signature of the L mode is also well recovered, in contrast to results obtained for a point source for which the moment tensor description is inadequate. However, the oscillating signature of the 2L/5 mode is poorly recovered owing to weaker resolution of short-scale crack wall motions. The triggering excitations of the oscillating cracks are successfully reconstructed. Copyright 2007 by the American Geophysical Union.
Effects of volcano topography on seismic broad-band waveforms
NASA Astrophysics Data System (ADS)
Neuberg, Jürgen; Pointer, Tim
2000-10-01
Volcano seismology often deals with rather shallow seismic sources and seismic stations deployed in their near field. The complex stratigraphy on volcanoes and near-field source effects have a strong impact on the seismic wavefield, complicating the interpretation techniques that are usually employed in earthquake seismology. In addition, as most volcanoes have a pronounced topography, the interference of the seismic wavefield with the stress-free surface results in severe waveform perturbations that affect seismic interpretation methods. In this study we deal predominantly with the surface effects, but take into account the impact of a typical volcano stratigraphy as well as near-field source effects. We derive a correction term for plane seismic waves and a plane-free surface such that for smooth topographies the effect of the free surface can be totally removed. Seismo-volcanic sources radiate energy in a broad frequency range with a correspondingly wide range of different Fresnel zones. A 2-D boundary element method is employed to study how the size of the Fresnel zone is dependent on source depth, dominant wavelength and topography in order to estimate the limits of the plane wave approximation. This approximation remains valid if the dominant wavelength does not exceed twice the source depth. Further aspects of this study concern particle motion analysis to locate point sources and the influence of the stratigraphy on particle motions. Furthermore, the deployment strategy of seismic instruments on volcanoes, as well as the direct interpretation of the broad-band waveforms in terms of pressure fluctuations in the volcanic plumbing system, are discussed.
NASA Astrophysics Data System (ADS)
Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia
2017-04-01
The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.
Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution
NASA Astrophysics Data System (ADS)
Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.
2018-02-01
The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.
NASA Astrophysics Data System (ADS)
Asano, K.
2017-12-01
An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling relationship for past plate-boundary earthquakes along the Japan trench, northeast Japan. This finding implies that the source characteristics of plate-boundary events in the Nankai trough are different from those in the Japan Trench, and it could be important information to consider regional variation in ground motion prediction.
High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.
2017-12-01
The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
A Hammer-Impact, Aluminum, Shear-Wave Seismic Source
Haines, Seth
2007-01-01
Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.
NASA Astrophysics Data System (ADS)
Del Gaudio, S.; Lancieri, M.; Hok, S.; Satriano, C.; Chartier, T.; Scotti, O.; Bernard, P.
2016-12-01
Predictions of realistic ground motion for potential future earthquakes are always an interesting task for seismologists and are also the main objective of seismic hazard assessment. While, on one hand, numerical simulations have become more and more accurate and several different techniques have been developed, on the other hand ground motion prediction equations (GMPEs) have become a powerful instrument (due to great improvement of seismic strong motion networks providing a large amount of data). Nevertheless GMPEs do not represent the whole variety of source processes and this can lead to incorrect estimates especially in the near fault conditions because of the lack of records of large earthquakes at short distances. In such cases, physics-based ground motion simulations can be a valid tool to complement prediction equations for scenario studies, provided that both source and propagation are accurately described. We present here a comparison between numerical simulations performed in near fault conditions using two different kinematic source models, which are based on different assumptions and parameterizations: the "k-2 model" and the "fractal model". Wave propagation is taken into account using hybrid Green's function (HGF), which consists in coupling numerical Green's function with an empirical Green's function (EGF) approach. The advantage of this technique is that it does not require a very detailed knowledge of the propagation medium, but requires availability of high quality records of small earthquakes in the target area. The first application we show is on L'Aquila 2009 M 6.3 earthquake, where the main event records provide a benchmark for the synthetic waveforms. Here we can clearly observe which are the limitations of these techniques and investigate which are the physical parameters that are effectively controlling the ground motion level. The second application is a blind test on Upper Rhine Graben (URG) where active faults producing micro seismic activity are very close to sites of interest needing a careful investigation of seismic hazard. Finally we will perform a probabilistic seismic hazard analysis (PSHA) for the URG using numerical simulations to define input ground motion for different scenarios and compare them with a classical probabilistic study based on GMPEs.
NASA Astrophysics Data System (ADS)
Chaput, J.; Campillo, M.; Aster, R. C.; Roux, P.; Kyle, P. R.; Knox, H.; Czoski, P.
2015-02-01
We examine seismic coda from an unusually dense deployment of over 100 short-period and broadband seismographs in the summit region of Mount Erebus volcano on a network with an aperture of approximately 5 km. We investigate the energy-partitioning properties of the seismic wavefield generated by thousands of small icequake sources originating on the upper volcano and use them to estimate Green's functions via coda cross correlation. Emergent coda seismograms suggest that this locale should be particularly amenable to such methods. Using a small aperture subarray, we find that modal energy partition between S and P wave energy between ˜1 and 4 Hz occurs in just a few seconds after event onset and persists for tens of seconds. Spatially averaged correlograms display clear body and surface waves that span the full aperture of the array. We test for stable bidirectional Green's function recovery and note that good symmetry can be achieved at this site even with a geographically skewed distribution of sources. We estimate scattering and absorption mean free path lengths and find a power law decrease in mean free path between 1.5 and 3.3 Hz that suggests a quasi-Rayleigh or Rayleigh-Gans scattering situation. Finally, we demonstrate the existence of coherent backscattering (weak localization) for this coda wavefield. The remarkable properties of scattered seismic wavefields in the vicinity of active volcanoes suggests that the abundant small icequake sources may be used for illumination where temporal monitoring of such dynamic structures is concerned.
NASA Astrophysics Data System (ADS)
Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc
2018-05-01
We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.
Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; Huang, Lianjie
2015-01-28
Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less
NASA Astrophysics Data System (ADS)
Houng, S.; Hong, T.
2013-12-01
The nature and excitation mechanism of incidents or non-natural events have been widely investigated using seismological techniques. With introduction of dense seismic networks, small-sized non-natural events such as building collapse and chemical explosions are well recorded. Two representative non-natural seismic sources are investigated. A 5-story building in South Korea, Sampoong department store, was collapsed in June 25, 1995, causing casualty of 1445. This accident is known to be the second deadliest non-terror-related building collapse in the world. The event was well recorded by a local station in ~ 9 km away. P and S waves were recorded weak, while monotonic Rayleigh waves were observed well. The origin time is determined using surface-wave arrival time. The magnitude of event is determined to be 1.2, which coincides with a theoretical estimate based on the mass and volume of building. Synthetic waveforms are modeled for various combinations of velocity structures and source time functions, which allow us to constrain the process of building collapse. It appears that the building was collapsed once within a couple of seconds. We also investigate a M2.1 chemical explosion at a fertilizer plant in Texas on April 18, 2013. It was reported that more than one hundred people were dead or injured by the explosion. Seismic waveforms for nearby stations are collected from Incorporated Research Institution of Seismology (IRIS). The event was well recorded at stations in ~500 km away from the source. Strong acoustic signals were observed at stations in a certain great-circle direction. This observation suggests preferential propagation of acoustic waves depending on atmospheric environment. Waveform cross-correlation, spectral analysis and waveform modeling are applied to understand the source physics. We discuss the nature of source and source excitation mechanism.
Alternative Energy Sources in Seismic Methods
NASA Astrophysics Data System (ADS)
Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan
2015-04-01
When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.
Model space exploration for determining landslide source history from long period seismic data
NASA Astrophysics Data System (ADS)
Zhao, Juan; Mangeney, Anne; Stutzmann, Eléonore; Capdeville, Yann; Moretti, Laurent; Calder, Eliza S.; Smith, Patrick J.; Cole, Paul; Le Friant, Anne
2013-04-01
The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450 km and 1261 km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on Mount St. Helens (1980) event which are recorded by more broadband stations.
NASA Astrophysics Data System (ADS)
Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail
2018-02-01
Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.
Updating the USGS seismic hazard maps for Alaska
Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.
2015-01-01
The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.; Shen, W.; Stachnik, J. C.
2016-12-01
We compare and contrast crustal structure and composition along a transect from the Southern to Northern Rocky Mountains, with a focus on the lower crust. Evolution of the crust can include processes of emplacement, differentiation, and thermal changes that may generate lower crust with high seismic wavespeeds. The high seismic velocities can be due to mafic composition, the presence of garnet, or both. We seek to find seismic signatures preserved from such processes and compare xenolith samples and present-day seismic appearance between regions with varying tectonic histories. We review recent seismic results from the EarthScope Transportable Array from receiver functions and surface waves, compilations of active source studies, and xenolith studies to compare lower crustal structure along transects through the Northern and Southern Rocky Mountains traversing Montana, Wyoming, Colorado, Utah, and New Mexico. Xenoliths from an unusually thick lower crustal layer with high seismic velocities in Montana record magmatic emplacement processes dating back to the Archean. The lower crustal layer possesses internal velocity contrasts that lead to conflicting interpretations of Moho depth depending on the method used, with xenoliths and a refraction study placing the Moho at 55 km depth, while studies using surface waves and receiver functions identify the largest contrast at 40-45 km depth as the Moho. An additional confounding factor is the presence of metasomatized uppermost mantle with low seismic velocities, which may further diminish the seismic signature of the petrological Moho. To the south, the high-velocity layer diminishes, and seismic velocities in the deep crust under southern Wyoming, Colorado, and New Mexico are lower. In the literature, north-south gradients in lower crustal velocity in this area and observed differences in garnet content have variously been ascribed to thermal dehydration of Archean-age hydrous crust or Laramide-age hydration of previously garnet-rich crust.
NASA Astrophysics Data System (ADS)
Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.
2017-05-01
The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.
NASA Astrophysics Data System (ADS)
Julià, Jordi; Schimmel, Martin; Cedraz, Victória
2017-04-01
Reflected-wave interferometry relies on the recording of transient seismic signals from random wavefields located beneath recording stations. Under vertical incidence, the recordings contain the full transmission response, which includes the direct wave as well as multiple reverberations from seismic discontinuities located between the wavefields and the receiver. It has been shown that, under those assumptions, the reflection response of the medium can be recovered from the autocorrelation function (ACF) of the transmission response at a given receiver, as if the wavefields had originated themselves at the free surface. This passive approach to seismic reflection profiling has the obvious advantage of being low-cost and non-invasive when compared to its active-source counterpart, and it has been successfully utilized in other sedimentary basins worldwide. In this paper we evaluate the ability of the autocorrelation of ambient seismic noise recorded in the Parnaíba basin - a large Paleozoic basin in NE Brazil - to recover the reflection response of the basin. The dataset was acquired by the Universidade Federal do Rio Grande do Norte during 2015 and 2016 under the Parnaíba Basin Analysis Project (PBAP), a multi-disciplinary and multi-institutional effort funded by BP Energy do Brasil aimed at improving our current understanding of the architecture of this cratonic basin. The dataset consists of about 1 year of continuous ground motion data from 10 short-period, 3-component stations located in the central portion of the basin. The stations were co-located with an existing (active-source) seismic reflection profile that was shot in 2012, making a linear array of about 100 km in aperture and about 10 km inter-station spacing. To develop the autocorrelation at a given station we considered the vertical component of ground motion only, which should result in the P-wave response. The vertical recordings were first split into 10 min-long windows, demeaned, de-trended, re-sampled, and band-pass filtered between 8 and 16 Hz before autocorrelation, and then stacked with phase-weighting to enhance coherency of the retrieved signal. The ACFs show coherent signal is recovered at lag times between 0.5 and 2 s, which we interpret as P- and S-wave energy reflected on top of an intra-sedimentary discontinuity. Our results are consistent, to first-order, with a previously developed active-source reflection response of the basin.
Background Noise Characteristics in the Western Part of Romania
NASA Astrophysics Data System (ADS)
Grecu, B.; Neagoe, C.; Tataru, D.; Stuart, G.
2012-04-01
The seismological database of the western part of Romania increased significantly during the last years, when 33 broadband seismic stations provided by SEIS-UK (10 CMG 40 T's - 30 s, 9 CMG 3T's - 120 s, 14 CMG 6T's - 30 s) were deployed in the western part of the country in July 2009 to operate autonomously for two years. These stations were installed within a joint project (South Carpathian Project - SCP) between University of Leeds, UK and National Institute for Earth Physics (NIEP), Romania that aimed at determining the lithospheric structure and geodynamical evolution of the South Carpathian Orogen. The characteristics of the background seismic noise recorded at the SCP broadband seismic network have been studied in order to identify the variations in background seismic noise as a function of time of day, season, and particular conditions at the stations. Power spectral densities (PSDs) and their corresponding probability density functions (PDFs) are used to characterize the background seismic noise. At high frequencies (> 1 Hz), seismic noise seems to have cultural origin, since notable variations between daytime and nighttime noise levels are observed at most of the stations. The seasonal variations are seen in the microseisms band. The noise levels increase during the winter and autumn months and decrease in summer and spring seasons, while the double-frequency peak shifts from lower periods in summer to longer periods in winter. The analysis of the probability density functions for stations located in different geologic conditions points out that the noise level is higher for stations sited on softer formations than those sited on hard rocks. Finally, the polarization analysis indicates that the main sources of secondary microseisms are found in the Mediterranean Sea and Atlantic Ocean.
Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise
NASA Astrophysics Data System (ADS)
Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin
2017-04-01
Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the continental margin offshore SW Taiwan. This observation could be linked to the presence of numerous volcanic outcrops in the shallow marine sediments is the OT area. By comparing the 1-D velocity shear-wave profile with the previous studies, we found that the low Vs area could be associated with a sedimentary layer filled with gas in the OT and the creeping area along the continental margin. The Vs range estimated from our study also shows a good agreement with the velocity profile obtained based on the OBS seismic refraction experiment, suggesting that this method could be a more economical and effective way for the acquisition of the Vs parameters.
Leith, William S.; Benz, Harley M.; Herrmann, Robert B.
2011-01-01
Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.
NASA Astrophysics Data System (ADS)
Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco
2017-04-01
We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.
NASA Astrophysics Data System (ADS)
Juretzek, Carina; Hadziioannou, Céline
2014-05-01
Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.
NASA Astrophysics Data System (ADS)
DeGrandpre, K.; Pesicek, J. D.; Lu, Z.
2017-12-01
During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.
A Bayesian Approach to Real-Time Earthquake Phase Association
NASA Astrophysics Data System (ADS)
Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.
2014-12-01
Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less
NASA Astrophysics Data System (ADS)
Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian
2018-06-01
Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.
NASA Astrophysics Data System (ADS)
Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian
2018-03-01
Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.
Seismic reflection constraints on the glacial dynamics of Johnsons Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Teixidó, Teresa
2001-01-01
During two Antarctic summers (1996-1997 and 1997-1998), five seismic refraction and two reflection profiles were acquired on the Johnsons Glacier (Livingston Island, Antarctica) in order to obtain information about the structure of the ice, characteristics of the ice-bed contact and basement topography. An innovative technique has been used for the acquisition of reflection data to optimise the field survey schedule. Different shallow seismic sources were used during each field season: Seismic Impulse Source System (SISSY) for the first field survey and low-energy explosives (pyrotechnic noisemakers) during the second one. A comparison between these two shallow seismic sources has been performed, showing that the use of the explosives is a better seismic source in this ice environment. This is one of the first studies where this type of source has been used. The analysis of seismic data corresponding to one of the reflection profiles (L3) allows us to delineate sectors with different glacier structure (accumulation and ablation zones) without using glaciological data. Moreover, vertical discontinuities were detected by the presence of back-scattered energy and the abrupt change in frequency content of first arrivals shown in shot records. After the raw data analysis, standard processing led us to a clear seismic image of the underlying bed topography, which can be correlated with the ice flow velocity anomalies. The information obtained from seismic data on the internal structure of the glacier, location of fracture zones and the topography of the ice-bed interface constrains the glacial dynamics of Johnsons Glacier.
A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source
Lord, Neal; Wang, Herbert; Fratta, Dante
2016-09-01
We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less
A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, Neal; Wang, Herbert; Fratta, Dante
We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, J.; Pulli, J.; Gibson, R.; Upton, Z.
2005-05-01
We present an analysis of the acoustic signals from the December 26, 2004 Sumatra earthquakes, in conjunction with the seismic and tide gauge information from the event. The M9.0 mainshock and its aftershocks were recorded by a suite of seismic sensors around the globe, giving us information on its location and the source process. Recently installed sensor assets in the Indian Ocean have enabled us to study additional features of this significant event. Hydroacoustic signals were recorded by three hydrophone arrays, and the direction finding capability of these arrays allows us to examine the location, time and extent of the T-wave generation process. We detect a clear variation of the back-azimuth that is consistent with the spatial extent of the source rupture. Recordings from nearly co-located seismometers provide insights into the acoustic-to-seismic conversion process for T-waves at islands, along with the variation in signal characteristics with source size. Two separate infrasound arrays detect the atmospheric signals generated by the event, along with additional observations of the seismic surface wave and the T-phase. We will present a comparison of the signals from the mainshock, as a function of location and size, with those from aftershocks and similar events in the nearby region. Our acoustic observations compare favorably with model predictions of wave propagation in the region. For the hydroacoustic data, the azimuth, arrival time, and signal blockage characteristics, from three separate arrays, associate the onset of the signal with the mainshock and with a time extent consistent with the rupture propagation. Our analysis of the T-phase travel times suggests that the seismic-to-acoustic conversion occurs more than 100 km from the epicenter. The infrasound signal's arrival time and signal duration are consistent with both stratospheric and thermospheric propagation from a source region near the mainshock. We use the tide gauge data from stations around the Indian Ocean to identify the arrival time of the Tsunami. The acoustic and seismic signals associated with the earthquakes arrive at the remote stations significantly ahead of the Tsunami. We combine the information from the various sensors to investigate the ability of the acoustic stations to detect the Tsunami.
A first-order seismotectonic regionalization of Mexico for seismic hazard and risk estimation
NASA Astrophysics Data System (ADS)
Zúñiga, F. Ramón; Suárez, Gerardo; Figueroa-Soto, Ángel; Mendoza, Avith
2017-11-01
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.
Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California
NASA Astrophysics Data System (ADS)
Mahdyiar, M.; Guin, J.
2005-12-01
Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground motion uncertainties. The approach is designed to integrate loss distribution functions with different degrees of correlation for portfolio analysis. The analysis is based on USGS 2002 regional seismicity model.
Kinematic Seismic Rupture Parameters from a Doppler Analysis
NASA Astrophysics Data System (ADS)
Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.
2010-05-01
The radiation emitted from extended seismic sources, mainly when the rupture spreads in preferred directions, presents spectral deviations as a function of the observation location. This aspect, unobserved to point sources, and named as directivity, are manifested by an increase in the frequency and amplitude of seismic waves when the rupture occurs in the direction of the seismic station and a decrease in the frequency and amplitude if it occurs in the opposite direction. The model of directivity that supports the method is a Doppler analysis based on a kinematic source model of rupture and wave propagation through a structural medium with spherical symmetry [1]. A unilateral rupture can be viewed as a sequence of shocks produced along certain paths on the fault. According this model, the seismic record at any point on the Earth's surface contains a signature of the rupture process that originated the recorded waveform. Calculating the rupture direction and velocity by a general Doppler equation, - the goal of this work - using a dataset of common time-delays read from waveforms recorded at different distances around the epicenter, requires the normalization of measures to a standard value of slowness. This normalization involves a non-linear inversion that we solve numerically using an iterative least-squares approach. The evaluation of the performance of this technique was done through a set of synthetic and real applications. We present the application of the method at four real case studies, the following earthquakes: Arequipa, Peru (Mw = 8.4, June 23, 2001); Denali, AK, USA (Mw = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria (Mw = 6.8, May 21, 2003); and Sumatra, Indonesia (Mw = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data. [1] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
NASA Astrophysics Data System (ADS)
Pedraza, P.; Poveda, E.; Blanco Chia, J. F.; Zahradnik, J.
2013-05-01
On September 30th, 2012, an earthquake of magnitude Mw 7.2 occurred at the depth of ~170km in the southeast of Colombia. This seismic event is associated to the Nazca plate drifting eastward relative the South America plate. The distribution of seismicity obtained by the National Seismological Network of Colombia (RSNC) since 1993 shows a segmented subduction zone with varying dip angles. The earthquake occurred in a seismic gap zone of intermediate depth. The recent deployment of broadband seismic stations on the Colombian, as a part of the Colombian Seismological Network, operated by the Colombian Survey, has provided high-quality data to study rupture process. We estimated the moment tensor, the centroid position, and the source time function. The parameters were obtained by inverting waveforms recorded by RSNC at distances 100 km to 800 km, and modeled at 0.01-0.09Hz, using different 1D crustal models, taking advantage of the ISOLA code. The DC-percentage of the earthquake is very high (~90%). The focal mechanism is mostly normal, hence the determination of the fault plane is challenging. An attempt to determine the fault plane was made based on mutual relative position of the centroid and hypocenter (H-C method). Studies in progress are devoted to searching possible complexity of the fault rupture process (total duration of about 15 seconds), quantified by multiple-point source models.
Seismic Hazard analysis of Adjaria Region in Georgia
NASA Astrophysics Data System (ADS)
Jorjiashvili, Nato; Elashvili, Mikheil
2014-05-01
The most commonly used approach to determining seismic-design loads for engineering projects is probabilistic seismic-hazard analysis (PSHA). The primary output from a PSHA is a hazard curve showing the variation of a selected ground-motion parameter, such as peak ground acceleration (PGA) or spectral acceleration (SA), against the annual frequency of exceedance (or its reciprocal, return period). The design value is the ground-motion level that corresponds to a preselected design return period. For many engineering projects, such as standard buildings and typical bridges, the seismic loading is taken from the appropriate seismic-design code, the basis of which is usually a PSHA. For more important engineering projects— where the consequences of failure are more serious, such as dams and chemical plants—it is more usual to obtain the seismic-design loads from a site-specific PSHA, in general, using much longer return periods than those governing code based design. Calculation of Probabilistic Seismic Hazard was performed using Software CRISIS2007 by Ordaz, M., Aguilar, A., and Arboleda, J., Instituto de Ingeniería, UNAM, Mexico. CRISIS implements a classical probabilistic seismic hazard methodology where seismic sources can be modelled as points, lines and areas. In the case of area sources, the software offers an integration procedure that takes advantage of a triangulation algorithm used for seismic source discretization. This solution improves calculation efficiency while maintaining a reliable description of source geometry and seismicity. Additionally, supplementary filters (e.g. fix a sitesource distance that excludes from calculation sources at great distance) allow the program to balance precision and efficiency during hazard calculation. Earthquake temporal occurrence is assumed to follow a Poisson process, and the code facilitates two types of MFDs: a truncated exponential Gutenberg-Richter [1944] magnitude distribution and a characteristic magnitude distribution [Youngs and Coppersmith, 1985]. Notably, the software can deal with uncertainty in the seismicity input parameters such as maximum magnitude value. CRISIS offers a set of built-in GMPEs, as well as the possibility of defining new ones by providing information in a tabular format. Our study shows that in case of Ajaristkali HPP study area, significant contribution to Seismic Hazard comes from local sources with quite low Mmax values, thus these two attenuation lows give us quite different PGA and SA values.
Anomalies of rupture velocity in deep earthquakes
NASA Astrophysics Data System (ADS)
Suzuki, M.; Yagi, Y.
2010-12-01
Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.
NASA Astrophysics Data System (ADS)
Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Chen, Xiaohong; Xiang, Kui
2016-01-01
Simultaneous-source shooting can help tremendously shorten the acquisition period and improve the quality of seismic data for better subsalt seismic imaging, but at the expense of introducing strong interference (blending noise) to the acquired seismic data. We propose to use a structural-oriented median filter to attenuate the blending noise along the structural direction of seismic profiles. The principle of the proposed approach is to first flatten the seismic record in local spatial windows and then to apply a traditional median filter (MF) to the third flattened dimension. The key component of the proposed approach is the estimation of the local slope, which can be calculated by first scanning the NMO velocity and then transferring the velocity to the local slope. Both synthetic and field data examples show that the proposed approach can successfully separate the simultaneous-source data into individual sources. We provide an open-source toy example to better demonstratethe proposed methodology.
Dynamics of the Wulong landslide revealed by broadband seismic records
NASA Astrophysics Data System (ADS)
Li, Zhengyuan; Huang, Xinghui; Xu, Qiang; Yu, Dan; Fan, Junyi; Qiao, Xuejun
2017-02-01
The catastrophic Wulong landslide occurred at 14:51 (Beijing time, UTC+8) on 5 June 2009, in Wulong Prefecture, Southwest China. This rockslide occurred in a complex topographic environment. Seismic signals generated by this event were recorded by the seismic network deployed in the surrounding area, and long-period signals were extracted from 8 broadband seismic stations within 250 km to obtain source time functions by inversion. The location of this event was simultaneously acquired using a stepwise refined grid search approach, with an error of 2.2 km. The estimated source time functions reveal that, according to the movement parameters, this landslide could be divided into three stages with different movement directions, velocities, and increasing inertial forces. The sliding mass moved northward, northeastward and northward in the three stages, with average velocities of 6.5, 20.3, and 13.8 m/s, respectively. The maximum movement velocity of the mass reached 35 m/s before the end of the second stage. The basal friction coefficients were relatively small in the first stage and gradually increasing; large in the second stage, accompanied by the largest variability; and oscillating and gradually decreasing to a stable value, in the third stage. Analysis shows that the movement characteristics of these three stages are consistent with the topography of the sliding zone, corresponding to the northward initiation, eastward sliding after being stopped by the west wall, and northward debris flowing after collision with the east slope of the Tiejianggou valley. The maximum movement velocity of the sliding mass results from the largest height difference of the west slope of the Tiejianggou valley. The basal friction coefficients of the three stages represent the thin weak layer in the source zone, the dramatically varying topography of the west slope of the Tiejianggou valley, and characteristics of the debris flow along the Tiejianggou valley. Based on the above results, it is recognized that the inverted source time functions are consistent with the topography of the sliding zone. Special geological and topographic conditions can have a focusing effect on landslides and are key factors in inducing the major disasters, which may follow from them. This landslide was of an unusual nature, and it will be worthwhile to pursue research into its dynamic characteristics more deeply.[Figure not available: see fulltext.
Characterising large scenario earthquakes and their influence on NDSHA maps
NASA Astrophysics Data System (ADS)
Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.
2016-04-01
The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can therefore be the factor of two, intrinsic in MCS and other discrete scales. A simple test supports this hypothesis: an increase of 0.5 in the magnitude, i.e. one degrees in epicentral MCS, of all sources used in the national scale seismic zoning produces a doubling of the maximum ground motion. The analysis of uncertainty in ground motion maps, due to the catalogue random errors in magnitude and localization, shows a not uniform distribution of ground shaking uncertainty. The available information from catalogues of past events, that is not complete and may well not be representative of future earthquakes, can be substantially completed using independent indicators of the seismogenic potential of a given area, such as active faulting data and the seismogenic nodes.
NASA Astrophysics Data System (ADS)
Weatherill, Graeme; Burton, Paul W.
2010-09-01
The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard mapping calculations. These hazard maps are in general agreement with previous maps for the Aegean, recognising the highest hazard in the Ionian Islands, Gulf of Corinth and Hellenic Arc. Peak Ground Accelerations for some sites in these regions reach as high as 500-600 cm s -2 using European/NGA attenuation models, and 400-500 cm s -2 using Greek attenuation models.
Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics
NASA Astrophysics Data System (ADS)
Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.
2018-04-01
We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves < 20 Hz) from volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.
Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.
NASA Astrophysics Data System (ADS)
Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam
2017-04-01
The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.
NASA Astrophysics Data System (ADS)
Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig
2015-10-01
The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.
Numerical reconstruction of tsunami source using combined seismic, satellite and DART data
NASA Astrophysics Data System (ADS)
Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor
2014-05-01
Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit function, the adjoint problem is solved. The conservative finite-difference schemes for solving the direct and adjoint problems in the approximation of shallow water are constructed. Results of numerical experiments of the tsunami source reconstruction are presented and discussed. We show that using a combination of three different types of data allows one to increase the stability and efficiency of tsunami source reconstruction. Non-profit organization WAPMERR (World Agency of Planetary Monitoring and Earthquake Risk Reduction) in collaboration with Informap software development department developed the Integrated Tsunami Research and Information System (ITRIS) to simulate tsunami waves and earthquakes, river course changes, coastal zone floods, and risk estimates for coastal constructions at wave run-ups and earthquakes. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. This work was supported by the Russian Foundation for Basic Research (project No. 12-01-00773 'Theory and Numerical Methods for Solving Combined Inverse Problems of Mathematical Physics') and interdisciplinary project of SB RAS 14 'Inverse Problems and Applications: Theory, Algorithms, Software'.
Italian Case Studies Modelling Complex Earthquake Sources In PSHA
NASA Astrophysics Data System (ADS)
Gee, Robin; Peruzza, Laura; Pagani, Marco
2017-04-01
This study presents two examples of modelling complex seismic sources in Italy, done in the framework of regional probabilistic seismic hazard assessment (PSHA). The first case study is for an area centred around Collalto Stoccaggio, a natural gas storage facility in Northern Italy, located within a system of potentially seismogenic thrust faults in the Venetian Plain. The storage exploits a depleted natural gas reservoir located within an actively growing anticline, which is likely driven by the Montello Fault, the underlying blind thrust. This fault has been well identified by microseismic activity (M<2) detected by a local seismometric network installed in 2012 (http://rete-collalto.crs.inogs.it/). At this time, no correlation can be identified between the gas storage activity and local seismicity, so we proceed with a PSHA that considers only natural seismicity, where the rates of earthquakes are assumed to be time-independent. The source model consists of faults and distributed seismicity to consider earthquakes that cannot be associated to specific structures. All potentially active faults within 50 km of the site are considered, and are modelled as 3D listric surfaces, consistent with the proposed geometry of the Montello Fault. Slip rates are constrained using available geological, geophysical and seismological information. We explore the sensitivity of the hazard results to various parameters affected by epistemic uncertainty, such as ground motions prediction equations with different rupture-to-site distance metrics, fault geometry, and maximum magnitude. The second case is an innovative study, where we perform aftershock probabilistic seismic hazard assessment (APSHA) in Central Italy, following the Amatrice M6.1 earthquake of August 24th, 2016 (298 casualties) and the subsequent earthquakes of Oct 26th and 30th (M6.1 and M6.6 respectively, no deaths). The aftershock hazard is modelled using a fault source with complex geometry, based on literature data and field evidence associated with the August mainshock. Earthquake activity rates during the very first weeks after the deadly earthquake were used to calibrated an Omori-Utsu decay curve, and the magnitude distribution of aftershocks is assumed to follow a Gutenberg-Richter distribution. We apply uniform and non-uniform spatial distribution of the seismicity across the fault source, by modulating the rates as a decreasing function of distance from the mainshock. The hazard results are computed for short-exposure periods (1 month, before the occurrences of October earthquakes) and compared to the background hazard given by law (MPS04), and to observations at some reference sites. We also show the results of disaggregation computed for the city of Amatrice. Finally, we attempt to update the results in light of the new "main" events that occurred afterwards in the region. All source modeling and hazard calculations are performed using the OpenQuake engine. We discuss the novelties of these works, and the benefits and limitations of both analyses, particularly in such different contexts of seismic hazard.
A Seismic Source Model for Central Europe and Italy
NASA Astrophysics Data System (ADS)
Nyst, M.; Williams, C.; Onur, T.
2006-12-01
We present a seismic source model for Central Europe (Belgium, Germany, Switzerland, and Austria) and Italy, as part of an overall seismic risk and loss modeling project for this region. A separate presentation at this conference discusses the probabilistic seismic hazard and risk assessment (Williams et al., 2006). Where available we adopt regional consensus models and adjusts these to fit our format, otherwise we develop our own model. Our seismic source model covers the whole region under consideration and consists of the following components: 1. A subduction zone environment in Calabria, SE Italy, with interface events between the Eurasian and African plates and intraslab events within the subducting slab. The subduction zone interface is parameterized as a set of dipping area sources that follow the geometry of the surface of the subducting plate, whereas intraslab events are modeled as plane sources at depth; 2. The main normal faults in the upper crust along the Apennines mountain range, in Calabria and Central Italy. Dipping faults and (sub-) vertical faults are parameterized as dipping plane and line sources, respectively; 3. The Upper and Lower Rhine Graben regime that runs from northern Italy into eastern Belgium, parameterized as a combination of dipping plane and line sources, and finally 4. Background seismicity, parameterized as area sources. The fault model is based on slip rates using characteristic recurrence. The modeling of background and subduction zone seismicity is based on a compilation of several national and regional historic seismic catalogs using a Gutenberg-Richter recurrence model. Merging the catalogs encompasses the deletion of double, fake and very old events and the application of a declustering algorithm (Reasenberg, 2000). The resulting catalog contains a little over 6000 events, has an average b-value of -0.9, is complete for moment magnitudes 4.5 and larger, and is used to compute a gridded a-value model (smoothed historical seismicity) for the region. The logic tree weighs various completeness intervals and minimum magnitudes. Using a weighted scheme of European and global ground motion models together with a detailed site classification map for Europe based on Eurocode 8, we generate hazard maps for recurrence periods of 200, 475, 1000 and 2500 yrs.
Moment tensor analysis of very shallow sources
Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.; ...
2016-10-11
An issue for moment tensor (MT) inversion of shallow seismic sources is that some components of the Green’s functions have vanishing amplitudes at the free surface, which can result in bias in the MT solution. The effects of the free surface on the stability of the MT method become important as we continue to investigate and improve the capabilities of regional full MT inversion for source–type identification and discrimination. It is important to understand free–surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have very shallow seismicity, such asmore » volcanic and geothermal systems. We examine the effects of the free surface on the MT via synthetic testing and apply the MT–based discrimination method to three quarry blasts from the HUMMING ALBATROSS experiment. These shallow chemical explosions at ~10 m depth and recorded up to several kilometers distance represent rather severe source–station geometry in terms of free–surface effects. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first–motion method enables the unique discrimination of these events. Furthermore, recovering the design yield using seismic moment estimates from MT inversion remains challenging, but we can begin to put error bounds on our moment estimates using the network sensitivity solution technique.« less
Pseudo-dynamic source characterization accounting for rough-fault effects
NASA Astrophysics Data System (ADS)
Galis, Martin; Thingbaijam, Kiran K. S.; Mai, P. Martin
2016-04-01
Broadband ground-motion simulations, ideally for frequencies up to ~10Hz or higher, are important for earthquake engineering; for example, seismic hazard analysis for critical facilities. An issue with such simulations is realistic generation of radiated wave-field in the desired frequency range. Numerical simulations of dynamic ruptures propagating on rough faults suggest that fault roughness is necessary for realistic high-frequency radiation. However, simulations of dynamic ruptures are too expensive for routine applications. Therefore, simplified synthetic kinematic models are often used. They are usually based on rigorous statistical analysis of rupture models inferred by inversions of seismic and/or geodetic data. However, due to limited resolution of the inversions, these models are valid only for low-frequency range. In addition to the slip, parameters such as rupture-onset time, rise time and source time functions are needed for complete spatiotemporal characterization of the earthquake rupture. But these parameters are poorly resolved in the source inversions. To obtain a physically consistent quantification of these parameters, we simulate and analyze spontaneous dynamic ruptures on rough faults. First, by analyzing the impact of fault roughness on the rupture and seismic radiation, we develop equivalent planar-fault kinematic analogues of the dynamic ruptures. Next, we investigate the spatial interdependencies between the source parameters to allow consistent modeling that emulates the observed behavior of dynamic ruptures capturing the rough-fault effects. Based on these analyses, we formulate a framework for pseudo-dynamic source model, physically consistent with the dynamic ruptures on rough faults.
New perspectives on self-similarity for shallow thrust earthquakes
NASA Astrophysics Data System (ADS)
Denolle, Marine A.; Shearer, Peter M.
2016-09-01
Scaling of dynamic rupture processes from small to large earthquakes is critical to seismic hazard assessment. Large subduction earthquakes are typically remote, and we mostly rely on teleseismic body waves to extract information on their slip rate functions. We estimate the P wave source spectra of 942 thrust earthquakes of magnitude Mw 5.5 and above by carefully removing wave propagation effects (geometrical spreading, attenuation, and free surface effects). The conventional spectral model of a single-corner frequency and high-frequency falloff rate does not explain our data, and we instead introduce a double-corner-frequency model, modified from the Haskell propagating source model, with an intermediate falloff of f-1. The first corner frequency f1 relates closely to the source duration T1, its scaling follows M0∝T13 for Mw<7.5, and changes to M0∝T12 for larger earthquakes. An elliptical rupture geometry better explains the observed scaling than circular crack models. The second time scale T2 varies more weakly with moment, M0∝T25, varies weakly with depth, and can be interpreted either as expressions of starting and stopping phases, as a pulse-like rupture, or a dynamic weakening process. Estimated stress drops and scaled energy (ratio of radiated energy over seismic moment) are both invariant with seismic moment. However, the observed earthquakes are not self-similar because their source geometry and spectral shapes vary with earthquake size. We find and map global variations of these source parameters.
NASA Astrophysics Data System (ADS)
D'Amico, Sebastiano; Akinci, Aybige; Pischiutta, Marta
2018-07-01
In this paper we characterize the high-frequency (1.0-10 Hz) seismic wave crustal attenuation and the source excitation in the Sicily Channel and surrounding regions using background seismicity from weak-motion database. The data set includes 15 995 waveforms related to earthquakes having local magnitude ranging from 2.0 to 4.5 recorded between 2006 and 2012. The observed and predicted ground motions form the weak-motion data are evaluated in several narrow frequency bands from 0.25 to 20.0 Hz. The filtered observed peaks are regressed to specify a proper functional form for the regional attenuation, excitation and site specific term separately. The results are then used to calibrate effective theoretical attenuation and source excitation models using the random vibration theory. In the log-log domain, the regional seismic wave attenuation and the geometrical spreading coefficient are modelled together. The geometrical spreading coefficient, g(r), modelled with a bilinear piecewise functional form and given as g(r) ∝ r-1.0 for the short distances (r < 50 km) and as g(r) ∝ r-0.8 for the larger distances (r < 50 km). A frequency-dependent quality factor, inverse of the seismic attenuation parameter, Q(f)=160f/fref0. 35 (where fref = 1.0 Hz), is combined to the geometrical spreading. The source excitation terms are defined at a selected reference distance with a magnitude-independent roll-off spectral parameter, κ 0.04 s and with a Brune stress drop parameter increasing with moment magnitude, from Δσ = 2 MPa for Mw = 2.0 to Δσ = 13 MPa for Mw = 4.5. For events M ≤ 4.5 (being Mwmax = 4.5 available in the data set) the stress parameters are obtained by correlating the empirical/excitation source spectra with the Brune spectral model as function of magnitude. For the larger magnitudes (Mw>4.5) outside the range available in the calibration data set where we do not have recorded data, we extrapolate our results through the calibration of the stress parameters of the Brune source spectrum over the Bindi et al.ground-motion prediction equation selected as a reference model (hereafter also ITA10). Finally, the weak-motion-based model parameters are used through a stochastic approach in order to predict a set of region specific spectral ground-motion parameters (peak ground acceleration, peak ground velocity, and 0.3 and 1.0 Hz spectral acceleration) relative to the generic rock site as a function of distance between 10 and 250 km and magnitude between M 2.0 and M 7.0.
New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data
NASA Astrophysics Data System (ADS)
Janiszewski, Helen Anne
A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.
Battaglia, J.; Got, J.-L.; Okubo, P.
2003-01-01
We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.
James, M.R.; Lane, S.J.; Chouet, B.A.
2006-01-01
Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Maeda, Y.; Kumagai, H.; Londono, J. M.; Lopez, C. M.; Castaño, L. M.; Beatriz, B.; García, L.
2017-12-01
Nevado del Ruiz is an active volcano in Colombia, which continues eruption activity and has been monitored by 13 broadband and 3 short-period seismic stations. In 2015-2016, a joint Japan-Colombia team installed an automatic event detection and location system based on the amplitude source location (ASL) method. Kumagai et al. (IAVCEI, 2017) indicated the existence of a magma conduit extending from the NW flank to the summit based on ASL analyses of various seismic signals including long-period (LP) and very long period (VLP) events and tremors in a 5-10 Hz frequency band. In this study, we analyzed the VLP events by waveform inversion using eight summit stations in a frequency band of 0.3-0.7 Hz. We selected 14 VLP events from May to December 2016 based on signal-to-noise ratios and simplicity of the waveforms. We assumed a homogeneous P-wave velocity of 3.5 km/s with topography in the calculation of the Green functions. We conducted frequency-domain waveform inversion assuming a tensile crack source and investigated the best location and orientation of the crack by a grid search. The inversion results pointed to a low-angle ( 30°) NW-dipping crack near the top of the conduit (approximately 1 km below the summit). The estimated source time functions displayed two or three cycles of oscillations with the seismic moment of order of 1010-1011 N m. For these 14 events, the ASLs from the 5-10 Hz frequency band were also near the top of the conduit. These results suggest the VLP and high-frequency signals are generated by an oscillation of the crack-like conduit near the summit, which may be triggered by a volume change of magma ascending in the conduit.
NASA Astrophysics Data System (ADS)
Gu, C.; Li, J.; Toksoz, M. N.
2013-12-01
Induced seismicity occurs both in conventional oil/gas fields due to production and water injection and in unconventional oil/gas fields due to hydraulic fracturing. Source mechanisms of these induced earthquakes are of great importance for understanding their causes and the physics of the seismic processes in reservoirs. Previous research on the analysis of induced seismic events in conventional oil/gas fields assumed a double couple (DC) source mechanism. However, recent studies have shown a non-negligible percentage of a non-double-couple (non-DC) component of source moment tensor in hydraulic fracturing events (Šílený et al., 2009; Warpinski and Du, 2010; Song and Toksöz, 2011). In this study, we determine the full moment tensor of the induced seismicity data in a conventional oil/gas field and for hydrofrac events in an unconventional oil/gas field. Song and Toksöz (2011) developed a full waveform based complete moment tensor inversion method to investigate a non-DC source mechanism. We apply this approach to the induced seismicity data from a conventional gas field in Oman. In addition, this approach is also applied to hydrofrac microseismicity data monitored by downhole geophones in four wells in US. We compare the source mechanisms of induced seismicity in the two different types of gas fields and explain the differences in terms of physical processes.
Fluid driven torsional dipole seismic source
Hardee, Harry C.
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
Goold, J C; Fish, P J
1998-04-01
Acoustic emissions from a 2120 cubic in air-gun array were recorded through a towed hydrophone assembly during an oil industry 2-D seismic survey off the West Wales Coast of the British Isles. Recorded seismic pulses were sampled, calibrated, and analyzed post-survey to investigate power levels of the pulses in the band 200 Hz-22 kHz at 750-m, 1-km, 2.2-km, and 8-km range from source. At 750-m range from source, seismic pulse power at the 200-Hz end of the spectrum was 140 dB re: 1 microPa2/Hz, and at the 20-kHz end of the spectrum seismic pulse power was 90 dB re: 1 microPa2/Hz. Although the background noise levels of the seismic recordings were far in excess of ambient, due to the proximity of engine, propeller, and flow sources of the ship towing the hydrophone, seismic power dominated the entire recorded bandwidth of 200 Hz-22 kHz at ranges of up to 2 km from the air-gun source. Even at 8-km range seismic power was still clearly in excess of the high background noise levels up to 8 kHz. Acoustic observations of common dolphins during preceding seismic surveys suggest that these animals avoided the immediate vicinity of the air-gun array while firing was in progress, i.e., localized disturbance occurred during seismic surveying. Although a general pattern of localized disturbance is suggested, one specific observation revealed that common dolphins were able to tolerate the seismic pulses at 1-km range from the air-gun array. Given the high broadband seismic pulse power levels across the entire recorded bandwidth, and known auditory thresholds for several dolphin species, we consider such seismic emissions to be clearly audible to dolphins across a bandwidth of tens on kilohertz, and at least out to 8-km range.
Nanoseismic sources made in the laboratory: source kinematics and time history
NASA Astrophysics Data System (ADS)
McLaskey, G.; Glaser, S. D.
2009-12-01
When studying seismic signals in the field, the analysis of source mechanisms is always obscured by propagation effects such as scattering and reflections due to the inhomogeneous nature of the earth. To get around this complication, we measure seismic waves (wavelengths from 2 mm to 300 mm) in laboratory-sized specimens of extremely homogeneous isotropic materials. We are able to study the focal mechanism and time history of nanoseismic sources produced by fracture, impact, and sliding friction, roughly six orders of magnitude smaller and more rapid than typical earthquakes. Using very sensitive broadband conical piezoelectric sensors, we are able to measure surface normal displacements down to a few pm (10^-12 m) in amplitude. Thick plate specimens of homogeneous materials such as glass, steel, gypsum, and polymethylmethacrylate (PMMA) are used as propagation media in the experiments. Recorded signals are in excellent agreement with theoretically determined Green’s functions obtained from a generalized ray theory code for an infinite plate geometry. Extremely precise estimates of the source time history are made via full waveform inversion from the displacement time histories recorded by an array of at least ten sensors. Each channel is sampled at a rate of 5 MHz. The system is absolutely calibrated using the normal impact of a tiny (~1 mm) ball on the surface of the specimen. The ball impact induces a force pulse into the specimen a few ms in duration. The amplitude, duration, and shape of the force pulse were found to be well approximated by Hertzian-derived impact theory, while the total change in momentum of the ball is independently measured from its incoming and rebound velocities. Another calibration source, the sudden fracture of a thin-walled glass capillary tube laid on its side and loaded against the surface of the specimen produces a similar point force, this time with a source function very nearly a step in time with rise time of less than 500 ns. The force at which the capillary breaks is recorded using a force sensor and is used for absolute calibration. A third set of nanoseismic sources were generated from frictional sliding. In this case, the location and spatial extent of the source along the cm-scale fault is not precisely known and must be determined. These sources are much more representative of earthquakes and the determination of their focal mechanisms is the subject of ongoing research. Sources of this type have been observed on a great range of time scales with rise times ranging from 500 ns to hundreds of ms. This study tests the generality of the seismic source representation theory. The unconventional scale, geometry, and experimental arrangement facilitates the discussion of issues such as the point source approximation, the origin of uncertainty in moment tensor inversions, the applicability of magnitude calculations for non-double-couple sources, and the relationship between momentum and seismic moment.
NASA Astrophysics Data System (ADS)
Dawson, Phillip B.; Chouet, Bernard A.; Power, John
2011-02-01
Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.
Mini-Sosie high-resolution seismic method aids hazards studies
Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.
1992-01-01
The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors
Near Field Modeling for the Maule Tsunami from DART, GPS and Finite Fault Solutions (Invited)
NASA Astrophysics Data System (ADS)
Arcas, D.; Chamberlin, C.; Lagos, M.; Ramirez-Herrera, M.; Tang, L.; Wei, Y.
2010-12-01
The earthquake and tsunami of February, 27, 2010 in central Chile has rekindled an interest in developing techniques to predict the impact of near field tsunamis along the Chilean coastline. Following the earthquake, several initiatives were proposed to increase the density of seismic, pressure and motion sensors along the South American trench, in order to provide field data that could be used to estimate tsunami impact on the coast. However, the precise use of those data in the elaboration of a quantitative assessment of coastal tsunami damage has not been clarified. The present work makes use of seismic, Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems, and GPS measurements obtained during the Maule earthquake to initiate a number of tsunami inundation models along the rupture area by expressing different versions of the seismic crustal deformation in terms of NOAA’s tsunami unit source functions. Translation of all available real-time data into a feasible tsunami source is essential in near-field tsunami impact prediction in which an impact assessment must be generated under very stringent time constraints. Inundation results from each different source are then contrasted with field and tide gauge data by comparing arrival time, maximum wave height, maximum inundation and tsunami decay rate, using field data collected by the authors.
Overview of seismic potential in the central and eastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweig, E.S.
1995-12-31
The seismic potential of any region can be framed in terms the locations of source zones, the frequency of earthquake occurrence for each source, and the maximum size earthquake that can be expect from each source. As delineated by modern and historical seismicity, the most important seismic source zones affecting the eastern United States include the New Madrid and Wabash Valley seismic zones of the central U.S., the southern Appalachians and Charleston, South Carolina, areas in the southeast, and the northern Appalachians and Adirondacks in the northeast. The most prominant of these in terms of current seismicity and historical seismicmore » moment release in the New Madrid seismic zone, which produced three earthquakes of moment magnitude {ge} 8 in 1811 and 1812. The frequency of earthquake recurrence can be examined using the instrumental record, the historical record, and the geological record. Each record covers a unique time period and has a different scale of temporal resolution and completeness of the data set. The Wabash Valley is an example where the long-term geological record indicates a greater potential than the instrumental and historical records. This points to the need to examine all of the evidence in any region in order to obtain a credible estimates of earthquake hazards. Although earthquake hazards may be dominated by mid-magnitude 6 earthquakes within the mapped seismic source zones, the 1994 Northridge, California, earthquake is just the most recent example of the danger of assuming future events will occur on faults known to have had past events and how destructive such an earthquake can be.« less
NASA Astrophysics Data System (ADS)
Taylor, D. G.; Rost, S.; Houseman, G.
2015-12-01
In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.
Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Taylor, George; Rost, Sebastian; Houseman, Gregory
2016-04-01
In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.
Evaluation Seismicity west of block-lut for Deterministic Seismic Hazard Assessment of Shahdad ,Iran
NASA Astrophysics Data System (ADS)
Ney, B.; Askari, M.
2009-04-01
Evaluation Seismicity west of block-lut for Deterministic Seismic Hazard Assessment of Shahdad ,Iran Behnoosh Neyestani , Mina Askari Students of Science and Research University,Iran. Seismic Hazard Assessment has been done for Shahdad city in this study , and four maps (Kerman-Bam-Nakhil Ab-Allah Abad) has been prepared to indicate the Deterministic estimate of Peak Ground Acceleration (PGA) in this area. Deterministic Seismic Hazard Assessment has been preformed for a region in eastern Iran (Shahdad) based on the available geological, seismological and geophysical information and seismic zoning map of region has been constructed. For this assessment first Seimotectonic map of study region in a radius of 100km is prepared using geological maps, distribution of historical and instrumental earthquake data and focal mechanism solutions it is used as the base map for delineation of potential seismic sources. After that minimum distance, for every seismic sources until site (Shahdad) and maximum magnitude for each source have been determined. In Shahdad ,according to results, peak ground acceleration using the Yoshimitsu Fukushima &Teiji Tanaka'1990 attenuation relationship is estimated to be 0.58 g, that is related to the movement of nayband fault with distance 2.4km of the site and maximum magnitude Ms=7.5.
On the use of a laser ablation as a laboratory seismic source
NASA Astrophysics Data System (ADS)
Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane
2017-04-01
Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the experimental data with simulations. Meanwhile, CT-scan X-ray images of these limestone cores will be used to check the relative pertinences of velocity tomography images produced by this newly developed laser ablation seismic source.
Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis
NASA Astrophysics Data System (ADS)
Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.
2016-12-01
Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.
Real-time realizations of the Bayesian Infrasonic Source Localization Method
NASA Astrophysics Data System (ADS)
Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.
2015-12-01
The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.
The trigger mechanism of low-frequency earthquakes on Montserrat
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Tuffen, H.; Collier, L.; Green, D.; Powell, T.; Dingwell, D.
2006-05-01
A careful analysis of low-frequency seismic events on Soufrièere Hills volcano, Montserrat, points to a source mechanism that is non-destructive, repetitive, and has a stationary source location. By combining these seismological clues with new field evidence and numerical magma flow modelling, we propose a seismic trigger model which is based on brittle failure of magma in the glass transition. Loss of heat and gas from the magma results in a strong viscosity gradient across a dyke or conduit. This leads to a build-up of shear stress near the conduit wall where magma can rupture in a brittle manner, as field evidence from a rhyolitic dyke demonstrates. This brittle failure provides seismic energy, the majority of which is trapped in the conduit or dyke forming the low-frequency coda of the observed seismic signal. The trigger source location marks the transition from ductile conduit flow to friction-controlled magma ascent. As the trigger mechanism is governed by the depth-dependent magma parameters, the source location remains fixed at a depth where the conditions allow brittle failure. This is reflected in the fixed seismic source locations.
Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia
NASA Astrophysics Data System (ADS)
Saygin, E.; Cummins, P. R.; Lumley, D. E.
2016-12-01
Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.
Considering potential seismic sources in earthquake hazard assessment for Northern Iran
NASA Astrophysics Data System (ADS)
Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila
2014-07-01
Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.
A spatio-temporal model for probabilistic seismic hazard zonation of Tehran
NASA Astrophysics Data System (ADS)
Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza
2013-08-01
A precondition for all disaster management steps, building damage prediction, and construction code developments is a hazard assessment that shows the exceedance probabilities of different ground motion levels at a site considering different near- and far-field earthquake sources. The seismic sources are usually categorized as time-independent area sources and time-dependent fault sources. While the earlier incorporates the small and medium events, the later takes into account only the large characteristic earthquakes. In this article, a probabilistic approach is proposed to aggregate the effects of time-dependent and time-independent sources on seismic hazard. The methodology is then applied to generate three probabilistic seismic hazard maps of Tehran for 10%, 5%, and 2% exceedance probabilities in 50 years. The results indicate an increase in peak ground acceleration (PGA) values toward the southeastern part of the study area and the PGA variations are mostly controlled by the shear wave velocities across the city. In addition, the implementation of the methodology takes advantage of GIS capabilities especially raster-based analyses and representations. During the estimation of the PGA exceedance rates, the emphasis has been placed on incorporating the effects of different attenuation relationships and seismic source models by using a logic tree.
Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments
NASA Astrophysics Data System (ADS)
Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.
2008-04-01
We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.
Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983-84.
De Siena, Luca; Chiodini, Giovanni; Vilardo, Giuseppe; Del Pezzo, Edoardo; Castellano, Mario; Colombelli, Simona; Tisato, Nicola; Ventura, Guido
2017-08-14
Despite their importance for eruption forecasting the causes of seismic rupture processes during caldera unrest are still poorly reconstructed from seismic images. Seismic source locations and waveform attenuation analyses of earthquakes in the Campi Flegrei area (Southern Italy) during the 1983-1984 unrest have revealed a 4-4.5 km deep NW-SE striking aseismic zone of high attenuation offshore Pozzuoli. The lateral features and the principal axis of the attenuation anomaly correspond to the main source of ground uplift during the unrest. Seismic swarms correlate in space and time with fluid injections from a deep hot source, inferred to represent geochemical and temperature variations at Solfatara. These swarms struck a high-attenuation 3-4 km deep reservoir of supercritical fluids under Pozzuoli and migrated towards a shallower aseismic deformation source under Solfatara. The reservoir became aseismic for two months just after the main seismic swarm (April 1, 1984) due to a SE-to-NW directed input from the high-attenuation domain, possibly a dyke emplacement. The unrest ended after fluids migrated from Pozzuoli to the location of the last caldera eruption (Mt. Nuovo, 1538 AD). The results show that the high attenuation domain controls the largest monitored seismic, deformation, and geochemical unrest at the caldera.
NASA Astrophysics Data System (ADS)
Meng, L.; Ampuero, J. P.; Rendon, H.
2010-12-01
Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification of biased uncertainty of the back projection. Preliminary results from the Venezuela data set shows an East to West rupture propagation along the fault with sub-Rayleigh rupture speed, consistent with a compact source with two significant asperities which are confirmed by source time function obtained from Green’s function deconvolution and other source inversion results. These efforts could lead the Venezuela National Seismic Network to play a prominent role in the timely characterization of the rupture process of large earthquakes in the Caribbean, including the future ruptures along the yet unbroken segments of the Enriquillo fault system.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group
2017-04-01
Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.
2012-09-01
State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional
NASA Astrophysics Data System (ADS)
Martinelli, Bruno
1990-07-01
The seismic activity of the Nevado del Ruiz volcano was monitored during August-September 1985 using a three-component portable seismograph station placed on the upper part of the volcano. The objective was to investigate the frequency content of the seismic signals and the possible sources of the volcanic tremor. The seismicity showed a wide spectrum of signals, especially at the beginning of September. Some relevant patterns from the collected records, which have been analyzed by spectrum analysis, are presented. For the purpose of analysis, the records have been divided into several categories such as long-period events, tremor, cyclic tremor episodes, and strong seismic activity on September 8, 1985. The origin of the seismic signals must be considered in relation to the dynamical and acoustical properties of fluids and the shape and dimensions of the volcano's conduits. The main results of the present experiment and analysis show that the sources of the seismic signals are within the volcanic edifice. The signal characteristics indicate that the sources lie in fluid-phase interactions rather than in brittle fracturing of solid components.
Predicting the performance of local seismic networks using Matlab and Google Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chael, Eric Paul
2009-11-01
We have used Matlab and Google Earth to construct a prototype application for modeling the performance of local seismic networks for monitoring small, contained explosions. Published equations based on refraction experiments provide estimates of peak ground velocities as a function of event distance and charge weight. Matlab routines implement these relations to calculate the amplitudes across a network of stations from sources distributed over a geographic grid. The amplitudes are then compared to ambient noise levels at the stations, and scaled to determine the smallest yield that could be detected at each source location by a specified minimum number ofmore » stations. We use Google Earth as the primary user interface, both for positioning the stations of a hypothetical local network, and for displaying the resulting detection threshold contours.« less
A probabilistic framework for single-station location of seismicity on Earth and Mars
NASA Astrophysics Data System (ADS)
Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.
2017-01-01
Locating the source of seismic energy from a single three-component seismic station is associated with large uncertainties, originating from challenges in identifying seismic phases, as well as inevitable pick and model uncertainties. The challenge is even higher for planets such as Mars, where interior structure is a priori largely unknown. In this study, we address the single-station location problem by developing a probabilistic framework that combines location estimates from multiple algorithms to estimate the probability density function (PDF) for epicentral distance, back azimuth, and origin time. Each algorithm uses independent and complementary information in the seismic signals. Together, the algorithms allow locating seismicity ranging from local to teleseismic quakes. Distances and origin times of large regional and teleseismic events (M > 5.5) are estimated from observed and theoretical body- and multi-orbit surface-wave travel times. The latter are picked from the maxima in the waveform envelopes in various frequency bands. For smaller events at local and regional distances, only first arrival picks of body waves are used, possibly in combination with fundamental Rayleigh R1 waveform maxima where detectable; depth phases, such as pP or PmP, help constrain source depth and improve distance estimates. Back azimuth is determined from the polarization of the Rayleigh- and/or P-wave phases. When seismic signals are good enough for multiple approaches to be used, estimates from the various methods are combined through the product of their PDFs, resulting in an improved event location and reduced uncertainty range estimate compared to the results obtained from each algorithm independently. To verify our approach, we use both earthquake recordings from existing Earth stations and synthetic Martian seismograms. The Mars synthetics are generated with a full-waveform scheme (AxiSEM) using spherically-symmetric seismic velocity, density and attenuation models of Mars that incorporate existing knowledge of Mars internal structure, and include expected ambient and instrumental noise. While our probabilistic framework is developed mainly for application to Mars in the context of the upcoming InSight mission, it is also relevant for locating seismic events on Earth in regions with sparse instrumentation.
Using Receiver Functions to Image the Montana Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Sirianni, R. T.; Russo, R. M.
2008-12-01
We determined receiver functions (RFs) at six permanent Advanced National Seismic System (ANSS) stations to examine crust and upper mantle structure of the Wyoming craton (WC) and Medicine Hat block (MHB). The Deep Probe & SAREX projects (Henstock et al., 1998; Clowes et al., 2002; Gorman et al., 2002) used active source seismics to model a high velocity crustal layer (the so-called 7x layer) beneath the WC. This layer exhibits P wave velocities that are high for lower continental crust (~7+ km/s) and extends from 30-55 km below the surface. Interpretations of the active source data indicate that this layer may represent wide scale crustal underplating of the WC, implying post-Archean craton modification with implications for Laurentia assembly. We used 43 earthquakes from a wide azimuthal distribution recorded at the Montana ANSS stations; high signal-to-noise ratios of 25 of these RFs were acceptable for further analysis. Receiver functions constrain crustal velocity structure beneath a seismometer by using P-to-S wave conversions at sharp velocity contrast boundaries. Preliminary results for seismic stations DGMT, EGMT, and LAO, located to the east of the Deep Probe and SAREX seismic line on the Wyoming craton/Medicine Hat block show the influence of sedimentary cover and a strong Ps phase at approximately four seconds after P. At BOZ and MSO, located in the Rocky mountains, the sedimentary cover signal previously noted is absent, and instead we observe a sharp Ps phase at about four and a half seconds after P. RFs at station RLMT (on the WC) are highly anomalous, probably reflecting complex conversions from two differently oriented dipping layers. We will use the RFs to produce suites of acceptable structural models to test for the presence and lateral extent of the 7x layer and other structural features of the Rocky Mountains-craton transition.
Source-independent full waveform inversion of seismic data
Lee, Ki Ha
2006-02-14
A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.
NASA Astrophysics Data System (ADS)
Ide, Satoshi; Maury, Julie
2018-04-01
Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.
NASA Astrophysics Data System (ADS)
Alvizuri, Celso R.
We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalog: (1) 6 isotropic events, (2) 5 tensional crack events, and (3) a swarm of 14 events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes. A seismic moment tensor is a 3x3 symmetric matrix that provides a compact representation of a seismic source. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms for each moment tensor and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M0 for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M0, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P( V), where P(V) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V. The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M0. We apply the method to data from events in different regions and tectonic settings: 63 small (M w 4) earthquakes in the southern Alaska subduction zone, and 12 earthquakes and 17 nuclear explosions at the Nevada Test Site. Characterization of moment tensor uncertainties puts us in better position to discriminate among moment tensor source types and to assign physical processes to the events.
NASA Astrophysics Data System (ADS)
Bonner, J. L.; Stump, B. W.
2011-12-01
On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial confinement. The Frozen Rock Experiment in 2006 found only minor differences in seismic coupling for explosions in frozen and unfrozen rock. The seismo-acoustic source function was the focus of the above- and below-ground Humble Redwood explosions (2007, 2009 ) in New Mexico and detonations of rocket motor explosions in Utah. Acoustic travel time calibration for the IMS was accomplished with the 2009 and 2011 100-ton surface explosions in southern Israel. The New England Damage Experiment in 2009 correlated increased shear wave generation with increased rock damage from explosions. Damage from explosions continues to be an important research topic at Nevada's National Center for Nuclear Security with the ongoing Source Physics Experiment. A number of exciting experiments are already planned for the future and thus continue the effort to improve global detection, location, and identification of nuclear explosions.
Towards Noise Tomography and Passive Monitoring Using Distributed Acoustic Sensing
NASA Astrophysics Data System (ADS)
Paitz, P.; Fichtner, A.
2017-12-01
Distributed Acoustic Sensing (DAS) has the potential to revolutionize the field of seismic data acquisition. Thanks to their cost-effectiveness, fiber-optic cables may have the capability of complementing conventional geophones and seismometers by filling a niche of applications utilizing large amounts of data. Therefore, DAS may serve as an additional tool to investigate the internal structure of the Earth and its changes over time; on scales ranging from hydrocarbon or geothermal reservoirs to the entire globe. An additional potential may be in the existence of large fibre networks deployed already for telecommunication purposes. These networks that already exist today could serve as distributed seismic antennas. We investigate theoretically how ambient noise tomography may be used with DAS data. For this we extend the theory of seismic interferometry to the measurement of strain. With numerical, 2D finite-difference examples we investigate the impact of source and receiver effects. We study the effect of heterogeneous source distributions and the cable orientation by assessing similarities and differences to the Green's function. We also compare the obtained interferometric waveforms from strain interferometry to displacement interferometric wave fields obtained with existing methods. Intermediate results show that the obtained interferometric waveforms can be connected to the Green's Functions and provide consistent information about the propagation medium. These simulations will be extended to reservoir scale subsurface structures. Future work will include the application of the theory to real-data examples. The presented research depicts the early stage of a combination of theoretical investigations, numerical simulations and real-world data applications. We will therefore evaluate the potentials and shortcomings of DAS in reservoir monitoring and seismology at the current state, with a long-term vision of global seismic tomography utilizing DAS data from existing fiber-optic cable networks.
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
1983-06-01
energy. A distance of 50 ft was maintained between source and detector for one test and 25 ft for the other tests. Since the seismic unit was capable...during the tests. After a recording was made, the seismic source and geophone were each moved 5 ft, thus maintaining the 50- or 25-ft source-to- detector ...produced by cavities; therefore, detection using this technique was not achieved. The sensitivity of the uphole refraction method to the presence of
Development of a time synchronization methodology for a wireless seismic array
NASA Astrophysics Data System (ADS)
Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza
2017-04-01
Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.
Probabilistic Seismic Risk Model for Western Balkans
NASA Astrophysics Data System (ADS)
Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna
2010-05-01
A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.
Modeling the Excitation of Seismic Waves by the Joplin Tornado
NASA Astrophysics Data System (ADS)
Valovcin, Anne; Tanimoto, Toshiro
2017-10-01
Tornadoes generate seismic signals when they contact the ground. Here we examine the signals excited by the Joplin tornado, which passed within 2 km of a station in the Earthscope Transportable Array. We model the tornado-generated vertical seismic signal at low frequencies (0.01-0.03 Hz) and solve for the strength of the seismic source. The resulting source amplitude is largest when the tornado was reported to be strongest (EF 4-5), and the amplitude is smallest when the tornado was weak (EF 0-2). A further understanding of the relationship between source amplitude and tornado intensity could open up new ways to study tornadoes from the ground.
How wind turbines affect the performance of seismic monitoring stations and networks
NASA Astrophysics Data System (ADS)
Neuffer, Tobias; Kremers, Simon
2017-12-01
In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.
Seismology of the moon and implications on internal structure, origin and evolution.
NASA Technical Reports Server (NTRS)
Ewing, M.; Latham, G.; Dorman, J.; Press, F.; Sutton, G.; Meissner, R.; Duennebier, F.; Nakamura, Y.; Kovach, R.
1971-01-01
The objective of the passive seismic experiment is to measure vibrations of the lunar surface produced by all natural and artificial sources of seismic energy and to use these data to deduce the internal structure and constitution of the moon and the nature of tectonic processes which may be active within the moon. Lunar seismic signals are discussed together with the sources of these signals, and aspects of lunar structure and dynamics. Seismic signals from approximately 250 natural events and from two man-made impacts have been recorded during seven months of operation of the two seismic stations installed during Apollo missions 11 and 12.
Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.
2015-12-01
The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
Passive monitoring for near surface void detection using traffic as a seismic source
NASA Astrophysics Data System (ADS)
Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.
2009-12-01
In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.
Model space exploration for determining landslide source history from long period seismic data
NASA Astrophysics Data System (ADS)
Zhao, J.; Mangeney, A.; Stutzmann, E.; Capdeville, Y.; Moretti, L.; Calder, E. S.; Smith, P. J.; Cole, P.; Le Friant, A.
2012-12-01
The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long-period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450km and 1261km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. The volume of the landslide estimated from the force magnitude is compatible with the volume determined by field survey. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on other landslides such as Mount St. Helens (1980) event and Mount Steller event (2005) which are recorded by more broadband stations.
NASA Astrophysics Data System (ADS)
Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona
2015-04-01
One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous advantage for all the problems related to the source inversion and location In addition, the VT seismicity was accompanied by hundreds of LP events (characterized by spectral peaks in the 0.5-2-Hz frequency band) that were concentrated in a 7-day interval. The main interest is to establish whether the occurrence of LPs is only limited to the swarm that reached a climax on days 26-28 October as indicated by Saccorotti et al. (2007), or a longer period is experienced. The automatically extracted waveforms with improved signal-to-noise ratio via CICA coupled with automatic phase picking allowed to compile a more complete seismic catalog and to better quantify the seismic energy release including the presence of LP events from the beginning of October until mid of November. Finally, a further check of the volcanic nature of extracted signals is achieved by looking at the seismological properties and the content of entropy held in the traces (Falanga and Petrosino 2012; De Lauro et al., 2012). Our results allow us to move towards a full description of the complexity of the source, which can be used for hazard-model development and forecast-model testing, showing an illustrative example of the applicability of the CICA method to regions with low seismicity in high ambient noise
RSEIS and RFOC: Seismic Analysis in R
NASA Astrophysics Data System (ADS)
Lees, J. M.
2015-12-01
Open software is essential for reproducible scientific exchange. R-packages provide a platform for development of seismological investigation software that can be properly documented and traced for data processing. A suite of R packages designed for a wide range of seismic analysis is currently available in the free software platform called R. R is a software platform based on the S-language developed at Bell Labs decades ago. Routines in R can be run as standalone function calls, or developed in object-oriented mode. R comes with a base set of routines, and thousands of user developed packages. The packages developed at UNC include subroutines and interactive codes for processing seismic data, analyzing geographic information (GIS) and inverting data involved in a variety of geophysical applications. On CRAN (Comprehensive R Archive Network, http://www.r-project.org/) currently available packages related to seismic analysis are RSEIS, Rquake, GEOmap, RFOC, zoeppritz, RTOMO, and geophys, Rwave, PEIP, hht, rFDSN. These include signal processing, data management, mapping, earthquake location, deconvolution, focal mechanisms, wavelet transforms, Hilbert-Huang Transforms, tomographic inversion, and Mogi deformation among other useful functionality. All software in R packages is required to have detailed documentation, making the exchange and modification of existing software easy. In this presentation, I will focus on packages RSEIS and RFOC, showing examples from a variety of seismic analyses. The R approach has similarities to the popular (and expensive) MATLAB platform, although R is open source and free to down load.
NASA Astrophysics Data System (ADS)
Gok, R.; Hutchings, L.
2004-05-01
We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
NASA Astrophysics Data System (ADS)
Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore
2015-04-01
A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.
Toward Broadband Source Modeling for the Himalayan Collision Zone
NASA Astrophysics Data System (ADS)
Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.
2017-12-01
The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.
NASA Astrophysics Data System (ADS)
Jiménez, César; Carbonel, Carlos; Rojas, Joel
2018-04-01
We have implemented a numerical procedure to forecast the parameters of a tsunami, such as the arrival time of the front of the first wave and the maximum wave height in real and virtual tidal stations along the Peruvian coast, with this purpose a database of pre-computed synthetic tsunami waveforms (or Green functions) was obtained from numerical simulation of seismic unit sources (dimension: 50 × 50 km2) for subduction zones from southern Chile to northern Mexico. A bathymetry resolution of 30 arc-sec (approximately 927 m) was used. The resulting tsunami waveform is obtained from the superposition of synthetic waveforms corresponding to several seismic unit sources contained within the tsunami source geometry. The numerical procedure was applied to the Chilean tsunami of April 1, 2014. The results show a very good correlation for stations with wave amplitude greater than 1 m, in the case of the Arica tide station an error (from the maximum height of the observed and simulated waveform) of 3.5% was obtained, for Callao station the error was 12% and the largest error was in Chimbote with 53.5%, however, due to the low amplitude of the Chimbote wave (<1 m), the overestimated error, in this case, is not important for evacuation purposes. The aim of the present research is tsunami early warning, where speed is required rather than accuracy, so the results should be taken as preliminary.
NASA Astrophysics Data System (ADS)
Jiménez, César; Carbonel, Carlos; Rojas, Joel
2017-09-01
We have implemented a numerical procedure to forecast the parameters of a tsunami, such as the arrival time of the front of the first wave and the maximum wave height in real and virtual tidal stations along the Peruvian coast, with this purpose a database of pre-computed synthetic tsunami waveforms (or Green functions) was obtained from numerical simulation of seismic unit sources (dimension: 50 × 50 km2) for subduction zones from southern Chile to northern Mexico. A bathymetry resolution of 30 arc-sec (approximately 927 m) was used. The resulting tsunami waveform is obtained from the superposition of synthetic waveforms corresponding to several seismic unit sources contained within the tsunami source geometry. The numerical procedure was applied to the Chilean tsunami of April 1, 2014. The results show a very good correlation for stations with wave amplitude greater than 1 m, in the case of the Arica tide station an error (from the maximum height of the observed and simulated waveform) of 3.5% was obtained, for Callao station the error was 12% and the largest error was in Chimbote with 53.5%, however, due to the low amplitude of the Chimbote wave (<1 m), the overestimated error, in this case, is not important for evacuation purposes. The aim of the present research is tsunami early warning, where speed is required rather than accuracy, so the results should be taken as preliminary.
NASA Astrophysics Data System (ADS)
García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.
2007-10-01
A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.
A Fracture Decoupling Experiment
NASA Astrophysics Data System (ADS)
Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.
2012-12-01
Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.
NASA Astrophysics Data System (ADS)
Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie
2018-01-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, R.B.; Nguyen, B.
Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35{degrees}--39{degrees}N and longitudes 87{degrees}--92{degrees}W. Most of these earthquakes occur within a 1.5{degrees} x 2{degrees} zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful toolmore » in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul A.
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Corneliu Rau, Dan; Ionescu, Constantin; Grigore, Adrian
2010-05-01
During the last 70 years, four major earthquakes occurred in the Vrancea seismic area affected Romania territory: 10 November 1940 (Mw = 7.7, 160 km depth), 4 March 1977 (Mw = 7.5, 100 km depth), 30 August 1986 (Mw = 7.2, 140 km depth), 30 May 30 1990 (Mw = 6.9, 80 km depth). Romania is a European country with significant seismicity. So far, the 1977 event had the most catastrophic consequences: about 33,000 residences were totally destroyed or partially deteriorated, 1,571 people dies and another 11,300 were injured. Moreover, 61 natural-gas pipelines were damaged, causing destructive fires. The total losses were estimated at 3 mld. U.S. dollars. Recent studies clearly pointed out that in case of a strong earthquake occurrence in Vrancea region (Ms above 7), the biggest danger regarding the major cities comes from explosions and fires started immediately after the earthquake, and the most important factor of risk are the natural gas distribution networks. The damages are strongly amplified by the fact that, simultaneously, water and electric energy lines distributions are damaged too, making impossible the efficient firemen intervention, for localizing the fire sources. Presently, in Romania safe and efficient accepted solutions for improving the buildings securing, using antiseismic protection of the dangerous installations as natural-gas pipelines are not available. Therefore, we propose a seismic detection system based on a seismically actuated gas shut-off valve, which is automatically shut down in case of a seismic shock. The device is intended to be installed in the natural-gas supply line outside of buildings, as well at each user (group of users), inside of the buildings. The seismic detection system for blocking the dangerous installations in case of a strong earthquake occurrence was designed on the basis of 12 criteria enforced by the US regulations for seismic valves, aimed to eliminate the critical situations as fluids and under pressure gases leakage caused by the seismic shocks. The system is mechanical actuated (no external power sources needed) and consists of two main parts: the element for energy accumulation, i.e. elicoidal spring, and the blocking system for shut-off and secured positioning of the installation. The criteria of the energy accumulating and storing are successfully accomplished by the torsion spring: the exact amount of needed mechanical energy is stored, the certain rotation couple is ensured, the mechanical energy is not influenced by the external factors (temperature, humidity, radiation etc.), the energy stored is time-stable and no energy loss is possible during the operation. The device is self-functioning, independent of any energy source, and the mechanism used in the locking system is not involving gravitational field; moreover, the blocking down energy is stored and adjustable, being possible to overrun several times the minimum necessary energy needed for locking the system, with a high level of stability. Additionally, the blocking system of the seismic valve remains closed (visibly) until the device is manually unblocked and armed, after a preliminary checking of the full installation functionality. The device conception and execution allow a very stable operation for more than 30 years. Since the fluid is not flowing through the blocking mechanism, the system can be successfully used for: natural gases installations, protection of GPL tanks, corrosive poisonous substances, polluting agents etc.
Recent evolutions of the GEOSCOPE broadband seismic observatory
NASA Astrophysics Data System (ADS)
Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Thoré, Jean-Yves; Pesqueira, Frédéric; Pardo, Constanza; Bernard, Armelle; Stutzmann, Eléonore; Maggi, Alessia; Douet, Vincent; Sayadi, Jihane; Lévêque, Jean-Jacques
2017-04-01
The GEOSCOPE observatory provides 35 years of continuous broadband data to the scientific community. The 32 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the GEOSCOPE data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. In 2016, a new station has been installed in Wallis and Futuna (FUTU, South-Western Pacific Ocean), and WUS station has been reinstalled in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the GEOSCOPE data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). An important technical work is done to homogenize the data formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE broadband seismic observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method. By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated for each earthquake, which also includes information for a non-seismologist audience (past seismicity, foreshocks and afterschocks, 3D representations of the fault motion…). Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes. This procedure has also been applied to past earthquakes since 1992, resulting in a database of more than 3000 source time functions (http://scardec.projects.sismo.ipgp.fr/).
NASA Astrophysics Data System (ADS)
Catchings, R.; Strayer, L. M.; Goldman, M.
2014-12-01
We used a temporary network of approximately 600 seismographs to record a seismic source generated by the collapse of a 13-story building near the active trace of the Hayward Fault. These data allow us to evaluate variations in ground shaking across a series of 30 2-km-long radial arrays centered on the seismic source. Individual seismographs were spaced at 200-m intervals, forming a series of 360°concentric arrays around the seismic source. The data show variations in amplification caused by (1) soft sediments within the East Bay alluvial plain (EBAP), (2) hard rocks within the East Bay hills (EBH), (3) low-velocity rocks within the Hayward Fault zone (HFZ), and (4) topography. Given that ground shaking varies strongly with distance from the source, the concentric arrays allowed us to measure variations in ground shaking as a function of azimuth at fixed distances from the source. On individual linear profiles within the concentric arrays, we observed decreases in peak ground velocity (PGV) across the HFZ and other faults within the EBH. However, for a given distance from the source, we observe four to five fold amplification from the EBAP sites compared to most sites in the EBH. Topographic and fault-zone amplification effects within the EBH, however, are greater than the EBAP sediment amplification. Thus, for future earthquakes, shaking at many sites within the EBH may be significantly stronger than many sites within the EBAP. These observations suggest amplification can be expected in unconsolidated sediments, but topographic and fault-zone amplification can be larger. This confirms the importance of site effects for hazard mitigation and in interpreting MMI for future and historical earthquakes.
Fault Specific Seismic Hazard Maps as Input to Loss Reserves Calculation for Attica Buildings
NASA Astrophysics Data System (ADS)
Deligiannakis, Georgios; Papanikolaou, Ioannis; Zimbidis, Alexandros; Roberts, Gerald
2014-05-01
Greece is prone to various natural disasters, such as wildfires, floods, landslides and earthquakes, due to the special environmental and geological conditions dominating in tectonic plate boundaries. Seismic is the predominant risk, in terms of damages and casualties in the Greek territory. The historical record of earthquakes in Greece has been published from various researchers, providing useful data in seismic hazard assessment of Greece. However, the completeness of the historical record in Greece, despite being one of the longest worldwide, reaches only 500 years for M ≥ 7.3 and less than 200 years for M ≥ 6.5. Considering that active faults in the area have recurrence intervals of a few hundred to several thousands of years, it is clear that many active faults have not been activated during the completeness period covered by the historical records. New Seismic Hazard Assessment methodologies tend to follow fault specific approaches where seismic sources are geologically constrained active faults, in order to address problems related to the historical records incompleteness, obtain higher spatial resolution and calculate realistic source locality distances, since seismic sources are very accurately located. Fault specific approaches provide quantitative assessments as they measure fault slip rates from geological data, providing a more reliable estimate of seismic hazard. We used a fault specific seismic hazard assessment approach for the region of Attica. The method of seismic hazard mapping from geological fault throw-rate data combined three major factors: Empirical data which combine fault rupture lengths, earthquake magnitudes and coseismic slip relationships. The radiuses of VI, VII, VIII and IX isoseismals on the Modified Mercalli (MM) intensity scale. Attenuation - amplification functions for seismic shaking on bedrock compared to basin filling sediments. We explicitly modeled 22 active faults that could affect the region of Attica, including Athens, using detailed data derived from published papers, neotectonic maps and fieldwork observations. Moreover, we incorporated background seismicity models from the historic record and also the subduction zone earthquakes distribution, for the integration of strong deep earthquakes that could also affect Attica region. We created 4 high spatial resolution seismic hazard maps for the region of Attica, one for each of the intensities VII - X (MM). These maps offer a locality specific shaking recurrence record, which represents the long-term shaking record in a more complete way, since they incorporate several seismic cycles of the active faults that could affect Attica. Each one of these high resolution seismic hazard maps displays both the spatial distribution and the recurrence, over a specific time period, of the relevant intensity. Time - independent probabilities were extracted based on these average recurrence intervals, using the stationary Poisson model P = 1 -e-Λt. The 'Λ' value was provided by the intensities recurrence, as displayed in the seismic hazard maps. However, the insurance contracts usually lack of detailed spatial information and they refer to Postal Codes level, akin to CRESTA zones. To this end, a time-independent probability of shaking at intensities VII - X was calculated for every Postal Code, for a given time period, using the Poisson model. The reserves calculation on buildings portfolio combines the probability of events of specific intensities within the Postal Codes, with the buildings characteristics, such as the building construction type and the insured value. We propose a standard approach for the reserves calculation K(t) for a specific time period: K (t) = x2 ·[x1 ·y1 ·P1(t) + x1 ·y2 ·P2(t) + x1 ·y3 ·P3(t) + x1 ·y4 ·P4(t)] x1 which is a function of the probabilities of occurrence for the seismic intensities VII - X (P1(t) -P4(t)) for the same period, the value of the building x1, the insured value x2 and the characteristics of the building, such as the construction type, age, height and use of property (y1 - y4). Furthermore a stochastic approach is also adopted in order to obtain the relevant reserve value K(t) for the specific time period. This calculation considers a set of simulations from the Poisson random variable and then taking the respective expectations.
NASA Astrophysics Data System (ADS)
Garcia-Mayordomo, Julian; Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Alvarez-Gomez, Jose Antonio; Martinez-Diaz, Jose Jesus
2017-04-01
Since the Quaternary Active Faults Database of Iberia (QAFI) was released in February 2012 a number of studies aimed at producing seismic hazard assessments have made use of it. We will present a summary of the shortcomings and advantages that were faced when QAFI was considered in different seismic hazard studies. These include the production of the new official seismic hazard map of Spain, performed in the view of the foreseen adoption of Eurocode-8 throughout 2017. The QAFI database was considered as a complementary source of information for designing the seismogenic source-zone models used in the calculations, and particularly for the estimation of maximum magnitude distribution in each zone, as well as for assigning the predominant rupture mechanism based on style of faulting. We will also review the different results obtained by other studies that considered QAFI faults as independent seismogenic-sources in opposition to source-zones, revealing, on one hand, the crucial importance of data-reliability and, on the other, the very much influence that ground motion attenuation models have on the actual impact of fault-sources on hazard results. Finally, we will present briefly the updated version of the database (QAFI v.3, 2015), which includes an original scheme for evaluating the reliability of fault seismic parameters specifically devised to facilitate decision-making to seismic hazard practitioners.
NASA Astrophysics Data System (ADS)
Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana
2017-11-01
The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps. They can be relevant for the retrofitting of the existing building stock and for driving risk reduction interventions. These analyses do not account for regional M > 6 seismogenic sources which dominate the hazard over long return times (≥ 500 years).
NASA Astrophysics Data System (ADS)
Provost, Floriane; Malet, Jean-Philippe; Hibert, Clément; Vergne, Jérôme
2017-04-01
Clayey landslides present various seismic sources generated by the slope deformation (rockfall, slidequakes, tremors, fluid transfers). However, the characterization of the micro-seismicity and the construction of advanced catalogs (classification of the seismic source, time, and location) are complex for such objects because of the variety of recorded signals, the low signal to noise ratios, the highly attenuating medium, and the small size of the object that limits the picking of the P and S-waves. A full understanding of the seismic sources is hence often difficult because of the few number of seismometers, the large distance source-to-sensor (> 50m) and because of the lack of a continous spatially distributed record of the slope deformation. Recent progress in the geophysical instrumentation allowed the deployment of a dense network of 150 ZLand nodes (Tesla Corp.) combined with a Ground-Based InSAR sensor (IDS, IBIS-FM) for a period of ca. 2 months at the Super-Sauze clayey landslide (South French Alps). The Zland nodes are vertical wireless seismometers with 12 days autonomy. Three nodes were co-located at 50 locations in the most active part of the landslide and above the main scarp with a sensor-to-sensor distance of ca. 50m and a sample frequency of 400Hz. The Ground-Based InSAR sensor was installed in front of the landslide at a distance of ca. 800m and acquired an image every 15 minutes. The seismic events are detected automatically based on their spectrogram content with Signal-to-Noise Ratio (SNR) larger than 1.5 and automatically classified using the Random Forest algorithm. The landslide endogenous sources are then located by optimization of the inter-trace correlation of the first arrivals. This experiment aims to document the deformation of the landslide by combining surface and in depth information and provides a new insight into the seismic sources interpretation. The spatial distribution of the deformation is compared to the location of the endogenous seismic events in order to analyze seismic vs. aseismic deformation.
Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway
NASA Astrophysics Data System (ADS)
Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.
2014-12-01
Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at the local seismometers as the race began. The infrasound arrays recorded a variety of atmosphere only processes including substantial helicopter traffic although the array outside the track did not capture the details of the race as a result of the rapid attenuation of high frequency signals.
Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca
2014-05-01
The Italian PON MaTeRiA project is focused on the creation of a research infrastructure open to users based on an innovative and evolutionary X-ray source. This source, named STAR (Southern Europe TBS for Applied Research), exploits the Thomson backscattering process of a laser radiation by fast-electron beams (Thomson Back Scattering - TBS). Its main performances are: X-ray photon flux 109-1010 ph/s, Angular divergence variable between 2 and 10 mrad, X-ray energy continuously variable between 8 keV and 150 keV, Bandwidth ΔE/E variable between 1 and 10%, ps time resolved structure. In order to achieve this performances, bunches of electrons produced by a photo-injector are accelerated to relativistic velocities by a linear accelerator section. The electron beam, few hundreds of micrometer wide, is driven by magnetic fields to the interaction point along a 15 m transport line where it is focused in a 10 micrometer-wide area. In the same area, the laser beam is focused after being transported along a 12 m structure. Ground vibrations could greatly affect the collision probability and thus the emittance by deviating the paths of the beams during their travel in the STAR source. Therefore, the study program to measure ground vibrations in the STAR site can be used for site characterization in relation to accelerator design. The environmental and facility noise may affect the X-ray operation especially if the predominant wavelengths in the microtremor wavefield are much smaller than the size of the linear accelerator. For wavelength much greater, all the accelerator parts move in phase, and therefore also large displacements cannot generate any significant effect. On the other hand, for wavelengths equal or less than half the accelerator size several parts could move in phase opposition and therefore small displacements could affect its proper functioning. Thereafter, it is important to characterize the microtremor wavefield in both frequencies and wavelengths domains. For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.
Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan
Satake, Kenji
2018-01-01
Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [Mw (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non–double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of Mzx, Mzy, and M{tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved. PMID:29740604
Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan.
Fukao, Yoshio; Sandanbata, Osamu; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime; Watada, Shingo; Satake, Kenji
2018-04-01
Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [ M w (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non-double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of M zx , M zy , and M {tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved.
Assessment of seismic hazard in the North Caucasus
NASA Astrophysics Data System (ADS)
Ulomov, V. I.; Danilova, T. I.; Medvedeva, N. S.; Polyakova, T. P.; Shumilina, L. S.
2007-07-01
The seismicity of the North Caucasus is the highest in the European part of Russia. The detection of potential seismic sources here and long-term prediction of earthquakes are extremely important for the assessment of seismic hazard and seismic risk in this densely populated and industrially developed region of the country. The seismogenic structures of the Iran-Caucasus-Anatolia and Central Asia regions, adjacent to European Russia, are the subjects of this study. These structures are responsible for the specific features of regional seismicity and for the geodynamic interaction with adjacent areas of the Scythian and Turan platforms. The most probable potential sources of earthquakes with magnitudes M = 7.0 ± 0.2 and 7.5 ± 0.2 in the North Caucasus are located. The possible macroseismic effect of one of them is assessed.
Interpreting intraplate tectonics for seismic hazard: a UK historical perspective
NASA Astrophysics Data System (ADS)
Musson, R. M. W.
2012-04-01
It is notoriously difficult to construct seismic source models for probabilistic seismic hazard assessment in intraplate areas on the basis of geological information, and many practitioners have given up the task in favour of purely seismicity-based models. This risks losing potentially valuable information in regions where the earthquake catalogue is short compared to the seismic cycle. It is interesting to survey how attitudes to this issue have evolved over the past 30 years. This paper takes the UK as an example, and traces the evolution of seismic source models through generations of hazard studies. It is found that in the UK, while the earliest studies did not consider regional tectonics in any way, there has been a gradual evolution towards more tectonically based models. Experience in other countries, of course, may differ.
Monitoring Unstable Glaciers with Seismic Noise Interferometry
NASA Astrophysics Data System (ADS)
Preiswerk, L. E.; Walter, F.
2016-12-01
Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.
Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California
NASA Astrophysics Data System (ADS)
Chen, X.; Shearer, P. M.
2011-09-01
We study earthquakes within California's Salton Trough from 1981 to 2009 from a precisely relocated catalog. We process the seismic waveforms to isolate source spectra, station spectra and travel-time dependent spectra. The results suggest an average P wave Q of 340, agreeing with previous results indicating relatively high attenuation in the Salton Trough. Stress drops estimated from the source spectra using an empirical Green's function (EGF) method reveal large scatter among individual events but a low median stress drop of 0.56 MPa for the region. The distribution of stress drop after applying a spatial-median filter indicates lower stress drops near geothermal sites. We explore the relationships between seismicity, stress drops and geothermal injection activities. Seismicity within the Salton Trough shows strong spatial clustering, with 20 distinct earthquake swarms with at least 50 events. They can be separated into early-Mmax and late-Mmax groups based on the normalized occurrence time of their largest event. These swarms generally have a low skew value of moment release history, ranging from -9 to 3.0. The major temporal difference between the two groups is the excess of seismicity and an inverse power law increase of seismicity before the largest event for the late-Mmax group. All swarms exhibit spatial migration of seismicity at a statistical significance greater than 85%. A weighted L1-norm inversion of linear migration parameters yields migration velocities from 0.008 to 0.8 km/hour. To explore the influence of fluid injection in geothermal sites, we also model the migration behavior with the diffusion equation, and obtain a hydraulic diffusion coefficient of approximately 0.25 m2/s for the Salton Sea geothermal site, which is within the range of expected values for a typical geothermal reservoir. The swarms with migration velocities over 0.1 km/hour cannot be explained by the diffusion curve, rather, their velocity is consistent with the propagation velocity of creep and slow slip events. These variations in migration behavior allow us to distinguish among different driving processes.
NASA Astrophysics Data System (ADS)
Corciulo, M.; Roux, P.; Campillo, M.; Dubucq, D.
2010-12-01
Passive imaging from noise cross-correlation is a consolidated analysis applied at continental and regional scale whereas its use at local scale for seismic exploration purposes is still uncertain. The development of passive imaging by cross-correlation analysis is based on the extraction of the Green’s function from seismic noise data. In a completely random field in time and space, the cross-correlation permits to retrieve the complete Green’s function whatever the complexity of the medium. At the exploration scale and at frequency above 2 Hz, the noise sources are not ideally distributed around the stations which strongly affect the extraction of the direct arrivals from the noise cross-correlation process. In order to overcome this problem, the coda waves extracted from noise correlation could be useful. Coda waves describe long and scattered paths sampling the medium in different ways such that they become sensitive to weak velocity variations without being dependent on the noise source distribution. Indeed, scatters in the medium behave as a set of secondary noise sources which randomize the spatial distribution of noise sources contributing to the coda waves in the correlation process. We developed a new technique to measure weak velocity changes based on the computation of the local phase variations (instantaneous phase variation or IPV) of the cross-correlated signals. This newly-developed technique takes advantage from the doublet and stretching techniques classically used to monitor weak velocity variation from coda waves. We apply IPV to data acquired in Northern America (Canada) on a 1-km side square seismic network laid out by 397 stations. Data used to study temporal variations are cross-correlated signals computed on 10-minutes ambient noise in the frequency band 2-5 Hz. As the data set was acquired over five days, about 660 files are processed to perform a complete temporal analysis for each stations pair. The IPV permits to estimate the phase shift all over the signal length without any assumption on the medium velocity. The instantaneous phase is computed using the Hilbert transform of the signal. For each stations pair, we measure the phase difference between successive correlation functions calculated for 10 minutes of ambient noise. We then fit the instantaneous phase shift using a first-order polynomial function. The measure of the velocity variation corresponds to the slope of this fit. Compared to other techniques, the advantage of IPV is a very fast procedure which efficiently provides the measure of velocity variation on large data sets. Both experimental results and numerical tests on synthetic signals will be presented to assess the reliability of the IPV technique, with comparison to the doublet and stretching methods.
Receiver function analysis applied to refraction survey data
NASA Astrophysics Data System (ADS)
Subaru, T.; Kyosuke, O.; Hitoshi, M.
2008-12-01
For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.
NASA Astrophysics Data System (ADS)
Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.
2015-12-01
Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.
NASA Astrophysics Data System (ADS)
Moschetti, M. P.; Mueller, C. S.; Boyd, O. S.; Petersen, M. D.
2013-12-01
In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood values from all rate models to rank the smoothing methods. We find that adaptively smoothed seismicity models yield better likelihood values than the fixed smoothing models. Holding all other (source and ground motion) models constant, we calculate seismic hazard curves for all points across Alaska on a 0.1 degree grid, using the adaptively smoothed and fixed smoothed seismicity models separately. Because adaptively smoothed models concentrate seismicity near the earthquake epicenters where seismicity rates are high, the corresponding hazard values are higher, locally, but reduced with distance from observed seismicity, relative to the hazard from fixed-bandwidth models. We suggest that adaptively smoothed seismicity models be considered for implementation in the update to the ASHMs because of their improved likelihood estimates relative to fixed smoothing methods; however, concomitant increases in seismic hazard will cause significant changes in regions of high seismicity, such as near the subduction zone, northeast of Kotzebue, and along the NNE trending zone of seismicity in the Alaskan interior.
Moschetti, Morgan P.; Mueller, Charles S.; Boyd, Oliver S.; Petersen, Mark D.
2014-01-01
In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood values from all rate models to rank the smoothing methods. We find that adaptively smoothed seismicity models yield better likelihood values than the fixed smoothing models. Holding all other (source and ground motion) models constant, we calculate seismic hazard curves for all points across Alaska on a 0.1 degree grid, using the adaptively smoothed and fixed smoothed seismicity models separately. Because adaptively smoothed models concentrate seismicity near the earthquake epicenters where seismicity rates are high, the corresponding hazard values are higher, locally, but reduced with distance from observed seismicity, relative to the hazard from fixed-bandwidth models. We suggest that adaptively smoothed seismicity models be considered for implementation in the update to the ASHMs because of their improved likelihood estimates relative to fixed smoothing methods; however, concomitant increases in seismic hazard will cause significant changes in regions of high seismicity, such as near the subduction zone, northeast of Kotzebue, and along the NNE trending zone of seismicity in the Alaskan interior.
Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China
NASA Astrophysics Data System (ADS)
Wang, B.; Chen, Y.; Wang, W.; Yang, W.
2017-12-01
Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity changes prior to several moderate earthquakes are detected around. Seismic velocity measured around the Hutubi underground gas storage show clear correlation with the gas pressure. Those results shed some light on the short term evolution of the shallow to low crust, which may boost our understanding the mechanism of local seismic hazards.
Advanced Seismic While Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Radtke; John Fontenot; David Glowka
A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology ofmore » a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.« less
Analysis and selection of magnitude relations for the Working Group on Utah Earthquake Probabilities
Duross, Christopher; Olig, Susan; Schwartz, David
2015-01-01
Prior to calculating time-independent and -dependent earthquake probabilities for faults in the Wasatch Front region, the Working Group on Utah Earthquake Probabilities (WGUEP) updated a seismic-source model for the region (Wong and others, 2014) and evaluated 19 historical regressions on earthquake magnitude (M). These regressions relate M to fault parameters for historical surface-faulting earthquakes, including linear fault length (e.g., surface-rupture length [SRL] or segment length), average displacement, maximum displacement, rupture area, seismic moment (Mo ), and slip rate. These regressions show that significant epistemic uncertainties complicate the determination of characteristic magnitude for fault sources in the Basin and Range Province (BRP). For example, we found that M estimates (as a function of SRL) span about 0.3–0.4 units (figure 1) owing to differences in the fault parameter used; age, quality, and size of historical earthquake databases; and fault type and region considered.
NASA Astrophysics Data System (ADS)
Yin, Jiuxun; Denolle, Marine A.; Yao, Huajian
2018-01-01
We develop a methodology that combines compressive sensing backprojection (CS-BP) and source spectral analysis of teleseismic P waves to provide metrics relevant to earthquake dynamics of large events. We improve the CS-BP method by an autoadaptive source grid refinement as well as a reference source adjustment technique to gain better spatial and temporal resolution of the locations of the radiated bursts. We also use a two-step source spectral analysis based on (i) simple theoretical Green's functions that include depth phases and water reverberations and on (ii) empirical P wave Green's functions. Furthermore, we propose a source spectrogram methodology that provides the temporal evolution of dynamic parameters such as radiated energy and falloff rates. Bridging backprojection and spectrogram analysis provides a spatial and temporal evolution of these dynamic source parameters. We apply our technique to the recent 2015 Mw 8.3 megathrust Illapel earthquake (Chile). The results from both techniques are consistent and reveal a depth-varying seismic radiation that is also found in other megathrust earthquakes. The low-frequency content of the seismic radiation is located in the shallow part of the megathrust, propagating unilaterally from the hypocenter toward the trench while most of the high-frequency content comes from the downdip part of the fault. Interpretation of multiple rupture stages in the radiation is also supported by the temporal variations of radiated energy and falloff rates. Finally, we discuss the possible mechanisms, either from prestress, fault geometry, and/or frictional properties to explain our observables. Our methodology is an attempt to bridge kinematic observations with earthquake dynamics.
High-resolution seismic reflection survey at Dover AFB: A comparison of three seismic sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardimona, S.; Kadinsky-Cade, K.; Miller, R.
1996-11-01
In June of 1995, the Earth Sciences Division of the Air Force Phillips Lab, with survey equipment from the University of Delaware and assisted by the Kansas Geological Survey and Elohi Geophysics, conducted a geophysical site characterization of the SERDP-funded Groundwater Remediation Field Lab (GRFL) located at Dover AFB, Delaware and administered by Applied Research Associates for USAF Armstrong Lab. Seismic data were collected in order to (1) compare the results using three different compressional sources and (2) cover the field site well enough to characterize the seismic response of the shallow subsurface. This paper will focus primarily on themore » first of these two goals. Seismic data were collected along three north-south profiles set 10 meters apart, each profile with a different compressional source: a 5.5kg sledgehammer, a 12-gauge firing rod from Betsy Seisgun Inc. shooting 150 grain blanks, and a portable piezoelectrically driven vibrator, developed by Elohi Geophysics, operating with a 90Hz-450Hz sweep. An east-west cross line was collected using the sledgehammer source in order to tie the three profiles together. A laser theodolite provided station location and elevation control. The primary targets were the water table (that had been marked on maps at a depth of about 3 meters) and a sand-clay interface at about 15 meters depth. We collected 24-channel CMP data using a half meter spacing of both source and 100Hz geophones. Field C after initial walkaway noise testing with each source did not show any one source to be outstanding A practical early result of the seismic survey showed the water table to be at just over 10 meters. We have associated the strongest reflection event with the water-table interface. Seismic data comparison in this study is based on spectral content, total energy and signal-to-noise ratios, as well as a discussion of coherency of the primary reflection event at the water table.« less
Assessment of macroseismic intensity in the Nile basin, Egypt
NASA Astrophysics Data System (ADS)
Fergany, Elsayed
2018-01-01
This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, R.B.; Taylor, K.; Nguyen, B.
1988-07-01
Earthquake activity in the Central Mississippi Valley has been monitored by an eight station seismograph network in the Wabash River Valley of southeastern Illinois and by a six station seismograph network in the New Madrid seismic zone. This network is a major component of a larger network in the region, jointly sponsored by the NRC, USGS, universities and states. During the time period of the contract, October 1981 through December 1986, 1206 earthquakes were located in the Central Mississippi Valley, of which 808 were in the New Madrid, Missouri area. Significant earthquakes studied in detail occurred in northeastern Ohio onmore » January 31, 1986 and in southeastern Illinois on June 10, 1987. Focal mechanisms have been calculated for the 10 June 1987 southern Illinois earthquake using both P-wave first motions and long-period surface-wave spectral amplitude data. The long-period surface-wave and strong ground motion accelerogram recordings of the January 3, 1986, northeastern Ohio earthquake were used to estimate the focal mechanism and source time function of the source.reverse arrow« less
NASA Astrophysics Data System (ADS)
Karl, S.; Neuberg, J.
2011-12-01
Volcanoes exhibit a variety of seismic signals. One specific type, the so-called long-period (LP) or low-frequency event, has proven to be crucial for understanding the internal dynamics of the volcanic system. These long period (LP) seismic events have been observed at many volcanoes around the world, and are thought to be associated with resonating fluid-filled conduits or fluid movements (Chouet, 1996; Neuberg et al., 2006). While the seismic wavefield is well established, the actual trigger mechanism of these events is still poorly understood. Neuberg et al. (2006) proposed a conceptual model for the trigger of LP events at Montserrat involving the brittle failure of magma in the glass transition in response to the upwards movement of magma. In an attempt to gain a better quantitative understanding of the driving forces of LPs, inversions for the physical source mechanisms have become increasingly common. Previous studies have assumed a point source for waveform inversion. Knowing that applying a point source model to synthetic seismograms representing an extended source process does not yield the real source mechanism, it can, however, still lead to apparent moment tensor elements which then can be compared to previous results in the literature. Therefore, this study follows the proposed concepts of Neuberg et al. (2006), modelling the extended LP source as an octagonal arrangement of double couples approximating a circular ringfault bounding the circumference of the volcanic conduit. Synthetic seismograms were inverted for the physical source mechanisms of LPs using the moment tensor inversion code TDMTISO_INVC by Dreger (2003). Here, we will present the effects of changing the source parameters on the apparent moment tensor elements. First results show that, due to negative interference, the amplitude of the seismic signals of a ringfault structure is greatly reduced when compared to a single double couple source. Furthermore, best inversion results yield a solution comprised of positive isotropic and compensated linear vector dipole components. Thus, the physical source mechanisms of volcano seismic signals may be misinterpreted as opening shear or tensile cracks when wrongly assuming a point source. In order to approach the real physical sources with our models, inversions based on higher-order tensors might have to be considered in the future. An inversion technique where the point source is replaced by a so-called moment tensor density would allow inversions of volcano seismic signals for sources that can then be temporally and spatially extended.
Cataloging tremor at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Thelen, W. A.; Wech, A.
2013-12-01
Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as starting points for more sophisticated location techniques using cross-correlation and/or amplitude-based locations. The resulting timelines establish a quantitative baseline of behavior for each source to better understand and forecast Kilauea activity.
Seismic hazard in the Nation's breadbasket
Boyd, Oliver; Haller, Kathleen; Luco, Nicolas; Moschetti, Morgan P.; Mueller, Charles; Petersen, Mark D.; Rezaeian, Sanaz; Rubinstein, Justin L.
2015-01-01
The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.
P- and S-wave Receiver Function Imaging with Scattering Kernels
NASA Astrophysics Data System (ADS)
Hansen, S. M.; Schmandt, B.
2017-12-01
Full waveform inversion provides a flexible approach to the seismic parameter estimation problem and can account for the full physics of wave propagation using numeric simulations. However, this approach requires significant computational resources due to the demanding nature of solving the forward and adjoint problems. This issue is particularly acute for temporary passive-source seismic experiments (e.g. PASSCAL) that have traditionally relied on teleseismic earthquakes as sources resulting in a global scale forward problem. Various approximation strategies have been proposed to reduce the computational burden such as hybrid methods that embed a heterogeneous regional scale model in a 1D global model. In this study, we focus specifically on the problem of scattered wave imaging (migration) using both P- and S-wave receiver function data. The proposed method relies on body-wave scattering kernels that are derived from the adjoint data sensitivity kernels which are typically used for full waveform inversion. The forward problem is approximated using ray theory yielding a computationally efficient imaging algorithm that can resolve dipping and discontinuous velocity interfaces in 3D. From the imaging perspective, this approach is closely related to elastic reverse time migration. An energy stable finite-difference method is used to simulate elastic wave propagation in a 2D hypothetical subduction zone model. The resulting synthetic P- and S-wave receiver function datasets are used to validate the imaging method. The kernel images are compared with those generated by the Generalized Radon Transform (GRT) and Common Conversion Point stacking (CCP) methods. These results demonstrate the potential of the kernel imaging approach to constrain lithospheric structure in complex geologic environments with sufficiently dense recordings of teleseismic data. This is demonstrated using a receiver function dataset from the Central California Seismic Experiment which shows several dipping interfaces related to the tectonic assembly of this region. Figure 1. Scattering kernel examples for three receiver function phases. A) direct P-to-s (Ps), B) direct S-to-p and C) free-surface PP-to-s (PPs).
A new seismic probe for coal seam hazard detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Owen, T.E.; Thill, R.E.
1985-01-01
An experimental hole-to-hole seismic probe system has been developed for use in coal measure geology as a means of determining the structural conditions of coal seams. The source probe produces a 500-joule electric arc discharge whose seismic wavelet has a spectrum in the 200 to 2,000 Hz frequency range. Low compliance hydrophones contained in the source probe as well as in a separate seismic detector probe are matched to the frequency range of the source. Both probes are constructed with 5.72 cm diameter housings. The transducers in the probes are equipped with fluid-inflatable boots to permit operation in either wetmore » or dry boreholes. Preliminary tests in vertical boreholes drilled 213 m apart in sedimentary rock formations show reliable operation and useful seismic propagation measurements along horizontal and oblique paths up to 232 m in length. Because the seismic wavelet has an accurately repeatable waveshape, multiple shots and signal averaging techniques can be used to enhance the signal-to-noise ratio and extend the transmission distances.« less
The Seismotectonic Model of Southern Africa
NASA Astrophysics Data System (ADS)
Midzi, Vunganai; Mulabisana, Thifelimbulu; Manzunzu, Brassnavy
2013-04-01
Presented in this report is a summary of the major structures and seismotectonic zones in Southern Africa (Botswana, Lesotho, Namibia, South Africa and Swaziland), which includes available information on fault plane solutions and stress data. Reports published by several experts contributed much to the prepared zones. The work was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. The seismic data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various agencies. Seventeen seismic zones/sources were identified and demarcated using all the available information. Two of the identiied sources are faults with reliable evidence of their activity. Though more faults have been identified in unpublished material as being active, more work is being carried out to obtain information that can be used to characterise them before they are included in the seismotectonic model. Explanations for the selected boundaries of the zones are also given in the report. It should be noted that this information is the first draft of the seismic source zones of the region. Futher interpreation of the data is envisaged which might result in more than one version of the zones.
Focal mechanism of the seismic series prior to the 2011 El Hierro eruption
NASA Astrophysics Data System (ADS)
del Fresno, C.; Buforn, E.; Cesca, S.; Domínguez Cerdeña, I.
2015-12-01
The onset of the submarine eruption of El Hierro (10-Oct-2011) was preceded by three months of low-magnitude seismicity (Mw<4.0) characterized by a well documented hypocenter migration from the center to the south of the island. Seismic sources of this series have been studied in order to understand the physical process of magma migration. Different methodologies were used to obtain focal mechanisms of largest shocks. Firstly, we have estimated the joint fault plane solutions for 727 shocks using first motion P polarities to infer the stress pattern of the sequence and to determine the time evolution of principle axes orientation. Results show almost vertical T-axes during the first two months of the series and horizontal P-axes on N-S direction coinciding with the migration. Secondly, a point source MT inversion was performed with data of the largest 21 earthquakes of the series (M>3.5). Amplitude spectra was fitted at local distances (<20km). Reliability and stability of the results were evaluated with synthetic data. Results show a change in the focal mechanism pattern within the first days of October, varying from complex sources of higher non-double-couple components before that date to a simpler strike-slip mechanism with horizontal tension axes on E-W direction the week prior to the eruption onset. A detailed study was carried out for the 8 October 2011 earthquake (Mw=4.0). Focal mechanism was retrieved using a MT inversion at regional and local distances. Results indicate an important component of strike-slip fault and null isotropic component. The stress pattern obtained corresponds to horizontal compression in a NNW-SSE direction, parallel to the southern ridge of the island, and a quasi-horizontal extension in an EW direction. Finally, a simple source time function of 0.3s has been estimated for this shock using the Empirical Green function methodology.
Vallée, Martin
2013-01-01
The movement of tectonic plates leads to strain build-up in the Earth, which can be released during earthquakes when one side of a seismic fault suddenly slips with respect to the other. The amount of seismic strain release (or 'strain drop') is thus a direct measurement of a basic earthquake property, that is, the ratio of seismic slip over the dimension of the ruptured fault. Here the analysis of a new global catalogue, containing ~1,700 earthquakes with magnitude larger than 6, suggests that strain drop is independent of earthquake depth and magnitude. This invariance implies that deep earthquakes are even more similar to their shallow counterparts than previously thought, a puzzling finding as shallow and deep earthquakes are believed to originate from different physical mechanisms. More practically, this property contributes to our ability to predict the damaging waves generated by future earthquakes.
NASA Astrophysics Data System (ADS)
Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg
2017-04-01
Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW < 2) reveal substantial NDC components indicating dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to the hydraulic operations and the local stress state.
Source-Type Identification Analysis Using Regional Seismic Moment Tensors
NASA Astrophysics Data System (ADS)
Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.
2012-12-01
Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar seismic moment and discrimination for shallow sources are small and can be understood in a systematic manner. We are presently investigating the frequency dependence of vanishing traction of a very shallow (10m depth) M2+ chemical explosion recorded at several kilometer distances, and preliminary results indicate at the typical frequency passband we employ the bias does not affect our ability to retrieve the correct source mechanism but may affect the retrieval of the correct scalar seismic moment. Finally, we assess discrimination capability in a composite P-value statistical framework.
Explosion Source Characteristics in Frozen and Unfrozen Rock
2008-09-30
Alaska in August 2006 to provide empirical data on seismically -estimated yield from explosions it frozen rock Iaboratory studies have demonstrated that...can alter seismic yield. Central Alaska has abrupt lateral boundaries in discontinuous permafrost, and we detonated 3 shots in frozen, saturated rock...SUBJECT TERMS Seismic attenuation, Seismic propagation, Seismic characterization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME
NASA Astrophysics Data System (ADS)
Bukchin, B. G.
1995-08-01
A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.
NASA Astrophysics Data System (ADS)
Murru, M.; Falcone, G.; Taroni, M.; Console, R.
2017-12-01
In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.
Summary of Seismic Discrimination and Explosion Yield Determination Research
1978-11-01
measured and nuemrically simulated displacements .. ........... ... 56 21 Comparison of experimental and numerically simulated source functions expressed...as RVP transforms ...... ..................... 5 22 Comparison of measured and predicted displace- ments for Test 1 ..... .............. ... 57 23...Comparison of measured and predicted displace- ments for the cratering shot (Test 8) . . . . 59 24 The vertical displacement from the complete two
Added-value joint source modelling of seismic and geodetic data
NASA Astrophysics Data System (ADS)
Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank
2013-04-01
In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source model parameters. The source model product then features parameter uncertainty estimates and reveals parameter trade-offs that arise from imperfect data coverage and data errors. We applied our new source modelling approach to the 2010 Haiti earthquake for which a number of apparently different seismic, geodetic and joint source models has been reported already - mostly without any model parameter estimations. We here show that the variability of all these source models seems to arise from inherent model parameter trade-offs and mostly has little statistical significance, e.g. even using a large dataset comprising seismic and geodetic data the confidence interval of the fault dip remains as wide as about 20 degrees.
Tutorial review of seismic surface waves' phenomenology
NASA Astrophysics Data System (ADS)
Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2018-03-01
In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.
Imaging strategies using focusing functions with applications to a North Sea field
NASA Astrophysics Data System (ADS)
da Costa Filho, C. A.; Meles, G. A.; Curtis, A.; Ravasi, M.; Kritski, A.
2018-04-01
Seismic methods are used in a wide variety of contexts to investigate subsurface Earth structures, and to explore and monitor resources and waste-storage reservoirs in the upper ˜100 km of the Earth's subsurface. Reverse-time migration (RTM) is one widely used seismic method which constructs high-frequency images of subsurface structures. Unfortunately, RTM has certain disadvantages shared with other conventional single-scattering-based methods, such as not being able to correctly migrate multiply scattered arrivals. In principle, the recently developed Marchenko methods can be used to migrate all orders of multiples correctly. In practice however, using Marchenko methods are costlier to compute than RTM—for a single imaging location, the cost of performing the Marchenko method is several times that of standard RTM, and performing RTM itself requires dedicated use of some of the largest computers in the world for individual data sets. A different imaging strategy is therefore required. We propose a new set of imaging methods which use so-called focusing functions to obtain images with few artifacts from multiply scattered waves, while greatly reducing the number of points across the image at which the Marchenko method need be applied. Focusing functions are outputs of the Marchenko scheme: they are solutions of wave equations that focus in time and space at particular surface or subsurface locations. However, they are mathematical rather than physical entities, being defined only in reference media that equal to the true Earth above their focusing depths but are homogeneous below. Here, we use these focusing functions as virtual source/receiver surface seismic surveys, the upgoing focusing function being the virtual received wavefield that is created when the downgoing focusing function acts as a spatially distributed source. These source/receiver wavefields are used in three imaging schemes: one allows specific individual reflectors to be selected and imaged. The other two schemes provide either targeted or complete images with distinct advantages over current RTM methods, such as fewer artifacts and artifacts that occur in different locations. The latter property allows the recently published `combined imaging' method to remove almost all artifacts. We show several examples to demonstrate the methods: acoustic 1-D and 2-D synthetic examples, and a 2-D line from an ocean bottom cable field data set. We discuss an extension to elastic media, which is illustrated by a 1.5-D elastic synthetic example.
NASA Astrophysics Data System (ADS)
Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.
2012-09-01
Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can be improved by the application of this methodology.
NASA Astrophysics Data System (ADS)
Wu, Zhenbo; Xu, Tao; Liang, Chuntao; Wu, Chenglong; Liu, Zhiqiang
2018-03-01
The northeastern (NE) Tibet records and represents the far-field deformation response of the collision between the Indian and Eurasian plates in the Cenozoic time. Over the past two decades, studies have revealed the existence of thickened crust in the NE Tibet, but the thickening mechanism is still in debate. We deployed a passive-source seismic profile with 22 temporary broad-band seismic stations in the NE Tibet to investigate the crustal shear wave velocity structure in this region. We selected 288 teleseismic events located in the west Pacific subduction zone near Japan with similar ray path to calculate P-wave receiver functions. Neighbourhood algorithm method is applied to invert the shear wave velocity beneath stations. The inversion result shows a low-velocity zone (LVZ) is roughly confined to the Songpan-Ganzi block and Kunlun mountains and extends to the southern margin of Gonghe basin. Considering the low P-wave velocity revealed by the wide-angle reflection-refraction seismic experiment and high ratio of Vp/Vs based on H-κ grid searching of the receiver functions in this profile, LVZ may be attributed to partial melting induced by temperature change. This observation appears to be consistent with the crustal ductile deformation in this region derived from other geophysical investigations.
O'Neel, Shad; Larsen, Christopher F.; Rupert, Natalia; Hansen, Roger
2010-01-01
Since the installation of the Alaska Regional Seismic Network in the 1970s, data analysts have noted nontectonic seismic events thought to be related to glacier dynamics. While loose associations with the glaciers of the St. Elias Mountains have been made, no detailed study of the source locations has been undertaken. We performed a two-step investigation surrounding these events, beginning with manual locations that guided an automated detection and event sifting routine. Results from the manual investigation highlight characteristics of the seismic waveforms including single-peaked (narrowband) spectra, emergent onsets, lack of distinct phase arrivals, and a predominant cluster of locations near the calving termini of several neighboring tidewater glaciers. Through these locations, comparison with previous work, analyses of waveform characteristics, frequency-magnitude statistics and temporal patterns in seismicity, we suggest calving as a source for the seismicity. Statistical properties and time series analysis of the event catalog suggest a scale-invariant process that has no single or simple forcing. These results support the idea that calving is often a response to short-lived or localized stress perturbations. Our results demonstrate the utility of passive seismic instrumentation to monitor relative changes in the rate and magnitude of iceberg calving at tidewater glaciers that may be volatile or susceptible to ensuing rapid retreat, especially when existing seismic infrastructure can be used.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena
2016-04-01
Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen
Q estimation of seismic data using the generalized S-transform
NASA Astrophysics Data System (ADS)
Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming
2016-12-01
Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen R. Novascone; Michael J. Anderson; David M. Weinberg
2003-10-01
Field measurements of the vibration amplitude of a rotating-imbalance seismic source in a liquid-filled borehole are described. The borehole was a cased oil well that had been characterized by gamma-ray cement bond and compensated neutron litho-density/gamma-ray logs. The well logs indicated an abrupt transition from shale to limestone at a depth of 2638 ft. The vibration amplitude and frequency of a rotating-imbalance seismic source was measured versus applied voltage as the source was raised from 2654 to 2618 ft through the shale–limestone transition. It was observed that the vibration amplitude changed by approximately 10% in magnitude and the frequency changedmore » approximately 15% as the source passed the shale–limestone transition. The measurements were compared to predictions provided by a two-dimensional analytical model of a rotating-imbalance source located in a liquid-filled bore hole. It was observed that the sensitivity of the experimentally measured vibration amplitude of the seismic source to the properties of the surrounding geologic media was an order of magnitude greater than that predicted by the two-dimensional analytical model.« less
Comprehensive Studies on the Seismic Gap between the Wenchuan and Lushan Earthquakes
NASA Astrophysics Data System (ADS)
Liang, C.
2016-12-01
An array of 20 short-period and 15 broadband seismometers were deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes has recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is in control of the strain energy release. The dense array is deployed primarily aimed to detect events that are much smaller than cataloged events and to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transitional zone between north and south segment. The events to the south are primarily thrust while events to north have more or less striking-slip components. This is also the case for both Lushan and Wenchuan earthquake; (2) The receiver function analysis shows that the Moho beneath the seismic Gap is less defined than its adjacent region with relatively weaker Ps conversion phases; (3) Both receiver function and ambient noise tomography show that the velocities in the upper crust is relatively lower in the Gap region than surrounding regions; (4) significant number of small earthquakes are located near surface in the gap region. Further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region.
Stress and structure analysis of the Seismic Gap between the Wenchuan and Lushan Earthquakes
NASA Astrophysics Data System (ADS)
Liang, Chuntao
2017-04-01
An array of 20 short-period and 15 broadband seismometers were deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes has recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is in control of the strain energy release. The dense array is deployed primarily aimed to detect events that are much smaller than cataloged events and to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transitional zone between north and south segment. The events to the south are primarily thrust while events to north have more or less striking-slip components. This is also the case for both Lushan and Wenchuan earthquake; (2) The receiver function analysis shows that the Moho beneath the seismic Gap is less defined than its adjacent region with relatively weaker Ps conversion phases; (3) Both receiver function and ambient noise tomography show that the velocities in the upper crust is relatively lower in the Gap region than surrounding regions; (4) significant number of small earthquakes are located near surface in the gap region. Further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region.
NASA Astrophysics Data System (ADS)
Niu, F.; Taira, T.; Daley, T. M.; Marchesini, P.; Robertson, M.; Wood, T.
2017-12-01
Recent field and laboratory experiments identify seismic velocity changes preceding microearthquakes and rock failure (Niu et al., 2008, Nature; Scuderi et al., 2016, NatureGeo), which indicates that a continuous monitoring of seismic velocity might provide a mean of understanding of the earthquake nucleation process. Crosswell Continuous Active-Source Seismic Monitoring (CASSM) using borehole sources and sensors has proven to be an effective tool for measurements of seismic velocity and its temporal variation at seismogenic depth (Silver, et al, 2007, BSSA; Daley, et al, 2007, Geophysics). To expand current efforts on the CASSM development, in June 2017 we have begun to conduct a year-long CASSM field experiment at the San Andreas Fault Observatory at Depth (SAFOD) in which the preceding field experiment detected the two sudden velocity reductions approximately 10 and 2 hours before microearthquakes (Niu et al., 2008, Nature). We installed a piezoelectric source and a three-component accelerometer at the SAFOD pilot and main holes ( 1 km depth) respectively. A seismic pulse was fired from the piezoelectric source four times per second. Each waveform was recorded 150-ms-long data with a sampling rate of 48 kHz. During this one-year experiment, we expect to have 10-15 microearthquakes (magnitude 1-3) occurring near the SAFOD site, and the data collected from the new experiment would allow us to further explore a relation between velocity changes and the Parkfield seismicity. Additionally, the year-long data provide a unique opportunity to study long-term velocity changes that might be related to seasonal stress variations at Parkfield (Johnson et al., 2017, Science). We will report on initial results of the SAFOD CASSM experiment and operational experiences of the CASSM development.
Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators
NASA Astrophysics Data System (ADS)
Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.
2015-12-01
Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.
2010-12-01
In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.
Characterizing seismic noise in the 2-20 Hz band at a gravitational wave observatory
NASA Astrophysics Data System (ADS)
Coward, D.; Turner, J.; Blair, D.; Galybin, K.
2005-04-01
We present a study of seismic noise, using an array of seismic sensors, at the Australian International Gravitational Observatory. We show that despite excellent attenuation of 2-20 Hz seismic waves from the soil properties of the site, which is confirmed by a specific experiment, there are important technical issues associated with local sources of vibration originating from within the laboratory buildings. In particular, we identify vibrations from air-filtration equipment propagating throughout the site. We find significant building resonances in the 2-13 Hz band and identify seismic noise originating from regional mine blasts hundreds of kilometers distant. All these noise sources increase the performance requirements on vibration isolation in the 2-20 Hz frequency band.
NASA Astrophysics Data System (ADS)
Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.
2015-12-01
A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.
NASA Astrophysics Data System (ADS)
Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami
2017-04-01
Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Dunham, E. M.
2016-12-01
Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified if the source is located in the shallow, sedimentary sequence compared to the basement. Source depth could therefore be an important variable to define explicitly in GMPEs instead of being incorporated into traditional distance metrics. Future work will include the addition of dynamic sources to develop GMPEs for large earthquakes.
The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints
NASA Astrophysics Data System (ADS)
Carbonell, Ramon; Levander, Alan; Kind, Rainer
2013-12-01
The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.
Adjoint Inversion for Extended Earthquake Source Kinematics From Very Dense Strong Motion Data
NASA Astrophysics Data System (ADS)
Ampuero, J. P.; Somala, S.; Lapusta, N.
2010-12-01
Addressing key open questions about earthquake dynamics requires a radical improvement of the robustness and resolution of seismic observations of large earthquakes. Proposals for a new generation of earthquake observation systems include the deployment of “community seismic networks” of low-cost accelerometers in urban areas and the extraction of strong ground motions from high-rate optical images of the Earth's surface recorded by a large space telescope in geostationary orbit. Both systems could deliver strong motion data with a spatial density orders of magnitude higher than current seismic networks. In particular, a “space seismometer” could sample the seismic wave field at a spatio-temporal resolution of 100 m, 1 Hz over areas several 100 km wide with an amplitude resolution of few cm/s in ground velocity. The amount of data to process would be immensely larger than what current extended source inversion algorithms can handle, which hampers the quantitative assessment of the cost-benefit trade-offs that can guide the practical design of the proposed earthquake observation systems. We report here on the development of a scalable source imaging technique based on iterative adjoint inversion and its application to the proof-of-concept of a space seismometer. We generated synthetic ground motions for M7 earthquake rupture scenarios based on dynamic rupture simulations on a vertical strike-slip fault embedded in an elastic half-space. A range of scenarios include increasing levels of complexity and interesting features such as supershear rupture speed. The resulting ground shaking is then processed accordingly to what would be captured by an optical satellite. Based on the resulting data, we perform source inversion by an adjoint/time-reversal method. The gradient of a cost function quantifying the waveform misfit between data and synthetics is efficiently obtained by applying the time-reversed ground velocity residuals as surface force sources, back-propagating onto the locked fault plane through a seismic wave simulation and recording the fault shear stress, which is the adjoint field of the fault slip-rate. Restricting the procedure to a single iteration is known as imaging. The source reconstructed by imaging reproduces the original forward model quite well in the shallow part of the fault. However, the deeper part of the earthquake source is not well reproduced, due to the lack of data on the side and bottom boundaries of our computational domain. To resolve this issue, we are implementing the complete iterative procedure and we will report on the convergence aspects of the adjoint iterations. Our current work is also directed towards addressing the lack of data on other boundaries of our domain and improving the source reconstruction by including teleseismic data for those boundaries and non-negativity constraints on the dominant slip-rate component.
The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppeliers, Christian
This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In thismore » report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.« less
Infrasound as a Geophysical Probe Using Earth as a Venus Analog
NASA Astrophysics Data System (ADS)
Komjathy, Attila; Cutts, James; Pauken, Michael; Kedar, Sharon; Smrekar, Suzanne
2016-10-01
JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude ~3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise.In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere.We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.
Infrasound as a Geophysical Probe Using Earth as a Venus Analog
NASA Astrophysics Data System (ADS)
Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.
2016-12-01
JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.
NASA Astrophysics Data System (ADS)
Sugioka, H.; Suyehiro, K.; Shinohara, M.
2009-12-01
The hydroacoustic monitoring by the International Monitoring System (IMS) for Comprehensive Nuclear-Test-Treaty (CTBT) verification system utilize hydrophone stations and seismic stations called T-phase stations for worldwide detection. Some signals of natural origin include those from earthquakes, submarine volcanic eruptions, or whale calls. Among artificial sources there are non-nuclear explosions and air-gun shots. It is important for IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressures, hydrophones and seismic sensors) may be utilized to verify and increase the capability of the IMS. We use these data to compare some selected event parameters with those by Pacific in the time period of 2004-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals. The seafloor cable networks composed of three hydrophones and six seismometers and a temporal dense seismic array detected and located hydroacoustic events offshore Japanese island on 12th of March in 2008, which had been reported by the IMS. We detected not only the reverberated hydroacoustic waves between the sea surface and the sea bottom but also the seismic waves going through the crust associated with the events. The determined source of the seismic waves is almost coincident with the one of hydroacoustic waves, suggesting that the seismic waves are converted very close to the origin of the hydroacoustic source. We also detected very similar signals on 16th of March in 2009 to the ones associated with the event of 12th of March in 2008.
Probabilistic Seismic Hazard Assessment for Iraq Using Complete Earthquake Catalogue Files
NASA Astrophysics Data System (ADS)
Ameer, A. S.; Sharma, M. L.; Wason, H. R.; Alsinawi, S. A.
2005-05-01
Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29° 38.5° N and longitude 39° 50° E containing more than a thousand events for the period 1905 2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate λ, b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin ≥ m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.
Seismic source characteristics of the intraslab 2017 Chiapas-Mexico earthquake (Mw8.2)
NASA Astrophysics Data System (ADS)
Jiménez, César
2018-07-01
Inversion of the parameters characterising the seismic source of the instraslab 2017 Chiapas Mexico earthquake (Mw 8.2) shows a simple rupture process with a unidirectional propagation and directivity towards the North-West and a duration of the rupture process around 75 s. The initial point source values of strike, dip and rake are 316°, 80° and -91° respectively. The focal mechanism indicates a normal fault type within the oceanic Cocos plate, with an almost vertical fault plane for a focal depth of 59 km. The seismic data was obtained from 51 seismic stations of the global seismic network IRIS for the epicentral distances between 30° and 90°. In the finite-fault inversion, 75 seismic signals between P and SH waves were used. The epicenter is on the southeast margin of the large slip zone which extends 75 km to the northwest, this large slip zone is located to the south of the city of Arriaga. The scalar seismic moment was estimated at 2.55 ×1021Nm , equivalent to a moment magnitude of Mw 8.2. The maximum dislocation or slip is 14.5 m. As a coseismic effect, a local tsunami was generated, recorded by several tidal gauges and offshore buoys. The deformation pattern shows a coastal uplift and subsidence.
NASA Astrophysics Data System (ADS)
Hobbs, T. E.; Cassidy, J. F.; Dosso, S. E.
2014-12-01
This paper examines the effect of the October 2012 Mw 7.8 Haida Gwaii earthquake on aftershock nodal planes and the neighboring Queen Charlotte Fault (QCF) through Coulomb modeling and directivity analysis. The Haida Gwaii earthquake was the largest thrust event recorded in this region and ruptured an area of ~150 by 40 km on a gently NE-dipping fault off the west coast of Moresby Island, British Columbia. It is particularly interesting as it is located just to the west of the QCF, the predominantly right-lateral strike-slip fault separating the Pacific and North American plates. The QCF was the site of the largest recorded earthquake in Canada: the 1949 Ms 8.1 strike-slip earthquake whose rupture extended as far south as this 2012 event and roughly as far north as an Mw7.5 strike slip event at Craig, Alaska, which occurred just two months later in January 2013. The 75 km long portion of the QCF south of the 1949 rupture has not had a large (M ≥ 7) earthquake in over 116 years, representing a significant seismic gap. Coulomb stress transfer analysis is performed using finite fault models which incorporate seismic and geodetic data. Static stress changes are projected onto aftershock nodal planes and the QCF, including an inferred southern seismic gap. We find up to 86% of aftershocks are consistent with triggering, and as high as 96% for normal faulting events. The QCF experiences static stress changes greater than the empirically-determined threshold for triggering, with positive stress changes predicted for roughly half of the seismic gap region. Added stress from the mainshock and a lack of post-mainshock events make this seismic gap a likely location for future earthquakes. Empirical Green's function and directivity analyses are also performed to constrain rupture kinematics of the mainshock using systematic azimuthal variations in relative source time functions. Results indicate rupture progressed mainly to the northwest within 15o of the direction of the 2013 Craig epicenter, with at least two sources of significant moment release. These results explain observed surface wave amplification at Alaskan seismic stations and support the idea that strong surface wave shaking may be linked to the possible delayed triggering of the Mw 7.5 Craig event, through an unknown intermediate mechanism that accounts for the two-month hiatus.
TkPl_SU: An Open-source Perl Script Builder for Seismic Unix
NASA Astrophysics Data System (ADS)
Lorenzo, J. M.
2017-12-01
TkPl_SU (beta) is a graphical user interface (GUI) to select parameters for Seismic Unix (SU) modules. Seismic Unix (Stockwell, 1999) is a widely distributed free software package for processing seismic reflection and signal processing. Perl/Tk is a mature, well-documented and free object-oriented graphical user interface for Perl. In a classroom environment, shell scripting of SU modules engages students and helps focus on the theoretical limitations and strengths of signal processing. However, complex interactive processing stages, e.g., selection of optimal stacking velocities, killing bad data traces, or spectral analysis requires advanced flows beyond the scope of introductory classes. In a research setting, special functionality from other free seismic processing software such as SioSeis (UCSD-NSF) can be incorporated readily via an object-oriented style to programming. An object oriented approach is a first step toward efficient extensible programming of multi-step processes, and a simple GUI simplifies parameter selection and decision making. Currently, in TkPl_SU, Perl 5 packages wrap 19 of the most common SU modules that are used in teaching undergraduate and first-year graduate student classes (e.g., filtering, display, velocity analysis and stacking). Perl packages (classes) can advantageously add new functionality around each module and clarify parameter names for easier usage. For example, through the use of methods, packages can isolate the user from repetitive control structures, as well as replace the names of abbreviated parameters with self-describing names. Moose, an extension of the Perl 5 object system, greatly facilitates an object-oriented style. Perl wrappers are self-documenting via Perl programming document markup language.
Shallow seismicity in volcanic system: what role does the edifice play?
NASA Astrophysics Data System (ADS)
Bean, Chris; Lokmer, Ivan
2017-04-01
Seismicity in the upper two kilometres in volcanic systems is complex and very diverse in nature. The origins lie in the multi-physics nature of source processes and in the often extreme heterogeneity in near surface structure, which introduces strong seismic wave propagation path effects that often 'hide' the source itself. Other complicating factors are that we are often in the seismic near-field so waveforms can be intrinsically more complex than in far-field earthquake seismology. The traditional focus for an explanation of the diverse nature of shallow seismic signals is to call on the direct action of fluids in the system. Fits to model data are then used to elucidate properties of the plumbing system. Here we show that solutions based on these conceptual models are not unique and that models based on a diverse range of quasi-brittle failure of low stiffness near surface structures are equally valid from a data fit perspective. These earthquake-like sources also explain aspects of edifice deformation that are as yet poorly quantified.
Microseismicity of Blawan hydrothermal complex, Bondowoso, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Maryanto, S.
2018-03-01
Peak Ground Acceleration (PGA), hypocentre, and epicentre of Blawan hydrothermal complex have been analysed in order to investigate its seismicity. PGA has been determined based on Fukushima-Tanaka method and the source location of microseismic estimated using particle motion method. PGA ranged between 0.095-0.323 g and tends to be higher in the formation that containing not compacted rocks. The seismic vulnerability index region indicated that the zone with high PGA also has a high seismic vulnerability index. This was because the rocks making up these zones were inclined soft and low-density rocks. For seismic sources around the area, epicentre and hypocentre, have estimated base on seismic particle motion method of single station. The stations used in this study were mobile stations identified as BL01, BL02, BL03, BL05, BL06, BL07 and BL08. The results of the analysis particle motion obtained 44 points epicentre and the depth of the sources about 15 – 110 meters below ground surface.
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous ``sources`` and ``targets`` requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to ``calibrate`` the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous sources'' and targets'' requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to calibrate'' the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
NASA Technical Reports Server (NTRS)
Okal, E. A.
1978-01-01
The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.
Preliminary results of the Source China Sea passive source OBS array experiment
NASA Astrophysics Data System (ADS)
Yang, T.; Liu, C.; Pei, Y.; Xia, S.
2013-12-01
The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.
Signal restoration through deconvolution applied to deep mantle seismic probes
NASA Astrophysics Data System (ADS)
Stefan, W.; Garnero, E.; Renaut, R. A.
2006-12-01
We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.
Seismic Hazard Implication of the Seismotectonics of southern Africa
NASA Astrophysics Data System (ADS)
Midzi, Vunganai; Mulabisana, Thifelimbilu; Manzunzu, Brassnavy
2014-05-01
The work presented in this report / presentation was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. An effort was made to compile information necessary to prepare a seismotectonic map of Africa which can then be used in carrying out a seismic hazard assessment of the continent or locations within the continent. Information on major faults, fault plane solutions, geophysical data as well as stress data has so far been collected and included in a database for the southern Africa region. Reports published by several experts contributed much to the collected information. The seismicity data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various sources. An effort has been made to characterise the identified major faults and through further analysis investigate their possible impact on the seismic hazard of southern Africa.
Calibration of Seismic Sources during a Test Cruise with the new RV SONNE
NASA Astrophysics Data System (ADS)
Engels, M.; Schnabel, M.; Damm, V.
2015-12-01
During autumn 2014, several test cruises of the brand new German research vessel SONNE were carried out before the first official scientific cruise started in December. In September 2014, BGR conducted a seismic test cruise in the British North Sea. RV SONNE is a multipurpose research vessel and was also designed for the mobile BGR 3D seismic equipment, which was tested successfully during the cruise. We spend two days for calibration of the following seismic sources of BGR: G-gun array (50 l @ 150 bar) G-gun array (50 l @ 207 bar) single GI-gun (3.4 l @ 150 bar) For this experiment two hydrophones (TC4042 from Reson Teledyne) sampling up to 48 kHz were fixed below a drifting buoy at 20 m and 60 m water depth - the sea bottom was at 80 m depth. The vessel with the seismic sources sailed several up to 7 km long profiles around the buoy in order to cover many different azimuths and distances. We aimed to measure sound pressure level (SPL) and sound exposure level (SEL) under the conditions of the shallow North Sea. Total reflections and refracted waves dominate the recorded wave field, enhance the noise level and partly screen the direct wave in contrast to 'true' deep water calibration based solely on the direct wave. Presented are SPL and RMS power results in time domain, the decay with distance along profiles, and the somehow complicated 2D sound radiation pattern modulated by topography. The shading effect of the vessel's hull is significant. In frequency domain we consider 1/3 octave levels and estimate the amount of energy in frequency ranges not used for reflection seismic processing. Results are presented in comparison of the three different sources listed above. We compare the measured SPL decay with distance during this experiment with deep water modeling of seismic sources (Gundalf software) and with published results from calibrations with other marine seismic sources under different conditions: E.g. Breitzke et al. (2008, 2010) with RV Polarstern, Tolstoy et al. (2004) with RV Ewing and Tolstoy et al. (2009) with RV Langseth, and Crone et al. (2014) with RV Langseth.
Seismic and Tectonic Regionalization of the State of Michoacan.
NASA Astrophysics Data System (ADS)
Vazquez Rosas, R.; Aguirre, J.; Garduño-Monroy, V. H.; Ramirez-Guzman, L.
2017-12-01
In Mexico it is a country with seismically active regions, mainly the zones that are next to the pacific where the zone of subduction is located, in this work we focus on the state of Michoacán, since this has not been completely studied in the last 30 years after the earthquake in Michoacán in 1985. The first most important step is to know the region which are the most seismic zones within the state and one way is to carry out the regionalization of Michoacán identifying the sources of earthquakes as well as where occur more frequently.If we could know each of the factors that influence seismicity and describe every point of the terrain, every rupture, every rock, etc., then we could describe in an analytical way the seismic process and predict the occurrence of earthquakes such as eclipses. Unfortunately the number of parameters is so enormous that we cannot arrive at an exact description; however, we can take advantage of statistical properties to evaluate probabilities, even in the case of small systems such as a particular seismic zone.In this paper, epicenter data were collected from 1970 to 2014, and with them a statistical study was carried out and the epicenter data plotted using data reported by the National Seismological Service and the IRIS catalog as well as some data from the Institute of engineering UNAM. Where earthquakes of equal and greater than M = 4 were used. Graphing these in function with the depth and with that it was graficaron and was made an overlapping the faults of the state and with that it was divided in 4 seismic zones in function of the faults and the localized seismicity.Zone A. is located within the Michoacán Block set of faults, as well as part of the subduction zone on the coast of the state. Seismicity in this area is high. Zone B-1. This is located between the limits of Jalisco and Michoacán in the set of faults called Tepalcatepec depression and limits with the Jorullo-Tacámbaro fracture. At this site seismicity is relatively moderate. The Zone B-2 is located in the limits of Michoacán and Guerrero, within the fault complex Michoacán Oaxaca, and the faults Zitzio and Villa de Santiago. With relatively moderate seismicity. Zone C This zone is located in the limits of Guanajuato, Querétaro and State of Mexico, within the Acambay fault complex and the Morelia fault system. With relatively low seismicity.
NASA Astrophysics Data System (ADS)
Ishihara, Y.; Yamanaka, Y.; Kikuchi, M.
2002-12-01
The existences of variety of low-frequency seismic sources are obvious by the dense and equalized equipment_fs seismic network. Kikuchi(2000) and Kumagai et.al. (2001) analyzed about 50sec period ground motion excited by the volcanic activities Miyake-jima, Izu Islands. JMA is listing the low frequency earthquakes routinely in their hypocenter determination. Obara (2002) detected the low frequency, 2-4 Hz, tremor that occurred along subducting Philippine Sea plate by envelope analysis of high dense and short period seismic network (Hi-net). The monitoring of continuos long period waveform show us the existence of many unknown sources. Recently, the broadband seismic network of Japan (F-net, previous name is FREESIA) is developed and extends to linear array about 3,000 km. We reviewed the long period seismic data and earthquake catalogues. Many candidates, which are excited by unknown sources, are picked up manually. The candidates are reconfirmed in detail by the original seismograms and their rough frequency characteristics are evaluated. Most events have the very low frequency seismograms that is dominated period of 20 _E30 sec and smaller amplitude than ground noise level in shorter period range. We developed the hypocenter determination technique applied the grid search method. Moreover for the major events moment tensor inversion was performed. The most source locates at subducting plate and their depth is greater than 30km. However the location don_ft overlap the low frequency tremor source region. Major event_fs moment magnitude is 4 or greater and estimated source time is around 20 sec. We concluded that low frequency seismic event series exist in wide period range in subduction area. The very low frequency earthquakes occurred along Nankai and Ryukyu trough at southwestern Japan. We are planing to survey the very low frequency event systematically in wider western Pacific region.
NASA Astrophysics Data System (ADS)
Rougier, E.; Knight, E. E.
2015-12-01
The Source Physics Experiments (SPE) is a project funded by the U.S. Department of Energy at the National Nuclear Security Site. The project consists of a series of underground explosive tests designed to gain more insight on the generation and propagation of seismic energy from underground explosions in hard rock media, granite. Until now, four tests (SPE-1, SPE-2, SPE-3 and SPE-4Prime) with yields ranging from 87 kg to 1000 kg have been conducted in the same borehole. The generation and propagation of seismic waves is heavily influenced by the different damage mechanisms occurring at different ranges from the explosive source. These damage mechanisms include pore crushing, compressive (shear) damage, joint damage, spallation and fracture and fragmentation, etc. Understanding these mechanisms and how they interact with each other is essential to the interpretation of the characteristics of close-in seismic observables. Recent observations demonstrate that, for relatively small and shallow chemical explosions in granite, such as SPE-1, -2 and -3, the formation of a cavity around the working point is not the main mechanism responsible for the release of seismic moment. Shear dilatancy (bulking occurring as a consequence of compressive damage) of the medium around the source has been proposed as an alternative damage mechanism that explains the seismic moment release observed in the experiments. In this work, the interaction between cavity formation and bulking is investigated via a series of computer simulations for the SPE-2 event. The simulations are conducted using a newly developed material model, called AZ_Frac. AZ_Frac is a continuum-based-visco-plastic strain-rate-dependent material model. One of its key features is its ability to describe continuum fracture processes, while properly handling anisotropic material characteristics. The implications of the near source numerical results on the close-in seismic quantities, such as reduced displacement potentials and source spectra are presented.
Reconstruction of far-field tsunami amplitude distributions from earthquake sources
Geist, Eric L.; Parsons, Thomas E.
2016-01-01
The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.
Probabilistic Models For Earthquakes With Large Return Periods In Himalaya Region
NASA Astrophysics Data System (ADS)
Chaudhary, Chhavi; Sharma, Mukat Lal
2017-12-01
Determination of the frequency of large earthquakes is of paramount importance for seismic risk assessment as large events contribute to significant fraction of the total deformation and these long return period events with low probability of occurrence are not easily captured by classical distributions. Generally, with a small catalogue these larger events follow different distribution function from the smaller and intermediate events. It is thus of special importance to use statistical methods that analyse as closely as possible the range of its extreme values or the tail of the distributions in addition to the main distributions. The generalised Pareto distribution family is widely used for modelling the events which are crossing a specified threshold value. The Pareto, Truncated Pareto, and Tapered Pareto are the special cases of the generalised Pareto family. In this work, the probability of earthquake occurrence has been estimated using the Pareto, Truncated Pareto, and Tapered Pareto distributions. As a case study, the Himalayas whose orogeny lies in generation of large earthquakes and which is one of the most active zones of the world, has been considered. The whole Himalayan region has been divided into five seismic source zones according to seismotectonic and clustering of events. Estimated probabilities of occurrence of earthquakes have also been compared with the modified Gutenberg-Richter distribution and the characteristics recurrence distribution. The statistical analysis reveals that the Tapered Pareto distribution better describes seismicity for the seismic source zones in comparison to other distributions considered in the present study.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Xing, H. L.
2016-12-01
Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation
A unified approach to fluid-flow, geomechanical, and seismic modelling
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya; Minakov, Alexander
2016-04-01
The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by e.g. fault generation or strain localization. This approach gives unified framework to characterize microseismicity of both class-I (pressure induced) and class-II (stress triggered) type of events. We consider two modelling setups. In the first setup the event is located within the reservoir and associated with pressure/stress drop due to fracture initiation. In the second setup we assume that seismic wave from a distant source hits a reservoir. The unified formulation of poro-elastoplastic deformation allows us to link the macroscopic stresses to local seismic instability.
Newtonian noise and ambient ground motion for gravitational wave detectors
NASA Astrophysics Data System (ADS)
Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.
2012-06-01
Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.
Upper Mantle of the Central Part of the Russian Platform by Receiver Function Data.
NASA Astrophysics Data System (ADS)
Goev, Andrey; Kosarev, Grigoriy; Sanina, Irina; Riznichenko, Oksana
2017-04-01
The study of the upper mantle of the Russian Platform (RP) with seismic methods remains limited due to the lack of broadband seismic stations. Existing velocity models have been obtained by using the P-wave travel-times from seismic events interpreted as explosions recorded at the NORSAR array in 1974-75 years. Another source of information is deep seismic sounding data from long-range profiles (exceeding 3000 km) such as QUARTZ, RUBIN-1 and GLOBUS and peaceful nuclear explosions (PNE) as sources. However, the data with the maximum distances larger than 1500 km have been acquired on the RP and only in the northern part. Being useful, these velocity models have low spatial resolution. This study analyzes and integrates all the existing RP upper mantle velocity models with the main focus on the central region. We discuss the completeness of the RP area of the LITHO 1.0 model. Based on results of our analysis, we conclude that it is necessary to get up-to-date velocity models of the upper mantle using broadband stations located at the central part of the RP using Vp/Vs ratio data and anisotropy parameters for robust estimation of the mantle boundaries. By applying the joint inversion of receiver-function (RF) data, travel-time residuals and dispersion curves of surface waves we get new models reaching 300 km depth at the locations of broadband seismic stations at the central part of the RP. We used IRIS stations OBN, ARU along with MHV and mobile array NOV. For each station we attempt to determine thickness of the lithosphere and to locate LVL, LAB, Lehman and Hales boundaries as well as the discontinuities in the transition zones at the depth of 410 and 660 km. Also we investigate the necessity of using short-period and broadband RF separately for more robust estimation of the velocity model of the upper mantle. This publication is based on work supported by the Russian Foundation for Basic Research (RFBR), project 15-05-04938 and by the leading scientific school NS-3345.2014.5
Impact from Magnitude-Rupture Length Uncertainty on Seismic Hazard and Risk
NASA Astrophysics Data System (ADS)
Apel, E. V.; Nyst, M.; Kane, D. L.
2015-12-01
In probabilistic seismic hazard and risk assessments seismic sources are typically divided into two groups: fault sources (to model known faults) and background sources (to model unknown faults). In areas like the Central and Eastern United States and Hawaii the hazard and risk is driven primarily by background sources. Background sources can be modeled as areas, points or pseudo-faults. When background sources are modeled as pseudo-faults, magnitude-length or magnitude-area scaling relationships are required to construct these pseudo-faults. However the uncertainty associated with these relationships is often ignored or discarded in hazard and risk models, particularly when faults sources are the dominant contributor. Conversely, in areas modeled only with background sources these uncertainties are much more significant. In this study we test the impact of using various relationships and the resulting epistemic uncertainties on the seismic hazard and risk in the Central and Eastern United States and Hawaii. It is common to use only one magnitude length relationship when calculating hazard. However, Stirling et al. (2013) showed that for a given suite of magnitude-rupture length relationships the variability can be quite large. The 2014 US National Seismic Hazard Maps (Petersen et al., 2014) used one magnitude-rupture length relationship (Somerville, et al., 2001) in the Central and Eastern United States, and did not consider variability in the seismogenic rupture plane width. Here we use a suite of metrics to compare the USGS approach with these variable uncertainty models to assess 1) the impact on hazard and risk and 2) the epistemic uncertainty associated with choice of relationship. In areas where the seismic hazard is dominated by larger crustal faults (e.g. New Madrid) the choice of magnitude-rupture length relationship has little impact on the hazard or risk. However away from these regions, the choice of relationship is more significant and may approach the size of the uncertainty associated with the ground motion prediction equation suite.
NASA Astrophysics Data System (ADS)
Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.
2014-12-01
Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep rupture off Fukushima at 90-135 s. The dominant-period difference of the seismic-wave radiation between two deep ruptures off Miyagi may result from the mechanism that small-scale heterogeneities on the fault are removed by the first rupture. This difference can be also interpreted by the concept of multi-scale dynamic rupture (Ide & Aochi, 2005).
Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data
NASA Astrophysics Data System (ADS)
Oktariena, M.; Triyoso, W.
2018-03-01
Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the pitfall area is reduced and some morphed as background lithology. Gabor Deconvolution removes the attenuation by performing Gabor Domain spectral division, which in extension also reduces interpretation pitfall in deeper target seismic.
Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.
2016-12-01
The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.
NASA Astrophysics Data System (ADS)
Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.
2016-12-01
Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.
A permanent seismic station beneath the Ocean Bottom
NASA Astrophysics Data System (ADS)
Harris, David; Cessaro, Robert K.; Duennebier, Fred K.; Byrne, David A.
1987-03-01
The Hawaii Institute of Geophysics began development of the Ocean Subbottom Seisometer (OSS) system in 1978, and OSS systems were installed in four locations between 1979 and 1982. The OSS system is a permanent, deep ocean borehole seismic recording system composed of a borehole sensor package (tool), an electromechanical cable, recorder package, and recovery system. Installed near the bottom of a borehole (drilled by the D/V Glomar Challenger), the tool contains three orthogonal, 4.5-Hz geophones, two orthogonal tilt meters; and a temperature sensor. Signals from these sensors are multiplexed, digitized (with a floating point technique), and telemetered through approximately 10 km of electromechanical cable to a recorder package located near the ocean bottom. Electrical power for the tool is supplied from the recorder package. The digital seismic signals are demultiplexed, converted back to analog form, processed through an automatic gain control (AGC) circuit, and recorded along with a time code on magnetic tape cassettes in the recorder package. Data may be recorded continuously for up to two months in the self-contained recorder package. Data may also be recorded in real time (digital formal) during the installation and subsequent recorder package servicing. The recorder package is connected to a submerged recovery buoy by a length of bouyant polypropylene rope. The anchor on the recovery buoy is released by activating either of the acoustical command releases. The polypropylene rope may also be seized with a grappling hook to effect recovery. The recorder package may be repeatedly serviced as long as the tool remains functional A wide range of data has been recovered from the OSS system. Recovered analog records include signals from natural seismic sources such as earthquakes (teleseismic and local), man-made seismic sources such as refraction seismic shooting (explosives and air cannons), and nuclear tests. Lengthy continuous recording has permitted analysis of wideband noise levels, and the slowly varying parameters, temperature and tilt.
NASA Astrophysics Data System (ADS)
Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.
2014-08-01
We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.
Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions.
Gibbons, Steven J; Ringdal, Frode; Kvaerna, Tormod
2007-11-01
A database has been established of seismic and infrasonic recordings from more than 100 well-constrained surface explosions, conducted by the Finnish military to destroy old ammunition. The recorded seismic signals are essentially identical and indicate that the variation in source location and magnitude is negligible. In contrast, the infrasonic arrivals on both seismic and infrasound sensors exhibit significant variation both with regard to the number of detected phases, phase travel times, and phase amplitudes, which would be attributable to atmospheric factors. This data set provides an excellent database for studies in sound propagation, infrasound array detection, and direction estimation.
Vital Signs: Seismology of Icy Ocean Worlds
NASA Astrophysics Data System (ADS)
Vance, Steven D.; Kedar, Sharon; Panning, Mark P.; Stähler, Simon C.; Bills, Bruce G.; Lorenz, Ralph D.; Huang, Hsin-Hua; Pike, W. T.; Castillo, Julie C.; Lognonné, Philippe; Tsai, Victor C.; Rhoden, Alyssa R.
2018-01-01
Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could reveal the transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity should occur frequently on tidally flexed ocean worlds. Their ices fracture more easily than rocks and dissipate more tidal energy than the <1 GW of the Moon and Mars. Icy ocean worlds also should create less thermal noise due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars.
Hydraulic impulse generator and frequency sweep mechanism for borehole applications
Kolle, Jack J.; Marvin, Mark H.; Theimer, Kenneth J.
2006-11-21
This invention discloses a valve that generates a hydraulic negative pressure pulse and a frequency modulator for the creation of a powerful, broadband swept impulse seismic signal at the drill bit during drilling operations. The signal can be received at monitoring points on the surface or underground locations using geophones. The time required for the seismic signal to travel from the source to the receiver directly and via reflections is used to calculate seismic velocity and other formation properties near the source and between the source and receiver. This information can be used for vertical seismic profiling of formations drilled, to check the location of the bit, or to detect the presence of abnormal pore pressure ahead of the bit. The hydraulic negative pressure pulse can also be used to enhance drilling and production of wells.
Impacts of potential seismic landslides on lifeline corridors.
DOT National Transportation Integrated Search
2015-02-01
This report presents a fully probabilistic method for regional seismically induced landslide hazard analysis and : mapping. The method considers the most current predictions for strong ground motions and seismic sources : through use of the U.S.G.S. ...
Montana: Filling A Gap In The GeoSwath
NASA Astrophysics Data System (ADS)
Jensen, B.; Keller, G. R.
2010-12-01
The proposed Geoswath transect crosses southern Montana, and the swath of MT stations deployed as part of EarthScope cover all but a small portion of eastern Montana. USArray broadband stations of course cover the entire region. However, modern controlled-source seismic data are very sparse in this large state, and most of it dates from the 1960’s. In this study, we have taken an integrated approach to analyzing lithospheric structure by compiling and analyzing all the public domain geophysical results and data we could locate and combining them with industry seismic reflection data that were released for our study. This information was employed to interpret a suite of filtered regional maps gravity and magnetic data and to construct integrated gravity models of long profiles that reflect crustal structure and deeper features within the upper mantle of the region. Our analysis included previous seismic refraction/reflection results, EarthScope Automated Array receiver functions, new 2D seismic reflection data, seismic tomography, potential field data, and previous geological studies in order to investigate structural and compositional variations within the crust and upper mantle. Our targets included Precambrian structure and tectonics, Sevier and Laramide features, and Late Cenozoic extension. Our main conclusions are: 1) Receiver function and seismic refraction/reflection crustal thickness estimates show a W-E crustal thickening with thicknesses greater than 50 km in the central and eastern Montana; 2) Seismic reflection data reveal Laramide basement-involved structures as far east as central Montana. These structures also show that the western edge of the North American craton was affected by late Mesozoic to Cenozoic deformation and has thus been decratonized; 3) Potential field filtering methods revealed regional trends and tectonic province outlines. The tilt derivative of the reduced-to-pole magnetic data enhances crystalline basement patterns that reflect tectonic province boundary locations. The upward continuation of the complete Bouguer anomaly grid revealed a gravity high in the northeast portion of the region, which is interpreted to be associated with density variations in the upper mantle. This interpretation is consistent with seismic tomography that reveals a “wedge-like” zone fast material beneath the craton in this region.
Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil
NASA Astrophysics Data System (ADS)
de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.
2018-05-01
A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.
Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources
NASA Astrophysics Data System (ADS)
Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.
2009-08-01
The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.
Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.
Miyake, Teru
This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kun, C.
2015-12-01
Studies have shown that estimates of ground motion parameter from ground motion attenuation relationship often greater than the observed value, mainly because multiple ruptures of the big earthquake reduce the source pulse height of source time function. In the absence of real-time data of the station after the earthquake, this paper attempts to make some constraints from the source, to improve the accuracy of shakemaps. Causative fault of Yushu Ms 7.1 earthquake is vertical approximately (dip 83 °), and source process in time and space was dispersive distinctly. Main shock of Yushu Ms7.1 earthquake can be divided into several sub-events based on source process of this earthquake. Magnitude of each sub-events depended on each area under the curve of source pulse of source time function, and location derived from source process of each sub-event. We use ShakeMap method with considering the site effect to generate shakeMap for each sub-event, respectively. Finally, ShakeMaps of mainshock can be aquired from superposition of shakemaps for all the sub-events in space. Shakemaps based on surface rupture of causative Fault from field survey can also be derived for mainshock with only one magnitude. We compare ShakeMaps of both the above methods with Intensity of investigation. Comparisons show that decomposition method of main shock more accurately reflect the shake of earthquake in near-field, but for far field the shake is controlled by the weakening influence of the source, the estimated Ⅵ area was smaller than the intensity of the actual investigation. Perhaps seismic intensity in far-field may be related to the increasing seismic duration for the two events. In general, decomposition method of main shock based on source process, considering shakemap of each sub-event, is feasible for disaster emergency response, decision-making and rapid Disaster Assessment after the earthquake.
NASA Astrophysics Data System (ADS)
Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi
2018-03-01
Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.
Quantifying uncertainty in NDSHA estimates due to earthquake catalogue
NASA Astrophysics Data System (ADS)
Magrin, Andrea; Peresan, Antonella; Vaccari, Franco; Panza, Giuliano
2014-05-01
The procedure for the neo-deterministic seismic zoning, NDSHA, is based on the calculation of synthetic seismograms by the modal summation technique. This approach makes use of information about the space distribution of large magnitude earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g., morphostructural features and ongoing deformation processes identified by earth observations). Hence the method does not make use of attenuation models (GMPE), which may be unable to account for the complexity of the product between seismic source tensor and medium Green function and are often poorly constrained by the available observations. NDSHA defines the hazard from the envelope of the values of ground motion parameters determined considering a wide set of scenario earthquakes; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In NDSHA uncertainties are not statistically treated as in PSHA, where aleatory uncertainty is traditionally handled with probability density functions (e.g., for magnitude and distance random variables) and epistemic uncertainty is considered by applying logic trees that allow the use of alternative models and alternative parameter values of each model, but the treatment of uncertainties is performed by sensitivity analyses for key modelling parameters. To fix the uncertainty related to a particular input parameter is an important component of the procedure. The input parameters must account for the uncertainty in the prediction of fault radiation and in the use of Green functions for a given medium. A key parameter is the magnitude of sources used in the simulation that is based on catalogue informations, seismogenic zones and seismogenic nodes. Because the largest part of the existing catalogues is based on macroseismic intensity, a rough estimate of ground motion error can therefore be the factor of 2, intrinsic in MCS scale. We tested this hypothesis by the analysis of uncertainty in ground motion maps due to the catalogue random errors in magnitude and localization.
Observation and modeling of source effects in coda wave interferometry at Pavlof volcano
Haney, M.M.; van, Wijik K.; Preston, L.A.; Aldridge, D.F.
2009-01-01
Sorting out source and path effects for seismic waves at volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path effects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifice (Wegler and Luhr, 2001). As a result, both source and path effects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. The challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. ?? 2009 Society of Exploration Geophysicists.
Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles
NASA Astrophysics Data System (ADS)
Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.
2011-12-01
We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayrak, Yusuf, E-mail: ybayrak@agri.edu.tr; Türker, Tuğba, E-mail: tturker@ktu.edu.tr
The aim of this study; were determined of the earthquake hazard using the exponential distribution method for different seismic sources of the Ağrı and vicinity. A homogeneous earthquake catalog has been examined for 1900-2015 (the instrumental period) with 456 earthquake data for Ağrı and vicinity. Catalog; Bogazici University Kandilli Observatory and Earthquake Research Institute (Burke), National Earthquake Monitoring Center (NEMC), TUBITAK, TURKNET the International Seismological Center (ISC), Seismological Research Institute (IRIS) has been created using different catalogs like. Ağrı and vicinity are divided into 7 different seismic source regions with epicenter distribution of formed earthquakes in the instrumental period, focalmore » mechanism solutions, and existing tectonic structures. In the study, the average magnitude value are calculated according to the specified magnitude ranges for 7 different seismic source region. According to the estimated calculations for 7 different seismic source regions, the biggest difference corresponding with the classes of determined magnitudes between observed and expected cumulative probabilities are determined. The recurrence period and earthquake occurrence number per year are estimated of occurring earthquakes in the Ağrı and vicinity. As a result, 7 different seismic source regions are determined occurrence probabilities of an earthquake 3.2 magnitude, Region 1 was greater than 6.7 magnitude, Region 2 was greater than than 4.7 magnitude, Region 3 was greater than 5.2 magnitude, Region 4 was greater than 6.2 magnitude, Region 5 was greater than 5.7 magnitude, Region 6 was greater than 7.2 magnitude, Region 7 was greater than 6.2 magnitude. The highest observed magnitude 7 different seismic source regions of Ağrı and vicinity are estimated 7 magnitude in Region 6. Region 6 are determined according to determining magnitudes, occurrence years of earthquakes in the future years, respectively, 7.2 magnitude was in 158 years, 6.7 magnitude was in 70 years, 6.2 magnitude was in 31 years, 5.7 magnitude was in 13 years, 5.2 magnitude was in 6 years.« less
NASA Astrophysics Data System (ADS)
Bayrak, Yusuf; Türker, Tuǧba
2016-04-01
The aim of this study; were determined of the earthquake hazard using the exponential distribution method for different seismic sources of the Aǧrı and vicinity. A homogeneous earthquake catalog has been examined for 1900-2015 (the instrumental period) with 456 earthquake data for Aǧrı and vicinity. Catalog; Bogazici University Kandilli Observatory and Earthquake Research Institute (Burke), National Earthquake Monitoring Center (NEMC), TUBITAK, TURKNET the International Seismological Center (ISC), Seismological Research Institute (IRIS) has been created using different catalogs like. Aǧrı and vicinity are divided into 7 different seismic source regions with epicenter distribution of formed earthquakes in the instrumental period, focal mechanism solutions, and existing tectonic structures. In the study, the average magnitude value are calculated according to the specified magnitude ranges for 7 different seismic source region. According to the estimated calculations for 7 different seismic source regions, the biggest difference corresponding with the classes of determined magnitudes between observed and expected cumulative probabilities are determined. The recurrence period and earthquake occurrence number per year are estimated of occurring earthquakes in the Aǧrı and vicinity. As a result, 7 different seismic source regions are determined occurrence probabilities of an earthquake 3.2 magnitude, Region 1 was greater than 6.7 magnitude, Region 2 was greater than than 4.7 magnitude, Region 3 was greater than 5.2 magnitude, Region 4 was greater than 6.2 magnitude, Region 5 was greater than 5.7 magnitude, Region 6 was greater than 7.2 magnitude, Region 7 was greater than 6.2 magnitude. The highest observed magnitude 7 different seismic source regions of Aǧrı and vicinity are estimated 7 magnitude in Region 6. Region 6 are determined according to determining magnitudes, occurrence years of earthquakes in the future years, respectively, 7.2 magnitude was in 158 years, 6.7 magnitude was in 70 years, 6.2 magnitude was in 31 years, 5.7 magnitude was in 13 years, 5.2 magnitude was in 6 years.
Macroscopic Source Properties from Dynamic Rupture Styles in Plastic Media
NASA Astrophysics Data System (ADS)
Gabriel, A.; Ampuero, J. P.; Dalguer, L. A.; Mai, P. M.
2011-12-01
High stress concentrations at earthquake rupture fronts may generate an inelastic off-fault response at the rupture tip, leading to increased energy absorption in the damage zone. Furthermore, the induced asymmetric plastic strain field in in-plane rupture modes may produce bimaterial interfaces that can increase radiation efficiency and reduce frictional dissipation. Off-fault inelasticity thus plays an important role for realistic predictions of near-fault ground motion. Guided by our previous studies in the 2D elastic case, we perform rupture dynamics simulations including rate-and-state friction and off-fault plasticity to investigate the effects on the rupture properties. We quantitatively analyze macroscopic source properties for different rupture styles, ranging from cracks to pulses and subshear to supershear ruptures, and their transitional mechanisms. The energy dissipation due to off-fault inelasticity modifies the conditions to obtain each rupture style and alters macroscopic source properties. We examine apparent fracture energy, rupture and healing front speed, peak slip and peak slip velocity, dynamic stress drop and size of the process and plastic zones, slip and plastic seismic moment, and their connection to ground motion. This presentation focuses on the effects of rupture style and off-fault plasticity on the resulting ground motion patterns, especially on characteristic slip velocity function signatures and resulting seismic moments. We aim at developing scaling rules for equivalent elastic models, as function of background stress and frictional parameters, that may lead to improved "pseudo-dynamic" source parameterizations for ground-motion calculation. Moreover, our simulations provide quantitative relations between off-fault energy dissipation and macroscopic source properties. These relations might provide a self-consistent theoretical framework for the study of the earthquake energy balance based on observable earthquake source parameters.
NASA Astrophysics Data System (ADS)
Zhong, Xin; Frehner, Marcel; Zappone, Alba; Kunze, Karsten
2014-05-01
We present a combined experimental and numerical study on Finero Peridotite to investigate the major factors creating its seismic anisotropy. We extrapolate the ultrasonic seismic wave velocity measured in a hydrostatic pressure vessel to 0 MPa and 250 MPa confining pressure to compare with numerical simulations at atmospheric pressure and to restore the velocity at in-situ lower crustal conditions, respectively. A linear relation between confining pressure and seismic velocity above 80 MPa reveals the intrinsic mechanical property of the bulk rock without the interference of cracks. To visualize the crystallographic preferred orientation (CPO) we use the electron backscatter diffraction (EBSD) method and create crystallographic orientation maps and pole figures. The first also reveals the shape preferred orientation (SPO). We found that very weak CPO but significant SPO exist in most of the peridotite. The Voigt and Reuss bounds as well as the Hill average (VRH) are calculated from EBSD data to visualize seismic velocity and to calculate anisotropy in the form of velocity pole figures. We perform finite element (FE) simulations of wave propagation on the EBSD crystallographic orientation maps to calculate the effective wave velocity at different propagation angles, hence estimate the anisotropy numerically. In fracture-free models the FE simulation results agree well with the Hill average. In one case of a sample containing fractures the FE simulation yields similar minimal velocity as the laboratory measurement, which lies outside the VR bounds. This is a warning that care has to be taken when using VRH averages in fractured rocks. All three velocity estimates (hydrostatic pressure vessel, VRH average, and FE simulation) result in equally weak seismic anisotropy. This is mainly the consequence of weak CPO. Although SPO is significantly stronger it has minor influence on anisotropy. Hydrous minerals influence the seismic anisotropy only when their modal composition is large enough to allow waves to propagate preferentially through them. Unlike hornblende, phlogopite is not proven to be a major source for the seismic anisotropy due to its small modal composition. Seismic velocity is also influenced by the source frequency distribution. A lower-frequency source in the FE simulations results in lower effective velocity regardless of sample orientation. The frequency spectrum of the propagating wave is modified from source to receiver due to scattering at the mineral grains, thus leading to effective negative attenuation factors peaked at around 1-3 MHz depending on the source spectrum. However, compared with other factors, such as CPO, SPO, fractures, or hydrous mineral phases, the effect of the source frequency distribution is minor, but may be influential when extrapolated to seismic frequencies (Hz-kHz). This study provides a comprehensive method combining laboratory measurements, EBSD data, and numerical simulations to estimate seismic anisotropy. Future work may focus on modeling the influence of different pore fluids or more complex fracture geometries on seismic velocity and anisotropy. Acknowledgements This work was supported by the Swiss National Science Foundation (project UPseis, 200021_143319).
HFT events - Shallow moonquakes. [High-Frequency Teleseismic
NASA Technical Reports Server (NTRS)
Nakamura, Y.
1977-01-01
A few large distant seismic events of distinctly high signal frequency, designated HFT (high-frequency teleseismic) events, are observed yearly by the Apollo lunar seismic network. Their sources are located on or near the surface of the moon, leaving a large gap in seismic activity between the zones of HFT sources and deep moonquakes. No strong regularities are found in either their spatial or temporal distributions. Several working hypotheses for the identity of these sources have advanced, but many characteristics of the events seem to favor a hypothesis that they are shallow moonquakes. Simultaneous observations of other lunar phenomena may eventually enable the determination of their true identity.
Earthquake source parameters determined using the SAFOD Pilot Hole vertical seismic array
NASA Astrophysics Data System (ADS)
Imanishi, K.; Ellsworth, W. L.; Prejean, S. G.
2003-12-01
We determined source parameters of microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole vertical seismic array. The array consists of 32 stations with 3-component 15 Hz geophones at 40 meter spacing (856 to 2096 m depth) The site is about 1.8 km southwest of a segment of the San Andreas fault characterized by a combination of aseismic creep and repeating microearthquakes. We analyzed seismograms recorded at sample rates of 1kHz or 2kHz. Spectra have high signal-to-noise ratios at frequencies up to 300-400 Hz, showing these data include information on source processes of microearthquakes. By comparing spectra and waveforms at different levels of the array, we observe how attenuation and scattering in the shallow crust affect high-frequency waves. We estimated spectral level (Ω 0), corner frequency (fc) and path-averaged attenuation (Q) at each level of the array by fitting an omega squared model to displacement spectra. While the spectral level changes smoothly with depth, there is significant scatter in fc and Q due to the strong trade-off between these parameters. Because we expect source parameters to vary systematically with depth, we impose a smoothness constraint on Q, Ω 0 and fc as a function of depth. For some of the nearby events, take-off angles to the different levels of the array span a significant part of the focal sphere. Therefore corner frequencies should also change with depth. We smooth measurements using a linear first-difference operator that links Q, Ω 0 and fc at one level to the levels above and below, and use Akaike_fs Bayesian Information Criterion (ABIC) to weight the smoothing operators. We applied this approach to events with high signal-to-noise ratios. For the results with the minimum ABIC, fc does not scatter and Q decreases with decreasing depth. Seismic moments were determined by the spectral level and range from 109 and 1012 Nm. Source radii were estimated from the corner frequency using the circular crack model of Sato and Hirasawa (1973). Estimated values of static stress drop were roughly 1 MPa and do not vary with seismic moment. Q values from all earthquakes were averaged at each level of the array. Average Qp and Qs range from 250 to 350 and from 300 to 400 between the top and bottom of the array, respectively. Increasing Q values as a function of depth explain well the observed decrease in high-frequency content as waves propagate toward the surface. Thus, by jointly analyzing the entire vertical array we can both accurately determine source parameters of microearthquakes and make reliable Q estimates while suppressing the trade-off between fc and Q.
Monitoring the englacial fracture state using virtual-reflector seismology
NASA Astrophysics Data System (ADS)
Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.
2017-12-01
Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.
NASA Astrophysics Data System (ADS)
Karl, S.; Neuberg, J. W.
2012-04-01
Low frequency seismic signals are one class of volcano seismic earthquakes that have been observed at many volcanoes around the world, and are thought to be associated with resonating fluid-filled conduits or fluid movements. Amongst others, Neuberg et al. (2006) proposed a conceptual model for the trigger of low frequency events at Montserrat involving the brittle failure of magma in the glass transition in response to high shear stresses during the upwards movement of magma in the volcanic edifice. For this study, synthetic seismograms were generated following the proposed concept of Neuberg et al. (2006) by using an extended source modelled as an octagonal arrangement of double couples approximating a circular ringfault. For comparison, synthetic seismograms were generated using single forces only. For both scenarios, synthetic seismograms were generated using a seismic station distribution as encountered on Soufriere Hills Volcano, Montserrat. To gain a better quantitative understanding of the driving forces of low frequency events, inversions for the physical source mechanisms have become increasingly common. Therefore, we perform moment tensor inversions (Dreger, 2003) using the synthetic data as well as a chosen set of seismograms recorded on Soufriere Hills Volcano. The inversions are carried out under the (wrong) assumption to have an underlying point source rather than an extended source as the trigger mechanism of the low frequency seismic events. We will discuss differences between inversion results, and how to interpret the moment tensor components (double couple, isotropic, or CLVD), which were based on a point source, in terms of an extended source.
2007-10-11
large mine collapse (M=3.9) and shallow earthquake (M=3.9) indicates that there were no signals generated by these events. A new type of infrasound ...provide data to document the propagation of the acoustic signals between the infrasound array sites and allow us to estimate group velocities since...in near-source acoustic and seismic signals . 10 Near-source acoustic and seismic signals recorded at UTTR3 Explosion generated infrasound signals
Analysing seismic-source mechanisms by linear-programming methods.
Julian, B.R.
1986-01-01
Linear-programming methods are powerful and efficient tools for objectively analysing seismic focal mechanisms and are applicable to a wide range of problems, including tsunami warning and nuclear explosion identification. The source mechanism is represented as a point in the 6-D space of moment-tensor components. The present method can easily be extended to fit observed seismic-wave amplitudes (either signed or absolute) subject to polarity constraints, and to assess the range of mechanisms consistent with a set of measured amplitudes. -from Author
NASA Astrophysics Data System (ADS)
Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias
2010-05-01
In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not more than 2000 meters are planned. The prototype must be modified and adapted to the conditions in deep boreholes with respect to pressure and temperature. This project is funded by the German Federal Environment Ministry.
Nakano, M.; Kumagai, H.; Kumazawa, M.; Yamaoka, K.; Chouet, B.A.
1998-01-01
We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles characterizing the bubbly water in the crack.
3-D Characterization of Seismic Properties at the Smart Weapons Test Range, YPG
2001-10-01
confidence limits around each interpolated value. Ground truth was accomplished through cross-hole seismic measurements and borehole logs. Surface wave... seismic method, as well as estimating the optimal orientation and spacing of the seismic array . A variety of sources and receivers was evaluated...location within the array is partially related to at least two seismic lines. Either through good fortune or foresight by the designers of the SWTR site
Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.
2012-12-01
It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Irikura and Miyake (2001, 2011) proposed the characterized source model for strong ground motion prediction, which consists of plural strong ground motion generation area (SMGA, Miyake et al., 2003) patches on the source fault. We obtained the SMGA source models for many events using the empirical Green's function method and found the SMGA size has an empirical scaling relationship with seismic moment. Therefore, the SMGA size can be assumed from that empirical relation under giving the seismic moment for anticipated earthquakes. Concerning to the setting of the SMGAs position, the information of the fault segment is useful for inland crustal earthquakes. For the 1995 Kobe earthquake, three SMGA patches are obtained and each Nojima, Suma, and Suwayama segment respectively has one SMGA from the SMGA modeling (e.g. Kamae and Irikura, 1998). For the 2011 Tohoku earthquake, Asano and Iwata (2012) estimated the SMGA source model and obtained four SMGA patches on the source fault. Total SMGA area follows the extension of the empirical scaling relationship between the seismic moment and the SMGA area for subduction plate-boundary earthquakes, and it shows the applicability of the empirical scaling relationship for the SMGA. The positions of two SMGAs are in Miyagi-Oki segment and those other two SMGAs are in Fukushima-Oki and Ibaraki-Oki segments, respectively. Asano and Iwata (2012) also pointed out that all SMGAs are corresponding to the historical source areas of 1930's. Those SMGAs do not overlap the huge slip area in the shallower part of the source fault which estimated by teleseismic data, long-period strong motion data, and/or geodetic data during the 2011 mainshock. This fact shows the huge slip area does not contribute to strong ground motion generation (10-0.1s). The information of the fault segment in the subduction zone, or historical earthquake source area is also applicable for the construction of SMGA settings for strong ground motion prediction for future earthquakes.
Web Based Seismological Monitoring (wbsm)
NASA Astrophysics Data System (ADS)
Giudicepietro, F.; Meglio, V.; Romano, S. P.; de Cesare, W.; Ventre, G.; Martini, M.
Over the last few decades the seismological monitoring systems have dramatically improved tanks to the technological advancements and to the scientific progresses of the seismological studies. The most modern processing systems use the network tech- nologies to realize high quality performances in data transmission and remote controls. Their architecture is designed to favor the real-time signals analysis. This is, usually, realized by adopting a modular structure that allow to easy integrate any new cal- culation algorithm, without affecting the other system functionalities. A further step in the seismic processing systems evolution is the large use of the web based appli- cations. The web technologies can be an useful support for the monitoring activities allowing to automatically publishing the results of signals processing and favoring the remote access to data, software systems and instrumentation. An application of the web technologies to the seismological monitoring has been developed at the "Os- servatorio Vesuviano" monitoring center (INGV) in collaboration with the "Diparti- mento di Informatica e Sistemistica" of the Naples University. A system named Web Based Seismological Monitoring (WBSM) has been developed. Its main objective is to automatically publish the seismic events processing results and to allow displaying, analyzing and downloading seismic data via Internet. WBSM uses the XML tech- nology for hypocentral and picking parameters representation and creates a seismic events data base containing parametric data and wave-forms. In order to give tools for the evaluation of the quality and reliability of the published locations, WBSM also supplies all the quality parameters calculated by the locating program and allow to interactively display the wave-forms and the related parameters. WBSM is a modular system in which the interface function to the data sources is performed by two spe- cific modules so that to make it working in conjunction with a generic data source it is sufficient to modify or substitute the interface modules. WBSM is running at the "Osservatorio Vesuviano" Monitoring Center since the beginning of 2001 and can be visited at http://ov.ingv.it.
NASA Astrophysics Data System (ADS)
Nowacki, A.; Shi, P.; Angus, D. A.; Rost, S.; Birnie, C. E.; Yuan, S.
2017-12-01
Modern, large seismic datasets place a huge burden on human analysts who traditionally have been required to manually pick distinct phase arrivals in order to locate seismic events. This burden becomes insurmountable when real-time monitoring is needed, and hence automated approaches are necessary. Whilst many methods exist, noisy data often defeat them. We propose here a novel method to migrate seismic energy back to its spatial and temporal source, based on an improved imaging condition with greater tolerance to noise. The multichannel coherency migration (MCM) method sums the correlation coefficients of traces between all available station pairs, using the predicted P- and S-wave windows for any given imaging point in the target volume. Grid searching in time and space allows the point of maximum waveform coherency and event likelihood to be found. The only adjustable parameter in the method is the cross-correlation window length, but this is determined by the dominant frequency of the signal. This is in contrast with most other methods, such as the STA-LTA imaging function, which require several parameters to be adjusted and optimised for each application. Because we use the cross-correlation between stations, incoherent noise is effectively suppressed, and even temporally coherent noise which is not located within the target volume can be minimised also. We apply the MCM to synthetic tests, and real data in geological carbon storage and volcanic settings. In comparison to migrations based on waveform envelope, STA-LTA and kurtosis imaging functions, the MCM more reliably finds the true source and better suppresses noise. Synthetic tests with real noise show that the MCM remains robust up to noise-to-signal (not a typo) ratios (NSR) of about 40. Tests with incorrect velocity models further suggest that the MCM will be a useful event detection method in the future.
Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska
Fee, David; Haney, Matt; Matoza, Robin S.; Szuberla, Curt A.L.; Lyons, John; Waythomas, Christopher F.
2016-01-01
Volcanic explosions and other infrasonic sources frequently produce acoustic waves that are recorded by seismometers. Here we explore multiple techniques to detect, locate, and characterize ground‐coupled airwaves (GCA) on volcano seismic networks in Alaska. GCA waveforms are typically incoherent between stations, thus we use envelope‐based techniques in our analyses. For distant sources and planar waves, we use f‐k beamforming to estimate back azimuth and trace velocity parameters. For spherical waves originating within the network, we use two related time difference of arrival (TDOA) methods to detect and localize the source. We investigate a modified envelope function to enhance the signal‐to‐noise ratio and emphasize both high energies and energy contrasts within a spectrogram. We apply these methods to recent eruptions from Cleveland, Veniaminof, and Pavlof Volcanoes, Alaska. Array processing of GCA from Cleveland Volcano on 4 May 2013 produces robust detection and wave characterization. Our modified envelopes substantially improve the short‐term average/long‐term average ratios, enhancing explosion detection. We detect GCA within both the Veniaminof and Pavlof networks from the 2007 and 2013–2014 activity, indicating repeated volcanic explosions. Event clustering and forward modeling suggests that high‐resolution localization is possible for GCA on typical volcano seismic networks. These results indicate that GCA can be used to help detect, locate, characterize, and monitor volcanic eruptions, particularly in difficult‐to‐monitor regions. We have implemented these GCA detection algorithms into our operational volcano‐monitoring algorithms at the Alaska Volcano Observatory.
Seismic velocity uncertainties and their effect on geothermal predictions: A case study
NASA Astrophysics Data System (ADS)
Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group
2017-04-01
Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.
NASA Astrophysics Data System (ADS)
Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin
2017-12-01
This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.
NASA Technical Reports Server (NTRS)
Kovach, R. L.; Watkins, J. S.; Talwani, P.
1972-01-01
The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.
NASA Astrophysics Data System (ADS)
Che, Il-Young; Jeon, Jeong-Soo
2010-05-01
Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.
NASA Astrophysics Data System (ADS)
Zhang, H.; Schmandt, B.
2017-12-01
The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.
NASA Astrophysics Data System (ADS)
Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.
2017-12-01
The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude greater than 3.5 beneath the Aburra Valley, and the neotectonic evidence are limited, so it is expected that this network helps to characterize the seismic hazards.
NASA Astrophysics Data System (ADS)
Zarola, Amit; Sil, Arjun
2018-04-01
This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.
Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains
NASA Astrophysics Data System (ADS)
Gao, C.; Lekic, V.
2017-12-01
Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.
Site Transfer Functions of Three-Component Ground Motion in Western Turkey
NASA Astrophysics Data System (ADS)
Ozgur Kurtulmus, Tevfik; Akyol, Nihal; Camyildiz, Murat; Gungor, Talip
2015-04-01
Because of high seismicity accommodating crustal deformation and deep graben structures, on which have, urbanized and industrialized large cities in western Turkey, the importance of site-specific seismic hazard assessments becomes more crucial. Characterizing source, site and path effects is important for both assessing the seismic hazard in a specific region and generation of the building codes/or renewing previous ones. In this study, we evaluated three-component recordings for micro- and moderate-size earthquakes with local magnitudes ranging between 2.0 and 5.6. This dataset is used for site transfer function estimations, utilizing two different spectral ratio approaches 'Standard Spectral Ratio-(SSR)' and 'Horizontal to Vertical Spectral Ratio-(HVSR)' and a 'Generalized Inversion Technique-(GIT)' to highlight site-specific seismic hazard potential of deep basin structures of the region. Obtained transfer functions revealed that the sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment-bedrock interface near the basin edges. Comparison of HVSR and SSR estimates for the sites located on the grabens showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects. However, large amplitude values of vertical component GIT site transfer functions were observed at varying frequency ranges for some of the stations. These results imply that vertical component of ground motion is not amplification free. Contamination of HVSR site transfer function estimates at different frequency bands could be related to complexities in the wave field caused by deep or shallow heterogeneities in the region such as differences in the basin geometries, fracturing and fluid saturation along different propagation paths. The results also show that, even if the site is located on a horst, the presence of weathered zones near the surface could cause moderate frequency dependent site effects.
Seismic reflection imaging, accounting for primary and multiple reflections
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are mapped to their correct positions, with correct reflection amplitudes. In the presentation we will illustrate this new methodology with numerical examples and discuss its potential and limitations.
Ground Truth Events with Source Geometry in Eurasia and the Middle East
2016-06-02
source properties, including seismic moment, corner frequency, radiated energy , and stress drop have been obtained using spectra for S waves following...PARAMETERS Other source parameters, including radiated energy , corner frequency, seismic moment, and static stress drop were calculated using a spectral...technique (Richardson & Jordan, 2002; Andrews, 1986). The process entails separating event and station spectra and median- stacking each event’s
Source mechanisms of a collapsing solution mine cavity
NASA Astrophysics Data System (ADS)
Lennart Kinscher, Jannes; Cesca, Simone; Bernard, Pascal; Contrucci, Isabelle; Mangeney, Anne; Piguet, Jack Pierre; Bigarre, Pascal
2016-04-01
The development and collapse of a ~200 m wide salt solution mining cavity was seismically monitored in the Lorraine basin in northeastern France. Seismic monitoring and other geophysical in situ measurements were part of a large multi-parameter research project founded by the research "group for the impact and safety of underground works" (GISOS), whose database is being integrated in the EPOS platform (European Plate Observing System). The recorded microseismic events (~ 50,000 in total) show a swarm-like behaviour, with clustering sequences lasting from seconds to days, and distinct spatiotemporal migration. The majority of swarming signals are likely related to detachment and block breakage processes, occurring at the cavity roof. Body wave amplitude patterns indicate the presence of relatively stable source mechanisms, either associated with dip-slip and/or tensile faulting. However, short inter-event times, the high frequency geophone recordings, and the limited network station coverage often limits the application of classical source analysis techniques. In order to deal with these shortcomings, we examined the source mechanisms through different procedures including modelling of observed and synthetic waveforms and amplitude spectra of some well located events, as well as modelling of peak-to-peak amplitude ratios for most of the detected events. The latter approach was used to infer the average source mechanism of many swarming events at once by using a single three component station. To our knowledge this approach is applied here for the first time and represents an useful tool for source studies of seismic swarms and seismicity clusters. The results of the different methods are consistent and show that at least 50 % of the microseismic events have remarkably stable source mechanisms, associated with similarly oriented thrust faults, striking NW-SE and dipping around 35-55°. Consistent source mechanisms are probably related to the presence of a preferential direction of pre-existing fault structures. As an interesting by-product, we demonstrate, for the first time directly on seismic data that the source radiation pattern significantly controls the detection capability of a seismic station and network.
NASA Astrophysics Data System (ADS)
Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.
2017-12-01
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.
NASA Astrophysics Data System (ADS)
Sun, Ya; Liu, Jianxin; Zhou, Keping; Chen, Bo; Guo, Rongwen
2015-07-01
The convergence of India and Eurasia and the obstruction from the rigid Sichuan Basin cause the Longmenshan (LMS) to have the steepest topographic gradient at the eastern margin of the Tibetan Plateau. However, the mechanisms of surface uplift are still controversial. In this paper, we estimate the crustal structure and deformation under the LMS and its surroundings by analyzing a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration. We apply a comprehensive splitting measurement technique on Ps conversion phase at the Moho (Moho Ps splitting) to calculate crustal anisotropy from azimuthal variations of receiver functions. Our results show that most of the seismic stations beneath the LMS area exhibit significant seismic anisotropy with the splitting time of 0.22-0.94 s and a fast polarization direction of NW-SE, while less or even no crustal anisotropy has been observed under the Sichuan Basin. Comparing the fast polarization directions of Moho Ps splitting with the indicators of lithospheric deformation (such as shear wave splitting, absolute plate motion, and global positioning system) imply a consistent tendency of deformation between the lower crust and upper mantle, but decoupling deformation in the crust beneath the LMS area. We further compare Moho Ps splitting time to that estimated from previous SKS splitting, indicating that crustal anisotropy is an important source of the SKS splitting time in this study area. In addition, a thick crust (>50 km) with high Vp/Vs values (1.74-1.86) is also observed using the H-κ stacking method. These seismic observations are consistent with the scenario that the LMS area has been built by the lower crustal flow. Combined with the seismic reflection/refraction profile and geology studies, we further suggest that the lower crustal flow may extrude upward into the upper crust along the steeply dipping strike faults under the LMS area, resulting in the surface uplift of the LMS.
NASA Astrophysics Data System (ADS)
Rendon, H.; Alvarado, L.; Paolini, M.; Olbrich, F.; González, J.; Ascanio, W.
2013-05-01
Probabilistic Seismic Hazard Assessment is a complex endeavor that relies on the quality of the information that comes from different sources: the seismic catalog, active faults parameters, strain rates, etc. Having this in mind, during the last several months, the FUNVISIS seismic hazard group has been working on a review and update of the local data base that form the basis for a reliable PSHA calculation. In particular, the seismic catalog, which provides the necessary information that allows the evaluation of the critical b-value, which controls how seismic occurrence distributes with magnitude, has received particular attention. The seismic catalog is the result of the effort of several generations of researchers along the years; therefore, the catalog necessarily suffers from the lack of consistency, homogeneity and completeness for all ranges of magnitude over any seismic study area. Merging the FUNVISIS instrumental catalog with the ones obtained from international agencies, we present the work that we have been doing to produce a consistent seismic catalog that covers Venezuela entirely, with seismic events starting from 1910 until 2012, and report the magnitude of completeness for the different periods. Also, we present preliminary results on the Seismic Hazard evaluation that takes into account such instrumental catalog, the historical catalog, updated known fault geometries and its correspondent parameters, and the new seismic sources that have been defined accordingly. Within the spirit of the Global Earthquake Model (GEM), all these efforts look for possible bridges with neighboring countries to establish consistent hazard maps across the borders.
Multi-Phenomenological Analysis of the 12 August 2015 Tianjin, China Chemical Explosion
NASA Astrophysics Data System (ADS)
Pasyanos, M.; Kim, K.; Park, J.; Stump, B. W.; Hayward, C.; Che, I. Y.; Zhao, L.; Myers, S. C.
2016-12-01
We perform a multi-phenomenological analysis of the massive near-surface chemical explosions that occurred in Tianjin, China on 12 August 2015. A recent assessment of these events was performed by Zhao et al. (2016) using local (< 100 km) seismic data. This study considers a regional assessment of the same sequence in the absence of having any local data. We provide additional insight by combining regional seismic analysis with the use of infrasound signals and an assessment of the event crater. Event locations using infrasound signals recorded at Korean and IMS arrays are estimated based on the Bayesian Infrasonic Source Location (BISL) method (Modrak et al., 2010), and improved with azimuthal corrections using a raytracing (Blom and Waxler, 2012) and the Ground-to-Space (G2S) atmospheric models (Drob et al., 2003). The location information provided from the infrasound signals is then merged with the regional seismic arrivals to produce a joint event location. The yields of the events are estimated from seismic and infrasonic observations. Seismic waveform envelope method (Pasyanos et al., 2012) including the free surface effect (Pasyanos and Ford, 2015) is applied to regional seismic signals. Waveform inversion method (Kim and Rodgers, 2016) is used for infrasound signals. A combination of the seismic and acoustic signals can provide insights on the energy partitioning and break the tradeoffs between the yield and the depth/height of explosions, resulting in a more robust estimation of event yield. The yield information from the different phenomenologies are combined through the use of likelihood functions.
NASA Astrophysics Data System (ADS)
Kumagai, Hiroyuki; Pulido, Nelson; Fukuyama, Eiichi; Aoi, Shin
2013-01-01
investigate source processes of the 2011 Tohoku-Oki earthquake, we utilized a source location method using high-frequency (5-10 Hz) seismic amplitudes. In this method, we assumed far-field isotropic radiation of S waves, and conducted a spatial grid search to find the best fitting source locations along the subducted slab in each successive time window. Our application of the method to the Tohoku-Oki earthquake resulted in artifact source locations at shallow depths near the trench caused by limited station coverage and noise effects. We then assumed various source node distributions along the plate, and found that the observed seismograms were most reasonably explained when assuming deep source nodes. This result suggests that the high-frequency seismic waves were radiated at deeper depths during the earthquake, a feature which is consistent with results obtained from teleseismic back-projection and strong-motion source model studies. We identified three high-frequency subevents, and compared them with the moment-rate function estimated from low-frequency seismograms. Our comparison indicated that no significant moment release occurred during the first high-frequency subevent and the largest moment-release pulse occurred almost simultaneously with the second high-frequency subevent. We speculated that the initial slow rupture propagated bilaterally from the hypocenter toward the land and trench. The landward subshear rupture propagation consisted of three successive high-frequency subevents. The trenchward propagation ruptured the strong asperity and released the largest moment near the trench.
NASA Astrophysics Data System (ADS)
Trugman, Daniel T.; Shearer, Peter M.
2017-04-01
Earthquake source spectra contain fundamental information about the dynamics of earthquake rupture. However, the inherent tradeoffs in separating source and path effects, when combined with limitations in recorded signal bandwidth, make it challenging to obtain reliable source spectral estimates for large earthquake data sets. We present here a stable and statistically robust spectral decomposition method that iteratively partitions the observed waveform spectra into source, receiver, and path terms. Unlike previous methods of its kind, our new approach provides formal uncertainty estimates and does not assume self-similar scaling in earthquake source properties. Its computational efficiency allows us to examine large data sets (tens of thousands of earthquakes) that would be impractical to analyze using standard empirical Green's function-based approaches. We apply the spectral decomposition technique to P wave spectra from five areas of active contemporary seismicity in Southern California: the Yuha Desert, the San Jacinto Fault, and the Big Bear, Landers, and Hector Mine regions of the Mojave Desert. We show that the source spectra are generally consistent with an increase in median Brune-type stress drop with seismic moment but that this observed deviation from self-similar scaling is both model dependent and varies in strength from region to region. We also present evidence for significant variations in median stress drop and stress drop variability on regional and local length scales. These results both contribute to our current understanding of earthquake source physics and have practical implications for the next generation of ground motion prediction assessments.
AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)
NASA Astrophysics Data System (ADS)
Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael
2018-05-01
We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.
Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian
2008-07-08
This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less
How seismicity and shear stress-generated tilt can indicate imminent explosions on Tungurahua
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen; Mothes, Patricia; Collinson, Amy; Marsden, Luke
2017-04-01
Seismic swarms and tilt measurement on active silicic volcanoes have been successfully used to assess their eruption potential. Swarms of low-frequency seismic events have been associated with brittle failure or stick-slip motion of magma during ascent and have been used to estimate qualitatively the magma ascent. Tilt signals are extremely sensitive indicators for volcano deformation and their interpretation includes shear stress as a generating source as well as inflation or deflation of a shallow magma reservoir. Here we use data sets from different tiltmeters deployed on Tungurahua volcano, Ecuador, and contrast the two source models for different locations and time intervals. We analyse a simultaneously recorded seismic data set and address the question of shear stress partitioning resulting in both the generation of tilt and low-frequency seismicity in critical phases prior to Vulcanion explosions.
A Study of Regional Waveform Calibration in the Eastern Mediterranean Region.
NASA Astrophysics Data System (ADS)
di Luccio, F.; Pino, A.; Thio, H.
2002-12-01
We modeled Pnl phases from several moderate magnitude events in the eastern Mediterranean to test methods and to develop path calibrations for source determination. The study region spanning from the eastern part of the Hellenic arc to the eastern Anatolian fault is mostly interested by moderate earthquakes, that can produce relevant damages. The selected area consists of several tectonic environment, which produces increased level of difficulty in waveform modeling. The results of this study are useful for the analysis of regional seismicity and for seismic hazard as well, in particular because very few broadband seismic stations are available in the selected area. The obtained velocity model gives a 30 km crustal tickness and low upper mantle velocities. The applied inversion procedure to determine the source mechanism has been successful, also in terms of discrimination of depth, for the entire range of selected paths. We conclude that using the true calibration of the seismic structure and high quality broadband data, it is possible to determine the seismic source in terms of mechanism, even with a single station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-09
This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less
Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9 deg 30 min N
NASA Astrophysics Data System (ADS)
Toomey, Douglas R.; Solomon, Sean C.; Purdy, G. M.
1994-12-01
Compressional wave travel times from a seismic tomography experiment at 9 deg 30 min N on the East Pacific Rise are analyzed by a new tomographic method to determine the three-dimensional seismic velocity structure of the upper 2.5 km of oceanic crust within a 20 x 18 km area centered on the rise axis. The data comprise the travel times and associated uncertainties of 1459 compressional waves that have propagated above the axial magma chamber. A careful analysis of source and receiver parameters, in conjunction with an automated method of picking P wave onsets and assigning uncertainties, constrains the prior uncertainty in the data to 5 to 20 ms. The new tomographic method employs graph theory to estimate ray paths and travel times through strongly heterogeneous and densely parameterized seismic velocity models. The nonlinear inverse method uses a jumping strategy to minimize a functional that includes the penalty function, horizontal and vertical smoothing constraints, and prior model assumptions; all constraints applied to model perturbations are normalized to remove bias. We use the tomographic method to reject the null hypothesis that the axial seismic structure is two-dimensional. Three-dimensional models reveal a seismic structure that correlates well with cross- and along-axis variations in seafloor morphology, the location of the axial summit caldera, and the distribution of seafloor hydrothermal activity. The along-axis segmentation of the seismic structure above the axial magma chamber is consistent with the hypothesis that mantle-derived melt is preferentially injected midway along a locally linear segment of the rise and that the architecture of the crustal section is characterized by an en echelon series of elongate axial volcanoes approximately 10 km in length. The seismic data are compatible with a 300- to 500-m-thick thermal anomaly above a midcrustal melt lens; such an interpretation suggests that hydrothermal fluids may not have penetrated this region in the last 10(exp 3) years. Asymmetries in the seismic structure across the rise support the inferences that the thickness of seismic layer 2 and the average midcrustal temperature increase to the west of the rise axis. These anomalies may be the result of off-axis magmatism; alternatively, the asymmetric thermal anomaly may be the consequence of differences in the depth extent of hydrothermal cooling.
Akinci, A.; Galadini, F.; Pantosti, D.; Petersen, M.; Malagnini, L.; Perkins, D.
2009-01-01
We produce probabilistic seismic-hazard assessments for the central Apennines, Italy, using time-dependent models that are characterized using a Brownian passage time recurrence model. Using aperiodicity parameters, ?? of 0.3, 0.5, and 0.7, we examine the sensitivity of the probabilistic ground motion and its deaggregation to these parameters. For the seismic source model we incorporate both smoothed historical seismicity over the area and geological information on faults. We use the maximum magnitude model for the fault sources together with a uniform probability of rupture along the fault (floating fault model) to model fictitious faults to account for earthquakes that cannot be correlated with known geologic structural segmentation.
Archaeological Graves Revealing By Means of Seismic-electric Effect
NASA Astrophysics Data System (ADS)
Boulytchov, A.
[a4paper,12pt]article english Seismic-electric effect was applied in field to forecast subsurface archaeological cul- tural objects. A source of seismic waves were repeated blows of a heavy hammer or powerful signals of magnetostrictive installation. Main frequency used was 500 Hz. Passed a soil layer and reached a second boundary between upper clayey-sand sedi- ments and archaeological object, the seismic wave caused electromagnetic fields on the both boundaries what in general is due to dipole charge separation owe to an im- balance of streaming currents induced by the seismic wave on opposite sides of a boundary interface. According to theoretical works of Pride the electromagnetic field appears on a boundary between two layers with different physical properties in the time of seismic wave propagation. Electric responses of electromagnetic fields were measured on a surface by pair of grounded dipole antennas or by one pivot and a long wire antenna acting as a capacitive pickup. The arrival times of first series of responses correspond to the time of seismic wave propagation from a source to a boundary between soil and clayey-sand layers. The arrival times of second row of responses correspond to the time of seismic wave way from a source to a boundary of clayey-sand layer with the archaeological object. The method depths successfully investigated were between 0.5-10 m. Similar electromagnetic field on another type of geological structure was also revealed by Mikhailov et al., Massachusetts, but their signals registered from two frontiers were too faint and not evident in comparing with ours ones that occurred to be perfect and clear. Seismic-electric method field experi- ments were successfully provided for the first time on archaeological objects.
Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals
NASA Astrophysics Data System (ADS)
Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.
2017-04-01
In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.
NASA Astrophysics Data System (ADS)
Fedotov, S. A.; Slavina, L. B.; Senyukov, S. L.; Kuchay, M. S.
2015-12-01
Seismic and volcanic processes in the area of the northern group of volcanoes (NGV) in Kamchatka Peninsula that accompanied the Great Tolbachik Fissure Eruption (GTFE) of 1975-1976 and the Tolbachik Fissure Eruption (TFE, or "50 let IViS" due to anniversary of the Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences) of 2012-2013 and the seismic activity between these events are considered. The features of evolution of seismic processes of the major NGV volcanoes (Ploskii Tolbachik, Klyuchevskoy, Bezymannyi, and Shiveluch) are revealed. The distribution of earthquakes along depth, their spatial and temporal migration, and the relation of seismic and volcanic activity are discussed. The major features of seismic activity during the GTFE preparation and evolution and a development of earthquake series preceding the origin of the northern and southern breaks are described. The character of seismic activity between the GTFE and TFE is shown. The major peculiarities of evolution of seismic activity preceding and accompanying the TFE are described. The major magma sources and conduits of the NGV volcanoes are identified, as is the existence of a main conduit in the mantle and a common intermediate source for the entire NGV, the depth of which is 25-35 km according to seismic data. The depth of a neutral buoyancy layer below the NGV is 15-20 km and the source of areal volcanism of magnesian basalts northeast of the Klyuchevskoy volcano is located at depth of ~20 km. These data support the major properties of a 2010 geophysical model of magmatic feeding system of the Klyuchevskoy group of volcanoes. The present paper covers a wider NGV area and is based on the real experimental observations.
Kernel Smoothing Methods for Non-Poissonian Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Woo, Gordon
2017-04-01
For almost fifty years, the mainstay of probabilistic seismic hazard analysis has been the methodology developed by Cornell, which assumes that earthquake occurrence is a Poisson process, and that the spatial distribution of epicentres can be represented by a set of polygonal source zones, within which seismicity is uniform. Based on Vere-Jones' use of kernel smoothing methods for earthquake forecasting, these methods were adapted in 1994 by the author for application to probabilistic seismic hazard analysis. There is no need for ambiguous boundaries of polygonal source zones, nor for the hypothesis of time independence of earthquake sequences. In Europe, there are many regions where seismotectonic zones are not well delineated, and where there is a dynamic stress interaction between events, so that they cannot be described as independent. From the Amatrice earthquake of 24 August, 2016, the subsequent damaging earthquakes in Central Italy over months were not independent events. Removing foreshocks and aftershocks is not only an ill-defined task, it has a material effect on seismic hazard computation. Because of the spatial dispersion of epicentres, and the clustering of magnitudes for the largest events in a sequence, which might all be around magnitude 6, the specific event causing the highest ground motion can vary from one site location to another. Where significant active faults have been clearly identified geologically, they should be modelled as individual seismic sources. The remaining background seismicity should be modelled as non-Poissonian using statistical kernel smoothing methods. This approach was first applied for seismic hazard analysis at a UK nuclear power plant two decades ago, and should be included within logic-trees for future probabilistic seismic hazard at critical installations within Europe. In this paper, various salient European applications are given.
Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1977-01-01
Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.
Classifying seismic noise and sources from OBS data using unsupervised machine learning
NASA Astrophysics Data System (ADS)
Mosher, S. G.; Audet, P.
2017-12-01
The paradigm of plate tectonics was established mainly by recognizing the central role of oceanic plates in the production and destruction of tectonic plates at their boundaries. Since that realization, however, seismic studies of tectonic plates and their associated deformation have slowly shifted their attention toward continental plates due to the ease of installation and maintenance of high-quality seismic networks on land. The result has been a much more detailed understanding of the seismicity patterns associated with continental plate deformation in comparison with the low-magnitude deformation patterns within oceanic plates and at their boundaries. While the number of high-quality ocean-bottom seismometer (OBS) deployments within the past decade has demonstrated the potential to significantly increase our understanding of tectonic systems in oceanic settings, OBS data poses significant challenges to many of the traditional data processing techniques in seismology. In particular, problems involving the detection, location, and classification of seismic sources occurring within oceanic settings are much more difficult due to the extremely noisy seafloor environment in which data are recorded. However, classifying data without a priori constraints is a problem that is routinely pursued via unsupervised machine learning algorithms, which remain robust even in cases involving complicated datasets. In this research, we apply simple unsupervised machine learning algorithms (e.g., clustering) to OBS data from the Cascadia Initiative in an attempt to classify and detect a broad range of seismic sources, including various noise sources and tremor signals occurring within ocean settings.
Studies of earthquakes and microearthquakes using near-field seismic and geodetic observations
NASA Astrophysics Data System (ADS)
O'Toole, Thomas Bartholomew
The Centroid-Moment Tensor (CMT) method allows an optimal point-source description of an earthquake to be recovered from a set of seismic observations, and, for over 30 years, has been routinely applied to determine the location and source mechanism of teleseismically recorded earthquakes. The CMT approach is, however, entirely general: any measurements of seismic displacement fields could, in theory, be used within the CMT inversion formulation, so long as the treatment of the earthquake as a point source is valid for that data. We modify the CMT algorithm to enable a variety of near-field seismic observables to be inverted for the source parameters of an earthquake. The first two data types that we implement are provided by Global Positioning System receivers operating at sampling frequencies of 1,Hz and above. When deployed in the seismic near field, these instruments may be used as long-period-strong-motion seismometers, recording displacement time series that include the static offset. We show that both the displacement waveforms, and static displacements alone, can be used to obtain CMT solutions for moderate-magnitude earthquakes, and that performing analyses using these data may be useful for earthquake early warning. We also investigate using waveform recordings - made by conventional seismometers deployed at the surface, or by geophone arrays placed in boreholes - to determine CMT solutions, and their uncertainties, for microearthquakes induced by hydraulic fracturing. A similar waveform inversion approach could be applied in many other settings where induced seismicity and microseismicity occurs..
Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System
NASA Astrophysics Data System (ADS)
Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.
2014-12-01
The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.
Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin
2013-04-01
Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.
NASA Astrophysics Data System (ADS)
Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.
2008-12-01
Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the northeastern China/Korean Peninsula region where average plane-layered structure is well known and relatively laterally homogenous. Secondly, we will consider the Middle East where crustal and upper mantle structure is laterally heterogeneous due to recent and ongoing tectonism. If time allows we will investigate the efficacy of each method for retrieving source parameters from synthetic data generated using a three-dimensional model of seismic structure of the Middle East, where phase delays are known to arise from path-dependent structure.
NASA Astrophysics Data System (ADS)
Alvizuri, Celso; Silwal, Vipul; Krischer, Lion; Tape, Carl
2017-04-01
A seismic moment tensor is a 3 × 3 symmetric matrix that provides a compact representation of seismic events within Earth's crust. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms at each grid point and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P(V ), where P(V ) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V . The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M. We apply the method to data from events in different regions and tectonic settings: small (Mw < 2.5) events at Uturuncu volcano in Bolivia, moderate (Mw > 4) earthquakes in the southern Alaska subduction zone, and natural and man-made events at the Nevada Test Site. Moment tensor uncertainties allow us to better discriminate among moment tensor source types and to assign physical processes to the events.
NASA Astrophysics Data System (ADS)
Huang, H.; Lin, C.
2010-12-01
The Tai-Tung earthquake (ML=6.2) occurred at the southeastern part of Taiwan on April 1, 2006. We examine the source model of this event using the observed seismograms by CWBSN at five stations surrounding the source area. An objective estimation method was used to obtain the parameters N and C which are needed for the empirical Green’s function method by Irikura (1986). This method is called “source spectral ratio fitting method” which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tai-Tung mainshock in 2006 was estimated by comparing the observed waveforms with synthetics using empirical Green’s function method. The size of the asperity is about 3.5 km length along the strike direction by 7.0 km width along the dip direction. The rupture started at the left-bottom of the asperity and extended radially to the right-upper direction.
NASA Astrophysics Data System (ADS)
Huang, H.-C.; Lin, C.-Y.
2012-04-01
The Tapu earthquake (ML 5.7) occurred at the southwestern part of Taiwan on December 16, 1993. We examine the source model of this event using the observed seismograms by CWBSN at eight stations surrounding the source area. An objective estimation method is used to obtain the parameters N and C which are needed for the empirical Green's function method by Irikura (1986). This method is called "source spectral ratio fitting method" which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tapu mainshock in 1993 is estimated by comparing the observed waveforms with the synthetic ones using empirical Green's function method. The size of the asperity is about 2.1 km length along the strike direction by 1.5 km width along the dip direction. The rupture started at the right-bottom of the asperity and extended radially to the left-upper direction.
NASA Astrophysics Data System (ADS)
Huang, H.; Lin, C.
2012-12-01
The Tapu earthquake (ML 5.7) occurred at the southwestern part of Taiwan on December 16, 1993. We examine the source model of this event using the observed seismograms by CWBSN at eight stations surrounding the source area. An objective estimation method is used to obtain the parameters N and C which are needed for the empirical Green's function method by Irikura (1986). This method is called "source spectral ratio fitting method" which gives estimate of seismic moment ratio between a large and a small event and their corner frequencies by fitting the observed source spectral ratio with the ratio of source spectra which obeys the model (Miyake et al., 1999). This method has an advantage of removing site effects in evaluating the parameters. The best source model of the Tapu mainshock in 1993 is estimated by comparing the observed waveforms with the synthetic ones using empirical Green's function method. The size of the asperity is about 2.1 km length along the strike direction by 1.5 km width along the dip direction. The rupture started at the right-bottom of the asperity and extended radially to the left-upper direction.
Ground-motion signature of dynamic ruptures on rough faults
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.
2016-04-01
Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.
NASA Astrophysics Data System (ADS)
Gao, Shanghua; Fu, Guangyu; Liu, Tai; Zhang, Guoqing
2017-03-01
Tanaka et al. (Geophys J Int 164:273-289, 2006, Geophys J Int 170:1031-1052, 2007) proposed the spherical dislocation theory (SDT) in a spherically symmetric, self-gravitating visco-elastic earth model. However, to date there have been no reports on easily adopted, widely used software that utilizes Tanaka's theory. In this study we introduce a new code to compute post-seismic deformations (PSD), including displacements as well as Geoid and gravity changes, caused by a seismic source at any position. This new code is based on the above-mentioned SDT. The code consists of two parts. The first part is the numerical frame of the dislocation Green function (DGF), which contains a set of two-dimensional discrete numerical frames of DGFs on a symmetric earth model. The second part is an integration function, which performs bi-quadratic spline interpolation operations on the frame of DGFs. The inputs are the information on the seismic fault models and the information on the observation points. After the user prepares the inputs in a file with given format, the code will automatically compute the PSD. As an example, we use the new code to calculate the co-seismic displacements caused by the Tohoku-Oki Mw 9.0 earthquake. We compare the result with observations and the result from a full-elastic SDT, and we found that the Root Mean Square error between the calculated and observed results is 7.4 cm. This verifies the suitability of our new code. Finally, we discuss several issues that require attention when using the code, which should be helpful for users.
3D crustal model of the US and Canada East Coast rifted margin
NASA Astrophysics Data System (ADS)
Dowla, N.; Bird, D. E.; Murphy, M. A.
2017-12-01
We integrate seismic reflection and refraction data with gravity and magnetic data to generate a continent-scale 3D crustal model of the US and Canada East Coast, extending north from the Straits of Florida to Newfoundland, and east from the Appalachian Mountains to the Central Atlantic Ocean. The model includes five layers separated by four horizons: sea surface, topography, crystalline basement, and Moho. We tested magnetic depth-to-source techniques to improve the basement morphology, from published sources, beneath the continental Triassic rift basins and outboard to the Jurassic ocean floor. A laterally varying density grid was then produced for the resultant sedimentary rock layer thickness based on an exponential decay function that approximates sedimentary compaction. Using constant density values for the remaining layers, we calculated an isostatically compensated Moho. The following structural inversion results of the Moho, controlled by seismic refraction depths, advances our understanding of rift-to-drift crustal geometries, and provides a regional context for additional studies.
Icequake Tremors During Glacier Calving (Invited)
NASA Astrophysics Data System (ADS)
Walter, F.; O'Neel, S.; Bassis, J. N.; Fricker, H. A.; Pfeffer, W. T.
2009-12-01
Calving poses the largest uncertainty in the prediction of sea-level rise in response to global climate changes. A physically-based calving law has yet to be successfully implemented into ice-sheet models in order to adequately describe the mass loss of tidewater glaciers and ice shelves. Observations from a variety of glacial environments are needed in order to develop a theoretical framework for glacier calving. To this end, several recent investigations on glacier calving have involved the recording of seismic waves. In this context, the study of icequakes has been of high value, as it allows for detecting and monitoring of calving activity. However, there are unanswered fundamental questions concerning source aspects of calving-related seismic activity, such as focal depths of icequakes preceding and accompanying calving events, failure mechanisms and the role of fracturing and crevasse formation upstream from the glacier terminus. Icequake sources associated with opening of surface crevasses are well understood. As glacier ice is often homogeneous these waveforms are relatively simple and can be modeled using the moment tensor representation of a seismic point source. Calving-related seismicity, on the other hand, is more complex, and occurs near the terminus of a glacier, which is often highly heterogeneous due to pervasive crevassing. The signals last up to several minutes or even hours and exhibit both low-frequency (1-3Hz) as well as high-frequency (10-20Hz) energy or tremor-like waveforms. These characteristics can be explained by finite source properties, such as connecting and migrating fractures and repeated slip across contact planes between two bodies of ice. In this presentation we discuss sources of calving-related seismicity by comparing seismic calving records from several different glacial settings. We consider icequakes recorded during tidewater calving at Columbia Glacier, Alaska, during lake calving on Gornergletscher, Switzerland, and during ice shelf calving in Antarctica. The similarities and differences in seismic signatures of these different calving settings provide valuable insights and will be helpful in the theoretical treatment of glacier calving.
NASA Astrophysics Data System (ADS)
Amertha Sanjiwani, I. D. M.; En, C. K.; Anjasmara, I. M.
2017-12-01
A seismic gap on the interface along the Sunda subduction zone has been proposed among the 2000, 2004, 2005 and 2007 great earthquakes. This seismic gap therefore plays an important role in the earthquake risk on the Sunda trench. The Mw 7.6 Padang earthquake, an intraslab event, was occurred on September 30, 2009 located at ± 250 km east of the Sunda trench, close to the seismic gap on the interface. To understand the interaction between the seismic gap and the Padang earthquake, twelves continuous GPS data from SUGAR are adopted in this study to estimate the source model of this event. The daily GPS coordinates one month before and after the earthquake were calculated by the GAMIT software. The coseismic displacements were evaluated based on the analysis of coordinate time series in Padang region. This geodetic network provides a rather good spatial coverage for examining the seismic source along the Padang region in detail. The general pattern of coseismic horizontal displacements is moving toward epicenter and also the trench. The coseismic vertical displacement pattern is uplift. The highest coseismic displacement derived from the MSAI station are 35.0 mm for horizontal component toward S32.1°W and 21.7 mm for vertical component. The second largest one derived from the LNNG station are 26.6 mm for horizontal component toward N68.6°W and 3.4 mm for vertical component. Next, we will use uniform stress drop inversion to invert the coseismic displacement field for estimating the source model. Then the relationship between the seismic gap on the interface and the intraslab Padang earthquake will be discussed in the next step. Keyword: seismic gap, Padang earthquake, coseismic displacement.
ANZA Seismic Network- From Monitoring to Science
NASA Astrophysics Data System (ADS)
Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.
2007-05-01
The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.
SOME APPLICATIONS OF SEISMIC SOURCE MECHANISM STUDIES TO ASSESSING UNDERGROUND HAZARD.
McGarr, A.; ,
1984-01-01
Various measures of the seismic source mechanism of mine tremors, such as magnitude, moment, stress drop, apparent stress, and seismic efficiency, can be related directly to several aspects of the problem of determining the underground hazard arising from strong ground motion of large seismic events. First, the relation between the sum of seismic moments of tremors and the volume of stope closure caused by mining during a given period can be used in conjunction with magnitude-frequency statistics and an empirical relation between moment and magnitude to estimate the maximum possible sized tremor for a given mining situation. Second, it is shown that the 'energy release rate,' a commonly-used parameter for predicting underground seismic hazard, may be misleading in that the importance of overburden stress, or depth, is overstated. Third, results involving the relation between peak velocity and magnitude, magnitude-frequency statistics, and the maximum possible magnitude are applied to the problem of estimating the frequency at which design limits of certain underground support equipment are likely to be exceeded.
NASA Astrophysics Data System (ADS)
Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw
2017-04-01
Previous analysis to assess the monitoring performance of a dedicated seismic network are always useful to determine its capability of detecting, locating and characterizing target seismicity. This work focuses on a hydrofracking experiment in Poland, which is monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project. The seismic installation is located near Wysin (Poland), in the central-western part of the Peribaltic synclise at Pomerania. The network setup includes a distributed network of six broadband stations, three shallow borehole stations and three small-scale arrays. We assess the monitoring performance prior operations, using synthetic seismograms. Realistic full waveform are generated and combined with real noise before fracking operations, to produce either event based or continuous synthetic waveforms. Background seismicity is modelled by double couple (DC) focal mechanisms. Non-DC sources resemble induced tensile fractures opening in the direction of the minimal compressive stress and closing in the same direction after the injection. Microseismic sources are combined with a realistic crustal model, distribution of hypocenters, magnitudes and source durations. The network detection performance is then assessed in terms of Magnitude of Completeness (Mc) through two different techniques: i) using an amplitude threshold approach, taking into account a station dependent noise level and different values of signal-to-noise ratio (SNR) and ii) through the application of an automatic detection algorithm to the continuous synthetic dataset. In the first case, we compare the maximal amplitude of noise free synthetic waveforms with the different noise levels. Imposing the simultaneous detection at e.g. 4 stations for a robust detection, the Mc is assessed and can be adjusted by empirical relationships for different SNR values. We find that different source mechanisms have different detection threshold. The background seismicity (DC sources) is better detectable than induced earthquakes (tensile cracks mechanisms). Assuming a SNR of 2, we estimate a Mc 0.55 around the fracking wells, with an increase of 0.05 during day hours. The value of Mc can be decreased to 0.45 around the fracking region, taking advantage by the array installations. The second approach applies a full waveform detection and location algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. In this case the detection can be increased at the cost of increasing also false detections, with an acceptable compromise found for Mc 0.1.
NASA Astrophysics Data System (ADS)
Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice
2016-05-01
A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.
Calving seismicity from iceberg-sea surface interactions
Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.
2012-01-01
Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.
MASW on the standard seismic prospective scale using full spread recording
NASA Astrophysics Data System (ADS)
Białas, Sebastian; Majdański, Mariusz; Trzeciak, Maciej; Gałczyński, Edward; Maksym, Andrzej
2015-04-01
The Multichannel Analysis of Surface Waves (MASW) is one of seismic survey methods that use the dispersion curve of surface waves in order to describe the stiffness of the surface. Is is used mainly for geotechnical engineering scale with total length of spread between 5 - 450 m and spread offset between 1 - 100 m, the hummer is the seismic source on this surveys. The standard procedure of MASW survey is: data acquisition, dispersion analysis and inversion of extracting dispersion curve to obtain the closest theoretical curve. The final result includes share-wave velocity (Vs) values at different depth along the surveyed lines. The main goal of this work is to expand this engineering method to the bigger scale with the length of standard prospecting spread of 20 km using 4.5 Hz version of vertical component geophones. The standard vibroseis and explosive method are used as the seismic source. The acquisition were conducted on the full spread all the time during each single shoot. The seismic data acquisition used for this analysis were carried out on the Braniewo 2014 project in north of Poland. The results achieved during standard MASW procedure says that this method can be used on much bigger scale as well. The different methodology of this analysis requires only much stronger seismic source.
Receiver function stacks: initial steps for seismic imaging of Cotopaxi volcano, Ecuador
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Lees, J. M.; Ruiz, M. C.
2017-12-01
Cotopaxi volcano is a large, andesitic stratovolcano located within 50 km of the the Ecuadorean capital of Quito. Cotopaxi most recently erupted for the first time in 73 years during August 2015. This eruptive cycle (VEI = 1) featured phreatic explosions and ejection of an ash column 9 km above the volcano edifice. Following this event, ash covered approximately 500 km2 of the surrounding area. Analysis of Multi-GAS data suggests that this eruption was fed from a shallow source. However, stratigraphic evidence surveying the last 800 years of Cotopaxi's activity suggests that there may be a deep magmatic source. To establish a geophysical framework for Cotopaxi's activity, receiver functions were calculated from well recorded earthquakes detected from April 2015 to December 2015 at 9 permanent broadband seismic stations around the volcano. These events were located, and phase arrivals were manually picked. Radial teleseismic receiver functions were then calculated using an iterative deconvolution technique with a Gaussian width of 2.5. A maximum of 200 iterations was allowed in each deconvolution. Iterations were stopped when either the maximum iteration number was reached or the percent change fell beneath a pre-determined tolerance. Receiver functions were then visually inspected for anomalous pulses before the initial P arrival or later peaks larger than the initial P-wave correlated pulse, which were also discarded. Using this data, initial crustal thickness and slab depth estimates beneath the volcano were obtained. Estimates of crustal Vp/Vs ratio for the region were also calculated.
NASA Astrophysics Data System (ADS)
Visini, F.; Meletti, C.; D'Amico, V.; Rovida, A.; Stucchi, M.
2014-12-01
The recent release of the probabilistic seismic hazard assessment (PSHA) model for Europe by the SHARE project (Giardini et al., 2013, www.share-eu.org) arises questions about the comparison between its results for Italy and the official Italian seismic hazard model (MPS04; Stucchi et al., 2011) adopted by the building code. The goal of such a comparison is identifying the main input elements that produce the differences between the two models. It is worthwhile to remark that each PSHA is realized with data and knowledge available at the time of the release. Therefore, even if a new model provides estimates significantly different from the previous ones that does not mean that old models are wrong, but probably that the current knowledge is strongly changed and improved. Looking at the hazard maps with 10% probability of exceedance in 50 years (adopted as the standard input in the Italian building code), the SHARE model shows increased expected values with respect to the MPS04 model, up to 70% for PGA. However, looking in detail at all output parameters of both the models, we observe a different behaviour for other spectral accelerations. In fact, for spectral periods greater than 0.3 s, the current reference PSHA for Italy proposes higher values than the SHARE model for many and large areas. This observation suggests that this behaviour could not be due to a different definition of seismic sources and relevant seismicity rates; it mainly seems the result of the adoption of recent ground-motion prediction equations (GMPEs) that estimate higher values for PGA and for accelerations with periods lower than 0.3 s and lower values for higher periods with respect to old GMPEs. Another important set of tests consisted in analysing separately the PSHA results obtained by the three source models adopted in SHARE (i.e., area sources, fault sources with background, and a refined smoothed seismicity model), whereas MPS04 only uses area sources. Results seem to confirm the strong impact of the new generation GMPEs on the seismic hazard estimates. Giardini D. et al., 2013. Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:10.12686/SED-00000001-SHARE. Stucchi M. et al., 2011. Seismic Hazard Assessment (2003-2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 101, 1885-1911.
NASA Astrophysics Data System (ADS)
Trugman, Daniel Taylor
The complexity of the earthquake rupture process makes earthquakes inherently unpredictable. Seismic hazard forecasts often presume that the rate of earthquake occurrence can be adequately modeled as a space-time homogenenous or stationary Poisson process and that the relation between the dynamical source properties of small and large earthquakes obey self-similar scaling relations. While these simplified models provide useful approximations and encapsulate the first-order statistical features of the historical seismic record, they are inconsistent with the complexity underlying earthquake occurrence and can lead to misleading assessments of seismic hazard when applied in practice. The six principle chapters of this thesis explore the extent to which the behavior of real earthquakes deviates from these simplified models, and the implications that the observed deviations have for our understanding of earthquake rupture processes and seismic hazard. Chapter 1 provides a brief thematic overview and introduction to the scope of this thesis. Chapter 2 examines the complexity of the 2010 M7.2 El Mayor-Cucapah earthquake, focusing on the relation between its unexpected and unprecedented occurrence and anthropogenic stresses from the nearby Cerro Prieto Geothermal Field. Chapter 3 compares long-term changes in seismicity within California's three largest geothermal fields in an effort to characterize the relative influence of natural and anthropogenic stress transients on local seismic hazard. Chapter 4 describes a hybrid, hierarchical clustering algorithm that can be used to relocate earthquakes using waveform cross-correlation, and applies the new algorithm to study the spatiotemporal evolution of two recent seismic swarms in western Nevada. Chapter 5 describes a new spectral decomposition technique that can be used to analyze the dynamic source properties of large datasets of earthquakes, and applies this approach to revisit the question of self-similar scaling of southern California seismicity. Chapter 6 builds upon these results and applies the same spectral decomposition technique to examine the source properties of several thousand recent earthquakes in southern Kansas that are likely human-induced by massive oil and gas operations in the region. Chapter 7 studies the connection between source spectral properties and earthquake hazard, focusing on spatial variations in dynamic stress drop and its influence on ground motion amplitudes. Finally, Chapter 8 provides a summary of the key findings of and relations between these studies, and outlines potential avenues of future research.
Earthquake sources near Uturuncu Volcano
NASA Astrophysics Data System (ADS)
Keyson, L.; West, M. E.
2013-12-01
Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.
Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Riel, Bryan; Owen, Susan E; Moore, Angelyn W; Samsonov, Sergey V; Ortega Culaciati, Francisco; Minson, Sarah E.
2016-01-01
The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.
The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake?
NASA Astrophysics Data System (ADS)
Tilmann, F.; Zhang, Y.; Moreno, M.; Saul, J.; Eckelmann, F.; Palo, M.; Deng, Z.; Babeyko, A.; Chen, K.; Baez, J. C.; Schurr, B.; Wang, R.; Dahm, T.
2016-01-01
On 16 September 2015, the MW = 8.2 Illapel megathrust earthquake ruptured the Central Chilean margin. Combining inversions of displacement measurements and seismic waveforms with high frequency (HF) teleseismic backprojection, we derive a comprehensive description of the rupture, which also predicts deep ocean tsunami wave heights. We further determine moment tensors and obtain accurate depth estimates for the aftershock sequence. The earthquake nucleated near the coast but then propagated to the north and updip, attaining a peak slip of 5-6 m. In contrast, HF seismic radiation is mostly emitted downdip of the region of intense slip and arrests earlier than the long period rupture, indicating smooth slip along the shallow plate interface in the final phase. A superficially similar earthquake in 1943 with a similar aftershock zone had a much shorter source time function, which matches the duration of HF seismic radiation in the recent event, indicating that the 1943 event lacked the shallow slip.
NASA Astrophysics Data System (ADS)
Finkel, Caroline; Albini, Paola
2017-01-01
This is a comment on the paper `Historical seismicity in the Middle East: new insights from Ottoman primary sources (sixteenth to mid-eighteenth centuries)' by Güçlü Tülüveli (JOSE, 2015, vol. 19, 1003-1008). The authors comment on the sources for each of the events cited by Güçlü Tülüveli, providing for the non-specialist a better sense of how the events he lists might more accurately fit into existing knowledge of the historical seismicity of the Ottoman lands.
Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source
NASA Astrophysics Data System (ADS)
Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe
2018-05-01
Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.
NASA Astrophysics Data System (ADS)
Wehner, D.; Landrø, M.; Amundsen, L.; Westerdahl, H.
2018-05-01
In academia and the industry, there is increasing interest in generating and recording low seismic frequencies, which lead to better data quality, deeper signal penetration and can be important for full-waveform inversion. The common marine seismic source in acquisition is the air gun which is towed behind a vessel. The frequency content of the signal produced by the air gun mainly depends on its source depth as there are two effects which are presumed to counteract each other. First, there is the oscillating air bubble generated by the air gun which leads to more low frequencies for shallow source depths. Secondly, there is the interference of the downgoing wave with the first reflection from the sea surface, referred to as the ghost, which leads to more low frequencies for deeper source depths. It is still under debate whether it is beneficial to place the source shallow or deep to generate the strongest signal for frequencies below 5 Hz. Therefore, the ghost effect is studied in more detail by measuring the transmission at the water-air interface. We conduct experiments in a water tank where a small-volume seismic source is fired at different depths below the water surface to investigate how the ghost varies with frequency and depth. The signal from the seismic source is recorded with hydrophones inside water and air during the test to estimate the transmitted signal through the interface. In a second test, we perform experiments with an acoustic source located in air which is fired at different elevations above the water surface. The source in air is a starter gun and the signals are again recorded in water and air. The measured data indicates an increasing transmission of the signal through the water-air interface when the source is closer to the water surface which leads to a decreasing reflection for sources close to the surface. The measured results are compared with modeled data and the existing theory. The observed increase in transmission for shallow source depths could be explained by the theory of a spherical wave front striking the interface instead of assuming a plane wave front. The difference can be important for frequencies below 1 Hz. The results suggest that deploying a few sources very shallow during marine seismic acquisition could be beneficial for these very low frequencies. In addition, the effect of a spherical wave front might be considered for modeling far field signatures of seismic sources for frequencies below 1 Hz.
Crustal Structure Beneath India and Tibet: New Constraints From Inversion of Receiver Functions
NASA Astrophysics Data System (ADS)
Singh, Arun; Ravi Kumar, M.; Mohanty, Debasis D.; Singh, Chandrani; Biswas, Rahul; Srinagesh, D.
2017-10-01
The Indian subcontinent comprises geological terranes of varied age and structural character. In this study, we provide new constraints to existing crustal models by inverting the P-to-s receiver functions (RFs) at 317 broadband seismic stations. Inversion results fill crucial gaps in existing velocity models (CRUST1.0 and SEAPS) by capturing regions which are less represented. The final model produced is much more heterogeneous and is able to capture the structural variations between closely spaced seismic stations. In comparison to the global models, major differences are seen for seismic stations located over various rift zones (e.g., Godavari, Narmada, and Cambay) and those close to the coastal regions where transition from oceanic to continental crust is expected to create drastic changes in the crustal configuration. Seismic images are produced along various profiles using 49,682 individual RFs recorded at 442 seismic stations. Lateral variations captured using migrated images across the Himalayan collisional front revealed the hitherto elusive southern extent of the Moho and intracrustal features south of the Main Central Thrust (MCT). Poisson's ratio and crustal thickness estimates obtained using H-k stacking technique and inversion of RFs are grossly similar lending credence to the robustness of inversions. An updated crustal thickness map produced using 1,525 individual data points from controlled source seismics and RFs reveals a (a) thickened crust (>55 km) at the boundary of Dharwar Craton and Southern Granulite Terrain, (b) clear difference in crustal thickness estimates between Eastern Dharwar Craton and Western Dharwar Craton, (c) thinner crust beneath Cambay Basin between southwest Deccan Volcanic Province and Delhi-Aravalli Fold Belt, (d) thinner crust (<35 km) beneath Bengal Basin, (e) thicker crust (>40 km) beneath paleorift zones like Narmada Son Lineament and Godavari Graben, and (f) very thick crust beneath central Tibet (>65 km) with maximum lateral variations along the Himalayan collision front.
NASA Astrophysics Data System (ADS)
Rathnayaka, S.; Gao, H.
2017-12-01
The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.
Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array
NASA Astrophysics Data System (ADS)
Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.
2017-12-01
The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.
NASA Astrophysics Data System (ADS)
Wason, H.; Herrmann, F. J.; Kumar, R.
2016-12-01
Current efforts towards dense shot (or receiver) sampling and full azimuthal coverage to produce high resolution images have led to the deployment of multiple source vessels (or streamers) across marine survey areas. Densely sampled marine seismic data acquisition, however, is expensive, and hence necessitates the adoption of sampling schemes that save acquisition costs and time. Compressed sensing is a sampling paradigm that aims to reconstruct a signal--that is sparse or compressible in some transform domain--from relatively fewer measurements than required by the Nyquist sampling criteria. Leveraging ideas from the field of compressed sensing, we show how marine seismic acquisition can be setup as a compressed sensing problem. A step ahead from multi-source seismic acquisition is simultaneous source acquisition--an emerging technology that is stimulating both geophysical research and commercial efforts--where multiple source arrays/vessels fire shots simultaneously resulting in better coverage in marine surveys. Following the design principles of compressed sensing, we propose a pragmatic simultaneous time-jittered time-compressed marine acquisition scheme where single or multiple source vessels sail across an ocean-bottom array firing airguns at jittered times and source locations, resulting in better spatial sampling and speedup acquisition. Our acquisition is low cost since our measurements are subsampled. Simultaneous source acquisition generates data with overlapping shot records, which need to be separated for further processing. We can significantly impact the reconstruction quality of conventional seismic data from jittered data and demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, acquisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical requirement of wavefield reconstruction with localized sparsifying transforms. We illustrate our results with simulations of simultaneous time-jittered marine acquisition for 2D and 3D ocean-bottom cable survey.
Deterministic seismic hazard macrozonation of India
NASA Astrophysics Data System (ADS)
Kolathayar, Sreevalsa; Sitharam, T. G.; Vipin, K. S.
2012-10-01
Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6°-38°N and 68°-98°E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1° (approximately 10 × 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.
Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)
NASA Astrophysics Data System (ADS)
Selva, J.; Tonini, R.; Molinari, I.; Tiberti, M. M.; Romano, F.; Grezio, A.; Melini, D.; Piatanesi, A.; Basili, R.; Lorito, S.
2016-06-01
We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.
Almendros, J.; Chouet, B.; Dawson, P.
2001-01-01
Array data from a seismic experiment carried out at Kilauea Volcano, Hawaii, in February 1997, are analyzed by the frequency-slowness method. The slowness vectors are determined at each of three small-aperture seismic antennas for the first arrivals of 1129 long-period (LP) events and 147 samples of volcanic tremor. The source locations are determined by using a probabilistic method which compares the event azimuths and slownesses with a slowness vector model. The results show that all the LP seismicity, including both discrete LP events and tremor, was generated in the same source region along the east flank of the Halemaumau pit crater, demonstrating the strong relation that exists between the two types of activities. The dimensions of the source region are approximately 0.6 X 1.0 X 0.5 km. For LP events we are able to resolve at least three different clusters of events. The most active cluster is centered ???200 m northeast of Halemaumau at depths shallower than 200 m beneath the caldera floor. A second cluster is located beneath the northeast quadrant of Halemaumau at a depth of ???400 m. The third cluster is <200 m deep and extends southeastward from the northeast quadrant of Halemaumau. Only one source zone is resolved for tremor. This zone is coincident with the most active source zone of LP events, northeast of Halemaumau. The location, depth, and size of the source region suggest a hydrothermal origin for all the analyzed LP seismicity. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Wilde-Piorko, M.; Polkowski, M.
2016-12-01
Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia
NASA Astrophysics Data System (ADS)
Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.
2014-05-01
Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.
NASA Astrophysics Data System (ADS)
Alkan, Engin
It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different Swave modes (P-SV, SV-SV) in addition to the conventional P-P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University's Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents.
ERIC Educational Resources Information Center
Ramananantoandro, Ramanantsoa
1988-01-01
Presented is a description of a BASIC program to be used on an IBM microcomputer for calculating and plotting synthetic seismic-reflection traces for multilayered earth models. Discusses finding raypaths for given source-receiver offsets using the "shooting method" and calculating the corresponding travel times. (Author/CW)
NASA Astrophysics Data System (ADS)
Serra, Marcello; Festa, Gaetano; Roux, Philippe; Vandemeulebrouck, Jean; Gresse, Marceau; Zollo, Aldo
2017-04-01
RICEN (Repeated and InduCed Earthquakes and Noise) is an active and passive experiment organized at the Solfatara volcano, in the framework of the European project MEDSUV. It was aimed to reveal and track the variations in the elastic properties of the medium at small scale through repeated observations over time. It covered an area of 90m x 115m by a regular grid of 240 receivers and 100 shotpoints at the center of the volcano. A Vibroseis truck was used as seismic source . We cross-correlated the seismograms by the source time function to obtain the Green's functions filtered in the frequency band excited by the source. To estimate the phase and the group velocities of the Rayleigh-waves we used the coherence of the signal along the seismic sections. In subgrids of 40m x 40m we realigned the waveforms or their envelope in different frequency bands, to maximize the amplitude of the stack function, the phase or the group velocities being those speeds proving this maximum. We jointly inverted the dispersion curves to obtain a locally layered 1-D medium in term of S-waves. Finally the collection of all the models provides us with a 3-D image of the investigated area. The S-wave velocity decreases toward the "Fangaia", due to the water saturation of the medium, as confirmed by geoelectric results. Since the Solfatara is a strongly heterogeneous medium, it is not possible to localize the velocity anomalies at different scales and a description of the medium through statistical parameters, such as the mean free path (MFP) and the transport mean free path (TMFP) was provided. The MFP was recovered from the ratio between coherent and incoherent intensities of the surface waves measured in different frequency bands. It decreases with frequency from about 40m at 8.5 Hz to 10m at 21.5 Hz, this behavior being typical of volcanic areas. The TMFP was measured fitting the decay of the coda of the energy at different distances. As expected it is larger than the MFP and strongly affected by inelastic attenuation of the medium. Finally, using a linear-array of 400 m crossing the explored area, we performed a beamforming analysis in order to infer the propagation properties of the first P-wave arrivals. From the complete array we selected subarrays of sources and receivers and, for all possible combinations of subarrays, we computed the spectrograms, and the P- wave velocity as a function of the subarray distance.
Innovative Approaches for Seismic Studies of Mars (Invited)
NASA Astrophysics Data System (ADS)
Banerdt, B.
2010-12-01
In addition to its intrinsic interest, Mars is particularly well-suited for studying the full range of processes and phenomena related to early terrestrial planet evolution, from initial differentiation to the start of plate tectonics. It is large and complex enough to have undergone most of the processes that affected early Earth but, unlike the Earth, has apparently not undergone extensive plate tectonics or other major reworking that erased the imprint of early events (as evidenced by the presence of cratered surfaces older than 4 Ga). The martian mantle should have Earth-like polymorphic phase transitions and may even support a perovskite layer near the core (depending on the actual core radius), a characteristic that would have major implications for core cooling and mantle convection. Thus even the most basic measurements of planetary structure, such as crustal thickness, core radius and state (solid/liquid), and gross mantle velocity structure would provide invaluable constraints on models of early planetary evolution. Despite this strong scientific motivation (and several failed attempts), Mars remains terra incognita from a seismic standpoint. This is due to an unfortunate convergence of circumstances, prominent among which are our uncertainty in the level of seismic activity and the relatively high cost of landing multiple long-lived spacecraft on Mars to comprise a seismic network for body-wave travel-time analysis; typically four to ten stations are considered necessary for this type of experiment. In this presentation I will address both of these issues. In order to overcome the concern about a possible lack of marsquakes with which to work, it is useful to identify alternative methods for using seismic techniques to probe the interior. Seismology without quakes can be accomplished in a number of ways. “Unconventional” sources of seismic energy include meteorites (which strike the surface of Mars at a relatively high rate), artificial projectiles (which can supply up to 1010 J of kinetic energy), seismic “hum” from meteorological forcing, and tidal deformation from Phobos (with a period around 6 hours). Another means for encouraging a seismic mission to Mars is to promote methods that can derive interior information from a single seismometer. Fortunately many such methods exist, including source location through P-S and back-azimuth, receiver functions, identification of later phases (PcP, PKP, etc.), surface wave dispersion, and normal mode analysis (from single large events, stacked events, or background noise). Such methods could enable the first successful seismic investigation of another planet since the Apollo seismometers were turned off almost 35 years ago.
New Insights into the Explosion Source from SPE
NASA Astrophysics Data System (ADS)
Patton, H. J.
2015-12-01
Phase I of the Source Physics Experiments (SPE) is a series of chemical explosions at varying depths and yields detonated in the same emplacement hole on Climax stock, a granitic pluton located on the Nevada National Security Site. To date, four of the seven planned tests have been conducted, the last in May 2015, called SPE-4P, with a scaled depth of burial of 1549 m/kt1/3 in order to localize the source in time and space. Surface ground motions validated that the source medium did not undergo spallation, and a key experimental objective was achieved where SPE-4P is the closest of all tests in the series to a pure monopole source and will serve as an empirical Green's function for analysis against other SPE tests. A scientific objective of SPE is to understand mechanisms of rock damage for generating seismic waves, particularly surface and S waves, including prompt damage under compressive stresses and "late-time" damage under tensile stresses. Studies have shown that prompt damage can explain ~75% of the seismic moment for some SPE tests. Spallation is a form of late-time damage and a facilitator of damage mechanisms under tensile stresses including inelastic brittle deformation and shear dilatancy on pre-existing faults or joints. As an empirical Green's function, SPE-4P allows the study of late-time damage mechanisms on other SPE tests that induce spallation and late-time damage, and I'll discuss these studies. The importance for nuclear monitoring cannot be overstated because new research shows that damage mechanisms can affect surface wave magnitude Ms more than tectonic release, and are a likely factor related to anomalous mb-Ms behavior for North Korean tests.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Wang, Rongjiang; Parolai, Stefano; Zschau, Jochen
2013-04-01
Based on the principle of the phased array interference, we have developed an Iterative Deconvolution Stacking (IDS) method for real-time kinematic source inversion using near-field strong-motion and GPS networks. In this method, the seismic and GPS stations work like an array radar. The whole potential fault area is scanned patch by patch by stacking the apparent source time functions, which are obtained through deconvolution between the recorded seismograms and synthetic Green's functions. Once some significant source signals are detected any when and where, their signatures are removed from the observed seismograms. The procedure is repeated until the accumulative seismic moment being found converges and the residual seismograms are reduced below the noise level. The new approach does not need any artificial constraint used in the source parameterization such as, for example, fixing the hypocentre, restricting the rupture velocity and rise time, etc. Thus, it can be used for automatic real-time source inversion. In the application to the 2011 Tohoku earthquake, the IDS method is proved to be robust and reliable on the fast estimation of moment magnitude, fault area, rupture direction, and maximum slip, etc. About at 100 s after the rupture initiation, we can get the information that the rupture mainly propagates along the up-dip direction and causes a maximum slip of 17 m, which is enough to release a tsunami early warning. About two minutes after the earthquake occurrence, the maximum slip is found to be 31 m, and the moment magnitude reaches Mw8.9 which is very close to the final moment magnitude (Mw9.0) of this earthquake.
NASA Astrophysics Data System (ADS)
Thio, Hong Kie; Song, Xi; Saikia, Chandan K.; Helmberger, Donald V.; Woods, Bradley B.
1999-01-01
We present a study of regional earthquakes in the western Mediterranean geared toward the development of methodologies and path calibrations for source characterization using regional broadband stations. The results of this study are useful for the monitoring and discrimination of seismic events under a comprehensive test ban treaty, as well as the routine analysis of seismicity and seismic hazard using a sparse array of stations. The area consists of several contrasting geological provinces with distinct seismic properties, which complicates the modeling of seismic wave propagation. We started by analyzing surface wave group velocities throughout the region and developed a preliminary model for each of the major geological provinces. We found variations of crustal thickness ranging from 45 km under the Atlas and Betic mountains and 37 km under the Saharan shield, to 20 km for the oceanic crust of the western Mediterranean Sea, which is consistent with earlier works. Throughout most of the region, the upper mantle velocities are low which is typical for tectonically active regions. The most complex areas in terms of wave propagation are the Betic Cordillera in southern Spain and its north African counterparts, the Rif and Tell Atlas mountains, as well as the Alboran Sea, between Spain and Morocco. The complexity of the wave propagation in these regions is probably due to the sharp velocity contrasts between the oceanic and continental regions as well as the the existence of deep sedimentary basins that have a very strong influence on the surface wave dispersion. We used this preliminary regionalized velocity model to correct the surface wave source spectra for propagation effects which we then inverted for source mechanism. We found that this method, which is in use in many parts of the world, works very well, provided that data from several stations are available. In order to study the events in the region using very few broadband stations or even a single station, we developed a hybrid inversion method which combines Pnl waveforms synthesized with the traditional body wave methods, with surface waves that are computed using normal modes. This procedure facilitates the inclusion of laterally varying structure in the Green's functions for the surface waves and allows us to determine source mechanisms for many of the larger earthquakes (M > 4) throughout the region with just one station. We compared our results with those available from other methods and found that they agree quite well. The epicentral depths that we have obtained from regional waveforms are consistent with observed teleseismic depth phases, as far as they are available. We also show that the particular upper mantle structure under the region causes the various Pn and Sn phases to be impulsive, which makes them a useful tool for depth determination as well. Thus we conclude that with proper calibration of the seismic structure in the region and high-quality broadband data, it is now possible to characterize and study events in this region, both with respect to mechanism and depth, with a limited distribution of regional broadband stations.
pySeismicDQA: open source post experiment data quality assessment and processing
NASA Astrophysics Data System (ADS)
Polkowski, Marcin
2017-04-01
Seismic Data Quality Assessment is python based, open source set of tools dedicated for data processing after passive seismic experiments. Primary goal of this toolset is unification of data types and formats from different dataloggers necessary for further processing. This process requires additional data checks for errors, equipment malfunction, data format errors, abnormal noise levels, etc. In all such cases user needs to decide (manually or by automatic threshold) if data is removed from output dataset. Additionally, output dataset can be visualized in form of website with data availability charts and waveform visualization with earthquake catalog (external). Data processing can be extended with simple STA/LTA event detection. pySeismicDQA is designed and tested for two passive seismic experiments in central Europe: PASSEQ 2006-2008 and "13 BB Star" (2013-2016). National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
NASA Astrophysics Data System (ADS)
Pham, T. S.; Tkalcic, H.; Sambridge, M.
2017-12-01
The crosscorrelation of earthquake coda can be used to extract seismic body waves which are sensitive to deep Earth interior. The retrieved peaks in crosscorrelation of two seismic records are commonly interpreted as seismic phases that originate at a point source collocated with the first recorder (Huygens-Fresnel principle), reflected upward from prominent underground reflectors and reaching the second recorder. From the time shift of these peaks measured at different interstation distances, new travel time curves can be constructed. This study focuses on a previously unexplained interferometric phase (named temporarily a ghost or "G phase") observed in crosscorrelogram stack sections utilizing seismic coda. In particular, we deploy waveforms recorded by two regional seismic networks, one in Australia and another in Alaska. We show that the G phase cannot be explained by as a reflection. Moreover, we demonstrate that the G phase is explained through the principle of energy partitioning, and specifically, conversions from compressional to shear motions at the core-mantle boundary (CMB). This can be thought of in terms of a continuous distribution of Huygens sources across the CMB that are "activated" in long-range wavefield coda following significant earthquakes. The newly explained phase is renamed to cPS, to indicate a CMB origin and the P to S conversion. This mechanism explains a range of newly observed global interferometric phases that can be used in combination with existing phases to constrain Earth structure.
Travel-time source-specific station correction improves location accuracy
NASA Astrophysics Data System (ADS)
Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo
2013-04-01
Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.
NASA Astrophysics Data System (ADS)
Le Goff, Boris
Seismic Hazard Analysis (PSHA), rather than the subjective methodologies that are currently used. This study focuses particularly in the definition of the seismic sources, through the seismotectonic zoning, and the determination of historical earthquake location. An important step in the Probabilistic Seismic Hazard Analysis consists in defining the seismic source model. Such a model expresses the association of the seismicity characteristics with the tectonically-active geological structures evidenced by seismotectonic studies. Given that most of the faults, in low seismic regions, are not characterized well enough, the source models are generally defined as areal zones, delimited with finite boundary polygons, within which the seismicity and the geological features are deemed homogeneous (e.g., focal depth, seismicity rate). Besides the lack of data (short period of instrumental seismicity), such a method generates different problems for regions with low seismic activity: 1) a large sensitivity of resulting hazard maps to the location of zone boundaries, while these boundaries are set by expert decisions; 2) the zoning cannot represent any variability or structural complexity in seismic parameters; 3) the seismicity rate is distributed throughout the zone and the location of the determinant information used for its calculation is lost. We investigate an alternative approach to model the seismotectonic zoning, with three main objectives: 1) obtaining a reproducible method that 2) preserves the information on the sources and extent of the uncertainties, so as to allow to propagate them (through Ground Motion Prediction Equations on to the hazard maps), and that 3) redefines the seismic source concept to debrief our knowledge on the seismogenic structures and the clustering. To do so, the Bayesian methods are favored. First, a generative model with two zones, differentiated by two different surface activity rates, was developed, creating synthetic catalogs drawn from a Poisson distribution as occurrence model, a truncated Gutenberg-Richter law as magnitudefrequency relationship and a uniform spatial distribution. The inference of this model permits to assess the minimum number of data, nmin, required in an earthquake catalog to recover the activity rates of both zones and the limit between them, with some level of accuracy. In this Bayesian model, the earthquake locations are essential. Consequently, these data have to be obtained with the best accuracy possible. The main difficulty is to reduce the location uncertainty of historical earthquakes. We propose to use the method of Bakun and Wentworth (1997) to reestimate the epicentral region of these events. This method uses directly the intensity data points rather than the isoseismal lines, set up by experts. The significant advantage in directly using individual intensity observations is that the procedures are explicit and hence the results are reproducible. The results of such a method provide an estimation of the epicentral region with levels of confidence appropriated for the number of intensity data points used. As example, we applied this methodology to the 1909 Benavente event, because of its controversial location and the particularly shape of its isoseismal lines. A new location of the 1909 Benavente event is presented in this study and the epicentral region of this event is expressed with confidence levels related to the number of intensity data points. This epicentral region is improved by the development of a new intensity-distance attenuation law, appropriate for the Portugal mainland. This law is the first one in Portugal mainland developed as a function of the magnitude (M) rather than the subjective epicentral intensity. From the logarithmic regression of each event, we define the equation form of the attenuation law. We obtained the following attenuation law: I= -1.9438 ln(D)+4.1Mw-9.5763 for 4.4 ≤ Mw ≤ 6.2 Using these attenuation laws, we reached to a magnitude estimation of the 1909 Benavente event that is in good agreement with the instrumental one. The epicentral region estimation was also improved with a tightening of the confidence level contours and a minimum of rms[MI] coming closer to the epicenter estimation of Karnik (1969). Finally, this two zone model will be a reference in the comparison with other models, which will incorporate other available data. Nevertheless, future improvements are needed to obtain a seismotectonic zoning. We emphasize that such an approach is reproducible once priors and data sets are chosen. Indeed, the objective is to incorporate expert opinions as priors, and avoid using expert decisions. Instead, the products will be directly the result of the inference, when only one model is considered, or the result of a combination of models in the Bayesian sense.
A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks.
Hedlin, Michael A H; Walker, Kristoffer T
2013-02-13
We discuss the use of reverse time migration (RTM) with dense seismic networks for the detection and location of sources of atmospheric infrasound. Seismometers measure the response of the Earth's surface to infrasound through acoustic-to-seismic coupling. RTM has recently been applied to data from the USArray network to create a catalogue of infrasonic sources in the western US. Specifically, several hundred sources were detected in 2007-2008, many of which were not observed by regional infrasonic arrays. The influence of the east-west stratospheric zonal winds is clearly seen in the seismic data with most detections made downwind of the source. We study this large-scale anisotropy of infrasonic propagation, using a winter and summer source in Idaho. The bandpass-filtered (1-5 Hz) seismic waveforms reveal in detail the two-dimensional spread of the infrasonic wavefield across the Earth's surface within approximately 800 km of the source. Using three-dimensional ray tracing, we find that the stratospheric winds above 30 km altitude in the ground-to-space (G2S) atmospheric model explain well the observed anisotropy pattern. We also analyse infrasound from well-constrained explosions in northern Utah with a denser IRIS PASSCAL seismic network. The standard G2S model correctly predicts the anisotropy of the stratospheric duct, but it incorrectly predicts the dimensions of the shadow zones in the downwind direction. We show that the inclusion of finer-scale structure owing to internal gravity waves infills the shadow zones and predicts the observed time durations of the signals. From the success of this method in predicting the observations, we propose that multipathing owing to fine scale, layer-cake structure is the primary mechanism governing propagation for frequencies above approximately 1 Hz and infer that stochastic approaches incorporating internal gravity waves are a useful improvement to the standard G2S model for infrasonic propagation modelling.
Application of Seismic Array Processing to Tsunami Early Warning
NASA Astrophysics Data System (ADS)
An, C.; Meng, L.
2015-12-01
Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.
Seismo-volcano source localization with triaxial broad-band seismic array
NASA Astrophysics Data System (ADS)
Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.
2011-10-01
Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.
NASA Astrophysics Data System (ADS)
Walsh, Braden; Jolly, Arthur; Procter, Jonathan
2017-04-01
Using active seismic sources on Tongariro Volcano, New Zealand, the amplitude source location (ASL) method is calibrated and optimized through a series of sensitivity tests. By applying a geologic medium velocity of 1500 m/s and an attenuation value of Q=60 for surface waves along with amplification factors computed from regional earthquakes, the ASL produced location discrepancies larger than 1.0 km horizontally and up to 0.5 km in depth. Through the use of sensitivity tests on input parameters, we show that velocity and attenuation models have moderate to strong influences on the location results, but can be easily constrained. Changes in locations are accommodated through either lateral or depth movements. Station corrections (amplification factors) and station geometry strongly affect the ASL locations laterally, horizontally and in depth. Calibrating the amplification factors through the exploitation of the active seismic source events reduced location errors for the sources by up to 50%.
Resolving source mechanisms of microseismic swarms induced by solution mining
NASA Astrophysics Data System (ADS)
Kinscher, J.; Cesca, S.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J. P.; Bigarré, P.
2016-07-01
In order to improve our understanding of hazardous underground cavities, the development and collapse of a ˜200 m wide salt solution mining cavity was seismically monitored in the Lorraine basin in northeastern France. The microseismic events show a swarm-like behaviour, with clustering sequences lasting from seconds to days, and distinct spatiotemporal migration. Observed microseismic signals are interpreted as the result of detachment and block breakage processes occurring at the cavity roof. Body wave amplitude patterns indicated the presence of relatively stable source mechanisms, either associated with dip-slip and/or tensile faulting. Signal overlaps during swarm activity due to short interevent times, the high-frequency geophone recordings and the limited network station coverage often limit the application of classical source analysis techniques. To overcome these shortcomings, we investigated the source mechanisms through different procedures including modelling of observed and synthetic waveforms and amplitude spectra of some well-located events, as well as modelling of peak-to-peak amplitude ratios for the majority of the detected events. We extended the latter approach to infer the average source mechanism of many swarming events at once, using multiple events recorded at a single three component station. This methodology is applied here for the first time and represents a useful tool for source studies of seismic swarms and seismicity clusters. The results obtained with different methods are consistent and indicate that the source mechanisms for at least 50 per cent of the microseismic events are remarkably stable, with a predominant thrust faulting regime with faults similarly oriented, striking NW-SE and dipping around 35°-55°. This dominance of consistent source mechanisms might be related to the presence of a preferential direction of pre-existing crack or fault structures. As an interesting byproduct, we demonstrate, for the first time directly on seismic data, that the source radiation pattern significantly controls the detection capability of a seismic station and network.
NASA Astrophysics Data System (ADS)
Sepulveda, F.; Thangraj, J. S.; Quiros, D.; Pulliam, J.; Queen, J. H.; Queen, M.; Iovenitti, J. L.
2017-12-01
Seismic interferometry that makes use of ambient noise requires that cross-correlations of data recorded at two or more stations be stacked over a "long enough" time interval that off-axis sources cancel and the estimated inter-station Green's function converges to the actual function. However, the optimal length of the recording period depends on the characteristics of ambient noise at the site, which vary over time and are therefore not known before data acquisition. Data acquisition parameters cannot be planned in ways that will ensure success while minimizing cost and effort. Experiment durations are typically either too long or too short. Automated, in-field processing can provide inter-station Green's functions in near-real-time, allowing for the immediate evaluation of results and enabling operators to alter data acquisition parameters before demobilizing. We report on the design, system integration, and testing of a strategy for the automation of data acquisition, distribution, and processing of ambient noise using industry-standard, widely-available instrumentation (Reftek 130-01 digitizers and 4.5 Hz geophones). Our solution utilizes an inexpensive embedded system (Raspberry Pi 3), which is configured to acquire data from the Reftek and insert it into a big data store called Apache Cassandra. Cassandra distributes and maintains up-to-date copies of the data, through a WiFi network, as defined by tunable consistency levels and replication factors thus allowing for efficient multi-station computations. At regular intervals, data is extracted from Cassandra and is used to compute Green's functions for all receiver pairs. Results are reviewed and progress toward convergence can be assessed. We successfully tested a 20-node prototype of what we call the "Raspberry Pi-Enhanced Reftek" (RaPiER) array at the Soda Lake Geothermal Field in Nevada in June 2017. While intermittent problems with the WiFi network interfered with the real-time data delivery from some stations, the system performed robustly overall and produced hourly sets of steadily improving virtual source gathers. Most importantly, the effects of data shortfalls on results can be assessed immediately, in the field, so the array's acquisition parameters can be modified and the deployment duration extended as necessary.
NASA Astrophysics Data System (ADS)
Ren, Luchuan
2015-04-01
A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method
Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements
NASA Astrophysics Data System (ADS)
Li, W.; Pyrak-Nolte, L. J.
2008-12-01
The physical properties of carbonate rock are strongly influenced by the rock fabric which depends on the depositional environment, diagenetic and tectonic processes. The most common form of heterogeneity is layering caused by a variation in porosity among layers and within layers. The variation in porosity among layers leads to anisotropic behavior in the hydraulic, mechanical and seismic properties of carbonate rocks. We present the results of a laboratory study to examine the effect of fabric-controlled layering on fluid flow and seismic wave propagation through intact and fractured carbonate rock. Experiments were performed on cubic samples of Austin Chalk Cordova Cream. Samples AC1, AC5 and AC6 are cubic samples that measure 100 mm on edge. The samples were sealed and contained three inlet and three outlet ports for fluid invasion experiments. Two orthogonal seismic arrays were used to record both compressional and shear wave transmission through intact and fractured samples. The arrays used piezoelectric contact transducers with a central frequency 1.0 MHz. Between the two arrays, sixteen sources and sixteen receivers were used. Seismic measurements were made on the samples as a function of stress and during fluid saturation. The location of the invading fluid front as a function of time was monitored by using the peak-to-peak amplitude of the transmitted signals. The front was assumed to be between a source-receiver pair when the signal amplitude decreased by 50% over the initial value. The hydraulic gradient was parallel and perpendicular to the layers for AC5 and AC6, respectively. Sample AC1 was fractured and flow ports were established on the edges of the fracture plane. The weakly directed fabric controlled the rate at which fluid flowed through the samples. From the seismic data on AC6, the fluid first spread vertically along a layer before flowing across the layers. For AC6, it took the fluid two and half hours to flow between the inlet and the outlet across the layers. However, for AC5, the water flowed quickly along the layers and crossed the entire sample in one and a half hours. From the seismic data on fractured sample AC1, the water initially took more than 15 hours to transverse the sample though portions of the fracture were invaded after two hours. No water was produced at the outlet over a 15 hour period. Upon inspection, chemical precipitation was observed along the fracture plane and fracture- matrix interaction controlled the saturation of the matrix. Seismic monitoring of the fluid-front during saturation indicates that fine bedding affects the hydraulic properties of the sample while geochemical interactions in fractures affect fracture-matrix communication. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08) and by Exxon Mobil Upstream Research Company.
NASA Astrophysics Data System (ADS)
Caporali, Alessandro; Braitenberg, Carla; Burrato, Pierfrancesco; Carafa, Michele; Di Giovambattista, Rita; Gentili, Stefania; Mariucci, Maria Teresa; Montone, Paola; Morsut, Federico; Nicolini, Luca; Pivetta, Tommaso; Roselli, Pamela; Rossi, Giuliana; Valensise, Gian Luca; Vigano, Alfio
2016-04-01
Italy is an earthquake-prone country with a long tradition in observational seismology. For many years, the country's unique historical earthquake record has revealed fundamental properties of Italian seismicity and has been used to determine earthquake rates. Paleoseismological studies conducted over the past 20 years have shown that the length of this record - 5 to 8 centuries, depending on areas - is just a fraction of the typical recurrence interval of Italian faults - consistently larger than a millennium. Hence, so far the earthquake potential may have been significantly over- or under-estimated. Based on a clear perception of these circumstances, over the past two decades large networks and datasets describing independent aspects of the seismic cycle have been developed. INGV, OGS, some universities and local administrations have built networks that globally include nearly 500 permanent GPS/GNSS sites, routinely used to compute accurate horizontal velocity gradients reflecting the accumulation of tectonic strain. INGV developed the Italian present-day stress map, which includes over 700 datapoints based on geophysical in-situ measurements and fault plane solutions, and the Database of Individual Seismogenic Sources (DISS), a unique compilation featuring nearly 300 three-dimensional seismogenic faults over the entire nation. INGV also updates and maintains the Catalogo Parametrico dei Terremoti Italiani (CPTI) and the instrumental earthquake database ISIDe, whereas OGS operates its own seismic catalogue for northeastern Italy. We present preliminary results on the use of this wealth of homogeneously collected and updated observations of stress and strain as a source of loading/unloading of the faults listed in the DISS database. We use the geodetic strain rate - after converting it to stress rate in conjunction with the geophysical stress data of the Stress Map - to compute the Coulomb Failure Function on all fault planes described by the DISS database. This may be seen as an indicator of the rate at which the regional stress is transferred to each fault; as its sign can be positive or negative, the Coulomb Failure Function rate should ultimately indicate the rate at which every fault for which sufficient geodetic data are available is loading or unloading elastic energy. A better understanding of the relationships among geodetically-documented strains, present-day stress, active faulting and seismicity for the entire country should enable us to outline regions where the current strains explain well the known seismicity and to single out areas where stress is consistently building up but are historically quiescent. In such areas the lack of seismicity may result from a limited earthquake coupling - i.e. current strains are consumed aseismically - or from the incompleteness of the earthquake record. Our results may ultimately contribute to the assessment of time-dependent seismic hazard in Italy, thus complementing the time-independent approach used for conventional seismic hazard maps.
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos
2013-04-01
In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.
Final Report: Seismic Hazard Assessment at the PGDP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhinmeng
2007-06-01
Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties ofmore » seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.« less
Demonstration of improved seismic source inversion method of tele-seismic body wave
NASA Astrophysics Data System (ADS)
Yagi, Y.; Okuwaki, R.
2017-12-01
Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.
Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes
NASA Astrophysics Data System (ADS)
Cai, X.; Chen, X.; Chen, Y.; Cai, M.
2008-12-01
It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722
NASA Astrophysics Data System (ADS)
mouloud, Hamidatou
2016-04-01
The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.
Seismicity of Central Asia as Observed on Three IMS Stations
2008-09-01
and BVAR are all high-quality seismic arrays . Noise levels at the stations are generally acceptable for the period reviewed, except during the...following conditions: (1) a 4.5-Hz intermittent noise source at MKAR, (2) periodic high-frequency bursts on portions of the SONM array , and (3) a...seismic events (including single station events) observable on three central Asian IMS seismic array stations: Makanchi, Kazakhstan (MKAR); Songino
NASA Astrophysics Data System (ADS)
Mai, P. M.; Schorlemmer, D.; Page, M.
2012-04-01
Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.
Seismic reflection imaging of shallow oceanographic structures
NASA Astrophysics Data System (ADS)
Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André
2013-05-01
Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.
Exploring seismicity using geomagnetic and gravity data - a case study for Bulgaria
NASA Astrophysics Data System (ADS)
Trifonova, P.; Simeonova, S.; Solakov, D.; Metodiev, M.
2012-04-01
Seismicity exploration certainly requires comprehensive analysis of location, orientation and length distribution of fault and block systems with a variety of geophysical methods. In the present research capability of geomagnetic and gravity anomalous field data are used for revealing of buried structures inside the earth's upper layers. Interpretation of gravity and magnetic data is well known and often applied to delineate various geological structures such as faults, flexures, thrusts, borders of dislocated blocks etc. which create significant rock density contrast in horizontal planes. Study area of the present research covers the territory of Bulgaria which is part of the active continental margin of the Eurasian plate. This region is a typical example of high seismic risk area. The epicentral map shows that seismicity in the region is not uniformly distributed in space. Therefore the seismicity is described in distributed geographical zones (seismic source zones). Each source zone is characterized by its specific tectonic, seismic, and geological particulars. From the analysis of the depth distribution it was recognized that the earthquakes in the region occurred in the Earth's crust. Hypocenters are mainly located in the upper crust, and only a few events are related to the lower crust. The maximum depth reached is about 50 km in southwestern Bulgaria; outside, the foci affect only the surficial 30-35 km. Maximum density of seismicity involves the layer between 5 and 25 km. This fact determines the capability of potential fields data to reveal crustal structures and to examine their parameters as possible seismic sources. Results showed that a number of geophysically interpreted structures coincide with observed on the surface dislocations and epicenter clusters (well illustrated in northern Bulgaria) which confirms the reliability of the applied methodology. The complicated situation in southern Bulgaria is demonstrated by mosaics structure of geomagnetic field, complex configuration of gravity anomalies and spatial seismicity distribution. Well defined (confirmed by geophysical, geological and seismological data) are the known earthquake source zones (such as Sofia, Kresna, Maritsa, Yambol ) in this part of the territory of Bulgaria. Worth while are the results where no surface structures are present (e.g. Central Rhodope zone and East Rhodope zone, where the 2006 Kurdzhali earthquake sequence is realized). In those cases, gravity and magnetic interpretations proved to be a suitable enough technique which allows determining of position and parameters of the geological structures in depth.
Location error uncertainties - an advanced using of probabilistic inverse theory
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2016-04-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analyzed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. While estimating of the earthquake foci location is relatively simple a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling, and apriori uncertainties. In this presentation we addressed this task when statistics of observational and/or modeling errors are unknown. This common situation requires introduction of apriori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland we illustrate an approach based on an analysis of Shanon's entropy calculated for the aposteriori distribution. We show that this meta-characteristic of the aposteriori distribution carries some information on uncertainties of the solution found.