78 FR 59732 - Revisions to Design of Structures, Components, Equipment, and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
...,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... Analysis,'' (Accession No. ML13198A223); Section 3.7.3, ``Seismic Subsystem Analysis,'' (Accession No..., ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1, ``Concrete...
Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Sullivan, T. J.
2012-04-01
The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework consists of the following four main analysis stages: (i) probabilistic seismic hazard analysis to give the mean occurrence rate of earthquake events having an intensity greater than a threshold value, (ii) structural analysis to estimate the global structural response, given a certain value of seismic intensity, (iii) damage analysis, in which fragility functions are used to express the probability that a building component exceeds a damage state, as a function of the global structural response, (iv) loss analysis, in which the overall performance is assessed based on the damage state of all components. This final step gives estimates of the mean annual frequency with which various repair cost levels (or other decision variables) are exceeded. The realisation of this framework does suggest that risk-based seismic design is now possible. However, comparing current code approaches with the proposed PBEE framework, it becomes apparent that mainstream consulting engineers would have to go through a massive learning curve in order to apply the new procedures in practice. With this in mind, it is proposed that simplified loss-based seismic design procedures are a logical means of helping the engineering profession transition from what are largely deterministic seismic design procedures in current codes, to more rational risk-based seismic design methodologies. Examples are provided to illustrate the likely benefits of adopting loss-based seismic design approaches in practice.
Structural vibration passive control and economic analysis of a high-rise building in Beijing
NASA Astrophysics Data System (ADS)
Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying
2009-12-01
Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.
NASA Astrophysics Data System (ADS)
Setiawan, Jody; Nakazawa, Shoji
2017-10-01
This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.
NASA Astrophysics Data System (ADS)
Zhao, J. K.; Xu, X. S.
2017-11-01
The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.
Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods
NASA Astrophysics Data System (ADS)
Shi, Jialiang; Wang, Qiuwei
To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.
NASA Astrophysics Data System (ADS)
Sun, Baitao; Zhao, Hexian; Yan, Peilei
2017-08-01
The damage of masonry structures in earthquakes is generally more severe than other structures. Through the analysis of two typical earthquake damage buildings in the Wenchuan earthquake in Xuankou middle school, we found that the number of storeys and the construction measures had great influence on the seismic performance of masonry structures. This paper takes a teachers’ dormitory in Xuankou middle school as an example, selected the structure arrangement and storey number as two independent variables to design working conditions. Finally we researched on the seismic performance difference of masonry structure under two variables by finite element analysis method.
78 FR 13911 - Proposed Revision to Design of Structures, Components, Equipment and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... Analysis Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.1, ``Seismic Design Parameters,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... and analysis issues, (2) updates to review interfaces to improve the efficiency and consistency of...
NASA Technical Reports Server (NTRS)
Kovach, R. L.; Watkins, J. S.; Talwani, P.
1972-01-01
The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.
Seismic performance for vertical geometric irregularity frame structures
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahmud, N. A.; Ishak, I. S.
2018-04-01
This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.
75 FR 36715 - Advisory Committee on Reactor Safeguards; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Seismic Input for Site Response and Soil Structure Interaction Analyses'' (Open)--The Committee will hold... Seismic Input for Site Response and Soil Structure Interaction Analyses.'' 9:30 a.m.-10:30 a.m.: Interim Staff Guidance (ISG) DC/COL-ISG-020, ``Implementation of Seismic Margin Analysis for New Reactors Based...
Intelligent seismic risk mitigation system on structure building
NASA Astrophysics Data System (ADS)
Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.
2018-01-01
Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.
NASA Astrophysics Data System (ADS)
Köktan, Utku; Demir, Gökhan; Kerem Ertek, M.
2017-04-01
The earthquake behavior of retaining walls is commonly calculated with pseudo static approaches based on Mononobe-Okabe method. The seismic ground pressure acting on the retaining wall by the Mononobe-Okabe method does not give a definite idea of the distribution of the seismic ground pressure because it is obtained by balancing the forces acting on the active wedge behind the wall. With this method, wave propagation effects and soil-structure interaction are neglected. The purpose of this study is to examine the earthquake behavior of a retaining wall taking into account the soil-structure interaction. For this purpose, time history seismic analysis of the soil-structure interaction system using finite element method has been carried out considering 3 different soil conditions. Seismic analysis of the soil-structure model was performed according to the earthquake record of "1971, San Fernando Pacoima Dam, 196 degree" existing in the library of MIDAS GTS NX software. The results obtained from the analyses show that the soil-structure interaction is very important for the seismic design of a retaining wall. Keywords: Soil-structure interaction, Finite element model, Retaining wall
NASA Astrophysics Data System (ADS)
Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.
2017-12-01
This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic displacements. Another earthquake comparable to the Pawnee earthquake should be well recorded by the system. Recordings of ambient vibration data collected to date describing noise characteristics and measurement error levels will be presented. Any recordings of seismic motions will be discussed, should a significant event occur.
Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost
Dang, Yu; Han, Jian-ping; Li, Yong-tao
2015-01-01
This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677
Analysis of the seismic performance of isolated buildings according to life-cycle cost.
Dang, Yu; Han, Jian-Ping; Li, Yong-Tao
2015-01-01
This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
Improving fault image by determination of optimum seismic survey parameters using ray-based modeling
NASA Astrophysics Data System (ADS)
Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali
2018-06-01
In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soilmore » and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This methodology will be known as, NonLinear Soil-Structure Interaction (NLSSI). In general NLSSI analysis should provide a more accurate representation of the seismic demands on nuclear facilities their systems and components. INL, in collaboration with a Nuclear Power Plant Vender (NPP-V), will develop a generic Nuclear Power Plant (NPP) structural design to be used in development of the methodology and for comparison with SASSI. This generic NPP design has been evaluated for the INL soil site because of the ease of access and quality of the site specific data. It is now being evaluated for a second site at Vogtle which is located approximately 15 miles East-Northeast of Waynesboro, Georgia and adjacent to Savanna River. The Vogtle site consists of many soil layers spanning down to a depth of 1058 feet. The reason that two soil sites are chosen is to demonstrate the methodology across multiple soil sites. The project will drive the models (soil and structure) using successively increasing acceleration time histories with amplitudes. The models will be run in time domain codes such as ABAQUS, LS-DYNA, and/or ESSI and compared with the same models run in SASSI. The project is focused on developing and documenting a method for performing time domain, non-linear seismic soil structure interaction (SSI) analysis. Development of this method will provide the Department of Energy (DOE) and industry with another tool to perform seismic SSI analysis.« less
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
NASA Astrophysics Data System (ADS)
Abdel Raheem, Shehata E.; Ahmed, Mohamed M.; Alazrak, Tarek M. A.
2015-03-01
Soil conditions have a great deal to do with damage to structures during earthquakes. Hence the investigation on the energy transfer mechanism from soils to buildings during earthquakes is critical for the seismic design of multi-story buildings and for upgrading existing structures. Thus, the need for research into soil-structure interaction (SSI) problems is greater than ever. Moreover, recent studies show that the effects of SSI may be detrimental to the seismic response of structure and neglecting SSI in analysis may lead to un-conservative design. Despite this, the conventional design procedure usually involves assumption of fixity at the base of foundation neglecting the flexibility of the foundation, the compressibility of the underneath soil and, consequently, the effect of foundation settlement on further redistribution of bending moment and shear force demands. Hence the SSI analysis of multi-story buildings is the main focus of this research; the effects of SSI are analyzed for typical multi-story building resting on raft foundation. Three methods of analysis are used for seismic demands evaluation of the target moment-resistant frame buildings: equivalent static load; response spectrum methods and nonlinear time history analysis with suit of nine time history records. Three-dimensional FE model is constructed to investigate the effects of different soil conditions and number of stories on the vibration characteristics and seismic response demands of building structures. Numerical results obtained using SSI model with different soil conditions are compared to those corresponding to fixed-base support modeling assumption. The peak responses of story shear, story moment, story displacement, story drift, moments at beam ends, as well as force of inner columns are analyzed. The results of different analysis approaches are used to evaluate the advantages, limitations, and ease of application of each approach for seismic analysis.
Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, R.J.; Rashid, Y.R.; Cherry, J.L.
Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC),more » through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.« less
Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.
Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F
2014-12-01
A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.
Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.
Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO
2014-10-24
A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.
Structural pounding of concrete frame structure with masonry infill wall under seismic loading
NASA Astrophysics Data System (ADS)
Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis
2017-10-01
Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.
Analysis of the Earthquake Impact towards water-based fire extinguishing system
NASA Astrophysics Data System (ADS)
Lee, J.; Hur, M.; Lee, K.
2015-09-01
Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.
Probing the internal structure of the asteriod Didymoon with a passive seismic investigation
NASA Astrophysics Data System (ADS)
Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.
2017-09-01
Understanding the internal structure of an asteroid has important implications for interpreting its evolutionary history, for understanding its continuing geological evolution, and also for asteroid deflection and in-situ space resource utilisation. Given the strong evidence that asteroids are seismically active, an in-situ passive seismic experiment could provide information about the asteroid surface and interior properties. Here, we discuss the natural seismic activity that may be present on Didymoon, the secondary component of asteroid (65803) Didymos. Our analysis of the tidal stresses in Didymoon shows that tidal quakes are likely to occur if the secondary has an eccentric orbit. Failure occurs most easily at the asteroid poles and close to the surface for both homogeneous and layered internal structures. Simulations of seismic wave propagation in Didymoon show that the seismic moment of even small meteoroid impacts can generate clearly observable body and surface waves if the asteroid's internal structure is homogeneous. The presence of a regolith layer over a consolidated core can result in the seismic energy becoming trapped in the regolith due to the strong impedance contrast at the regolith-core boundary. The inclusion of macro-porosity (voids) further complexifies the wavefield due to increased scattering. The most prominent seismic waves are always found to be those traveling along the surface of the asteroid and those focusing in the antipodal point of the seismic source. We find also that the waveforms and ground acceleration spectra allow discrimination between the different internal structure models. Although the science return of a passive seismic experiment would be enhanced by having multiple seismic stations, one single seismic station can already vastly improve our knowledge about the seismic environment and sub-surface structure of an asteroid. We describe several seismic measurement techniques that could be applied in order to study the asteroid internal structure with one three-component seismic station.
LANL seismic screening method for existing buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.
1997-01-01
The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method andmore » will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method.« less
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants
NASA Technical Reports Server (NTRS)
Burroughs, J. W.
1980-01-01
New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less
Upper mantle structure at Walvis Ridge from Pn tomography
NASA Astrophysics Data System (ADS)
Ryberg, Trond; Braeuer, Benjamin; Weber, Michael
2017-10-01
Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.
Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry
NASA Astrophysics Data System (ADS)
Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan
2016-04-01
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).
NASA Astrophysics Data System (ADS)
Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio
2017-10-01
The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
Probabilistic safety analysis of earth retaining structures during earthquakes
NASA Astrophysics Data System (ADS)
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
Signal-to-noise ratio application to seismic marker analysis and fracture detection
NASA Astrophysics Data System (ADS)
Xu, Hui-Qun; Gui, Zhi-Xian
2014-03-01
Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.
2016-12-01
This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic displacements. Another earthquake comparable to the Pawnee earthquake should be well recorded by the system. Recordings of ambient vibration data collected to date describing noise characteristics and measurement error levels will be presented. Any recordings of seismic motions will be discussed, should a significant event occur.
2005-05-01
CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Seismic Structural Considerations for the Stem and Base of Retaining Walls...as represented by response spectra are determined. Several modes of vibration are considered. The number of modes included in the analysis is that...response spectrum- modal analysis procedure. Especially important is the number of excursions beyond acceptable displacement. As with the response
NASA Astrophysics Data System (ADS)
Hirave, Vivek; Kalyanshetti, Mahesh
2018-02-01
Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, T. K.; Kim, W.; Hong, T. K.
2017-12-01
The Korean Peninsula is located in a stable intraplate regime with relatively low seismicity. The seismicity in the Korean Peninsula was, however, changed significantly after the 11 March 2011 M9.0 Tohoku-Oki megathrust earthquake. An M5.0 earthquake occurred in 2016 at the region off the southeastern Korean Peninsula. The M5.0 earthquake was the largest event in the region since 1978 when the national seismic monitoring began. Several nuclear power plants are placed near the region. It is requested to understand the seismo-tectonic structures of the region, which may be crucial for mitigation of seismic hazards. Analysis of seismicity may be useful for illumination of fault structures. We investigate the focal mechanism solutions, ambient stress field, and spatial distribution of earthquakes. It is intriguing to note that the number of earthquakes increased since the 2011 Tohoku-Oki earthquake. We refined the hypocenters of 52 events using a velocity-searching hypocentral inversion method (VELHYPO). We determined the focal mechanism solutions of 25 events using a P polarity analysis and long period waveform inversion. The ambient stress field was inferred from the focal mechanism solutions. Strike-slip events occurred dominantly although the paleo-tectonic structures suggest the presence of thrust faults in the region. We observe that the compressional stress field is applied in ENE-WSW, which may be a combination of lateral compressions from the Pacific and Philippine Sea plates. The active strike-slip events and compressional stress field suggest reactivation of paleo-tectonic structures.
Seismic reflection constraints on the glacial dynamics of Johnsons Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Teixidó, Teresa
2001-01-01
During two Antarctic summers (1996-1997 and 1997-1998), five seismic refraction and two reflection profiles were acquired on the Johnsons Glacier (Livingston Island, Antarctica) in order to obtain information about the structure of the ice, characteristics of the ice-bed contact and basement topography. An innovative technique has been used for the acquisition of reflection data to optimise the field survey schedule. Different shallow seismic sources were used during each field season: Seismic Impulse Source System (SISSY) for the first field survey and low-energy explosives (pyrotechnic noisemakers) during the second one. A comparison between these two shallow seismic sources has been performed, showing that the use of the explosives is a better seismic source in this ice environment. This is one of the first studies where this type of source has been used. The analysis of seismic data corresponding to one of the reflection profiles (L3) allows us to delineate sectors with different glacier structure (accumulation and ablation zones) without using glaciological data. Moreover, vertical discontinuities were detected by the presence of back-scattered energy and the abrupt change in frequency content of first arrivals shown in shot records. After the raw data analysis, standard processing led us to a clear seismic image of the underlying bed topography, which can be correlated with the ice flow velocity anomalies. The information obtained from seismic data on the internal structure of the glacier, location of fracture zones and the topography of the ice-bed interface constrains the glacial dynamics of Johnsons Glacier.
Probabilistic seismic vulnerability and risk assessment of stone masonry structures
NASA Astrophysics Data System (ADS)
Abo El Ezz, Ahmad
Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.
Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)
NASA Astrophysics Data System (ADS)
karimzadeh Naghshineh, S.; Askan, A.; Erberik, M. A.; Yakut, A.
2015-12-01
Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected which is located in the conjunction of three active strike-slip faults as North Anatolian Fault, North East Anatolian Fault and Ovacik fault. Erzincan city center is in a pull-apart basin underlain by soft sediments that has experienced devastating earthquakes such as the 27 December 1939 (Ms=8.0) and the 13 March 1992 (Mw=6.6) events, resulting in extensive amount of physical as well as economical losses. These losses are attributed to not only the high seismicity of the area but also as a result of the seismic vulnerability of the constructed environment. This study focuses on the seismic damage estimation of Erzincan using both regional seismicity and local building information. For this purpose, first, ground motion records are selected from a set of scenario events simulated with the stochastic finite fault methodology using regional seismicity parameters. Then, existing building stock are classified into specified groups represented with equivalent single-degree-of-freedom systems. Through these models, the inelastic dynamic structural responses are investigated with non-linear time history analysis. To assess the potential seismic damage in the study area, fragility curves for the classified structural types are derived. Finally, the estimated damage is compared with the observed damage during the 1992 Erzincan earthquake. The results are observed to have a reasonable match indicating the efficiency of the ground motion simulations and building analyses.
Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C
2011-04-01
The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structuresmore » and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5 and Appendices G through I.« less
A Parametric Study of Nonlinear Seismic Response Analysis of Transmission Line Structures
Wang, Yanming; Yi, Zhenhua
2014-01-01
A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215
Exploring seismicity using geomagnetic and gravity data - a case study for Bulgaria
NASA Astrophysics Data System (ADS)
Trifonova, P.; Simeonova, S.; Solakov, D.; Metodiev, M.
2012-04-01
Seismicity exploration certainly requires comprehensive analysis of location, orientation and length distribution of fault and block systems with a variety of geophysical methods. In the present research capability of geomagnetic and gravity anomalous field data are used for revealing of buried structures inside the earth's upper layers. Interpretation of gravity and magnetic data is well known and often applied to delineate various geological structures such as faults, flexures, thrusts, borders of dislocated blocks etc. which create significant rock density contrast in horizontal planes. Study area of the present research covers the territory of Bulgaria which is part of the active continental margin of the Eurasian plate. This region is a typical example of high seismic risk area. The epicentral map shows that seismicity in the region is not uniformly distributed in space. Therefore the seismicity is described in distributed geographical zones (seismic source zones). Each source zone is characterized by its specific tectonic, seismic, and geological particulars. From the analysis of the depth distribution it was recognized that the earthquakes in the region occurred in the Earth's crust. Hypocenters are mainly located in the upper crust, and only a few events are related to the lower crust. The maximum depth reached is about 50 km in southwestern Bulgaria; outside, the foci affect only the surficial 30-35 km. Maximum density of seismicity involves the layer between 5 and 25 km. This fact determines the capability of potential fields data to reveal crustal structures and to examine their parameters as possible seismic sources. Results showed that a number of geophysically interpreted structures coincide with observed on the surface dislocations and epicenter clusters (well illustrated in northern Bulgaria) which confirms the reliability of the applied methodology. The complicated situation in southern Bulgaria is demonstrated by mosaics structure of geomagnetic field, complex configuration of gravity anomalies and spatial seismicity distribution. Well defined (confirmed by geophysical, geological and seismological data) are the known earthquake source zones (such as Sofia, Kresna, Maritsa, Yambol ) in this part of the territory of Bulgaria. Worth while are the results where no surface structures are present (e.g. Central Rhodope zone and East Rhodope zone, where the 2006 Kurdzhali earthquake sequence is realized). In those cases, gravity and magnetic interpretations proved to be a suitable enough technique which allows determining of position and parameters of the geological structures in depth.
NASA Astrophysics Data System (ADS)
Chen, Q.; Yu, C.
2017-12-01
On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group
2017-04-01
Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.
Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey
NASA Astrophysics Data System (ADS)
Athamnia, B.; Ounis, A.; Abdeddaim, M.
2017-12-01
This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.
Spatial pattern recognition of seismic events in South West Colombia
NASA Astrophysics Data System (ADS)
Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber
2013-09-01
Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, J.; Jones, G.L.
1996-01-01
Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, J.; Jones, G.L.
1996-12-31
Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less
A seismic analysis for masonry constructions: The different schematization methods of masonry walls
NASA Astrophysics Data System (ADS)
Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo
2017-11-01
Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.
Seismic Analysis Capability in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.
1984-01-01
Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.
The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap
NASA Astrophysics Data System (ADS)
Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten
2015-04-01
The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures mapped for the area. Consistent with mapped faults, the seismicity interested both eastwards and westwards dipping normal faults that define the geometry of seismically active graben-like structures. At least one cluster shows an additional spatio-temporal migration with spreading hypocentres similar to other swarm areas with fluid-triggering mechanisms. The static Coulomb stress change transferred by the largest shock onto the swarm area and on the CF cannot explain the observed high seismicity rate. We study the evolution of the frequency-size distribution of the events and the seismicity rate changes. We find that the majority of the earthquakes cannot be justified as aftershocks (directly related to the tectonics or to earthquake-earthquake interaction) and are best explained by an additional forcing active over the entire sequence. Our findings are consistent with the action of fluids (e.g. pore-pressure diffusion) triggering seismicity on pre-loaded faults. Additional aseismic release of tectonic strain by transient, slow slip is also consistent with our analysis. Analysis of deformation time series may clarify this point in future studies.
Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP
Huang, M.J.; Shakal, A.F.
2009-01-01
The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-04-01
We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.
Quantitative risk analysis of oil storage facilities in seismic areas.
Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto
2005-08-31
Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.
Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.
1996-12-17
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.
Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei
1996-01-01
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes
NASA Astrophysics Data System (ADS)
Moniri, Hassan
2017-03-01
Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.
NASA Astrophysics Data System (ADS)
Králik, Juraj; Králik, Juraj
2017-07-01
The paper presents the results from the deterministic and probabilistic analysis of the accidental torsional effect of reinforced concrete tall buildings due to earthquake even. The core-column structural system was considered with various configurations in plane. The methodology of the seismic analysis of the building structures in Eurocode 8 and JCSS 2000 is discussed. The possibilities of the utilization the LHS method to analyze the extensive and robust tasks in FEM is presented. The influence of the various input parameters (material, geometry, soil, masses and others) is considered. The deterministic and probability analysis of the seismic resistance of the structure was calculated in the ANSYS program.
NASA Astrophysics Data System (ADS)
Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta
2018-03-01
Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.
Remote geologic structural analysis of Yucca Flat
NASA Astrophysics Data System (ADS)
Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.
Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen
2010-01-01
Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298
Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.
2017-12-08
Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight sequence stratigraphic cycles that compose the Eocene to Miocene Oldsmar, Avon Park, and Arcadia Formations. The mapping of these seismic-reflection and well data has produced a refined Cenozoic sequence stratigraphic, seismic stratigraphic, and hydrogeologic framework of southeastern Florida. The upward transition from the Oldsmar Formation to the Avon Park Formation and the Arcadia Formation embodies the evolution from (1) a tropical to subtropical, shallow-marine, carbonate platform, represented by the Oldsmar and Avon Park Formations, to (2) a broad, temperate, mixed carbonate-siliciclastic shallow marine shelf, represented by the lower part of the Arcadia Formation, and to (3) a temperate, distally steepened carbonate ramp represented by the upper part of the Arcadia Formation.In the study area, the depositional sequences and seismic sequences have a direct correlation with hydrogeologic units. The approximate upper boundary of four principal permeable units of the Floridan aquifer system (Upper Floridan aquifer, Avon Park permeable zone, uppermost major permeable zone of the Lower Floridan aquifer, and Boulder Zone) have sequence stratigraphic and seismic-reflection signatures that were identified on cross sections, mapped, or both, and therefore the sequence stratigraphy and seismic stratigraphy were used to guide the development of a refined spatial representation of these hydrogeologic units. In all cases, the permeability of the four permeable units is related to stratiform megaporosity generated by ancient dissolution of carbonate rock associated with subaerial exposure and unconformities at the upper surfaces of carbonate depositional cycles of several hierarchical scales ranging from high-frequency cycles to depositional sequences. Additionally, interparticle porosity also contributes substantially to the stratiform permeability in much of the Upper Floridan aquifer. Information from seismic stratigraphy allowed 3D geomodeling of hydrogeologic units—an approach never before applied to this area. Notably, the 3D geomodeling provided 3D visualizations and geocellular models of the depositional sequences, hydrostratigraphy, and structural features. The geocellular data could be used to update the hydrogeologic structure inherent to groundwater flow simulations that are designed to address the sustainability of the water resources of the Floridan aquifer system.Two kinds of pathways that could enable upward cross-formational flow of injected treated wastewater from the Boulder Zone have been identified in the 80 miles of high-resolution seismic data collected for this study: a near-vertical reverse fault and karst collapse structures. The single reverse fault, inferred to be of tectonic origin, is in extreme northeastern Broward County and has an offset of about 19 feet at the level of the Arcadia Formation. Most of the 17 karst collapse structures identified manifest as columniform, vertically stacked sagging seismic reflections that span early Eocene to Miocene age rocks equivalent to much of the Floridan aquifer system and the lower part of the overlying intermediate confining unit. In some cases, the seismic-sag structures extend upward into strata of Pliocene age. The seismic-sag structures are interpreted to have a semicircular shape in plan view on the basis of comparison to (1) other seismic-sag structures in southeastern Florida mapped with two 2D seismic cross lines or 3D data, (2) comparison to these structures located in other carbonate provinces, and (3) plausible extensional ring faults detected with multi-attribute analysis. The seismic-sag structures in the study area have heights as great as 2,500 vertical feet, though importantly, one spans about 7,800 feet. Both multi-attribute analysis and visual detection of offset of seismic reflections within the seismic-sag structures indicate faults and fractures are associated with many of the structures. Multi-attribute analysis highlighting chimney fluid pathways also indicates that the seismic-sag structures have a high probability for potential vertical cross-formational fluid flow along the faulted and fractured structures. A collapse of the seismic-sag structures within a deep burial setting evokes an origin related to hypogenic karst processes by ascending flow of subsurface fluids. In addition, paleo-epigenic karst related to major regional subaerial unconformities within the Florida Platform generated collapse structures (paleo-sinkholes) that are much smaller in scale than the cross-formational seismic-sag structures.
Seismicity in Azerbaijan and Adjacent Caspian Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panahi, Behrouz M.
2006-03-23
So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicatemore » that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.« less
Combined seismic plus live-load analysis of highway bridges.
DOT National Transportation Integrated Search
2011-10-01
"The combination of seismic and vehicle live loadings on bridges is an important design consideration. There are well-established design : provisions for how the individual loadings affect bridge response: structural components that carry vertical li...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesigur, Haluk; Cili, Feridun
Seismic isolation is an effective design strategy to mitigate the seismic hazard wherein the structure and its contents are protected from the damaging effects of an earthquake. This paper presents the Hangar Project in Sabiha Goekcen Airport which is located in Istanbul, Turkey. Seismic isolation system where the isolation layer arranged at the top of the columns is selected. The seismic hazard analysis, superstructure design, isolator design and testing were based on the Uniform Building Code (1997) and met all requirements of the Turkish Earthquake Code (2007). The substructure which has the steel vertical trusses on facades and RC Hmore » shaped columns in the middle axis of the building was designed with an R factor limited to 2.0 in accordance with Turkish Earthquake Code. In order to verify the effectiveness of the isolation system, nonlinear static and dynamic analyses are performed. The analysis revealed that isolated building has lower base shear (approximately 1/4) against the non-isolated structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin
2015-02-01
Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less
NASA Astrophysics Data System (ADS)
Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.
2017-12-01
We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.
NASA Astrophysics Data System (ADS)
Mhuder, J. J.; Muhlhl, A. A.; Basra Geologiests
2013-05-01
The Garraf Field is situated in Southern Iraq in Nasiriya area, is located in Mesopotamian basin. The carbonate facies are dominant in main reservoirs in Garraf field (Mishrif and Yammama Formations) which is Cretaceous in age. The structure of the reservoir in this field are low relief gentle anticlinal structure aligned in NW to SE direction, and No fault were observed and interpreted in 3D seismic section. 3D seismic survey by Iraqi Oil Exploration Company No 2 was successfully conducted on the Garraf field at 2008-2009 using recording system SERCEL 408UL and Vibrators Nomad 65. Bin size: 25*25, Fold: 36, SP Interval: 50m, Lines Interval: 300m, 3 wells were drilled Ga (1, 2, 3) and it used for seismic to well tie in Petrel. Data analysis was conducted for each reservoirs for Lithological and sedimentological studies were based on core and well data .The study showed That the Mishrif Formation deposited in a broad carbonate platform with shallowing upward regressive succession and The depositional environment is extending from outer marine to shallow middle-inner shelf settings with restricted lagoons as supported by the present of Miliolid fossils. The fragmented rudist biostromes accumulated in the middle shelf. No rudist reef is presence in the studied cores. While the Major sequences are micritic limestone of lagoonal and oolitic/peloidal grainstone sandy shoal separated by mudstone of Yamama formation. Sedimentation feature are seen on seismic attributes and it is help for understanding of sedimentation environment and suitable structure interpretation. There is good relationship between Acustic Impedance and porosity, Acustic Impedance reflects porosity or facies change of carbonate rather than fluid content. Data input used for 3D Modeling include 3D seismic and AI data, petrophysical analysis, core and thin section description. 3D structure modeling were created base on the geophysical data interpretation and Al analysis. Data analysis for Al data were run as secondary input for 3D properties modeling.
NASA Astrophysics Data System (ADS)
Delle Piane, Claudio; Clennell, M. Ben; Keller, Joao V. A.; Giwelli, Ausama; Luzin, Vladimir
2017-10-01
The structure, frictional properties and permeability of faults within carbonate rocks exhibit a dynamic interplay that controls both seismicity and the exchange of fluid between different crustal levels. Here we review field and experimental studies focused on the characterization of fault zones in carbonate rocks with the aim of identifying the microstructural indicators of rupture nucleation and seismic slip. We highlight results from experimental research linked to observations on exhumed fault zones in carbonate rocks. From the analysis of these accumulated results we identify the meso and microstructural deformation styles in carbonates rocks and link them to the lithology of the protolith and their potential as seismic indicators. Although there has been significant success in the laboratory reproduction of deformation structures observed in the field, the range of slip rates and dynamic friction under which most of the potential seismic indicators is formed in the laboratory urges caution when using them as a diagnostic for seismic slip. We finally outline what we think are key topics for future research that would lead to a more in-depth understanding of the record of seismic slip in carbonate rocks.
Seismic risk management solution for nuclear power plants
Coleman, Justin; Sabharwall, Piyush
2014-12-01
Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less
Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis
NASA Astrophysics Data System (ADS)
Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo
2016-12-01
Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.
Structural Identification And Seismic Analysis Of An Existing Masonry Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara
2008-07-08
The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings.
McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.
2010-01-01
Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.
Probabilistic seismic demand analysis using advanced ground motion intensity measures
Tothong, P.; Luco, N.
2007-01-01
One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.
NASA Astrophysics Data System (ADS)
Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.
2016-04-01
Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.
Seismic and Restoration Assessment of Monumental Masonry Structures
Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia
2017-01-01
Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073
Seismic and Restoration Assessment of Monumental Masonry Structures.
Asteris, Panagiotis G; Douvika, Maria G; Apostolopoulou, Maria; Moropoulou, Antonia
2017-08-02
Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena
2016-04-01
Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen
Kim, David; Sung, Eun Hee; Park, Kwan-Soon; Park, Jaegyun
2014-01-01
This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures. PMID:25301387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C.
2010-06-30
The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structuresmore » and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.« less
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
NASA Astrophysics Data System (ADS)
Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Porfido, Sabina; Cella, Federico; Fedi, Maurizio; Florio, Giovanni
2015-04-01
This paper deals with an interdisciplinary research that has been carried out for more constraining the active faults and their geometry of Abruzzo - Molise areas (Central-Southern Apennines), two of the most active areas from a geodynamic point of view of the Italian Apennines, characterized by the occurrence of intense and widely spread seismic activity. An integrated analysis of structural, seismic and gravimetric (Gaudiosi et al., 2012) data of the area has been carried out through the Geographic Information System (GIS) which has provided the capability for storing and managing large amount of spatial data from different sources. In particular, the analysis has consisted of these main steps: (a) collection and acquisition of aerial photos, numeric cartography, Digital Terrain Model (DTM) data, geophysical data; (b) generation of the vector cartographic database and alpha-numerical data; c) image processing and features classification; d) cartographic restitution and multi-layers representation. In detail three thematic data sets have been generated "fault", "earthquake" and "gravimetric" data sets. The fault Dataset has been compiled by examining and merging the available structural maps, and many recent geological and geophysical papers of literature. The earthquake Dataset has been implemented collecting seismic data by the available historical and instrumental Catalogues and new precise earthquake locations for better constraining existence and activity of some outcropping and buried tectonic structures. Seismic data have been standardized in the same format into the GIS and merged in a final catalogue. For the gravimetric Dataset, the Multiscale Derivative Analysis (MDA) of the gravity field of the area has been performed, relying on the good resolution properties of the Enhanced Horizontal Derivative (EHD) (Fedi et al., 2005). MDA of gravity data has allowed localization of several trends identifying anomaly sources whose presence was not previously detected. The main results of our integrated analysis show a strong correlation among faults, hypocentral location of earthquakes and MDA lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) of some structures of the areas, through the application of the DEXP method (Fedi M. and M. Pilkington, 2012). References Fedi M., Cella F., Florio G., Rapolla A.; 2005: Multiscale Derivative Analysis of the gravity and magnetic fields of the Southern Apennines (Italy). In: Finetti I.R. (ed), CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy, pp. 281-318. Fedi M., Pilkington M.; 2012: Understanding imaging methods for potential field data. Geophysics, 77: G13-G24. Gaudiosi G., Alessio G., Cella F., Fedi M., Florio G., Nappi, R.; 2012: Multiparametric data analysis for seismic sources identification in the Campanian area: merging of seismological, structural and gravimetric data. BGTA,. Vol. 53, n. 3, pp. 283-298.
Predicting the seismic performance of typical R/C healthcare facilities: emphasis on hospitals
NASA Astrophysics Data System (ADS)
Bilgin, Huseyin; Frangu, Idlir
2017-09-01
Reinforced concrete (RC) type of buildings constitutes an important part of the current building stock in earthquake prone countries such as Albania. Seismic response of structures during a severe earthquake plays a vital role in the extent of structural damage and resulting injuries and losses. In this context, this study evaluates the expected performance of a five-story RC healthcare facility, representative of common practice in Albania, designed according to older codes. The design was based on the code requirements used in this region during the mid-1980s. Non-linear static and dynamic time history analyses were conducted on the structural model using the Zeus NL computer program. The dynamic time history analysis was conducted with a set of ground motions from real earthquakes. The building responses were estimated in global levels. FEMA 356 criteria were used to predict the seismic performance of the building. The structural response measures such as capacity curve and inter-story drift under the set of ground motions and pushover analyses results were compared and detailed seismic performance assessment was done. The main aim of this study is considering the application and methodology for the earthquake performance assessment of existing buildings. The seismic performance of the structural model varied significantly under different ground motions. Results indicate that case study building exhibit inadequate seismic performance under different seismic excitations. In addition, reasons for the poor performance of the building is discussed.
Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil
NASA Astrophysics Data System (ADS)
de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.
2018-05-01
A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.
Evaluating Seismic Site Effects at Cultural Heritage Sites in the Mediterranean Area
NASA Astrophysics Data System (ADS)
Imposa, S.; D'Amico, S.; Panzera, F.; Lombardo, G.; Grassi, S.; Betti, M.; Muscat, R.
2017-12-01
Present study concern integrated geophysical and numerical simulation aiming at evaluate the seismic vulnerability of cultural heritage sites. Non-invasive analysis targeted to characterize local site effects as well as dynamic properties of the structure were performed. Data were collected at several locations in the Maltese Archipelago (central Mediterranean) and in some historical buildings located in Catania (Sicily). In particular, passive seismic techniques and H/V data where used to derive 1D velocity models and amplification functions. The dynamic properties of a building are usually described through its natural frequency and the damping ratio. This latter is important in seismic design since it allows one to evaluate the ability of a structure to dissipate the vibration energy during an earthquake. The fundamental frequency of the investigated structure was obtained using ambient vibrations recorded by two or more sensors monitoring the motion at different locations in the building. Accordingly, the fundamental period of several Maltese Watchtowers and some historical buildings of Catania were obtained by computing the ratio between the amplitudes of the Fourier spectrum of horizontal (longitudinal and transverse) components recorded on the top and on the ground floors. Using ANSYS code, the modal analysis was performed to evaluate the first 50 vibration modes with the aim to check the activation of the modal masses and to assess the seismic vulnerability of the tower. The STRATA code was instead adopted in the Catania heritage buildings using as reference earthquake moderate to strong shocks that struck south-eastern Sicily. In most of the investigated buildings is was not possible to identify a single natural frequency but several oscillation modes. These results appear linked to the structural complexity of the edifices, their irregular plan shape and the presence of adjacent structures. The H/V outside the buildings were used to determine predominant frequencies of the soil and to highlight potential site-to-structure resonance. The achieved findings can represent useful clues for further additional engineering investigations aiming at reducing the seismic risk, highlighting how the structural complexity and the local seismic response play an important role on building damage.
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-10-01
Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.
NASA Astrophysics Data System (ADS)
Griebel, Matt; Buleri, Christine; Baylor, Andrew; Gunnels, Steve; Hull, Charlie; Palunas, Povilas; Phillips, Mark
2016-07-01
The Magellan Telescopes are a set of twin 6.5 meter ground based optical/near-IR telescopes operated by the Carnegie Institution for Science at the Las Campanas Observatory (LCO) in Chile. The primary mirrors are f/1.25 paraboloids made of borosilicate glass and a honeycomb structure. The secondary mirror provides both f/11 and f/5 focal lengths with two Nasmyth, three auxiliary, and a Cassegrain port on the optical support structure (OSS). The telescopes have been in operation since 2000 and have experienced several small earthquakes with no damage. Measurement of in situ response of the telescopes to seismic events showed significant dynamic amplification, however, the response of the telescopes to a survival level earthquake, including component level forces, displacements, accelerations, and stresses were unknown. The telescopes are supported with hydrostatic bearings that can lift up under high seismic loading, thus causing a nonlinear response. For this reason, the typical response spectrum analysis performed to analyze a survival level seismic earthquake is not sufficient in determining the true response of the structure. Therefore, a nonlinear transient finite element analysis (FEA) of the telescope structure was performed to assess high risk areas and develop acceleration responses for future instrument design. Several configurations were considered combining different installed components and altitude pointing directions. A description of the models, methodology, and results are presented.
NASA Astrophysics Data System (ADS)
Wardell, Nigel; Camerlenghi, Angelo; Urgeles, Roger; Geletti, Riccardo; Tinivella, Umberta; Giustiniani, Michela; Accettella, Daniela
2014-05-01
The south Balearic margin is characterized by an abrupt tectonically-controlled transition between a steep continental slope (Emile Baudot escarpment) and the Algero-Balearic abyssal plain, in which Messinain salt-induced deformation affects the seafloor morphology. Multichannel seismic profiles, multibeam bathymetry, and shallow seismic data demonstrate that the extent of salt deformation does not coincide with the bathymetric plain-slope transition. Instead, deformation occurs south of linear structure in the abyssal plain located some tens of kilometres from the base of the slope. The quality of the multi-channel seismic record in the deep water deformed area is severely decreased by the three dimensional character of the salt structures. However, the abyssal plain near the base of the slope reveals details on the Messinian sequence, its structure, post-Messinan deformation, and relation with subsurface fluids. The analysis of part of the EUROFLEETS SALTFLU multichannel seismic data set has included detailed RMS velocity analysis, post-stack and pre-stack time migration. An anomalously thick (up to 800 ms twt) acoustically laminated unit comprising the Messinian Upper Unit (UU) is present near the base of the slope and is characterized by syn-sedimentary gentle symmetric folding. The crests of such folds are affected by small-offset, layer-bound fractures and faults propagating from the upper part to the UU to the Plio-Quaternary sequence. Amplitude anomalies, polarity inversion and at times acoustic blanking reveal the presence of fluids (presumably gas) within the Messinian sequence. A clear seismic evidence for the Mobile Unit (MU, or salt layer) is missing in this area. Seismic evidence for the MU exists south of the linear structural boundary, where salt induced deformation has created vertical displacements of several hundreds of metres, diapiric growth, and at least two salt/mud piercement structures at the seafloor. In the highly deformed area, the UU and the Lower Unit (LU) appear to amalgamate as a consequence of complete salt withdrawal around diapirs. The seismic analysis is focussed on determining whether the boundary between low and high degree of deformation in the abyssal plain is determined by the limit of the salt distribution. In this case the northern limit of the Messinian pure salt basin would not coincide with the present day continental slope, thus requiring either a strong control of Messinian tectonic structures an salt deposition and/or a contamination of salt with clastics.
Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column
NASA Astrophysics Data System (ADS)
Liu, Taiyu; An, Yuwei
2018-01-01
The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY, T.C.
M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lower knuckle should be supplemented by results from a more refined ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions.« less
A Novel Approach to Constrain Near-Surface Seismic Wave Speed Based on Polarization Analysis
NASA Astrophysics Data System (ADS)
Park, S.; Ishii, M.
2016-12-01
Understanding the seismic responses of cities around the world is essential for the risk assessment of earthquake hazards. One of the important parameters is the elastic structure of the sites, in particular, near-surface seismic wave speed, that influences the level of ground shaking. Many methods have been developed to constrain the elastic structure of the populated sites or urban basins, and here, we introduce a new technique based on analyzing the polarization content or the three-dimensional particle motion of seismic phases arriving at the sites. Polarization analysis of three-component seismic data was widely used up to about two decades ago, to detect signals and identify different types of seismic arrivals. Today, we have good understanding of the expected polarization direction and ray parameter for seismic wave arrivals that are calculated based on a reference seismic model. The polarization of a given phase is also strongly sensitive to the elastic wave speed immediately beneath the station. This allows us to compare the observed and predicted polarization directions of incoming body waves and infer the near-surface wave speed. This approach is applied to High-Sensitivity Seismograph Network in Japan, where we benchmark the results against the well-log data that are available at most stations. There is a good agreement between our estimates of seismic wave speeds and those from well logs, confirming the efficacy of the new method. In most urban environments, where well logging is not a practical option for measuring the seismic wave speeds, this method can provide a reliable, non-invasive, and computationally inexpensive estimate of near-surface elastic properties.
Multi-azimuth 3D Seismic Exploration and Processing in the Jeju Basin, the Northern East China Sea
NASA Astrophysics Data System (ADS)
Yoon, Youngho; Kang, Moohee; Kim, Jin-Ho; Kim, Kyong-O.
2015-04-01
Multi-azimuth(MAZ) 3D seismic exploration is one of the most advanced seismic survey methods to improve illumination and multiple attenuation for better image of the subsurface structures. 3D multi-channel seismic data were collected in two phases during 2012, 2013, and 2014 in Jeju Basin, the northern part of the East China Sea Basin where several oil and gas fields were discovered. Phase 1 data were acquired at 135° and 315° azimuths in 2012 and 2013 comprised a full 3D marine seismic coverage of 160 km2. In 2014, phase 2 data were acquired at the azimuths 45° and 225°, perpendicular to those of phase 1. These two datasets were processed through the same processing workflow prior to velocity analysis and merged to one MAZ dataset. We performed velocity analysis on the MAZ dataset as well as two phases data individually and then stacked these three datasets separately. We were able to pick more accurate velocities in the MAZ dataset compare to phase 1 and 2 data while velocity picking. Consequently, the MAZ seismic volume provide us better resolution and improved images since different shooting directions illuminate different parts of the structures and stratigraphic features.
Determination of rheological parameters of pile foundations for bridges for earthquake analysis
DOT National Transportation Integrated Search
1997-07-01
In the seismic design criteria for highway bridges, there is a significant lack of guidance on ways to incorporate the effect of soil-structure interaction in determining seismic response. For this study, a simple analytical model for pile and pile g...
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
Fluid-structure interaction in fast breeder reactors
NASA Astrophysics Data System (ADS)
Mitra, A. A.; Manik, D. N.; Chellapandi, P. A.
2004-05-01
A finite element model for the seismic analysis of a scaled down model of Fast breeder reactor (FBR) main vessel is proposed to be established. The reactor vessel, which is a large shell structure with a relatively thin wall, contains a large volume of sodium coolant. Therefore, the fluid structure interaction effects must be taken into account in the seismic design. As part of studying fluid-structure interaction, the fundamental frequency of vibration of a circular cylindrical shell partially filled with a liquid has been estimated using Rayleigh's method. The bulging and sloshing frequencies of the first four modes of the aforementioned system have been estimated using the Rayleigh-Ritz method. The finite element formulation of the axisymmetric fluid element with Fourier option (required due to seismic loading) is also presented.
MSSA de-noising of horizon time structure to improve the curvature attribute analysis
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rekapalli, R.; Vedanti, N.
2017-12-01
Although the seismic attributes are useful for identifying sub-surface structural features like faults, fractures, lineaments and sharp stratigraphy etc., the different kinds of noises arising from unknown physical sources during the data acquisition and processing creates acute problems in physical interpretation of complex crustal structures. Hence, we propose to study effect of noise on curvature attribute analysis of seismic time structure data. We propose here Multichannel Singular Spectrum Analysis (MSSA) de-noising algorithm as a pre filtering scheme to reduce effect of noise. To demonstrate the procedure, first, we compute the most positive and negative curvature on a synthetic time structure with surface features resembling anticlines, synclines and faults and then adding the known percentage of noise. We noticed that the curvatures estimated from the noisy data reveal considerable deviations from the curvature of pure synthetic data. This suggests that there is a strong impact of noise on the curvature estimates. Further, we have employed 2D median filter and MSSA methods to filter the noisy time structure and then computed the curvatures. The comparisons of curvatures estimated from de-noised data suggest that the results obtained from MSSA de-noised data match well with the curvatures of pure synthetic data. Finally, we present an example of real data analysis from Utsira Top (UT) horizon of Southern Viking Graben, Norway to identify the time-lapse changes in UT horizon after CO2 injection. We applied the MSSA de-noising algorithm on UT horizon time structure and amplitude data of pre and post CO2 injection. Our analyses suggest modest but clearly visible, structural changes in the UT horizon after CO2 injection at a few locations, which seem to be associated with the locations of change in seismic amplitudes. Thus, the results from both the synthetic and real field data suggest that the MSSA based de-noising algorithm is robust for filtering the horizon time structures for accurate curvature attributes analysis and better interpretation of structural changes in geological features. Key Words: Curvature attributes, MSSA, Seismic Horizon, 2D-median filter, Utsira Horizon.
NASA Astrophysics Data System (ADS)
Su, Chin-Kuo; Sung, Yu-Chi; Chang, Shuenn-Yih; Huang, Chao-Hsun
2007-09-01
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity-wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load-deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
NASA Astrophysics Data System (ADS)
Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.
2012-12-01
The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821.
Structural and Sequence Stratigraphic Analysis of the Onshore Nile Delta, Egypt.
NASA Astrophysics Data System (ADS)
Barakat, Moataz; Dominik, Wilhelm
2010-05-01
The Nile Delta is considered the earliest known delta in the world. It was already described by Herodotus in the 5th Century AC. Nowadays; the Nile Delta is an emerging giant gas province in the Middle East with proven gas reserves which have more than doubled in size in the last years. The Nile Delta basin contains a thick sedimentary sequence inferred to extend from Jurassic to recent time. Structural styles and depositional environments varied during this period. Facies architecture and sequence stratigraphy of the Nile Delta are resolved using seismic stratigraphy based on (2D seismic lines) including synthetic seismograms and tying in well log data. Synthetic seismograms were constructed using sonic and density logs. The combination of structural interpretation and sequence stratigraphy of the development of the basin was resolved. Seven chrono-stratigraphic boundaries have been identified and correlated on seismic and well log data. Several unconformity boundaries also identified on seismic lines range from angular to disconformity type. Furthermore, time structure maps, velocity maps, depth structure maps as well as Isopach maps were constructed using seismic lines and log data. Several structural features were identified: normal faults, growth faults, listric faults, secondary antithetic faults and large rotated fault blocks of manly Miocene age. In some cases minor rollover structures could be identified. Sedimentary features such as paleo-channels were distinctively recognized. Typical Sequence stratigraphic features such as incised valley, clinoforms, topsets, offlaps and onlaps are identified and traced on the seismic lines allowing a good insight into sequence stratigraphic history of the Nile Delta most especially in the Miocene to Pliocene clastic sedimentary succession.
NASA Astrophysics Data System (ADS)
Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco
2017-04-01
In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and development, cycling through classical fluid escape pipes evoking non-Darcy flow to Darcy flow exploiting surrounding permeable bodies (during low fluid recharge period). Limit and uncertainty of the seismic data imaging the internal structure are still controlled by illumination factor, the lateral and vertical resolution (Fresnel. Tuning thickness) and scattering/noise effect of seismic wave when they interact with the plumbing system.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto
2017-04-01
The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic materials at depth beneath the central part of the geothermal field. Our finding are discussed in relation to the distribution of local microseismicity recorded during the GAPSS experiment and to the geometry of the main seismic interfaces inferred from the analysis of active seismic data.
NASA Astrophysics Data System (ADS)
Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus
2018-03-01
The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; Ebinger, C.; Jordan, T. E.
2017-12-01
Results from recent DOE and USGS sponsored projects in the (intraplate) northeastern portions of the US and southeastern portions of Canada have identified locations of steeply dipping structures - many previously unknown - from a Poisson wavelet multiscale edge ('worm') analysis of gravity and magnetic fields. The Avoca sequence of induced(?) seismicity in western New York state occurred during January and February of 2001. The Avoca earthquake sequence is associated with industrial hydraulic fracturing activity "related to a proposed natural gas storage facility near Avoca to be constructed by solution mining" (Kim, 2001). The main Avoca event was a felt Mb = 3.2 earthquake on Feb. 3, 2001 recorded by the Lamont Cooperative Seismic Network. Earlier, smaller events were located by the Canadian Geological Survey's seismic network north of the Canadian border - implying that the event locations might be biased because they occurred off the southern edge of the array. Some of these events were also felt locally, according to local newspaper reports. By plotting the location of the seismic events and that of the injection well - reported via it's API number - we find a strong correlation with structures detected via our potential field worms. The injection occurred near a NE-SW striking structure that was not activated. All but one of the earthquakes occurred about 5 km north of the injection well on or nearby to an E-W striking structure that appears to intersect the NE-SW structure. The final, small (MN=2.2) earthquake was located on a different complex structure about 10 km north of the other events. We suggest that potential field methods such as ours might be appropriate to locating structures of concern for induced seismic activity in association with industrial activity. Reference: Kim, W.-Y. (2001). The Lamont cooperative seismic network and the national seismic system: Earthquake hazard studies in the northeastern United States. Tech. Rep. 98-01, Lamont Cooperative Seismic Network, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY.
An alternative approach for computing seismic response with accidental eccentricity
NASA Astrophysics Data System (ADS)
Fan, Xuanhua; Yin, Jiacong; Sun, Shuli; Chen, Pu
2014-09-01
Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRP method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-01-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.« less
Sideband analysis and seismic detection in a large ring laser
NASA Astrophysics Data System (ADS)
Stedman, G. E.; Li, Z.; Bilger, H. R.
1995-08-01
A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.
NASA Astrophysics Data System (ADS)
Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Spence, G.
2013-12-01
The Gulf of St. Lawrence (GSL), located north of the southwest-northeast trending Appalachian mountain in eastern Canada, is a major sedimentary basin with huge potentials for hydrocarbon accumulation. Important questions about the geometry and evolution of the crustal and basin structure beneath the gulf are yet to be answered. To address these issues, the Geological Survey of Canada (GSC) with support from the Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity (POLARIS) deployed a temporary array of broadband seismic stations in the GSL region between October 2005 and October 2008. Combined with the permanent stations of the Canadian National Seismograph Network (CNSN) in the region, the station density is sufficient for detailed seismic tomography inversion. In this study, we investigate the upper crustal structure beneath the gulf using 3 years of continuous ambient noise waveforms recorded at 25 (POLARIS and CNSN) stations around the GSL. Cross-correlation functions of the vertical component of the ambient noise wavefield for simultaneously recording station pairs (corresponding to inter-station Green's functions) are computed and analyzed using the frequency-time analysis method. Dispersion curves are measured and Rayleigh wave group velocities are subsequently extracted for periods between 2 and 20s, which are periods sensitive to the upper crustal structures. Preliminary results from the dispersion measurements indicate that mean group velocities in the region range from 2.8 to 3.2 km/s across the range of period specified. 2-D group velocity distribution for each period is determined by linearized inversion of the dispersion data. Our tomography results show prominent lateral velocity variation. Low velocity anomalies are observed at shorter periods (up to ~10 s) which correspond to the sedimentary structures at shallow depths (between 5-10 km), whereas the characteristics of upper crustal structures are shown by velocity anomalies at longer periods. Our results show striking similarities with the tomographic images obtained in the previous Canada-wide ambient noise analysis for areas where both studies overlap and are also consistent with results from receiver function and active seismic profiling studies previously done in the region. A detailed inversion of the 3-D shear velocity structure will be conducted to appropriately delineate the thickness and seismic velocity of the composite geologic units.
NASA Astrophysics Data System (ADS)
Anderson, M. L.; Blakely, R. J.; Wells, R. E.; Dragovich, J.
2011-12-01
The forearc of the Cascadia subduction zone in coastal Oregon and Washington is largely composed of a 15-30 km-thick stack of basalt flows comprising the Crescent Formation (WA) and Siletz River Volcanics (OR), and collectively termed the Siletz terrane. We are developing 3-D structural maps of the Puget Lowland to distinguish older and currently active structures for seismic hazard analysis. The boundaries of the Siletz terrane in particular may strongly influence crustal rheology and neotectonic structures of the region. Careful analysis of the areal extent of this terrane will also facilitate more accurate interpretation of seismic data and gravity anomalies, which will help define the extent and shape of overlying basins. Absence of extensive outcrop in the Lowland and a widespread veneer of Quaternary deposits require extensive subsurface geophysical studies to establish Lowland-wide crustal structure. Previous studies have used active seismic surveys and interpretation of existing industry seismic data, with several studies using gravity and magnetic data or passive-source tomography support. However, steeply dipping boundaries in the mid-crust are difficult targets for seismic study. We need to independently discriminate between potential models established by seismic data using gravity and magnetic datasets. In the Puget Lowland the Siletz is a region of high seismic wave speed, density, and magnetic susceptibility, and therefore its mid-crustal boundaries are good targets for definition by gravity and magnetic data. We present interpretations of gravity and magnetic anomalies for the Puget Lowland region that together establish the most likely position and structure of the Crescent Formation boundary in the mid-upper crust. Well-constrained physical properties of Crescent basalts inform our aeromagnetic map interpretation and give us baseline values for constructing three two-dimensional models by simultaneous forward modeling of aeromagnetic and isostatic gravity anomalies for the Lowland. Based on this work, the likely position of the eastern boundary of the Siletz terrane is east of the Puget Sound and west of the foothills of the Cascade arc, extending in a north-trending line through Lake Washington and merging to the north with the Southern Whidbey Island fault zone. Our preferred location agrees with suggested locations from past study of seismic data targeted at the Seattle basin, but we extend that location through the entire Puget Lowland by analysis of magnetic potential calculated from aeromagnetic data. We also find that the boundary is sharp and most likely dips west, suggesting a reverse-fault juxtaposition of Crescent rocks against Western Melange belt lithologies. The Crescent itself contains steeply dipping packages of basalt of contrasting magnetic character, indicating significant deformation within the Crescent formation under the Seattle uplift. Finally, the boundary location implies that the eastern third of the Seattle basin is shallower than previously estimated from gravity data.
NASA Astrophysics Data System (ADS)
Gu, N.; Zhang, H.
2017-12-01
Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice
2017-04-01
In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".
Lee, Myung W.
1999-01-01
Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.
Scaled accelerographs for design of structures in Quetta, Baluchistan, Pakistan
NASA Astrophysics Data System (ADS)
Bhatti, Abdul Qadir
2016-12-01
Structural design for seismic excitation is usually based on peak values of forces and deformations over the duration of earthquake. In determining these peak values dynamic analysis is done which requires either response history analysis (RHA), also called time history analysis, or response spectrum analysis (RSA), both of which depend upon ground motion severity. In the past, PGA has been used to describe ground motion severity, because seismic force on a rigid body is proportional to the ground acceleration. However, it has been pointed out that single highest peak on accelerograms is a very unreliable description of the accelerograms as a whole. In this study, we are considering 0.2- and 1-s spectral acceleration. Seismic loading has been defined in terms of design spectrum and time history which will lead us to two methods of dynamic analysis. Design spectrum for Quetta will be constructed incorporating the parameters of ASCE 7-05/IBC 2006/2009, which is being used by modern codes and regulation of the world like IBC 2006/2009, ASCE 7-05, ATC-40, FEMA-356 and others. A suite of time history representing design earthquake will also be prepared, this will be a helpful tool to carryout time history dynamic analysis of structures in Quetta.
Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures
NASA Astrophysics Data System (ADS)
Yagoda-Biran, G.; Hatzor, Y. H.
2010-12-01
Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.
Ischia Island: Historical Seismicity and Dynamics
NASA Astrophysics Data System (ADS)
Carlino, S.; Cubellis, E.; Iannuzzi, R.; Luongo, G.; Obrizzo, F.
2003-04-01
The seismic energy release in volcanic areas is a complex process and the island of Ischia provides a significant scenario of historical seismicity. This is characterized by the occurence of earthquakes with low energy and high intensity. Information on the seismicity of the island spans about eight centuries, starting from 1228. With regard to effects, the most recent earthquake of 1883 is extensively documented both in the literature and unpublished sources. The earthquake caused 2333 deaths and the destruction of the historical and environmental heritage of some areas of the island. The most severe damage occurred in Casamicciola. This event, which was the first great catastrophe after the unification of Italy in the 1860s (Imax = XI degree MCS), represents an important date in the prevention of natural disasters, in that it was after this earthquake that the first Seismic Safety Act in Italy was passed by which lower risk zones were identified for new settlements. Thanks to such detailed analysis, reliable modelling of the seismic source was also obtained. The historical data onwards makes it possible to identify the area of the epicenter of all known earthquakes as the northern slope of Monte Epomeo, while analysis of the effects of earthquakes and the geological structures allows us to evaluate the stress fields that generate the earthquakes. In a volcanic area, interpretation of the mechanisms of release and propagation of seismic energy is made even more complex as the stress field that acts at a regional level is compounded by that generated from migration of magmatic masses towards the surface, as well as the rheologic properties of the rocks dependent on the high geothermic gradient. Such structural and dynamic conditions make the island of Ischia a seismic area of considerable interest. It would appear necessary to evaluate the expected damage caused by a new event linked to the renewal of dynamics of the island, where high population density and the high economic value concerned, the island is a tourist destination and holiday resort, increase the seismic risk. A seismic hazard map of the island is proposed according to a comparative analysis of various types of data: the geology, tectonics, historical seismicity and damage caused by the 28 July 1883 Casamicciola earthquake. The analysis was essentially based on a GIS-aided cross-correlation of these data. The GIS is thus able to provide support both for in-depth analysis of the dynamic processes on the island and extend the assessment to other natural risks (volcanic, landslides, flooding, etc.).
Geographic boundary of the “Pacific Anomaly” near the Earth’s core-mantle boundary
NASA Astrophysics Data System (ADS)
He, Y.; Wen, L.
2009-12-01
Seismic tomography have revealed a broad, seismically low velocity anomaly in the Earth’s lower mantle beneath the Pacific (we term it the “Pacific Anomaly”), surrounded by the circum-Pacific high velocity zone. Here, we determine geographical boundary and average shear velocity structure of the Pacific Anomaly near the core-mantle boundary based on travel time analysis of ScSH-SH and ScS2-SS phases. We further constrain the detailed structure of the transition from the base of the Pacific Anomaly to the northern high velocity zone along two perpendicular cross sections on the basis of forward waveform modeling of the seismic data. Two cross-sections include one great arc across the Anomaly from New Zealand to Alaska and another from Solomon Islands to North America. Our seismic data are collected from those recorded in the China National Digital Seismographic Network, and many permanent and temporal arrays from the Incorporated Research Institutions for Seismology. The observed ScS-SH and ScS2-SS differential travel time residuals allow the entire geographic boundary of the anomaly to be clearly defined. The seismic data suggest that the average shear velocity reduction inside the anomaly reaches -5% in the lowermost 300 km of the mantle. Waveform analysis of the seismic data sampling the edge of the anomaly further validates the model of the boundary previously deduced by differential-travel-time-residual data, and suggests that the northern boundary is characterized by a shear velocity model with the low-velocity region accompanied by a high velocity structure.
NASA Astrophysics Data System (ADS)
Alawdin, Piotr; Bulanov, George
2017-06-01
In this paper the earthquake analysis of composite steel-concrete frames is performed by finding solution of the optimization problem of shakedown analysis, which takes into account the nonlinear properties of materials. The constructions are equipped with systems bearing structures of various elastic-plastic and brittle elements absorbing energy of seismic actions. A mathematical model of this problem is presented on the base of limit analysis theory with partial redistribution of self-stressed internal forces. It is assumed that the load varies randomly within the specified limits. These limits are determined by the possible direction and magnitude of seismic loads. The illustrative example of such analysis of system is introduced. Some attention has been paid to the practical application of the proposed mathematical model.
NASA Astrophysics Data System (ADS)
Nakashima, Yoshito; Komatsubara, Junko
Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.
NASA Astrophysics Data System (ADS)
Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard
2014-05-01
Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that this carbonate platform was possibly originated from two or more connected reef build-ups. The platform evolution in terms of tectonic influences on carbonate growth and development may serve as a case example for re-evaluation of pre-Late Miocene structures as a new potential target for hydrocarbon exploration in Central Luconia Province. Eventually, techniques used in this study might be of interest to oil and gas explorers in carbonate system.
Seismic Vulnerability and Performance Level of confined brick walls
NASA Astrophysics Data System (ADS)
Ghalehnovi, M.; Rahdar, H. A.
2008-07-01
There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material. Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide. Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures. In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.
Ma, Shaochun; Jiang, Nan
2015-01-01
In order to evaluate the seismic performance of new-type composite exterior wallboard, a total of six exterior and interior wallboards were incorporated in the experiment of seismic performance. Seismic performance such as the stress process, damage mode, hysteresis and skeleton curve, load-carrying and ductility coefficient, damping and energy dissipation, stiffness degradation as well as material strain of the exterior wallboards were analyzed with emphasis and compared with interior wallboards. Results of the experiment and analysis showed that both interior and exterior wallboards exhibited outstanding seismic performance. Due to the existence of insulation layer and externally bonded single gypsum board, the capacity of elastoplastic deformation and seismic energy dissipation of the exterior wallboards was improved and each seismic performance indicator of the exterior wallboards outperformed the interior wallboards.
NASA Astrophysics Data System (ADS)
Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.
2016-06-01
The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.
NASA Astrophysics Data System (ADS)
Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian
2017-11-01
Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-02-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less
Geophysical Analysis of Major Geothermal Anomalies in Romania
NASA Astrophysics Data System (ADS)
Panea, Ionelia; Mocanu, Victor
2017-11-01
The Romanian segment of the Eastern Pannonian Basin and the Moesian Platform are known for their geothermal and hydrocarbon-bearing structures. We used seismic, gravity, and geothermal data to analyze the geothermal behavior in the Oradea and Timisoara areas, from the Romanian segment of Eastern Pannonian Basin, and the Craiova-Bals-Optasi area, from the Moesian Platform. We processed 22 seismic reflection data sets recorded in the Oradea and Timisoara areas to obtain P-wave velocity distributions and time seismic sections. The P-wave velocity distributions correlate well with the structural trends observed along the seismic lines. We observed a good correlation between the high areas of crystalline basement seen on the time seismic sections and the high heat flow and gravity-anomaly values. For the Craiova-Bals-Optasi area, we computed a three-dimensional (3D) temperature model using calculated and measured temperature and geothermal gradient values in wells with an irregular distribution on the territory. The high temperatures from the Craiova-Bals-Optasi area correlate very well with the uplifted basement blocks seen on the time seismic sections and high gravity-anomaly values.
NASA Astrophysics Data System (ADS)
Nigro, Antonella; Ponzo, Felice C.; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Domenico S.; Soupios, Pantelis; García-Fernández, Mariano; Jimenez, Maria-Jose
2017-04-01
Aim of this study is the experimental estimation of the dynamic characteristics of existing buildings and the comparison of the related fundamental natural period of the buildings (masonry and reinforced concrete) located in Basilicata (Italy), in Madrid (Spain) and in Crete (Greece). Several experimental campaigns, on different kind of structures all over the world, have been performed in the last years with the aim of proposing simplified relationships to evaluate the fundamental period of buildings. Most of formulas retrieved from experimental analyses provide vibration periods smaller than those suggested by the Italian Seismic Code (NTC2008) and the European Seismic Code (EC8). It is known that the fundamental period of a structure play a key role in the correct estimation of the spectral acceleration for seismic static analyses and to detect possible resonance phenomena with the foundation soil. Usually, simplified approaches dictate the use of safety factors greater than those related to in depth dynamic linear and nonlinear analyses with the aim to cover any unexpected uncertainties. The fundamental period calculated with the simplified formula given by both NTC 2008 and EC8 is higher than the fundamental period measured on the investigated structures in Italy, Spain and Greece. The consequence is that the spectral acceleration adopted in the seismic static analysis may be significantly different than real spectral acceleration. This approach could produces a decreasing in safety factors obtained using linear seismic static analyses. Based on numerical and experimental results, in order to confirm the results proposed in this work, authors suggest to increase the number of numerical and experimental tests considering also the effects of non-structural components and soil during small, medium and strong motion earthquakes. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".
A procedure for seismic risk reduction in Campania Region
NASA Astrophysics Data System (ADS)
Zuccaro, G.; Palmieri, M.; Maggiò, F.; Cicalese, S.; Grassi, V.; Rauci, M.
2008-07-01
The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on data obtained by the first set of safety checks. The strengthening philosophy adopt in the projects will be described in the paper.
Assessment of the Structural Conditions of the San Clemente a Vomano Abbey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedettini, Francesco; Alaggio, Rocco; Fusco, Felice
2008-07-08
The simultaneous use of a Finite Element (FE) accurate modeling, dynamical tests, model updating and nonlinear analysis are used to describe the integrated approach used by the authors to assess the structural conditions and the seismic vulnerability of an historical masonry structure: the Abbey Church of San Clemente al Vomano, situated in the Notaresco territory (TE, Italy) commissioned by Ermengarda, daughter of the Emperor Ludovico II, and built at the end of IX century together with a monastery to host a monastic community. Dynamical tests 'in operational conditions' and modal identification have been used to perform the FE model validation.more » Both a simple and direct method as the kinematic analysis applied on meaningful sub-structures and a nonlinear 3D dynamic analysis conducted by using the FE model have been used to forecast the seismic performance of the Church.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sercombe, W.J.; Smith, G.W.; Morse, J.D.
1996-01-01
The October field, a sub-salt giant in the extensional Gulf of Suez (Egypt) has been structurally reinterpreted for new reserve opportunities. Quantitative SCAT analyses of the wellbore dip data have been integrated with 3D seismic by using dip isogons to construct local structural sections. SCAT dip analysis was critical to the reinterpretation because SCAT revealed important structural information that previously was unresolvable using conventional tadpole plots. In gross aspect, the October Field is a homocline that trends NW-SE, dips to the NE, and is closed on the SW (updip) by the major Clysmic Normal Fault. SCAT accurately calculated the overallmore » trend of the field, but also identified important structural anomalies near the Clysmic fault and in the northwest and southeast plunge ends. In the northwest plunge end, SCAT has identified new, south dipping blocks that are transitional to the structurally-higher North October field. The southeast plunge end has been reinterpreted with correct azimuthal trends and new fault-block prospects. These new SCAT results have successfully improved the 3D seismic interpretation by providing a foundation of accurate in-situ structural control in an area of poor-to-fair seismic quality below the Miocene salt package.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sercombe, W.J.; Smith, G.W.; Morse, J.D.
1996-12-31
The October field, a sub-salt giant in the extensional Gulf of Suez (Egypt) has been structurally reinterpreted for new reserve opportunities. Quantitative SCAT analyses of the wellbore dip data have been integrated with 3D seismic by using dip isogons to construct local structural sections. SCAT dip analysis was critical to the reinterpretation because SCAT revealed important structural information that previously was unresolvable using conventional tadpole plots. In gross aspect, the October Field is a homocline that trends NW-SE, dips to the NE, and is closed on the SW (updip) by the major Clysmic Normal Fault. SCAT accurately calculated the overallmore » trend of the field, but also identified important structural anomalies near the Clysmic fault and in the northwest and southeast plunge ends. In the northwest plunge end, SCAT has identified new, south dipping blocks that are transitional to the structurally-higher North October field. The southeast plunge end has been reinterpreted with correct azimuthal trends and new fault-block prospects. These new SCAT results have successfully improved the 3D seismic interpretation by providing a foundation of accurate in-situ structural control in an area of poor-to-fair seismic quality below the Miocene salt package.« less
NASA Astrophysics Data System (ADS)
Badry, Pallavi; Satyam, Neelima
2017-01-01
Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.
Towards Coupling of Macroseismic Intensity with Structural Damage Indicators
NASA Astrophysics Data System (ADS)
Kouteva, Mihaela; Boshnakov, Krasimir
2016-04-01
Knowledge on basic data of ground motion acceleration time histories during earthquakes is essential to understanding the earthquake resistant behaviour of structures. Peak and integral ground motion parameters such as peak ground motion values (acceleration, velocity and displacement), measures of the frequency content of ground motion, duration of strong shaking and various intensity measures play important roles in seismic evaluation of existing facilities and design of new systems. Macroseismic intensity is an earthquake measure related to seismic hazard and seismic risk description. Having detailed ideas on the correlations between the earthquake damage potential and macroseismic intensity is an important issue in engineering seismology and earthquake engineering. Reliable earthquake hazard estimation is the major prerequisite to successful disaster risk management. The usage of advanced earthquake engineering approaches for structural response modelling is essential for reliable evaluation of the accumulated damages in the existing buildings and structures due to the history of seismic actions, occurred during their lifetime. Full nonlinear analysis taking into account single event or series of earthquakes and the large set of elaborated damage indices are suitable contemporary tools to cope with this responsible task. This paper presents some results on the correlation between observational damage states, ground motion parameters and selected analytical damage indices. Damage indices are computed on the base of nonlinear time history analysis of test reinforced structure, characterising the building stock of the Mediterranean region designed according the earthquake resistant requirements in mid XX-th century.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Carlo Ponzo, Felice; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella
2015-04-01
Aim of this study is a comparison among the fundamental period of reinforced concrete buildings evaluated using the simplified approach proposed by the Italian Seismic code (NTC 2008), numerical models and real values retrieved from an experimental campaign performed on several buildings located in Basilicata region (Italy). With the intention of proposing simplified relationships to evaluate the fundamental period of reinforced concrete buildings, scientists and engineers performed several numerical and experimental campaigns, on different structures all around the world, to calibrate different kind of formulas. Most of formulas retrieved from both numerical and experimental analyses provides vibration periods smaller than those suggested by the Italian seismic code. However, it is well known that the fundamental period of a structure play a key role in the correct evaluation of the spectral acceleration for seismic static analyses. Generally, simplified approaches impose the use of safety factors greater than those related to in depth nonlinear analyses with the aim to cover possible unexpected uncertainties. Using the simplified formula proposed by the Italian seismic code the fundamental period is quite higher than fundamental periods experimentally evaluated on real structures, with the consequence that the spectral acceleration adopted in the seismic static analysis may be significantly different than real spectral acceleration. This approach could produces a decreasing in safety factors obtained using linear and nonlinear seismic static analyses. Finally, the authors suggest a possible update of the Italian seismic code formula for the simplified estimation of the fundamental period of vibration of existing RC buildings, taking into account both elastic and inelastic structural behaviour and the interaction between structural and non-structural elements. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''. References R. Ditommaso, M. Vona, M. R. Gallipoli and M. Mucciarelli (2013). Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings. Nat. Hazards Earth Syst. Sci., 13, 1903-1912, 2013. www.nat-hazards-earth-syst-sci.net/13/1903/2013. doi:10.5194/nhess-13-1903-2013
Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS
NASA Astrophysics Data System (ADS)
Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.
2018-05-01
The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.
Evidence of uplift near Charleston, South Carolina
Rhea, S.
1989-01-01
In spite of extensive research, the causal structure of the 1886 magnitude 7 earthquake near Charleston, South Carolina, has not been identified. In this study I analyzed digital surface topography and river morphology in light of earlier studies using seismic reflection, seismic refraction, earthquake seismology, and gravity and magnetic surveys. This analysis revealed an area approximately 400 km2 northwest of Charleston that may have been repeatedly uplifted by earthquakes. Geologic and seismic reflection data confirm alteration of formations at depth. Deformation of the surface is supported by observations on aerial and LANDSAT photographs. Therefore, the structure on which the 1886 earthquake occurred may be within the uplifted area defined in this report. -Author
Carpinteri, Alberto; Lacidogna, Giuseppe; Invernizzi, Stefano; Accornero, Federico
2013-01-01
We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named "The Sacred Mountain of Varallo." Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the "Sacred Mountain of Varallo" and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects.
NASA Astrophysics Data System (ADS)
Korenaga, Jun
2011-05-01
The seismic structure of large igneous provinces provides unique constraints on the nature of their parental mantle, allowing us to investigate past mantle dynamics from present crustal structure. To exploit this crust-mantle connection, however, it is prerequisite to quantify the uncertainty of a crustal velocity model, as it could suffer from considerable velocity-depth ambiguity. In this contribution, a practical strategy is suggested to estimate the model uncertainty by explicitly exploring the degree of velocity-depth ambiguity in the model space. In addition, wide-angle seismic data collected over the Ontong Java Plateau are revisited to provide a worked example of the new approach. My analysis indicates that the crustal structure of this gigantic plateau is difficult to reconcile with the melting of a pyrolitic mantle, pointing to the possibility of large-scale compositional heterogeneity in the convecting mantle.
NASA Astrophysics Data System (ADS)
Dianala, J. D. B.; Aurelio, M.; Rimando, J. M.; Taguibao, K.
2015-12-01
In a region with little understanding in terms of active faults and seismicity, two large-magnitude reverse-fault related earthquakes occurred within 100km of each other in separate islands of the Central Philippines—the Mw=6.7 February 2012 Negros earthquake and the Mw=7.2 October 2013 Bohol earthquake. Based on source faults that were defined using onshore, offshore seismic reflection, and seismicity data, stress transfer models for both earthquakes were calculated using the software Coulomb. Coulomb stress triggering between the two main shocks is unlikely as the stress change caused by Negros earthquake on the Bohol fault was -0.03 bars. Correlating the stress changes on optimally-oriented reverse faults with seismicity rate changes shows that areas that decreased both in static stress and seismicity rate after the first earthquake were then areas with increased static stress and increased seismicity rate caused by the second earthquake. These areas with now increased stress, especially those with seismicity showing reactivity to static stress changes caused by the two earthquakes, indicate the presence of active structures in the island of Cebu. Comparing the history of instrumentally recorded seismicity and the recent large earthquakes of Negros and Bohol, these structures in Cebu have the potential to generate large earthquakes. Given that the Philippines' second largest metropolitan area (Metro Cebu) is in close proximity, detailed analysis of the earthquake potential and seismic hazards in these areas should be undertaken.
Double seismic zone for deep earthquakes in the izu-bonin subduction zone.
Iidaka, T; Furukawa, Y
1994-02-25
A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.
Stockton, S.L.; Balch, Alfred H.
1978-01-01
The Salt Valley anticline, in the Paradox Basin of southeastern Utah, is under investigation for use as a location for storage of solid nuclear waste. Delineation of thin, nonsalt interbeds within the upper reaches of the salt body is extremely important because the nature and character of any such fluid- or gas-saturated horizons would be critical to the mode of emplacement of wastes into the structure. Analysis of 50 km of conventional seismic-reflection data, in the vicinity of the anticline, indicates that mapping of thin beds at shallow depths may well be possible using a specially designed adaptation of state-of-the-art seismic oil-exploration procedures. Computer ray-trace modeling of thin beds in salt reveals that the frequency and spatial resolution required to map the details of interbeds at shallow depths (less than 750 m) may be on the order of 500 Hz, with surface-spread lengths of less than 350 m. Consideration should be given to the burial of sources and receivers in order to attenuate surface noise and to record the desired high frequencies. Correlation of the seismic-reflection data with available well data and surface geology reveals the complex, structurally initiated diapir, whose upward flow was maintained by rapid contemporaneous deposition of continental clastic sediments on its flanks. Severe collapse faulting near the crests of these structures has distorted the seismic response. Evidence exists, however, that intrasalt thin beds of anhydrite, dolomite, and black shale are mappable on seismic record sections either as short, discontinuous reflected events or as amplitude anomalies that result from focusing of the reflected seismic energy by the thin beds; computer modeling of the folded interbeds confirms both of these as possible causes of seismic response from within the salt diapir. Prediction of the seismic signatures of the interbeds can be made from computer-model studies. Petroleum seismic-reflection data are unsatisfactory for mapping the thin beds because of the lack of sufficient resolution to provide direct evidence of the presence of the thin beds. However, indirect evidence, present in these data as discontinuous seismic events, suggests that two geophysical techniques designed for this specific problem would allow direct detection of the interbeds in salt. These techniques are vertical seismic profiling and shallow, short-offset, high-frequency, seismic-reflection recording.
Parsons, T.; Blakely, R.J.; Brocher, T.M.
2001-01-01
The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.
NASA Astrophysics Data System (ADS)
Guilbaud, C.; Simoes, M.; Barrier, L.; Laborde, A.; van der Woerd, J.; Li, H.; Tapponnier, P.; Coudroy, T.; Murray, A. S.
2017-12-01
The Western Kunlun mountain range (Xinjiang, north-west China) is a slowly deforming intra-continental orogen where deformation rates are too low to be quantified from geodetic techniques. This region has recorded little historical seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold along the topographic mountain front in the epicentral area. Using field observations and a seismic profile, we derive a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr over the last 400 kyr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is then proposed by combining all structural, morphological and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of major M ≥ 8-8.5 earthquakes in the case that the whole decollement is presently seismically locked and fully ruptures in one single seismic event.
NASA Astrophysics Data System (ADS)
Ebbing, J.; Goerigk, L.; Nasuti, A.; Roberts, D.; Korja, T. J.; Smirnov, M.
2014-12-01
The deep geology of northern Trøndelag is somewhat speculative as the Central Scandinavian Caledonides are intersected by the Møre-Trøndelag Fault Complex (MTFC) and only a few depth-penetrating geophysical profiles exist. Here, we correlate the mapped geological units and faults between a seismic-reflection profile and a MT profile. The seismic-reflection data were acquired in 5 segments over the period 1986-1990. The westernmost section of the seismic profile is dominated by a complex pattern of reflections and diffractions. This type of pattern is typical of polydeformed terranes with a mixture of contrasting felsic and mafic lithologies. The two steeply-dipping strands of the MTFC (Hitra-Snåsa and Verran faults) that transect the profile do not show any distinctive signature in the seismic data. The MT data were acquired in 2007 from the Swedish border to the Norwegian coast. The conductivity profile shows some distinct vertical changes as well as changes from the near-surface to shallow depths. The strands of the MTFC show especially a distinctive change in conductivity. The two profiles are almost parallel but separated by 100 km. To correlate the structures seen on both profiles, we have applied lineament analysis and 3D modelling of the gravity and magnetic field. The tilt derivative of the magnetic and isostatic gravity anomaly clearly allows us to identify and link the main geological boundaries between the profiles and to trace the strands of the MTFC from one profile to the other. This trend analysis indicates that at least the Verran Fault visibly modifies the pattern of seismic reflections. However, the main change in crustal lithology occurs farther to the west, almost at the coast where the Tarva Fault intersects the MT profile. This integrated analysis shows the benefit of combining gravity and magnetic interpretations with MT and seismic data to enable us to understand the near-surface geology and structure in more detail.
Analysis of a school building damaged by the 2015 Ranau earthquake Malaysia
NASA Astrophysics Data System (ADS)
Takano, Shugo; Saito, Taiki
2017-10-01
On June 5th, 2015 a severe earthquake with a moment Magnitude of 6.0 occurred in Ranau, Malaysia. Depth of the epicenter is 10 km. Due to the earthquake, many facilities were damaged and 18 people were killed due to rockfalls [1]. Because the British Standard (BS) is adopted as a regulation for built buildings in Malaysia, the seismic force is not considered in the structural design. Therefore, the seismic resistance of Malaysian buildings is unclear. To secure the human life and building safety, it is important to grasp seismic resistance of the building. The objective of this study is to evaluate the seismic resistance of the existing buildings in Malaysia built by the British Standard. A school building that was damaged at the Ranau earthquake is selected as the target building. The building is a four story building and the ground floor is designed to be a parking space for the staff. The structural types are infill masonries where main frame is configured by reinforced concrete columns and beams and brick is installed inside the frame as walls. Analysis is performed using the STERA_3D software that is the software to analyze the seismic performance of buildings developed by one of the authors. Firstly, the natural period of the building is calculated and compared with the result of micro-tremor measurement. Secondly, the nonlinear push-over analysis was conducted to evaluate the horizontal load bearing capacity of the building. Thirdly, the earthquake response analysis was conducted using the time history acceleration data measured at the Ranau earthquake by the seismograph installed at Kota Kinabalu. By comparing the results of earthquake response analysis and the actual damage of the building, the reason that caused damage to the building is clarified.
NASA Astrophysics Data System (ADS)
Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi
2018-03-01
Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.
NASA Astrophysics Data System (ADS)
Kurashimo, E.; Hirata, N.; Iwasaki, T.; Sakai, S.; Obara, K.; Ishiyama, T.; Sato, H.
2015-12-01
A shallow earthquake (Mw 6.2) occurred on November 22 in the northern Nagano Prefecture, central Japan. Aftershock area is located near the Kamishiro fault, which is a part of the Itoigawa-Shizuoka Tectonic Line (ISTL). ISTL is one of the major tectonic boundaries in Japan. Precise aftershock distribution and heterogeneous structure in and around the source region of this earthquake is important to constrain the process of earthquake occurrence. We conducted a high-density seismic array observation in and around source area to investigate aftershock distribution and crustal structure. One hundred sixty-three seismic stations, approximately 1 km apart, were deployed during the period from December 3, 2014 to December 21, 2014. Each seismograph consisted of a 4.5 Hz 3-component seismometer and a digital data recorder (GSX-3). Furthermore, the seismic data at 40 permanent stations were incorporated in our analysis. During the seismic array observation, the Japan Meteorological Agency located 977 earthquakes in a latitude range of 35.5°-37.1°N and a longitude range of 136.7°-139.0°E, from which we selected 500 local events distributed uniformly in the study area. To investigate the aftershock distribution and the crustal structure, the double-difference tomography method [Zhang and Thurber, 2003] was applied to the P- and S-wave arrival time data obtained from 500 local earthquakes. The relocated aftershock distribution shows a concentration on a plane dipping eastward in the vicinity of the mainshock hypocenter. The large slip region (asperity) estimated from InSAR analysis [GSI, 2014] corresponds to the low-activity region of the aftershocks. The depth section of Vp structure shows that the high Vp zone corresponds to the large slip region. These results suggest that structural heterogeneities in and around the fault plane may have controlled the rupture process of the 2014 northern Nagano Prefecture earthquake.
Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures
NASA Astrophysics Data System (ADS)
Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You
1998-09-01
Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.
Tutorial review of seismic surface waves' phenomenology
NASA Astrophysics Data System (ADS)
Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2018-03-01
In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.
NASA Astrophysics Data System (ADS)
Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.
2017-12-01
We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.
From intuition to statistics in building subsurface structural models
Brandenburg, J.P.; Alpak, F.O.; Naruk, S.; Solum, J.
2011-01-01
Experts associated with the oil and gas exploration industry suggest that combining forward trishear models with stochastic global optimization algorithms allows a quantitative assessment of the uncertainty associated with a given structural model. The methodology is applied to incompletely imaged structures related to deepwater hydrocarbon reservoirs and results are compared to prior manual palinspastic restorations and borehole data. This methodology is also useful for extending structural interpretations into other areas of limited resolution, such as subsalt in addition to extrapolating existing data into seismic data gaps. This technique can be used for rapid reservoir appraisal and potentially have other applications for seismic processing, well planning, and borehole stability analysis.
Wind/seismic comparisons for upgrading existing structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giller, R.A.
1989-10-01
This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluatedmore » for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations. 4 refs., 5 figs., 5 tabs.« less
Montana: Filling A Gap In The GeoSwath
NASA Astrophysics Data System (ADS)
Jensen, B.; Keller, G. R.
2010-12-01
The proposed Geoswath transect crosses southern Montana, and the swath of MT stations deployed as part of EarthScope cover all but a small portion of eastern Montana. USArray broadband stations of course cover the entire region. However, modern controlled-source seismic data are very sparse in this large state, and most of it dates from the 1960’s. In this study, we have taken an integrated approach to analyzing lithospheric structure by compiling and analyzing all the public domain geophysical results and data we could locate and combining them with industry seismic reflection data that were released for our study. This information was employed to interpret a suite of filtered regional maps gravity and magnetic data and to construct integrated gravity models of long profiles that reflect crustal structure and deeper features within the upper mantle of the region. Our analysis included previous seismic refraction/reflection results, EarthScope Automated Array receiver functions, new 2D seismic reflection data, seismic tomography, potential field data, and previous geological studies in order to investigate structural and compositional variations within the crust and upper mantle. Our targets included Precambrian structure and tectonics, Sevier and Laramide features, and Late Cenozoic extension. Our main conclusions are: 1) Receiver function and seismic refraction/reflection crustal thickness estimates show a W-E crustal thickening with thicknesses greater than 50 km in the central and eastern Montana; 2) Seismic reflection data reveal Laramide basement-involved structures as far east as central Montana. These structures also show that the western edge of the North American craton was affected by late Mesozoic to Cenozoic deformation and has thus been decratonized; 3) Potential field filtering methods revealed regional trends and tectonic province outlines. The tilt derivative of the reduced-to-pole magnetic data enhances crystalline basement patterns that reflect tectonic province boundary locations. The upward continuation of the complete Bouguer anomaly grid revealed a gravity high in the northeast portion of the region, which is interpreted to be associated with density variations in the upper mantle. This interpretation is consistent with seismic tomography that reveals a “wedge-like” zone fast material beneath the craton in this region.
Seismic response reduction of a three-story building by an MR grease damper
NASA Astrophysics Data System (ADS)
Sakurai, Tomoki; Morishita, Shin
2017-06-01
This paper describes an application of magneto- rheological (MR) grease dampers as seismic dampers for a three-story steel structure. MR fluid is widely known as a smart material with rheological properties that can be varied by magnetic field strength. This material has been applied to various types of devices, such as dampers, clutches, and engine mounts. However, the ferromagnetic particles dispersed in MR fluid settle out of the suspension after a certain interval because of the density difference between the particles and their carrier fluid. To overcome this defect, we developed a new type of controllable working fluid using grease as the carrier of magnetic particles. MR grease was introduced into a cylindrical damper, and the seismic performance of the damper was subsequently studied via numerical analysis. The analysis results of the MR grease damper were compared with those of other seismic dampers. We confirmed that the MR grease damper is an effective seismic damper.
NASA Astrophysics Data System (ADS)
Zhirov, Dmitry; Klimov, Sergey; Zhirova, Anzhela; Panteleev, Alexey; Rybin, Vadim
2017-04-01
Main hazardous factors during the operation of deposits represent tectonics (structural dislocation), strain and stress state (SSS), and seismicity. The cause and effect relationships in the Fault Tectonics - SSS - Seismicity system were analyzed using a 3D geological and structural Rasvumchorr Mine - Central Open Pit model. This natural and technical system (NTS) has resulted from the development of the world-class apatite-nepheline deposits the Apatite Circus and Rasvumchorr Plateau. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements and rock pressure, seismicity, fault tectonics and etc. The analysis of the 3D model has clearly demonstrated the localization of three main seismic emanation zones in the areas of maximum anthropogenic variation of the initial rock state, and namely: ore pass zone under the Southern edge of the Central open pit, collapse and joining zone of the Rasvumchorr Mine and NW edge of the open pit, and zone under the Apatite Circus plate - collapse console. And, on the contrary, in the area of a large dump under the underground mine, a perennial seismic minimum zone was identified. The relation of the seismicity and fault tectonics was revealed only in three local sectors near come certain echelon fissures of the Main Fault(MF). No confinement of increased seismicity areas to the MF and other numerous echelon fissures is observed. The same picture occurs towards manifestations of rock pressure. Only an insignificant part of echelon fissures (including low rank of hierarchy) controls hazardous manifestations of rock pressure (dumps, strong deformations of the mine contour, etc.). It is shown that the anthropogenic factor (explosive, geometry and arrangement of mined spaces and collapse console), as well as the time factor significantly change orientation and structure (contrast and heterogeneity) of the stress fields. Time series of natural geophysical field fluctuations were additionally analyzed in order to find relationships with the seismicity. A sustainable regular relationship between the seismicity and solar and lunar tides has been observed; though, medium (classes 3 to 6) and high (class 7 and above) energy values of the events reveal various symmetry towards the Lunar cycle phases. The relationship of seismicity with other geophysical fields, e.g., geomagnetic disturbances, is defined as weak to very weak. The anthropogenic (man-induced) factor mostly influences the seismicity in the NTS rock masses. A law for shifting of maximum seismicity zones following the advance of the mining front has been found. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements, and rock pressure, seismicity, fault tectonics, and other manifestations. The study is made within R&D topic No. 0231-2015-0013. The collection, processing, and analysis of data for natural stress fields became possible due to the support from RSF grant 14-17-00751.
NASA Astrophysics Data System (ADS)
Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore
2016-04-01
In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.
Research activities on submarine landslides in gentle continental slope
NASA Astrophysics Data System (ADS)
Morita, S.; Goto, S.; Miyata, Y.; Nakamura, Y.; Kitahara, Y.; Yamada, Y.
2013-12-01
In the north Sanrikuoki Basin off Shimokita Peninsula, NE Japan, a great number of buried large slump deposits have been identified in the Pliocene and younger formations. The basin has formed in a very gentle continental slope of less than one degree in gradient and is composed of well-stratified formations which basically parallel to the present seafloor. This indicates that the slumping have also occurred in such very gentle slope angle. The slump units and their slip surfaces have very simple and clear characteristics, such as layer-parallel slip on the gentle slope, regularly imbricated internal structure, block-supported with little matrix structure, widespread dewatering structure, and low-amplitude slip surface layer. We recognize that the large slump deposits group of layer-parallel slip in this area is an appropriate target to determine 'mechanism of submarine landslides', that is one of the subjects on the new IODP science plan for 2013 and beyond. So, we started some research activities to examine the feasibility of the future scientific drilling. The slump deposits were recognized basically by 3D seismic analysis. Further detailed seismic analysis using 2D seismic data in wider area of the basin is being performed for better understanding of geologic structure of the sedimentary basin and the slump deposits. This will be good source to extract suitable locations for drill sites. Typical seismic features and some other previous studies imply that the formation fluid in this study area is strongly related to natural gas, of which condition is strongly affected by temperature. So, detailed heat flow measurements was performed in the study area in 2013. For that purpose, a long-term water temperature monitoring system was deployed on the seafloor in October, 2012. The collected water temperature variation is applied to precise correction of heat flow values. Vitrinite reflectance analysis is also being carried out using sediments samples recovered by IODP Expedition 337, which is conducted in a part of the study area from July through September in 2012. The values of vitrinite reflectance will be available for modeling thermal history in the sedimentary basin. A science meeting and a field trip were held in Miyazaki Prefecture in September , 2012. At the field trip, we observed typical geologic structures related to slumping and dewatering in Nichinan Group, which are good onshore objects so as to share the aspects of the slump deposits in the Sanrikuoki Basin among the community. This occasion is aimed at sharing better scientific understanding on slumping and related dewatering and also at identifying the issues for planning the scientific drilling. This study uses the 3D seismic data from the METI seismic survey 'Sanrikuoki 3D' in 2008. The seismic analysis, the vitrinite reflectance analysis, and the science meeting and the field excursion in Miyazaki were supported by the foundation of feasibility studies for future IODP scientific drillings by JAMSTEC CDEX in 2012-2013.
Seismic signal and noise on Europa
NASA Astrophysics Data System (ADS)
Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven
2017-10-01
Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.
Earthquake Archaeology: a logical approach?
NASA Astrophysics Data System (ADS)
Stewart, I. S.; Buck, V. A.
2001-12-01
Ancient earthquakes can leave their mark in the mythical and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. Within this broad cross-disciplinary tramping ground, earthquake geologists have tended to focus on those aspects of the cultural record that are most familiar to them; the physical effects of seismic deformation on ancient constructions. One of the core difficulties with this 'earthquake archaeology' approach is that recent attempts to isolate structural criteria that are diagnostic or strongly suggestive of a seismic origin are undermined by the recognition that signs of ancient seismicity are generally indistinguishable from non-seismic mechanisms (poor construction, adverse geotechnical conditions). We illustrate the difficulties and inconsistencies in current proposed 'earthquake diagnostic' schemes by reference to two case studies of archaeoseismic damage in central Greece. The first concerns fallen columns at various Classical temple localities in mainland Greece (Nemea, Sounio, Olympia, Bassai) which, on the basis of observed structural criteria, are earthquake-induced but which are alternatively explained by archaeologists as the action of human disturbance. The second re-examines the almost type example of the Kyparissi site in the Atalanti region as a Classical stoa offset across a seismic surface fault, arguing instead for its deformation by ground instability. Finally, in highlighting the inherent ambiguity of archaeoseismic data, we consider the value of a logic-tree approach for quantifying and quantifying our uncertainities for seismic-hazard analysis.
Seismometers on Europa: Insights from Modeling and Antarctic Ice Shelf Analogs (Invited)
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Brunt, K. M.; Cammarano, F.; Hurford, T. A.; Lekic, V.; Panning, M. P.; Rhoden, A.; Sauber, J. M.
2013-12-01
The outer satellites of the Solar System are a diverse suite of objects that span a large spectrum of sizes, compositions, and evolutionary histories; constraining their internal structures is key for understanding their formation, evolution, and dynamics. In particular, Jupiter's icy satellite Europa has compelling evidence for the existence of a global subsurface ocean beneath a surface layer of water ice. This ocean decouples the ice shell from the solid silicate mantle, and amplifies tidally driven large-scale surface deformation. The complex fissures and cracks seen by orbital flybys suggest brittle failure is an ongoing and active process in the ice crust, therefore indicating a high level of associated seismic activity. Seismic probing of the ice, oceanic, and rocky layers would provide altogether new information on the structure, evolution, and even habitability of Europa. Any future missions (penetrators, landers, and rovers) planning to take advantage of seismometers to image the Europan interior would need to be built around predictions for the expected background noise levels, seismicity, wavefields, and elastic properties of the interior. A preliminary suite of seismic velocity profiles for Europa has been calculated using moment of inertia constraints, planetary mass and density, estimates of moon composition, thermal structure, and experimentally determined relationships of elastic properties for relevant materials at pressure, temperature and depth. While the uncertainties in these models are high, they allow us to calculate a first-order seismic response using 1-D and 3-D high frequency wave propagation codes for global and regional scale structures. Here, we show how future seismic instruments could provide detailed elastic information and reduced uncertainties on the internal structure of Europa. For example, receiver functions and surface wave orbits calculated for a single seismic instrument would provide information on crustal thickness and the depth of an ocean layer. Likewise, evaluation of arrival times of reflected wave multiples observed at a single seismic station would record properties of the mantle and core of Europa. Cluster analysis of waveforms from various seismic source mechanisms could be used to classify different types of seismicity originating from the ice and rocky parts of the moon. We examine examples of single station results for analogous seismic experiments on Earth, e.g., where broadband, 3-component seismometers have been placed upon the Ross Ice Shelf of Antarctica. Ultimately this work reveals that seismometer deployments will be essential for understanding the internal dynamics, habitability, and surface evolution of Europa, and that seismic instruments need to be a key component of future missions to surface of Europa and outer satellites.
Back analysis of fault-slip in burst prone environment
NASA Astrophysics Data System (ADS)
Sainoki, Atsushi; Mitri, Hani S.
2016-11-01
In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.
NASA Astrophysics Data System (ADS)
Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni
2014-05-01
The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).
NASA Astrophysics Data System (ADS)
Huang, Duruo; Du, Wenqi; Zhu, Hong
2017-10-01
In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of ground-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground-motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are unavailable. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.
Seismic Vulnerability and Performance Level of confined brick walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghalehnovi, M.; Rahdar, H. A.
2008-07-08
There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iranmore » is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.« less
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
Seismic surveys test on Innerhytta Pingo, Adventdalen, Svalbard Islands
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Rossi, Giuliana; Petronio, Lorenzo; Accaino, Flavio; Romeo, Roberto; Wheeler, Walter
2015-04-01
We present the preliminary results of an experimental full-wave seismic survey test conducted on the Innnerhytta a Pingo, located in the Adventdalen, Svalbard Islands, Norway. Several seismic surveys were adopted in order to study a Pingo inner structure, from classical reflection/refraction arrays to seismic tomography and surface waves analysis. The aim of the project IMPERVIA, funded by Italian PNRA, was the evaluation of the permafrost characteristics beneath this open-system Pingo by the use of seismic investigation, evaluating the best practice in terms of logistic deployment. The survey was done in April-May 2014: we collected 3 seismic lines with different spacing between receivers (from 2.5m to 5m), for a total length of more than 1 km. We collected data with different vertical geophones (with natural frequency of 4.5 Hz and 14 Hz) as well as with a seismic snow-streamer. We tested different seismic sources (hammer, seismic gun, fire crackers and heavy weight drop), and we verified accurately geophone coupling in order to evaluate the different responses. In such peculiar conditions we noted as fire-crackers allow the best signal to noise ratio for refraction/reflection surveys. To ensure the best geophones coupling with the frozen soil, we dug snow pits, to remove the snow-cover effect. On the other hand, for the surface wave methods, the very high velocity of the permafrost strongly limits the generation of long wavelengths both with these explosive sources as with the common sledgehammer. The only source capable of generating low frequencies was a heavy drop weight system, which allows to analyze surface wave dispersion below 10 Hz. Preliminary data analysis results evidence marked velocity inversions and strong velocity contrasts in depth. The combined use of surface and body waves highlights the presence of a heterogeneous soil deposit level beneath a thick layer of permafrost. This is the level that hosts the water circulation from depth controlling the Pingo structure evolution.
Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc
NASA Astrophysics Data System (ADS)
Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi
2018-01-01
To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.
NASA Astrophysics Data System (ADS)
Cheng, Win-Bin
2018-01-01
Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.
Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9 deg 30 min N
NASA Astrophysics Data System (ADS)
Toomey, Douglas R.; Solomon, Sean C.; Purdy, G. M.
1994-12-01
Compressional wave travel times from a seismic tomography experiment at 9 deg 30 min N on the East Pacific Rise are analyzed by a new tomographic method to determine the three-dimensional seismic velocity structure of the upper 2.5 km of oceanic crust within a 20 x 18 km area centered on the rise axis. The data comprise the travel times and associated uncertainties of 1459 compressional waves that have propagated above the axial magma chamber. A careful analysis of source and receiver parameters, in conjunction with an automated method of picking P wave onsets and assigning uncertainties, constrains the prior uncertainty in the data to 5 to 20 ms. The new tomographic method employs graph theory to estimate ray paths and travel times through strongly heterogeneous and densely parameterized seismic velocity models. The nonlinear inverse method uses a jumping strategy to minimize a functional that includes the penalty function, horizontal and vertical smoothing constraints, and prior model assumptions; all constraints applied to model perturbations are normalized to remove bias. We use the tomographic method to reject the null hypothesis that the axial seismic structure is two-dimensional. Three-dimensional models reveal a seismic structure that correlates well with cross- and along-axis variations in seafloor morphology, the location of the axial summit caldera, and the distribution of seafloor hydrothermal activity. The along-axis segmentation of the seismic structure above the axial magma chamber is consistent with the hypothesis that mantle-derived melt is preferentially injected midway along a locally linear segment of the rise and that the architecture of the crustal section is characterized by an en echelon series of elongate axial volcanoes approximately 10 km in length. The seismic data are compatible with a 300- to 500-m-thick thermal anomaly above a midcrustal melt lens; such an interpretation suggests that hydrothermal fluids may not have penetrated this region in the last 10(exp 3) years. Asymmetries in the seismic structure across the rise support the inferences that the thickness of seismic layer 2 and the average midcrustal temperature increase to the west of the rise axis. These anomalies may be the result of off-axis magmatism; alternatively, the asymmetric thermal anomaly may be the consequence of differences in the depth extent of hydrothermal cooling.
NASA Astrophysics Data System (ADS)
Esteve, C.; Schaeffer, A. J.; Audet, P.
2017-12-01
Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.
CORSSA: The Community Online Resource for Statistical Seismicity Analysis
Michael, Andrew J.; Wiemer, Stefan
2010-01-01
Statistical seismology is the application of rigorous statistical methods to earthquake science with the goal of improving our knowledge of how the earth works. Within statistical seismology there is a strong emphasis on the analysis of seismicity data in order to improve our scientific understanding of earthquakes and to improve the evaluation and testing of earthquake forecasts, earthquake early warning, and seismic hazards assessments. Given the societal importance of these applications, statistical seismology must be done well. Unfortunately, a lack of educational resources and available software tools make it difficult for students and new practitioners to learn about this discipline. The goal of the Community Online Resource for Statistical Seismicity Analysis (CORSSA) is to promote excellence in statistical seismology by providing the knowledge and resources necessary to understand and implement the best practices, so that the reader can apply these methods to their own research. This introduction describes the motivation for and vision of CORRSA. It also describes its structure and contents.
Study of Seismic Clusters at Bahía de Banderas Region, Mexico
NASA Astrophysics Data System (ADS)
Nunez-Cornu, F. J.; Rutz-Lopez, M.; Suarez-Plascencia, C.; Trejo-Gomez, E.
2010-12-01
Given that the coast in the states of Jalisco and south of the state of Nayarit is located within a region of high seismic potential and also because population is increasing, perhaps motivated by the development of tourism, the Civil Defense authorities of Jalisco and the Centro de Sismología y Volcanología de Occidente-SisVOc of Universidad de Guadalajara started in the year 2000 a joint project to study the seismic risk of the region, including the seismic monitoring of Colima volcano (located between the states of Jalisco and Colima). This work focuses on the study of seismicity in the area of Bahía de Banderas and northern coast of Jalisco. To this end, we perform an analysis of available seismograms to characterize active structures, their relationship to surface morphology, and possible reach of these structures into the shallow parts of the bay. The data used in this work are waveforms recorded during the year 2003 during which the seismograph network spanned the region of study. Our method is based on the identification of seismic clusters or families using cross-correlation of waveforms, earthquake relocation and modeling of fault planes. From an initial data set of 404 earthquakes located during 2003, 96 earthquakes could be related to 17 potentially active continental structures. A modeling of fault planes was possible for 11 of these structures. Subgroups of 7 structures are aligned parallel to the Middle America Trench, a possible consequence of oblique subduction. The magnitudes of earthquakes grouped into families is less than 3.6 (Ml), corresponding to fault dimensions of hundreds of meters.
Saltus, R.W.; Kulander, Christopher S.; Potter, Christopher J.
2002-01-01
We have digitized, modified, and analyzed seismic interpretation maps of 12 subsurface stratigraphic horizons spanning portions of the National Petroleum Reserve in Alaska (NPRA). These original maps were prepared by Tetra Tech, Inc., based on about 15,000 miles of seismic data collected from 1974 to 1981. We have also digitized interpreted faults and seismic velocities from Tetra Tech maps. The seismic surfaces were digitized as two-way travel time horizons and converted to depth using Tetra Tech seismic velocities. The depth surfaces were then modified by long-wavelength corrections based on recent USGS seismic re-interpretation along regional seismic lines. We have developed and executed an algorithm to identify and calculate statistics on the area, volume, height, and depth of closed structures based on these seismic horizons. These closure statistics are tabulated and have been used as input to oil and gas assessment calculations for the region. Directories accompanying this report contain basic digitized data, processed data, maps, tabulations of closure statistics, and software relating to this project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T.H.; Dominic, J.; Halverson, J.
1995-12-31
Under task 1 contour irregularities traced over both study areas in the previous quarter were scanned into the computer and digitized at a 30 meter interval. Patters mapped in both the Granny Creek and Middle Mountain field areas are presented in Figures 1 and 2 respectively. One of the hypotheses of this research project is that contour irregularities must be controlled by a combination of sedimentation features, lithologic variation, and local structure and fracture distribution. The most promising result obtained thus far in this study are those reported under Tasks 4 and 5, seismic analysis. If further tests continue tomore » support the observation that increased fractal dimension reflects the presence of detached structure, the analytical techniques employed here may be of use in the routine evaluation of seismic data to locate subtle traps. The observations may allow one to predict the variation of fractal dimension within a subsurface fracture network based on seismic observation of resolvable structural parameters. Such predictions would provide a working hypothesis, which could be modified within the context of available subsurface data.« less
NASA Astrophysics Data System (ADS)
Abidi, Oussama; Inoubli, Mohamed Hédi; Sebei, Kawthar; Amiri, Adnen; Boussiga, Haifa; Nasr, Imen Hamdi; Salem, Abdelhamid Ben; Elabed, Mahmoud
2017-05-01
The Maastrichtian-Paleocene El Haria formation was studied and defined in Tunisia on the basis of outcrops and borehole data; few studies were interested in its three-dimensional extent. In this paper, the El Haria formation is reviewed in the context of a tectono-stratigraphic interval using an integrated seismic stratigraphic analysis based on borehole lithology logs, electrical well logging, well shots, vertical seismic profiles and post-stack surface data. Seismic analysis benefits from appropriate calibration with borehole data, conventional interpretation, velocity mapping, seismic attributes and post-stack model-based inversion. The applied methodology proved to be powerful for charactering the marly Maastrichtian-Paleocene interval of the El Haria formation. Migrated seismic sections together with borehole measurements are used to detail the three-dimensional changes in thickness, facies and depositional environment in the Cap Bon and Gulf of Hammamet regions during the Maastrichtian-Paleocene time. Furthermore, dating based on their microfossil content divulges local and multiple internal hiatuses within the El Haria formation which are related to the geodynamic evolution of the depositional floor since the Campanian stage. Interpreted seismic sections display concordance, unconformities, pinchouts, sedimentary gaps, incised valleys and syn-sedimentary normal faulting. Based on the seismic reflection geometry and terminations, seven sequences are delineated. These sequences are related to base-level changes as the combination of depositional floor paleo-topography, tectonic forces, subsidence and the developed accommodation space. These factors controlled the occurrence of the various parts of the Maastrichtian-Paleocene interval. Detailed examinations of these deposits together with the analysis of the structural deformation at different time periods allowed us to obtain a better understanding of the sediment architecture in depth and the delineation of the geodynamic evolution of the region.
NASA Astrophysics Data System (ADS)
Yang, H.; Sinha, S. K.; Feng, Y.; Jeremic, B.
2016-12-01
The M5.8 earthquake occurred in Pawnee, Oklahoma on September 3rd 2016 is the strongest seismic event recorded in Oklahoma. Soil structure interaction (SSI) played an important role in this tragic event. As a major aspect of SSI analysis, the propagation and dissipation of seismic energy will be studied in depth, with particular focus on the ground motion recorded in this earthquake. Seismic energy propagates from seismic source to the SSI system and is dissipated within and around the SSI system. Energy dissipation with the SSI system is related to inelastic behavior of soil, rock, contact zone (foundation-soil/rock), structural components and energy dissipators. Accurate evaluation of seismic energy can be used to optimize SSI system for safety and economy. The SSI system can be designed so that majority of seismic energy is dissipated within soil and soil-foundation contact zone, away from the structure.Accurate and theoretically sound modeling of propagation and dissipation is essential to use of seismic energy for design and assessment. The rate of plastic work is defined as the product of stress and the rate of plastic strain. On the other hand, plastic dissipation is defined as a form of heat transfer. The difference between these two quantities, which has been neglected in many studies, is a plastic part of the free energy. By considering energy storage and dissipation at both micro (particle) scale and macro (continuum) scale, it can be shown that the plastic free energy is an intrinsic attribute at the continuum scale due to particle rearrangement. Proper application of thermodynamics to finite element simulations, plastic dissipation can be correctly modeled. Examples will be used to illustrate above point on both constitutive, single element and SSI model scales. In addition, propagation of seismic energy, its dissipation (timing and location) will be used to illustrate use in design and assessment.
NASA Astrophysics Data System (ADS)
Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore
2015-04-01
A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.
NASA Technical Reports Server (NTRS)
Horvath, P.
1979-01-01
Inverse filters were designed to correct the effect of instrumental response, coupling of the seismometer to the ground, and near surface structures. The least squares technique was used to determine the instrumental constants and the transfer functions of the long period lunar seismographs. The influence of noise and the results of these calculations are discussed.
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Veladi, H.
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
Performance-based seismic design of steel frames utilizing colliding bodies algorithm.
Veladi, H
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.
NASA Astrophysics Data System (ADS)
Bassett, D.; Watts, A. B.; Sandwell, D. T.; Fialko, Y. A.
2016-12-01
We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).
Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China
NASA Astrophysics Data System (ADS)
Yang, H.; Sun, X.; He, L.; Wang, S.
2015-12-01
Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.
Carpinteri, Alberto; Invernizzi, Stefano; Accornero, Federico
2013-01-01
We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named “The Sacred Mountain of Varallo.” Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the “Sacred Mountain of Varallo” and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects. PMID:24381511
Fault zone characterization using P- and S-waves
NASA Astrophysics Data System (ADS)
Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger
2014-05-01
Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.
NASA Astrophysics Data System (ADS)
Teruna, D. R.
2017-03-01
Pushover analysis or also known as nonlinear static procedures (NSP) have been recognized in recent years for practical evaluation of seismic demands and for structural design by estimating a structural building capacities and deformation demands. By comparing these demands and capacities at the performance level interest, the seismic performance of a building can be evaluated. However, the accuracy of NSP for assessment irregular building is not yet a fully satisfactory solution, since irregularities of a building influence the dynamic responses of the building. The objective of the study presented herein is to understand the nonlinear behaviour of six story RC building with mass irregularities at different floors and stiffness irregularity at first story (soft story) using NSP. For the purpose of comparison on the performance level obtained with NSP, nonlinear time history analysis (THA) were also performed under ground motion excitation with compatible to response spectra design. Finally, formation plastic hinges and their progressive development from elastic level to collapse prevention are presented and discussed.
NASA Astrophysics Data System (ADS)
Gaudiosi, Germana; Alessio, Giuliana; Luiso, Paola; Nappi, Rosa; Ricciolino, Patrizia
2010-05-01
The Plio-Pleistocene Campanian Plain is a structural depression of the Southern Italy located between the eastern side of the Tyrrhenian Sea and the Southern Apennine chain. It is surrounded to the North, East and South by the Mesozoic carbonate massifs of the Apennine chain and, to the West, by the Tyrrhenian Sea. The graben origin is similar to other peri-Tyrrhenian regions and is related to a stretching and thinning of the continental crust by the counterclockwise rotation of the Italian peninsula and the contemporaneous opening of the Tyrrhenian sea. The consequent subsidence of the Campanian carbonate platform took place along the Tyrrhenian coast during the Plio-Pleistocene with a maximum vertical extent of 5 km. The plain is filled by volcanic and clastic, continental and marine deposits. Voluminous volcanic activity of Roccamonfina, Campi Flegrei, Ischia, Procida and Vesuvio occurred in the Plain during the Quaternary. In the middle of the plain lies the city of Naples, bordered by the two active volcanoes of Campi Flegrei and Vesuvio. It is a very densely inhabited area that is exposed to high potential volcanic risk. The stress field acting in the Campanian area is poorly known. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW- SE-trending faults and normal to dextral for the NE-SW-trending structures. These movements are consistent with those of the structures affecting the inner margin of the Southern Apennines. The Campanian Plain is characterized by seismicity of energy lower than the seismic activity of the Southern Apennine chain. The earthquakes mainly occur along the margin of the plain, in the volcanic areas and a minor seismicity spreads out inside the Plain. The aim of this paper is an attempt to identify active, outcropping and buried fault systems of the Campanian plain through the correlation between seismicity and tectonic structures. Seismic, geologic and geomorphologic data have been analysed in GIS environment. In particular, the seismological data used in this study are relative both to the historical and recent seismic activity, collected by the following Catalogues: CPTI04 Catalogue of Parametric Italian Earthquakes, 2004 (217 b.C to 2002); CSI Catalogue of Instrumental Italian Earthquakes (1981-2002); CNT Seismic Bulletin of Istituto Nazionale di Geofisica e Vulcanologia (2003-2008); Data Base of Seismic Laboratory of Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia) (2000-2009); SisCam Catalogue (Seismotectonic Information System of the Campanian Region) (1980-2000). Seismic data were homogenized in an only one Catalogue. The seismicity of Campi Flegrei and Vesuvio volcanoes have not been studied. The Geological Dataset consists of a merge of all outcropping and buried faults extracted from the available geological and structural maps: Geological map of Italy 1:100.000; Geological map of Southern Italy 1:250.000; Neotectonic Map of Italy 1:500.000; Structural Map of Italy 1:500.000. Two main NW-SE and NE-SW active fault systems have been identified from the joined analysis of seismic epicentres and faults. Moreover, tectonic structure without correlated seismic activity and a spread seismicity, apparently not linked with already known structures (buried faults?), have been identified.
Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions
NASA Astrophysics Data System (ADS)
Ufimtcev, E. M.
2017-11-01
The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.
Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame
NASA Astrophysics Data System (ADS)
Zhang, Cuiqiang; Zhou, Ying; Zhou, Deyuan; Lu, Xilin
2011-12-01
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
Seismic sample areas defined from incomplete catalogues: an application to the Italian territory
NASA Astrophysics Data System (ADS)
Mulargia, F.; Tinti, S.
1985-11-01
The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.
NASA Astrophysics Data System (ADS)
Peterson, K.; Barnhart, W. D.
2017-12-01
On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest surface displacements are characterized by dominantly fault- parallel displacements, indicating that post-seismic deformation in the observed time period following the 2013 earthquake likely cannot account for the 4-6 m convergence deficit left by that earthquake.
NASA Astrophysics Data System (ADS)
Filiatrault, Andre; Sullivan, Timothy
2014-08-01
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
NASA Astrophysics Data System (ADS)
Florin Balan, Stefan; Apostol, Bogdan Felix; Ionescu, Constantin
2017-12-01
The purpose of the paper is to show the great influence of nonlinear seismology in the analysis of the soil deposit response. Some elements about nonlinear seismology, the complexity of the seismic phenomenon are presented, and how we perceive seismic input for constructions at the surface of the earth. Further is presented the nonlinear behaviour of soil deposits during strong earthquakes as it results from resonant column tests (in laboratory) and from the spectral amplification factors (in situ records). The resonance phenomenon between natural period of a structure and soil deposit during strong earthquakes is analysed. All these studies have in common nonlinear behaviour of the soil deposit during strong earthquakes, in fact, the site where a new construction is built or an old one is rehabilitated and needs an optional assessment for mitigation seismic risk. All these studies stand up in supporting nonlinear seismology, the seismology of the XXI-st century.
Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy: Chapter 12
Johnson, Jessica H.; Swanson, Donald; Roman, Diana C.; Poland, Michael P.; Thelen, Weston A.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Seismic anisotropy, measured through shear wave splitting (SWS) analysis, can be indicative of the state of stress in Earth's crust. Changes in SWS at Kīlauea Volcano, Hawai‘i, associated with the onset of summit eruptive activity in 2008 hint at the potential of the technique for tracking volcanic activity. To use SWS observations as a monitoring tool, however, it is important to understand the cause of seismic anisotropy at the volcano throughout the eruptive cycle. To address this need, we analyzed SWS results from across Kīlauea in combination with macroscopic surface structures (mapped fractures, faults, and fissures) and stress orientations inferred from fault plane solutions. Seismic anisotropy seems to be due to pervasive aligned structures in most regions of the volcano. The upper East and Southwest Rift Zones, however, show a bimodality in stress and SWS, suggesting a stress discontinuity with depth, perhaps related to magma conduits that trend obliquely to the dominant structure. Other areas in and around Kīlauea Caldera display principal stresses of similar magnitudes, indicating that small stress perturbations can rotate the maximum horizontal compressive stress direction by up to 90°. In these locations, static structures generally control SWS, but dynamic conditions due to magmatic activity can override the structural control. Monitoring of SWS may therefore provide important signs of impending volcanism.
Geophysical Analysis of an Urban Region in Southwestern Pennsylvania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harbert, W.P.; Lipinski, B.A.; Kaminski, V.
2006-12-01
The goal of this project was to categorize the subsurface beneath an urban region of Southwestern Pennsylvania and to determine geological structure and attempt to image pathways for gas migration in this area. Natural gas had been commercially produced from this region at the turn of the century but this field, with more than 100 wells drilled, was closed approximately eighty years ago. There are surface expressions of gas migration visible in the study region. We applied geophysical methods to determine geological structure in this region, which included multi frequency electromagnetic survey performed using Geophex Gem-2 system, portable reflection seismicmore » and a System I/O-based reflection seismic survey. Processing and interpretation of EM data included filtering 10 raw channels (inphase and quadrature components measured at 5 frequencies), inverting the data for apparent conductivity using EM1DFM software by University of British Columbia, Canada and further interpretation in terms of nearsurface features at a maximum depth of up to 20 meters. Analysis of the collected seismic data included standard seismic processing and the use of the SurfSeis software package developed by the Kansas Geological Survey. Standard reflection processing of these data were completed using the LandMark ProMAX 2D/3D and Parallel Geoscience Corporations software. Final stacked sections were then imported into a Seismic Micro Technologies Kingdom Suite+ geodatabase for visualization and analysis. Interpretation of these data was successful in identifying and confirming a region of unmined Freeport coal, determining regional stratigraphic structure and identifying possible S-wave lower velocity anomalies in the shallow subsurface.« less
NASA Astrophysics Data System (ADS)
Cunningham, K. J.; Kluesner, J.; Westcott, R. L.; Ebuna, D. R.; Walker, C.
2016-12-01
Numerous large, semicircular, deep submarine depressions on the seafloor of the Miami Terrace (a bathymetric bench that interrupts the Atlantic continental slope on the southeastern carbonate Florida Platform) have been described as submarine sinkholes resulting from freshwater discharge at the seafloor and dissolution of carbonate rock. Multibeam-bathymetry and marine, high-resolution, multichannel 2D and 3D seismic-reflection data acquired over two of these depressions at water depths of about 250 m ("Miami sinkhole") and 336 m ("Key Biscayne sinkhole") indicate the depressions are pockmarks. Seafloor pockmarks are concave, crater-like depressions that form through the outburst or venting of fluid (gas, liquid) at the sea floor and are important seabed features that provide information about fluid flow on continental margins. Both the "Miami sinkhole" and "Key Biscayne sinkhole" (about 25 and 48m deep, respectively) have a seismic-chimney structure beneath them that indicates an origin related to seafloor fluid expulsion, as supported by multi-attribute analysis of the "Key Biscayne sinkhole". Further, there is no widening of the depressions with depth, as in the Fort Worth Basin, where downward widening of seismic, sub-circular, karst-collapse structures is common. However, hypogenic karst dissolution is not ruled out as part of the evolution of the two depressions. Indeed, a hypogenic karst pipe plausibly extends downward from the bottom of "Key Biscayne sinkhole", providing a passageway for focused upward flow of fluids to the seafloor. In "Key Biscayne sinkhole", the proposed karst pipe occurs above the underlying seismic chimney that contains flat bright spots (a hydrocarbon indicator) in the seismic data plausibly showing fluids are currently trapped beneath the pockmark within a tightly folded popup structure. The Miami Terrace depressions have seismic-reflection features similar to modern pockmarks imaged on the Maldives carbonate platform. The seismic-reflection data also show that ancient satellite expulsions formed buried pockmarks, slumps, and paleo-collapse structures in the carbonate sediments near the "Key Biscayne sinkhole". Additional processing of the 3D seismic data will aid in elucidation of the origin of these seafloor depressions.
NASA Astrophysics Data System (ADS)
Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama
2017-06-01
A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.
Deep structure of Llaima Volcano from seismic ambient noise tomography: Preliminary results
NASA Astrophysics Data System (ADS)
Franco, L.; Mikesell, T. D.; Rodd, R.; Lees, J. M.; Johnson, J. B.; Ronan, T.
2015-12-01
The ambient seismic noise tomography (ANT) method has become an important tool to image crustal structures and magmatic bodies at volcanoes. The frequency band of ambient noise provides complimentary data and added resolution to the deeper volcanic structures when compared to traditional tomography based on local earthquakes. The Llaima Volcano (38° 41.9' S and 71° 43.8' W) is a stratovolcano of basaltic-andesitic composition. Llaima is located in the South Volcanic Zone (ZVS) of the Andes and is listed as one of the most active volcanoes in South America, with a long documented historical record dating back to 1640. Llaima experienced violent eruptions in 1927 and 1957 (Naranjo and Moreno, 1991), and its last eruptive cycle (2008-2010) is considered the most important after the 1957 eruption. Lacking seismic constraints on the deep structure under Llaima, petrologic data have suggested the presence of magmatic bodies (dikes). These bodies likely play an important role in the eruptive dynamics of Llaima (Bouvet de Maisonneuve, C., et al 2012). Analysis of the 2008-2010 seismicity shows a southern zone (approx. 15 km from the Llaima summit) where there were many Very Long Period events occurring prior to the eruptions. This is in agreement with a deformation zone determined by InSAR analysis (Fournier et al, 2010 and Bathke, 2011), but no geologic model based on geophysical imaging has been created yet. Beginning in 2009, staff from the Chilean Geological Survey (SERNAGEOMIN) started to install a permanent seismic network consisting of nine stations. These nine stations have allowed Chilean seismologists to closely monitor the activity at Llaima, but prevented a high-resolution tomographic imaging study. During the summer of 2015, a temporary seismic network consisting of 26 stations was installed around Llaima. In the work presented here, we analyze continuous waveforms recorded between January and April 2015 from a total of 35 broadband stations (permanent and temporary). This network covers the total area of Llaima and provides the first study aimed at revealing the volcanic structure of Llaima. Moreover this is one of the first attempts to perform high resolution ANT at a Chilean volcano. We will present our tomography results and our first geologic interpretations of Llaima volcanic structure.
Earthquake Hazard for Aswan High Dam Area
NASA Astrophysics Data System (ADS)
Ismail, Awad
2016-04-01
Earthquake activity and seismic hazard analysis are important components of the seismic aspects for very essential structures such as major dams. The Aswan High Dam (AHD) created the second man-made reservoir in the world (Lake Nasser) and is constructed near urban areas pose a high-risk potential for downstream life and property. The Dam area is one of the seismically active regions in Egypt and is occupied with several cross faults, which are dominant in the east-west and north-south. Epicenters were found to cluster around active faults in the northern part of Lake and AHD location. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. The Aswan seismicity separates into shallow and deep seismic zones, between 0 and 14 and 14 and 30 km, respectively. These two seismic zones behave differently over time, as indicated by the seismicity rate, lateral extent, b-value, and spatial clustering. It is characterized by earthquake swarm sequences showing activation of the clustering-events over time and space. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area. The peak ground acceleration is estimated in the dam site based on strong ground motion simulation. This seismic hazard analyses have indicated that AHD is stable with the present seismicity. The earthquake epicenters have recently took place approximately 5 km west of the AHD structure. This suggests that AHD dam must be analyzed with high priority and redesigned to increase the safety of the embankments and their appurtenant structures, if necessary. Key word Aswan High Dam, Earthquake hazard reduction
NASA Astrophysics Data System (ADS)
Dey, Joyjit; Perumal, R. Jayangonda; Sarkar, Subham; Bhowmik, Anamitra
2017-08-01
In the NW Sub-Himalayan frontal thrust belt in India, seismic interpretation of subsurface geometry of the Kangra and Dehradun re-entrant mismatch with the previously proposed models. These procedures lack direct quantitative measurement on the seismic profile required for subsurface structural architecture. Here we use a predictive angular function for establishing quantitative geometric relationships between fault and fold shapes with `Distance-displacement method' (D-d method). It is a prognostic straightforward mechanism to probe the possible structural network from a seismic profile. Two seismic profiles Kangra-2 and Kangra-4 of Kangra re-entrant, Himachal Pradesh (India), are investigated for the fault-related folds associated with the Balh and Paror anticlines. For Paror anticline, the final cut-off angle β =35{°} was obtained by transforming the seismic time profile into depth profile to corroborate the interpreted structures. Also, the estimated shortening along the Jawalamukhi Thrust and Jhor Fault, lying between the Himalayan Frontal Thrust (HFT) and the Main Boundary Thrust (MBT) in the frontal fold-thrust belt, were found to be 6.06 and 0.25 km, respectively. Lastly, the geometric method of fold-fault relationship has been exercised to document the existence of a fault-bend fold above the Himalayan Frontal Thrust (HFT). Measurement of shortening along the fault plane is employed as an ancillary tool to prove the multi-bending geometry of the blind thrust of the Dehradun re-entrant.
Seismic Hazard Analysis — Quo vadis?
NASA Astrophysics Data System (ADS)
Klügel, Jens-Uwe
2008-05-01
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies. Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.
Seismic attribute analysis for reservoir and fluid prediction, Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansor, M.N.; Rudolph, K.W.; Richards, F.B.
1994-07-01
The Malay Basin is characterized by excellent seismic data quality, but complex clastic reservoir architecture. With these characteristics, seismic attribute analysis is a very important tool in exploration and development geoscience and is routinely used for mapping fluids and reservoir, recognizing and risking traps, assessment, depth conversion, well placement, and field development planning. Attribute analysis can be successfully applied to both 2-D and 3-D data as demonstrated by comparisons of 2-D and 3-D amplitude maps of the same area. There are many different methods of extracting amplitude information from seismic data, including amplitude mapping, horizon slice, summed horizon slice, isochronmore » slice, and horizon slice from AVO (amplitude versus offset) cube. Within the Malay Basin, horizon/isochron slice techniques have several advantages over simply extracting amplitudes from a picked horizon: they are much faster, permit examination of the amplitude structure of the entire cube, yield better results for weak/variable signatures, and aid summation of amplitudes. Summation in itself often yields improved results because it incorporates the signature from the entire reservoir interval, reducing any effects due to noise, mispicking, or waveform variations. Dip and azimuth attributes have been widely applied by industry for fault identification. In addition, these attributes can also be used to map signature variations associated with hydrocarbon contacts or stratigraphic changes, and this must be considered when using these attributes for structural interpretation.« less
Seismic signal and noise on Europa and how to use it
NASA Astrophysics Data System (ADS)
Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.
2017-12-01
Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.
NASA Astrophysics Data System (ADS)
Cristofoletti, P.; Esposito, A.; Anzidei, M.
2003-04-01
This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital and 3-dimensional environment data analysis applications for geophysical users and civil defense companies, also distributing them on the World Wide Web or in wireless connection realized by PDA computer. It runs on powerful PC platform under Win2000 Prof OS © and based on ArcGIS 8.2 ESRI © software.
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.; Zhang, L.
2016-12-01
Faults and fracture networks within the oceanic crust influence the pattern of hydrothermal circulation. This circulation changes the primary composition and structure of the crust as it evolves, particularly the upper crust (layer 2), through the secondary alteration of minerals and the infilling and 'sealing' of cracks. Processes influencing the extent and the depth within the crust of these changes are currently not well known. Alteration can be quantified by observing changes in the seismic velocity structure of the crust, and analysis of seismic anisotropy within the upper crust reveals the nature of ridge-parallel aligned faults and fractures. Here we show a 3D P-wave velocity model and anisotropy maps for 5.9 Ma crust at ODP borehole 504B, situated 200 km south of the Costa Rica Rift, derived from an active-source wide-angle seismic survey in the Panama Basin conducted in 2015. The seismic structure reveals relatively homogeneous, 5 km thick oceanic crust with upper crustal velocity boundaries occurring coincident with alteration fronts observed in 504B. Correlations between basement topography, velocity anomaly and anisotropy indicate that a distinct relationship between hydrothermal alteration, basement ridges, fractures, and the velocity structure of layer 2 exists in this location. A significant difference is seen in the velocity and anisotropic structure between regions to the east and west of the borehole, that correlates with patterns in heat flow observations and indicates that: 1) these two regions of crust have inherited differences in crustal fabric during accretion; and/or 2) different regimes of hydrothermal circulation have been active in each part of the crust as they have aged. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.
2015-12-01
Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.
Imaging The Shallow Velocity Structure Of The Hikurangi Megathrust Using Full-Waveform Inversion
NASA Astrophysics Data System (ADS)
Gray, M.; Bell, R. E.; Morgan, J. V.
2017-12-01
The Hikurangi margin, offshore North Island, New Zealand, exhibits a number of different slip behaviours, including shallow slow slip events (SSEs) (<2km to 15 km). There is also a strong contrast in geodetic coupling along the margin. While reflection data provides an image of the structure, no information about physical properties is provided. Full-waveform inversion (FWI) is an imaging technique which incorporates the full seismic wavelet rather than just the first arrivals, as in traditional tomography. By propagating synthetic seismic waves through a velocity model and comparing the synthetic wavelets to the field data, we update the velocity model until the real and synthetic wavelets match. In this way, we can resolve high-resolution physical property variations which influence the seismic wavefield. In our study, FWI was used to resolve the P-wave velocity structure at the Hikurangi megathrust up to 2km. This method enables investigation of how upper-plate structure may influence plate boundary slip behaviour. In 2005, a seismic survey was carried out over the Hikurangi megathrust. The data was acquired from a 12km streamer, allowing FWI analysis up to 2km below the seabed. The results show low velocity zones correlating to faults interpreted from reflection seismic imaging. We believe these low velocity zones, particularly near the frontal thrust resolve faulting in the area, and present these faults as possible fluid conduits. As the dataset was not collected specifically for FWI, the results show promise in resolving more information at depth. As such, both a 3D seismic survey and two drilling expeditions have been approved for the period November 2017 - May 2018. The seismic survey will be carried out with parameters optimal for FWI, allow imaging of the fault boundary, which is not possible with the current 2D data. The cores will provide direct geological evidence which can be used in conjunction with velocity models to discern lithology and structure. The current result identifies the existence of overpressure and aids in drilling safety when collecting these cores. In conjunction with the new IODP cores, the FWI model will improve understanding of properties of the shallow structure of the megathrust.
NASA Astrophysics Data System (ADS)
Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter
2008-07-01
Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher than the requirements of the Turkish Earthquake Code while the selected ground conditions represent the same characteristics. The main reason is that the ordinate of the horizontal elastic response spectrum for Eurocode 8 is increased by the soil factor. In TEC'07 force-based linear assessment, the seismic demands at cross-sections are to be checked with residual moment capacities; however, the chord rotations of primary ductile elements must be checked for Eurocode safety verifications. On the other hand, the demand curvatures from linear methods of analysis of Eurocode 8 together with TEC'07 are almost similar.
NASA Astrophysics Data System (ADS)
Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.
2015-05-01
We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.
DOT National Transportation Integrated Search
2004-08-01
This report is the second of a two-part publication entitled "Seismic Retrofitting Manual for Highway Structures". Part 2 includes new procedures for determining the seismic vulnerability of other important highway system structures, namely, retainin...
NASA Astrophysics Data System (ADS)
Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.
2014-09-01
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.
Development of damage probability matrices based on Greek earthquake damage data
NASA Astrophysics Data System (ADS)
Eleftheriadou, Anastasia K.; Karabinis, Athanasios I.
2011-03-01
A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio α g/ a o, where α g is the maximum peak ground acceleration (PGA) of the earthquake event and a o is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less
NASA Astrophysics Data System (ADS)
Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew
2017-12-01
The Western Kunlun mountain range is a slowly converging intracontinental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive a structural cross section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces from field sampling, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is proposed by combining all structural, morphological, and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of M ≥ 8 earthquakes if the whole decollement across the southern Tarim Basin is seismically locked and ruptures in one single event.
Seismic Monitoring for the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A; Nakanishi, K
2005-04-11
There is potential for earthquakes in the United Arab Emirates and in the Zagros mountains to cause structural damage and pose a threat to safety of people. Damaging effects from earthquakes can be mitigated by knowledge of the location and size of earthquakes, effects on construction, and monitoring these effects over time. Although a general idea of seismicity in the UAE may be determined with data from global seismic networks, these global networks do not have the sensitivity to record smaller seismic events and do not have the necessary accuracy to locate the events. A National Seismic Monitoring Observatory ismore » needed for the UAE that consists of a modern seismic network and a multidisciplinary staff that can analyze and interpret the data from the network. A seismic network is essential to locate earthquakes, determine event magnitudes, identify active faults and measure ground motions from earthquakes. Such a network can provide the data necessary for a reliable seismic hazard assessment in the UAE. The National Seismic Monitoring Observatory would ideally be situated at a university that would provide access to the wide range of disciplines needed in operating the network and providing expertise in analysis and interpretation.« less
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Study on vulnerability matrices of masonry buildings of mainland China
NASA Astrophysics Data System (ADS)
Sun, Baitao; Zhang, Guixin
2018-04-01
The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.
Seismic response of 3D steel buildings considering the effect of PR connections and gravity frames.
Reyes-Salazar, Alfredo; Bojórquez, Edén; Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J Luz
2014-01-01
The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system.
Cunningham, Kevin J.
2015-01-01
In addition to the preceding seismic-reflection analysis, interpretation of geophysical well log data from four effluent injection wells at the North District “Boulder Zone” Well Field delineated a narrow karst collapse structure beneath the injection facility that extends upward about 900 ft from the top of the Boulder Zone to about 125 ft above the top of the uppermost major permeable zone of the Lower Floridan aquifer. No karst collapse structures were identified in the seismic-reflection profiles acquired near the North District “Boulder Zone” Well Field. However, karst collapse structures at the level of the lowermost major permeable zone of the Lower Floridan aquifer at the South District “Boulder Zone” Well Field are present at three locations, as indicated by seismic-reflection data acquired in the C–1 Canal bordering the south side of the injection facility. Results from the North District “Boulder Zone” Well Field well data indicate that a plausible hydraulic connection between faults and stratiform permeability zones may contribute to the upward transport of effluent, terminating above the base of the deepest U.S. Environmental Protection Agency designated underground source of drinking water at the North District “Boulder Zone” Well Field.
Development of Laboratory Seismic Exploration Experiment for Education and Demonstration
NASA Astrophysics Data System (ADS)
Kuwano, O.; Nakanishi, A.
2016-12-01
We developed a laboratory experiment to simulate a seismic refraction survey for educational purposes. The experiment is tabletop scaled experiment using the soft hydrogel as an analogue material of a layered crust. So, we can conduct the seismic exploration experiment in a laboratory or a classroom. The softness and the transparency of the gel material enable us to observe the wave propagation with our naked eyes, using the photoelastic technique. By analyzing the waveforms obtained by the image analysis of the movie of the experiment, one can estimate the velocities and the structure of the gel specimen in the same way as an actual seismic survey. We report details of the practical course and the public outreach activities using the experiment.
NASA Astrophysics Data System (ADS)
Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.
2017-12-01
Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic groundwater conditions, which is another key factor to understand the subrosion process. The elastic parameters derived from seismic velocities can help to identify possible zones of instability.
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.; Krauß, F.; Giese, R.; Hedin, P.; Juhlin, C.
2017-09-01
The Scandinavian Caledonides provide a well-preserved example of a Palaeozoic continent-continent collision, where surface geology in combination with geophysical data provides information about the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep cored boreholes in western Jämtland, central Sweden. In 2014, the COSC-1 borehole was successfully drilled through a thick section of the Seve Nappe Complex. This tectonostratigraphic unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during the collisional orogeny. After the drilling, a major seismic survey was conducted in and around the COSC-1 borehole with the aim to recover findings on the structure around the borehole from core analysis and downhole logging. The survey comprised both seismic reflection and transmission experiments, and included zero-offset and multiazimuthal walkaway Vertical Seismic Profile (VSP) measurements, three long offset surface lines centred on the borehole, and a limited 3-D seismic survey. In this study, the data from the multiazimuthal walkaway VSP and the surface lines were used to derive detailed velocity models around the COSC-1 borehole by inverting the first-arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated directly from the zero-offset VSP revealed clear differences in velocities for horizontally and vertically travelling waves. Therefore, an anisotropic VTI (transversely isotropic with vertical axis of symmetry) model was found that explains first-arrival traveltimes from both the surface and borehole seismic data. The model is described by a vertical P-wave velocity function derived from zero-offset VSP and the Thomsen parameters ε = 0.03 and δ = 0.3, estimated by laboratory studies and the analysis of the surface seismic and walkaway VSP data. This resulting anisotropic model provides the basis for further detailed geological and geophysical investigations in the direct vicinity of the borehole.
Necessary Conditions for Intraplate Seismic Zones in North America
NASA Astrophysics Data System (ADS)
Thomas, William A.; Powell, Christine A.
2017-12-01
The cause of intraplate seismic zones persists as an important scientific and societal question. Most intraplate earthquakes are concentrated in specific seismic zones along or adjacent to large-scale basement structures (e.g., rifts or sutures at ancient plate boundaries) within continental crust. The major intraplate seismic zones are limited to specific segments and are not distributed along the lengths of the ancient structures. We present a new hypothesis that major intraplate seismic zones are restricted to places where concentrated crustal deformation (CCD) is overprinted on large-scale basement structures. Examples where CCD affects the stability of specific parts of large-scale structures in response to present-day stress conditions include the most active seismic zones in central and eastern North America: Charlevoix, Eastern Tennessee, and New Madrid. Our hypothesis has important implications for the assessment of seismic hazards.
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
Dynamic response analysis of surrounding rock under the continuous blasting seismic wave
NASA Astrophysics Data System (ADS)
Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.
2017-10-01
The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.
Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy
NASA Astrophysics Data System (ADS)
Diaferio, Mariella; Foti, Dora
2017-09-01
The present paper deals with the evaluation of the seismic vulnerability of slender historical buildings; these structures, in fact, may manifest a high risk with respect to seismic actions as usually they have been designed to resist to gravitational loads only, and are characterized by a high flexibility. To evaluate this behavior, the bell tower of the Trani's Cathedral is investigated. The tower is 57 m tall and is characterized by an unusual building typology, i.e., the walls are composed of a concrete core coupled with external masonry stones. The dynamic parameters and the mechanical properties of the tower have been evaluated on the basis of an extensive experimental campaign that made use of ambient vibration tests and ground penetrating radar tests. Such data have been utilized to calibrate a numerical model of the examined tower. A linear static analysis, a dynamic analysis and a nonlinear static analysis have been carried out on such model to evaluate the displacement capacity of the tower and the seismic risk assessment in accordance with the Italian guidelines.
Seismic imaging: From classical to adjoint tomography
NASA Astrophysics Data System (ADS)
Liu, Q.; Gu, Y. J.
2012-09-01
Seismic tomography has been a vital tool in probing the Earth's internal structure and enhancing our knowledge of dynamical processes in the Earth's crust and mantle. While various tomographic techniques differ in data types utilized (e.g., body vs. surface waves), data sensitivity (ray vs. finite-frequency approximations), and choices of model parameterization and regularization, most global mantle tomographic models agree well at long wavelengths, owing to the presence and typical dimensions of cold subducted oceanic lithospheres and hot, ascending mantle plumes (e.g., in central Pacific and Africa). Structures at relatively small length scales remain controversial, though, as will be discussed in this paper, they are becoming increasingly resolvable with the fast expanding global and regional seismic networks and improved forward modeling and inversion techniques. This review paper aims to provide an overview of classical tomography methods, key debates pertaining to the resolution of mantle tomographic models, as well as to highlight recent theoretical and computational advances in forward-modeling methods that spearheaded the developments in accurate computation of sensitivity kernels and adjoint tomography. The first part of the paper is devoted to traditional traveltime and waveform tomography. While these approaches established a firm foundation for global and regional seismic tomography, data coverage and the use of approximate sensitivity kernels remained as key limiting factors in the resolution of the targeted structures. In comparison to classical tomography, adjoint tomography takes advantage of full 3D numerical simulations in forward modeling and, in many ways, revolutionizes the seismic imaging of heterogeneous structures with strong velocity contrasts. For this reason, this review provides details of the implementation, resolution and potential challenges of adjoint tomography. Further discussions of techniques that are presently popular in seismic array analysis, such as noise correlation functions, receiver functions, inverse scattering imaging, and the adaptation of adjoint tomography to these different datasets highlight the promising future of seismic tomography.
NASA Astrophysics Data System (ADS)
Guo, L.; Gao, R.; Meng, X.; Zhang, J.; Wang, H.; Liu, Y.
2013-12-01
The South China continent (SCC), located in the transition zone of the Eurasia, India and Pacific plates, formed in the Meso-Neoproterozoic by collision of the Yangtze block and the Cathaysia block. However, the boundaries of the two blocks before the late Paleozoic (from Meso-Neoproterozoic to early Paleozoic) remain debated in the literature due to strong and complex tectonic and magmatic activities since then. The south of Jiangnan archicontinent is covered mostly by the thick strata since the late Paleozoic, the surface of which is widely covered by the vegetation. And the regional tectonic deformation is extremely complicated with few basal outcrops. For decades, a variety of geophysical detections have been performed in the SCC for understanding the deep structure and tectonic evolution, including deep seismic sounding (DSS) profiles, magnetotelluric sounding (MT) profiles, gravity and magnetic surveys and a small amount of deep seismic reflection profiles. However, due to the limitations of resolution and accuracy of the observed geophysical data in the past, especially short of the deep seismic reflection profiles to reveal fine lithosphere structure, different scientists presented various views on the division of tectonic units in the SCC. In quite recent years, the SinoProbe-02 project launched a long profile of geophysical detections across the two blocks in the SCC, including deep seismic reflection, DSS, MT, and broadband seismic observation, the resolution and accuracy of which had been improved greatly. These newly data will benefit better understanding the deep structure and tectonic evolution of the SCC. Here, we assembled high-resolution Bouguer gravity anomalies and aeromagnetic anomalies data in the SCC. The magnetic data were reduced to the pole by used a varying magnetic inclinations algorithm. We then performed anomaly separation and multi-scales lineation structure analysis on the gravity and RTP magnetic data, and then did 3D fusion analysis on them. Seismic reflection profiles focus on fine lithosphere structure vertically along the profile, while gravity and magnetic methods are beneficial to reveal regional tectonic features laterally. The integrate study of seismic, gravity and magnetic data will play the advantages of various methods and constraint and confirm each other. Hence, we did the interpretation of gravity and magnetic data with constraints of the newly seismic reflection profile. Based on the above studies, we traced the boundaries of tectonic units in the SCC from Meso-Neoproterozoic to early Paleozoic, and formed a certain understanding of the tectonic evolution in the SCC before the late Paleozoic. Acknowledgment: We acknowledge the financial support of the SinoProbe-02-01 and SinoProbe-01-05 projects, and the Fundamental Research Funds for the Central Universities.
NASA Astrophysics Data System (ADS)
Tan, Chee Ghuan; Chia, Wei Ting; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Adiyanto, Mohd Irwan
2017-10-01
On 5th June 2015, a moderate earthquake with Mw 5.9 hit Ranau, resulted in damages of the existing non-seismically designed buildings, such that 61 buildings, including mosques, schools, hospitals and Ranau police headquarters were suffered from different level structural damages. Soft storey irregularity is one of the main reasons of the building damage. This study is to investigate the soft-story effect on the propagation path of plastic hinges RC building under seismic excitation. The plastic hinges formation and seismic performance of five moment resisting RC frames with different infill configurations are studied. The seismic performance of building is evaluated by Incremental Dynamic Analysis (IDA). Open ground soft storey structure shows the lowest seismic resistance, collapses at 0.55g pga. The maximum interstorey drift ratio (IDRmax) in soft storey buildings ranging from 0.53% to 2.96% which are far greater than bare frame ranging from 0.095% to 0.69%. The presence of infill walls creates stiffer upper stories causing moments concentrate at the soft storey, resulting the path of plastic hinge propagation is dominant at the soft storey columns. Hence, the buildings with soft storey are very susceptible under earthquake load.
NASA Astrophysics Data System (ADS)
Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.
2017-04-01
The Gulf of California represents a young oblique rift/transtensional plate boundary in which all of the transform faults are actively shearing the crust, separated by active rift segments. Previous workers have shown that in the northern Gulf of California, the relative plate motion between the Pacific and North American plates is distributed between: a) the Cerro Prieto Fault (CPF) in the NE b) the Ballenas Transform Fault (BTF) in the SW and c) a pull-apart structure located between these two faults consisting of a number of extensional basins (the Wagner, Consag, and Upper and Lower Delfin basins). A plate boundary relocation at approximately 2 Ma, continued to separate Isla Angel de la Guarda from the Baja California peninsula and created the 200x70 km2 NE-SW pull-apart structure located northeast of the BTF. Here we use seismic stratigraphy analysis of the UL9905 high resolution reflection seismic dataset acquired by the Lamont-Doherty Earth Observatory, Caltech, and the Centro de Investigación Científica y de Educación Superior de Ensenada to build on previous structural interpretations and seek to further understand the processes that formed the structural and sedimentary architecture of the pull-apart basin in the northern Gulf of California. We examine the formation of depositional and deformation structures in relation to the regional tectonics to provide insight into the development of structural patterns and related seismic-stratigraphic features in young rift-transform interactions. Using bathymetric data, characteristic seismic-stratigraphic packages, and seismic evidence of faulting, we confirm the existence of three major structural domains in the northern Gulf of California and examine the interaction of the seismic stratigraphy and tectonic processes in each zone. The first and most distinctive is an abrupt NE-SW 28x5 km2 depression on the seabed of the Lower Delfin Basin. This is aligned orthogonally to the BTF, is situated at its northern end, and is an active rift. The second structural domain is a large, NE-SW-trending anticlinorium 60 km wide to the southeast of the rift zone, towards the Tiburon basin. One possibility is that it represents a positive flower structure and thus indicates a transpressional domain. However, individual structures within the broader zone are normal faults and negative flower structures, suggesting transtensional deformation, and the overall structure may be a roll-over antiform formed on a deep detachment structure. Finally, a strike-slip-dominated zone occurs along the northward continuation of the Ballenas Transform Fault. This is accompanied by the formation of submarine volcanic knolls. These patterns can be compared with seismic stratigraphy facies and structural patterns in mature transform margins and potentially give insight into their early history.
Small aperture seismic arrays for studying planetary interiors and seismicity
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.
2017-12-01
Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.
Puerto Rico Strong Motion Seismic Network
NASA Astrophysics Data System (ADS)
Huerta-Lopez, C. I.; Martínez-Cruzado, J. A.; Martínez-Pagan, J.; Santana-Torres, E. X.; Torres-O, D. M.
2014-12-01
The Puerto Rico Strong Motion Seismic Network is currently in charge of the operation of: (i) free-field (ff) strong motion stations, (ii) instrumented structures (STR) (Dams, Bridges, Buildings), and (iii) the data acquisition/monitoring and analysis of earthquakes considered strong from the point of view of their intensity and magnitude. All these instruments are deployed in the Puerto Rico Island (PRI), US-, and British-Virgin Islands (BVI), and Dominican Republic (DR). The Puerto Rico Island and the Caribbean region have high potential to be affected by earthquakes that could be catastrophic for the area. The Puerto Rico Strong Motion Seismic Network (actually Puerto Rico Strong Motion Program, PRSMP) has grown since 1970's from 7 ff strong motion stations and one instrumented building with analog accelerographs to 111 ff strong motion stations and 16 instrumented buildings with digital accelerographs: PRI: 88 ff, 16 STR., DR: 13 ff, BVI: 5 ff, 2 STR collecting data via IP (internet), DU (telephone), and stand alone stations The current stage of the PRSMP seismic network, the analysis of moderate earthquakes that were recorded and/or occurred on the island, results of the intensity distribution of selected earthquakes, as well as results of dynamic parameter identification of some of the instrumented structures are here presented.
NASA Astrophysics Data System (ADS)
Goldgruber, Markus; Shahriari, Shervin; Zenz, Gerald
2015-11-01
To reduce the natural hazard risks—due to, e.g., earthquake excitation—seismic safety assessments are carried out. Especially under severe loading, due to maximum credible or the so-called safety evaluation earthquake, critical infrastructure, as these are high dams, must not fail. However, under high loading local failure might be allowed as long as the entire structure does not collapse. Hence, for a dam, the loss of sliding stability during a short time period might be acceptable if the cumulative displacements after an event are below an acceptable value. This performance is not only valid for gravity dams but also for rock blocks as sliding is even more imminent in zones with higher seismic activity. Sliding modes cannot only occur in the dam-foundation contact, but also in sliding planes formed due to geological conditions. This work compares the qualitative possible and critical displacements for two methods, the well-known Newmark's sliding block analysis and a Fluid-Foundation-Structure Interaction simulation with the finite elements method. The results comparison of the maximum displacements at the end of the seismic event of the two methods depicts that for high friction angles, they are fairly close. For low friction angles, the results are differing more. The conclusion is that the commonly used Newmark's sliding block analysis and the finite elements simulation are only comparable for high friction angles, where this factor dominates the behaviour of the structure. Worth to mention is that the proposed simulation methods are also applicable to dynamic rock wedge problems and not only to dams.
NASA Astrophysics Data System (ADS)
Trehu, A. M.
2017-12-01
The 2014 event partially filled a well-recognized seismic gap that had not experienced a large earthquake since a pair of devastating M9 events in 1868 and 1877. The rupture sequence was marked by an unusually long and distinct precursory period that was well recorded by onshore seismic and geodetic instruments of the Integrated Plate Boundary Observatory Chile (IPOC). The pattern of foreshock activity, which defined a "classic" Mogi donut, is correlated with a circular residual gravity high that surrounds the patch of greatest slip during the main shock. Aftershocks generally propagated to the south and stopped in a region of relatively low pre-earthquake coupling. The remaining nearly 300-km long seismic gap is correlated with a distinct forearc residual gravity high. The correlation between the pre-, syn- and post-earthquake deformation patterns and the residual gravity anomalies indicates that crustal structure affects the distribution of seismic and aseismic deformation in response to plate convergence. Because the non-uniqueness inherent in modeling gravity data does not allow for a detailed geologic interpretation of the correlation between structure and slip, we conducted an ambitious seismic experiment using the R/V Marcus Langseth to acquire 5000 km of multichannel seismic seismic data using an 8-12.5-km long streamer and a 6600 cubic inch tuned air-gun array. The 45000 shots were also recorded on 70 ocean-bottom and 50 land-based seismometers. Shipboard analysis of the data indicates that the Moho of the Nazca plate is well imaged west of the trench, that deformation is distributed throughout the outer 10 km of the accretionary wedge as the rough topography of the Nazca plate is subducted, and that a reflection tentatively interpreted to be the plate boundary can be imaged continuously from the trench to the coast on at least one transect across the margin. Post-cruise data analysis is underway to process the MCS data using various techniques to determine along-strike continuity of plate boundary reflectivity and to use OBS and onshore large-aperture data to obtain high-resolution models of the crustal velocity structure of the subducting and overriding plates. The PICTURES Science Team incudes investigators in the US, Chile, Germany, France and the UK.
NASA Astrophysics Data System (ADS)
Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou
2014-12-01
Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.
Visualization of volumetric seismic data
NASA Astrophysics Data System (ADS)
Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk
2015-04-01
Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.
NASA Astrophysics Data System (ADS)
Dimech, J. L.; Weber, R. C.; Knapmeyer-Endrun, B.; Arnold, R.; Savage, M. K.
2016-12-01
The field of planetary science is poised for a major advance with the upcoming InSight mission to Mars due to launch in May 2018. Seismic analysis techniques adapted for use on planetary data are therefore highly relevant to the field. The heart of this project is in the application of new seismic analysis techniques to the lunar seismic dataset to learn more about the Moon's crust and mantle structure, with particular emphasis on `deep' moonquakes which are situated half-way between the lunar surface and its core with no surface expression. Techniques proven to work on the Moon might also be beneficial for InSight and future planetary seismology missions which face similar technical challenges. The techniques include: (1) an event-detection and classification algorithm based on `Hidden Markov Models' to reclassify known moonquakes and look for new ones. Apollo 17 gravimeter and geophone data will also be included in this effort. (2) Measurements of anisotropy in the lunar mantle and crust using `shear-wave splitting'. Preliminary measurements on deep moonquakes using the MFAST program are encouraging, and continued evaluation may reveal new structural information on the Moon's mantle. (3) Probabilistic moonquake locations using NonLinLoc, a non-linear hypocenter location technique, using a modified version of the codes designed to work with the Moon's radius. Successful application may provide a new catalog of moonquake locations with rigorous uncertainty information, which would be a valuable input into: (4) new fault plane constraints from focal mechanisms using a novel approach to Bayes' theorem which factor in uncertainties in hypocenter coordinates and S-P amplitude ratios. Preliminary results, such as shear-wave splitting measurements, will be presented and discussed.
Micro-seismicity within the Coso Geothermal field, California, from 1996-2012
Kaven, Joern; Hickman, Stephen H.; Weber, Lisa C.
2017-01-01
We extend our previous catalog of seismicity within the Coso Geothermal field by adding over two and a half years of additional data to prior results. In total, we locate over 16 years of seismicity spanning from April 1996 to May of 2012 using a refined velocity model, apply it to all events and utilize differential travel times in relocations to improve the accuracy of event locations. The improved locations elucidate major structural features within the reservoir that we interpret to be faults that contribute to heat and fluid flow within the reservoir. Much of the relocated seismicity remains diffuse between these major structural features, suggesting that a large volume of accessible and distributed fracture porosity is maintained within the geothermal reservoir through ongoing brittle failure. We further track changes in b value and seismic moment release within the reservoir as a whole through time. We find that b values decrease significantly during 2009 and 2010, coincident with the occurrence of a greater number of moderate magnitude earthquakes (3.0 ≤ ML < 4.5). Analysis of spatial variations in seismic moment release between years reveals that localized seismicity tends to spread from regions of high moment release into regions with previously low moment release, akin to aftershock sequences. These results indicate that the Coso reservoir is comprised of a network of fractures at a variety of spatial scales that evolves dynamically over time, with progressive changes in characteristics of microseismicity and inferred fractures and faults that are only evident from a long period of seismic monitoring analyzed using self-consistent methods.
Fault slip rates in the modern new madrid seismic zone
Mueller; Champion; Guccione; Kelson
1999-11-05
Structural and geomorphic analysis of late Holocene sediments in the Lake County region of the New Madrid seismic zone indicates that they are deformed by fault-related folding above the blind Reelfoot thrust fault. The widths of narrow kink bands exposed in trenches were used to model the Reelfoot scarp as a forelimb on a fault-bend fold; this, coupled with the age of folded sediment, yields a slip rate on the blind thrust of 6.1 +/- 0.7 mm/year for the past 2300 +/- 100 years. An alternative method used structural relief across the scarp and the estimated dip of the underlying blind thrust to calculate a slip rate of 4.8 +/- 0.2 mm/year. Geometric relations suggest that the right lateral slip rate on the New Madrid seismic zone is 1.8 to 2.0 mm/year.
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.
2015-12-01
An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.
Seismic Fragility Analysis of a Degraded Condensate Storage Tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Braverman, J.; Hofmayer, C.
2011-05-16
The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences ofmore » structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.« less
Medium effect on the characteristics of the coupled seismic and electromagnetic signals.
Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals
HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062
Effects of Irregular Bridge Columns and Feasibility of Seismic Regularity
NASA Astrophysics Data System (ADS)
Thomas, Abey E.
2018-05-01
Bridges with unequal column height is one of the main irregularities in bridge design particularly while negotiating steep valleys, making the bridges vulnerable to seismic action. The desirable behaviour of bridge columns towards seismic loading is that, they should perform in a regular fashion, i.e. the capacity of each column should be utilized evenly. But, this type of behaviour is often missing when the column heights are unequal along the length of the bridge, allowing short columns to bear the maximum lateral load. In the present study, the effects of unequal column height on the global seismic performance of bridges are studied using pushover analysis. Codes such as CalTrans (Engineering service center, earthquake engineering branch, 2013) and EC-8 (EN 1998-2: design of structures for earthquake resistance. Part 2: bridges, European Committee for Standardization, Brussels, 2005) suggests seismic regularity criterion for achieving regular seismic performance level at all the bridge columns. The feasibility of adopting these seismic regularity criterions along with those mentioned in literatures will be assessed for bridges designed as per the Indian Standards in the present study.
NASA Astrophysics Data System (ADS)
Nørmark, Egon; Jensen, Jørn B.; Bendixen, Carina; Clausen, Ole R.; Trinhammer, Per L.; Boldreel, Lars O.; Seidenkrantz, Marit S.; Fanget, Anne-Sophie
2014-05-01
The geological evolution of the Kattegat and Baltic Sea area during the last 130,000 years encompasses a complex series of glacial advances with highly oscillating ice margins interrupted by marine inundations and significant glacial lake deposition. One of the most significant lacustrine episodes is related to the build-up and drainage of the Baltic Glacial Lake during the last deglaciation. The link of these major depositional events to global climate as well as their impact on local and regional environment is, however, still poorly understood. The relation between the deep structures and Quaternary deposition is also not well resolved. In order to improve this understanding we aim at acquiring an understanding of the 3-dimensional evolution of the Quaternary sediments in the Kattegat and Baltic Sea areas using seismic studies. We relate these seismic data to the palaeoclimatic and sedimentological information obtained through the sedimentological and micropalaeontological analyses of both short sediment gravity cores and of samples from IODP Expedition 347 drilled in the fall of 2013. Different types of seismic data are needed for studying the relationship between the crustal structure, pre-Quaternary topography, and Quaternary deposition than seismic data needed for studying the detailed depositional dynamics within the Quaternary deposits. This is because when using airguns with a deep penetration needed for studying deep-laying structures the resulting seismic data has too poor resolution for studying the very shallow parts. In contrast the very high resolution sparker data has a poor penetration depth. Traditionally, these two different types of seismic data are for practical reasons not been collected simultaneously, or even on the same cruise. As a result, these two (complementary) dataset are difficult to compare, especially when they are acquired under different conditions (changes in positioning, noise levels, etc.). In this study, we have solved the problem by acquiring both seismic datasets simultaneously during the same leg. Both the sparker and airgun energy sources are towed behind the vessel, and the common streamer is placed in the middle behind the energy sources. In order to optimize the acquisition hydrophones are spaced with 3.125m for the uppermost 125m of the layout, where the main part of the reflections for the Sparker data is acquired, whereas the spacing is 6.25m at the remaining 400m of the streamer. The energy release of the different sources is timed in order to minimize the interference between the two systems. The resulting seismic sections are excellent examples of different data from the same area that is resolved at different depth intervals and vertical resolution. This allows us to directly compare the data and gives a hitherto unseen differentiation of seismic resolution in different parts of the succession. A preliminary geological analysis of the data shows that deposition in a number of the Quaternary mini-basins is controlled by the underlying structures, which can be related to the Sorgenfrei-Tornquist fault Zone. This infers that deep structures in some areas may still control the present bathymetry, even within smaller basins. The dating of the events and the relation to global climatic changes awaits the biostratigraphical analysis of the IODP boreholes.
NASA Astrophysics Data System (ADS)
Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.
2016-12-01
Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.
2016-05-01
An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
Gas migration through Opouawe Bank at the Hikurangi margin offshore New Zealand
NASA Astrophysics Data System (ADS)
Koch, Stephanie; Schroeder, Henning; Haeckel, Matthias; Berndt, Christian; Bialas, Joerg; Papenberg, Cord; Klaeschen, Dirk; Plaza-Faverola, Andreia
2016-06-01
This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand's Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500-2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
NASA Astrophysics Data System (ADS)
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
The role of GIS in urban seismic risk studies: application to the city of Almería (southern Spain)
NASA Astrophysics Data System (ADS)
Rivas-Medina, A.; Gaspar-Escribano, J. M.; Benito, B.; Bernabé, M. A.
2013-11-01
This work describes the structure and characteristics of the geographic information system (GIS) developed for the urban seismic risk study of the city of Almería (southern Spain), identifying the stages in which the use of this tool proved to be very beneficial for adopting informed decisions throughout the execution of the work. After the completion of the regional emergency plans for seismic risk in Spain and its subsequent approval by the National Civil Defence Commission, the municipalities that need to develop specific local seismic risk plans have been identified. Hence, the next action is to develop urban seismic risk analyses at a proper scale (Urban Seismic Risk Evaluation - Risk-UR). For this evaluation, different factors influencing seismic risk such as seismic hazard, geotechnical soil characteristics, vulnerability of structures of the region, reparation costs of damaged buildings and exposed population are combined. All these variables are gathered and analysed within a GIS and subsequently used for seismic risk estimation. The GIS constitutes a highly useful working tool because it facilitates data interoperability, making the great volume of information required and the numerous processes that take part in the calculations easier to handle, speeding up the analysis and the interpretation and presentation of the results of the different working phases. The result of this study is based on a great set of variables that provide a comprehensive view of the urban seismic risk, such as the damage distribution of buildings and dwellings of different typologies, the mean damage and the number of uninhabitable buildings for the expected seismic motion, the number of dead and injured at different times of the day, the cost of reconstruction and repair of buildings, among others. These results are intended for interpretation and decision making in emergency management by unspecialised users (Civil Defence technicians and managers).
High-resolution probing of inner core structure with seismic interferometry
NASA Astrophysics Data System (ADS)
Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.
2015-12-01
Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandara, A.; Ramundo, F.; Spina, G.
2008-07-08
The first part of a study concerning innovative intervention techniques for dissipate a share of the input seismic energy compatible with the preservation of existing buildings, including historical and monumental constructions, is presented in this paper. The case of a typical scheme of a long-bay box-like masonry building fitted with a dissipative floating roof is analyzed. In the examined building a wide simulation analysis has shown the achievement of a very satisfying performance. Furthermore, the effectiveness of the system can be maximized by means of active or semi-active devices implemented in the floating roof and a significant reduction of themore » seismic impact on the building can be obtained compared with non-controlled or simply passively controlled structure. The results prove the remarkable increase of the energy dissipation capability of the system, as well as the reduction of structural damage, independently of any specific strengthening intervention.« less
NASA Astrophysics Data System (ADS)
Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.
2016-12-01
The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.
Fault analysis as part of urban geothermal exploration in the German Molasse Basin around Munich
NASA Astrophysics Data System (ADS)
Ziesch, Jennifer; Tanner, David C.; Hanstein, Sabine; Buness, Hermann; Krawczyk, Charlotte M.; Thomas, Rüdiger
2017-04-01
Faults play an essential role in geothermal exploration. The prediction of potential fluid pathways in urban Munich has been started with the interpretation of a 3-D seismic survey (170 km2) that was acquired during the winter of 2015/2016 in Munich (Germany) within the Bavarian Molasse Basin. As a part of the research project GeoParaMoL*, we focus on the structural interpretation and retro-deformation analysis to detect sub-seismic structures within the reservoir and overburden. We explore the hydrothermal Malm carbonate reservoir (at a depth of 3 km) as a source of deep geothermal energy and the overburden of Tertiary Molasse sediments. The stratigraphic horizons, Top Aquitan, Top Chatt, Top Bausteinschichten, Top Lithothamnien limestone (Top Eocene), Top and Base Malm (Upper Jurassic), together with the detailed interpretation of the faults in the study area are used to construct a 3-D geological model. The study area is characterised by synthetic normal faults that strike parallel to the alpine front. Most major faults were active from Upper Jurassic up to the Miocene. The Munich Fault, which belongs to the Markt-Schwabener Lineament, has a maximum vertical offset of 350 metres in the central part, and contrary to previous interpretation based on 2-D seismic, this fault dies out in the eastern part of the area. The south-eastern part of the study area is dominated by a very complex fault system. Three faults that were previously detected in a smaller 3-D seismic survey at Unterhaching, to the south of the study area, with strike directions of 25°, 45° and 70° (Lüschen et al. 2014), were followed in to the new 3-D seismic survey interpretation. Particularly noticeable are relay ramps and horst/graben structures. The fault with a strike of 25° ends in three big sinkholes with a maximum vertical offset of 60 metres. We interpret this special structure as fault tip horsetail-structure, which caused a large amount of sub-seismic deformation. Consequently, this area could be characterised by increased fluid flow. This detailed understanding of the structural development and regional tectonics of the study area will guide the subsequent determination of potential fluid pathways in the new 3-D subsurface model of urban Munich. This project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R. & Schulz, R. (2014): 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany, Geothermics, 50, 167-179. * https://www.liag-hannover.de/en/fsp/ge/geoparamol.html
Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina
NASA Astrophysics Data System (ADS)
Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.
2007-05-01
Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.
Georgia-Armenia Transboarder seismicity studies
NASA Astrophysics Data System (ADS)
Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.
2012-12-01
In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed for the recent moderate size earthquakes and the results are in an agreement with paleo-trenching data showing normal fault mechanism on the south and strake slip on the northern edge of the fault. Local seismic tomography of Javakheti area has been performed in order to improve 3D structure of the region.
Cranswick, E.
1988-01-01
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Developments in seismic monitoring for risk reduction
Celebi, M.
2007-01-01
This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.
Rowe, Charlotte A.; Patton, Howard J.
2015-10-01
Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less
NASA Astrophysics Data System (ADS)
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
NASA Astrophysics Data System (ADS)
Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.
2017-12-01
The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an azimuthal gap of <270°, leaving 147 well-located events. This new seismic catalogue gives a detailed insight into the plate boundary structures at depth in the Papua New Guinea region. We are also able to delineate Wadati-Benioff seismicity to 600 km depth in the subducting Solomon Sea plate beneath the New Britain arc.
NASA Astrophysics Data System (ADS)
Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.
2016-12-01
The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an azimuthal gap of <270°, leaving 147 well-located events. This new seismic catalogue gives a detailed insight into the plate boundary structures at depth in the Papua New Guinea region. We are also able to delineate Wadati-Benioff seismicity to 600 km depth in the subducting Solomon Sea plate beneath the New Britain arc.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Nishida, K.; Takeda, T.
2012-12-01
Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the logarithm of the lapse time. At some stations, the estimated P-wave velocity also shows co-seismic velocity decrease and subsequent gradual recovery. However, the magnitude of estimated P-wave velocity change is much smaller than that of S-wave, and at the other stations, the magnitude of P-wave velocity change is smaller than the resolution of our analysis. Using the CCFs computed from horizontal components, we also determine the seismic anisotropy in subsurface structure, and examine its temporal change. The estimated strength of anisotropy strength shows co-seismic increase at most of stations where co-seismic velocity change is detected. Nevertheless, the direction of anisotropy after the 2011 Tohoku earthquake stays about the same as before. These results suggest that, in addition to the change in pore pressure and corresponding decrease in the rigidity, the change in the aspect ratio of pre-existing subsurface fractures/micro-crack may be another key mechanism causing the co-seismic velocity change in shallow subsurface structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslenikov, O.R.; Mraz, M.J.; Johnson, J.J.
1986-03-01
This report documents the seismic analyses performed by SMA for the MFTF-B Axicell vacuum vessel. In the course of this study we performed response spectrum analyses, CLASSI fixed-base analyses, and SSI analyses that included interaction effects between the vessel and vault. The response spectrum analysis served to benchmark certain modeling differences between the LLNL and SMA versions of the vessel model. The fixed-base analysis benchmarked the differences between analysis techniques. The SSI analyses provided our best estimate of vessel response to the postulated seismic excitation for the MFTF-B facility, and included consideration of uncertainties in soil properties by calculating responsemore » for a range of soil shear moduli. Our results are presented in this report as tables of comparisons of specific member forces from our analyses and the analyses performed by LLNL. Also presented are tables of maximum accelerations and relative displacements and plots of response spectra at various selected locations.« less
Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics
NASA Astrophysics Data System (ADS)
Cao, J.; Wu, S.; He, X.
2016-12-01
Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.
NASA Astrophysics Data System (ADS)
Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang
2017-09-01
Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha
2014-05-01
Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the possibility of an earthquake of magnitude 7 or greater.
The Shock and Vibration Digest. Volume 14, Number 11
1982-11-01
cooled reactor 1981) ( HTGR ) core under seismic excitation his been developed . N82-18644 The computer program can be used to predict the behavior (In...French) of the HTGR core under seismic excitation. Key Words: Computer programs , Modal analysis, Beams, Undamped structures A computation method is...30) PROGRAMMING c c Dale and Cohen [221 extended the method of McMunn and Plunkett [201 developed a compute- McMunn and Plunkett to continuous systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doug Blankenship
PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).
NASA Astrophysics Data System (ADS)
Fedorik, Jakub; Toscani, Giovanni; Lodolo, Emanuele; Civile, Dario; Bonini, Lorenzo; Seno, Silvio
2018-01-01
Seismo-stratigraphic and structural analysis of a large number of multichannel seismic reflection profiles acquired in the northern part of the Sicilian Channel allowed a 3-D reconstruction of a regional NS-trending transfer zone which displays a transcurrent tectonic regime, and that is of broad relevance for its seismotectonic and geodynamic implications. It is constituted of two major transcurrent faults delimiting a 30-km-wide, mostly undeformed basin. The western fault (Capo Granitola) does not show clear evidence of present-day tectonic activity, and toward the south it is connected with the volcanic area of the Graham Bank. The eastern fault (Sciacca) is structurally more complex, showing active deformation at the sea-floor, particularly evident along the Nerita Bank. The Sciacca Fault is constituted of a master and splay faults compatible with a right-lateral kinematics. Sciacca Fault is superimposed on an inherited weakness zone (a Mesozoic carbonate ramp), which borders to the east a 2.5-km-thick Plio-Quaternary basin, and that was reactivated during the Pliocene. A set of scaled claybox analogue models was carried out in order to better understand the tectonic processes that led to the structural setting displayed by seismic data. Tectonic structures and uplift/subsidence patterns generated by the models are compatible with the 3-D model obtained from seismic reflection profiles. The best fit between the tectonic setting deriving from the interpretation of seismic profiles and the analogue models was obtained considering a right-lateral movement for the Sciacca Fault. Nevertheless, the stress field in the study area derived from GPS measurements does not support the present-day modelled right-lateral kinematics along the Sciacca Fault. Moreover, seismic events along this fault show focal mechanisms with a left-lateral component. We ascribe the slip change along the Sciacca Fault, from a right-lateral transcurrent regime to the present-day left-lateral kinematics to a change of principal horizontal stress direction starting from Late Pliocene.
NASA Astrophysics Data System (ADS)
Sil, Arjun; Longmailai, Thaihamdau
2017-09-01
The lateral displacement of Reinforced Concrete (RC) frame building during an earthquake has an important impact on the structural stability and integrity. However, seismic analysis and design of RC building needs more concern due to its complex behavior as the performance of the structure links to the features of the system having many influencing parameters and other inherent uncertainties. The reliability approach takes into account the factors and uncertainty in design influencing the performance or response of the structure in which the safety level or the probability of failure could be ascertained. This present study, aims to assess the reliability of seismic performance of a four storey residential RC building seismically located in Zone-V as per the code provisions given in the Indian Standards IS: 1893-2002. The reliability assessment performed by deriving an explicit expression for maximum roof-lateral displacement as a failure function by regression method. A total of 319, four storey RC buildings were analyzed by linear static method using SAP2000. However, the change in the lateral-roof displacement with the variation of the parameters (column dimension, beam dimension, grade of concrete, floor height and total weight of the structure) was observed. A generalized relation established by regression method which could be used to estimate the expected lateral displacement owing to those selected parameters. A comparison made between the displacements obtained from analysis with that of the equation so formed. However, it shows that the proposed relation could be used directly to determine the expected maximum lateral displacement. The data obtained from the statistical computations was then used to obtain the probability of failure and the reliability.
Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queen, John H.
2016-05-09
Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parametersmore » for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most effective seismic tools for getting information on the internal structure of faults and fractures in support of fluid flow pathway management and EGS treatment. Scattered events similar to those expected from faults and fractures are seen in the VSP reported here. Unfortunately, the source offset and well depth coverage do not allow for detailed analysis of these events. This limited coverage also precluded the use of advanced migration and imaging algorithms. More extensive acquisition is needed to support fault and fracture characterization in the geothermal reservoir at Brady's Hot Springs. The VSP was effective in generating interval velocity estimates over the depths covered by the array. Upgoing reflection events are also visible in the VSP results at locations corresponding to reflection events in the surface seismic. Overall, the high temperature rated fiber optic sensors used in the VSP produced useful results. Modeling has been found useful in the interpretation of both surface reflection seismic and VSP data. It has helped identify possible near surface scattering in the surface seismic data. It has highlighted potential scattering events from deeper faults in the VSP data. Inclusion of more detailed fault and fracture specific stiffness parameters are needed to fully interpret fault and fracture scattered events for flow properties (Pyrak-Nolte and Morris, 2000, Zhu and Snieder, 2002). Shear wave methods were applied in both the surface seismic reflection and VSP work. They were not found to be effective in the Brady's Hot Springs area. This was due to the extreme attenuation of shear waves in the near surface at Brady's. This does not imply that they will be ineffective in general. In geothermal areas where good shear waves can be recorded, modeling suggests they should be very useful for characterizing faults and fractures.« less
NASA Astrophysics Data System (ADS)
Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio
2017-07-01
The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.
Integrated geologic and geophysical studies of North American continental intraplate seismicity
Van Lanen, X.; Mooney, W.D.
2007-01-01
The origin of earthquakes within stable continental regions has been the subject of debate over the past thirty years. Here, we examine the correlation of North American stable continental region earthquakes using five geologic and geophysical data sets: (1) a newly compiled age-province map; (2) Bouguer gravity data; (3) aeromagnetic anomalies; (4) the tectonic stress field; and (5) crustal structure as revealed by deep seismic-reflection profiles. We find that: (1) Archean-age (3.8-2.5 Ga) North American crust is essentially aseismic, whereas post-Archean (less than 2.5 Ga) crust shows no clear correlation of crustal age and earthquake frequency or moment release; (2) seismicity is correlated with continental paleorifts; and (3) seismicity is correlated with the NE-SW structural grain of the crust of eastern North America, which in turn reflects the opening and closing of the proto- and modern Atlantic Ocean. This structural grain can be discerned as clear NE-SW lineaments in the Bouguer gravity and aeromagnetic anomaly maps. Stable continental region seismicity either: (1) follows the NE-SW lineaments; (2) is aligned at right angles to these lineaments; or (3) forms clusters at what have been termed stress concentrators (e.g., igneous intrusions and intersecting faults). Seismicity levels are very low to the west of the Grenville Front (i.e., in the Archean Superior craton). The correlation of seismicity with NE-SW-oriented lineaments implies that some stable continental region seismicity is related to the accretion and rifting processes that have formed the North American continental crust during the past 2 b.y. We further evaluate this hypothesis by correlating stable continental region seismicity with recently obtained deep seismic-reflection images of the Appalachian and Grenville crust of southern Canada. These images show numerous faults that penetrate deep (40 km) into the crust. An analysis of hypocentral depths for stable continental region earthquakes shows that the frequency and moment magnitude of events are nearly uniform for the entire 0-35 km depths over which crustal earthquakes extend. This is in contradiction with the hypothesis that larger events have deeper focal depths. We conclude that the deep structure of the crust, in particular the existence of deeply penetrating faults, is the controlling parameter, rather than lateral variations in temperature, rheology, or high pore pressure. The distribution of stable continental region earthquakes in eastern North America is consistent with the existence of deeply penetrating crustal faults that have been reactivated in the present stress field. We infer that future earthquakes may occur anywhere along the geophysical lineations that we have identified. This implies that seismic hazard is more widespread in central and eastern North America than indicated by the limited known historical distribution of seismicity. ?? 2007 The Geological Society of America.
Structure of the North American Atlantic Continental Margin.
ERIC Educational Resources Information Center
Klitgord, K. K.; Schlee, J. S.
1986-01-01
Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)
Performance evaluation of existing building structure with pushover analysis
NASA Astrophysics Data System (ADS)
Handana, MAP; Karolina, R.; Steven
2018-02-01
In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Faccenna, Claudio
2018-05-01
The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.
NASA Astrophysics Data System (ADS)
Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.
2017-12-01
Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.
Reliability assessment of an OVH HV power line truss transmission tower subjected to seismic loading
NASA Astrophysics Data System (ADS)
Winkelmann, Karol; Jakubowska, Patrycja; Soltysik, Barbara
2017-03-01
The study focuses on the reliability of a transmission tower OS24 ON150 + 10, an element of an OVH HV power line, under seismic loading. In order to describe the seismic force, the real-life recording of the horizontal component of the El Centro earthquake was adopted. The amplitude and the period of this excitation are assumed random, their variation is described by Weibull distribution. The possible space state of the phenomenon is given in the form of a structural response surface (RSM methodology), approximated by an ANOVA table with directional sampling (DS) points. Four design limit states are considered: stress limit criterion for a natural load combination, criterion for an accidental combination (one-sided cable snap), vertical and horizontal translation criteria. According to these cases the HLRF reliability index β is used for structural safety assessment. The RSM approach is well suited for the analysis - it is numerically efficient, not excessively time consuming, indicating a high confidence level. Given the problem conditions, the seismic excitation is shown the sufficient trigger to the loss of load-bearing capacity or stability of the tower.
Shallow Refraction and Rg Analysis at the Source Physics Experiment Site
NASA Astrophysics Data System (ADS)
Rowe, C. A.; Carmichael, J. D.; Patton, H. J.; Snelson, C. M.; Coblentz, D. D.; Larmat, C. S.; Yang, X.
2014-12-01
We present analyses of the two-dimensional (2D) seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended 100 to 2000 m from the source borehole with 100 m spacing. With seismic sources provided only at one end of the geophone lines, standard refraction profiling methods are unable to resolve the seismic velocity structures unambiguously. In previous work we have shown overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines, Line 2, leading us to offer a simplified1D model for this line. A more detailed inspection of Line 2 supports a 2D re-interpretation of the structure on this line. We observe variation along the length of the line, as evidenced by abrupt and consistent changes in the behavior of surface waves at higher frequencies. We interpret this as a manifestation of significant material or structural heterogeneity in the shallowest strata. This interpretation is consistent with P-wave and Rg attenuation observations. Planned additional sources, both at the distal ends of the profiles and intermittently within their lengths, will provide significant enhancement to our ability to resolve this complicated shallow structure.
Seismic Response of 3D Steel Buildings considering the Effect of PR Connections and Gravity Frames
Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J. Luz
2014-01-01
The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system. PMID:24995357
Analysis of the 2003-2004 microseismic sequence in the western part of the Corinth Rift
NASA Astrophysics Data System (ADS)
Godano, Maxime; Bernard, Pascal; Dublanchet, Pierre; Canitano, Alexandre; Marsan, David
2013-04-01
The Corinth rift is one of the most seismically active zones in Europe. The seismic activity follows a swarm organization with alternation of intensive crisis and more quiescent periods. The seismicity mainly occurs under the Gulf of Corinth in a 3-4 km north-dipping layer between 5 and 12 km. Several hypotheses have been proposed to explain this seismic layer. Nevertheless, the relationships between seismicity, deep structures and faults mapped at the surface remain unclear. Moreover, fluids seem to play a key role in the occurrence of the seismic activity (Bourouis and Cornet 2009, Pacchiani and Lyon-Caen 2009). Recently, a detailed analysis of the microseismicity (multiplets identification, precise relocation, focal mechanisms determination) between 2000 and 2007 in the western part of the Corinth rift have highlighted north-dipping (and some south-dipping) planar active microstructures in the seismic layer with normal fault mechanisms (Lambotte et al., in preparation; Godano et al., in preparation). A multiplet (group of earthquakes with similar waveform) can be interpreted as repeated ruptures on the same asperity due to transient forcing as silent creep on fault segment or fluid circulation. The detailed analysis of the multiplets in the Corinth rift is an opportunity to better understand coupling between seismic and aseismic processes. In the present study we focus on the seismic crisis that occurred from October 2003 to July 2004 in the western part of the Corinth Gulf. This crisis consists in 2431 relocated events with magnitude ranging from 0.5 to 3.1 (b-value = 1.4). The joint analysis of (1) the position of the multiplets with respect to the faults mapped at the surface, (2) the geometry of the main multiplets and (3) the fault plane solutions shows that the seismic crisis is probably related to the activation in depth of the Fassouleika and Aigion faults. The spatio-temporal analysis of the microseismicity highlights an overall migration from south-east to north-west characterized by the successive activation of the multiplets. We next perform a spectral analysis to determine source parameters for each multiplet in order to estimate size of the asperities and cumulative coseismic slip. From the preceding observations and results we finally try to reproduce the 2003-2004 microseismic sequence using rate-and-state 3D asperity model (Dublanchet et al., submitted). The deformation measured during the crisis by the strainmeter installed in the Trizonia island is used in the modeling to constrain the maximum slip amplitude.
NASA Astrophysics Data System (ADS)
Anggit Maulana, Hiska; Haris, Abdul
2018-05-01
Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.
NASA Astrophysics Data System (ADS)
Yu, H.; Gu, H.
2017-12-01
A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter
2008-07-08
Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performedmore » on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m{sup 2} with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher than the requirements of the Turkish Earthquake Code while the selected ground conditions represent the same characteristics. The main reason is that the ordinate of the horizontal elastic response spectrum for Eurocode 8 is increased by the soil factor. In TEC'07 force-based linear assessment, the seismic demands at cross-sections are to be checked with residual moment capacities; however, the chord rotations of primary ductile elements must be checked for Eurocode safety verifications. On the other hand, the demand curvatures from linear methods of analysis of Eurocode 8 together with TEC'07 are almost similar.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... Staff Guidance on Ensuring Hazard-Consistent Seismic Input for Site Response and Soil Structure...-Consistent Seismic Input for Site Response and Soil Structure Interaction Analyses,'' (Agencywide Documents... Soil Structure Interaction Analyses,'' (ADAMS Accession No. ML092230455) to solicit public and industry...
Seismic performance of spherical liquid storage tanks: a case study
NASA Astrophysics Data System (ADS)
Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo
2018-02-01
Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.
On-line Data Transmission, as Part of the Seismic Evaluation Process in the Buildings Field
NASA Astrophysics Data System (ADS)
Sorin Dragomir, Claudiu; Dobre, Daniela; Craifaleanu, Iolanda; Georgescu, Emil-Sever
2017-12-01
The thorough analytical modelling of seismic actions, of the structural system and of the foundation soil is essential for a proper dynamic analysis of a building. However, the validation of the used models should be made, whenever possible, with reference to results obtained from experimental investigations, building instrumentation and monitoring of vibrations generated by various seismic or non-seismic sources. In Romania, the permanent seismic instrumentation/monitoring of buildings is part of a special follow-up activity, performed in accordance with the P130/1999 code for the time monitoring of building behaviour and with the seismic design code, P100-2013. By using the state-of-the-art modern equipment (GeoSIG and Kinemetrics digital accelerographs) in the seismic network of the National Institute for Research and Development URBAN-INCERC, the instrumented buildings can be monitored remotely, with recorded data being sent to authorities or to research institutes in the field by a real-time data transmission system. The obtained records are processed, computing the Fourier amplitude spectra and the response spectra, and the modal parameters of buildings are determined. The paper presents some of the most important results of the institute in the field of building monitoring, focusing on the situation of some significant instrumented buildings located in different parts of the country. In addition, maps with data received from seismic stations after the occurrence of two recent Vrancea (Romania) earthquakes, showing the spatial distribution of ground accelerations, are presented, together with a comparative analysis, performed with reference to previous studies in the literature.
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Kraft, Toni; Eduard, Kissling; Nicholas, Deichmann; Clinton, John; Wiemer, Stefan
2014-05-01
From July to November 2013 a sequence of more than 850 events, of which more than 340 could be located, was triggered in a planned hydrothermal system below the city of St. Gallen in eastern Switzerland. Seismicity initiated on July 14 and the maximum Ml in the sequence was 3.5, comparable in size with the Ml 3.4 event induced by stimulation below Basel in 2006. To improve absolute locations of the sequence, more than 1000 P and S wave arrivals were inverted for hypocenters and 1D velocity structure. Vp of 5.6-5.8 km/s and a Vp/Vs ratio of 1.82-1.9 in the source region indicate a limestone or shale-type composition and a comparison with a lithological model from a 3D seismic model suggests that the seismically active streak (height up to 400 m) is within the Mesozoic layer. To resolve the fine structure of the induced seismicity, we applied waveform cross-correlation and double-difference algorithms. The results image a NE-SW striking lineament, consistent with a left-lateral fault plane derived from first motion polarities and moment tensor inversions. A spatio-temporal analysis of the relocated seismicity shows that, during first acid jobs on July 17, microseismicity propagated towards southwest over the entire future Ml 3.5 rupture plane. The almost vertical focal plane associated with the Ml 3.5 event of July 20 is well imaged by the seismicity. The area of the ruptured fault is approximately 675x400 m. Seismicity images a change in focal depths along strike, which correlates with a kink or bend in the mapped fault system northeast of the Ml 3.5 event. This change might indicate structural differences or a segmentation of the fault. Following the Ml 3.5 event, seismicity propagated along strike to the northeast, in a region without any mapped faults, indicating a continuation of the fault segment. Seismicity on this segment occurred in September and October. A complete rupture of the NE segment would have the potential to produce a magnitude larger than 3.0. Similarity of waveforms suggests that an Ml 3.2 in 1987 and an Ml 2.2 event in 1993 occurred on a similar structure with a similar slip direction as the Ml 3.5 event. It appears that the fault zone targeted by the geothermal project is not only oriented favourably for rupture relative to the regional stress field, but is also close to failure.
Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.
2016-08-18
This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.
NASA Astrophysics Data System (ADS)
Bellali, Abir; Jarraya Horriche, Faten; Gabtni, Hakim; Bédir, Mourad
2018-04-01
The Dakhla syncline is located in the North-Eastern Tunisia. It is bounded by Abd El Rahmene anticline to the North-West, El Haouaria Graben to the North-East, Grombalia Graben to the South-West and the Mediterranean Sea to the East. The main aquifer reservoirs of Dakhla syncline are constituted by stacks of fluvial to deltaic Neogene sequences and carbonates. The interpretation of eight seismic reflection profiles, calibrated by wire line logging data of three oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of aquifers and their distribution in elevated structures and subsurface depressions. Lithostratigraphic correlations and seismic profiles analysis through the syncline show that the principal aquifers are thickest within the central and northern part of the study area and thinnest to the southern part of the syncline. Seismic sections shows that the fracture/fault pattern in this syncline is mainly concentrated along corridors with a major direction of NW-SE and secondary directions of N-S, E-W and NE-SW with different release. This is proved by the complexity structure of Eastern Tunisia, resulted from the interaction between the African and Eurasiatic plates. Isochron maps of aquifers systems exhibited the structuring of this syncline in sub-surface characterized by important lateral and vertical geometric and thickness variations. Seismic sections L1, L2, L3, L4, L5 and petroleum wells showed an heterogeneous multilayer aquifers of Miocene formed by the arrangement of ten sandstone bodies, separated by impermeable clay packages. Oligo-Miocene deposits correspond to the most great potential aquifers, with respectively an average transmissivity estimated: Somaa aquifer 6.5 10-4 m2/s, Sandstone level aquifer 2.6 10-3 m2/s, Beglia aquifer 1.1 10-3 m2/s, Ain Ghrab aquifer 1.3 10-4 m2/s and Oligocene aquifer 2 10-3 m2/s. The interpretation of spatial variations of seismic units and the recognition of tectonic structures and their development may reveal some new insights for hydrogeological aspects.
Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica
NASA Astrophysics Data System (ADS)
Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry
2015-04-01
Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.
Structure and Evolution of the Lunar Interior
NASA Technical Reports Server (NTRS)
Andrews-Hanna, J. C.; Weber, R. C.; Ishihara, Y.; Kamata, S.; Keane, J.; Kiefer, W. S.; Matsuyama, I.; Siegler, M.; Warren, P.
2017-01-01
Early in its evolution, the Moon underwent a magma ocean phase leading to its differentiation into a feldspathic crust, cumulate mantle, and iron core. However, far from the simplest view of a uniform plagioclase flotation crust, the present-day crust of the Moon varies greatly in thickness, composition, and physical properties. Recent significant improvements in both data and analysis techniques have yielded fundamental advances in our understanding of the structure and evolution of the lunar interior. The structure of the crust is revealed by gravity, topography, magnetics, seismic, radar, electromagnetic, and VNIR remote sensing data. The mantle structure of the Moon is revealed primarily by seismic and laser ranging data. Together, this data paints a picture of a Moon that is heterogeneous in all directions and across all scales, whose structure is a result of its unique formation, differentiation, and subsequent evolution. This brief review highlights a small number of recent advances in our understanding of lunar structure.
NASA Astrophysics Data System (ADS)
Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.
2009-12-01
Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a spatial resolution, and confirmed that the final model has an enough resolution down to the depth of 5 km. We also performed a Monte Carlo uncertainty analysis (Korenaga et al, 2000) to estimate the posteriori model variance, showing that most velocities are well constrained with standard deviation of less than 0.20 km/s. Our result strongly indicates the existences of low velocity zones (< 6.0 km/s) along the tectonic boundaries and high velocity bodies (> 6.0 km/s) just beneath MM and TM, which correspond to the middle crust of the Izu-Bonin arc (Kodaira et al., 2007). In the analysis (2), hypocenters and velocity structure were simultaneously determined based on the double-difference method (Zhang and Thurber, 2003). The hypocenter distribution and final velocity structure obtained indicate several interesting features, including low velocity sedimentary layer (< 6.0 km/s) along the KMF and prominent seismic activity in the middle-lower crust (6.0-6.8 km/s) in the Izu-Bonin arc (10-25 km depth beneath TM). These results give us very important constraints for the collision process ongoing in our research area.
NASA Astrophysics Data System (ADS)
Harding, M. R.; Rowan, C. J.
2013-12-01
The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.
Intensity Based Seismic Hazard Map of Republic of Macedonia
NASA Astrophysics Data System (ADS)
Dojcinovski, Dragi; Dimiskovska, Biserka; Stojmanovska, Marta
2016-04-01
The territory of the Republic of Macedonia and the border terrains are among the most seismically active parts of the Balkan Peninsula belonging to the Mediterranean-Trans-Asian seismic belt. The seismological data on the R. Macedonia from the past 16 centuries point to occurrence of very strong catastrophic earthquakes. The hypocenters of the occurred earthquakes are located above the Mohorovicic discontinuity, most frequently, at a depth of 10-20 km. Accurate short -term prognosis of earthquake occurrence, i.e., simultaneous prognosis of time, place and intensity of their occurrence is still not possible. The present methods of seismic zoning have advanced to such an extent that it is with a great probability that they enable efficient protection against earthquake effects. The seismic hazard maps of the Republic of Macedonia are the result of analysis and synthesis of data from seismological, seismotectonic and other corresponding investigations necessary for definition of the expected level of seismic hazard for certain time periods. These should be amended, from time to time, with new data and scientific knowledge. The elaboration of this map does not completely solve all issues related to earthquakes, but it provides basic empirical data necessary for updating the existing regulations for construction of engineering structures in seismically active areas regulated by legal regulations and technical norms whose constituent part is the seismic hazard map. The map has been elaborated based on complex seismological and geophysical investigations of the considered area and synthesis of the results from these investigations. There were two phases of elaboration of the map. In the first phase, the map of focal zones characterized by maximum magnitudes of possible earthquakes has been elaborated. In the second phase, the intensities of expected earthquakes have been computed according to the MCS scale. The map is prognostic, i.e., it provides assessment of the probability for occurrence of future earthquakes with a defined area distribution of their seismic intensity, depending on the natural characteristics of the terrain. The period of 10.000 years represents the greatest expected seismic threat for the considered area. From the aspect of low-cost construction, it is also necessary to know the seismicity in shorter time periods, as well. Therefore, maps for return time periods of 50, 100, 200, 500 and 1000 years have also been elaborated. The maps show a probability of 63% for occurrence of expected earthquakes with maximum intensities expressed on the MCS scale. The map has been elaborated to the scale of 1: 1.000.000, while the obtained isolines of seismic intensity are drawn with an error of 5 km. The seismic hazard map of R. Macedonia is used for: • The needs of the Rulebook on Technical Norms on Construction of Structures in Seismic Areas and for the needs of physical and urban planning and design. • While defining the seismic design parameters for construction of structures in zones with intensity of I VII degrees MSK, investigations should be done for detailed seismic zoning and microzoning of the terrain of these zones in compliance with the technical regulations for construction in seismically prone areas. • The areas on the map indicated by intensity X MCS are not regulated by the valid regulations. Therefore, in practice, these should be treated as such in which it is not possible to construct any structures without previous surveys. • Revision of this map is done at a five year period, i.e., after each occurred earthquake whose parameters are such that require modifications and amendments of the map.
The Crustal Structure and Seismicity of Eastern Venezuela
NASA Astrophysics Data System (ADS)
Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.
2001-12-01
Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.
2014-12-01
The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS/DMC and the LDEO/UTIG Seismic data center. Two workshops are planned for 2015, where new users get an opportunity to engage in basic processing and analysis of the new data set.
The Central Italy Seismic Sequence (2016): Spatial Patterns and Dynamic Fingerprints
NASA Astrophysics Data System (ADS)
Suteanu, Cristian; Liucci, Luisa; Melelli, Laura
2018-01-01
The paper investigates spatio-temporal aspects of the seismic sequence that started in Central Italy (Amatrice, Lazio region) in August 2016, causing hundreds of fatalities and producing major damage to settlements. On one hand, scaling properties of the landscape topography are identified and related to geomorphological processes, supporting the identification of preferential spatial directions in tectonic activity and confirming the role of the past tectonic periods and ongoing processes with respect to the driving of the geomorphological evolution of the area. On the other hand, relations between the spatio-temporal evolution of the sequence and the seismogenic fault systems are studied. The dynamic fingerprints of seismicity are established with the help of events thread analysis (ETA), which characterizes anisotropy in spatio-temporal earthquake patterns. ETA confirms the fact that the direction of the seismogenic normal fault-oriented (N)NW-(S)SE is characterized by persistent seismic activity. More importantly, it also highlights the role of the pre-existing compressive structures, Neogenic thrust and transpressive regional fronts, with a trend-oriented (N)NE-(S)SW, in the stress transfer. Both the fractal features of the topographic surface and the dynamic fingerprint of the recent seismic sequence point to the hypothesis of an active interaction between the Quaternary fault systems and the pre-existing compressional structures.
Anisotropic Lithospheric Structure of Southern Madagascar from Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Dreiling, J.; Tilmann, F. J.; Yuan, X.; Rumpker, G.
2016-12-01
The island of Madagascar occupied a key region in both the assembly and the multi-stage breakup of Gondwana. Madagascar consists of amalgamated continental material comprising several distinct tectonic units. Because of its key role in the assembly of Gondwana, numerous geological and geophysical investigations have been carried out in Madagascar to understand the evolution of Gondwana.The aim of this study is to characterize the lithospheric structure of Southern Madagascar using ambient seismic noise correlation. Radial anisotropy is determined to learn about the crust/mantle deformation around the central Southern Madagascan shear zones (i.e. the Ampanihy, Beraketa and Ranotsara shear zones) and to shed light on the geological development of Madagascar and its role during the breakup of Gondwana. In the analysis we included seismic data from the SELASOMA project in Southern Madagascar, which is a passive seismic experiment carried out by the GFZ German Research Centre for Geosciences from May 2012 to May 2014. Seismic data recorded by 61 three-component seismometers were pre-processed and cross-correlated. Group velocity dispersion curves were picked manually for the vertical-vertical and transverse-transverse component correlations, which represent the Rayleigh (ZZ) and Love (TT) surface waves, respectively. Velocities from periods between 0.7 and 20 seconds are used for tomography and computation of radial anisotropy of the lithosphere.
Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain.
Ruiz-Barajas, S; Sharma, N; Convertito, V; Zollo, A; Benito, B
2017-06-06
Induced seismicity associated with energy production is becoming an increasingly important issue worldwide for the hazard it poses to the exposed population and structures. We analyze one of the rare cases of induced seismicity associated with the underwater gas storage operations observed in the Castor platform, located in the Valencia gulf, east Spain, near a complex and important geological structure. In September 2013, some gas injection operations started at Castor, producing a series of seismic events around the reservoir area. The larger magnitude events (up to 4.2) took place some days after the end of the injection, with EMS intensities in coastal towns up to degree III. In this work, the seismic sequence is analyzed with the aim of detecting changes in statistical parameters describing the earthquake occurrence before and after the injection and identifying possible proxies to be used for monitoring the sequence evolution. Moreover, we explore the potential predictability of these statistical parameters which can be used to control the field operations in injection/storage fluid reservoirs. We firstly perform a retrospective approach and next a perspective analysis. We use different techniques for estimating the value of the expected maximum magnitude that can occur due to antropogenic activities in Castor.
Effective seismic acceleration measurements for low-cost Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Pentaris, Fragkiskos; Makris, John P.
2015-04-01
There is increasing demand on cost effective Structural Health Monitoring systems for buildings as well as important and/or critical constructions. The front end for all these systems is the accelerometer. We present a comparative study of two low cost MEMS accelaration sensors against a very sensitive, high dynamic range strong motion accelerometer of force balance type but much more expensive. A real experiment was realized by deploying the three sesnors in a reinforced concrete building of the premises of TEI of Crete at Chania Crete, an earthquake prone region. The analysis of the collected accelararion data from many seismic events indicates that all sensors are able to efficiently reveal the seismic response of the construction in terms of PSD. Furthermore, it is shown that coherence diagrams between excitation and response of the building under study, depict structural characteristics but also the seismic energy distribution. This work is supported by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled "Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC)" and is co-financed by the European Union (European Social Fund) and Greek national funds.
The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints
NASA Astrophysics Data System (ADS)
Carbonell, Ramon; Levander, Alan; Kind, Rainer
2013-12-01
The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.
NASA Astrophysics Data System (ADS)
Lv, Dongwei; Zhang, Jian; Yu, Xinhai
2018-05-01
In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.
Short-Period Seismic Noise in Vorkuta (Russia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishkina, S B; Spivak, A A; Sweeney, J J
Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design,more » construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.« less
NASA Astrophysics Data System (ADS)
Niccolini, Gianni; Manuello, Amedeo; Marchis, Elena; Carpinteri, Alberto
2017-07-01
The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto) in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997) was assessed by the acoustic emission (AE) monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.
Kinematics of the New Madrid seismic zone, central United States, based on stepover models
Pratt, Thomas L.
2012-01-01
Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.
The crustal structure in the transition zone between the western and eastern Barents Sea
NASA Astrophysics Data System (ADS)
Shulgin, Alexey; Mjelde, Rolf; Faleide, Jan Inge; Høy, Tore; Flueh, Ernst; Thybo, Hans
2018-04-01
We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modeling uses the joint refraction/reflection tomography approach where co-located multi-channel seismic reflection data constrain the sedimentary structure. Further, forward gravity modeling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure.
H-fractal seismic metamaterial with broadband low-frequency bandgaps
NASA Astrophysics Data System (ADS)
Du, Qiujiao; Zeng, Yi; Xu, Yang; Yang, Hongwu; Zeng, Zuoxun
2018-03-01
The application of metamaterial in civil engineering to achieve isolation of a building by controlling the propagation of seismic waves is a substantial challenge because seismic waves, a superposition of longitudinal and shear waves, are more complex than electromagnetic and acoustic waves. In this paper, we design a broadband seismic metamaterial based on H-shaped fractal pillars and report numerical simulation of band structures for seismic surface waves propagating. Comparative study on the band structures of H-fractal seismic metamaterials with different levels shows that a new level of fractal structure creates new band gap, widens the total band gaps and shifts the same band gap towards lower frequencies. Moreover, the vibration modes for H-fractal seismic metamaterials are computed and analyzed to clarify the mechanism of widening band gaps. A numerical investigation of seismic surface waves propagation on a 2D array of fractal unit cells on the surface of semi-infinite substrate is proposed to show the efficiency of earthquake shielding in multiple complete band gaps.
NASA Astrophysics Data System (ADS)
Seelig, William George
The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and geometry of the NKF/SKF and NKT provide information valuable for seismic hazard analysis.
Seismology of the moon and implications on internal structure, origin and evolution.
NASA Technical Reports Server (NTRS)
Ewing, M.; Latham, G.; Dorman, J.; Press, F.; Sutton, G.; Meissner, R.; Duennebier, F.; Nakamura, Y.; Kovach, R.
1971-01-01
The objective of the passive seismic experiment is to measure vibrations of the lunar surface produced by all natural and artificial sources of seismic energy and to use these data to deduce the internal structure and constitution of the moon and the nature of tectonic processes which may be active within the moon. Lunar seismic signals are discussed together with the sources of these signals, and aspects of lunar structure and dynamics. Seismic signals from approximately 250 natural events and from two man-made impacts have been recorded during seven months of operation of the two seismic stations installed during Apollo missions 11 and 12.
Seismic retrofitting manual for highway structures. Part 1, Bridges
DOT National Transportation Integrated Search
2006-01-01
This report is the first of a two-part publication entitled "Seismic retrofitting manual for highway structures". Part 1 of this manual is based on previous Federal Highway Administration (FHWA) publications on this subject including Seismic Retrofit...
NASA Astrophysics Data System (ADS)
Dutta, Sekhar Chandra; Chakroborty, Suvonkar; Raychaudhuri, Anusrita
Vibration transmitted to the structure during earthquake may vary in magnitude over a wide range. Design methodology should, therefore, enumerates steps so that structures are able to survive in the event of even severe ground motion. However, on account of economic reason, the strengths can be provided to the structures in such a way that the structure remains in elastic range in low to moderate range earthquake and is allowed to undergo inelastic deformation in severe earthquake without collapse. To implement this design philosophy a rigorous nonlinear dynamic analysis is needed to be performed to estimate the inelastic demands. Furthermore, the same is time consuming and requires expertise to judge the results obtained from the same. In this context, the present paper discusses and demonstrates an alternative simple method known as Pushover method, which can be easily used by practicing engineers bypassing intricate nonlinear dynamic analysis and can be thought of as a substitute of the latter. This method is in the process of development and is increasingly becoming popular for its simplicity. The objective of this paper is to emphasize and demonstrate the basic concept, strength and ease of this state of the art methodology for regular use in design offices in performance based seismic design of structures.
Seismic Attenuation Structure and Intraplate Deformation
NASA Astrophysics Data System (ADS)
Bezada, M.; Kowalke, S.; Smale, J.
2017-12-01
It has been suggested that intraplate deformation and seismicity is localized at weak zones in the lithosphere and at rheological boundaries. Comparisons of intraplate deformation regions with mantle seismic velocity structure suggest a correlation, but are not universally accepted as compelling evidence. We present P-wave attenuation models built from records of teleseismic deep-focus earthquakes in three different regions that show significant correlation between attenuation structure and intraplate seismicity and deformation. In the eastern United States, the New Madrid, Wabash Valley, Eastern Tennessee, Central Virginia, and Carolina seismic zones all occur at or near the edges of high-Q (low attenuation) regions. In Spain, intraplate seismicity is absent from high-Q regions but relatively abundant in surrounding low-Q regions where intraplate orogeny is also observed. In Australia, where our model resolution is relatively poor owing to sparse and uneven station coverage, the Petermann and Alice Springs intraplate orogens occur near the edge of a high-Q feature roughly coinciding with the undeformed Amadeus basin. Our results suggest that lithospheric structure exerts important controls on the localization of intraplate deformation and seismicity and that seismic attenuation is a useful proxy for lithospheric strength.
NASA Astrophysics Data System (ADS)
Nita, B.; Perchuc, E.; Thybo, H.; Maguire, P.; Denton, P.
2004-12-01
We evaluate the existence and the depth of the '8° discontinuity' beneath the Alpine orogen using the natural seismicity of Europe and northern Africa as well as events induced by mining activity. For this analysis, the regional events (1) must have epicenters further than 1000 km from the structure being imaged, and (2) the magnitude of body waves must be higher than 4.0 to obtain a favourable signal to noise ratio. The events satisfying the above conditions have epicentres in Algeria, Spain, Bulgaria, Greece and in the Lubin Copper Basin in Poland. The last region is characterised by high seismicity resulting from mining activity. We base our analysis on P-wave traveltime residuals compared to the general iasp91 model. The 8° discontinuity seems to be attributed to the observed P-wave traveltime delays at epicentral distances around 800 km. The analysis of events from the Lubin Coper Basin and the events from other regions mentioned above, gives P-wave delays of 3 s at the Alpine stations in comparison with stations in the Variscan areas to further north. We attribute this variation in travel time to the difference between 'fast' and 'slow' uppermost mantle structures in Europe.
Modeling Wide-Angle Seismic Data from the Hi-CLIMB Experiment in Tibet
NASA Astrophysics Data System (ADS)
Nowack, R. L.; Griffin, J. D.; Tseng, T.; Chen, W.
2009-12-01
Using data from local and regional events recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes, including arrival times, Hilbert amplitudes and pulse frequencies, to constrain structures of seismic wave speed and attenuation in the crust and the upper mantle in western China. We construct more than 30 high-quality, regional seismic profiles, and select 14 of these, which show excellent crustal and Pn arrivals, for further analysis. Travel-times from events at regional distances constrain large-scale velocity structures, and four close-in events provide further details on crustal structure. We use the 3-D ray tracer, CRT, to model the travel-times. Initial results indicate that the Moho beneath the Lhasa terrane of southern Tibet is over 73 km deep with a high Pn speed of about 8.2 km/s. In contrast, the Qiangtang terrane farther north shows a thinner crust, by up to 10 km, and a low Pn speed of 7.8-7.9 km/s. Preliminary estimates of upper mantle velocity gradients are between .003 and .004 km/s per km, consistent with previous results by Phillips et al. (2007). We also use P to SV conversions from teleseismic earthquakes to independently constrain variations in speeds of Pn and depths of the Moho. For instance, amplitudes of the SsPmP phase, when its last reflection off the Moho is near-critical, are particularly sensitive to the contrast in seismic wave speeds across the crust-mantle interface; and results from these additional data are consistent with those from modeling of travel-times. Additional seismic attributes, extracted from wave-trains containing Pn and major crustal phases, are being compared with results of numerical modeling based on the spectral element method and asymptotic calculations in laterally varying media, where both lateral and vertical gradients in seismic wave speeds can strongly affect Pn amplitudes and pulse frequencies.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
Effectiveness of damped braces to mitigate seismic torsional response of unsymmetric-plan buildings
NASA Astrophysics Data System (ADS)
Mazza, Fabio; Pedace, Emilia; Favero, Francesco Del
2017-02-01
The seismic retrofitting of unsymmetric-plan reinforced concrete (r.c.) framed buildings can be carried out by the incorporation of damped braces (DBs). Yet most of the proposals to mitigate the seismic response of asymmetric framed buildings by DBs rest on the hypothesis of elastic (linear) structural response. The aim of the present work is to evaluate the effectiveness and reliability of a Displacement-Based Design procedure of hysteretic damped braces (HYDBs) based on the nonlinear behavior of the frame members, which adopts the extended N2 method considered by Eurocode 8 to evaluate the higher mode torsional effects. The Town Hall of Spilinga (Italy), a framed structure with an L-shaped plan built at the beginning of the 1960s, is supposed to be retrofitted with HYDBs to attain performance levels imposed by the Italian seismic code (NTC08) in a high-risk zone. Ten structural solutions are compared by considering two in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and different design values of the frame ductility combined with a constant design value of the damper ductility. A computer code for the nonlinear dynamic analysis of r.c. spatial framed structures is adopted to evaluate the critical incident angle of bidirectional earthquakes. Beams and columns are simulated with a lumped plasticity model, including flat surface modeling of the axial load-biaxial bending moment elastic domain at the end sections, while a bilinear law is used to idealize the behavior of the HYDBs. Damage index domains are adopted to estimate the directions of least seismic capacity, considering artificial earthquakes whose response spectra match those adopted by NTC08 at serviceability and ultimate limit states.
NASA Astrophysics Data System (ADS)
Behm, M.; Snieder, R.; Tomic, J.
2012-12-01
In regions where active source seismic data are inadequate for imaging purposes due to energy penetration and recovery, cost and logistical concerns, or regulatory restrictions, analysis of natural source and ambient seismic data may provide an alternative. In this study, we investigate the feasibility of using locally-generated seismic noise and teleseismic events in the 2-10 Hz band to obtain a subsurface model. We apply different techniques to 3-component data recorded during the LaBarge Passive Seismic Experiment, a local deployment in southwestern Wyoming in a producing hydrocarbon basin. Fifty-five broadband instruments with an inter-station distance of 250 m recorded continuous seismic data between November 2008 and June 2009. The consistency and high quality of the data set make it an ideal test ground to determine the value of passive seismology techniques for exploration purposes. The near surface is targeted by interferometric analysis of ambient noise. Our results indicate that traffic noise from a state highway generates coherent Rayleigh and Love waves that can then be inverted for laterally varying velocities. The results correlate well with surface geology, and are thought to represent the average of the few upper hundred meters. The autocorrelation functions (ACF) of teleseismic body waves provide information on the uppermost part (1 to 5 km depth) of the crust. ACFs from P-waves correlate with the shallow structure as known from active source studies. The analysis of S-waves exhibits a pronounced azimuthal dependency, which might be used to gain insights on anisotropy.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, Samin
The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Blanford; E. Keldrauk; M. Laufer
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.
2015-12-01
We investigate seismic and geological features related to the tectonic evolution of the crust on a continent-wide scale. We present continent-wide features using Transportable Array data receiver function analysis, followed by regional comparisons to tie to ground truth from xenolith studies and structural mapping. We stress that the Transportable Array, at ~75 km station spacing, only offers a collection of point measurements of the crust due to the lack of crossing raypaths. 7.x layers (lower crust with high seismic velocities) can be created during crustal growth processes such as magmatic or mechanical underplating and during crustal modification such as large-scale melting. We present receiver function results and a compilation of previous regional studies using refraction data or receiver functions from regional dense networks. 7.x layers appear predominantly in parts of the northern U.S. Cordillera and across the southeastern U.S. We compare the seismic results with a xenolith study in Montana that details incremental growth of the 7.x layer from the Archean on. Hydration of a granulitic lower crust can destroy the 7.x layer and has the potential to cause epirogenic uplift. We interpret the pattern seen across the Transportable Array in the light of this hypothesis. Ductile deformation of the deep crust generates shear fabrics that can be detected seismically. Receiver functions detect shear zones via contrasts in foliation to the surrounding material. We map foliation strikes and depths in the crust across the Transportable Array using azimuthal analysis of receiver functions. Strikes from receiver functions typically align with surface fault traces in tectonically active regions, with depths of the converters exceeding the brittle zone. We discuss continent-wide strikes mapped with receiver functions. Contrasting orientations of Proterozoic shear zones and pervasive surrounding foliations in basement exposures in Colorado are reflected in seismic results from the Transportable Array and CREST experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less
Seismic risk analysis for the Babcock and Wilcox facility, Leechburg, Pennsylvania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-10-21
The results of a detailed seismic risk analysis of the Babcock and Wilcox Plutonium Fuel Fabrication facility at Leechburg, Pennsylvania are presented. This report focuses on earthquakes; the other natural hazards, being addressed in separate reports, are severe weather (strong winds and tornados) and floods. The calculational method used is based on Cornell's work (1968); it has been previously applied to safety evaluations of major projects. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region aroundmore » the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. The results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented, expressed as return period accelerations. The best estimate curve indicates that the Babcock and Wilcox facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The bounding curves roughly represent the one standard deviation confidence limits about the best estimate, reflecting the uncertainty in certain of the input. Detailed examination of the results show that the accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and that each of the source regions contributes almost equally to the cumulative risk at the site. If required for structural analysis, acceleration response spectra for the site can be constructed by scaling the mean response spectrum for alluvium in WASH 1255 by these peak accelerations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, Gabriele, E-mail: milani@stru.polimi.it; Valente, Marco, E-mail: milani@stru.polimi.it
2014-10-06
This study presents some results of a comprehensive numerical analysis on three masonry churches damaged by the recent Emilia-Romagna (Italy) seismic events occurred in May 2012. The numerical study comprises: (a) pushover analyses conducted with a commercial code, standard nonlinear material models and two different horizontal load distributions; (b) FE kinematic limit analyses performed using a non-commercial software based on a preliminary homogenization of the masonry materials and a subsequent limit analysis with triangular elements and interfaces; (c) kinematic limit analyses conducted in agreement with the Italian code and based on the a-priori assumption of preassigned failure mechanisms, where themore » masonry material is considered unable to withstand tensile stresses. All models are capable of giving information on the active failure mechanism and the base shear at failure, which, if properly made non-dimensional with the weight of the structure, gives also an indication of the horizontal peak ground acceleration causing the collapse of the church. The results obtained from all three models indicate that the collapse is usually due to the activation of partial mechanisms (apse, façade, lateral walls, etc.). Moreover the horizontal peak ground acceleration associated to the collapse is largely lower than that required in that seismic zone by the Italian code for ordinary buildings. These outcomes highlight that structural upgrading interventions would be extremely beneficial for the considerable reduction of the seismic vulnerability of such kind of historical structures.« less
Crustal insights from gravity and aeromagnetic analysis: Central North Slope, Alaska
Saltus, R.W.; Potter, C.J.; Phillips, J.D.
2006-01-01
Aeromagnetic and gravity data are processed and interpreted to reveal deep and shallow information about the crustal structure of the central North Slope, Alaska. Regional aeromagnetic anomalies primarily reflect deep crustal features. Regional gravity anomalies are more complex and require detailed analysis. We constrain our geophysical models with seismic data and interpretations along two transects including the Trans-Alaska Crustal Transect. Combined geophysical analysis reveals a remarkable heterogeneity of the pre-Mississippian basement. In the central North Slope, pre-Mississippian basement consists of two distinct geophysical domains. To the southwest, the basement is dense and highly magnetic; this basement is likely mafic and mechanically strong, possibly acting as a buttress to basement involvement in Brooks Range thrusting. To the northeast, the central North Slope basement consists of lower density, moderately magnetic rocks with several discrete regions (intrusions?) of more magnetic rocks. A conjugate set of geophysical trends, northwest-southeast and southwest-northeast, may be a factor in the crustal response to tectonic compression in this domain. High-resolution gravity and aeromagnetic data, where available, reflect details of shallow fault and fold structure. The maps and profile models in this report should provide useful guidelines and complementary information for regional structural studies, particularly in combination with detailed seismic reflection interpretations. Future challenges include collection of high-resolution gravity and aeromagnetic data for the entire North Slope as well as additional deep crustal information from seismic, drilling, and other complementary methods. Copyrights ?? 2006. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare
2016-04-01
Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.
Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques
NASA Astrophysics Data System (ADS)
Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.
2017-10-01
It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.
Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.
2012-01-01
Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide useful insight into: 1) prominent structural features, faults and fractures that contribute to the flow of fluid and heat in the reservoir; 2) diffuse seismicity throughout the reservoir representing fractures that likely contribute to the overall permeability, storage and heat exchange capacity of the reservoir, but which are not confined to prominent faults; and 3) seismic velocities that outline the major hydrologic compartments within the Coso geothermal field.
Geomorphology and seismic risk
NASA Astrophysics Data System (ADS)
Panizza, Mario
1991-07-01
The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.
Hidden Rift Structure Beneath a Thick Sedimentary Basin in the Niigata Region, Japan
NASA Astrophysics Data System (ADS)
Takeda, T.; Enescu, B.; Asano, Y.; Obara, K.; Sekiguchi, S.
2010-12-01
Niigata region is located in a high-strain-rate zone, along the easternmost margin of the back-arc basin of the Sea of Japan (Sagiya et al., 2000, Okamura et al., 1995). In this region, two M6.8 inland earthquakes with reverse fault type focal mechanism, having NW-SE compression, occurred in 2004 and 2007. The reverse fault system may indicate present reactivation of the rift structure formed as a result of normal faulting when the Sea of Japan opened in the Miocene (Sato, 1994). Therefore, imaging the spatial extent of the rift structure is important to reveal the seismotectonics and occurrence mechanism of inland earthquakes. To resolve the fine structure beneath the Niigata region, we have installed a dense temporary network of 300 seismic stations and performed a regional tomography analysis. The temporary seismic network was designed with a multi-scale station spacing of 3 to 5 km in and around the aftershock areas of the two large earthquakes, and of ~10 km for the surrounding region. The 3D velocity tomography analysis and relocation of earthquakes were performed using the tomoDD software (Zhang and Thurber, 2003). We used 777 events that occurred after the installation of the temporary network and 703 events that were recorded only by the permanent seismic network (Hi-net) before the temporary network deployment. The initial 3D velocity model was constructed by using the 3D shallow velocity structure provided by the “Japan Seismic Hazard Information Station” (J-SHIS; Fujiwara et al., 2009) of NIED. The horizontal and vertical grid spacing were of 5 ~ 10 km and 2 ~ 4 km, respectively. The tomography analysis enabled us to delineate the fine subsurface structure. The high and low velocity pattern corresponds well to the Bouguer gravity anomalies mapped in the region. The velocity model shows a wide and relatively low velocity (< 5 km/sec for the P-wave velocity) band extending in a NE-SW direction. The band widens and narrows along its extent. The thickness of the low-velocity region varies from place to place and exceeds 7 km in some parts. The surface of the basement rock below the low velocity band is fairly undulated, showing in some places a stair-like structure. Most of the earthquakes occurred in the basement rocks. The aftershocks of the 2004 and 2007 Niigata earthquakes occurred on the flanks of the lower velocity band. Kato et al. (2009) suggested that in the two aftershock areas the undulation of the basement rock surface was formed from multiple rift structures. According to our tomography results, the undulation structure is extensively found below the low-velocity band, which indicates that ancient, hidden rift structures are widely distributed. Some of these structures show micro-earthquake activity, however they do not correspond to the recognized active fault traces. The reactivation of deep rift structures covered with thick sediments may have not been fully detected. Therefore, mapping of the hidden rift structure helps mitigating the earthquake hazards in this high strain-rate and high seismic activity region.
NASA Astrophysics Data System (ADS)
Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi
2017-04-01
Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.
Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method
NASA Astrophysics Data System (ADS)
Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie
2016-09-01
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.
NASA Astrophysics Data System (ADS)
Inbal, A.; Clayton, R. W.; Ampuero, J. P.
2015-12-01
Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.
A crustal seismic velocity model for the UK, Ireland and surrounding seas
Kelly, A.; England, R.W.; Maguire, Peter K.H.
2007-01-01
A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Preliminary interpretation of high resolution 3D seismic data from offshore Mt. Etna, Italy
NASA Astrophysics Data System (ADS)
Gross, F.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Cukur, D.; Bialas, J.; Papenberg, C. A.; Crutchley, G.; Koch, S.
2013-12-01
In order to gain knowledge about subsurface structures and its correlation to seafloor expressions, a hydro-acoustic dataset was collected during RV Meteor Cruise M86/2 (December 2011/January 2012) in Messina Straits and offshore Mt. Etna. Especially offshore Mt. Etna, the data reveals an obvious connection between subsurface structures and previously known morphological features at the sea floor. Therefore a high resolution 3D seismic dataset was acquired between Riposto Ridge and Catania Canyon close to the shore of eastern Sicily. The study area is characterized by a major structural high, which hosts several ridge-like features at the seafloor. These features are connected to a SW-NE trending fault system. The ridges are bended in their NE-SW direction and host major escarpments at the seafloor. Furthermore they are located directly next to a massive amphitheater structure offshore Mt. Etna with slope gradients of up to 35°, which is interpreted as remnants of a massive submarine mass wasting event off Sicily. The new 3D seismic dataset allows an in depth analysis of the ongoing deformation of the east flank of Mt. Etna.
Effect of Ground Motion Characteristics on the Seismic Response of a Monumental Concrete Arch Bridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caglayan, B. Ozden; Ozakgul, Kadir; Tezer, Ovunc
2008-07-08
Railway network in Turkey dates back to more than a hundred years ago and according to official records, there are approximately 18,000 railway bridges with spans varying between 50 cm up to 150 meters. One of them is a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, located in an earthquake-prone region in southern part of the country. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a seriesmore » of in-depth acceleration measurements that were conducted on-site, the model was refined. Types of ground motion records were used to investigate the seismic response and vulnerability of this massive structure in order to provide information regarding (i) damage-susceptible regions of the structure for monitoring purposes, and, (ii) seismic loads to be taken into account during evaluation and possible strengthening phases for this type of structures.« less
Synthesis of regional crust and upper-mantle structure from seismic and gravity data
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Lavin, P. M.
1979-01-01
Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.
NASA Astrophysics Data System (ADS)
Jollivet-Castelot, Martin; Gaullier, Virginie; Paquet, Fabien; Chanier, Frank; Thinon, Isabelle; Lasseur, Eric; Averbuch, Olivier
2017-04-01
The Dieppe-Hampshire Basin is a Cenozoic basin crossing the eastern English Channel, between SE of England and the French coast. This basin and its borders developed during the Cenozoic, a period of overall tectonic inversion, in response to the opening of the North Atlantic Ocean and Pyrenean-alpine deformation episodes. Both extensional and subsequent compressional deformations within this area involve the reactivation of older major regional structures, inherited from the Variscan Orogeny. However, the detailed structural development of the Dieppe-Hampshire Basin still remains poorly constrained, as well as the detailed stratigraphic framework of Cenozoic series, notably in terms of seismic stratigraphy and sequence stratigraphy. New very high resolution seismic data, acquired during the oceanographic cruise "TREMOR" (R/V "Côtes de la Manche", 2014, 1800 kilometers of Sparker profiles), and bathymetric data from SHOM and UKHO, have allowed to image the sedimentary filling and tectonic structures of the Dieppe-Hampshire Basin and adjacent areas. The interpretation was first focused on a seismic facies analysis that led to evidence numerous unconformities and seismic units ranging from the Upper Cretaceous to the Bartonian (Late Eocene). The interpretation of the seismic profiles also allowed to map precisely many tectonic features, as faults, folds and monoclinal flexures. Thanks to the new data, we especially imaged the complexity of the deformation within the highest tectonized zones of the region, along the Nord-Baie de Seine Basin and offshore the Boulonnais coast with an unprecedented resolution. The expression of the deformation appears to be very different between the Mesozoic and the Cenozoic series, with prevailing folding affecting the Cenozoic strata whereas the Mesozoic series are predominantly faulted. This deformation pattern illustrates two major structural trends, respectively E-W and NW-SE directed, both syn- to post-Bartonian in age. The first one is consistent in age and orientation with a late Pyrenean or early Alpine deformation phase, while the second one appears to have a different origin, in regards to the overall geodynamic framework. We suggest that the major heterogeneities of crustal blocks underlying the basin played an important role on the development and orientations of these deformations. These preliminary results will be improved soon thanks to a new cruise, "TREMOR 2" (2017), which will be focused on the acquisition of new VHR seismic lines, bathymetric data and coring.
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan
2016-09-01
Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.
3D seismic attribute expressions of deep offshore Niger Delta
NASA Astrophysics Data System (ADS)
Anyiam, Uzonna Okenna
Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.
NASA Astrophysics Data System (ADS)
Zhou, Fulin; Tan, Ping
2018-01-01
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
Crustal structure of northern Italy from the ellipticity of Rayleigh waves
NASA Astrophysics Data System (ADS)
Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.
2017-04-01
Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.
NASA Astrophysics Data System (ADS)
Ferreira, Tiago Miguel; Maio, Rui; Vicente, Romeu
2017-04-01
The buildings' capacity to maintain minimum structural safety levels during natural disasters, such as earthquakes, is recognisably one of the aspects that most influence urban resilience. Moreover, the public investment in risk mitigation strategies is fundamental, not only to promote social and urban and resilience, but also to limit consequent material, human and environmental losses. Despite the growing awareness of this issue, there is still a vast number of traditional masonry buildings spread throughout many European old city centres that lacks of adequate seismic resistance, requiring therefore urgent retrofitting interventions in order to both reduce their seismic vulnerability and to cope with the increased seismic requirements of recent code standards. Thus, this paper aims at contributing to mitigate the social and economic impacts of earthquake damage scenarios through the development of vulnerability-based comparative analysis of some of the most popular retrofitting techniques applied after the 1998 Azores earthquake. The influence of each technique individually and globally studied resorting to a seismic vulnerability index methodology integrated into a GIS tool and damage and loss scenarios are constructed and critically discussed. Finally, the economic balance resulting from the implementation of that techniques are also examined.
Zolfaghari, Mohammad R; Peyghaleh, Elnaz
2015-03-01
This article presents a new methodology to implement the concept of equity in regional earthquake risk mitigation programs using an optimization framework. It presents a framework that could be used by decisionmakers (government and authorities) to structure budget allocation strategy toward different seismic risk mitigation measures, i.e., structural retrofitting for different building structural types in different locations and planning horizons. A two-stage stochastic model is developed here to seek optimal mitigation measures based on minimizing mitigation expenditures, reconstruction expenditures, and especially large losses in highly seismically active countries. To consider fairness in the distribution of financial resources among different groups of people, the equity concept is incorporated using constraints in model formulation. These constraints limit inequity to the user-defined level to achieve the equity-efficiency tradeoff in the decision-making process. To present practical application of the proposed model, it is applied to a pilot area in Tehran, the capital city of Iran. Building stocks, structural vulnerability functions, and regional seismic hazard characteristics are incorporated to compile a probabilistic seismic risk model for the pilot area. Results illustrate the variation of mitigation expenditures by location and structural type for buildings. These expenditures are sensitive to the amount of available budget and equity consideration for the constant risk aversion. Most significantly, equity is more easily achieved if the budget is unlimited. Conversely, increasing equity where the budget is limited decreases the efficiency. The risk-return tradeoff, equity-reconstruction expenditures tradeoff, and variation of per-capita expected earthquake loss in different income classes are also presented. © 2015 Society for Risk Analysis.
Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini
2009-01-01
The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.
NASA Astrophysics Data System (ADS)
Tian, Jingjing
Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.
NASA Astrophysics Data System (ADS)
Krkošková, Katarína; Papán, Daniel; Papánová, Zuzana
2017-10-01
The technical seismicity negatively affects the environment, buildings and structures. Technical seismicity means seismic shakes caused by force impulse, random process and unnatural origin. The vibration influence on buildings is evaluated in the Eurocode 8 in Slovak Republic, however, the Slovak Technical Standard STN 73 0036 includes solution of the technical seismicity. This standard also classes bridges into the group of structures that are significant in light of the technical seismicity - the group “U”. Using the case studies analysis by FEM simulation and comparison is necessary because of brief norm evaluation of this issue. In this article, determinate dynamic parameters by experimental measuring and numerical method on two real bridges are compared. First bridge, (D201 - 00) is Scaffold Bridge on the road I/11 leading to the city of Čadca and is situated in the city of Žilina. It is eleven - span concrete road bridge. The railway is the obstacle, which this bridge spans. Second bridge (M5973 Brodno) is situated in the part of Žilina City on the road of I/11. It is concrete three - span road bridge built as box girder. The computing part includes 3D computational models of the bridges. First bridge (D201 - 00) was modelled in the software of IDA Nexis as the slab - wall model. The model outputs are natural frequencies and natural vibration modes. Second bridge (M5973 Brodno) was modelled in the software of VisualFEA. The technical seismicity corresponds with the force impulse, which was put into this model. The model outputs are vibration displacements, velocities and accelerations. The aim of the experiments was measuring of the vibration acceleration time record of bridges, and there was need to systematic placement of accelerometers. The vibration acceleration time record is important during the under - bridge train crossing, about the first bridge (D201 - 00) and the vibration acceleration time domain is important during deducing the force impulse under the bridge, about second bridge (M5973 Brodno). The analysis was done in the software of Sigview. About the first bridge (D201 - 00), the analysis output were values of power spectral density adherent to the frequencies values. These frequencies were compared with the natural frequencies values from the computational model whereby the technical seismicity influence on bridge natural frequencies was found out. About the second bridge (M5973 Brodno), the Sigview display of recorded vibration velocity time history was compared with the final vibration velocity time history from the computational model, whereby the results were incidental.
Array seismological investigation of the South Atlantic 'Superplume'
NASA Astrophysics Data System (ADS)
Hempel, Stefanie; Gassmöller, Rene; Thomas, Christine
2015-04-01
We apply the axisymmetric, spherical Earth spectral elements code AxiSEM to model seismic compressional waves which sample complex `superplume' structures in the lower mantle. High-resolution array seismological stacking techniques are evaluated regarding their capability to resolve large-scale high-density low-velocity bodies including interior structure such as inner upwellings, high density lenses, ultra-low velocity zones (ULVZs), neighboring remnant slabs and adjacent small-scale uprisings. Synthetic seismograms are also computed and processed for models of the Earth resulting from geodynamic modelling of the South Atlantic mantle including plate reconstruction. We discuss the interference and suppression of the resulting seismic signals and implications for a seismic data study in terms of visibility of the South Atlantic `superplume' structure. This knowledge is used to process, invert and interpret our data set of seismic sources from the Andes and the South Sandwich Islands detected at seismic arrays spanning from Ethiopia over Cameroon to South Africa mapping the South Atlantic `superplume' structure including its interior structure. In order too present the model of the South Atlantic `superplume' structure that best fits the seismic data set, we iteratively compute synthetic seismograms while adjusting the model according to the dependencies found in the parameter study.
Magnani, Maria Beatrice; Blanpied, Michael L; DeShon, Heather R; Hornbach, Matthew J
2017-11-01
To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques.
Magnani, Maria Beatrice; Blanpied, Michael L.; DeShon, Heather R.; Hornbach, Matthew J.
2017-01-01
To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques. PMID:29202029
Assessment of seismic design response factors of concrete wall buildings
NASA Astrophysics Data System (ADS)
Mwafy, Aman
2011-03-01
To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.
NASA Astrophysics Data System (ADS)
Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi
2017-07-01
We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.
Parametric Studies for Scenario Earthquakes: Site Effects and Differential Motion
NASA Astrophysics Data System (ADS)
Panza, G. F.; Panza, G. F.; Romanelli, F.
2001-12-01
In presence of strong lateral heterogeneities, the generation of local surface waves and local resonance can give rise to a complicated pattern in the spatial groundshaking scenario. For any object of the built environment with dimensions greater than the characteristic length of the ground motion, different parts of its foundations can experience severe non-synchronous seismic input. In order to perform an accurate estimate of the site effects, and of differential motion, in realistic geometries, it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models, allows us the construction of damage scenarios that are out of reach of stochastic models. Synthetic signals, to be used as seismic input in a subsequent engineering analysis, e.g. for the design of earthquake-resistant structures or for the estimation of differential motion, can be produced at a very low cost/benefit ratio. We illustrate the work done in the framework of a large international cooperation following the guidelines of the UNESCO IUGS IGCP Project 414 "Realistic Modeling of Seismic Input for Megacities and Large Urban Areas" and show the very recent numerical experiments carried out within the EC project "Advanced methods for assessing the seismic vulnerability of existing motorway bridges" (VAB) to assess the importance of non-synchronous seismic excitation of long structures. >http://www.ictp.trieste.it/www_users/sand/projects.html
NASA Astrophysics Data System (ADS)
Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge
2008-10-01
Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.
Seafloor morphology in the different domains of the Calabrian Arc subduction complex - Ionian Sea
NASA Astrophysics Data System (ADS)
Riminucci, F.; Polonia, A.; Torelli, L.; Mussoni, P.
2010-05-01
The Calabrian Arc (CA) is a subduction system that develops along the African-Eurasian plate boundary in the Ionian Sea and connects the E-W trending Sicilian Maghrebian belt with the NW-SE trending Southern Apennines. The first systematic geophysical investigation in the offshore region of the CA was conducted during the 70's by the Institute of Marine Geology (now ISMAR) with the R/V 'Bannock' [1]. In the last 30 years, further geophysical data (high penetration multichannel seismics, CHIRP and multibeam data) has been acquired in the offshore of the CA, down to the Ionian Abyssal Plain. The integrated interpretation of the existing geophysical data [2] has outlined the regional architecture of the subduction complex, the main tectonic features absorbing plate motion and variation of seafloor morphology in the different structural domains. Pre-stack depth migrated seismic profiles has revealed that the accretionary complex is constituted by two distinct wedges whose geometry, structural style and seafloor morphology widely vary. The outermost accretionary wedge has been emplaced in post-messinian times. It is a salt-bearing complex as pointed out by the internal structure of the wedge (acoustically transparent assemblage), very low taper angle and high seismic velocities. The seafloor shows a rough morphology, short wavelength folds and depressions superimposed on a rather constant gentle regional slope. Landward of the outer wedge, the evaporites are no longer present and the transition to the clastic rock assemblage is reflected in a different structural architecture, which shows steeper slopes and a succession of topographic scarps separated by sedimentary basins and mid slope terraces. The topographic scarps are controlled in depth by a series of high angle landward dipping reflectors, that we interpreted as out of sequence thrust faults absorbing shortening at the rear of the wedge. Landward of the inner wedge a mid slope terrace develops (inner plateau) between 1300 and 1600 m water depth. It is a relatively flat area of variable width ranging from 10 to 50 Km, represented by the forearc basin and the innermost accretionary wedge. Seafloor morphology is related to small undulation of the seafloor. A thick section of Plio-Quaternary and Messinian sediments is present below the flat terrace. Sediments appear to be folded and, in some regions highly disrupted along local sub-circular structures that affect the seafloor morphology as well. Geometry and seismic facies of these sub-circular swells rising from the surrounding suggest they are diapiric structures. Variation of seafloor morphology is strictly related to the progression of structural domains within the Calabrian Arc subduction complex. The integrated analysis of seafloor morphology and structural style through an integrated approach involving the interpretation of seismic data at different scales has been carried out in order to outline relationships between shallow tectonic processes and deep structures. Moreover, the analysis of morphobathymetric and seismic data, combined with well targeted sediment samples has the potential to reveal relationships between tectonics, sedimentation and fluid flow in the different portions of the accretionary wedge. References: 1 - Rossi S., Sartori R. 1981. A seismic reflection study of the External Calabrian Arc in the Northern Ionian Sea (Eastern Mediterranean). Marine Geoph. Res., 4, 403-426. 2 - Polonia A. et al., The Calabrian Arc subduction complex: plate convergence, active faults, and mud diapirism. New results from the CALAMARE-2008 cruise (N/R CNR Urania). Submitted to G3.
NASA Astrophysics Data System (ADS)
Enciu, Dana-Mihaela
Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.
Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source
NASA Astrophysics Data System (ADS)
Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe
2018-05-01
Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.
Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models
NASA Astrophysics Data System (ADS)
Patlan, E.; Velasco, A. A.; Konter, J.
2009-12-01
The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.
Micro-seismicity and seismic moment release within the Coso Geothermal Field, California
Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.
2014-01-01
We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high-precision relocations of micro-seismicity and simultaneous velocity inversions in conjunction with mapping of seismic moment release can provide useful insights into subsurface structural features and hydrologic compartmentalization within the Coso Geothermal Field.
NASA Astrophysics Data System (ADS)
Biryol, C. B.; Ozacar, A.; Beck, S. L.; Zandt, G.
2006-12-01
The North Anatolian Fault (NAF) is one of the world's largest continental strike-slip faults. Despite much geological work at the surface, the deep structure of the NAF is relatively unknown. The North Anatolian Fault Passive Seismic Experiment is mainly focused on the lithospheric structure of this newly coalescing continental transform plate boundary. In the summer of 2005, we deployed 5 broadband seismic stations near the fault to gain more insight on the background seismicity, and in June 2006 we deployed 34 additional broadband stations along multiple transects crossing the main strand of the NAF and its splays. In the region, local seismicity is not limited to a narrow band near the NAF but distributed widely suggesting widespread continental deformation especially in the southern block. We relocated two of the largest events (M>4) that occurred close to our stations. Both events are 40-50km south of the NAF in the upper crust (6-9 km) along a normal fault with a strike-slip component that previously ruptured during the June 6, 2000 Orta-Cankiri earthquake (M=6.0). Preliminary analysis of SKS splitting for 4 stations deployed in 2005 indicates seismic anisotropy with delay times exceeding 1 sec. The fast polarization directions for these stations are primarily in NE-SW orientation, which remains uniform across the NAF. This direction is at a high angle to the surface trace of the fault and crustal velocity field, suggesting decoupling of lithosphere and mantle flow. Our SKS splitting observations are also similar to that observed from GSN station ANTO in central Turkey and stations across the Anatolian Plateau in eastern Turkey indicating relatively uniform mantle anisotropy throughout the region.
Measuring the seismic velocity in the top 15 km of Earth's inner core
NASA Astrophysics Data System (ADS)
Godwin, Harriet; Waszek, Lauren; Deuss, Arwen
2018-01-01
We present seismic observations of the uppermost layer of the inner core. This was formed most recently, thus its seismic features are related to current solidification processes. Previous studies have only constrained the east-west hemispherical seismic velocity structure in the Earth's inner core at depths greater than 15 km below the inner core boundary. The properties of shallower structure have not yet been determined, because the seismic waves PKIKP and PKiKP used for differential travel time analysis arrive close together and start to interfere. Here, we present a method to make differential travel time measurements for waves that turn in the top 15 km of the inner core, and measure the corresponding seismic velocity anomalies. We achieve this by generating synthetic seismograms to model the overlapping signals of the inner core phase PKIKP and the inner core boundary phase PKiKP. We then use a waveform comparison to attribute different parts of the signal to each phase. By measuring the same parts of the signal in both observed and synthetic data, we are able to calculate differential travel time residuals. We apply our method to data with ray paths which traverse the Pacific hemisphere boundary. We generate a velocity model for this region, finding lower velocity for deeper, more easterly ray paths. Forward modelling suggests that this region contains either a high velocity upper layer, or variation in the location of the hemisphere boundary with depth and/or latitude. Our study presents the first direct seismic observation of the uppermost 15 km of the inner core, opening new possibilities for further investigating the inner core boundary region.
NASA Astrophysics Data System (ADS)
Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook
2013-04-01
Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO2 storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO2 injection process, and make a preliminary interpretation of the data sets.
A generic model for the shallow velocity structure of volcanoes
NASA Astrophysics Data System (ADS)
Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra
2018-05-01
The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.
Crustal Structure of the Middle East from Regional Seismic Studies
NASA Astrophysics Data System (ADS)
Gritto, Roland; Sibol, Matthew; Caron, Pierre; Ghalib, Hafidh; Chen, Youlin
2010-05-01
We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated ten broadband stations in north-eastern Iraq since late 2005. This network was supplemented by the five-element broadband Iraq Seismic Array (KSIRS) in 2007. More recently, the former Iraq Seismic Network (ISN), destroyed during the war with Iran, was reestablished with the deployment of six broadband stations throughout Iraq. The aim of the present study is to derive models of the local and regional crustal structure of the Middle East, including Eastern Turkey, Iraq and Iran. To achieve this goal, we derive crustal velocity models using receiver function, surface wave and body wave analyses. These refined velocity models will eventually be used to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of preliminary hypocenter locations produced a clearer picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Red Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Surface wave velocity analysis resulted in a clear demarcation of the tectonic features in the region. The Arabian shield, Zagros thrust zone and the Red Sea are apparent through distinct velocity distributions separating them from each other. Furthermore, the shear wave velocity of the crust in North Iraq appears to be 10% higher than that of the Iranian plateau. The velocity anomaly of the Zagros mountains appears to be present into the upper mantle beyond the resolving limit of our model. Analysis of waveform data for obstructed pathways indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on these seismograms. In contrast, blockage or attenuation of Pg and Sg-wave energy is observed for propagation paths across the Zagros-Makran zone from the south, while Pn and Sn phases are not affected. These findings are in support of earlier tectonic models that suggested the existence of multiple parallel listric faults splitting off the main Zagros fault zone in westerly direction. These faults appear to attenuate the crustal phases while the refracted phases, propagating across the mantle lid, remain unaffected. Azimuthal phase count and velocity analyses of body waves support the findings of blockage by the Zagros-Makran zone as well as higher shear wave velocities for the crust in Northern Iraq. In combination with receiver function and refraction studies, our first structural model of the crust beneath north-eastern Iraq indicates crustal depth of 40-45 km for the foothills, which increases to 45-50 km below the core of the Zagros-Bitlis zone.
NASA Astrophysics Data System (ADS)
Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.
2013-12-01
The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto Nazionale di Geofisica e Vulcanologia (I.N.G.V.) is conducting since May, 2012. The GAPSS experiment consists of a large aperture seismic array composed by 20 temporary and 2 permanent broad-band seismic stations. Besides the characterization of the seismic release of the geothermal field, our purpose is to investigate in depth the geothermal field applying cost-effective passive seismic techniques, such as local earthquake tomography, attenuation tomography, shear wave splitting analysis and surface-wave dispersion from noise correlation analysis.
Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.
NASA Astrophysics Data System (ADS)
Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed
2016-04-01
Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended continental platform and its lack of proto-oceanic crust northward.
NASA Astrophysics Data System (ADS)
Taylor, D. G.; Rost, S.; Houseman, G.
2015-12-01
In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.
Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle
NASA Astrophysics Data System (ADS)
Evans, J. R.; Julian, B. R.; Foulger, G. R.
2005-12-01
Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.
Nonlinear seismic analysis of a reactor structure impact between core components
NASA Technical Reports Server (NTRS)
Hill, R. G.
1975-01-01
The seismic analysis of the FFTF-PIOTA (Fast Flux Test Facility-Postirradiation Open Test Assembly), subjected to a horizontal DBE (Design Base Earthquake) is presented. The PIOTA is the first in a set of open test assemblies to be designed for the FFTF. Employing the direct method of transient analysis, the governing differential equations describing the motion of the system are set up directly and are implicitly integrated numerically in time. A simple lumped-nass beam model of the FFTF which includes small clearances between core components is used as a "driver" for a fine mesh model of the PIOTA. The nonlinear forces due to the impact of the core components and their effect on the PIOTA are computed.
NASA Astrophysics Data System (ADS)
Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.
2008-12-01
An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.
Seismic Travel Time Tomography in Modeling Low Velocity Anomalies between the Boreholes
NASA Astrophysics Data System (ADS)
Octova, A.; Sule, R.
2018-04-01
Travel time cross-hole seismic tomography is applied to describing the structure of the subsurface. The sources are placed at one borehole and some receivers are placed in the others. First arrival travel time data that received by each receiver is used as the input data in seismic tomography method. This research is devided into three steps. The first step is reconstructing the synthetic model based on field parameters. Field parameters are divided into 24 receivers and 45 receivers. The second step is applying inversion process for the field data that consists of five pairs bore holes. The last step is testing quality of tomogram with resolution test. Data processing using FAST software produces an explicit shape and resemble the initial model reconstruction of synthetic model with 45 receivers. The tomography processing in field data indicates cavities in several place between the bore holes. Cavities are identified on BH2A-BH1, BH4A-BH2A and BH4A-BH5 with elongated and rounded structure. In resolution tests using a checker-board, anomalies still can be identified up to 2 meter x 2 meter size. Travel time cross-hole seismic tomography analysis proves this mothod is very good to describing subsurface structure and boundary layer. Size and anomalies position can be recognized and interpreted easily.
NASA Astrophysics Data System (ADS)
Cunningham, E.; Lekic, V.
2017-12-01
Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can suffer from low signal-to-noise levels. I compensate for this difficulty by using high quality deployments and stacking these data at common conversion points to increase lateral resolution.
Fractal Interrelationships in Field and Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T.H.; Dominic, Jovita; Halverson, Joel
1997-10-01
Size scaling interrelationships are evaluated in this study using a fractal model. Fractal models of several geologic variables are examined and include fracture patterns, reflection travel times, structural relief, drainage, topographic relief and active fault patterns. The fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Studies were conducted using seismic data from the Granny Creek oil field in the Appalachian Plateau. Previous studies of the field reveal that subtle detached structures present on the limb of a larger structure are associated with enhanced productionmore » from the field. Vertical increases of fractal dimension across the zone of detachment provide a measure of the extent to which detachment has occurred. The increases of fractal dimension are greatest in the more productive areas of the field. A result with equally important ramifications is that fracture systems do not appear to be intrinsically fractal as is often suggested in the literature. While examples of nearly identical patterns can be found at different scales supporting the idea of self-similarity, these examples are often taken from different areas and from different lithologies. Examination of fracture systems at different scales in the Valley and Ridge Province suggest that their distribution become increasingly sparse with scale reduction, and therefore are dissimilar or non-fractal. Box counting data in all cases failed to yield a fractal regime. The results obtained from this analysis bring into question the general applicability of reservoir simulations employing fractal models of fracture distribution. The same conclusions were obtained from the analysis of 1D fracture patterns such as those that might appear in a horizontal well.« less
Time-lapse seismic study of levees in southern New Mexico
Ivanov, J.; Miller, R.D.; Stimac, N.; Ballard, R.F.; Dunbar, J. Joseph; Smullen, S. Steve
2006-01-01
The primary objective of this work was to measure changes in compressional- (Vp) and shear-wave (Vs) velocities in an earthen levee during a ponding experiment designed to simulate flood conditions on the Rio Grande in south New Mexico. Although similar to such experiment, performed an year earlier on the Rio Grande in south Texas, the levee seismic response results are different. This work was similar to previous Preliminary testing at three levee sites, all within a 1 km radius and each with unique physical, EM, and core characteristics, was completed and a single low-conductivity, highly fractured site was selected for investigation. Several different types of seismic data were recorded. Seismic data analysis techniques appraised included P-refraction tomography and Rayleigh surface-wave analysis using multichannel analysis of surface waves (MASW). P-wave velocity change (decrease) was rapid and isolated to one section within the pool confines, which already had anomalously high velocity most likely related to burrowing animals modification of the levee structure. S-wave velocity change was gradual and could be observed along the whole width of the pond within and below the levee. The results within the levee sand core were consistent with the observations of sand S-wave velocity changed due to saturation. ?? 2005 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.
2006-12-01
The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between onshore micro- and mesoscopic deformational structures and offshore macro-scale structural features seen in the reflection data. The agreement of features supports our regional deformation and rotation model along the Caribbean - South America obliquely convergent plate boundary.
NASA Astrophysics Data System (ADS)
Leslie, A.; Gorman, A. R.
2004-12-01
The interpretation of seismic reflection data in non-sedimentary environments is problematic. In the Macraes Flat region near Dunedin (South Island, New Zealand), ongoing mining of mineralized schist has prompted the development of a seismic interpretation scheme that is capable of imaging a gold-bearing shear zone and associated mineralized structures accurately to the meter scale. The anisotropic and complex structural nature of this geological environment necessitates a cost-effective computer-based modeling technique that can provide information on the physical characteristics of the schist. Such a method has been tested on seismic data acquired in 1993 over a region that has since been excavated and logged. Correlation to measured structural data permits a direct comparison between the seismic data and the actual geology. Synthetic modeling utilizes a 2D visco-elastic finite difference routine to constrain the interpretation of observed seismic characteristics, including the velocity, anisotropy, and contrast, of the shear zone structures. Iterative refinements of the model result in a more representative synthetic model that most closely matches the seismic response. The comparison between the actual and synthetic seismic sections provides promising results that will be tested by new data acquisition over the summer of 2004/2005 to identify structures and zones of potential mineralization. As a downstream benefit, this research could also contribute to earthquake risk assessment analyses at active faults with similar characteristics.
NASA Astrophysics Data System (ADS)
Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Vinnik, Lev; Haberland, Christian
2013-04-01
An accurate knowledge of the structure of the earth's interior is of great importance to our understanding of tectonic processes. The WILAS-project (REF: PTDC/CTE-GIX/097946/2008) is a three-year collaborative project developed to study the subsurface structure of the western Iberian Peninsula, putting the main emphases on the lithosphere-asthenosphere system beneath the mainland of Portugal. The tectonic evolution of the target area has been driven by major plate-tectonic processes such as the historical opening of the Central Atlantic and the subsequent African-Eurasian convergence. Still, very little is known about the spatial structure of the continental collision. Within the framework of this research, a temporary network of 30 broadband three-component digital stations was operated between 2010 and 2012 in the target area. To carry out a large-scale structural analysis and facilitate a dense station-coverage for the area under investigation, the permanent Global Seismic Network stations, and temporary broadband stations deployed within the scope of the several seismic experiments (e.g. Doctar Network, Portuguese National Seismic Network), were included in the research analysis. In doing so, an unprecedented volume of high-quality data of a ca. 60X60 km density along with a combined network of 65 temporary and permanent broadband seismic stations are currently available for research purposes. One of the tasks of the WILAS research project has been a study of seismic velocity discontinuities beneath the western Iberian Peninsula region, up to a depth range of 700 km, utilizing the P- and S-receiver function techniques (PRF, SRF). Both techniques are based mainly on mode conversion of the elastic body-waves at an interface dividing the layers with different elastic properties. In the first phase of the project, PRF analysis was conducted in order to image the crust-mantle interface (Moho) and the mantle-transition-zone discontinuities at a depth of 410 km and 660 km beneath the area under investigation. While applying the common data processing steps (e.g., rotation, deconvolution and moveout-correction) to the selected data-set, we were able to create approximately 4.500 PRFs. The signals from the Moho, 410-km and 660-km discontinuities are clearly visible in many PRF stacks. The Moho depth range is from 26 to 34 km, with an average value of 29 km. No significant lateral variations in the depths of the "410-km" and "660-km" discontinuities have been identified so far. In the second phase of this project, the S-receiver-function technique will be applied in order to map the thickness of the underlying mantle lithosphere. Additionally, joint inversion of PRFs and waveforms of SKS will be used to investigate depth-localized azimuthal anisotropy and the related past and present mantle flows.
Recurrent intraplate tectonism in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoback, M.D.; Hamilton, R.M.; Crone, A.J.
1980-08-29
For the first time, New Madrid seismicity can be linked to specific structural features that have been reactivated through geologic time. Extensive seismic reflection profiling reveals major faults coincident with the main earthquake trends in the area and with structural deformation apparently caused by repeated episodes of igneous activity.
Seismic imaging of Q structures by a trans-dimensional coda-wave analysis
NASA Astrophysics Data System (ADS)
Takahashi, Tsutomu
2017-04-01
Wave scattering and intrinsic attenuation are important processes to describe incoherent and complex wave trains of high frequency seismic wave (>1Hz). The multiple lapse time window analysis (MLTWA) has been used to estimate scattering and intrinsic Q values by assuming constant Q in a study area (e.g., Hoshiba 1993). This study generalizes this MLTWA to estimate lateral variations of Q values under the Bayesian framework in dimension variable space. Study area is partitioned into small areas by means of the Voronoi tessellation. Scattering and intrinsic Q in each small area are constant. We define a misfit function for spatiotemporal variations of wave energy as with the original MLTWA, and maximize the posterior probability with changing not only Q values but the number and spatial layout of the Voronoi cells. This maximization is conducted by means of the reversible jump Markov chain Monte Carlo (rjMCMC) (Green 1995) since the number of unknown parameters (i.e., dimension of posterior probability) is variable. After a convergence to the maximum posterior, we estimate Q structures from the ensemble averages of MCMC samples around the maximum posterior probability. Synthetic tests showed stable reconstructions of input structures with reasonable error distributions. We applied this method for seismic waveform data recorded by ocean bottom seismograms at the outer-rise area off Tohoku, and estimated Q values at 4-8Hz, 8-16Hz and 16-32Hz. Intrinsic Q are nearly constant at all frequency bands, and scattering Q shows two distinct strong scattering regions at petit spot area and high seismicity area. These strong scattering are probably related to magma inclusions and fractured structure, respectively. Difference between these two areas becomes clear at high frequencies. It means that scale dependences of inhomogeneities or smaller scale inhomogeneity is important to discuss medium property and origins of structural variations. While the generalized MLTWA is based on a classical waveform modeling in constant Q medium, this method can be a fundamental basis for Q structure imaging in the crust.
Seismic experiment ross ice shelf 1990/91: Characteristics of the seismic reflection data
1993-01-01
The Transantarctic Mountains, with a length of 3000-3500 km and elevations of up to 4500 m, are one of the major Cenozoic mountain ranges in the world and are by far the most striking example of rift-shoulder mountains. Over the 1990-1991 austral summer Seismic Experiment Ross Ice Shelf (SERIS) was carried out across the Transantarctic Mountain front, between latitudes 82 degrees to 83 degrees S, in order to investigate the transition zone between the rifted area of the Ross Embayment and the uplifted Transantarctic Mountains. This experiment involved a 140 km long seismic reflection profile together with a 96 km long coincident wide-angle reflection/refraction profile. Gravity and relative elevation (using barometric pressure) were also measured along the profile. The primary purpose was to examine the boundary between the rift system and the uplifted rift margin (represented by the Transantarctic Mountains) using modern multi-channel crustal reflection/refraction techniques. The results provide insight into crustal structure across the plate boundary. SERIS also represented one of the first large-scale and modern multi-channel seismic experiments in the remote interior of Antarctica. As such, the project was designed to test different seismic acquisition techniques which will be involved in future seismic exploration of the continent. This report describes the results from the analysis of the acquisition tests as well as detailing some of the characteristics of the reflection seismic data. (auths.)
NASA Astrophysics Data System (ADS)
Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.
2013-09-01
This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Seismic analysis of offshore wind turbines on bottom-fixed support structures.
Alati, Natale; Failla, Giuseppe; Arena, Felice
2015-02-28
This study investigates the seismic response of a horizontal axis wind turbine on two bottom-fixed support structures for transitional water depths (30-60 m), a tripod and a jacket, both resting on pile foundations. Fully coupled, nonlinear time-domain simulations on full system models are carried out under combined wind-wave-earthquake loadings, for different load cases, considering fixed and flexible foundation models. It is shown that earthquake loading may cause a significant increase of stress resultant demands, even for moderate peak ground accelerations, and that fully coupled nonlinear time-domain simulations on full system models are essential to capture relevant information on the moment demand in the rotor blades, which cannot be predicted by analyses on simplified models allowed by existing standards. A comparison with some typical design load cases substantiates the need for an accurate seismic assessment in sites at risk from earthquakes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
New seismic array solution for earthquake observations and hydropower plant health monitoring
NASA Astrophysics Data System (ADS)
Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.
2017-09-01
We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.
Back to the Future: Long-Term Seismic Archives Revisited
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2007-12-01
Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring seismic activity. These archives typically consist of waveforms of seismic events and associated parametric data such as phase arrival time picks and the location of hypocenters. Catalogs of earthquake locations are fundamental data in seismology, and even in the Earth sciences in general. Yet, these locations have notoriously low spatial resolution because of errors in both the picks and the models commonly used to locate events one at a time. This limits their potential to address fundamental questions concerning the physics of earthquakes, the structure and composition of the Earth's interior, and the seismic hazards associated with active faults. We report on the comprehensive use of modern waveform cross-correlation based methodologies for high- resolution earthquake location - as applied to regional and global long-term seismic databases. By simultaneous re-analysis of two decades of the digital seismic archive of Northern California, reducing pick errors via cross-correlation and model errors via double-differencing, we achieve up to three orders of magnitude resolution improvement over existing hypocenter locations. The relocated events image networks of discrete faults at seismogenic depths across various tectonic settings that until now have been hidden in location uncertainties. Similar location improvements are obtained for earthquakes recorded at global networks by re- processing 40 years of parametric data from the ISC and corresponding waveforms archived at IRIS. Since our methods are scaleable and run on inexpensive Beowulf clusters, periodic re-analysis of entire archives may thus become a routine procedure to continuously improve resolution in existing catalogs. We demonstrate the role of seismic archives in obtaining the precise location of new events in real-time. Such information has considerable social and economic impact in the evaluation and mitigation of seismic hazards, for example, and highlights the need for consistent long-term seismic monitoring and archiving of records.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Staff Guidance on Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic... Seismic Margin Analysis for New Reactors Based on Probabilistic Risk Assessment,'' (Agencywide Documents.../COL-ISG-020 ``Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic Risk...
NASA Astrophysics Data System (ADS)
Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.
2015-12-01
Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research are an improved subsurface image of the seismic data (model), a porosity prediction for the reservoir, a reservoir quality map and also a fault map. The result shows a complex geologic model which may contribute to the economic potential of the field. For better understanding, 3D seismic survey, uncertainty and attributes analysis are necessary.
Seismic passive earth resistance using modified pseudo-dynamic method
NASA Astrophysics Data System (ADS)
Pain, Anindya; Choudhury, Deepankar; Bhattacharyya, S. K.
2017-04-01
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.
Seismic design verification of LMFBR structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-07-01
The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.
NASA Astrophysics Data System (ADS)
Mazza, Mirko
2015-12-01
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifications and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the superstructure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber bearings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal components of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high values of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction bearings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.
NASA Astrophysics Data System (ADS)
Patlan, E.; Velasco, A.; Konter, J. G.
2010-12-01
The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.
Flexible Software Architecture for Visualization and Seismic Data Analysis
NASA Astrophysics Data System (ADS)
Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.
2007-12-01
Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.
Studies related to the Charleston, South Carolina, earthquake of 1886; tectonics and seismicity
Gottfried, David; Annell, C.S.; Byerly, G.R.; Lanphere, Marvin A.; Phillips, Jeffrey D.; Gohn, Gregory S.; Houser, Brenda B.; Schneider, Ray R.; Ackermann, Hans D.; Yantis, B.R.; Costain, John K.; Schilt, F. Steve; Brown, Larry; Oliver, Jack E.; Kaufman, Sidney; Hamilton, Robert Morrison; Behrendt, John C.; Henry, V. James; Bayer, Kenneth C.; Daniels, David L.; Zietz, Isidore; Popenoe, Peter; Chowns, T.M.; Williams, C.T.; Dooley, Robert E.; Wampler, J.; Dillon, William P.; Klitgord, Kim D.; Paull, Charles K.; McGinnis, Lyle D.; Dewey, James W.; Tarr, Arthur C.; Rhea, Susan; Wentworth, Carl M.; Mergner-Keefer, Marcia; Bollinger, G.A.; Gohn, Gregory S.
1983-01-01
Since 1973, the U.S. Geological Survey (USGS), with support from the Nuclear Regulatory Commission, has conducted extensive investigations of the tectonic and seismic history of the Charleston, S.C., earthquake zone and surrounding areas. The goal of these investigations has been to discover the cause of the large intraplate Charleston earthquake of 1886, which dominates the record of seismicity in the Southeastern United States, through an understanding of the historic and modern seismicity at Charleston and of the tectonic setting of the seismicity. This goal is being pursued to evaluate the potential for additional large earthquakes in the Charleston area and surrounding regions and to determine whether the Charleston area differs tectonically in any significant fashion from other parts of the Southeastern United States. An understanding of the specific cause for the 1886 event and of the regional distribution of any structures that are generically related to or geometrically and mechanically similar to the source structure is essential for evaluation of seismic hazards throughout the Southeast.The results given herein represent significant progress toward understanding the tectonic setting of the Charleston-area seismicity. Several chapters in the volume address the distribution and origin of pre-Cretaceous rocks and structures beneath Coastal Plain sediments in the Charleston area and regionally beneath the southern Atlantic Coastal Plain and adjacent Continental Shelf. The modern seismicity at Charleston is occurring at depths equal to or greater than the known extent of these older structures, and rejuvenation of an older fault in the modern stress field is a possible cause of the seismicity. Accordingly, several chapters discuss the possible relationships of the various pre-Cretaceous structures to faults identified near Charleston that have a known Cretaceous and Cenozoic movement history and to the historic and instrumentally recorded seismicity. However, at the present time, none of the young structures can be related unequivocally to the seismicity because earthquake fault-plane solutions and hypocenter distributions do not agree with the locations and orientations of these structures. Therefore, a major emphasis of continuing USGS investigations near Charleston will be to identify additional faults, if any exist, to delineate fault movement histories, and to further refine earthquake locations, focal mechanisms, and related seismological interpretations.
NASA Astrophysics Data System (ADS)
Kurashimo, E.; Iidaka, T.; Tsumura, N.; Iwasaki, T.
2016-12-01
The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. In recent years, various slip motions with a different time scale, including episodic tremors and very low-frequency earthquakes have been recognized at or near the updip and downdip limits of seismogenic zone [e.g., Obara, 2002; Ito and Obara, 2006]. Revealing structural factors that control the fault slip behavior is important to understand the earthquake rupture dynamics. In 2006, active-source seismic experiment was conducted to obtain the subduction structure beneath the eastern part of the Kii Peninsula [Iwasaki et al., 2008]. Iwasaki et al. (2008) provided the geometry of the subducting PHS and the overlying crustal structure. However, little is known about the deeper part of the plate boundary, especially Vp/Vs structure in and around the source region of the tremor. Previous studies indicate the fluid pressure on a plate interface is one of the key factors to understand the fault slip process [e.g., Saffer and Tobin, 2011]. Seismic velocity variation provides important information on the fluid-related heterogeneous structure. Passive seismic data is useful to obtain a deep image including the S-wave velocity. Therefore, we conducted passive seismic experiment in the eastern part of the Kii Peninsula. Ninety 3-component portable seismographs were installed on a 90-km-long line nearly parallel to the direction of the subduction of the PHS. Waveforms were continuously recorded during a six-month period from May, 2015. Seismic data from 116 permanent stations around the survey line were also incorporated into our analysis to obtain a high-resolution velocity model. Arrival times of 356 local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures. Velocity structures are resolved down to 50 km depth. Clustered tremors are located in and around the low Vp and high Vp/Vs zone. Reported strong reflector interpreted to be the top of the PHS [Iwasaki et al., 2008] well corresponds to the top of the low Vp and high Vp/Vs zone. The low Vp and high Vp/Vs zone generally suggests the existence of fluid (e.g., Zhao et al., 1996). These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the PHS.
Seismic hazard assessment and pattern recognition of earthquake prone areas in the Po Plain (Italy)
NASA Astrophysics Data System (ADS)
Gorshkov, Alexander; Peresan, Antonella; Soloviev, Alexander; Panza, Giuliano F.
2014-05-01
A systematic and quantitative assessment, capable of providing first-order consistent information about the sites where large earthquakes may occur, is crucial for the knowledgeable seismic hazard evaluation. The methodology for the pattern recognition of areas prone to large earthquakes is based on the morphostructural zoning method (MSZ), which employs topographic data and present-day tectonic structures for the mapping of earthquake-controlling structures (i.e. the nodes formed around lineaments intersections) and does not require the knowledge about past seismicity. The nodes are assumed to be characterized by a uniform set of topographic, geologic, and geophysical parameters; on the basis of such parameters the pattern recognition algorithm defines a classification rule to discriminate seismogenic and non-seismogenic nodes. This methodology has been successfully applied since the early 1970s in a number of regions worldwide, including California, where it permitted the identification of areas that have been subsequently struck by strong events and that previously were not considered prone to strong earthquakes. Recent studies on the Iberian Peninsula and the Rhone Valley, have demonstrated the applicability of MSZ to flat basins, with a relatively flat topography. In this study, the analysis is applied to the Po Plain (Northern Italy), an area characterized by a flat topography, to allow for the systematic identification of the nodes prone to earthquakes with magnitude larger or equal to M=5.0. The MSZ method differs from the standard morphostructural analysis where the term "lineament" is used to define the complex of alignments detectable on topographic maps or on satellite images. According to that definition the lineament is locally defined and the existence of the lineament does not depend on the surrounding areas. In MSZ, the primary element is the block - a relatively homogeneous area - while the lineament is a secondary element of the morphostructure. The identified earthquake prone areas provide first-order systematic information that may significantly contribute to seismic hazard assessment in the Italian territory. The information about the possible location of strong earthquakes provided by the morphostructural analysis, in fact, can be naturally incorporated in the neo-deterministic procedure for seismic hazard assessment (NDSHA), so as to fill in possible gaps in known seismicity. Moreover, the space information about earthquake prone areas can be fruitfully combined with the space-time information provided by the quantitative analysis of the seismic flow, so as to identify the priority areas (with linear dimensions of few tens kilometers), where the probability of a strong earthquake is relatively high, for detailed local scale studies. The new indications about the seismogenic potential obtained from this study, although less accurate than detailed fault studies, have the advantage of being independent on past seismicity information, since they rely on the systematic and quantitative analysis of the available geological and morphostructural data. Thus, this analysis appears particularly useful in areas where historical information is scarce; special attention should be paid to seismogenic nodes that are not related with known active faults or past earthquakes.
NASA Astrophysics Data System (ADS)
Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong
2018-02-01
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
Large scale phononic metamaterials for seismic isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravantinos-Zafiris, N.; Sigalas, M. M.
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.
Seismic Evidence And Complex Trace Attributes Of Shallow Gas Structures In The Sea Of Marmara
NASA Astrophysics Data System (ADS)
Aydemir, Seval; Okay, Seda; Cifci, Gunay; Dondurur, Derman; Sorlien, Christopher; Cormier, Marie-Helene
2015-04-01
Analysis of multi-channel seismic reflection, sparker and chirp data from Marmara Sea observed various shallow gas indicators including seismic chimneys, bright spots, mud diapirs, pockmarks, and acoustic blanking related to gas accumulations along North Anatolian Fault (NAF) system which branches out towards the west into the in Marmara Sea. Middle branch of the (NAF) is the place where distinct amount of seismic activity has occurred and gas deposits have been observed. This study is also devoted to evaluate the gas related structures with seismic attributes of multichannel seismic reflection data which have been collected at South Marmara shelf. The dataset was collected in September 2013 and July 2014 including nearly 1000 km high Resolution Multichannel Seismic and Chirp data and 967 km Sparker data in the frame of a bilateral TÜBİTAK Project onboard R/V K. Piri Reis. The streamer has 168 or 144 channel and group interval was 6.25 m. The source was 45+45 inch GI gun fired every 12.5 or 25 m producing high-resolution seismic signal between 10-250 Hz frequency bands. The Chirp data was collected with a transducer, which produced acoustic signal between 2.75-6.75 kHz. The source of sparker system was used to 1000 J. The data have been processed using a conventional data processing flow. In addition attributes were applied to final migration sections and than was tried to find gas accumulations with Reflection strength section, instantaneous frequency section and apparent polarity. Reflection strength section has strong reflections (bright spot). Also instantaneous frequency section has low-frequency zone depending on absorption where gas accumulations are expected. Apparent polarity section has negative polarity anamoly due to low acoustic impedance where gas accumulations are expected in sediments. In addition, attributes were coincided with sparker and chirp data where expected shallow gas accumulations.
2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis
NASA Astrophysics Data System (ADS)
Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek
2016-04-01
Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karyono, E-mail: karyonosu@gmail.com; OSLO University; Padjadjaran University
The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretchesmore » between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.« less
Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment
NASA Astrophysics Data System (ADS)
Pitarka, A.
2014-12-01
Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
NASA Astrophysics Data System (ADS)
Shiuly, Amit; Sahu, R. B.; Mandal, Saroj
2017-06-01
This paper presents site specific seismic hazard analysis of Kolkata city, former capital of India and present capital of state West Bengal, situated on the world’s largest delta island, Bengal basin. For this purpose, peak ground acceleration (PGA) for a maximum considered earthquake (MCE) at bedrock level has been estimated using an artificial neural network (ANN) based attenuation relationship developed on the basis of synthetic ground motion data for the region. Using the PGA corresponding to the MCE, a spectrum compatible acceleration time history at bedrock level has been generated by using a wavelet based computer program, WAVEGEN. This spectrum compatible time history at bedrock level has been converted to the same at surface level using SHAKE2000 for 144 borehole locations in the study region. Using the predicted values of PGA and PGV at the surface, corresponding contours for the region have been drawn. For the MCE, the PGA at bedrock level of Kolkata city has been obtained as 0.184 g, while that at the surface level varies from 0.22 g to 0.37 g. Finally, Kolkata has been subdivided into eight seismic subzones, and for each subzone a response spectrum equation has been derived using polynomial regression analysis. This will be very helpful for structural and geotechnical engineers to design safe and economical earthquake resistant structures.
a Comparative Case Study of Reflection Seismic Imaging Method
NASA Astrophysics Data System (ADS)
Alamooti, M.; Aydin, A.
2017-12-01
Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.
Microtremors for seismic response assessments of important modern and historical structures of Crete
NASA Astrophysics Data System (ADS)
Margarita, Moisidi; Filippos, Vallianatos
2017-12-01
Strengthening seismic risk resilience undertaken by the civil protection authorities is an important issue towards to the guidelines given by Sendai Framework, 2013 European Union Civil Protection legislation and the global agenda 2030 for sustainable development. Moreover, in recent years it has been emphasized that site effect specifications are important issues for the seismic hazard assessments of modern, historical and monumental structures. This study assess the frequencies of vibration of historical, monumental and modern structures in the cities of Chania, Rethymno and Heraklion of Crete using ambient noise recordings processed through the Horizontal to Vertical spectral ratio and examines potential soil-structure interaction phenomena. Examples of the seismic response of high rise structures such as a church bell tower and the lighthouses in Chania are presented.
Seismic modeling of Earth's 3D structure: Recent advancements
NASA Astrophysics Data System (ADS)
Ritsema, J.
2008-12-01
Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.
NASA Astrophysics Data System (ADS)
Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.
2016-12-01
The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.
Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California
NASA Astrophysics Data System (ADS)
Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.
2017-12-01
In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the SLB to the west, outboard of the HF. We acquired a 2-D shear-wave velocity results using the multichannel analysis of surface waves (MASW) method on Rayleigh waves generated along the seismic profile. Our MASW result shows 600m depth of investigation, and Vs100 results range from 228m/s to 335m/s at fault zones, which correspond to NEHRP site classification D.
NASA Astrophysics Data System (ADS)
Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio
2016-04-01
Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous passive seismic monitoring at the site, from October 2013 to present, systematically highlighted clear energy peaks in the spectral content of seismic noise on the unstable sector, interpreted as resonant frequencies of the investigated volume. Both spectral analysis and cross-correlation of seismic noise showed seasonal reversible variation trends related to air temperature fluctuations. No irreversible changes, resulting from serious damage processes within the rock mass, were detected so far. Modal analysis and geomechanical modeling of the unstable cliff are currently under investigation to better understand the vibration modes that could explain the measured amplitude and orientation of ground motion at the first resonant frequencies. Classification and location of microseismic events still remains the most challenging task, due to the complex structural and morphological setting of the site.
Innovative Approaches for Seismic Studies of Mars (Invited)
NASA Astrophysics Data System (ADS)
Banerdt, B.
2010-12-01
In addition to its intrinsic interest, Mars is particularly well-suited for studying the full range of processes and phenomena related to early terrestrial planet evolution, from initial differentiation to the start of plate tectonics. It is large and complex enough to have undergone most of the processes that affected early Earth but, unlike the Earth, has apparently not undergone extensive plate tectonics or other major reworking that erased the imprint of early events (as evidenced by the presence of cratered surfaces older than 4 Ga). The martian mantle should have Earth-like polymorphic phase transitions and may even support a perovskite layer near the core (depending on the actual core radius), a characteristic that would have major implications for core cooling and mantle convection. Thus even the most basic measurements of planetary structure, such as crustal thickness, core radius and state (solid/liquid), and gross mantle velocity structure would provide invaluable constraints on models of early planetary evolution. Despite this strong scientific motivation (and several failed attempts), Mars remains terra incognita from a seismic standpoint. This is due to an unfortunate convergence of circumstances, prominent among which are our uncertainty in the level of seismic activity and the relatively high cost of landing multiple long-lived spacecraft on Mars to comprise a seismic network for body-wave travel-time analysis; typically four to ten stations are considered necessary for this type of experiment. In this presentation I will address both of these issues. In order to overcome the concern about a possible lack of marsquakes with which to work, it is useful to identify alternative methods for using seismic techniques to probe the interior. Seismology without quakes can be accomplished in a number of ways. “Unconventional” sources of seismic energy include meteorites (which strike the surface of Mars at a relatively high rate), artificial projectiles (which can supply up to 1010 J of kinetic energy), seismic “hum” from meteorological forcing, and tidal deformation from Phobos (with a period around 6 hours). Another means for encouraging a seismic mission to Mars is to promote methods that can derive interior information from a single seismometer. Fortunately many such methods exist, including source location through P-S and back-azimuth, receiver functions, identification of later phases (PcP, PKP, etc.), surface wave dispersion, and normal mode analysis (from single large events, stacked events, or background noise). Such methods could enable the first successful seismic investigation of another planet since the Apollo seismometers were turned off almost 35 years ago.
SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.
2017-12-01
We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by simultaneously minimizing their transverse energy - this includes the analysis of null measurements. vi) comparison of results with theoretical splitting parameters determined for one, two, or continuously-varying anisotropic layer(s). Examples for the application of SplitRacer will be presented.
A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area
NASA Astrophysics Data System (ADS)
Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo
2014-05-01
In the recent years, the concepts of seismic risk vulnerability and structural health monitoring have become very important topics in the field of both structural and civil engineering for the identification of appropriate risk indicators and risk assessment methodologies in Cultural Heritages monitoring. The latter, which includes objects, building and sites with historical, architectural and/or engineering relevance, concerns the management, the preservation and the maintenance of the heritages within their surrounding environmental context, in response to climate changes and natural hazards (e.g. seismic, volcanic, landslides and flooding hazards). Within such a framework, the complexity and the great number of variables to be considered require a multi-disciplinary approach including strategies, methodologies and tools able to provide an effective monitoring of Cultural Heritages form both scientific and operational viewpoints. Based on this rationale, in this study, an advanced, technological and operationally-oriented approach is presented and tested, which enables measuring and monitoring Cultural Heritage conservation state and geophysical/geological setting of the area, in order to mitigate the seismic risk of the historical public goods at different spatial scales*. The integration between classical geophysical methods with new emerging sensing techniques enables a multi-depth, multi-resolution, and multi-scale monitoring in both space and time. An integrated system of methodologies, instrumentation and data-processing approaches for non-destructive Cultural Heritage investigations is proposed, which concerns, in detail, the analysis of seismogenetic sources, the geological-geotechnical setting of the area and site seismic effects evaluation, proximal remote sensing techniques (e.g. terrestrial laser scanner, ground-based radar systems, thermal cameras), high-resolution aerial and satellite-based remote sensing methodologies (e.g. aeromagnetic surveys, synthetic aperture radar, optical, multispectral and panchromatic measurements), static and dynamic structural health monitoring analysis (e.g. screening tests with georadar, sonic instruments, sclerometers and optic fibers). The final purpose of the proposed approach is the development of an investigation methodology for short- and long-term Cultural Heritages preservation in response to seismic stress, which has specific features of scalability, modularity and exportability for every possible monitoring configuration. Moreover, it allows gathering useful information to furnish guidelines for Institution and local Administration to plan consolidation actions and therefore prevention activity. Some preliminary results will be presented for the test site of Calabria Region, where some architectural heritages have been properly selected as case studies for monitoring purposes. *The present work is supported and funded by Ministero dell'Università, dell'Istruzione e della Ricerca (MIUR) under the research project PON01-02710 "MASSIMO" - "Monitoraggio in Area Sismica di Sistemi Monumentali".
Development of Seismic Isolation Systems Using Periodic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yiqun; Mo, Yi-Lung; Menq, Farn-Yuh
Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are notmore » desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the periodic foundation is a promising and effective way to mitigate structural damage caused by earthquake excitation.« less
Proceedings of the 11th Annual DARPA/AFGL Seismic Research symposium
NASA Astrophysics Data System (ADS)
Lewkowicz, James F.; McPhetres, Jeanne M.
1990-11-01
The following subjects are covered: near source observations of quarry explosions; small explosion discrimination and yield estimation; Rg as a depth discriminant for earthquakes and explosions: a case study in New England; a comparative study of high frequency seismic noise at selected sites in the USSR and USA; chemical explosions and the discrimination problem; application of simulated annealing to joint hypocenter determination; frequency dependence of Q(sub Lg) and Q in the continental crust; statistical approaches to testing for compliance with a threshold test ban treaty; broad-band studies of seismic sources at regional and teleseismic distances using advanced time series analysis methods; effects of depth of burial and tectonic release on regional and teleseismic explosion waveforms; finite difference simulations of seismic wave excitation at Soviet test sites with deterministic structures; stochastic geologic effects on near-field ground motions; the damage mechanics of porous rock; nonlinear attenuation mechanism in salt at moderate strain; compressional- and shear-wave polarizations at the Anza seismic array; and a generalized beamforming approach to real time network detection and phase association.
A Study of Regional Waveform Calibration in the Eastern Mediterranean Region.
NASA Astrophysics Data System (ADS)
di Luccio, F.; Pino, A.; Thio, H.
2002-12-01
We modeled Pnl phases from several moderate magnitude events in the eastern Mediterranean to test methods and to develop path calibrations for source determination. The study region spanning from the eastern part of the Hellenic arc to the eastern Anatolian fault is mostly interested by moderate earthquakes, that can produce relevant damages. The selected area consists of several tectonic environment, which produces increased level of difficulty in waveform modeling. The results of this study are useful for the analysis of regional seismicity and for seismic hazard as well, in particular because very few broadband seismic stations are available in the selected area. The obtained velocity model gives a 30 km crustal tickness and low upper mantle velocities. The applied inversion procedure to determine the source mechanism has been successful, also in terms of discrimination of depth, for the entire range of selected paths. We conclude that using the true calibration of the seismic structure and high quality broadband data, it is possible to determine the seismic source in terms of mechanism, even with a single station.
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment
NASA Astrophysics Data System (ADS)
Li, Zhiwei; You, Qingyu; Ni, Sidao; Hao, Tianyao; Wang, Hongti; Zhuang, Cantao
2013-05-01
The little destruction to the deployment site and high repeatability of the Controlled Accurate Seismic Source (CASS) shows its potential for investigating seismic wave velocities in the Earth's crust. However, the difficulty in retrieving impulsive seismic waveforms from the CASS data and identifying the seismic phases substantially prevents its wide applications. For example, identification of the seismic phases and accurate measurement of travel times are essential for resolving the spatial distribution of seismic velocities in the crust. Until now, it still remains a challenging task to estimate the accurate travel times of different seismic phases from the CASS data which features extended wave trains, unlike processing of the waveforms from impulsive events such as earthquakes or explosive sources. In this study, we introduce a time-frequency analysis method to process the CASS data, and try to retrieve the seismic waveforms and identify the major seismic phases traveling through the crust. We adopt the Wigner-Ville Distribution (WVD) approach which has been used in signal detection and parameter estimation for linear frequency modulation (LFM) signals, and proves to feature the best time-frequency convergence capability. The Wigner-Hough transform (WHT) is applied to retrieve the impulsive waveforms from multi-component LFM signals, which comprise seismic phases with different arrival times. We processed the seismic data of the 40-ton CASS in the field experiment around the Xinfengjiang reservoir with the WVD and WHT methods. The results demonstrate that these methods are effective in waveform retrieval and phase identification, especially for high frequency seismic phases such as PmP and SmS with strong amplitudes in large epicenter distance of 80-120 km. Further studies are still needed to improve the accuracy on travel time estimation, so as to further promote applicability of the CASS for and imaging the seismic velocity structure.
Updating Hawaii Seismicity Catalogs with Systematic Relocations and Subspace Detectors
NASA Astrophysics Data System (ADS)
Okubo, P.; Benz, H.; Matoza, R. S.; Thelen, W. A.
2015-12-01
We continue the systematic relocation of seismicity recorded in Hawai`i by the United States Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO), with interests in adding to the products derived from the relocated seismicity catalogs published by Matoza et al., (2013, 2014). Another goal of this effort is updating the systematically relocated HVO catalog since 2009, when earthquake cataloging at HVO was migrated to the USGS Advanced National Seismic System Quake Management Software (AQMS) systems. To complement the relocation analyses of the catalogs generated from traditional STA/LTA event-triggered and analyst-reviewed approaches, we are also experimenting with subspace detection of events at Kilauea as a means to augment AQMS procedures for cataloging seismicity to lower magnitudes and during episodes of elevated volcanic activity. Our earlier catalog relocations have demonstrated the ability to define correlated or repeating families of earthquakes and provide more detailed definition of seismogenic structures, as well as the capability for improved automatic identification of diverse volcanic seismic sources. Subspace detectors have been successfully applied to cataloging seismicity in situations of low seismic signal-to-noise and have significantly increased catalog sensitivity to lower magnitude thresholds. We anticipate similar improvements using event subspace detections and cataloging of volcanic seismicity that include improved discrimination among not only evolving earthquake sequences but also diverse volcanic seismic source processes. Matoza et al., 2013, Systematic relocation of seismicity on Hawai`i Island from 1992 to 2009 using waveform cross correlation and cluster analysis, J. Geophys. Res., 118, 2275-2288, doi:10.1002/jgrb.580189 Matoza et al., 2014, High-precision relocation of long-period events beneath the summit region of Kīlauea Volcano, Hawai`i, from 1986 to 2009, Geophys. Res. Lett., 41, 3413-3421, doi:10.1002/2014GL059819
A probabilistic assessment of waste water injection induced seismicity in central California
NASA Astrophysics Data System (ADS)
Goebel, T.; Hauksson, E.; Ampuero, J. P.; Aminzadeh, F.; Cappa, F.; Saleeby, J.
2014-12-01
The recent, large increase in seismic activity within the central and eastern U.S. may be connected to an increase in fluid injection activity since ~2001. Anomalous seismic sequences can easily be identified in regions with low background seismicity rates. Here, we analyze seismicity in plate boundary regions where tectonically-driven earthquake sequences are common, potentially masking injection-induced events. We show results from a comprehensive analysis of waste water disposal wells in Kern county, the largest oil-producing county in California. We focus on spatial-temporal correlations between seismic and injection activity and seismicity-density changes due to injection. We perform a probabilistic assessment of induced vs. tectonic earthquakes, which can be applied to different regions independent of background rates and may provide insights into the probability of inducing earthquakes as a function of injection parameters and local geological conditions. Our results show that most earthquakes are caused by tectonic forcing, however, waste water injection contributes to seismic activity in four different regions with several events above M4. The seismicity shows different migration characteristics relative to the injection sites, including linear and non-linear trends. The latter is indicative of diffusive processes which take advantage of reservoir properties and fault structures and can induce earthquakes at distances of up to 10 km. Our results suggest that injection-related triggering processes are complex, possibly involving creep, and delayed triggering. Pore-pressure diffusion may be more extensive in the presence of active faults and high-permeability damage zones thus altering the local seismic hazard in a non-linear fashion. As a consequence, generic "best-practices" for fluid injections like a maximum distance from the nearest active fault may not be sufficient to mitigate a potential seismic hazard increase.
NASA Astrophysics Data System (ADS)
Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.
2009-12-01
In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with permanent seismic station data. P- and S-wave arrival time data were obtained from 247 events and 16,144 P- and 13,723 S-wave arrival times were used for the inversion analysis. Arrival times of local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The P-wave velocity structure shows that low velocity zones exist along the estimated deeper extension of the active faults and high velocity zones exist beneath the Tanzawa Mountains and Misaka Mountains. The Tanzawa Mountains and the Misaka Mountains are considered as fragments of the IBA (e.g. Niitsuma, 1989). We obtained a seismic velocity model revealing good correlations with the surface geology along the profile. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.
CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION
NASA Astrophysics Data System (ADS)
Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji
It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.
Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.
2013-01-01
Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.
NASA Astrophysics Data System (ADS)
Muksin, Umar; Haberland, Christian; Nukman, Mochamad; Bauer, Klaus; Weber, Michael
2014-12-01
The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north-south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE-SW to NW-SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.
Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.
2009-01-01
The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.
The Utility of the Extended Images in Ambient Seismic Wavefield Migration
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J. C.
2015-12-01
Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
NASA Astrophysics Data System (ADS)
Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.
2016-06-01
Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.
e-Science on Earthquake Disaster Mitigation by EUAsiaGrid
NASA Astrophysics Data System (ADS)
Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong
2010-05-01
Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the earthquake wave propagation to tsunami mitigation would be feasible once the user community support is in place.
NASA Astrophysics Data System (ADS)
Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.
2015-12-01
The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.
Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics
NASA Astrophysics Data System (ADS)
Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte
2016-04-01
Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were adjusted in able to measure in the medieval center of Bad Frankenhausen. This required special equipment and configuration due to the densely built-up area, the differing ground conditions and the varying topography. The analysis of the seismic sections revealed structures associated with the continuing subrosion of the Permian deposits. The reflection patterns indicate heterogeneous near-surface geology of lateral and vertical variations in forms of discontinuous reflectors, small-scale fractures and faults. The fractures and faults also serve as additional pathways for the circulating water and the deposits are subsiding along these features, resulting in the formation of depression structures in the near-subsurface. Diffractions in the unmigrated sections indicate voids in the subsurface that develop due to the longtime subrosion processes. Besides these structures, variations of the traveltime, absorption and scattering of the seismic waves induced by the subrosion processes are visible.
Pratt, Thomas L.; Williams, Robert; Odum, Jackson K.; Stephenson, William J.
2013-01-01
The southern arm of the New Madrid seismic zone of the central United States coincides with the buried, ~110 km by ~20 km Blytheville Arch antiform within the Cambrian–Ordovician Reelfoot rift graben. The Blytheville Arch has been interpreted at various times as a compressive structure, an igneous intrusion, or a sediment diapir. Reprocessed industry seismic-reflection profiles presented here show a strong similarity between the Blytheville Arch and pop-up structures, or flower structures, within strike-slip fault systems. The Blytheville Arch formed in the Paleozoic, but post–Mid-Cretaceous to Quaternary strata show displacement or folding indicative of faulting. Faults within the graben structure but outside of the Blytheville Arch also appear to displace Upper Cretaceous and perhaps younger strata, indicating that past faulting was not restricted to the Blytheville Arch and New Madrid seismic zone. As much as 10–12.5 km of strike slip can be estimated from apparent shearing of the Reelfoot arm of the New Madrid seismic zone. There also appears to be ~5–5.5 km of shearing of the Reelfoot topographic scarp at the north end of the southern arm of the New Madrid seismic zone and of the southern portion of Crowley's Ridge, which is a north-trending topographic ridge just south of the seismic zone. These observations suggest that there has been substantial strike-slip displacement along the Blytheville Arch and southern arm of the New Madrid seismic zone, that strike-slip extended north and south of the modern seismic zone, and that post–Mid-Cretaceous (post-Eocene?) faulting was not restricted to the Blytheville Arch or to currently active faults within the New Madrid seismic zone.
Analyzing structural variations along strike in a deep-water thrust belt
NASA Astrophysics Data System (ADS)
Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan
2018-03-01
We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.
NASA Astrophysics Data System (ADS)
Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.
2018-07-01
We present a methodology for 1-D imaging of upper-mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parametrization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.
NASA Astrophysics Data System (ADS)
Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.
2018-04-01
We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.
Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.
2003-01-01
We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.
Stability assessment of structures under earthquake hazard through GRID technology
NASA Astrophysics Data System (ADS)
Prieto Castrillo, F.; Boton Fernandez, M.
2009-04-01
This work presents a GRID framework to estimate the vulnerability of structures under earthquake hazard. The tool has been designed to cover the needs of a typical earthquake engineering stability analysis; preparation of input data (pre-processing), response computation and stability analysis (post-processing). In order to validate the application over GRID, a simplified model of structure under artificially generated earthquake records has been implemented. To achieve this goal, the proposed scheme exploits the GRID technology and its main advantages (parallel intensive computing, huge storage capacity and collaboration analysis among institutions) through intensive interaction among the GRID elements (Computing Element, Storage Element, LHC File Catalogue, federated database etc.) The dynamical model is described by a set of ordinary differential equations (ODE's) and by a set of parameters. Both elements, along with the integration engine, are encapsulated into Java classes. With this high level design, subsequent improvements/changes of the model can be addressed with little effort. In the procedure, an earthquake record database is prepared and stored (pre-processing) in the GRID Storage Element (SE). The Metadata of these records is also stored in the GRID federated database. This Metadata contains both relevant information about the earthquake (as it is usual in a seismic repository) and also the Logical File Name (LFN) of the record for its later retrieval. Then, from the available set of accelerograms in the SE, the user can specify a range of earthquake parameters to carry out a dynamic analysis. This way, a GRID job is created for each selected accelerogram in the database. At the GRID Computing Element (CE), displacements are then obtained by numerical integration of the ODE's over time. The resulting response for that configuration is stored in the GRID Storage Element (SE) and the maximum structure displacement is computed. Then, the corresponding Metadata containing the response LFN, earthquake magnitude and maximum structure displacement is also stored. Finally, the displacements are post-processed through a statistically-based algorithm from the available Metadata to obtain the probability of collapse of the structure for different earthquake magnitudes. From this study, it is possible to build a vulnerability report for the structure type and seismic data. The proposed methodology can be combined with the on-going initiatives to build a European earthquake record database. In this context, Grid enables collaboration analysis over shared seismic data and results among different institutions.
Infrasonic induced ground motions
NASA Astrophysics Data System (ADS)
Lin, Ting-Li
On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.
NASA Astrophysics Data System (ADS)
Buehler, Janine Sylvia
The aim of this dissertation is to improve our understanding of the crust and uppermost mantle structure in the western United States, profiting from the wealth of regional phase data recorded at USArray stations. USArray, a transportable seismic array of ˜400 seismometers, has greatly increased seismic data coverage across the United States in the past few years, and allows imaging of the lithosphere of the North American continent with better resolution and new methods. The regional phases are often challenging to analyze, especially in a tectonically-active region like the western United States, because of their sensitivities to the heterogeneities of the crust and uppermost mantle. However, knowledge of the seismic structure of the lithosphere is not only essential in order to accurately image the velocity structure at greater depths, but also for constraining geodynamic models that reconstruct the tectonic evolution of the continent, and hence the information that is carried by the regional phases is very valuable. The data set used in this study consists mostly of the regional seismic phases Pn and Sn, which propagate horizontally along the Moho in the mantle lid and constrain the seismic velocity structure at a confined depth. We applied traditional tomographic methods that profit from the improved ray coverage through USArray, but also employed array-based techniques that take advantage of the regular station spacing of the transportable array and don't depend on regularization. In addition, we used stacking methods to image the propagation efficiency of the Sn phase, which is often highly attenuated in tectonically active regions, on a regional scale. The results complement other seismic studies that average over greater depth intervals, such as surface- and body-wave tomographies and anisotropy analysis from shear-wave splitting, to provide information on temperature, composition, and tectonic processes at depth. Comparisons between Pn azimuthal anisotropy and fast polarization direction from shear wave splitting suggest significant vertical changes in anisotropy in several regions of the upper mantle beneath the western United States. Sn can in theory further constrain the nature of anisotropy in the mantle lid. However, we have so far been unable to resolve shear-wave splitting directly in the Sn waveforms as the phase is often attenuated and difficult to detect. Still, we obtained evidence for Sn propagation in several regions of the western United States such as the central Great Basin and the northeastern part of the Colorado Plateau. We found that there are enough quality Sn picks for joint Pn-Sn tomography and identified prominent Vp/Vs anomalies, such as large high Vp/Vs regions --- typically associated with partial melt --- below the Snake River Plain and the Colorado Plateau.
NASA Astrophysics Data System (ADS)
Maity, Debotyam
This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.
NASA Astrophysics Data System (ADS)
Diehl, T.; Singer, J.; Hetényi, G.; Kissling, E. H.; Clinton, J. F.
2015-12-01
The seismicity of Bhutan is characterized by the apparent lack of great earthquakes and a significantly lower activity compared to most other parts of the Himalayan arc. To better understand the underlying mechanisms of this anomalously low activity and to relate it with possible along-strike differences in the structure of the orogenic belt, a temporary network with up to 38 broadband seismometers was installed in Bhutan between January 2013 and November 2014. In this work we present a catalog of local and regional earthquakes detected and located with the GANSSER network complemented by regional stations in India, Bangladesh, and China. State-of-the-art data analysis and earthquake location procedures were applied to derive a high-precision earthquake catalog of Bhutan and surrounding regions. Focal mechanisms from regional moment tensor inversions and first-motion polarities complement the earthquake catalog. In the vicinity of the Shumar-Kuru Chu Spur in East Bhutan, seismicity forms a moderately dipping structure at about 12 km depth, which we associate with the Main Himalayan Thrust (MHT). North of 27.6°N the dip of the structure steepens, which can be interpreted as a ramp along the MHT. In West Bhutan seismicity occurs at depths of 20 to 40 km and receiver function images indicate that seismicity occurs in the underthrusting Indian crust rather than on the MHT. The highest seismic activity is clustered along the Goalpara Lineament, a dextral NE-SW striking shear zone in southwest Bhutan, which appears to connect to the western edge of the Shillong Plateau in the foreland. Focal depths indicate that this shear zone is located at depths of 20-30 km and therefore in the underthrusting Indian crust. Preliminary results of a 3D local earthquake tomography show substantial differences in the uppermost crust between east and west Bhutan. Consistent with our receiver function images, the results also indicate a thinning of the crustal root towards eastern Bhutan.
Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area
NASA Astrophysics Data System (ADS)
Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.
2013-12-01
In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.
Missile impacts as sources of seismic energy on the moon
Latham, G.V.; McDonald, W.G.; Moore, H.J.
1970-01-01
Seismic signals recorded from impacts of missiles at the White Sands Missile Range are radically different from the signal recorded from the Apollo 12 lunar module impact. This implies that lunar structure to depths of at least 10 to 20 kilometers is quite different from the typical structure of the earth's crust. Results obtained from this study can be used to predict seismic wave amplitudes from future man-made lunar impacts. Seismic energy and crater dimensions from impacts are compared with measurements from chemical explosions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridgley, Jennie; Taylor, David J.; Huffman, Jr., A. Curtis
2000-06-08
Multichannel surface seismic reflection data recording is a standard industry tool used to examine various aspects of geology, especially the stratigraphic characteristics and structural style of sedimentary formations in the subsurface. With the help of the Jicarilla Apache Tribe and the Bureau of Indian Affairs we were able to locate over 800 kilometers (500 miles) of multichannel seismic reflection data located on the Jicarilla Apache Indian reservation. Most of the data was received in hardcopy form, but there were data sets where either the demultiplexed digital field data or the processed data accompanied the hardcopy sections. The seismic data wasmore » acquired from the mid 1960's to the early 1990's. The most extensive seismic coverage is in the southern part of the reservation, although there are two good surveys located on the northeastern and northwestern parts of the reservation. Most of the data show that subsurface formations are generally flat-lying in the southern and western portion of the reservation. There is, however, a significant amount of structure imaged on seismic data located over the San Juan Basin margin along the east-central and northern part of the reservation. Several west to east trending lines in these areas show a highly faulted monoclinal structure from the deep basin in the west up onto the basin margin to the east. Hydrocarbon exploration in flat lying formations is mostly stratigraphic in nature. Where there is structure in the subsurface and indications are that rocks have been folded, faulted, and fractured, exploration has concentrated on structural traps and porosity/permeability "sweet spots" caused by fracturing. Therefore, an understanding of the tectonics influencing the entire section is critical in understanding mechanisms for generating faults and fractures in the Cretaceous. It is apparent that much of the hydrocarbon production on the reservation is from fracture porosity in either source or reservoir sequences. Therefore it is important to understand the mechanism that controls the location and intensity of the fractures. A possible mechanism may be deep seated basement faulting that has been active through time. Examining the basement fault patterns in this part of the basin and their relation to fracture production may provide a model for new plays on the Jicarilla Indian Reservation. There are still parts of the reservation where the subsurface has not been imaged geophysically with either conventional two-dimensional or three-dimensional reflection seismic techniques. These methods, especially 3-D seismic, would provide the best data for mapping deep basement faulting. The authors would recommend that 3-D seismic be acquired along the Basin margin located along the eastern edge of the reservation and the results be used to construct detailed fault maps which may help to locate areas with the potential to contain highly fractured zones in the subsurface.« less
NASA Astrophysics Data System (ADS)
Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki
2018-05-01
Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2
Stein, Ross S.; Lin, Jian
2006-01-01
We review seismicity, surface faulting, and Coulomb stress changes associated with the 1994 Northridge, California, earthquake. All of the observed surface faulting is shallow, extending meters to tens of meters below the surface. Relocated aftershocks reveal no seismicity shallower than 2 km depth. Although many of the aftershocks lie along the thrust fault and its up-dip extension, there are also a significant number of aftershocks in the core of the gentle anticline above the thrust, and elsewhere on the up-thrown block. These aftershocks may be associated with secondary ramp thrusts or flexural slip faults at a depth of 2-4 km. The geological structures typically associated with a blind thrust fault, such as anticlinal uplift and an associated syncline, are obscured and complicated by surface thrust faults associated with the San Fernando fault that overly the Northridge structures. Thus the relationship of the geological structure and topography to the underlying thrust fault is much more complex for Northridge than it is for the 1983 Coalinga, California, earthquake. We show from a Coulomb stress analysis that secondary surface faulting, diffuse aftershocks, and triggered sequences of moderate-sized mainshocks, are expected features of moderate-sized blind thrust earthquakes.
NASA Astrophysics Data System (ADS)
Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.
2017-10-01
The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.
Structural and seismic analyses of waste facility reinforced concrete storage vaults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.Y.
1995-07-01
Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less
NASA Astrophysics Data System (ADS)
Imaeva, Lyudmila; Gusev, Georgy; Imaev, Valerii; Mel'nikova, Valentina
2017-10-01
The Arctic-Asian and Okhotsk-Chukotka seismic belts bordering the Kolyma-Chukotka crustal plate are the subject of our study aimed at reconstructing the stress-strain state of the crust and defining the types of seismotectonic deformation (STD) in the region. Based on the degrees of activity of geodynamic processes, the regional principles for ranking neotectonic structures were constrained, and the corresponding classes of the discussed neotectonic structures were substantiated. We analyzed the structural tectonic positions of the modern structures, their deep structure parameters, and the systems of active faults in the Laptev, Kharaulakh, Koryak, and Chukotka segments and Chersky seismotectonic zone, as well as the tectonic stress fields revealed by tectonophysical analysis of the Late Cenozoic faults and folds. From the earthquake focal mechanisms, the average seismotectonic strain tensors were estimated. Using the geological, geostructural, geophysical and GPS data, and corresponding average tensors, the directions of the principal stress axes were determined. A regularity in the changes of tectonic settings in the Northeast Arctic was revealed.
NASA Astrophysics Data System (ADS)
Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele
2015-12-01
The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.
2016-12-01
We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes parallel to exhumed and highly localized structures such as the Idaho Springs-Ralston and Black Canyon shear zones. In either case, denser seismic studies should elucidate the width of the deep seismic expression of the shear zones.
Impact of induced seismic events on seal integrity, Texas Gulf Coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicot, Jean-Philippe; Meckel, Timothy A.; Carr, David A.
Recent publications have suggested that large-scale CO 2 injection could trigger earthquakes and that even small- to moderate-sized earthquakes may threaten the seal integrity of the injection zone, and potentially damage buildings and other surface structures. In this study, we compared seal thickness to estimated fault displacement due to a single hypothetical seismic event in a selected area of the Texas Gulf Coast comprising an offshore strip of state waters along two Texas counties. To evaluate the slip generated by a single seismic event, we compiled well log information on shale/sand sequences and seismic information on fault geometric characteristics ofmore » a section of Lower Miocene age. The section is thousands of feet thick and is overlain and underlain by marine shales (Amph. B and Anahuac, respectively) that are relatively easy to correlate between wells. The Amph. B. shale is the secondary and ultimate seal for all injection intervals in the Lower Miocene. Given its thickness, no realistic seismic event or small series of seismic events will offset it significantly. However, this may not be true of smaller local primary seals. An analysis of geophysical logs of a total of 71 wells yielded a total of 2,871 sand / shale binary intervals. An analysis of the dedicated 3D seismic survey counted 723 fault traces at five roughly horizontal horizons within the Lower Miocene Fault displacement estimated using the product of the fault length times an uncertain multiplier coefficient assumed to follow a triangular distribution with a 10 -3 to 10 -5 range and a mode of 8 × 10 -5. We then compared estimated single-event fault displacements to seal thicknesses by means of a Monte-Carlo analysis. Only 1.8% of thickness/displacement pairs display a displacement greater than 20% of the seal thickness. Only 0.26% of the pairs result in a displacement of half the seal thickness and only 0.05% of thickness/displacement pairs result in a clear seal rupture. The next step was to compare the magnitude of the event generated by such a displacement to documented magnitudes of “large” earthquakes generated by waterflooding and fluid disposal. Based on this analysis, we conclude that seismicity that may arise from CO 2 injection appears not to be a serious complication for CO 2 storage integrity, at least in the Gulf Coast area.« less
Impact of induced seismic events on seal integrity, Texas Gulf Coast
Nicot, Jean-Philippe; Meckel, Timothy A.; Carr, David A.; ...
2014-12-31
Recent publications have suggested that large-scale CO 2 injection could trigger earthquakes and that even small- to moderate-sized earthquakes may threaten the seal integrity of the injection zone, and potentially damage buildings and other surface structures. In this study, we compared seal thickness to estimated fault displacement due to a single hypothetical seismic event in a selected area of the Texas Gulf Coast comprising an offshore strip of state waters along two Texas counties. To evaluate the slip generated by a single seismic event, we compiled well log information on shale/sand sequences and seismic information on fault geometric characteristics ofmore » a section of Lower Miocene age. The section is thousands of feet thick and is overlain and underlain by marine shales (Amph. B and Anahuac, respectively) that are relatively easy to correlate between wells. The Amph. B. shale is the secondary and ultimate seal for all injection intervals in the Lower Miocene. Given its thickness, no realistic seismic event or small series of seismic events will offset it significantly. However, this may not be true of smaller local primary seals. An analysis of geophysical logs of a total of 71 wells yielded a total of 2,871 sand / shale binary intervals. An analysis of the dedicated 3D seismic survey counted 723 fault traces at five roughly horizontal horizons within the Lower Miocene Fault displacement estimated using the product of the fault length times an uncertain multiplier coefficient assumed to follow a triangular distribution with a 10 -3 to 10 -5 range and a mode of 8 × 10 -5. We then compared estimated single-event fault displacements to seal thicknesses by means of a Monte-Carlo analysis. Only 1.8% of thickness/displacement pairs display a displacement greater than 20% of the seal thickness. Only 0.26% of the pairs result in a displacement of half the seal thickness and only 0.05% of thickness/displacement pairs result in a clear seal rupture. The next step was to compare the magnitude of the event generated by such a displacement to documented magnitudes of “large” earthquakes generated by waterflooding and fluid disposal. Based on this analysis, we conclude that seismicity that may arise from CO 2 injection appears not to be a serious complication for CO 2 storage integrity, at least in the Gulf Coast area.« less
Active Tectonics Around Pisagua, Northern Chile Gap: Seismological and Neotectonic Approaches
NASA Astrophysics Data System (ADS)
Comte, D.; Carrizo, D.; Peyrat, S.
2013-12-01
Northern Chile is a recognized mature seismic gap that is reaching the end of its megathrust cycle. Deformation associated with the convergence between the Nazca and the South American Plates is mainly absorbed along the interplate contact, but also partially accommodated along the upper plate. Even though distribution of the active deformation along this plate has been documented mainly in the backarc region, Late Cenozoic structures have been recognized along the forearc suggesting that some part of this deformation is also accommodated along the coastal region. Recent paleoseismological studies suggest that some of these structures are tectonically active and some could be potentially active, capable to generate shallow intraplate earthquakes (Mw˜7). However, seismological and geodetical evidences of the fault activation mechanisms are poorly documented, and the activation process remain not elucidate. Currently, Northern Chile seismic gap is monitored by regional seismic networks and partially studied by temporary local seismological experiments. Results of these studies suggest the presence of shallow seismicity along the forearc, but the relationships between upper plate faults and the seismicity has not been yet explored. We perform a detailed seismotectonic analysis of the subduction-forearc system in the central part of the Northern Chile seismic gap to establish relationships between the plate contact deformation and the upper plate faults. We present preliminary results of data recorded by a dense seismic network (three components continuous recording) deployed around Pisagua, between the coastline and the Central Depression, during several months. Pisagua region was chosen because the forearc faults exhibit an extraordinary well-preserved morphotectonic expression, and the upper part of the seismogenic interplate contact shows abundant continental intraplate seismicity that could be associated with the faults systems. The data recorded in this area allow us to better constrain the 3D geometry of faults related to plate contact using morphotectonis fault signature, well-located shallow seismicity and passive tomography. By this way, the architecture of the major forearc faults in the study area is determined for the first time using geological and geophysical approaches. Through this work, we contribute to better understand the physical relations between dynamics of the plate contact and the coastal fault activation.
NASA Astrophysics Data System (ADS)
Liu, Chuncheng; Qu, Da; Wang, Chongyang; Lv, Chunlei; Li, Guoqiang
2017-12-01
With the rapid development of technology and society, all walks of life in China are becoming more and more dependent on power systems. When earthquake occurs, the electrical equipment of substation is prone to damage because of its own structural features, top-heavy, and brittleness of main body. At the same time, due to the complex coupling of the soft electrical connection of substation electrical equipment, the negative impact can not be estimated. In this paper, the finite element model of the coupling system of the single unit of high voltage electrical equipment with the connecting soft bus is established and the seismic response is analysed. The results showed that there is a significant difference between the simple analysis for the seismic response of electrical equipment monomer and the analytical results of electrical equipment systems, and the impact on different electrical equipment is different. It lays a foundation for the future development of seismic performance analysis of extra high voltage electrical equipment.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Shehu, Rafael; Valente, Marco
2017-11-01
This paper investigates the effectiveness of reducing the seismic vulnerability of masonry towers by means of innovative and traditional strengthening techniques. The followed strategy for providing the optimal retrofitting for masonry towers subjected to seismic risk relies on preventing active failure mechanisms. These vulnerable mechanisms are pre-assigned failure patterns based on the crack patterns experienced during the past seismic events. An upper bound limit analysis strategy is found suitable to be applied for simplified tower models in their present state and the proposed retrofitted ones. Taking into consideration the variability of geometrical features and the uncertainty of the strengthening techniques, Monte Carlo simulations are implemented into the limit analysis. In this framework a wide range of idealized cases are covered by the conducted analyses. The retrofitting strategies aim to increase the shear strength and the overturning load carrying capacity in order to reduce vulnerability. This methodology gives the possibility to use different materials which can fulfill the structural implementability requirements.
The SISIFO project: Seismic Safety at High Schools
NASA Astrophysics Data System (ADS)
Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco
2014-05-01
For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the problems of seismic hazard, seismic response of foundation soils, and building dynamics to stimulate awareness of seismic safety, including seismic hazard, seismic site response, seismic behaviour of structural and non-structural elements and functional issues (escape ways, emergency systems, etc.). The awareness of seismic safety in places of study, work and life aims at improving the capacity to recognize safety issues and possible solutions
Detailed seismic evaluation of bridges along I-24 in Western Kentucky.
DOT National Transportation Integrated Search
2006-09-01
This report presents a seismic rating system and a detailed evaluation procedure for selected highway bridges on/over I-24 in Western Kentucky near the New Madrid Seismic Zone (MNSZ). The rating system, based upon structural vulnerability, seismic an...
A proposal for seismic evaluation index of mid-rise existing RC buildings in Afghanistan
NASA Astrophysics Data System (ADS)
Naqi, Ahmad; Saito, Taiki
2017-10-01
Mid-rise RC buildings gradually rise in Kabul and entire Afghanistan since 2001 due to rapid increase of population. To protect the safety of resident, Afghan Structure Code was issued in 2012. But the building constructed before 2012 failed to conform the code requirements. In Japan, new sets of rules and law for seismic design of buildings had been issued in 1981 and severe earthquake damage was disclosed for the buildings designed before 1981. Hence, the Standard for Seismic Evaluation of RC Building published in 1977 has been widely used in Japan to evaluate the seismic capacity of existing buildings designed before 1981. Currently similar problem existed in Afghanistan, therefore, this research examined the seismic capacity of six RC buildings which were built before 2012 in Kabul by applying the seismic screening procedure presented by Japanese standard. Among three screening procedures with different capability, the less detailed screening procedure, the first level of screening, is applied. The study founds an average seismic index (IS-average=0.21) of target buildings. Then, the results were compared with those of more accurate seismic evaluation procedures of Capacity Spectrum Method (CSM) and Time History Analysis (THA). The results for CSM and THA show poor seismic performance of target buildings not able to satisfy the safety design limit (1/100) of the maximum story drift. The target buildings are then improved by installing RC shear walls. The seismic indices of these retrofitted buildings were recalculated and the maximum story drifts were analyzed by CSM and THA. The seismic indices and CSM and THA results are compared and found that building with seismic index larger than (IS-average =0.4) are able to satisfy the safety design limit. Finally, to screen and minimize the earthquake damage over the existing buildings, the judgement seismic index (IS-Judgment=0.5) for the first level of screening is proposed.
NASA Astrophysics Data System (ADS)
Dietrich, Carola; Wölbern, Ingo; Faria, Bruno; Rümpker, Georg
2017-04-01
Fogo is the only island of the Cape Verde archipelago with regular occurring volcanic eruptions since its discovery in the 15th century. The volcanism of the archipelago originates from a mantle plume beneath an almost stationary tectonic plate. With an eruption interval of approximately 20 years, Fogo belongs to the most active oceanic volcanoes. The latest eruption started in November 2014 and ceased in February 2015. This study aims to characterize and investigate the seismic activity and the magmatic plumbing system of Fogo, which is believed to be related to a magmatic source close to the neighboring island of Brava. According to previous studies, using conventional seismic network configurations, most of the seismic activity occurs offshore. Therefore, seismological array techniques represent powerful tools in investigating earthquakes and other volcano-related events located outside of the networks. Another advantage in the use of seismic arrays is their possibility to detect events of relatively small magnitude and to locate seismic signals without a clear onset of phases, such as volcanic tremors. Since October 2015 we have been operating a test array on Fogo as part of a pilot study. This array consists of 10 seismic stations, distributed in a circular shape with an aperture of 700 m. The stations are equipped with Omnirecs CUBE dataloggers, and either 4.5 Hz geophones (7 stations) or Trillium-Compact broad-band seismometers (3 stations). In January 2016 we installed three additional broad-band stations distributed across the island of Fogo to improve the capabilities for event localization. The data of the pilot study is dominated by seismic activity around Brava, but also exhibit tremors and hybrid events of unknown origin within the caldera of Fogo volcano. The preliminary analysis of these events includes the characterization and localization of the different event types using seismic array processing in combination with conventional localization methods. In the beginning of August 2016, a "seismic crisis" occurred on the island of Brava which led to the evacuation of a village. The seismic activity recorded by our instruments on Fogo exhibits more than 40 earthquakes during this time. Locations and magnitudes of these events will be presented. In January 2017 the pilot project discussed here will be complemented by three additional seismic arrays (two on Fogo, one on Brava) to improve seismic event localization and structural imaging based on scattered seismic phases by using multi-array techniques. Initial recordings from the new arrays are expected to be available by April 2017.
NASA Astrophysics Data System (ADS)
Argnani, Andrea; Carannante, Simona; Massa, Marco; Lovati, Sara; D'Alema, Ezio
2016-12-01
In their comments Bonini et al. argue that our seismotectonic interpretation of the Emilia 2012 seismic sequence does not agree with observations, and follow three lines of arguments to support their statement. These concern the structural interpretation of seismic reflection profiles, the relationship between seismogenic sources and seismicity patterns, and the fit of inferred fault geometry to InSAR observations. These lines of arguments are mostly repeating what has been previously presented by the same authors, and none of them, as discussed in detail in our reply, presents a strong case against our structural interpretation, that, we are convinced, does not conflict with the available data. The two adjacent rupture surfaces outlined by accurately relocated aftershocks are an indication of the presence of two different active fault planes. Interpretation of seismic profiles supports seismological observation and indicates the occurrence of relevant along-strike changes in structural style. These pieces of information have been integrated to build a new seismotectonic interpretation for the area of the Emilia 2012 seismic sequence. Analysis of geodetic data from the area of the Emilia earthquakes has produced very different models of the fault planes; unlike what has been stated by Bonini et al., who see a difficult fit to InSAR data for the fault planes we have identified, the most recent results are consistent with our interpretation that see a steep fault in the upper 8-10 km under the Mirandola anticline. We point out that the geological structures in the subsurface of the Ferrara Arc do change along strike, and the attempt of Bonini et al. to explain both the May 20 and May 29 sequences using a single cross section is not appropriate.
Seismic reflection imaging with conventional and unconventional sources
NASA Astrophysics Data System (ADS)
Quiros Ugalde, Diego Alonso
This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.
NASA Astrophysics Data System (ADS)
Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.
2010-12-01
Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.
Object-oriented microcomputer software for earthquake seismology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeger, G.C.
1993-02-01
A suite of graphically interactive applications for the retrieval, editing and modeling of earthquake seismograms have been developed using object-orientation programming methodology and the C++ language. Retriever is an application which allows the user to search for, browse, and extract seismic data from CD-ROMs produced by the National Earthquake Information Center (NEIC). The user can restrict the date, size, location and depth of desired earthquakes and extract selected data into a variety of common seismic file formats. Reformer is an application that allows the user to edit seismic data and data headers, and perform a variety of signal processing operationsmore » on that data. Synthesizer is a program for the generation and analysis of teleseismic P and SH synthetic seismograms. The program provides graphical manipulation of source parameters, crustal structures and seismograms, as well as near real-time response in generating synthetics for arbitrary flat-layered crustal structures. All three applications use class libraries developed for implementing geologic and seismic objects and views. Standard seismogram view objects and objects that encapsulate the reading and writing of different seismic data file formats are shared by all three applications. The focal mechanism views in Synthesizer are based on a generic stereonet view object. Interaction with the native graphical user interface is encapsulated in a class library in order to simplify the porting of the software to different operating systems and application programming interfaces. The software was developed on the Apple Macintosh and is being ported to UNIX/X-Window platforms.« less
Joint Inversion of Vp, Vs, and Resistivity at SAFOD
NASA Astrophysics Data System (ADS)
Bennington, N. L.; Zhang, H.; Thurber, C. H.; Bedrosian, P. A.
2010-12-01
Seismic and resistivity models at SAFOD have been derived from separate inversions that show significant spatial similarity between the main model features. Previous work [Zhang et al., 2009] used cluster analysis to make lithologic inferences from trends in the seismic and resistivity models. We have taken this one step further by developing a joint inversion scheme that uses the cross-gradient penalty function to achieve structurally similar Vp, Vs, and resistivity images that adequately fit the seismic and magnetotelluric MT data without forcing model similarity where none exists. The new inversion code, tomoDDMT, merges the seismic inversion code tomoDD [Zhang and Thurber, 2003] and the MT inversion code Occam2DMT [Constable et al., 1987; deGroot-Hedlin and Constable, 1990]. We are exploring the utility of the cross-gradients penalty function in improving models of fault-zone structure at SAFOD on the San Andreas Fault in the Parkfield, California area. Two different sets of end-member starting models are being tested. One set is the separately inverted Vp, Vs, and resistivity models. The other set consists of simple, geologically based block models developed from borehole information at the SAFOD drill site and a simplified version of features seen in geophysical models at Parkfield. For both starting models, our preliminary results indicate that the inversion produces a converging solution with resistivity, seismic, and cross-gradient misfits decreasing over successive iterations. We also compare the jointly inverted Vp, Vs, and resistivity models to borehole information from SAFOD to provide a "ground truth" comparison.
Seismic reflection imaging of shallow oceanographic structures
NASA Astrophysics Data System (ADS)
Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André
2013-05-01
Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.
Self-similar seismogenic structure of the crust: A review of the problem and a mathematical model
NASA Astrophysics Data System (ADS)
Stakhovsky, I. R.
2007-12-01
The paper presents a brief review of studies of the structural organization of a seismogenic medium showing that the crust of seismically active regions possesses a fractal structure. A new mathematical model of the self-similar seismogenic structure (SSS) of the crust generalizing the reviewed publications is proposed on the basis of the scaling correspondence between the fault, seismic, and seismic energy multifractal fields of the crust. Multifractal fields of other physical origin can also be incorporated in the SSS model.
Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.
2013-01-01
The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures characteristic of constraining and releasing bends and stepovers, (4) changes in the sense and magnitude of vertical separation along strike within the fault zone, and (5) changes in downdip geometry between the major traces and segments of the fault zone. Characteristics indicative of reverse slip include (1) reverse fault geometries that occur across major strands of the fault zone and (2) fault-bend folds and localized thrust faults that occur along the northern and southern reaches of the fault. Analyses of high-resolution, subbottom profiler and side-scan sonar records indicate localized Holocene activity along most of the extent of the fault zone. Collectively, these features are the basis of our characterization of the Hosgri Fault Zone as an active, 110-km-long, convergent right-oblique slip (transpressional) fault with identified northern and southern terminations. This interpretation is consistent with recently published analyses of onshore geologic data, regional tectonic kinematic models, and instrumental seismicity.
Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.
2006-01-01
Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cobden, L. J.
2017-12-01
Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.
NASA Astrophysics Data System (ADS)
Wilde-Piorko, M.; Chrapkiewicz, K.; Lepore, S.; Polkowski, M.; Grad, M.
2016-12-01
The Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Paleozoic Platform from the much older Precambrian East European Craton. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) are analyzed to investigate the crustal and upper mantle structure of the margin of the Trans-European Suture Zone (TESZ) in northern Poland. Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. Recorded seismograms are rotated from ZNE to LQT system with method using the properties of RF (Wilde-Piórko, 2015). Different techniques of receiver function interpretation are applied, including 1-D inversion of RF, 1-D forward modeling of RF, 2.5D forward modeling of RF, 1-D join inversion of RF and dispersion curves of surface wave, to find the best S-wave velocity model of the TESZ margin. A high-resolution 3D P-wave velocity model in the area of Poland (Grad et al. 2016) are used as a starting model. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.
A seismic network to investigate the sedimentary hosted hydrothermal Lusi system
NASA Astrophysics Data System (ADS)
Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono
2016-04-01
The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.
CORSSA: Community Online Resource for Statistical Seismicity Analysis
NASA Astrophysics Data System (ADS)
Zechar, J. D.; Hardebeck, J. L.; Michael, A. J.; Naylor, M.; Steacy, S.; Wiemer, S.; Zhuang, J.
2011-12-01
Statistical seismology is critical to the understanding of seismicity, the evaluation of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology-especially to those aspects with great impact on public policy-statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA, www.corssa.org). We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each will contain between four and eight articles. CORSSA now includes seven articles with an additional six in draft form along with forums for discussion, a glossary, and news about upcoming meetings, special issues, and recent papers. Each article is peer-reviewed and presents a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. We have also begun curating a collection of statistical seismology software packages.
NASA Astrophysics Data System (ADS)
Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara
2009-10-01
We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, F.W.
1994-03-28
This bibliography is divided into the following four sections: Seismicity of Hawaii and Kilauea Volcano; Occurrence, locations and accelerations from large historical Hawaiian earthquakes; Seismic hazards of Hawaii; and Methods of seismic hazard analysis. It contains 62 references, most of which are accompanied by short abstracts.
Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.
Out-of-Plane Seismic Reflections Beneath the Pacific and Their Geophysical Implications
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine; Abreu, Rafael
2018-03-01
We detect seismic P wave arrivals that reach the surface from a different horizontal direction than the theoretical back azimuth of the earthquake. Slowness, back azimuth, and traveltime of observed out-of-plane signals are measured with array methods in relation to the main phases that travel along the great circle path. This directivity information is used to back trace the wave through a 1-D velocity model to its scattering or reflection location. The focus of this study lies on out-of-plane signals reflected once beneath the Pacific at a depth greater than 800 km. Data analysis is carried out for a broad frequency range (band-pass filter with corner periods of 0.5-5 s up to 5-50 s) to enable the detection of different structures and heterogeneities. In addition to mapping seismic heterogeneities in the lower mantle, we also qualitatively analyze waveforms and polarities of these signals to understand the nature of the structure. The observed 21 reflections with a reflection depth between 800 and 2,200 km illuminate heterogeneities in the mid- and lower mantle. Back-traced locations show shallowest depths around Hawaii and increase in depth to the north and southwest. Analysis of the polarities indicates low velocities for the imaged structure, and complexity of waveforms argues for a likely thermochemical origin. Additional 11 deep reflections/scatterers with depth larger than 2,200 km suggest internal heterogeneities or a presence of the D'' reflector.
Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents
NASA Astrophysics Data System (ADS)
Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.
2016-12-01
Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.
Analysis of the seismicity in the region of Mirovo salt mine after 8 years monitoring
NASA Astrophysics Data System (ADS)
Dimitrova, Liliya; Solakov, Dimcho; Simeonova, Stela; Aleksandrova, Irena; Georgieva, Gergana
2015-04-01
Mirovo salt deposit is situated in the NE part of Bulgaria and 5 kilometers away from the town of Provadiya. The mine is in operation since 1956. The salt is produced by dilution and extraction of the brine to the surface. A system of chambers-pillars is formed within the salt body as a result of the applied technology. The mine is situated in a seismically quiet part of the state. The region is characterized with complex geological structure and several faults. During the last 3 decades a large number of small and moderate earthquakes (M<4.5) are realized in the close vicinity of the salt deposit. Local seismological network (LSN) is deployed in the region to monitor the local seismicity. It consists of 6 three component digital stations. A real-time data transfer from LSN stations to National Data Center (in Sofia) is implemented using the VPN and MAN networks of the Bulgarian Telecommunication Company. Common processing and interpretation of the data from LSN and the national seismic network is performed. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. More than 700 earthquakes are registered by the LSN within 30km region around the mine during the 8 years monitoring. First we processed the data and compile a catalogue of the earthquakes occur within the studied region (30km around the salt mine). Spatial pattern of seismicity is analyzed. A large number of the seismic events occurred within the northern and north-western part of the salt body. Several earthquakes occurred in close vicinity of the mine. Concerning that the earthquakes could be tectonic and/or induced an attempt is made to find criteria to distinguish natural from induced seismicity. To characterize and distinguish the main processes active in the area we also made waveform and spectral analysis of a number of earthquakes.
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.
2017-12-01
Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.
NASA Astrophysics Data System (ADS)
Lucente, F. P.; Piccinini, D.; Dibona, M.; Levin, V.; Park, J.
2007-12-01
We present preliminary results for seismic attenuation in the mantle beneath the Italian region. We estimate P- and S-wave spectral ratios from teleseisms recorded at the temporary broadband seismic network deployed during the RETREAT (Retreating-TRrench, Extension, and Accretion Tectonics) project. We examine body-wave attenuation variation across the northern part of the Apennines mountain belt, which represents the accretionary wedge exposed during recent episodes of the subduction process in Italy. The data recorded during the three-year seismic campaign were analyzed using an ad hoc semi-automated procedure based on the cross-correlation analysis of a single phase across all the stations for each event. The seismic phases analyzed (P, S, SKS) display different patterns of seismic attenuation. Furthermore, we observe systematic variations in the distribution of the attenuation values as function of both the azimuth and the incidence angle of the seismic rays. Relatively high attenuation values are found on the Tyrrhenian side by seismic rays coming from the SW for both P- and S-phases. For NE-approaching rays the pattern of high attenuation values varies considerably, depending on the seismic phases: for P-waves it grossly corresponds to the mountain belt, while for S-waves it extends over almost the whole study area. By correlating attenuation estimates and the velocity structure from the existing tomographic models, we can make some inferences on the thermal state of the sublithospheric mantle, and on the physical properties of the tectonic elements which constitute the subduction system in the region. From the analysis of the P-phases we can clearly distinguish three main areas with different attenuation values, corresponding to the back-arc mantle (high attenuation), to the slab (low attenuation) and to the retro-slab mantle (high attenuation). The correspondence between the identified elements of the subduction system and the S- waves attenuation is not straightforward, and need to be further investigated.
NASA Astrophysics Data System (ADS)
Matrullo, Emanuela; Lengliné, Olivier; Schmittbuhl, Jean; Karabulut, Hayrullah; Bouchon, Michel
2017-04-01
The Main Marmara Fault (MMF) represents a 150 km un-ruptured segment of the North Anatolian Fault located below the Marmara Sea. It poses a significant hazard for the large cities surrounding the region and in particular for the megalopolis of Istanbul. The seismic activity has been continuously monitored since 2007 by various seismic networks. For this purpose it represents an extraordinary natural laboratory to study in details the whole seismicity bringing insights into the geometry of the faults systems at depth and mechanical properties at various space-time scales. Waveform similarity-based analysis is performed on the continuous recordings to construct a refined catalog of earthquakes from 2009 to 2014. High-resolution relocation was applied using the double-difference algorithm, using cross-correlation differential travel-time data. Seismic moment magnitudes (Mw) have been computed combining the inversion of earthquake S-wave displacement spectra for the larger events and the estimation of the relative size of multiplets using the singular value decomposition (SVD) thanks the highly coherent waveforms. The obtained catalog of seismicity includes more than 15,000 events. The seismicity strongly varying along the strike and depth exhibits a complex structure that confirms the segmentation of the fault with different mechanical behavior (Schmittbuhl et al., GGG, 2016). In the central part of the Marmara Sea, seismicity is poor and scattered. To the east, in the Cinarcick basin, along the MMF, the seismicity is mainly located around 8-15 km in depth, except at both ends of this basin where the seismicity extends vertically up to surface. In the Yalova and Gemlik region (to the east not on the MMF) the seismicity is distributed over a wide range of depth (from surface to 15 km deep) and is characterized by several clusters vertically elongated. The spatio-temporal evolution of earthquake sequences, which repeatedly occur in specific sub-areas, and the seismic moment release reveals mainly typically two kinds of seismicity dynamics: swarm like episodes and mainshock-aftershock sequences. Similar features in the seismicity distribution are observed to the west, in the Tekirdag and Central Basin. These preliminary evidences, combined with the recent analysis on several long-lasting strike-slip seismic repeaters occurring below the Central Basin (Schmittbuhl et al., GRL, 2016) indicate the presence of both locked and creeping portions of the MMF. In the light of the accurate and extensive observations, several open questions emerge: What are the mechanisms responsible of these repeating earthquakes and of the earthquake swarms? What is the influence and the role of fluids in the generation of seismicity.
NASA Astrophysics Data System (ADS)
Herrman, M.; Polet, J.
2016-12-01
A total of 73 broadband seismometers were deployed for a passive source seismic experiment called the Los Angeles Syncline Seismic Interferometry Experiment (LASSIE) from September to November of 2014. The purpose of this experiment was to collect high density seismic data for the Los Angeles Basin (LAB) to better understand basin structure and response. This research will use the data collected from LASSIE to assess and refine current velocity models of the LAB using a full waveform modeling approach. To this end we will compare seismograms recorded by LASSIE for a subset of the 53 earthquakes and quarry blasts located by the Southern California Seismic Network (SCSN) that occurred within or near the LAB during the deployment period to synthetic seismograms generated by the Frequency-Wavenumber (FK) code developed by Zhu and Rivera (2002). A first analysis of the data indicates that roughly 25 of the 53 events have waveforms with sufficiently high signal to noise ratio, providing approximately 500 seismograms that are of suitable quality for comparison. We observe significant changes in waveform characteristics between stations with a very small separation distance of approximately 1 km. Focal mechanisms for most of these events have been obtained from Dr. Egill Hauksson (personal communication). We will show comparisons between the broadband velocity waveforms recorded by stations across the LASSIE array and FK synthetics determined for a variety of 1D velocity models that have been developed for the LAB area (such as Hadley and Kanamori, 1977; Hauksson, 1989, 1995 and Magistrale, 1992). The results of these comparisons will be analyzed to provide additional constraints on the subsurface seismic velocity structure within the Los Angeles basin.
Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.
2009-01-01
The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado
NASA Astrophysics Data System (ADS)
Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.
2015-02-01
Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpreted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.
Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field
NASA Astrophysics Data System (ADS)
King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio
2017-04-01
This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.
Assessment of seismic hazard in the North Caucasus
NASA Astrophysics Data System (ADS)
Ulomov, V. I.; Danilova, T. I.; Medvedeva, N. S.; Polyakova, T. P.; Shumilina, L. S.
2007-07-01
The seismicity of the North Caucasus is the highest in the European part of Russia. The detection of potential seismic sources here and long-term prediction of earthquakes are extremely important for the assessment of seismic hazard and seismic risk in this densely populated and industrially developed region of the country. The seismogenic structures of the Iran-Caucasus-Anatolia and Central Asia regions, adjacent to European Russia, are the subjects of this study. These structures are responsible for the specific features of regional seismicity and for the geodynamic interaction with adjacent areas of the Scythian and Turan platforms. The most probable potential sources of earthquakes with magnitudes M = 7.0 ± 0.2 and 7.5 ± 0.2 in the North Caucasus are located. The possible macroseismic effect of one of them is assessed.
Seismic detection of increased degassing before Kīlauea's 2008 summit explosion.
Johnson, Jessica H; Poland, Michael P
2013-01-01
The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai'i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.
Seismic detection of increased degassing before Kīlauea's 2008 summit explosion
Johnson, Jessica H.; Poland, Michael P.
2013-01-01
The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai‘i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.
A Comprehensive Seismic Characterization of the Cove Fort-Sulphurdale Geothermal Site, Utah
NASA Astrophysics Data System (ADS)
Zhang, H.; Li, J.; Zhang, X.; Liu, Y.; Kuleli, H. S.; Toksoz, M. N.
2012-12-01
The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the extensional Basin and Range Province to the west and the uplifted Colorado Plateau to the east. The region around the geothermal site has the highest heat flow values of over 260 mWm-2 in Utah. To better understand the structure around the geothermal site, the MIT group deployed 10 seismic stations for a period of one year from August 2010. The local seismic network detected over 500 local earthquakes, from which ~200 events located within the network were selected for further analysis. Our seismic analysis is focused on three aspects: seismic velocity and attenuation tomography, seismic event focal mechanism analysis, and seismic shear wave splitting analysis. First P- and S-wave arrivals are picked manually and then the waveform cross-correlation technique is applied to obtain more accurate differential times between event pairs observed on common stations. The double-difference tomography method of Zhang and Thurber (2003) is used to simultaneously determine Vp and Vs models and seismic event locations. For the attenuation tomography, we first calculate t* values from spectrum fitting and then invert them to get Q models based on known velocity models and seismic event locations. Due to the limited station coverage and relatively low signal to noise ratio, many seismic waveforms do not have clear first P arrival polarities and as a result the conventional focal mechanism determination method relying on the polarity information is not applicable. Therefore, we used the full waveform matching method of Li et al. (2010) to determine event focal mechanisms. For the shear wave splitting analysis, we used the cross-correlation method to determine the delay times between fast and slow shear waves and the polarization angles of fast shear waves. The delay times are further taken to image the anisotropy percentage distribution in three dimensions using the shear wave splitting tomography method of Zhang et al. (2007). For the study region, overall the velocity is lower and attenuation is higher in the western part. Correspondingly, the anisotropy is also stronger, indicating the fractures may be more developed in the western part. The average fast polarization directions of fast shear waves at each station mostly point NNE. From the focal mechanism analysis from selected events, it shows that the normal faulting events have strikes in NNE direction, and the events with strike slip mechanism have strikes either parallel with the NNE trending faults or their conjugate ones. Assuming the maximum horizontal stress (SHmax) is parallel with the strike of the normal faulting events and bisects the two fault planes of the strike-slip events, the inverted source mechanism suggests a NNE oriented maximum horizontal stress regime. This area is under W-E tensional stress, which means maximum compressional stress should be in the N-E or NNE direction in general. The combination of shear wave splitting and focal mechanism analysis suggests that in this region the faults and fractures are aligned in the NNE direction.
Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.
2008-01-01
The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.
A Study on Seismic Hazard Evaluation at the Nagaoka CO2 Storage Site, Japan
NASA Astrophysics Data System (ADS)
Horikawa, S.
2015-12-01
RITE carried out the first Japanese pilot-scale CO2 sequestration project from July, 2003 to January, 2005 in Nagaoka City.Supercritical CO2 was injected into an onshore saline aquifer at a depth of 1,100m. CO2 was injected at a rate of 10,400 tonnes. 'Mid Niigata Prefecture Earthquake in 2004' (Mw6.6) and 'The Niigataken Chuetsu-oki Earthquake in 2007' (Mw6.6) occurred during the CO2 injection-test and after the completion of injection-test. Japan is one of the world's major countries with frequent earthquakes.This paper presents a result of seismic response analysis, and reports of seismic hazard evaluation of a reservoir and a caprock. In advance of dynamic response analysis, the earthquake motion recorded on the earth surface assumed the horizontally layer model, and set up the input wave from a basement layer by SHAKE ( = One-Dimensional Seismic Response Analysis). This wave was inputted into the analysis model and the equation of motion was solved using the direct integral calculus by Newmark Beta Method. In Seismic Response Analysis, authors have used Multiple Yield Model (MYM, Iwata, et al., 2013), which can respond also to complicated geological structure. The intensity deformation property of the foundation added the offloading characteristic to the composition rule of Duncan-Chang model in consideration of confining stress dependency, and used for and carried out the nonlinear repetition model. And the deformation characteristic which made it depend on confining stress with the cyclic loadings and un-loadings, and combined Mohr-Coulomb's law as a strength characteristic.The maximum dynamic shearing strain of caprock was generated about 1.1E-04 after the end of an earthquake. Although the dynamic safety factor was 1.925 on the beginning, after the end of an earthquake fell 0.05 point. The dynamic safety factor of reservoir fell to 1.20 from 1.29. As a result of CO2 migration monitoring by the seismic cross-hole tomography, CO2 has stopped in the reservoir through two earthquakes till the present after injection, and the leak is not accepted till the present. By the result of seismic response simulation, it turned out that the stability of the foundation is not spoiled after the earthquake.
NASA Astrophysics Data System (ADS)
Angel Amaya, J.; Fierro Morales, J.; Ordoñez Potes, M.; Blanco, M.
2012-12-01
We present new seismological, morphotectonic and structural data of the Southern Bogota area. The goals of the study were to characterize the NW transverse fault system and to evaluate its effect on seismic wave's generation and propagation. The data set included epicenters of the RSNC (Red Sismologica Nacional de Colombia) catalog over the period 1993-2012, historical description of seismic events (period 1644-1921), structural field data (scale 1:100000) and remote sensors interpretation. The methodology included the structural analysis of over 476 faults having a known sense of offset by using a least squares iterative inversion outlined by Angelier (1984) to determinate the mean deviatoric principal stress tensor. Preliminary conclusions showed that both propagation medium and direction are determined by the structural and mechanic conditions of the Southern Bogota Shear Zone (SBSZ) defined by Fierro & Angel, (2008) as a NW-SE oblique-slip fault zone within sinistral and normal regimes. Based on both data sources (focal mechanism and field structural data) we attempted to reconstruct the stress field starting with a strike slip faulting stress regime (S2 vertical), the solution yielded a ENE-WSW orientation for horizontal principal stress (S1). It is hypothesized that the NW oblique-slip fault zone may generate and/or propagate seismic waves, as a local source, implying local hazard to Bogota the capital city of Colombia with over 8 million habitants.
NASA Astrophysics Data System (ADS)
Yan, Shi; Zhang, Hai
2005-05-01
The magnetorheological (MR) damper is on of the smart controllers used widely in civil engineering structures. These kinds of dampers are applied in the paper in the elevated highway bridge (EHB) with rubber bearing support piers to mitigate damages of the bridge during the severe earthquake ground motion. The dynamic calculating model and equation of motion for the EHB system are set up theoretically and the LQR semi-active control algorithm of seismic response for the EHB system is developed to reduce effectively the responses of the structure. The non-linear calculation model of the piers that rigid degradation is considered and numerical simulative calculation are carried out by Matlab program. The number and location as well as the maximum control forces of the MR dampers, which are the most important parameters for the controlled system, are determined and the rubber bearing and connection forms of the damper play also important rule in the control efficiency. A real EHB structure that is located in Anshan city, Liaoning province in China is used as an example to be calculated under different earthquake records. The results of the calculation show that it is effective to reduce seismic responses of the EHB system by combining the rubber bearing isolation with semi-active MR control technique under the earthquake ground motion. The locations of MR dampers and structural parameters will influence seriously to the effects of structural vibration control.
Spatial organization of seismicity and fracture pattern at the boundary between Alps and Dinarides
NASA Astrophysics Data System (ADS)
Bressan, Gianni; Ponton, Maurizio; Rossi, Giuliana; Urban, Sandro
2016-04-01
The paper affords the study of the spatial organization of seismicity in the easternmost region of the Alps (Friuli, in NE Italy and W Slovenia), dominated by the interference between the Alpine and the Dinaric tectonic systems. Two non-conventional methods of spatial analysis are used: fractal analysis and principal component analysis (PCA). The fractal analysis helps to discriminate the cases in which hypocentres clearly define a plane, from the ones in which hypocenter distribution tends to the planarity, without reaching it. The PCA analysis is used to infer the orientation of planes fitting through earthquake foci, or the direction of propagation of the hypocentres. Furthermore, we study the spatial seismicity pattern at the shallow depths in the context of a general damage model, through the crack density distribution. The results of the three methods concur to a complex and composite model of fracturing in the region. The hypocentre pattern fills only partially a plane, i.e. has a fractal dimension close to 2. The three exceptions regard planes with Dinaric trend, without interference with Alpine lineaments. The shallowest depth range (0-10 km depth) is characterized by the activation of planes with variable orientations, reflecting the interference between the Dinaric and the Alpine tectonic structures, and closely bound to the variation of the mechanical properties of the crust. The seismicity occurs mostly in areas characterized by a variation from low to moderate crack density, indicating the sharp transition from zones of low damage to zones of moderate damage. Low crack density indicates the presence of more competent rocks capable of sustaining high strain energy while high crack density areas pertain to highly fractured rocks that cannot store high strain energy. Brittle failure, i.e. seismic activity, is favoured within the sharp transitions from low to moderate crack density zones. The orientation of the planes depicting the seismic activity, indeed, coincides with the orientation of the faults generated along the flanks of past carbonate platforms both in Friuli and western Slovenia. In the deepest depth range (10-20-km depth), on the contrary, the study evidences the dominance of the tectonic Dinaric system to the NW of the External Dinarides, in depth. This depth interval is characterized by a more organized pattern of seismicity. Seismic events mainly locate on the Dinaric lineaments in the northern and eastern parts of the region considered, while on Alpine thrusts in the western and southern parts.
NASA Astrophysics Data System (ADS)
Grasso, S.; Maugeri, M.
After the Summit held in Washington on August 20-22 2001 to plan the first World Conference on the mitigation of Natural Hazards, a Group for the analysis of Natural Hazards within the Mediterranean area has been formed. The Group has so far determined the following hazards: (1) Seismic hazard (hazard for historical buildings included); (2) Hazard linked to the quantity and quality of water; (3) Landslide hazard; (4) Volcanic hazard. The analysis of such hazards implies the creation and the management of data banks, which can only be used if the data are properly geo-settled to allow a crossed use of them. The obtained results must be therefore represented on geo-settled maps. The present study is part of a research programme, namely "Detailed Scenarios and Actions for Seismic Prevention of Damage in the Urban Area of Catania", financed by the National Department for the Civil Protection and the National Research Council-National Group for the Defence Against Earthquakes (CNR-GNDT). Nowadays the south-eastern area of Sicily, called the "Iblea" seismic area of Sicily, is considered as one of the most intense seismic zones in Italy, based on the past and current seismic history and on the typology of civil buildings. Safety against earthquake hazards has two as pects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena such as amplification, land sliding and soil liquefaction. So the correct evaluation of seismic hazard is highly affected by risk factors due to geological nature and geotechnical properties of soils. The effect of local geotechnical conditions on damages suffered by buildings under seismic conditions has been widely recognized, as it is demonstrated by the Manual for Zonation on Seismic Geotechnical Hazards edited by the International Society for Soil Mechanics and Geotechnical Engineering (TC4, 1999). The evaluation of local amplification effects may be carried out by means of either rigorous complex methods of analysis or qualitative procedures. A semi quantitative procedure based on the definition of the geotechnical hazard index has been applied for the zonation of the seismic geotechnical hazard of the city of Catania. In particular this procedure has been applied to define the influence of geotechnical properties of soil in a central area of the city of Catania, where some historical buildings of great importance are sited. It was also performed an investigation based on the inspection of more than one hundred historical ecclesiastical buildings of great importance, located in the city. Then, in order to identify the amplification effects due to the site conditions, a geotechnical survey form was prepared, to allow a semi quantitative evaluation of the seismic geotechnical hazard for all these historical buildings. In addition, to evaluate the foundation soil time -history response, a 1-D dynamic soil model was employed for all these buildings, considering the non linearity of soil behaviour. Using a GIS, a map of the seismic geotechnical hazard, of the liquefaction hazard and a preliminary map of the seismic hazard for the city of Catania have been obtained. From the analysis of obtained results it may be noticed that high hazard zones are mainly clayey sites