Sample records for seismically active mountain

  1. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  2. Seismic signature of active intrusions in mountain chains.

    PubMed

    Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido

    2018-01-01

    Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO 2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains.

  3. Seismic signature of active intrusions in mountain chains

    PubMed Central

    Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido

    2018-01-01

    Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains. PMID:29326978

  4. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.

  5. Current Seismicity in the Vicinity of Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Smith, K.; von Seggern, D.; dePolo, D.

    2001-12-01

    The 1992 to 2000 earthquakes in the Southern Great Basin have been relocated in order to better recognize the active tectonic processes in the vicinity of Yucca Mountain. During this time period seismic monitoring in the Southern Great Basin transitioned from a primarily single-component analog network to a 3-component digital network. Through the transition analog and digital networks were run in tandem. The station density over this period is as great as any prior recording period. The analog and digital networks were administered separately during the transition, and we have merged the phase data from the two operations. We performed relocations starting in October 1992, thus creating a hypocentral list for FY1993-FY2000. Aftershocks of the June 1992 M 5.6 Little Skull Mountain earthquake, located approximately 20 km southeast of Yucca Mountain, dominate the seismicity in the Southern Great Basin from 1992-2000. After the Little Skull Mountain earthquake, there was a general increase in earthquake activity in southern NTS, principally associated with the Rock Valley fault zone. There was no corresponding increase in seismicity west of Little Skull Mountain near the potential repository site. The distribution of high-quality earthquake locations generally reflects trends in Miocene tectonism. In particular, a general north-south trending gravity low, interpreted by Carr (1984) as the Kawich-Greenwater Rift, is highlighted by the microseismicity in many areas. Locally small magnitude earthquakes tend to outline the 8-10 Ma Timber Mountain caldera in northern and central NTS. Although these structures do not generally correlate with Quaternary faults, the micro-earthquake activity may reflect zones of weakness within these older structures. A 100 km long, conspicuous, north-south trending seismic zone, which shows no correlation with know Quaternary features, aligns along the steep gravity gradient bordering the western side of the Kawich-Greenwater gravity structure. This apparently is an indication that at least some of the seismicity near Yucca Mountain is driven by density contrasts in the lower crust or upper mantle as well as by low regional tectonic strain rates. Overall, the seismicity near Yucca Mountain is low compared to other areas of the southern Great Basin and to the west in the Eastern California Shear Zone. We have calculated the Coulomb stress changes on Yucca Mountain area faults due to large (M > 7) faulting events on the Furnace Creek Fault Zone and interpreted this result in terms of the implications for understanding the distribution of the current seismicity. Because of the significant difference in the Quaternary geologic slip rates between the Furnace Creek and Yucca Mountain area faults (a factor of 250-500) and the stress modeling results, we investigate the hypothesis that the Furnace Creek and Death Valley faults act to decrease the long-term recurrence rate for normal faulting events in the Yucca Mountain block.

  6. Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008-2010

    NASA Astrophysics Data System (ADS)

    Nakai, J. S.; Sheehan, A. F.; Bilek, S. L.

    2017-03-01

    We developed a catalog of small magnitude (ML -0.1 to 4.7) seismicity across Colorado and New Mexico from the EarthScope USArray Transportable Array and CREST (Colorado Rocky Mountains Experiment and Seismic Transects) seismic networks from 2008 to 2010 to characterize active deformation in the Rio Grande Rift. We recorded over 900 earthquakes in the Rio Grande Rift region, not including induced earthquakes and mine blasts, and find that the rift is actively deforming both broadly and in distinct regions. Seismic events that are likely induced, mostly in the Raton Basin, make up 66% of the catalog (1837 earthquakes). Neogene faults in the northern rift in north central Colorado are seismically active in the North Park Basin and northwestern Colorado. The central rift from the San Luis Basin (southern Colorado) to south of the Socorro Magma Body is the most seismically active rift region, and seismicity delineates the deformation in the Colorado Plateau transition zone, which is spatially correlated with volcanic vents, dikes, and faults within the western Jemez Lineament. The eastern Jemez Lineament is nearly aseismic and surrounded by a halo of seismicity culminating in boundaries defined by recent moderate (Mw 3.9 and Mw 3.3) earthquakes. The southern rift is characterized by diffuse seismicity in Texas and Mexico. This study provides an updated seismic catalog built with uniformity in seismometer coverage and low epicentral uncertainties ( 2 km) that allows for regional evaluation of seismicity. During this time period, clusters of seismicity and moderate magnitude earthquakes characterize deformation in a low-strain rate extensional environment.

  7. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China), and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, C.; Simoes, M.; Barrier, L.; Laborde, A.; van der Woerd, J.; Li, H.; Tapponnier, P.; Coudroy, T.; Murray, A. S.

    2017-12-01

    The Western Kunlun mountain range (Xinjiang, north-west China) is a slowly deforming intra-continental orogen where deformation rates are too low to be quantified from geodetic techniques. This region has recorded little historical seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold along the topographic mountain front in the epicentral area. Using field observations and a seismic profile, we derive a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr over the last 400 kyr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is then proposed by combining all structural, morphological and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of major M ≥ 8-8.5 earthquakes in the case that the whole decollement is presently seismically locked and fully ruptures in one single seismic event.

  8. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain-Crater Flat region, Nevada

    USGS Publications Warehouse

    Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.

  9. Geologic and geophysical characterization studies of Yucca Mountain, Nevada, a potential high-level radioactive-waste repository

    USGS Publications Warehouse

    Whitney, J.W.; Keefer, W.R.

    2000-01-01

    In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.

  10. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China) and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew

    2017-12-01

    The Western Kunlun mountain range is a slowly converging intracontinental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive a structural cross section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces from field sampling, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is proposed by combining all structural, morphological, and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of M ≥ 8 earthquakes if the whole decollement across the southern Tarim Basin is seismically locked and ruptures in one single event.

  11. Seismic experiment ross ice shelf 1990/91: Characteristics of the seismic reflection data

    USGS Publications Warehouse

    1993-01-01

    The Transantarctic Mountains, with a length of 3000-3500 km and elevations of up to 4500 m, are one of the major Cenozoic mountain ranges in the world and are by far the most striking example of rift-shoulder mountains. Over the 1990-1991 austral summer Seismic Experiment Ross Ice Shelf (SERIS) was carried out across the Transantarctic Mountain front, between latitudes 82 degrees to 83 degrees S, in order to investigate the transition zone between the rifted area of the Ross Embayment and the uplifted Transantarctic Mountains. This experiment involved a 140 km long seismic reflection profile together with a 96 km long coincident wide-angle reflection/refraction profile. Gravity and relative elevation (using barometric pressure) were also measured along the profile. The primary purpose was to examine the boundary between the rift system and the uplifted rift margin (represented by the Transantarctic Mountains) using modern multi-channel crustal reflection/refraction techniques. The results provide insight into crustal structure across the plate boundary. SERIS also represented one of the first large-scale and modern multi-channel seismic experiments in the remote interior of Antarctica. As such, the project was designed to test different seismic acquisition techniques which will be involved in future seismic exploration of the continent. This report describes the results from the analysis of the acquisition tests as well as detailing some of the characteristics of the reflection seismic data. (auths.)

  12. Reconciling deep seismic refraction and reflection data from the grenvillian-appalachian boundary in western New England

    USGS Publications Warehouse

    Hughes, S.; Luetgert, J.H.; Christensen, N.I.

    1993-01-01

    The Grenvillian-Appalachian boundary is characterized by pervasive mylonitic deformation and retrograde alteration of a suite of imbricated allochthonous and parautochthonous gneisses that were thrust upon the Grenvillian continental margin during the lower Paleozoic. Seismic reflection profiling across this structural boundary zone reveals prominent dipping reflectors interpreted as overthrust basement slices (parautochthons) of the Green Mountain Anticlinorium. In contrast, a seismic refraction study of the Grenvillian-Appalachian boundary reveals a sub-horizontally layered seismic velocity model that is difficult to reconcile with the pronounced sub-vertical structures observed in the Green mountains. A suite of rock samples was collected from the Green Mountain Anticlinorium and measured at high pressures in the laboratory to determine the seismic properties of these allochthonous and parautochthonous gneisses. The laboratory-measured seismic velocities agree favorably with the modelled velocity structure across the Grenvillian-Appalachian boundary suggesting that the rock samples are reliable indicators of the rock mass as whole. Samples of the parautochthonous Grenvillian basement exposed in the Green Mountains have lower velocities, by about 0.5 km/s, than lithologically equivalent units exposed in the eastern Adirondack Highlands. Velocity reduction in the Green Mountain parautochthons can be accounted for by retrograde metamorphic alteration (hydration) of the paragneisses. Seismic anisotropies, ranging from 2 to 12%, in the mylonitized Green Mountain paragneisses may also contribute to the observation of lower seismic velocities, where the direction of ray propagation is normal to the foliation. The velocity properties of the Green Mountain paragneisses are thus insufficiently different from the mantling Appalachian allochthons to permit their resolution by the Ontario-New York-New England seismic refraction profile. ?? 1993.

  13. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  14. The Sacred Mountain of Varallo in Italy: seismic risk assessment by acoustic emission and structural numerical models.

    PubMed

    Carpinteri, Alberto; Lacidogna, Giuseppe; Invernizzi, Stefano; Accornero, Federico

    2013-01-01

    We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named "The Sacred Mountain of Varallo." Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the "Sacred Mountain of Varallo" and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects.

  15. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  16. Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites from Vacska cave, Pilis Mountains of Hungary

    NASA Astrophysics Data System (ADS)

    Gribovszki, Katalin; Bokelmann, Götz; Kovács, Károly; Mónus, Péter; Konecny, Pavel; Lednicka, Marketa; Novák, Attila

    2017-04-01

    Damaging earthquakes in central Europe are infrequent, but do occur. This raises the important issue for society of how to react to this hazard: potential damages are enormous, and infrastructure costs for addressing these hazards are huge as well. Obtaining an unbiased expert knowledge of the seismic hazard (and risk) is therefore very important. Seismic activity in the Pannonian Basin is moderate. In territories with low or moderate seismic activity the recurrence time of large earthquakes can be as long as 10,000 years. Therefore, we cannot draw well-grounded inferences in the field of seismic hazard assessment exclusively from the seismic data of 1,000- to 2,000-years observational period, that we have in our earthquake catalogues. Long-term information can be gained from intact and vulnerable stalagmites (IVSTM) in natural karstic caves. These fragile formations survived all earthquakes that have occurred, over thousands of years - depending on the age of them. Their "survival" requires that the horizontal ground acceleration has never exceeded a certain critical value within that time period. Here we present such a stalagmite-based case study from the Pilis Mountains of Hungary. Evidence of historic events and of differential uplifting (incision of Danube at the River Bend and in Buda and Gerecse Hills) exists in the vicinity of investigated cave site. These observations imply that a better understanding of possible co-seismic ground motions in the nearby densely populated areas of Budapest is needed. A specially shaped (high, slim and more or less cylindrical form), intact and vulnerable stalagmites in the Vacska cave, Pilis Mountains were examined. The method of our investigation includes in-situ examination of the IVSTM and mechanical laboratory measurements of broken stalagmite samples. The used approach can yield significant new constraints on the seismic hazard of the investigated area, since tectonic structures close to Vacska cave could not have generated strong paleoearthquakes in the last few thousand years, which would have produced a horizontal ground acceleration larger than the upper acceleration threshold that we can determined from the intact and vulnerable stalagmites. A particular importance of this study results from the seismic hazard of the capital of Hungary.

  17. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Rogers

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.« less

  18. Contrasts in Lower Crustal Structure and Evolution Between the Northern and Southern Rocky Mountains From Xenoliths and Seismic Data

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.; Shen, W.; Stachnik, J. C.

    2016-12-01

    We compare and contrast crustal structure and composition along a transect from the Southern to Northern Rocky Mountains, with a focus on the lower crust. Evolution of the crust can include processes of emplacement, differentiation, and thermal changes that may generate lower crust with high seismic wavespeeds. The high seismic velocities can be due to mafic composition, the presence of garnet, or both. We seek to find seismic signatures preserved from such processes and compare xenolith samples and present-day seismic appearance between regions with varying tectonic histories. We review recent seismic results from the EarthScope Transportable Array from receiver functions and surface waves, compilations of active source studies, and xenolith studies to compare lower crustal structure along transects through the Northern and Southern Rocky Mountains traversing Montana, Wyoming, Colorado, Utah, and New Mexico. Xenoliths from an unusually thick lower crustal layer with high seismic velocities in Montana record magmatic emplacement processes dating back to the Archean. The lower crustal layer possesses internal velocity contrasts that lead to conflicting interpretations of Moho depth depending on the method used, with xenoliths and a refraction study placing the Moho at 55 km depth, while studies using surface waves and receiver functions identify the largest contrast at 40-45 km depth as the Moho. An additional confounding factor is the presence of metasomatized uppermost mantle with low seismic velocities, which may further diminish the seismic signature of the petrological Moho. To the south, the high-velocity layer diminishes, and seismic velocities in the deep crust under southern Wyoming, Colorado, and New Mexico are lower. In the literature, north-south gradients in lower crustal velocity in this area and observed differences in garnet content have variously been ascribed to thermal dehydration of Archean-age hydrous crust or Laramide-age hydration of previously garnet-rich crust.

  19. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that they were subjected to heated gases at approximately the temperatures expected from waste emplacement. These deposits provide at least limited textural and mineralogic analogs for waste-induced, high-humidity thermal alteration of emplacement drift wall rocks.

  20. The Sacred Mountain of Varallo in Italy: Seismic Risk Assessment by Acoustic Emission and Structural Numerical Models

    PubMed Central

    Carpinteri, Alberto; Invernizzi, Stefano; Accornero, Federico

    2013-01-01

    We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named “The Sacred Mountain of Varallo.” Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the “Sacred Mountain of Varallo” and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects. PMID:24381511

  1. Thickness and character of regolith on mountain slopes in the vicinity of Mountain Lake, Virginia, as indicated by seismic refraction, and implications for hillslope evolution

    NASA Astrophysics Data System (ADS)

    Mills, Hugh H.

    1990-06-01

    Seismic refraction was used to determine the variation in thickness and seismic velocities of regolith on boulder-mantled mountain flanks underlain by shale in the Valley and Ridge province near Mountain Lake, southwestern Virginia. Emphasis was on cross-slope variations, particularly the difference between dells (hollows) and noses. Four types of material were distinguished on the basis of seismic velocity. Soil material within 1-2 m of the ground surface affected by pedogenesis had a velocity generally less than 400 m/s. Unconsolidated bouldery colluvium, up to 6 m thick, had a velocity of about 400-800 m/s. Old, weathered and consolidated colluvium had a velocity of 800-2000 m/s. Bedrock residuum and highly weathered bedrock showed similar velocities, however, so that all material in this range was collectively termed "weathered regolith." Its thickness exceeded 30 m in places. Relatively unweathered bedrock showed velocities of at least 2000 m/s. On average, seismic profiles showed regolith thicknesses in excess of 10 m, the greater part being residuum or weathered bedrock. This finding contrasts with one study near the glacial border in Pennsylvania, which showed that colluvium generally directly overlies bedrock. This difference may reflect less-intense Pleistocene periglacial erosion in Virginia than in Pennsylvania. Topography generally was not a good predictor of regolith thickness. Hollows showed greater thicknesses of ypung colluvium than did noses, but dells and noses showed little difference in total regolith thickness. Both dells and noses showed great variation in regolith thickness. The largest systematic difference was found between dell floors (or parts thereof) that seemed to be undergoing long-term downcutting and those that appeared to be relict features no longer associated with active drainageways. The former were underlain by a mean of 5.5 m of weathered regolith, whereas the latter were underlain by a mean of 14.0 m, indicative of a greater depth of weathering and therefore a greater antiquity. On three noses, closely spaced seismic profiles were used to demonstrate asymmetric distribution of regolith thickness in a direction transverse to nose axes. Findings are compatible with the concept that noses and dells on the boulder-mantled mountain slopes undergo topographic inversion during long-term retreat of the mountain front.

  2. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have been relocated. Our goal is to derive high-resolution three-dimensional P- and S-wave velocity structure models of Mammoth Mountain. These models will enable more precise locations of the local seismicity, full waveform inversions of long-period seismicity, derivation of moment tensors for the seemingly brittle-failure high-frequency earthquakes, analyses of shear-wave splitting, and high-resolution relative relocation of seismicity using double differences.

  3. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  4. Submarine Landslide Hazards Offshore Southern Alaska: Seismic Strengthening Versus Rapid Sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.

    2017-12-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking

  5. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  6. Regional geology and geophysics of the Jemez Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, F.G.

    1973-08-01

    The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

  7. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  8. An introduction to the tectonophysics special issue (Geodynamics and Environment in East Asia, GEEA 2014)

    NASA Astrophysics Data System (ADS)

    Siame, Lionel L.; Lee, Jian-Cheng

    2016-12-01

    In Taiwan, tectonic and climatic processes are exacerbated, involving deformation and erosion rates that are among the highest ones in the world. The combination of these internal and external forcing factors results in frequent and severe natural hazards in many aspects, including earthquake, landslide, mud/debris flows, floods, tsunamis, etc., which became a real concern not only for in the Taiwanese society but also applying for many countries or areas in the world. Within this general context, Taiwan orogen is thus a quite exceptional natural laboratory to study the coupling relationships between internal and external processes, and thus better cope with implications on society and economics. From a fundamental science point of view, Taiwan orogen has long been recognized as one of the best places in the world to study mountain building processes including lithosphere and crustal deformation, mechanisms of mountain building, seismic cycle and seismic behaviour of active faults. In fact, Taiwan orogen is probably one of the rare mountain belts where processes of mountain building can be apprehended from oceanic to continental subduction and post-orogenic extension.

  9. "The Bridge" from Earthscope to EarthsCAN to Maintain North American Geoscience Momentum

    NASA Astrophysics Data System (ADS)

    Boggs, K. J. E.; Hyndman, R. D.; Eaton, D. W. S.

    2016-12-01

    "The Bridge", of seismic instruments across the Yukon-western NWT from the USArray-Alaska extending from the Pacific Ocean to the Beaufort Sea, is a possible proof of concept for the new EarthsCAN research initiative. The proposal is to fill gaps between the USArray-Alaska seismic stations, the McKenzie Mtn Earthscope Project, seismic sites of the Geological Survey of Canada, the Yukon Geological Survey, the University of Ottawa and other industry/government consortia. Workshop results defined important northern Cordillera questions. The Yukon Stable Block (YSB) is underlain in part by the Paleoproterozoic Wernecke Supergroup (not exposed elsewhere in the Cordillera). Cretaceous-Tertiary structures are deflected around the YSB suggesting stronger internal crust in the YSB. New GPS observations (Alaska and NW Canada) indicate that as the Yakutat block is colliding with North America that the Elias block is rotating counterclockwise, and the Alaska panhandle rotating clockwise into North America. Seismic activity also extends 800 km from the plate boundary to current deformation in the Mackenzie and Richardson Mountains. A model to explain neotectonic deformation proposes a strong upper crust, decoupled from the underlying mantle due to elevated basal temperatures, which is pushed against the plate boundary and transmits stresses throughout the Cordillera. Resolving these questions requires high-resolution seismic velocity models of the crust and mantle, dense GPS velocity fields, as well as mapping active faults in the Mackenzie Mountains and across the Cordillera via Lidar images and paleoseismic trenching. The transition from the actively deforming northern Cordillera to the relatively aseismic northern Rockies across a lithospheric-scale transfer zone inherited from former passive margins, similar to the one bounding the YSB in the north, may be an important characteristic of modern Cordilleras that controls tectonic activity.

  10. Seismic anisotropy and large-scale deformation of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene

    2013-12-01

    Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The Alps show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western Alps, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern Alps, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.

  11. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  12. Joint interpretation of seismic tomography and new magnetotelluric results provide evidence for support of high topography in the Southern Rocky Mountains and High Plains of eastern Colorado, USA

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.

    2015-12-01

    A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the Rocky Mountains and regionally in the High Plains.

  13. Near-Surface and High Resolution Seismic Imaging of the Bennett Thrust Fault in the Indio Mountains of West Texas

    NASA Astrophysics Data System (ADS)

    Vennemann, Alan

    My research investigates the structure of the Indio Mountains in southwest Texas, 34 kilometers southwest of Van Horn, at the UTEP (University of Texas at El Paso) Field Station using newly acquired active-source seismic data. The area is underlain by deformed Cretaceous sedimentary rocks that represent a transgressive sequence nearly 2 km in total stratigraphic thickness. The rocks were deposited in mid Cretaceous extensional basins and later contracted into fold-thrust structures during Laramide orogenesis. The stratigraphic sequence is an analog for similar areas that are ideal for pre-salt petroleum reservoirs, such as reservoirs off the coasts of Brazil and Angola (Li, 2014; Fox, 2016; Kattah, 2017). The 1-km-long 2-D shallow seismic reflection survey that I planned and led during May 2016 was the first at the UTEP Field Station, providing critical subsurface information that was previously lacking. The data were processed with Landmark ProMAX seismic processing software to create a seismic reflection image of the Bennett Thrust Fault and additional imbricate faulting not expressed at the surface. Along the 1-km line, reflection data were recorded with 200 4.5 Hz geophones, using 100 150-gram explosive charges and 490 sledge-hammer blows for sources. A seismic reflection profile was produced using the lower frequency explosive dataset, which was used in the identification of the Bennett Thrust Fault and additional faulting and folding in the subsurface. This dataset provides three possible interpretations for the subsurface geometries of the faulting and folding present. However, producing a seismic reflection image with the higher frequency sledge-hammer sourced dataset for interpretation proved more challenging. While there are no petroleum plays in the Indio Mountains region, imaging and understanding subsurface structural and lithological geometries and how that geometry directs potential fluid flow has implications for other regions with petroleum plays.

  14. Seismicity of the Earth 1900-2010 Mexico and vicinity

    USGS Publications Warehouse

    Rhea, Susan; Dart, Richard L.; Villaseñor, Antonio; Hayes, Gavin P.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2011-01-01

    Mexico, located in one of the world's most seismically active regions, lies on three large tectonic plates: the North American plate, Pacific plate, and Cocos plate. The relative motion of these tectonic plates causes frequent earthquakes and active volcanism and mountain building. Mexico's most seismically active region is in southern Mexico where the Cocos plate is subducting northwestward beneath Mexico creating the deep Middle America trench. The Gulf of California, which extends from approximately the northern terminus of the Middle America trench to the U.S.-Mexico border, overlies the plate boundary between the Pacific and North American plates where the Pacific plate is moving northwestward relative to the North American plate. This region of transform faulting is the southern extension of the well-known San Andreas Fault system.

  15. Cows Come Down from the Mountains before the (Mw = 6.1) Earthquake Colfiorito in September 1997; A Single Case Study.

    PubMed

    Fidani, Cristiano; Freund, Friedemann; Grant, Rachel

    2014-06-03

    The September-October 1997 seismic sequence in the Umbria-Marche regions of Central Italy has been one of the stronger seismic events to occur in Italy over the last thirty years, with a maximum magnitude of Mw = 6.1. Over the last three years, a collection of evidence was carried out regarding non-seismic phenomena, by interviewing local residents using a questionnaire. One particular observation of anomalous animal behaviour, confirmed by many witnesses, concerned a herd of cows, which descended from a mountain close to the streets of a village near the epicentre, a few days before the main shock. Testimonies were collected using a specific questionnaire including data on earthquake lights, spring variations, human diseases, and irregular animal behaviour. The questionnaire was compiled after the L'Aquila earthquake in 2009, and was based upon past historical earthquake observations. A possible explanation for the cows' behavior-local air ionization caused by stress-activated positive holes-is discussed.

  16. Seismic Characterization of the Blue Mountain Geothermal Site

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Matzel, E.; Cladouhos, T. T.

    2017-12-01

    All fluid injection activities have the potential to induce earthquakes by modifying the state of stress in the subsurface. In geothermal areas, small microearthquakes can be a beneficial outcome of these stress perturbations by providing direct subsurface information that can be used to better understand and manage the underground reservoir. These events can delineate the active portions of the subsurface that have slipped in response to pore fluid pressure changes or temperature changes during and after fluid injection. Here we investigate the seismic activity within the Blue Mountain Geothermal Power Plant located in Humboldt County, Nevada between December 2015 to May 2016. We compare the effectiveness of direct spatial-temporal cross-correlation templates with Matched Field Processing (MFP) derived templates and compare these results with earthquake detection results from a traditional STA/LTA algorithm. Preliminary results show significant clustering of microearthquakes, most probably influenced by plant operations. The significant increase in data availability that advanced earthquake detection methods can provide improves the statistical analyses of induced seismicity sequences, reveal critical information about the ongoing evolution of the subsurface reservoir, and better informs the construction of models for hazard assessments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Stewart, Iain S.; Rose, James

    2000-01-01

    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  18. Crustal structure of the Izu Collision zone, central Japan, revealed by dense seismic array observations

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.

    2009-12-01

    In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with permanent seismic station data. P- and S-wave arrival time data were obtained from 247 events and 16,144 P- and 13,723 S-wave arrival times were used for the inversion analysis. Arrival times of local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The P-wave velocity structure shows that low velocity zones exist along the estimated deeper extension of the active faults and high velocity zones exist beneath the Tanzawa Mountains and Misaka Mountains. The Tanzawa Mountains and the Misaka Mountains are considered as fragments of the IBA (e.g. Niitsuma, 1989). We obtained a seismic velocity model revealing good correlations with the surface geology along the profile. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.

  19. Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whitney, John W.; O'Leary, Dennis W.

    1993-01-01

    Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.

  20. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  1. Seismic interferometry of the Bighorn Mountains: Using virtual source gathers to increase fold in sparse-source, dense-receiver data

    NASA Astrophysics Data System (ADS)

    Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.

    2016-12-01

    The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.

  2. Intensity of geomorphological processes in NW sector of Pacific rim marginal mountain belts

    NASA Astrophysics Data System (ADS)

    Lebedeva, Ekaterina; Shvarev, Sergey; Gotvansky, Veniamin

    2014-05-01

    Continental marginal mountains, including the mountain belts of Russian Far East, are characterized by supreme terrain contrast, mosaic structure of surface and crust, and rich complex of modern endogenous processes - volcanism, seismicity, and vertical movements. Unstable state of geomorphological systems and activity of relief forming processes here is caused also by deep dissected topography and the type and amount of precipitation. Human activities further stimulate natural processes and increase the risk of local disasters. So these territories have high intensity (or tension) of geomorphological processes. Intensity in the authors' understanding is willingness of geomorphological system to be out of balance, risk of disaster under external and internal agent, both natural and human. Mapping with quantitative accounting of intensity of natural and human potential impact is necessary for indication the areal distribution trends of geomorphological processes intensity and zones of potential risk of disasters. Methods of map drowning up are based on several criteria analyzing: 1) total terrain-form processes and their willingness to be a hazard-like, 2) existence, peculiarity and zoning of external agents which could cause extreme character of base processes within the territory, 3) peculiarity of terrain morphology which could cause hazard way of terrain-form processes. Seismic activity is one of the most important factors causing activation of geomorphological processes and contributing to the risk of dangerous situations. Earthquake even small force can provoke many catastrophic processes: landslides, mudslides, avalanches and mudflows, tsunami and others. Seismic gravitational phenomenons of different scale accompany almost all earthquakes of intensity 7-8 points and above, and some processes, such as avalanches, activated by seismic shocks intensity about 1-3 points. In this regard, we consider it important selection of high intensity seismic zones in marginal-continental mountain systems and also offer to give them extra points of tension, the number of which increases depending on the strength of the shock. Such approach allows to identify clearly the most potentially hazardous areas where there may be various, sometimes unpredictable scale catastrophic processes, provoked intense underground tremors. We also consider the impact of the depth of topography dissection and the total amount of precipitation. The marginal-continental mountain systems have often radically different moistening of coastal and inland slopes. And this difference can be 500, 1000 mm and more, that, undoubtedly, affects the course and intensity of geomorphological processes on slopes of different exposures. The total evaluation of intensity of geomorphologic processes exceeding 15 points is considered to be potentially catastrophic. At 10-15 points tension geomorphologic processes is extremely high, and at 5-10 points - high, less than 5 points - low. The maps of the key areas of the Russian Far East - Kamchatka and the north of Kuril Islands, Sakhalin and the Western Okhotsk region were compiled. These areas have differences in geodynamic regimes, landscape-climatic and anthropogenic conditions and highly significant in relation to the differentiated estimation of geomorphologic tension. The growth of intensity of geomorphological processes toward the Pacific Ocean was recorded: from 7-10 points in Western Okhotsk region to 10-13 at Sakhalin and to 13-15 points for Kamchatka.

  3. Rapid post-seismic landslide evacuation boosted by dynamic river width and implications for sediment fluxes during the seismic cycle

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2017-04-01

    Mass wasting caused by large magnitude earthquakes choke mountain rivers with several cubic kilometers of sediment. The timescale and mechanisms by which rivers evacuate the coarse fraction of small to gigantic landslide deposits are poorly known, but are critical to predict post-seismic hydro-sedimentary hazards, interpret the signature of earthquakes in sedimentary archives and decipher the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity of coarse sediments and reduces export time of gigantic landslides by orders of magnitude compared to existing theory. Predicted export times obey a universal non-linear relationship function of landslide volume and pre-landslide valley transport capacity. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized, mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks. Upscaling these results to realistic populations of landslides show that removing half of the total sediment volume introduced by large earthquakes in the fluvial network would typically last 5 to 25 years in various tectonically active mountain belts, with little impact of topography and climate. If several studies indicate a strong dependency of total landslide volume to earthquake magnitude, our study show that the sediment export time of a landslide population is not strongly impacted by earthquake magnitude or by the total volume of the landslide population. Building on these new findings, we then investigate the dynamics of mountainous landscapes submitted to a series of earthquakes, following either a Gutenberg-Richter distribution or a single large magnitude event. We infer the temporal and spatial evolution of the number of active landslide deposits, of the sediment load along the fluvial network and of the exported sediment flux throughout several seismic cycles. These results highlight how landscapes and sediment fluxes respond on longer time scales to a succession of earthquakes able to trigger landslides.

  4. Characterization of the Cottonwood Grove and Ridgely faults near Reelfoot Lake, Tennessee, from high-resolution seismic reflection data

    USGS Publications Warehouse

    Stephenson, William J.; Shedlock, Kaye M.; Odum, Jack K.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  5. Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Gandhok, G.

    2006-01-01

    Introduction: The Santa Clara Valley is located in the southern San Francisco Bay area of California and generally includes the area south of the San Francisco Bay between the Santa Cruz Mountains on the southwest and the Diablo Ranges on the northeast. The area has a population of approximately 1.7 million including the city of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley. Major active strands of the San Andreas Fault system bound the Santa Clara Valley, including the San Andreas fault to the southwest and the Hayward and Calaveras faults to the northeast; related faults likely underlie the alluvium of the valley. This report focuses on subsurface structures of the western Santa Clara Valley and the northeastern Santa Cruz Mountains and their potential effects on earthquake hazards and ground-water resource management in the area. Earthquake hazards and ground-water resources in the Santa Clara Valley are important considerations to California and the Nation because of the valley's preeminence as a major technical and industrial center, proximity to major earthquakes faults, and large population. To assess the earthquake hazards of the Santa Clara Valley better, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential earthquake sources and potential effects of strong ground shaking within the valley. As part of that program, and to better assess water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began conducting collaborative studies to characterize the faults, stratigraphy, and structures beneath the alluvial cover of the Santa Clara Valley in the year 2000. Such geologic features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local or regional earthquakes sources. As one component of these joint studies, the U. S. Geological Survey acquired more than 28 km of combined seismic reflection/refraction data from the Santa Cruz Mountains to the central Santa Clara Valley in December 2000. The seismic investigation included both high-resolution (~5-m shot and sensor spacing) and relatively lower-resolution (~50-m sensor) seismic surveys from the central Santa Cruz Mountains to the central part of the valley. Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI).

  6. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  7. Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain

    USGS Publications Warehouse

    Foulger, G.R.; Julian, B.R.; Pitt, A.M.; Hill, D.P.; Malin, P.E.; Shalev, E.

    2003-01-01

    A temporary network of 69 three-component seismic stations captured a major seismic sequence in Long Valley caldera in 1997. We performed a tomographic inversion for crustal structure beneath a 28 km ?? 16 km area encompassing part of the resurgent dome, the south moat, and Mammoth Mountain. Resolution of crustal structure beneath the center of the study volume was good down to ???3 km below sea level (???5 km below the surface). Relatively high wave speeds are associated with the Bishop Tuff and lower wave speeds characterize debris in the surrounding moat. A low-Vp/Vs anomaly extending from near the surface to ???1 km below sea level beneath Mammoth Mountain may represent a CO2 reservoir that is supplying CO2-rich springs, venting at the surface, and killing trees. We investigated temporal variations in structure beneath Mammoth Mountain by differencing our results with tomographic images obtained using data from 1989/1990. Significant changes in both Vp and Vs were consistent with the migration of CO2 into the upper 2 km or so beneath Mammoth Mountain and its depletion in peripheral volumes that correlate with surface venting areas. Repeat tomography is capable of detecting the migration of gas beneath active silicic volcanoes and may thus provide a useful volcano monitoring tool.

  8. Cows Come Down from the Mountains before the (Mw = 6.1) Earthquake Colfiorito in September 1997; A Single Case Study

    PubMed Central

    Fidani, Cristiano; Freund, Friedemann; Grant, Rachel

    2014-01-01

    Simple Summary Recent reports from several countries such as China, Italy and Japan support the existence of strange animal behaviour before strong earthquakes. However, the stimuli to which animals are sensitive preceding seismic activity are still not completely understood. Here we report the case of a herd of cows (reported by an entire village) leaving the hill pasture and descending near to the village streets two days before a strong earthquake. Abstract The September–October 1997 seismic sequence in the Umbria–Marche regions of Central Italy has been one of the stronger seismic events to occur in Italy over the last thirty years, with a maximum magnitude of Mw = 6.1. Over the last three years, a collection of evidence was carried out regarding non-seismic phenomena, by interviewing local residents using a questionnaire. One particular observation of anomalous animal behaviour, confirmed by many witnesses, concerned a herd of cows, which descended from a mountain close to the streets of a village near the epicentre, a few days before the main shock. Testimonies were collected using a specific questionnaire including data on earthquake lights, spring variations, human diseases, and irregular animal behaviour. The questionnaire was compiled after the L’Aquila earthquake in 2009, and was based upon past historical earthquake observations. A possible explanation for the cows’ behavior—local air ionization caused by stress-activated positive holes—is discussed. PMID:26480042

  9. Découverte d'un chevauchement d'âge quaternaire au sud de la Grande Kabylie (Algérie)

    NASA Astrophysics Data System (ADS)

    Boudiaf, Azzedine; Philip, Hervé; Coutelle, Alain; Ritz, Jean-François

    1999-03-01

    In the Maghreb, the southern border of the Kabylie (Algeria) mountains is considered as an aseismic region. The detailed study of the historical seismicity of this region shows moderate seismic activity (M 1 = 5.0) which is not coherent with the observed tectonic deformations. However, an analysis of the morphology on Landsat image, aerial photos and the topography shows Quaternary deformations in the southern side of the "Kabylie massifs" (Algeria). These deformations are interpreted as reactivation of Miocene thrust faults. The tectonic Quaternary scarps are more spectacular in the Bouira and Tazmalt region and might be associated with successive strong earthquakes (M = 7.0). Therefore, this major active thrust fault observed in this region, as in many intraplate regions, poses the problem of the long return period of seismic activity in this zone. Elsevier, Paris

  10. Seismic Investigation of Magmatic Unrest Beneath Mammoth Mountain, California Using Waveform Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Lin, G.

    2012-12-01

    We investigate the seismic and magmatic activity during an 11-month-long seismic swarm between 1989 and 1990 beneath Mammoth Mountain (MM) at the southwest rim of Long Valley caldera in eastern California. This swarm is believed to be results of a shallow intrusion of magma beneath MM. It was followed by the emissions of carbon dioxide (CO2) gas, which caused tree-killings in 1990 and posed a significant human health risk around MM. In this study, we develop a new three-dimensional (3-D) P-wave velocity model using first-arrival picks by applying the simul2000 tomographic algorithm. The resulting 3-D model is correlated with the surface geological features at shallow depths and is used to constrain absolute earthquake locations for all local events in our study. We compute both P- and S-wave differential times using a time-domain waveform cross-correlation method. We then apply similar event cluster analysis and differential time location approach to further improve relative event location accuracy. A dramatic sharpening of seismicity pattern is obtained after these processes. The estimated uncertainties are a few meters in relative location and ~100 meters in absolute location. We also apply a high-resolution approach to estimate in situ near-source Vp/Vs ratios using differential times from waveform cross-correlation. This method provides highly precise results because cross-correlation can measure differential times to within a few milliseconds and can achieve a precision of 0.001 in estimated Vp/Vs ratio. Our results show a circular ring-like seismicity pattern with a diameter of 2 km between 3 and 8 km depth. These events are distributed in an anomalous body with low Vp and high Vp/Vs, which may be caused by over-pressured magmatically derived fluids. At shallower depths, we observe very low Vp/Vs anomalies beneath MM from the surface to 1 km below sea level whose locations agree with the proposed CO2 reservoir in previous studies. The systematic spatial and temporal migration of seismicity suggests fluid involvement in the seismic swarm. Our results will provide more robust constraints on the crustal structure and volcanic processes beneath Mammoth Mountain.

  11. 5 years of continuous seismic monitoring of a mountain river in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Sanchez-Pastor, Pilar S.; Gallart, Josep

    2017-04-01

    The analysis of background seismic noise variations in the proximity of river channels has revealed as a useful tool to monitor river flow, even for modest discharges. Nevertheless, this monitoring is usually carried on using temporal deployments of seismic stations. The CANF seismic broad-band station, acquiring data continuously since 2010 and located inside an old railway tunnel in the Central Pyrenees, at about 400 m of the Aragón River channel, provides an excellent opportunity to enlarge this view and present a long term monitoring of a mountain river. Seismic signals in the 2-10 Hz band clearly related to river discharges have been identified in the seismic records. Discharge increases due to rainfall, large storms resulting in floods and snowmelt periods can be discriminated from the analysis of the seismic data. Up to now, two large rainfall events resulting in large discharge and damaging floods have been recorded, both sharing similar properties which can be used to implement automatic procedures to identify seismically potentially damaging floods. Another natural process that can be characterized using continuouly acquired seismic data is mountain snowmelt, as this process results in characteristic discharge patterns which can be identified in the seismic data. The time occurrence and intensity of the snowmelt stages for each season can be identified and the 5 seasons available so far compared to detect possible trends The so-called fluvial seismology can also provide important clues to evaluate the beadload transport in rivers, an important parameter to evaluate erosion rates in mountain environments. Analyzing both the amplitude and frequency variations of the seismic data and its hysteresis cycles, it seems possible to estimate the relative contribution of water flow and bedload transport to the seismic signal. The available results suggest that most of the river-generated seismic signal seems related to bed load transportation, while water turbulence is only significant above a discharge thres.hold Since 2015 we are operating 2 additional stations located beside the Cinca and Segre Rivers, also in the Pyrenean range. First results confirm that the river-generated signal can also be identified at these sites, although wind-related signals are recorded in a close frequency band and hence some further analysis is required to discern between both processes. (Founding: MISTERIOS project, CGL2013-48601-C2-1-R)

  12. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

  13. Pockets, conduits, channels, and plumes: links to volcanism and orogeny in the rollback dominated western Mediterranean

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Sun, Daoyuan; O'Driscoll, Leland; Becker, Thorsten W.; Holt, Adam; Diaz, Jordi; Thomas, Christine

    2015-04-01

    Detailed mantle and lithospheric structure from the Canary Islands to Iberia have been imaged with data from recent temporary deployments and select permanent stations from over 300 broadband seismometers. The stations extended across Morocco and Spain as part of the PICASSO, IberArray, and Morocco-Münster experiments. We present results from S receiver functions (SRF), shear wave splitting, waveform modeling, and geodynamic models that help constrain the tectonic evolution of the westernmost Mediterranean, including orogenesis of the Atlas Mountains and occurrence of localized alkaline volcanism. Our receiver function images, in agreement with previous geophysical modeling, show that the lithosphere is thin (~65 km) beneath the Atlas, but thickens (~100 km) over a very short length scale at the flanks of the mountains. We find that these dramatic changes in lithospheric thickness also correspond to dramatic decreases in delay times inferred from S and SKS splitting observations of seismic anisotropy. Pockets and conduits of low seismic velocity material below the lithosphere extend along much of the Atlas to Southern Spain and correlate with the locations of Pliocene-Quaternary magmatism. Waveform analysis from the USC linear seismic array across the Atlas Mountains constrains the position, shape, and physical characteristics of one localized, low velocity conduit that extends from the uppermost mantle (~200 km depth) up to the volcanoes in the Middle Atlas. The shape, position and temperature of these seismically imaged low velocity anomalies, topography of the base of the lithosphere, morphology of the subducted slab beneath the Alboran Sea, position of the West African Craton and correlation with mantle flow inferred from shear wave splitting suggest that the unusually high topography of the Atlas Mountains and isolated recent volcanics are due to active mantle support that may be from material channeled from the Canary Island plume.

  14. Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera

    NASA Astrophysics Data System (ADS)

    Gonzalez-Castillo, L.; Galindo-Zaldivar, J.; de Lacy, M. C.; Borque, M. J.; Martinez-Moreno, F. J.; García-Armenteros, J. A.; Gil, A. J.

    2015-11-01

    The Gibraltar Arc, located in the western Mediterranean Sea, is an arcuate Alpine orogen formed by the Betic and Rif Cordilleras, separated by the Alboran Sea. New continuous GPS data (2008-2013) obtained in the Topo-Iberia stations of the western Betic Cordillera allow us to improve the present-day deformation pattern related to active tectonics in this collision area between the Eurasian and African plates. These data indicate a very consistent westward motion of the Betic Cordillera with respect to the relatively stable Iberian Massif foreland. The displacement in the Betics increases toward the south and west, reaching maximum values in the Gibraltar Strait area (4.27 mm/yr in Ceuta, CEU1, and 4.06 mm/yr in San Fernando, SFER), then progressively decreasing toward the northwestern mountain front. The recent geological structures and seismicity evidence moderate deformation in a roughly NW-SE to WNW-ESE compressional stress setting in the mountain frontal areas, and moderate extension toward the internal part of the cordillera. The mountain front undergoes progressive development of folds affecting at least up to Pliocene deposits, with similar recent geological and geodetical rates. This folded strip helps to accommodate the active deformation with scarce associated seismicity. The displacement pattern is in agreement with the present-day clockwise rotation of the tectonic units in the northern branch of the Gibraltar Arc. Our data support that the westward emplacement of the Betic Cordillera continues to be active in a rollback tectonic scenario.

  15. Spatial and temporal variability in rates of landsliding in seismically active mountain ranges

    NASA Astrophysics Data System (ADS)

    Parker, R.; Petley, D.; Rosser, N.; Densmore, A.; Gunasekera, R.; Brain, M.

    2012-04-01

    Where earthquake and precipitation driven disasters occur in steep, mountainous regions, landslides often account for a large proportion of the associated damage and losses. This research addresses spatial and temporal variability in rates of landslide occurrence in seismically active mountain ranges as a step towards developing better regional scale prediction of losses in such events. In the first part of this paper we attempt to explain reductively the variability in spatial rates of landslide occurrence, using data from five major earthquakes. This is achieved by fitting a regression-based conditional probability model to spatial probabilities of landslide occurrence, using as predictor variables proxies for spatial patterns of seismic ground motion and modelled hillslope stability. A combined model for all earthquakes performs well in hindcasting spatial probabilities of landslide occurrence as a function of readily-attainable spatial variables. We present validation of the model and demonstrate the extent to which it may be applied globally to derive landslide probabilities for future earthquakes. In part two we examine the temporal behaviour of rates of landslide occurrence. This is achieved through numerical modelling to simulate the behaviour of a hypothetical landscape. The model landscape is composed of hillslopes that continually weaken, fail and reset in response to temporally-discrete forcing events that represent earthquakes. Hillslopes with different geometries require different amounts of weakening to fail, such that they fail and reset at different temporal rates. Our results suggest that probabilities of landslide occurrence are not temporally constant, but rather vary with time, irrespective of changes in forcing event magnitudes or environmental conditions. Various parameters influencing the magnitude and temporal patterns of this variability are identified, highlighting areas where future research is needed. This model has important implications for landslide hazard and risk analysis in mountain areas as existing techniques usually assume that susceptibility to failure does not change with time.

  16. The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense precipitation, earthquake activity and thawing of mountain permafrost.

    PubMed

    Sæmundsson, Þorsteinn; Morino, Costanza; Helgason, Jón Kristinn; Conway, Susan J; Pétursson, Halldór G

    2018-04-15

    On the 20th September 2012, a large debris slide occurred in the Móafellshyrna Mountain in the Tröllaskagi peninsula, central north Iceland. Our work describes and discusses the relative importance of the three factors that may have contributed to the failure of the slope: intense precipitation, earthquake activity and thawing of ground ice. We use data from weather stations, seismometers, witness reports and field observations to examine these factors. The slide initiated after an unusually warm and dry summer followed by a month of heavy precipitation. Furthermore, the slide occurred after three seismic episodes, whose epicentres were located ~60km NNE of Móafellshyrna Mountain. The main source of material for the slide was ice-rich colluvium perched on a topographic bench. Blocks of ice-cemented colluvium slid and then broke off the frontal part of the talus slope, and the landslide also involved a component of debris slide, which mobilized around 312,000-480,000m 3 (as estimated from field data and aerial images of erosional morphologies). From our analysis we infer that intense precipitation and seismic activity prior to the slide are the main preparatory factors for the slide. The presence of ice-cemented blocks in the slide's deposits leads us to infer that deep thawing of ground ice was likely the final triggering factor. Ice-cemented blocks of debris have been observed in the deposits of two other recent landslides in northern Iceland, in the Torfufell Mountain and the Árnesfjall Mountain. This suggests that discontinuous mountain permafrost is degrading in Iceland, consistent with the decadal trend of increasing atmospheric temperature in Iceland. This study highlights a newly identified hazard in Iceland: landslides as a result of ground ice thaw. Knowledge of the detailed distribution of mountain permafrost in colluvium on the island is poorly constrained and should be a priority for future research in order to identify zones at risk from this hazard. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. EMI Array for Cued UXO Discrimination

    DTIC Science & Technology

    2010-09-16

    that comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic ...interaction of the North American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains

  18. EMI Array for Cued UXO Discrimination

    DTIC Science & Technology

    2010-09-01

    that comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic ...interaction of the North American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains

  19. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  20. Interseismic coupling, seismic potential and earthquake recurrence on the southern front of the Eastern Alps (NE Italy)

    NASA Astrophysics Data System (ADS)

    Cheloni, Daniele; D'Agostino, Nicola; Selvaggi, Giulio

    2014-05-01

    The interaction of the African, Arabian, and Eurasia plates in the "greater" Mediterranean region yields to a broad range of tectonic processes including active subduction, continental collision, major continental strike-slip faults and "intra-plate" mountain building. In this puzzling region the convergence between Adria microplate and Eurasia plate is partly or entirely absorbed within the South-Eastern Alps, where the Adriatic lithosphere underthrusts beneath the mountain belt. Historical seismicity and instrumentally recorded earthquakes show thrust faulting on north-dipping low-angle faults in agreement with geological observations of active mountain building and active fold growing at the foothills of the South-Eastern Alps. In this study, we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the pattern of interseismic coupling on the intra-continental collision north-dipping thrust faults that separate the Eastern Alps and the Venetian-Friulian plain using the back-slip approach and discuss the seismic potential and earthquake recurrence. Comparison between the rigid-rotation predicted motion and the shortening observed across the studied area indicates that the South-Eastern Alpine thrust front absorbs about 80% of the total convergence rate between the Adria microplate and Eurasia plate. The modelled thrust fault is currently locked from the surface to a depth of approximately 10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.27±0.14×10^17 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed interseismic coupling is released aseismically by folding or creeping; (2) infrequent "large" events with long return period (>1000 years) and with magnitudes larger than the value assigned to the largest historical events (Mw≡6.7).

  1. Prolific Sources of Icequakes: The Mulock and Skelton Glaciers, Antarctica

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Lough, A. C.; Anandakrishnan, S.; Nyblade, A.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.

    2015-12-01

    The Mulock and Skelton Glaciers are large outlet glaciers that flow through the Transantarctic Mountains and into the Ross Ice Shelf. A regional seismic deployment in the central Transantarctic Mountains (TAM) in 1999-2000 led to the identification of 63 events in the vicinity of Mulock and Skelton Glaciers [Bannister and Kennett, 2002]. A more recent study utilizing seismic data collected as part of the POLENET/A-NET and AGAP projects during 2009 again identified significant seismicity associated with these glaciers and suggested that many of these events were icequakes based on their shallow depths [Lough, 2014]. These two glaciers represent the most seismically active regions in the TAM aside from the well-studied David Glacier region [Danesi et al, 2007; Zoet et al., 2012]. In addition, many of the icequakes from this region have magnitude ML > 2.5, in contrast to most glacial events that are generally of smaller magnitude. Using the waveforms of previously identified icequakes as templates, nearby POLENET/A-NET, AGAP, and GSN seismic stations were scanned using a cross-correlation method to find similar waveforms. We then used a relative location algorithm to determine high-precision locations and depths. The use of regional velocity models derived from recent seismic studies facilitates accurate absolute locations that we interpret in the context of the local geological and glacial features. The icequakes are concentrated in heavily crevassed regions associated with steep bedrock topography, likely icefalls. Future work will focus on determining whether these events are associated with stick-slip events at the bed of the glacier and/or crevasse formation near the surface. In addition the temporal pattern of seismicity will also be examined to search for repeating icequakes, which have been identified at the base of several other glaciers.

  2. Neogene Tectonics of Part of the Junction of Cyprus and Hellenic Arcs in the Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Küçük, H. M.; Dondurur, D.; ćifçi, G.; Gürçay, S.; Hall, J.; Yaltırak, C.; Aksu, A. E.

    2012-04-01

    The junction between the Hellenic and Cyprus Arcs is one of the tectonically most active regions of the eastern Mediterranean. This junction developed in association with convergence between the African and Eurasian Plates, and the re-organization of the smaller Aegean-Anatolian and Arabian Microplates. Recent studies have shown that the predominant Miocene deformation process in the eastern Mediterranean is compressional tectonism. However, many studies have also shown that the strain is partitioned in the Pliocene-Quaternary and the area displays regions dominated by compression, strike slip and extensional tectonism. The junction between the Hellenic and Cyprus Arcs exhibits complex morphological features including submarine mountains, rises, ridges and trenches. Approximately 600 km of high resolution 72-channel seismic profiles were collected from the junction of Cyprus and Hellenic Arcs using a 450 m long 6.25 m hydrophone spacing streamer and a seven gun array with a 200 cubic inch total volume. This project was part of the joint scientific venture between Dokuz Eylül University (Turkey) and Memorial University of Newfoundland (Canada), and was funded by TÜBITAK and NSERC. The study area includes the southwestern Antalya Basin and the Anaxagoras Mountain of the larger Anaximander Mountains. The multichannel data were processed both at Dokuz Eylül and Memorial University of Newfoundland, using the Landmark Graphics ProMAX software, with automatic gain control, short-gap deconvolution, velocity analysis, normal move-out correction, stack, filter (typically 50-200 Hz bandpass), f-k time migration, and adjacent trace sum. Despite the fact that the source volume was modest, reflections are imaged to 2-3 s two-way time below seabed, even in 2 km water depth. The processed seismic reflection profiles show that there are three distinct sedimentary units, separated by two prominent markers: the M-reflector separates the Pliocene-Quaternary from the underlying Messinian evaporite successions, and the N-reflector separates the Messinian evaporite successions from the pre-Messinian Miocene sediments. Interpretation of the data clearly shows that the Miocene and Pliocene-Quaternary tectonic frameworks of the Anaxagoras Mountain are dominated by thrust faults. These major faults in turn, control all of the sedimentary structures observed over the submarine mountain. These thrusts display E-W trending map traces and show southerly vergence. The seismic profiles across the southwestern margin of the Antalya Basin, immediately north of the Anaxagoras Mountain show the presence of numerous upright anticlines and their intervening synclines. These structures are interpreted as salt-cored anticlines. Although mud volcanoes and diapiric structures have also been observed in the area, the normal-move-out velocities suggest that these structures are indeed cored by evaporites. The western margin of the Anaxagoras Mountain is delineated by a profound lineation which separates it from the Anaximander Mountains in the west. In the seismic reflection profiles, this lineation appears to be controlled by NE-SW-trending and mainly west-verging thrusts. The tip points of these thrusts lie at the depositional surface, and their trajectories can be traced well below 4-5 seconds. It is speculated that this prominent and somewhat arcuate boundary defines a crustal scale structure that links the Anaximander Mountains to the Antalya Basin. If so, it might have a sinistral strike slip component, possibly associated with the clockwise rotation of the Anaxagoras Mountain. The acoustic basement is located at approximately 5-6 s in the seismic reflection profiles from the Antalya Basin, and is interpreted to include Miocene-Oligocene sediments. A short seismic profile from the eastern side of Finike basin shows that Pliocene-Quaternary thickness of Finike Basin is more than in the Antalya Basin. The fact that no unequivocal evaporite successions are observed in the Finike Basin is puzzling and requires that the Finike Basin either remained above the depositional surface during the Messinian or was isolated from the eastern Mediterranean Sea.

  3. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.

  4. URSEIS peeks under Urals for mountain-building clues

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Just three weeks out of the field, a team of geologists, geophysicists, and seismologists from four nations announced on December 11 that they have used seismic reflection techniques to see what appears to be the base of the lithosphere beneath Russia's Ural Mountains. Working on Project URSEIS Urals Reflection Seismic Experiment and Integrated Studies), the team of scientists from Spain, Germany, Russia, and the United States has produced a seismic profile of the southern Urals extending as far as 150-185 km beneath the Earth's skin. The group presented its preliminary findings at the AGU Fall Meeting in San Francisco.

  5. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  6. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  7. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  8. Deep crustal structure of the UAE-Oman mountain belt from seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Pilia, S.; Tanveer, M.; Ali, M.; Watts, A. B.; Searle, M. P.; Keats, B. S.

    2016-12-01

    The UAE-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cenozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s, underlain by a thin layer of slower material (about 4.5 km/s). Furthermore, the velocity model reveals a Moho depth that rises from ca 30 km in the west to ca 20 km in the east. A poststack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction profile shows a thick sequence (up to 6 km) of seaward dipping sediments that are offset by a number of listric (normal) faults, some of which intersect the seabed and so reflect recent tectonic activity. The trend of the Bouguer anomaly provides further constraints on the deeper structure of the margin and appears to confirm the presence of a stretched crust.

  9. Seismogeodynamics of lineament structures in the mountainous regions bordering the Scythian-Turan plate

    NASA Astrophysics Data System (ADS)

    Ulomov, V. I.; Danilova, T. I.; Medvedeva, N. S.; Polyakova, T. P.

    2006-07-01

    The Scythian-Turan platform, together with the Alpine Iran-Caucasus-Anatolia and Hercynian Central Tien Shan orogenic structures adjacent to it, represents a coherent seismogeodynamic system responsible for regional seismicity features in the territory under consideration. Investigations of the spatiotemporal and energy evolution of seismogeodynamic processes along the main lineament structures of the orogen reveal characteristic features directly related to the prediction of seismic hazard in this region, as well as in southern European Russia. These characteristics primarily include kinematic features in the sequences of seismic events of various magnitudes and an ordered migration of seismic activation, enabling the more or less reliable determination of the occurrence time intervals (years) and areas of forthcoming large earthquakes (magnitudes of 7.0 ± 0.2, 7.5 ± 0.2, and 8.0 ± 0.2).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, 2010a, and 2010b). All events were considered minor (coda-length magnitude [Mc] less than 1.0) with a maximum depth estimated at 1.7 km. Based upon this quarters activity it is likely that the Wooded Island swarm has subsided. Pacific Northwest National Laboratory (PNNL) will continue to monitor for activity at this location.« less

  11. Preliminary Analysis of Remote Triggered Seismicity in Northern Baja California Generated by the 2011, Tohoku-Oki, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Wong-Ortega, V.; Castro, R. R.; Gonzalez-Huizar, H.; Velasco, A. A.

    2013-05-01

    We analyze possible variations of seismicity in the northern Baja California due to the passage of seismic waves from the 2011, M9.0, Tohoku-Oki, Japan earthquake. The northwestern area of Baja California is characterized by a mountain range composed of crystalline rocks. These Peninsular Ranges of Baja California exhibits high microseismic activity and moderate size earthquakes. In the eastern region of Baja California shearing between the Pacific and the North American plates takes place and the Imperial and Cerro-Prieto faults generate most of the seismicity. The seismicity in these regions is monitored by the seismic network RESNOM operated by the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). This network consists of 13 three-component seismic stations. We use the seismic catalog of RESNOM to search for changes in local seismic rates occurred after the passing of surface waves generated by the Tohoku-Oki, Japan earthquake. When we compare one month of seismicity before and after the M9.0 earthquake, the preliminary analysis shows absence of triggered seismicity in the northern Peninsular Ranges and an increase of seismicity south of the Mexicali valley where the Imperial fault jumps southwest and the Cerro Prieto fault continues.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island area swarm has largely subsided. Pacific Northwest National Laboratory will continue to monitor for activity at this location. The highest-magnitude events (3.0Mc) were recorded on February 4, 2010 within the Wooded Island swarm (depth 2.4 km) and May 8, 2010 on or near the Saddle Mountain anticline (depth 3.0 km). This latter event is not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al. 2007). With regard to the depth distribution, 173 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 18 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 19 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 178 earthquakes were located in known swarm areas, 4 earthquakes occurred on or near a geologic structure (Saddle Mountain anticline), and 28 earthquakes were classified as random events. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times by the Wooded Island swarm events and the events located on or near the Saddle Mountain anticline. The maximum acceleration value recorded by the SMA network during fiscal year 2010 occurred February 4, 2010 (Wooded Island swarm event), approximately 2 times lower than the reportable action level for Hanford facilities (2% g) with no action required.« less

  13. Seismic Monitoring for the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Nakanishi, K

    2005-04-11

    There is potential for earthquakes in the United Arab Emirates and in the Zagros mountains to cause structural damage and pose a threat to safety of people. Damaging effects from earthquakes can be mitigated by knowledge of the location and size of earthquakes, effects on construction, and monitoring these effects over time. Although a general idea of seismicity in the UAE may be determined with data from global seismic networks, these global networks do not have the sensitivity to record smaller seismic events and do not have the necessary accuracy to locate the events. A National Seismic Monitoring Observatory ismore » needed for the UAE that consists of a modern seismic network and a multidisciplinary staff that can analyze and interpret the data from the network. A seismic network is essential to locate earthquakes, determine event magnitudes, identify active faults and measure ground motions from earthquakes. Such a network can provide the data necessary for a reliable seismic hazard assessment in the UAE. The National Seismic Monitoring Observatory would ideally be situated at a university that would provide access to the wide range of disciplines needed in operating the network and providing expertise in analysis and interpretation.« less

  14. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  15. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  16. Rapid post-seismic landslide evacuation boosted by dynamic river width

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Steer, Philippe; Davy, Philippe

    2017-09-01

    Mass wasting caused by large-magnitude earthquakes chokes mountain rivers with several cubic kilometres of sediment. The timescale and mechanisms by which rivers evacuate small to gigantic landslide deposits are poorly known, but are critical for predicting post-seismic geomorphic hazards, interpreting the signature of earthquakes in sedimentary archives and deciphering the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity and reduces export time of gigantic landslides by orders of magnitude compared with existing theory. Predicted export times obey a universal non-linear relationship of landslide volume and pre-landslide valley transport capacity. Upscaling these results to realistic populations of landslides shows that removing half of the total coarse sediment volume introduced by large earthquakes in the fluvial network would typically take 5 to 25 years in various tectonically active mountain belts, with little impact of earthquake magnitude and climate. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks.

  17. Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.

    2011-12-01

    We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.

  18. Map showing seismicity and sandblows in the vicinity of New Madrid, Missouri

    USGS Publications Warehouse

    Rhea, B. Susan; Tarr, Arthur C.; Wheeler, Russell L.

    1994-01-01

    This is one of a series of five seismotectic maps of the seismically active New Madrid, Missouri, area (table 1; Wheeler and others, 1992). The map area centers near the sites of three great earthquakes that struck during the winter of 1811-12 (Fuller, 1912; Nuttli, 1973). These earthquakes and continuing subsequent seismicity rank the New Madrid area with Cherlevoix, Quebec, as the two most seismically active areas in North America east of the Rocky Mountains. The threat posed by New Madrid seismicity to the central United States makes the area the focus of many investigations (for examples, Heyl and McKeown, 1978; McKeown and Pakiser, 1982; Algemissen and Hopper, 1984; Hamilton and Johnston, 1990; Applied Technology Council, 1991; Johnston and others, 1992). The map area includes the most intense seismic activity in the New Madrid region. A seismotectic map shows some of the geologic and geophysical information needed to assess seismic hazard (Hadley and Devine, 1974; Pavoni, 1985). A previous seismotectonic map of the central Mississippi River valley (Heyl and McKeown, 1978) has had wide use for planning field surveys, as a base map for plotting data collected during single investigations, and for compiling a range of information. Since 1978 numcrous researchers have greatly advanced our knowledge of the geology and geophysics of the central Mississippi Valley. The New Madrid seismotectonic map folio updates approximately the south-central sixth of the central Mississippi Valley seismotectonic map of Heyl and McKeown (1978).

  19. Three-Dimensional Seismic Image of a Geothermal Prospect: Tinguiririca, Central Andes, Chile

    NASA Astrophysics Data System (ADS)

    Lira, E.; Comte, D.; Giavelli, A.; Clavero, J. E.; Pineda, G.

    2010-12-01

    Seismic monitoring has been widely used by the oil and gas industry, as a valuable input for the reservoir characterization. This tool has also been used in geothermal productive systems, particularly to understand permeability controls usually associated to shallow crustal fault systems that are seismically actives. Faults can be considered either “migration path” or “seals” in Petroleum Systems, depending on their activity story (they are carriers while actives and seals when the activity cease due to diagenetic processes in the fault plain). On the other hand, is well known that seismic velocities are strongly related to rock properties, in particular Vp/Vs and VpVs relationship has been successfully used to emphasize the variations in the physical rock properties due to fluid content and porosity. In geothermal systems, P and S-wave velocities are expected to be noticeably affected by massive hydrothermal alteration and/or to the presence of hot water in the fault related fractures of the rocks. In this job, the results of three months of seismic monitoring and a seismic velocity tomography are presented. Sixteen short period continuous recording, three components seismic stations were deployed in an area of approximately 20x10 Km2, and a large 8.8 magnitude earthquake took place during the recording period. The study area corresponds to the Tinguiririca volcanic complex (70°21''W, 35°48''S), in the high mountain of the Central Andes near the Chile-Argentina border. These preliminary results are complemented with some MT profiles, delineating potentially interesting geothermal features.

  20. Uniquely Acquired Vintage Seismic Reflection Data Reveal the Stratigraphic and Tectonic History of the Montana Disturbed Belt, USA

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Link, C. A.; Stickney, M.

    2011-12-01

    In 1983 and 1984 Techco of Denver, Colorado, acquired approximately 302 linear kilometers of two-dimensional (2D) seismic reflection data in Flathead and Lake Counties, Montana, USA, as part of an initiative to identify potential drilling targets beneath the Swan and Whitefish Mountain Ranges and adjacent basins of northwestern Montana. These seismic lines were collected in the Montana Disturbed Belt (MDB) or Montana thrust belt along the western edge of Glacier National Park in mountainous terrain with complicated subsurface structures including thrust faults and folds. These structures formed during the Laramide Orogeny as sedimentary rocks of the Precambrian Belt Supergroup were thrust eastward. Later, during the Cenozoic, high-angle normal faults produced prominent west-facing mountain scarps of the Mission, Swan and Whitefish mountains. The 1983 data set consisted of two profiles of 24-fold (96-channels) Vibroseis data and four profiles of 24-fold (96-channels) helicopter-assisted dynamite data. The dynamite data were collected using the Poulter Method in which explosives were placed on poles and air shots were recorded. The 1983 dynamite profiles extend from southwest to northeast across the Whitefish Mountain Range to the edge of Glacier National Park and the Vibroseis data were collected along nearby roadways. The 1984 data set consists of four profiles of 30-fold (120-channels) helicopter-assisted dynamite data that were also collected using the Poulter Method. The 1984 profiles cross the Swan Mountain Range between Flathead Lake and Glacier National Park. All of these data sets were recently donated to Montana Tech and subsequently recovered from nine-track tape. Conventionally processed seismic stacked sections from the 1980s of these data show evidence of a basement decollement that separates relatively undeformed basement from overlying structures of the MDB. Unfortunately, these data sets have not been processed using modern seismic processing techniques including linear noise suppression of the air wave and ground roll, refraction statics, and prestack migration. Reprocessing of these data using state-of-the-art seismic reflection processing techniques will provide a detailed picture of the stratigraphy and tectonic framework for this region. Moreover, extended correlations of the Vibroseis records to Moho depths might reveal new insights on crustal thickness and provide a framework for understanding crustal thickening during the Laramide Orogeny as well as later Cenozoic extension.

  1. LGP Discrimination and Residual Risk Analysis on Standardized Test Sites-Camp Sibert and Camp San Luis Obispo

    DTIC Science & Technology

    2010-06-01

    comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic North...American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains with three categories of

  2. MTAD Demonstration Data Report Former Camp San Luis Obispo Magnetometer and EM61 MkII Surveys

    DTIC Science & Technology

    2010-05-01

    of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic interaction of the North...American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains with three categories of

  3. Integrated geophysical study of the Triassic salt bodies' geometry and evolution in central Tunisia

    NASA Astrophysics Data System (ADS)

    Azaiez, Hajer; Amri, Dorra Tanfous; Gabtni, Hakim; Bedir, Mourad; Soussi, Mohamed

    2008-01-01

    A comprehensive study, integrating gravity, magnetic and seismic reflection data, has been used to resolve the complex Triassic salt body geometry and evolution in central Tunisia. Regional seismic lines across the study area show a detachment level in the Upper Triassic evaporites, associated with chaotic seismic facies below the Souinia, Majoura, and Mezzouna structures. The Jurassic and Lower Cretaceous seismic horizons display pinching-outs and onlapping around these structures. A stack-velocity section confirms the existence of a high-velocity body beneath the Souinia Mountain. Regional gravity and magnetic profiles in this area were elaborated from ETAP (the Tunisian Firm of Petroleum Activities) measure stations. These profiles were plotted following the same layout from the west (Souinia) to the east (Mezzouna), across the Majoura and Kharrouba mountains. They highlight associated gravity and magnetic negative anomalies. These gravity and magnetic data coupled to the reflection seismic data demonstrate that, in the Souinia, Majoura, and El Hafey zones, the Triassic salt reaches a salt pillow and a salt-dome stage, without piercing the cover. These stages are expressed by moderately low gravity anomalies. On the other hand, in the Mezzouna area (part of the North-South Axis), the Triassic salt had pierced its cover during the Upper Cretaceous and the Tertiary, reaching a more advanced stage as a salt diapir and salt wall. These stages express important low gravity and magnetic anomalies. These results confirm the model of Tanfous et al. (2005) of halokinetic movements by fault intrusions inducing, from the west to the east, structures at different stages of salt pillow, salt dome, and salt diapir.

  4. Near-Surface Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, From Seismic Imaging

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Steedman, Clare

    2007-01-01

    Introduction The Santa Clara Valley (SCV) is located in the southern San Francisco Bay area of California and is bounded by the Santa Cruz Mountains to the southwest, the Diablo Ranges to the northeast, and the San Francisco Bay to the north (Fig. 1). The SCV, which includes the City of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley, has a population in excess of 1.7 million people (2000 U. S. Census;http://quickfacts.census.gov/qfd/states/06/06085.html The SCV is situated between major active faults of the San Andreas Fault system, including the San Andreas Fault to the southwest and the Hayward and Calaveras faults to the northeast, and other faults inferred to lie beneath the alluvium of the SCV (CWDR, 1967; Bortugno et al., 1991). The importance of the SCV as a major industrial center, its large population, and its proximity to major earthquake faults are important considerations with respect to earthquake hazards and water-resource management. The fault-bounded alluvial aquifer system beneath the valley is the source of about one-third of the water supply for the metropolitan area (Hanson et al., 2004). To better address the earthquake hazards of the SCV, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential seismic sources, the effects of strong ground shaking, and stratigraphy associated with the regional aquifer system. As part of that program and to better understand water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began joint studies to characterize the faults, stratigraphy, and structures beneath the SCV in the year 2000. Such features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local and regional earthquakes sources that may affect reservoirs, pipelines, and flood-protection facilities maintained by SCVWD. As one component of these joint studies, the USGS acquired an approximately 10-km-long, high-resolution, combined seismic reflection/refraction transect from the Santa Cruz Mountains to the central SCV in December 2000 (Figs. 1 and 2a,b). The overall seismic investigation of the western Santa Clara Valley also included an ~18-km-long, lower-resolution (~50-m sensor) seismic imaging survey from the central Santa Cruz Mountains to the central part of the valley (Fig. 1). Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI). Results of the high-resolution investigation, referred to as SCSI-HR, are presented in this report, and Catchings et al. (2006) present results of the low-resolution investigation (SCSI-LR) in a separate report. In this report, we present data acquisition parameters, unprocessed and processed seismic data, and interpretations of the SCSI-HR seismic transect.

  5. Analogues as a check of predicted drift stability at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stuckless, J.S.

    2006-01-01

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository in southwestern Nevada for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the naturally occuring and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface.

  6. Dating paleo-seismic faulting in the Taiwan Mountain Belt

    NASA Astrophysics Data System (ADS)

    Lo, C. H.; Wu, C. Y.; Chu, H. T.; Yui, T. F.

    2017-12-01

    In-situ 40Ar/39Ar laser microprobe dating was carried out on the Hoping pseudotachylite from a mylonite-fault zone in the metamorphosed basement complex of the active Taiwan Mountain Belt to determine the timing of the responsible earthquake(s). The dating results, distributed between 3.2 to 1.6 Ma with errors ranging 0.2 1.1 Ma, were derived from a combination of two Ar isotopic system end-members with inverse isochron ages of 1.55±0.05 and 2.87±0.07 Ma, respectively. Fault melt was found mixed with ultracataclasis in petrographical observations, therefore the older inverse isochron end-member may be attributed to the relic wall rock Ar isotopic system contained in micro-breccia as published 40Ar/39Ar mylonitization ages from 4.1 to 3.0 Ma. Without significant Ar loss expected, the young 1.6 Ma end-member represents the Ar isotopic system and age of the exact pseudotachylite. Seismic faulting therefore occurred during basement rock exhumation in the Taiwanese hinterland.

  7. Upper Mantle Structure Beneath the Whitmore Mountains, West Antarctic Rift System, and Marie Byrd Land from Body-Wave Tomography

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; Lloyd, A. J.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.; Zhao, D.

    2011-12-01

    As part of the International Polar Year in Antarctica, 37 seismic stations have been installed across West Antarctica as part of the Polar Earth Observing Network (POLENET). 23 stations form a sparse backbone network of which 21 are co-located on rock sites with a network of continuously recording GPS stations. The remaining 14 stations, in conjunction with 2 backbone stations, form a seismic transect extending from the Ellsworth Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land. Here we present preliminary P and S wave velocity models of the upper mantle from regional body wave tomography using P and S travel times from teleseismic events recorded by the seismic transect during the first year (2009-2010) of deployment. Preliminary P wave velocity models consisting of ~3,000 ray paths from 266 events indicate that the upper mantle beneath the Whitmore Mountains is seismically faster than the upper mantle beneath Marie Byrd Land and the WARS. Furthermore, we observe two substantial upper mantle low velocity zones located beneath Marie Byrd Land and near the southern boundary of the WARS.

  8. Cordilleran front range structural features in northwest Montana interpreted from vintage seismic reflection data

    NASA Astrophysics Data System (ADS)

    Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.

    2016-04-01

    Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.

  9. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl

    2008-01-01

    Between January 1 and December 31, 2006, AVO located 8,666 earthquakes of which 7,783 occurred on or near the 33 volcanoes monitored within Alaska. Monitoring highlights in 2006 include: an eruption of Augustine Volcano, a volcanic-tectonic earthquake swarm at Mount Martin, elevated seismicity and volcanic unrest at Fourpeaked Mountain, and elevated seismicity and low-level tremor at Mount Veniaminof and Korovin Volcano. A new seismic subnetwork was installed on Fourpeaked Mountain. This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field during 2006, (2) a description of earthquake detection, recording, analysis, and data archival systems, (3) a description of seismic velocity models used for earthquake locations, (4) a summary of earthquakes located in 2006, and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2006.

  10. Report of the Workshop on Extreme Ground Motions at Yucca Mountain, August 23-25, 2004

    USGS Publications Warehouse

    Hanks, T.C.; Abrahamson, N.A.; Board, M.; Boore, D.M.; Brune, J.N.; Cornell, C.A.

    2006-01-01

    This Workshop has its origins in the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain, the designated site of the underground repository for the nation's high-level radioactive waste. In 1998 the Nuclear Regulatory Commission's Senior Seismic Hazard Analysis Committee (SSHAC) developed guidelines for PSHA which were published as NUREG/CR-6372, 'Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and the use of experts,' (SSHAC, 1997). This Level-4 study was the most complicated and complex PSHA ever undertaken at the time. The procedures, methods, and results of this PSHA are described in Stepp et al. (2001), mostly in the context of a probability of exceedance (hazard) of 10-4/yr for ground motion at Site A, a hypothetical, reference rock outcrop site at the elevation of the proposed emplacement drifts within the mountain. Analysis and inclusion of both aleatory and epistemic uncertainty were significant and time-consuming aspects of the study, which took place over three years and involved several dozen scientists, engineers, and analysts.

  11. Geomodels of coseismic landslides environments in Central Chile.

    NASA Astrophysics Data System (ADS)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion these geomodels are a powerful tool for earthquake-induced landslide hazard assessment. As an implication we can identify landslide-prone areas, distinguish different seismic scenarios and describe related potential hazards, including burial and river damming by large rock slides and rock avalanches.

  12. Post-earthquake denudation and its impacts on ancient civilizations in the Chengdu Longmenshan region, China

    NASA Astrophysics Data System (ADS)

    Chen, Ningsheng; Li, Jun; Liu, Lihong; Yang, Chenglin; Liu, Mei

    2018-05-01

    This study characterizes significant changes in denudation and disasters in mountainous areas induced in the humid Chengdu Longmenshan region by the Wenchuan Earthquake in 2008. A study focusing on the Longxi-Baisha River Basin was conducted to investigate the amount of denudation triggered by specific flash flood and debris flow events in 2009-2014. The following results were obtained through a comparison of pre-seismic regional denudation rates and denudation characteristics of other seismically active mountain regions. (1) Regional denudation processes occurred in a wave-like process of initial increase then decline, with a peak exhibiting a hyperbolic attenuation trend. This trend indicates that the denudation rate in the Chengdu Longmenshan region is expected to return to the pre-seismic rate of 0.3 mm a-1 after 81 years. In 22 years after the earthquake (Year 2030), debris flow disasters are expected to be rare. (2) Disasters increased significantly in the Chengdu Longmenshan region after the Wenchuan earthquake, with an average of 29.5 people missing or dead per year (22 times greater than the pre-earthquake rate) and average economic losses of 192 million Yuan per year (1.6 times greater than the pre-earthquake rate). (3) The denudation process was jointly controlled by the quantities of loose solid material and precipitation after the Wenchuan earthquake. The amount of loose solid material influenced the extent of denudation, while vegetation coverage rates and soil consolidation determined the overall denudation trend in the region, and changes in precipitation led to denudation fluctuations. (4) The results can be used to analyze the relationship between the potential flash flood-debris flow disasters after earthquakes in the ancient Shu kingdom and changes in historical social settlements. The results can also be used to predict denudation processes and disaster risks from earthquakes in humid mountainous regions around the world, such as the southern slope of the Himalayas, Japan and the Taiwan mountains.

  13. Summary of workshops concerning regional seismic source zones of parts of the conterminous United States, convened by the U.S. Geological Survey, 1979-1980, Golden, Colorado

    USGS Publications Warehouse

    Thenhaus, P.C.; McKeown, F.A.; Bucknam, R.C.; Ross, D.C.; Anderson, R.E.; Irwin, W.P.; Russ, D.P.; Diment, W.H.; Thenhaus, Paul C.

    1983-01-01

    Workshops were convened by the U.S. Geological Survey to obtain the latest information and concepts relative to defining seismic source zones for five regions of the United States. The zones, with some modifications, have been used in preparation of new national probabilistic ground motion hazard maps by the U.S. Geological Survey. The five regions addressed are the Great Basin, the Northern Rocky Mountains, the Southern Rocky Mountains, the Central Interior, and the northeastern United States. Discussions at the workshops focussed on possible temporal and spatial variations of seismicity within the regions, latest ages of surface-fault displacements, most recent uplift or subsidence, geologic structural provinces as they relate to seismicity, and speculation on earthquake causes. Within the Great Basin region, the zones conform to areas characterized by a predominance of faults that have certain ages of latest surface displacements. In the Northern and Southern Rocky Mountain regions, zones primarily conform to distinctive structural terrane. In the Central Interior, primary emphasis was placed on an interpretation of the areal distribution of historic seismicity, although geophysical studies in the Reelfoot rift area provided data for defining zones in the New Madrid earthquake area. An interpretation of the historic seismicity also provided the basis for drawing the zones of the New England region. Estimates of earthquake maximum magnitudes and of recurrence times for these earthquakes are given for most of the zones and are based on either geologic data or opinion.

  14. Dating previously balanced rocks in seismically active parts of California and Nevada

    USGS Publications Warehouse

    Bell, J.W.; Brune, J.N.; Liu, T.; Zreda, M.; Yount, J.C.

    1998-01-01

    Precariously balanced boulders that could be knocked down by strong earthquake ground motion are found in some seismically active areas of southern California and Nevada. In this study we used two independent surface-exposure dating techniques - rock-varnish microlamination and cosmogenic 36Cl dating methodologies - to estimate minimum- and maximum-limiting ages, respectively, of the precarious boulders and by inference the elapsed time since the sites were shaken down. The results of the exposure dating indicate that all of the precarious rocks are >10.5 ka and that some may be significantly older. At Victorville and Jacumba, California, these results show that the precarious rocks have not been knocked down for at least 10.5 k.y., a conclusion in apparent conflict with some commonly used probabilistic seismic hazard maps. At Yucca Mountain, Nevada, the ages of the precarious rocks are >10.5 to >27.0 ka, providing an independent measure of the minimum time elapsed since faulting occurred on the Solitario Canyon fault.

  15. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  16. Toward the Restoration of Caribou Habitat: Understanding Factors Associated with Human Motorized Use of Legacy Seismic Lines

    NASA Astrophysics Data System (ADS)

    Pigeon, Karine E.; Anderson, Meghan; MacNearney, Doug; Cranston, Jerome; Stenhouse, Gordon; Finnegan, Laura

    2016-11-01

    Populations of boreal and southern mountain caribou in Alberta, Canada, are declining, and the ultimate cause of their decline is believed to be anthropogenic disturbance. Linear features are pervasive across the landscape, and of particular importance, seismic lines established in the 1900s (legacy seismic lines) are slow to regenerate. Off-highway vehicles are widely used on these seismic lines and can hamper vegetative re-growth because of ongoing physical damage, compaction, and active clearing. Restoration of seismic lines within caribou range is therefore a priority for the recovery of threatened populations in Alberta, but a triage-type approach is necessary to prioritize restoration and ensure conservation resources are wisely spent. To target restoration efforts, our objective was to determine factors that best explained levels of off-highway vehicles use on seismic lines intersecting roads. We investigated the relative importance of local topography, vegetation attributes of seismic lines, and broad-scale human factors such as the density of infrastructures and the proximity to recreation campsites and towns to explain the observed levels of off-highway vehicles use. We found that off-highway vehicles use was mainly associated with local topography and vegetation attributes of seismic lines that facilitated ease-of-travel. Broad-scale landscape attributes associated with industrial, recreation access, or hunting activities did not explain levels of off-highway vehicles use. Management actions aimed at promoting natural regeneration and reduce ease-of-travel on legacy seismic lines within caribou ranges can be beneficial to caribou recovery in Alberta, Canada, and we therefore recommend restrictions of off-highway vehicles use on low vegetation, dry seismic lines in caribou ranges.

  17. Man-caused seismicity of Kuzbass

    NASA Astrophysics Data System (ADS)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted. A spatial displacement of activations along with mine working has been found. An impact of technogeneous factors on behavior of seismic process was investigated. It was demonstrated that industrial explosions in neighboring open-casts have no pronounced effect on seismic process near lavas. Stoppage of mole work in lavas leads to simultaneous changes in man-caused seismicity. The number of technogeneous earthquakes is halved. The earthquakes of small powers remain, but such slack lead to occasional though more strong technogeneous earthquakes.

  18. Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry

    2013-04-01

    Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic velocities beneath Marie Byrd Land at asthenospheric depths suggest a major thermal anomaly, possibly due to a mantle plume. Volcanic earthquakes detected in this region indicate the presence of currently active magma systems. The results suggest large lateral changes in parameters needed for glaciological models, including lithospheric thickness, mantle viscosity, and heat flow. Extremely high heat flow is predicted for much of West Antarctica, consistent with recent results from the WAIS ice drilling. Using the seismic results to estimate mantle viscosity, we find several orders of magnitude difference in viscosity between East and West Antarctica, with lowest viscosities found beneath Marie Byrd Land and the West Antarctic Rift System. Realistic glacial isostatic adjustment models must take these large lateral variations into account.

  19. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions

    USGS Publications Warehouse

    Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  20. Miocene−Pleistocene deformation of the Saddle Mountains: Implications for seismic hazard in central Washington, USA

    USGS Publications Warehouse

    Staisch, Lydia; Kelsey, Harvey; Sherrod, Brian; Möller, Andreas; Paces, James B.; Blakely, Richard J.; Styron, Richard

    2017-01-01

    The Yakima fold province, located in the backarc of the Cascadia subduction zone, is a region of active strain accumulation and deformation distributed across a series of fault-cored folds. The geodetic network in central Washington has been used to interpret large-scale N-S shortening and westward-increasing strain; however, geodetic data are unable to resolve shortening rates across individual structures in this low-strain-rate environment. Resolving fault geometries, slip rates, and timing of faulting in the Yakima fold province is critically important to seismic hazard assessment for nearby infrastructure and population centers.The Saddle Mountains anticline is one of the most prominent Yakima folds. It is unique within the Yakima fold province in that the syntectonic strata of the Ringold Formation are preserved and provide a record of deformation and drainage reorganization. Here, we present new stratigraphic columns, U-Pb zircon tephra ages, U-series caliche ages, and geophysical modeling that constrain two line-balanced and retrodeformed cross sections. These new constraints indicate that the Saddle Mountains anticline has accommodated 1.0−1.3 km of N-S shortening since 10 Ma, that shortening increases westward along the anticline, and that the average slip rate has increased 6-fold since 6.8 Ma. Provenance analysis suggests that the source terrane for the Ringold Formation was similar to that of the modern Snake River Plain. Using new slip rates and structural constraints, we calculate the strain accumulation time, interpretable as a recurrence interval, for earthquakes on the Saddle Mountains fault and find that large-magnitude earthquakes could rupture along the Saddle Mountains fault every 2−11 k.y.

  1. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China

    NASA Astrophysics Data System (ADS)

    Zhu, Gengshang; Zhang, Zhenguo; Wen, Jian; Zhang, Wei; Chen, Xiaofei

    2013-08-01

    The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.

  2. Seismic image of a CO2 reservoir beneath a seismically active volcano

    USGS Publications Warehouse

    Julian, B.R.; Pitt, A.M.; Foulger, G.R.

    1998-01-01

    Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt and Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day-1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997) which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds Vp/VS was about 9% lower than in the surrounding rocks. Theory (Mavko and Mukerji 1995), experiment (Ito, DeVilbiss and Nur 1979) and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that Vp/VS is sensitive to pore-fluid compressibility, through its effect on Vp. The observed Vp/VS anomaly is probably caused directly by CO2, and seismic Vp/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  3. Iceberg calving as a primary source of regional‐scale glacier‐generated seismicity in the St. Elias Mountains, Alaska

    USGS Publications Warehouse

    O'Neel, Shad; Larsen, Christopher F.; Rupert, Natalia; Hansen, Roger

    2010-01-01

    Since the installation of the Alaska Regional Seismic Network in the 1970s, data analysts have noted nontectonic seismic events thought to be related to glacier dynamics. While loose associations with the glaciers of the St. Elias Mountains have been made, no detailed study of the source locations has been undertaken. We performed a two-step investigation surrounding these events, beginning with manual locations that guided an automated detection and event sifting routine. Results from the manual investigation highlight characteristics of the seismic waveforms including single-peaked (narrowband) spectra, emergent onsets, lack of distinct phase arrivals, and a predominant cluster of locations near the calving termini of several neighboring tidewater glaciers. Through these locations, comparison with previous work, analyses of waveform characteristics, frequency-magnitude statistics and temporal patterns in seismicity, we suggest calving as a source for the seismicity. Statistical properties and time series analysis of the event catalog suggest a scale-invariant process that has no single or simple forcing. These results support the idea that calving is often a response to short-lived or localized stress perturbations. Our results demonstrate the utility of passive seismic instrumentation to monitor relative changes in the rate and magnitude of iceberg calving at tidewater glaciers that may be volatile or susceptible to ensuing rapid retreat, especially when existing seismic infrastructure can be used.

  4. Triggered deformation and seismic activity under Mammoth Mountain in long Valley caldera by the 3 November 2002 Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Prejean, S.G.; Hill, D.P.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake triggered deformational offsets and microseismicity under Mammoth Mountain (MM) on the rim of Long Valley caldera, California, some 3460 km from the earthquake. Such strain offsets and microseismicity were not recorded at other borehole strain sites along the San Andreas fault system in California. The Long Valley offsets were recorded on borehole strainmeters at three sites around the western part of the caldera that includes Mammoth Mountain - a young volcano on the southwestern rim of the caldera. The largest recorded strain offsets were -0.1 microstrain at PO on the west side of MM, 0.05 microstrain at MX to the southeast of MM, and -0.025 microstrain at BS to the northeast of MM with negative strain extensional. High sample rate strain data show initial triggering of the offsets began at 22:30 UTC during the arrival of the first Rayleigh waves from the Alaskan earthquake with peak-to-peak dynamic strain amplitudes of about 2 microstrain corresponding to a stress amplitude of about 0.06 MPa. The strain offsets grew to their final values in the next 10 min. The associated triggered seismicity occurred beneath the south flank of MM and also began at 22:30 UTC and died away over the next 15 min. This relatively weak seismicity burst included some 60 small events with magnitude all less than M = 1. While poorly constrained, these strain observations are consistent with triggered slip and intrusive opening on a north-striking normal fault centered at a depth of 8 km with a moment of l016 N m, or the equivalent of a M 4.3 earthquake. The cumulative seismic moment for the associated seismicity burst was more than three orders of magnitude smaller. These observations and this model resemble those for the triggered deformation and slip that occurred beneath the north side of MM following the 16 October 1999 M 7.1 Hector Mine, California, earthquake. However, in this case, we see little post-event slip decay reflected in the strain data after the Rayleigh-wave arrivals from the Denali fault earthquake and onset of triggered seismicity did not lag the triggered deformation by 20 min. These observations are also distinctly different from the more widespread and energetic seismicity and deformation triggered by the 1992 M 7.3 Landers earthquake in the Long Valley caldera. Thus, each of the three instances of remotely triggered unrest in Long Valley caldera recorded to date differ. In each case, however, the deformation moment inferred from the strain meter data was more than an order of magnitude larger than the cumulative moment for the associated triggered seismicity.

  5. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  6. Coal-mining seismicity and ground-shaking hazard: A case study in the Trail Mountain area, Emery County, Utah

    USGS Publications Warehouse

    Arabasz, W.J.; Nava, S.J.; McCarter, M.K.; Pankow, K.L.; Pechmann, J.C.; Ake, J.; McGarr, A.

    2005-01-01

    We describe a multipart study to quantify the potential ground-shaking hazard to Joes Valley Dam, a 58-m-high earthfill dam, posed by mining-induced seismicity (MIS) from future underground coal mining, which could approach as close as ???1 km to the dam. To characterize future MIS close to the dam, we studied MIS located ???3-7 km from the dam at the Trail Mountain coal mine. A 12-station local seismic network (11 stations above ground, one below, combining eight triaxial accelerometers and varied velocity sensors) was operated in the Trail Mountain area from late 2000 through mid-2001 for the dual purpose of (1) continuously monitoring and locating MIS associated with longwall mining at a depth of 0.5-0.6 km and (2) recording high-quality data to develop ground-motion prediction equations for the shallow MIS. (Ground-motion attenuation relationships and moment-tensor results are reported in companion articles.) Utilizing a data set of 1913 earthquakes (M ??? 2.2), we describe space-time-magnitude distributions of the observed MIS and source-mechanism information. The MIS was highly correlated with mining activity both in space and time. Most of the better-located events have depths constrained within ??0.6 km of mine level. For the preponderance (98%) of the 1913 located events, only dilatational P-wave first motions were observed, consistent with other evidence for implosive or collapse-type mechanisms associated with coal mining in this region. We assess a probable maximum magnitude of M 3.9 (84th percentile of a cumulative distribution) for potential MIS close to Joes Valley Dam based on both the worldwide and regional record of coal-mining-related MIS and the local geology and future mining scenarios.

  7. Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain Front

    USGS Publications Warehouse

    Crone, Anthony J.; Wheeler, Russell L.

    2000-01-01

    The USGS is currently leading an effort to compile published geological information on Quaternary faults, folds, and earthquake-induced liquefaction in order to develop an internally consistent database on the locations, ages, and activity rates of major earthquake-related features throughout the United States. This report is the compilation for such features in the Central and Eastern United States (CEUS), which for the purposes of the compilation, is defined as the region extending from the Rocky Mountain Front eastward to the Atlantic seaboard. A key objective of this national compilation is to provide a comprehensive database of Quaternary features that might generate strong ground motion and therefore, should be considered in assessing the seismic hazard throughout the country. In addition to printed versions of regional and individual state compilations, the database will be available on the World-Wide Web, where it will be readily available to everyone. The primary purpose of these compilations and the derivative database is to provide a comprehensive, uniform source of geological information that can by used to complement the other types of data that are used in seismic-hazard assessments. Within our CEUS study area, which encompasses more than 60 percent of the continuous U.S., we summarize the geological information on 69 features that are categorized into four classes (Class A, B, C, and D) based on what is known about the feature's Quaternary activity. The CEUS contains only 13 features of tectonic origin for which there is convincing evidence of Quaternary activity (Class A features). Of the remaining 56 features, 11 require further study in order to confidently define their potential as possible sources of earthquake-induced ground motion (Class B), whereas the remaining features either lack convincing geologic evidence of Quaternary tectonic faulting or have been studied carefully enough to determine that they do not pose a significant seismic hazard (Classes C and D). The correlation between historical seismicity and Quaternary faults and liquefaction features in the CEUS is generally poor, which probably reflects the long return times between successive movements on individual structures. Some Quaternary faults and liquefaction features are located in aseismic areas or where historical seismicity is sparse. These relations indicate that the record of historical seismicity does not identify all potential seismic sources in the CEUS. Furthermore, geological studies of some currently aseismic faults have shown that the faults have generated strong earthquakes in the geologically recent past. Thus, the combination of geological information and seismological data can provide better insight into potential earthquake sources and thereby, contribute to better, more comprehensive seismic-hazard assessments.

  8. Improving our understanding of the evolution of mountain belts via the Collisional Orogeny in the Scandinavian Caledonides (COSC) project: Results from seismic investigations and plans for the 2.5 km deep COSC-2 borehole

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Almqvist, B. S. G.; Buske, S.; Giese, R.; Hedin, P.; Lorenz, H.

    2017-12-01

    Mountain belts (orogens) have influenced, and do influence, geological processes and climatic conditions considerably, perhaps more than any other natural phenomenon. The Alpine-Himalayan mountain belt is the prime example of a collisional orogen today. However, research in an active orogen is mostly constrained to observe and interpret the expression of processes at the surface, while the driving processes act at depth, often at mid-crustal levels (20 km) and deeper. About 440 million years ago, an orogen comparable in dimension and tectonic setting to today's Alpine-Himalayan orogen was developing in what is western Scandinavia today. Since then, erosion has removed much of the overburden and exposed the deep interior of the orogen, facilitating direct observation of rocks that are deep in the crust in modern orogens. In the COSC project we study how large rock volumes (allochthons) were transported during the collision of two continents and the associated deformation. The emplacement of high-grade metamorphic allochthons during orogeny has been the focus of COSC-1 research, centered on a 2.5 km deep fully cored borehole drilled in the summer of 2014 through the lower part of the high-grade Seve Nappe Complex near the town of Åre in western Sweden. The planned COSC-2 borehole (also fully cored to 2.5 km) will complement the COSC-1 borehole and allow a 5 km deep tectonostratigraphic column of the Caledonides to be constructed. The rock volume in the proximity of the COSC-2 borehole will be imaged with a combination of very-high and high-resolution geophysical experiments, such as a combination of high frequency seismics; zero offset and walk-away vertical seismic profiling (VSP); and a sparse 3D coverage around the drill site combined with 2D seismic profiles of several kilometers length in different directions. Downhole geophysical logging will provide additional information on the in-situ rock physical properties. Data from surface surveys will be calibrated against and integrated with the borehole data and the geological interpretation of the drill core. The COSC-1 and COSC-2 boreholes will provide a field laboratory for investigating mountain building processes, how plates and rock units deform, what structures and units are formed and their physical properties.

  9. Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada

    NASA Technical Reports Server (NTRS)

    Blackwell, D. D.; Reese, N. M.; Kelley, S. A.

    1985-01-01

    Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley.

  10. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface exposure rates are rather due to gravitational and landsliding movements aided by weathering and slope degradation processes. The so far neglected slope degradation and other (sub)surface processes should thus be carefully taken into consideration before attempting to recover fault slip rates using surface gathered data. The results of the present studies have been recently published (Kastelic et al., 2016) and our research is ongoing, implementing the so-far results with newer measurements and other techniques in order to improve our knowledge on the magnitude of the exposure and its causative process(es). Kastelic, V., P. Burrato, M. M. C. Carafa, and R. Basili (2016), Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003953.

  11. Study of a prehistoric landslide using seismic reflection methods integrated with geological data in the Wasatch Mountains, Utah, USA

    USGS Publications Warehouse

    Tingey, B.E.; McBride, J.H.; Thompson, T.J.; Stephenson, W.J.; South, J.V.; Bushman, M.

    2007-01-01

    An integration of geological and geophysical techniques characterizes the internal and basal structure of a landslide along the western margin of the Wasatch Mountains in northern Utah, USA. The study area is within a region of planned and continuing residential development. The Little Valley Landslide is a prehistoric landslide as old as 13??ka B.P. Drilling and trenching at the site indicate that the landslide consists of chaotic and disturbed weathered volcanic material derived from Tertiary age volcanic rocks that comprise a great portion of the Wasatch Range. Five short high-resolution common mid-point seismic reflection profiles over selected portions of the site examine the feasibility of using seismic reflection to study prehistoric landslides in the Wasatch Mountain region. Due to the expected complexity of the near-surface geology, we have pursued an experimental approach in the data processing, examining the effects of muting first arrivals, frequency filtering, model-based static corrections, and seismic migration. The results provide a framework for understanding the overall configuration of the landslide, its basal (failure) surface, and the structure immediately underlying this surface. A glide surface or de??collement is interpreted to underlie the landslide suggesting a large mass movement. The interpretation of a glide surface is based on the onset of coherent reflectivity, calibrated by information from a borehole located along one of the seismic profiles. The glide surface is deepest in the center portion of the landslide and shallows up slope, suggesting a trough-like feature. This study shows that seismic reflection techniques can be successfully used in complex alpine landslide regions to (1) provide a framework in which to link geological data and (2) reduce the need for an extensive trenching and drilling program. ?? 2007 Elsevier B.V. All rights reserved.

  12. Crustal seismic anisotropy: A localized perspective from surface waves at the Ruby Mountains Core Complex

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Schmandt, B.; Jiang, C.

    2017-12-01

    The relative importance of potential controls on crustal seismic anisotropy, such as deformational fabrics in polycrystalline crustal rocks and the contemporary state of stress, remain poorly constrained. Recent regional western US lithospheric seismic anisotropy studies have concluded that the distribution of strain in the lower crust is diffuse throughout the Basin and Range (BR) and that deformation in the crust and mantle are largely uncoupled. To further contribute to our understanding of crustal anisotropy we are conducting a detailed local study of seismic anisotropy within the BR using surface waves at the Ruby Mountain Core Complex (RMCC), located in northeast Nevada. The RMCC is one of many distinctive uplifts within the North American cordillera called metamorphic core complexes which consist of rocks exhumed from middle to lower crustal depths adjacent to mylonitic shear zones. The RMCC records exhumation depths up to 30 km indicating an anomalously high degree of extension relative to the BR average. This exhumation, the geologic setting of the RMCC, and the availability of dense broadband data from the Transportable Array (TA) and the Ruby Mountain Seismic Experiment (RMSE) coalesce to form an ideal opportunity to characterize seismic anisotropy as a function of depth beneath RMCC and evaluate the degree to which anisotropy deviates from regional scale properties of the BR. Preliminary azimuthal anisotropy results using Rayleigh waves reveal clear anisotropic signals at periods between 5-40 s, and demonstrate significant rotations of fast orientations relative to prior regional scale results. Moving forward we will focus on quantification of depth-dependent radial anisotropy from inversion of Rayleigh and Love waves. These results will be relevant to identification of the deep crustal distribution of strain associated with RMCC formation and may aid interpretation of controls on crustal anisotropy in other regions.

  13. A seismic study of Yucca Mountain and vicinity, southern Nevada; data report and preliminary results

    USGS Publications Warehouse

    Hoffman, L.R.; Mooney, W.D.

    1983-01-01

    From 1980 to 1982, the U.S. Geological Survey conducted seismic refraction studies at the Nevada Test Site to aid in an investigation of the regional crustal structure at a possible nuclear waste repository site near Yucca Mountain. Two regionally distributed deployments and one north-south deployment recorded nuclear events. First arrival times from these deployments were plotted on a location map and contoured to determine traveltime delays. The results indicate delays as large as 0.5 s in the Yucca Mountain and Crater Flat areas relative to the Jackass Flats area. A fourth east-west deployment recorded a chemical explosion and was interpreted using a two-dimensional computer raytracing technique. Delays as high as 0.7 s were observed over Crater Flat and Yucca Mountain. The crustal model derived from this profile indicates that Paleozoic rocks, which outcrop to the east at Skull Mountain and the Calico Hills, and to the west at Bare Mountain, lie at a minimum depth of 3 km beneath part of Yucca Mountain. These results confirm earlier estimates based on the modeling of detailed gravity data. A mid-crustal boundary at 15 ? 2 km beneath Yucca Mountain is evidenced by a prominent reflection recorded beyond 43 km range at 1.5 s reduced time. Other mid-crustal boundaries have been identified at 24 and 30 km and the total crustal thickness is 35 km.

  14. Tectonic models for Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, Dennis W.

    2006-01-01

    Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.

  15. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet

    USGS Publications Warehouse

    Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, Jielun; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; Ji, C.; Hudnut, K.W.; van der Woerd, J.

    2009-01-01

    The Ms 8.0, Wenchuan earthquake, which devastated the mountainous western rim of the Sichuan basin in central China, produced a surface rupture over 200??km-long with oblique thrust/dextral slip and maximum scarp heights of ~ 10??m. It thus ranks as one of the world's largest continental mega-thrust events in the last 150??yrs. Field investigation shows clear surface breaks along two of the main branches of the NE-trending Longmen Shan thrust fault system. The principal rupture, on the NW-dipping Beichuan fault, displays nearly equal amounts of thrust and right-lateral slip. Basin-ward of this rupture, another continuous surface break is observed for over 70??km on the parallel, more shallowly NW-dipping Pengguan fault. Slip on this latter fault was pure thrusting, with a maximum scarp height of ~ 3.5??m. This is one of the very few reported instances of crustal-scale co-seismic slip partitioning on parallel thrusts. This out-of-sequence event, with distributed surface breaks on crustal mega-thrusts, highlights regional, ~ EW-directed, present day crustal shortening oblique to the Longmen Shan margin of Tibet. The long rupture and large offsets with strong horizontal shortening that characterize the Wenchuan earthquake herald a re-evaluation of tectonic models anticipating little or no active shortening of the upper crust along this edge of the plateau, and require a re-assessment of seismic hazard along potentially under-rated active faults across the densely populated western Sichuan basin and mountains. ?? 2009 Elsevier B.V.

  16. Earthquakes: Risk, Monitoring, Notification, and Research

    DTIC Science & Technology

    2007-02-02

    Global Seismic Network (GSN). The GSN is a system of broadband digital seismographs arrayed around the globe and designed to collect high-quality...39 states face some risk from earthquakes. Seismic hazards are greatest in the western United States, particularly California, Alaska, Washington...Oregon, and Hawaii. The Rocky Mountain region, a portion of the central United States known as the New Madrid Seismic Zone, and portions of the eastern

  17. Seismic Structure of the Antarctic Upper Mantle and Transition Zone Unearthed by Full Waveform Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending from Marie Byrd Land to the Antarctic Peninsula. This region of slow velocity only extends to 150-200 km depth beneath the Antarctic Peninsula, while elsewhere it extends to deeper upper mantle depths and possibly into the transition zone as well as offshore, suggesting two different geodynamic processes are at play.

  18. Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike

    2017-04-01

    The United Arab Emirates-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cainozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (7060 cubic inches, 116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s and a thick sedimentary package in the offshore. Furthermore, the velocity model reveals a highly stretched crust with the Moho discontinuity lying at about 20 km. A prestack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction profile shows a thick sequence (up to about 10 km) of seaward dipping sediments that are offset by a number of listric (normal) faults, some of which intersect the seabed and so reflect recent tectonic activity. The trend of the Bouguer anomaly provides further constraints on the deeper structure of the margin and appears to confirm the presence of a stretched crust.

  19. Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array

    NASA Astrophysics Data System (ADS)

    Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.

    2017-12-01

    In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.

  20. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Starkey, A.; Trentman, N.

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, andmore » Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.« less

  1. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream

    NASA Astrophysics Data System (ADS)

    Roth, Danica L.; Finnegan, Noah J.; Brodsky, Emily E.; Rickenmann, Dieter; Turowski, Jens M.; Badoux, Alexandre; Gimbert, Florent

    2017-05-01

    Hysteresis in the relationship between bed load transport and river stage is a well-documented phenomenon with multiple known causes. Consequently, numerous studies have interpreted hysteresis in the relationship between seismic ground motion near rivers and some measure of flow strength (i.e., discharge or stage) as the signature of bed load transport. Here we test this hypothesis in the Erlenbach stream (Swiss Prealps) using a metric to quantitatively compare hysteresis in seismic data with hysteresis recorded by geophones attached beneath steel plates within the streambed, a well-calibrated proxy for direct sediment transport measurements. We find that while both the geophones and seismometers demonstrate hysteresis, the magnitude and direction of hysteresis are not significantly correlated between these data, indicating that the seismic signal at this site is primarily reflecting hysteresis in processes other than sediment transport. Seismic hysteresis also does not correlate significantly with the magnitude of sediment transport recorded by the geophones, contrary to previous studies' assumptions. We suggest that hydrologic sources and changes in water turbulence, for instance due to evolving boundary conditions at the bed, rather than changes in sediment transport rates, may sometimes contribute to or even dominate the hysteresis observed in seismic amplitudes near steep mountain rivers.Plain Language SummaryAn increasing number of studies have recently observed changes in the amount of seismic shaking (hysteresis) recorded near a river at a given discharge during floods. Most studies have assumed that this hysteresis was caused by changes in the amount of sediment being transported in the river and have therefore used the hysteresis to assess sediment transport rates and patterns. We examine concurrent seismic and sediment transport data from a steep mountain stream in the Swiss Prealps and find that changes in seismic shaking are unrelated and even opposed (increasing versus decreasing) to changes in sediment transport rates for four out of five transport events. Water turbulence, rather than sediment transport, appears to be the strongest source of seismic shaking, and changes in seismic shaking are most likely caused by changes in turbulence or how turbulence transmits energy through the river bed. These effects may be due to rearrangement of sediment around large boulders on the bed or slight shifting of the boulders themselves. Our results have significant implications for the growing field of fluvial seismology and the evaluation of seismic data near rivers, as previous interpretations of seismic hysteresis as evidence for sediment transport may not always be accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7417S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7417S"><span>The triggering factors of the Móafellshyrna debris slide in northern Iceland: intense precipitation, earthquake activity and thawing of mountain permafrost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saemundsson, Thorsteinn; Morino, Costanza; Kristinn Helgason, Jón; Conway, Susan J.; Pétursson, Halldór G.</p> <p>2017-04-01</p> <p>On the 20th of September in 2012, a large debris slide occurred in the Móafellshyrna Mountain in the Tröllaskagi peninsula, central north Iceland. Three factors are likely to have contributed to the failure of the slope: intense precipitation, earthquake activity and thawing of ground ice. The weather conditions prior the slide were somewhat unusual, with a warm and dry summer. From the 20th of August to the 20th of September, about 440 mm of precipitation fell in the area, where the mean annual precipitation at the nearest station is around 670 mm. The slide initiated after this thirty day period of intense precipitation, followed by a seismic sequence in the Eyjafjarðaráll graben, located about 60 km NNE of Móafellshyrna Mountain, a sequence that started on the 19th of September. The slide originated at elevation of 870 m a.s.l. on the NW-slope of the mountain. The total volume of the debris slide is estimated around 500,000 m3 and that its primary cause was intense precipitation. We cannot exclude the influence of the seismic sequence as a secondary contributing factor. The presence of ice-cemented blocks of talus immediately after the debris slide shows that thawing of ground ice could also have played an important role as a triggering factor. Ice-cemented blocks of talus have been observed in the deposits of two other recent landslides in northern Iceland, in the Torfufell Mountain and the Árnesfjall Mountain. The source areas for both the Móafellshyrna and the Torfufell slides are within the lower elevation limit of mountain permafrost in northern Iceland but the source area of the Árnesfjall slide is at much lower elevation, around 350 m a.s.l. The fact that there are now three documented landslides which are linked to ground ice-melting suggests that discontinuous permafrost is degrading in Iceland, consistent with the decadal trend of increasing atmospheric temperature in Iceland due to climate change. This study highlights that ground ice thaw could represent a new source of hazard in Iceland. The knowledge of the detailed distribution of mountain permafrost on the island is poorly constrained, making it is hard to predict where the next hazardous slide could occur in the future - therefore a making this a priority for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T33A2379R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T33A2379R"><span>Crustal structure of the St. Elias Mountains region, southern Alaska, from regional earthquakes and ambient noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruppert, N. A.; Stachnik, J. C.; Hansen, R. A.</p> <p>2011-12-01</p> <p>STEEP (SainT Elias TEctonics and Erosion Project) is a multi-disciplinary research project that took place in southern Alaska between 2005 and 2010. An important component of this undertaking was installation and operation of a dense array of 22 broadband seismometers to augment and improve the existing regional seismic network in the St. Elias Mountains. This allowed for a lower detection threshold and better accuracy for local seismicity and also provided a rich dataset of teleseismic recordings. While the seismic stations were designed to transmit the data in real time, due to harsh weather and difficult terrain conditions some data were recorded only on site and had to be post-processed months and years later. Despite these difficulties, the recorded dataset detected and located regional earthquakes as small as magnitude 0.5 in the network core area. The recorded seismicity shows some clear patterns. A majority of the earthquakes are concentrated along the coast in a distributed area up to 100 km wide. The coastal seismicity can be further subdivided into 3 distinct clusters: Icy Bay, Bering Glacier, and the Copper River delta. This coastal seismicity is abutted by a somewhat aseismic zone that roughly follows the Bagley Ice Field. Farther inland another active region of seismicity is associated with the Denali Fault system. All this seismicity is concentrated in the upper 25 km of the crust. The only region where earthquakes as deep as 100 km occur is beneath the Wrangell volcanoes in the northwestern corner of the study area. The earthquake focal mechanisms are predominately reverse, with some areas of strike-slip faulting also present. The seismicity patterns and faulting mechanisms indicate a high concentration of thrust faulting in the coastal region. The ambient noise cross correlations from the stations in the STEEP region reveal Rayleigh wave packets with good signal-to-noise ratios yielding well-defined interstation phase velocity dispersion curves. These dispersion measurements are inverted for two-dimensional phase velocity maps from 4 to 40 second period. Preliminary analysis indicates slower velocities in a 100-km-wide zone along the southern Alaska coast, with distinctly higher velocities farther inland. We will present results of precise earthquake relocations using waveform cross-correlation and double difference relocation techniques and interpret these within the framework of regional tectonics and subsurface structures as evidenced by the ambient noise tomography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.148..181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.148..181H"><span>Evolution of a giant debris flow in the transitional mountainous region between the Tibetan Plateau and the Qinling Mountain range, Western China: Constraints from broadband seismic records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Xinghui; Li, Zhengyuan; Yu, Dan; Xu, Qiang; Fan, Junyi; Hao, Zhen; Niu, Yanping</p> <p>2017-10-01</p> <p>The catastrophic Sanyanyu and Luojiayu debris flows, which were induced by heavy rainfall, occurred at approximately midnight, August 7th, 2010 (Beijing time, UTC + 8) and claimed 1,765 lives. Most seismic stations located within 150 km did not detect the debris flows except for the closest seismic station, ZHQ, indicating that the seismic signals generated by the debris flows decayed rapidly. We analyzed broadband seismic signals from the ZHQ seismic station, beginning approximately 20 min before the outbreak of the Sanyanyu debris flow, to rebuild its evolution processes. Seismic signals can detect development of the Sanyanyu debris flow approximately 20 min after a heavy rain started falling in its initiation area; this time was characterized by a gradual increase in seismic amplitude accompanied by a series of spike signals that were probably generated by rock collapses within the catchment. The frequency contents and the characteristics of seismic signals before and after 23:33:15 (T1) are distinctively different, which we interpret as being generated by a large quantity of flowing material entering the main channel, marking the formation of the Sanyanyu debris flow. We attribute seismic amplitude increases between 23:33:15 (T1) and 23:34:26 (T2) and between 23:35:40 (T3) and 23:36:49 (T4) to entrainment of the deposit material after initiation of the debris flow and to its flow through a colluvial deposit area, respectively. The main frequency band broadening of seismic signals after 23:37:30 (T5) is believed to have been induced by impacts between the flowing material and check dams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193765','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193765"><span>Near‐surface evaluation of Ball Mountain Dam, Vermont, using multi‐channel analysis of surface waves (MASW) and refraction tomography seismic methods on land‐streamer data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ivanov, Julian M.; Johnson, Carole D.; Lane, John W.; Miller, Richard D.; Clemens, Drew</p> <p>2009-01-01</p> <p>A limited seismic investigation of Ball Mountain Dam, an earthen dam near Jamaica, Vermont, was conducted using multiple seismic methods including multi‐channel analysis of surface waves (MASW), refraction tomography, and vertical seismic profiling (VSP). The refraction and MASW data were efficiently collected in one survey using a towed land streamer containing vertical‐displacement geophones and two seismic sources, a 9‐kg hammer at the beginning of the spread and a 40‐kg accelerated weight drop one spread length from the geophones, to obtain near‐ and far‐offset data sets. The quality of the seismic data for the purposes of both refraction and MASW analyses was good for near offsets, decreasing in quality at farther offsets, thus limiting the depth of investigation to about 12 m. Refraction tomography and MASW analyses provided 2D compressional (Vp) and shear‐wave (Vs) velocity sections along the dam crest and access road, which are consistent with the corresponding VSP seismic velocity estimates from nearby wells. The velocity sections helped identify zonal variations in both Vp and Vs (rigidity) properties, indicative of material heterogeneity or dynamic processes (e.g. differential settlement) at specific areas of the dam. The results indicate that refraction tomography and MASW methods are tools with significant potential for economical, non‐invasive characterization of construction materials at earthen dam sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T11B2613R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T11B2613R"><span>The Processes Producing the Actively Uplifting Mackenzie Mountains in the Yukon and Northwest Territories, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasmussen, B.; Aster, R. C.; Schutt, D.</p> <p>2016-12-01</p> <p>The actively uplifting and seismically active Mackenzie Mountains in the Yukon and Northwest Territories of Canada exist nearly 800 km from the Pacific plate subduction zone. As such, it is clear that traditional subduction zone orogenic mechanics are not at play. This mountain range may present a model for uplift of other ranges distant from plate boundaries, such as the Rockies or Ancestral Rockies. Due to its remote location, this region's lithospheric structure is poorly constrained. However, two hypotheses have been developed recently. The first proposes that stress from the Yakutat Indentor as it subducts under North America at the Gulf of Alaska is transferred deep inland through the upper crust, and that the lower crust and mantle lithosphere are very weak. As this weak lithosphere meets the strong Canadian Craton, lateral translation turns into uplift, forming the Mackenzies (Mazzotti and Hyndman, 2002, Geology, v. 30, no.6). Alternatively, it may be that mantle flow from the north is deflected eastward by the Yakutat slab, producing large scale mantle flow and stress which propagates through the crust to uplift the Mackzenzie Mountains without an abnormally weak lithosphere (Finzel, 2015, Geophys. Res. Lett., 42, 4350-4358). Both cases imply distinct isotropic and anisotropic structure that will be constrained through Rayleigh wave tomography. Notably, we will take advantage of the recent deployment of several Earthscope Transportable Array stations nearby, and some preliminary data from the ongoing Mackenzie Mountains Earthscope Project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1985/0024/ofr198524.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1985/0024/ofr198524.pdf"><span>High-resolution seismic-reflection data collected on R/V S.P. LEE: L9-84-CP, Marshall Islands to Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schwab, William C.; Bailey, Norman G.</p> <p>1984-01-01</p> <p>The U.S. Geological Survey (USGS) R/V S.P. LEE (cruise L9-84-CP) left Majuro, Radak chain of the Marshall Islands on July 28, 1984, cruised over the Mid-Pacific Mountains, and reached Hawaii on August 15, 1984. The main objectives of the cruise were to study the distribution and composition of ferromanganese-oxide crusts in the Marshall Islands and to retrieve a current meter/sediment trap mooring deployed in October 1983 on Horizon Guyot, Mid-Pacific Mountains (USGS LS-83-HW cruise). The quality of the geophysical data collected is generally good. However, the declivity of some seamount, atoll, and guyot flanks are too large to allow high-quality resolution from the surface-towed systems that were used.The navigation system used was an integrated satellite-navigation/LORAN-C (in Mid-Pacific Mountains)/dead-reckoning system that was updated by radar when possible. A total of 5410 km of 12-kHz and 3.5-kHz seismic-reflection data and 730 km of 80-in3 to 148-in3 airgun seismic-reflection data were collected. The original records can be seen and studied at the USGS offices at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection data can be purchased only from the National Geophysical Data Center, NOAA/EDIS/NGDC, 325 Broadway, Boulder, CO 80303.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/392628-poor-boy-seismic-effort-yields-south-central-kentucky-discovery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/392628-poor-boy-seismic-effort-yields-south-central-kentucky-discovery"><span>Poor boy 3D seismic effort yields South Central Kentucky discovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hanratty, M.</p> <p>1996-11-04</p> <p>Clinton County, Ky., is on the eastern flank of the Cincinnati arch and the western edge of the Appalachian basin and the Pine Mountain overthrust. Clinton County has long been known for high volume fractured carbonate wells. The discovery of these fractured reservoir, unfortunately, has historically been serendipitous. The author currently uses 2D seismic and satellite imagery to design 3D high resolution seismic shoots. This method has proven to be the most efficient and is the core of his program. The paper describes exploration methods, seismic acquisition, well data base, and seismic interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMNS41B1515K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMNS41B1515K"><span>Using Seismic Refraction and Ground Penetrating Radar (GPR) to Characterize the Valley Fill in Beaver Meadows, Rocky Mountain National Park</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kramer, N.; Harry, D. L.; Wohl, E. E.</p> <p>2010-12-01</p> <p>This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (<7 m) is much less than the total amount of valley fill identified in the seismic refraction survey (0-20 m). A subfacie of Fc, Fch, which has reflectors with long periods was identified within Fc and is interpreted to be ponded sediments. The spatial distribution of facie Fch, along with: slight topographical features resembling buried beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.S33B1962S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.S33B1962S"><span>Using Receiver Functions to Image the Montana Crust and Upper Mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sirianni, R. T.; Russo, R. M.</p> <p>2008-12-01</p> <p>We determined receiver functions (RFs) at six permanent Advanced National Seismic System (ANSS) stations to examine crust and upper mantle structure of the Wyoming craton (WC) and Medicine Hat block (MHB). The Deep Probe & SAREX projects (Henstock et al., 1998; Clowes et al., 2002; Gorman et al., 2002) used active source seismics to model a high velocity crustal layer (the so-called 7x layer) beneath the WC. This layer exhibits P wave velocities that are high for lower continental crust (~7+ km/s) and extends from 30-55 km below the surface. Interpretations of the active source data indicate that this layer may represent wide scale crustal underplating of the WC, implying post-Archean craton modification with implications for Laurentia assembly. We used 43 earthquakes from a wide azimuthal distribution recorded at the Montana ANSS stations; high signal-to-noise ratios of 25 of these RFs were acceptable for further analysis. Receiver functions constrain crustal velocity structure beneath a seismometer by using P-to-S wave conversions at sharp velocity contrast boundaries. Preliminary results for seismic stations DGMT, EGMT, and LAO, located to the east of the Deep Probe and SAREX seismic line on the Wyoming craton/Medicine Hat block show the influence of sedimentary cover and a strong Ps phase at approximately four seconds after P. At BOZ and MSO, located in the Rocky mountains, the sedimentary cover signal previously noted is absent, and instead we observe a sharp Ps phase at about four and a half seconds after P. RFs at station RLMT (on the WC) are highly anomalous, probably reflecting complex conversions from two differently oriented dipping layers. We will use the RFs to produce suites of acceptable structural models to test for the presence and lateral extent of the 7x layer and other structural features of the Rocky Mountains-craton transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S11D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S11D..01S"><span>Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stevens, J. L.; O'Brien, M.</p> <p>2017-12-01</p> <p>We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074413','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074413"><span>Crustal migration of CO2-rich magmatic fluids recorded by tree-ring radiocarbon and seismicity at Mammoth Mountain, CA, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lewicki, Jennifer L.; Hilley, George E.; Shelly, David R.; King, John C.; McGeehin, John P.; Mangan, Margaret T.; Evans, William C.</p> <p>2014-01-01</p> <p>Unrest at Mammoth Mountain over the past several decades, manifest by seismicity, ground deformation, diffuse CO2 emissions, and elevated 3He/4He ratios in fumarolic gases has been driven by the release of CO2-rich fluids from basaltic intrusions in the middle to lower crust. Recent unrest included the occurrence of three lower-crustal (32–19 km depth) seismic swarms beneath Mammoth Mountain in 2006, 2008 and 2009 that were consistently followed by peaks in the occurrence rate of shallow (≤10 km depth) earthquakes. We measured 14C in the growth rings (1998–2012) of a tree growing in the largest (∼0.3 km2) area of diffuse CO2 emissions on Mammoth Mountain (the Horseshoe Lake tree kill; HLTK) and applied atmospheric CO2 concentration source area modeling to confirm that the tree was a reliable integrator of magmatic CO2 emissions over most of this area. The tree-ring 14C record implied that magmatic CO2 emissions from the HLTK were relatively stable from 1998 to 2009, nearly doubled from 2009 to 2011, and then declined by the 2012 growing season. The initial increase in CO2 emissions was detected during the growing season that immediately followed the largest (February 2010) peak in the occurrence rate of shallow earthquakes. Migration of CO2-rich magmatic fluids may have driven observed patterns of elevated deep, then shallow seismicity, while the relationship between pore fluid pressures within a shallow (upper 3 km of crust) fluid reservoir and permeability structure of the reservoir cap rock may have controlled the temporal pattern of surface CO2 emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3658S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3658S"><span>Infrasonic and seismic signals from the Myanmar earthquake of November 11,2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Wei; Zhang, Dongning; Li, Ke</p> <p>2013-04-01</p> <p>On November 11, 2012, at 01:12:38 UTC (09:12:38 Beijing Time), a strong earthquake (Mw=6.8) occurred in Myanmar. The epicenter (23.0˚N,95.9˚E,focal depth ~10 km) was near the town of Male, 52 km NNE of the city of Shwebo. The earthquake with a rupture length of 60-70 km resulted from right lateral movement on the Sagaing Fault related to collision between the Indo-Australian Plate and the Eurasian Plate. At a distance of 366 km from the epicenter, infrasonic and seismic signals were recorded by Tengchong seismo-acoustic array located in southwest of China for monitoring volcanic and earthquake activity, which consists of four MB2005 microbarometers with bandwidth 0.01-27Hz and four BBVS-60 seismometers with bandwidth 0.01667-50Hz arranged in a centered triangle with an aperture of about 1.8 km. PMCC provided by CEA/DASE applied to analyze infrasound data. Comparison of the infrasonic and seismic signals produced by this earthquake showed infrasonic signals with different arrival times and azimuths may be classified as local, epicentral and diffracted or secondary sourced infrasound, but seismic signals only include P, S and surface waves can produce local infrasound through ground-coupled air waves at the station. The PMCC results indicated that the infrasonic waves showed a consistent acoustic trace velocity of approximately 0.348 km/s from 09:30 to 09:36 (Beijing Time) and the azimuth of arrival changed with time from 227 to 217 degrees. There are mountain chains with altitude more than 1000 m in the east of the epicenter. Mountains shaking induced by earthquake acted as a speaker and radiated the infrasound that traveled to Tengchong seismo-acoustic array. It was worth noting that PMCC detected a group infrasound with trace velocity of approximately 0.339 km/s and arrival azimuth of 237 degree from 09:23:31 to 09:24 (Beijing Time). It may be inferred that the seismic surface wave induced by earthquake reach the mountains on the border between China Yunnan and Myanmar, then acted as a secondary sources and generated diffracted infrasound. This work is supported by the fundamental research and development project of the Institute of Geophysics,CEA(DQJB10B28).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187063','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187063"><span>Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995–2013) at Mammoth Mountain, California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werner, Cynthia A.; Bergfeld, Deborah; Farrar, Chris; Doukas, Michael P.; Kelly, Peter; Kern, Christoph</p> <p>2014-01-01</p> <p>Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989–1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000–2001 and 2011–2012, both of which follow peaks in seismicity by 2–3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d− 1). CO2emissions at the four smaller tree-kill areas also increased by factors of 2–3 between 2006 and 2011–2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2–3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d− 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2–3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3 Mt over 11 months), and significantly lower than long-term emissions from hydrothermal areas such as Solfatara in Campi Flegrei, Italy (16 Mt over 28 years).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25652082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25652082"><span>Seismologically determined bedload flux during the typhoon season.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Tsai, Victor C; Chen, Chi-Hsuan</p> <p>2015-02-05</p> <p>Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5-15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4317699','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4317699"><span>Seismologically determined bedload flux during the typhoon season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Tsai, Victor C.; Chen, Chi-Hsuan</p> <p>2015-01-01</p> <p>Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5–15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution. PMID:25652082</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Tectp.653...95D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Tectp.653...95D"><span>Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danesi, Stefania; Pondrelli, Silvia; Salimbeni, Simone; Cavaliere, Adriano; Serpelloni, Enrico; Danecek, Peter; Lovati, Sara; Massa, Marco</p> <p>2015-06-01</p> <p>The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~ 1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~ NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms < 0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds > 0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri98-4217/WRIR_98-4217.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri98-4217/WRIR_98-4217.pdf"><span>Magmatic carbon dioxide emissions at Mammoth Mountain, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farrar, Christopher D.; Neil, John M.; Howle, James F.</p> <p>1999-01-01</p> <p>Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts of Mammoth Mountain. Humans and other animals exposed to CO2 concentrations greater than 10 percent could lose consciousness and die rapidly. With knowledge of the problem and reasonable caution, however, the health hazard to humans can be avoided. As noted earlier, the CO2 emission is related to magmatic activity at depth, but at present (1998) it does not portend an imminent volcanic eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S43A2769I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S43A2769I"><span>Estimation of Seismic Attenuation beneath Tateyama Volcano, Central Japan by Using Peak Delay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwata, K.; Kawakata, H.; Hirano, S.; Doi, I.</p> <p>2015-12-01</p> <p><span" roman"="Roman"" new="New">The Hida Mountain Range located in central Japan has a lot of active volcanoes. Katsumata et al. (1995, GJI) suggested the presence of regions with low-velocity and low-density as well as low Qanomaly at 5-15 km deep beneath the range. Tateyama volcano is located in the northern part of the range. Iwata et al. (2014, AGU Fall Meeting) quantitatively estimated strength of S-wave attenuation beneath Tateyama volcano using twofold spectral ratios and suggested that regions with high seismic attenuation exist in the south or the southeast of Tateyama volcano. However, it is difficult to estimate the contribution of scattering loss and intrinsic absorption to total attenuation on the basis of this method. <span" roman"="Roman"" new="New">In the present study, we focused on the peak delay (Takahashi et al., 2007, GJI) in seismic envelopes. We used seismograms observed at five NIED Hi-net stations near Tateyama volcano for 31 local earthquakes (MJMA2.5-4.0). We found seismograms recorded after passing below the southern part of the Hida Mountain Range show longer peak delay than those recorded before passing below the region, while there are no clear difference in peak delay for pairs of seismograms before and after passing below Tateyama volcano. It suggests that causes of the attenuation beneath Tateyama volcano and the southern part of the Hida Mountain Range are different. We used the peak delay values to evaluate the strength of intrinsic absorption. We assumed that the difference of whole peak delay between two seismograms for the same earthquake was caused by intrinsic absorption beneath the region between the two seismic stations. <span" roman"="Roman"" new="New">Wecalculated the change in amplitude and peak delay on the basis of a theory suggested by Azimi et al. (1966, Izvestia, Earth Physics). In case of the two envelopes are quite similar to each other, we conclude that intrinsic absorption is a major cause of total attenuation. If not so, we need to take into account the contribution of scattering attenuation and some others.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5814637','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5814637"><span>Interpretation of a seismic refraction profile across the Roosevelt Hot Springs, Utah and vicinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gertson, R.C.; Smith, R.B.</p> <p>1979-03-01</p> <p>In April 1977, a seismic refraction profile was recorded across the Milford Valley, the Roosevelt Hot Springs KGRA, and the northern Mineral Mountains in southwestern Utah. Seven shot points were used to provide multiple subsurface seismic refraction coverage along the 30 km east-west profile line. Since an inspection of power spectrums revealed large components of 60 Hz noise on some traces, computer routines were used to low-pass filter all seismograms. Amplitude information was utilized by normalizing all traces that recorded the same blast. Subsurface structural modeling was conducted by means of first arrival P-wave delay-time analysis and ray tracing. Herglotz-Wiechertmore » travel-time inversion was used for the velocity-depth distribution in the Mineral Mountains. The interpretation of the P-wave travel-times suggests that the Milford Valley fill consists of two units with a total thickness of at least 1.8 km. In the vicinity of the Roosevelt KGRA, a thin low velocity alluvial layer covers a basement igneous complex with a velocity of 5.2 km/s. Granite velocities between 3.3 km/s and 4.0 km/s were calculated from the travel-times in the Mineral Mountains.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790055288&hterms=horvath&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dg%2Bhorvath','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790055288&hterms=horvath&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dg%2Bhorvath"><span>Passive seismic experiment - A summary of current status. [Apollo-initiated lunar surface station data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.</p> <p>1978-01-01</p> <p>The data set obtained from the four-station Apollo seismic network including signals from approximately 11,800 events, is surveyed. Some refinement of the lunar model will result, but its gross features remain the same. Attention is given to the question of a small, molten lunar core, the answer to which remains dependent on analysis of signals from a far side impact. Seventy three sources of repeating, deep moonquakes have been identified, thirty nine of which have been accurately located. Concentrated at depths from 800 to 1000 km, the periodicities of these events have led to the hypothesis that they are generated by tidal stresses. Lunar seismic data has also indicated that the meteoroid population is ten times lower than originally determined from earth based observations. Lunar seismic activity is much lower and mountainous masses show no sign of sinking, in contrast to earth, as a result of the lunar crust being four times thicker. While much work remains to be done, significant correlation between terrestrial and lunar observations can be seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.482...81D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.482...81D"><span>Seismic behaviour of mountain belts controlled by plate convergence rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.</p> <p>2018-01-01</p> <p>The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S33B2835L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S33B2835L"><span>Topographic Influence on Near-Surface Seismic Velocity in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, J. C.; Moon, S.; Meng, L.; Davis, P. M.</p> <p>2016-12-01</p> <p>Near-surface seismic velocity is commonly used to determine subsurface rock structure, properties, and ground-motion amplification. The spatial distribution of Vs30 (shear-wave seismic velocity in the top 30 m of Earth's crust) has been inferred based on the correlations of measured Vs30 with rock types and topographic slopes. Inference of Vs30 based on topographic slopes relies on the assumption that mechanically strong rocks tend to have steep slopes. The topographic slopes can thus be used to infer bedrock strength and seismic velocity. However, due to limited accessibility and logistical difficulties, there are few Vs30 measurements in sites of crystalline rocks that have measurable topographic variations. Thus, the variability of Vs30 with topographic slope for crystalline rocks has not been addressed systematically. In order to examine the local variabilities in near-surface seismic velocity in southern California, we measured the spatial distributions of near-surface seismic velocity at two sites: one in the San Gabriel Mountains (SGM) and one in the San Bernardino Mountains (SBM). Both sites are composed of predominantly crystalline rocks with topographic slopes that range from 0.2 to 0.5. We conducted seismic refraction surveys using sledgehammer-induced impacts on a steel plate along seismic lines that were oriented roughly N-S, 240 m in length with a spacing of 5 m, and with topographic variation including both a local hilltop and valley. Using first P-wave arrivals, we constructed a P-wave seismic tomography down to 50 m. Our results show that P-wave seismic velocity in the SGM site varies significantly within hillslopes and does not linearly correlate with slope, while P-wave seismic velocity in the SBM site shows little variation in the hillslope. In the SGM site, the Vs30 beneath the valley is 25% faster than the Vs30 beneath the hillslope. These results suggest that the local variability of seismic velocity depends on differences in sediment thickness, bedrock fractures, and weathering patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSeis..22..407V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSeis..22..407V"><span>Risk-targeted maps for Romania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vacareanu, Radu; Pavel, Florin; Craciun, Ionut; Coliba, Veronica; Arion, Cristian; Aldea, Alexandru; Neagu, Cristian</p> <p>2018-03-01</p> <p>Romania has one of the highest seismic hazard levels in Europe. The seismic hazard is due to a combination of local crustal seismic sources, situated mainly in the western part of the country and the Vrancea intermediate-depth seismic source, which can be found at the bend of the Carpathian Mountains. Recent seismic hazard studies have shown that there are consistent differences between the slopes of the seismic hazard curves for sites situated in the fore-arc and back-arc of the Carpathian Mountains. Consequently, in this study we extend this finding to the evaluation of the probability of collapse of buildings and finally to the development of uniform risk-targeted maps. The main advantage of uniform risk approach is that the target probability of collapse will be uniform throughout the country. Finally, the results obtained are discussed in the light of a recent study with the same focus performed at European level using the hazard data from SHARE project. The analyses performed in this study have pointed out to a dominant influence of the quantile of peak ground acceleration used for anchoring the fragility function. This parameter basically alters the shape of the risk-targeted maps shifting the areas which have higher collapse probabilities from eastern Romania to western Romania, as its exceedance probability increases. Consequently, a uniform procedure for deriving risk-targeted maps appears as more than necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4897C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4897C"><span>Streamflow Changes Induced by the 1999 MW 7.6 Chi-Chi Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chia, Yeeping; Liu, Ching-Yi; Chuang, Po-Yu</p> <p>2016-04-01</p> <p>Anomalous streamflow changes have often been observed after strong earthquakes. These changes have been used to study crustal deformation induced by earthquakes. Previous studies indicated that co-seismic groundwater-level changes, ranging from a fall of 11.1 m to a rise of 7.42 m, were recorded in 152 monitoring wells near the seismogenic fault during the 1999 MW 7.6 Chi-Chi earthquake. Here we report anomalous streamflow changes due to the earthquake in central Taiwan. There are 32 stream gauges in the vicinity of the fault, mostly in the mountainous hanging wall area. Of those, 22 recorded anomalous streamflow increases, ranging from 60% to 732%, one to four days after the earthquake. Unlike a rapid decrease in discharge after heavy rainfall, the post-seismic increase is followed by a slow decline which may last for several months. Only one gauge recorded a sudden decrease in discharge immediately after the earthquake. Besides, the decrease was preceded by a large and abrupt streamflow increase over the four days before the earthquake. We attribute the post-seismic increase to fracturing in the mountainous area due to seismic shaking, while the decrease to co-seismic pore pressure drop induced by crustal extension. However, more evidence is needed to consider the pre-seismic streamflow changes as a potential precursory indicator of earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGeo...39...23B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGeo...39...23B"><span>Combined Gravimetric-Seismic Crustal Model for Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad</p> <p>2018-01-01</p> <p>The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24-28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20-22 km) and Ross Sea Ice Shelf (16-24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10-20 km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6117A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6117A"><span>Response in thermal neutrons intensity on the activation of seismic processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim</p> <p>2017-04-01</p> <p>Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917370B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917370B"><span>The evolution of hillslope strength following large earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brain, Matthew; Rosser, Nick; Tunstall, Neil</p> <p>2017-04-01</p> <p>Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T33G2497D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T33G2497D"><span>The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.</p> <p>2011-12-01</p> <p>The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks of the Chocolate Mountains. The tomographic model shows that the shallow metasedimentary basement as well as the geothermal and volcanic activity seem to be bounded by the sharp western and eastern margins of the Brawley Seismic Zone. At this location, strongly fractured crust allows both hydrothermal and magmatic fluids to rise to the surface in the most rapidly extending portion of the rift basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T14A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T14A..08G"><span>From erosion to earthquakes: A geomorphic model for intraplate seismicity in post-orogenic settings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallen, S. F.; Thigpen, J. R.</p> <p>2017-12-01</p> <p>Intraplate seismicity does not conform to plate tectonics theory and its driving mechanisms remain uncertain, yet it is recognized as a relevant seismic hazard to populated regions, such as eastern North America. A variety of models, mostly geodynamic or tectonic in origin, have been proposed to explain this enigma, but conclusive supporting evidence remains elusive. In order to identify high hazard areas and derive predictive models, it is imperative to identify the underlying processes responsible for intraplate seismicity. Here we conduct an interdisciplinary study of the Eastern Tennessee Seismic Zone (ETSZ), the second most seismically active region east of the Rocky Mountains in the North American continent, to clarify the potential mechanisms driving intraplate seismicity in post-orogenic and passive margin settings. Previous studies document that the Upper Tennessee drainage basin, which lies directly above the ETSZ, is in a transient state of adjustment to 150 m of base level fall that was provoked by river capture in the Late Miocene. Using quantitative geomorphology, we demonstrate that base level fall enhanced erosion rates in a 75 km wide 400 km long corridor of highly erodible rocks in the late Paleozoic (Alleghanian orogen) fold-thrust belt. The total volume of rock preferentially removed above the ETSZ since 9 Ma is 3,600 ± 150 km3. Stress modeling indicates spatially focused erosion has of reduced clamping stresses on ancient basement normal faults beneath the Appalachian fold-thrust belt on the order of 3.5 MPa, with a time-averaged unclamping rate of 0.4 Pa yr-1. Under the assumption that the crust is critically stressed, we argue that the preferential erosion of less competent rock units reduced clamping stresses on relict faults such to induce seismic activity in the ambient stress field. This model for surface process-induced intraplate seismicity is generally transferable to other continental settings where complex geology and landscape dynamics conspire to spatially focus erosion and perturb the stress field in the mid-to-upper crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T51B2583C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T51B2583C"><span>Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.</p> <p>2012-12-01</p> <p>The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.T21E..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.T21E..04W"><span>Seismic Reflection Imaging of the Tucson Basin and Subsurface Relations Between the Catalina Detachment System and the Santa Rita Fault, SE Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, F. T.; Johnson, R. A.</p> <p>2003-12-01</p> <p>Industry seismic reflection data collected in SE Arizona in the 1970's imaged the structure of the Tucson basin, the low-angle Catalina detachment fault, and the Santa Rita fault. Recent reprocessing of these data, including detailed near-surface statics compensation and modern event-migration techniques, have served to better focus the subsurface images. The Tucson basin occupies an area of approximately 2600 km2 and is bounded to the northeast by the Catalina-Rincon metamorphic core complex and to the south by the Santa Rita Mountains. The basin is characterized by an apparent half-graben structure down dropped along the eastern side and filled with up to 3700 m of Oligocene to recent volcanic and sedimentary rocks. In the northern portion of the basin, the gently-dipping ( ˜30 degrees) Catalina detachment fault is imaged from the western flank of the core complex dipping to the southwest beneath the Tucson basin. The detachment surface is evident to several seconds two-way-time in the seismic data and is characterized by broad corrugations parallel to extension with wavelengths of tens of kilometers. In the southern portion of the basin, the Santa Rita fault is imaged at the northwest side of the Santa Rita Mountains and dips ˜20 degrees to the northwest beneath the Tucson basin. Large, rotated hanging-wall blocks are also imaged above both the Catalina detachment and Santa Rita faults. While the Catalina detachment fault is no longer active, geomorphic analysis of fault scarps along the western flank of the Santa Rita Mountains supports recent (60-100 ka) movement on the Santa Rita fault. Preliminary results indicate that the Santa Rita fault terminates against the Catalina detachment fault beneath the central basin, suggesting that the recent movement observed on this fault may be, in part, a reactivation of the older fault surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S51B2409R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S51B2409R"><span>High-Precision Locations and the Stress Field from Instrumental Seismicity, Moment Tensors, and Short-Period Mechanisms through the Mina Deflection, Central Walker Lane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruhl, C. J.; Smith, K. D.</p> <p>2012-12-01</p> <p>The Mina Deflection (MD) region of the central Walker Lane of eastern California and western Nevada, is a complex zone of northeast-trending normal, and primarily left-lateral strike-slip to oblique-slip faulting that separates the Southern Walker Lane (SWL) from a series of east-tilted normal fault blocks in the Central Walker Lane (CWL) (Faulds and Henry, 2008; Surpless, 2008). The MD accommodates the transfer of right-lateral strike-slip motion from northwest-striking faults in the SWL to a series of left-stepping northwest-striking right-lateral strike-slip faults in the CWL, east of the Wassuk Range near Hawthorne, NV. The ~50 km wide ~80 km long right-step is a distinct transition in regional physiography that has been attributed to strain accommodation through pre-Cenozoic lithospheric structures. Several slip transfer mechanisms have been proposed within the MD, from clockwise rotation of high-angle fault blocks (Wesnousky, 2005), to low-angle displacement within the Silver Peak-Lone Mountain complex (Oldow et al., 2001), and curved fault arrays associated with localized basins and tectonic depressions (Ferranti et al., 2009). The region has been a regular source of M4+ events, the most recent being an extended sequence that included twenty-seven M 3.5+ earthquakes (largest event M 4.6) south of Hawthorne in 2011. These earthquakes (< 5 km depth) define shallow W-dipping (dip ~56°) and NW-dipping (dip ~70°) normal faulting constrained by moment tensor (MT) solutions and earthquake relocations. Temporary stations deployed in the source area provide good control. A distributed sequence in 2004, between Queen Valley and Mono Lake, primarily associated with the Huntoon Valley fault, included three M 5+ left-lateral strike-slip faulting events. A 1997 sequence in northern Fish Lake Valley (east of the White Mountains), with mainshock Mw 5.3 (Ichinose et al., 2003), also showed high-angle northeast-striking left-lateral strike-slip motion. Historical events include the 1934 M 6.5 Excelsior Mountains event south of Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as well as available and developed short-period focal mechanisms are compiled to evaluate the stress field to assess mechanisms of slip accommodation. Based on the complex distribution of fault orientations, the stress field varies locally northward from the SWL throughout the MD; however, in many cases, fault plane alignments can be isolated from high-precision locations, providing better constraints on stress and slip orientations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992lmip.confQ..40I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992lmip.confQ..40I"><span>The Panther Mountain circular structure, a possible buried meteorite crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.</p> <p></p> <p>Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000962','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000962"><span>The Panther Mountain circular structure, a possible buried meteorite crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.</p> <p>1992-01-01</p> <p>Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1996F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1996F"><span>3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frantzeskakis, Theofanis; Konstantaras, Anthony</p> <p>2015-04-01</p> <p>During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis, E. and Papathanassiou, G.: 'Aftershock relocation and frequency-size distribution, stress inversion and seismotectonic setting of the 7 August 2013 M=5.4 earthquake in Kallidromon Mountain, central Greece', Tectonophysics, vol. 617, pp. 101-113, 2014 [4] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A. and Antoniadis, A.: '3D modelling of the oldest olive tree of the world', International Journal Of Computational Engineering Research, vol. 2 (2), pp. 340-347, 2012 [5] Konstantaras, A., Katsifarakis, E, Maravelakis, E, Skounakis, E, Kokkinos, E. and Karapidakis, E.: 'Intelligent spatial-clustering of seismicity in the vicinity of the Hellenic seismic arc', Earth Science Research, vol. 1 (2), pp. 1- 10, 2012 [6] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C., Maravelakis, E and Vachtsevanos, G.: 'Seismic-mass" density-based algorithm for spatio-temporal clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [7] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of', vol. 99, pp. 1-7, 2013</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/fs-0007-02/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/fs-0007-02/"><span>East Meets West: An Earthquake in India Helps Hazard Assessment in the Central United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>,</p> <p>2002-01-01</p> <p>Although geographically distant, the State of Gujarat in India bears many geological similarities to the Mississippi Valley in the Central United States. The Mississippi Valley contains the New Madrid seismic zone that, during the winter of 1811-1812, produced the three largest historical earthquakes ever in the continental United States and remains the most seismically active region east of the Rocky Mountains. Large damaging earthquakes are rare in ‘intraplate’ settings like New Madrid and Gujarat, far from the boundaries of the world’s great tectonic plates. Long-lasting evidence left by these earthquakes is subtle (fig. 1). Thus, each intraplate earthquake provides unique opportunities to make huge advances in our ability to assess and understand the hazards posed by such events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013442','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013442"><span>SHEEP MOUNTAIN WILDERNESS STUDY AREA, WYOMING.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Houston, Robert S.; Patten, Lowell L.</p> <p>1984-01-01</p> <p>On the basis of a mineral survey the Sheep Mountain Wilderness study area in Wyoming was determined to offer little promise for metallic mineral resources. There is a probable potential for oil and gas resources in a small part of the study area along its northeast margin. Geophysical studies, such as reflection seismic profiling would help define the oil and gas potential in fault-controlled structures, such as those beneath the thrust fault that crops out along the east flank of Sheep Mountain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41B0761B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41B0761B"><span>Neo-Deterministic Seismic Hazard Assessment at Watts Bar Nuclear Power Plant Site, Tennessee, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandmayr, E.; Cameron, C.; Vaccari, F.; Fasan, M.; Romanelli, F.; Magrin, A.; Vlahovic, G.</p> <p>2017-12-01</p> <p>Watts Bar Nuclear Power Plant (WBNPP) is located within the Eastern Tennessee Seismic Zone (ETSZ), the second most naturally active seismic zone in the US east of the Rocky Mountains. The largest instrumental earthquakes in the ETSZ are M 4.6, although paleoseismic evidence supports events of M≥6.5. Events are mainly strike-slip and occur on steeply dipping planes at an average depth of 13 km. In this work, we apply the neo-deterministic seismic hazard assessment to estimate the potential seismic input at the plant site, which has been recently targeted by the Nuclear Regulatory Commission for a seismic hazard reevaluation. First, we perform a parametric test on some seismic source characteristics (i.e. distance, depth, strike, dip and rake) using a one-dimensional regional bedrock model to define the most conservative scenario earthquakes. Then, for the selected scenario earthquakes, the estimate of the ground motion input at WBNPP is refined using a two-dimensional local structural model (based on the plant's operator documentation) with topography, thus looking for site amplification and different possible rupture processes at the source. WBNNP features a safe shutdown earthquake (SSE) design with PGA of 0.18 g and maximum spectral amplification (SA, 5% damped) of 0.46 g (at periods between 0.15 and 0.5 s). Our results suggest that, although for most of the considered scenarios the PGA is relatively low, SSE values can be reached and exceeded in the case of the most conservative scenario earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.T31A1256T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.T31A1256T"><span>Mega-rings Surrounding Timber Mountain Nested Calderas, Geophysical Anomalies: Rethinking Structure and Volcanism Near Yucca Mountain (YM), Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.</p> <p>2004-12-01</p> <p>Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in an isolated structural setting within the mega-ring system; basaltic materials are absent in the block for over 11my for geologic reasons. The mega-ring model may better explain YM area structures (Highway 95 fault), tectonism, and volcanism. Coincident physiographic, geologic, and geophysical features associated with the mega-rings feature, and temporal characteristics of regional seismicity and volcanism suggest the need to critically re-assess regional scale and YM tectonic, seismotectonic, and volcanic models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H43C1466H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H43C1466H"><span>Gradual decay of elevated landslide rates after a large earthquake in the Finisterre Mountains, Papua New Guinea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hovius, N.; Marc, O.</p> <p>2013-12-01</p> <p>Large earthquakes can cause widespread mass wasting and landslide rates can stay high after a seismic event. The rate of decay of seismically enhanced mass wasting determines the total erosional effect of an earthquake. It is also an important term in the post-seismic redevelopment of epicentral areas. Using a time series of Landsat images spanning 1990-2010, we have determined the evolution of landslide rates in the western Finisterre Mountains, Papua New Guinea. There, two earthquakes with Mw 6.7and 6.9 occurred at depth of about 20 km on the range-bounding Ramu-Markam fault in 1993. These earthquakes triggered landslides with a total volume of about 0.15 km3. Landslide rates were up to four orders of magnitude higher after the earthquakes than in preceding years, decaying to background values over a period of 2-3 years. Due to this short decay time, seismically induced landslides added only 5% to the volume of co-seismic landslides. This contrasts with another well-documented example, the 1999 Chi-Chi earthquake in Taiwan, where post-seismic landsliding may have increased the total eroded volume by a factor 3-5. In the Finisterre case, landslide rates may have been slightly less than normal for up to a decade after the decay period, but this effect is partially obscured by the impact of a smaller earthquake in 1997. Regardless, the rate of decay of landslide incidence was unrelated to both the seismic moment release in aftershocks and local precipitation. A control on this decay rate has not yet been identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.S61D..08P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.S61D..08P"><span>Active Tectonics of the Iran Plateau and South Caspian Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Priestely, K.; Jackson, J.; Maggi, A.; Talebian, M.; Walker, R.</p> <p>2002-12-01</p> <p>We use observations of surface faulting, well-constrained earthquake focal mechanisms and centroid depths, and velocity structure to investigate the present-day deformation and kinematics of the region. Current deformation is primarily concentrated in three seismically active belts: the Zagros Mountains of southwest Iran,the Talesh-Alborz-Kopeh Dag Mountains of northern Iran, and the Apsheron-Balkhan Sill in the central Caspian Sea. These belts are separated by seismically inactive regions that act as semi-rigid blocks. The extent to which the active shortening is divided between the three belts is still uncertain. Earthquake locations in the region, particularly their focal depths which are determined from teleseismic arrival times, are poor, and reported subcrustal earthquakes have been cited as evidence for present-day subduction beneath the Zagros. A detailed analysis of earthquake focal depths in the Zagros and elsewhere in the region confirms that no substantial subcrustal earthquakes occur in this part of the Middle East except beneath the Makran subduction zone in the south and the Apsheron-Balkhan Sill in the north. The present-day N-S deformation across the Zagros is partitioned with right-lateral, strike-slip motion on the NW-SE striking Main Recent Fault, and NE-SW shortening across the Zagros. Shortening in the Zagros is accommodated by folding in the sediments (0-10 km depth), moderate earthquakes on high-angle reverse faults striking parallel to the surface folds (~10-20 km depth), and aseismic thickening of the lower crust (~20-45 km depth). The south Caspian basin is essentially free of earthquakes and acts as a rigid block which strongly influences the nature of the deformation in the surrounding active belts. No significant subcrustal earthquakes occur in the Talesh, Alborz, or Kopeh Dag Mountains which bound the northeast, south and west sides of the south Caspian basin, but substantial subcrustal seismicity occurs beneath the Apsheron-Balkhan Sill on the north side of the basin. Earthquakes in the Kopeh Dag occur primarily on reverse or right-lateral strike-slip, NW trending faults. The Kopeh Dag structures continue to the NW towards the Apsheron-Balkhan Sill but become increasingly buried by sediment. Focal mechanisms of earthquakes in the Alborz show either reverse motion or left-lateral strike-slip motion on faults parallel to the regional strike of the belt. Earthquakes in the Talesh indicate thrusting on almost flat faults at depths of 15-26 km with slip vectors directed towards the Caspian. We believe that the subcrustal earthquakes occurring beneath the Apsheron-Balkhan Sill indicate the onset of subduction of the high velocity (high density) south Caspian crust beneath the continental crust of the central Caspian. The conjugate right-lateral and left-lateral components in the Kopeh Dag and eastern Alborz suggest that the South Caspian Basin has a westward component of motion relative to both Eurasia and Iran. This motion enhances westward underthrusting of the basin beneath the Talesh Mountains of Iran and Azerbaijan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1234/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1234/"><span>Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John</p> <p>2004-01-01</p> <p>The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2003; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2003.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESuD....5..653D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESuD....5..653D"><span>Seismic monitoring of small alpine rockfalls - validity, precision and limitations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dietze, Michael; Mohadjer, Solmaz; Turowski, Jens M.; Ehlers, Todd A.; Hovius, Niels</p> <p>2017-10-01</p> <p>Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS) data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81-29+59 m (about 7 % of the average inter-station distance of the seismometer network). Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data processing: 2175 initially picked potential events reduced to 511 potential events after applying automatic rejection criteria. The 511 events needed to be inspected manually to reveal 19 short earthquakes and 37 potential rockfalls, including the 10 TLS-detected events. Rockfall volume does not show a relationship with released seismic energy or peak amplitude at this spatial scale due to the dominance of other, process-inherent factors, such as fall height, degree of fragmentation, and subsequent talus slope activity. The combination of TLS and environmental seismology provides, despite the significant amount of manual data processing, a detailed validation of seismic detection of small volume rockfalls, and revealed unprecedented temporal, spatial and geometric details about rockfalls in steep mountainous terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JAG....29..301D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JAG....29..301D"><span>Experience from the ECORS program in regions of complex geology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damotte, B.</p> <p>1993-04-01</p> <p>The French ECORS program was launched in 1983 by a cooperation agreement between universities and petroleum companies. Crustal surveys have tried to find explanations for the formation of geological features, such as rifts, mountains ranges or subsidence in sedimentary basins. Several seismic surveys were carried out, some across areas with complex geological structures. The seismic techniques and equipment used were those developed by petroleum geophysicists, adapted to the depth aimed at (30-50 km) and to various physical constraints encountered in the field. In France, ECORS has recorded 850 km of deep seismic lines onshore across plains and mountains, on various kinds of geological formations. Different variations of the seismic method (reflection, refraction, long-offset seismic) were used, often simultaneously. Multiple coverage profiling constitutes the essential part of this data acquisition. Vibrators and dynamite shots were employed with a spread generally 15 km long, but sometimes 100 km long. Some typical seismic examples show that obtaining crustal reflections essentialy depends on two factors: (1) the type and structure of shallow formations, and (2) the sources used. Thus, when seismic energy is strongly absorbed across the first kilometers in shallow formations, or when these formations are highly structured, standard multiple-coverage profiling is not able to provide results beyond a few seconds. In this case, it is recommended to simultaneously carry out long-offset seismic in low multiple coverage. Other more methodological examples show: how the impact on the crust of a surface fault may be evaluated according to the seismic method implemented ( VIBROSEIS 96-fold coverage or single dynamite shot); that vibrators make it possible to implement wide-angle seismic surveying with an offset 80 km long; how to implement the seismic reflection method on complex formations in high mountains. All data were processed using industrial seismic software, which was not always appropriate for records at least 20 s long. Therefore, a specific procedure adapted to deep seismic surveys was developed for several processing steps. The long duration of the VIBROSEIS sweeps often makes it impossible to perform correlation and stack in the recording truck in the field. Such field records were first preprocessed, in order to be later correlated and stacked in the processing center. Because of the long duration of the recordings and the great length of the spread, several types of final sections were replayed, such as: (1) detailed surface sections (0-5 s), (2) entire sections (0-20 s) after data compression, (3) near-trace sections and far-trace sections, which often yield complementary information. Standard methods of reflection migration gave unsatisfactory results. Velocities in depth are inaccurate, the many diffractions do not all come from the vertical plane of the line, and the migration software is poorly adapted to deep crustal reflections. Therefore, migration is often performed graphically from arrivals picked in the time section. Some line-drawings of various onshore lines, especially those across the Alps and the Pyrenees, enable to judge the results obtained by ECORS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394947','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394947"><span>New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roberts, Peter Morse</p> <p></p> <p>Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can bemore » used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41D1261W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41D1261W"><span>Repeating ice-earthquakes beneath David Glacier from the 2012-2015 TAMNNET array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter, J. I.; Peng, Z.; Hansen, S. E.</p> <p>2017-12-01</p> <p>The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. In recent years, improvements in seismic instrumentation, battery technology, and field deployment practices have allowed for continuous broadband stations throughout the dark Antarctic winter. We utilize broadband seismic data from a recent experiment (TAMNNET), which was originally proposed as a structural seismology experiment, for seismic event detection. Our target is to address fundamental questions about regional-scale crustal and environmental seismicity in the study region that comprises the Transantarctic Mountain area of Victoria and Oates Land. We identify most seismicity emanating from David Glacier, upstream of the Drygalski Ice Tongue, which has been documented by several other studies. In order to improve the catalog completeness for the David Glacier area, we utilize a matched-filter technique to identify potential missing earthquakes that may not have been originally detected. This technique utilizes existing cataloged waveforms as templates to scan through continuous data and to identify repeating or nearby earthquakes. With a more robust catalog, we evaluate relative changes in icequake positions, recurrence intervals, and other first-order information. In addition, we attempt to further refine locations of other regional seismicity using a variety of methods including body and surface wave polarization, beamforming, surface wave dispersion, and other seismological methods. This project highlights the usefulness of archiving raw datasets (i.e., passive seismic continuous data), so that researchers may apply new algorithms or techniques to test hypotheses not originally or specifically targeted by the original experimental design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S13B1995P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S13B1995P"><span>Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.</p> <p>2010-12-01</p> <p>In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991Tecto..10.1257B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991Tecto..10.1257B"><span>Geophysical studies of the West Antarctic Rift System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.</p> <p>1991-12-01</p> <p>The West Antarctic rift system extends over a 3000 × 750 km, largely ice covered area from the Ross Sea to the base of the Antarctic Peninsula, comparable in area to the Basin and Range and the East African rift system. A spectacular rift shoulder scarp along which peaks reach 4-5 km maximum elevation marks one flank and extends from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. The rift shoulder has maximum present physiographic relief of 5 km in the Ross Embayment and 7 km in the Ellsworth Mountains-Byrd Subglacial Basin area. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been interpreted as rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. The rift system is characterized by bimodal alkaline volcanic rocks ranging from at least Oligocene to the present. These are exposed asymmetrically along the rift flanks and at the south end of the Antarctic Peninsula. The trend of the Jurassic tholeiites (Ferrar dolerites, Kirkpatric basalts) marking the Jurassic Transantarctic rift is coincident with exposures of the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed continuously (including the Dufek intrusion) along the lower- elevation (1-2 km) section of Transantarctic Mountains to the Weddell Sea. Widely spaced aeromagnetic profiles in West Antarctica indicate the absence of Cenozoic volcanic rocks in the ice covered part of the Whitmore-Ellsworth-Mountain block and suggest their widespread occurrence beneath the western part of the ice sheet overlying the Byrd Subglacial Basin. A German Federal Institute for Geosciences and Natural Resources (BGR)-U.S. Geological Survey (USGS) aeromagnetic survey over the Ross Sea continental shelf indicates rift fabric and suggests numerous submarine volcanoes along discrete NNW trending zones. A Bouguer anomaly range of approximately 200 (+50 to -150) mGal having 4-7 mGal/km gradients where measured in places marks the rift shoulder from northern Victoria Land possibly to the Ellsworth Mountains (where data are too sparse to determine maximum amplitude and gradient). The steepest gravity gradients across the rift shoulder require high density (mafic or ultramafic?) rock within the crust as well as at least 12 km of thinner crust beneath the West Antarctic rift system in contrast to East Antarctica. Sparse land seismic data reported along the rift shoulder, where velocities are greater than 7 km/s, and marine data indicating velocities above 7 km/s beneath the Ross Sea continental shelf support this interpretation. The maximum Bouguer gravity range in the Pensacola Mountains area of the Transantarctic Mountains is only about 130 mGal with a maximum 2 mGal/km gradient, which can be explained solely by 8 km of crustal thickening. Large offset seismic profiles over the Ross Sea shelf collected by the German Antarctic North Victoria Land Expedition V (GANOVEX V) combined with earlier USGS and other results indicate 17-21 km thickness for the crust beneath the Ross Sea shelf which we interpret as evidence of extended rifted continental crust. A regional positive Bouguer anomaly (0 to +50 mGal), the width of the rift, extends from the Ross Sea continental shelf throughout the Ross Embayment and Byrd Subglacial Basin area of the West Antarctic rift system and indicates that the Moho is approximately 20 km deep tied to the seismic results (probably coincident with the top of the asthenosphere) rather than the 30 km reported in earlier interpretations. The interpretation of horst and graben structures in the Ross Sea, made from marine seismic reflection data, probably can be extended throughout the rift (i.e., the Ross Ice shelf and the Byrd Subglacial Basin areas). The near absence of earthquakes in the West Antarctic rift system probably results from a combination of primarily sparse seismograph coverage and, secondarily, suppression of earthquakes by the ice sheet (e.g., Johnston, 1987) and very high seismicity shortly after deglaciation in the Ross Embayment followed by abnormally low seismicity at present (e.g., Muir Wood, 1989). The evidence of high temperatures at shallow depth beneath the Ross Sea continental shelf and adjacent Transantarctic Mountains is supportive of thermal uplift of the mountains associated with lateral heat conduction from the rift and can possibly also explain the volcanism, rifting, and high elevation of the entire rift shoulder to the Ellsworth-Horlick-Whitmore Mountains. We infer that the Gondwana breakup and the West Antarctic rift are part of a continuously propagating rift that started in the Jurassic when Africa separated from East Antarctica (including the failed Jurassic Transantarctic rift). Rifting proceeded clockwise around East Antarctica to the separation of New Zealand and the Campbell Plateau about 85-95 Ma and has continued (with a spreading center jump) to its present location in the Ross Embayment and West Antarctica. The Cenozoic activity of the West Antarctic rift system appears to be continuous in time with rifting in the same area that began only in the late Mesozoic. Although the mechanism for rifting is not completely explained, we suggest a combination of the flexural rigidity model (Stem and ten Brink, 1989) proposed for the Ross Embayment and the thermal plume or hot spot concepts. The propagating rift may have been "captured" by the thermal plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51A2867Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51A2867Y"><span>Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, H.; Sun, X.; He, L.; Wang, S.</p> <p>2015-12-01</p> <p>Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3376A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3376A"><span>Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto</p> <p>2017-04-01</p> <p>The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016349','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016349"><span>Anatomy of a metamorphic core complex: seismic refraction/wide-angle reflection profiling in southeastern California and western Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.</p> <p>1991-01-01</p> <p>The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T43D..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T43D..01L"><span>Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, A.; Rao, G.; Jia, D.; Wu, X.; Yan, B.; Ren, Z.</p> <p>2010-12-01</p> <p>The magnitude (Mw) 6.9 (Ms 7.1) Yushu earthquake occurred on 14 April 2010 in the Yushu area, central Tibetan Plateau, killing approximately 3000 people (including 270 missing) and causing widespread damage in the high mountain regions of the central Tibetan Plateau. The Yushu earthquake is comparable with the 1997 Mw 7.6 Manyi earthquake, the 2001 Mw 7.8 Kunlun earthquake, and the 2008 Mw 7.9 Wenchuan earthquake, which all occurred in the northern and eastern Tibetan Plateau, in terms of their magnitude and seismotectonic environment, related to the eastward extrusion of the Tibetan Plateau in response to continental collision between the Indian and Eurasian plates. Although some prompt reports related to ground deformation and the focal mechanism were published in the Chinese literature soon after the Yushu earthquake, there are scarce data related to the nature of co-seismic strike-slip rupturing structures and displacement distributions because the co-seismic surface ruptures were produced mainly in remote, high mountain regions of the Tibetan Plateau (average elevation >4000 m) and roads to the epicentral area were damaged, which made it difficult to gain access to the area and to undertake fieldwork immediately after the earthquake. Field investigations reveal that the earthquake produced a 33-km-long surface rupture zone, with dominantly left-lateral strike-slip along the Yushu Fault of the pre-existing strike-slip Ganzi-Yushu Fault Zone. The co-seismic surface ruptures are characterized by discontinuous shear faults, right-stepping en echelon tensional cracks, and left-stepping mole track structures that indicate a left-lateral strike-slip shear sense for the seismic fault. Field measurements indicate co-seismic left-lateral strike-slip displacements of approximately 0.3-3.2 m (typically 1-2 m), accompanied by a minor vertical component of <0.6 m. The present results show that (i) the Yushu earthquake occurred upon the pre-existing active Ganzi-Yushu Fault Zone, which controlled the spatial distribution of co-seismic surface ruptures and displacements; (ii) the left-lateral strike-slip motion indicates that the Ganzi-Yushu Fault Zone partitions deformation into eastward extrusion and northeastward shortening of the central Tibetan Plateau to accommodate the continuing penetration of the Indian plate into the Eurasian plate. Our findings confirm that present-day strain energy related to continental deformation in the central Tibetan Plateau, generated by collision between the Indian and Eurasian plates, is mainly released by strike-slip faulting along active strike-slip faults, and that the Ganzi-Yushu Fault Zone plays an important role in this crustal deformation, generating strong earthquakes that help to release the accumulated strain energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T43E2418D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T43E2418D"><span>Miocene shale tectonics in the Moroccan margin (Alboran Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Do Couto, D.; El Abbassi, M.; Ammar, A.; Gorini, C.; Estrada, F.; Letouzey, J.; Smit, J.; Jolivet, L.; Jabour, H.</p> <p>2011-12-01</p> <p>The Betic (Southern Spain) and Rif (Morocco) mountains form an arcuate belt that represents the westernmost termination of the peri-mediterranean Alpine mountain chain. The Miocene Alboran Basin and its subbasins is located in the hinterland of the Betic-Rif belt. It is considered to be a back-arc basin that developed during the coeval westward motion of the Alboran domain and the extensional collapse of previously thickened crust of the Betic-Rif belt. The Western Alboran Basin (WAB) is the major sedimentary depocenter with a sediment thickness in excess of 10 km, it is bordered by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge. Part of the WAB is affected by shale tectonics and associated mud volcanism. High-quality 2D seismic profiles acquired on the Moroccan margin of the Alboran Basin during the last decade reveal the multiple history of the basin. This study deals with the analysis of a number of these seismic profiles that are located along and orthogonal to the Moroccan margin. Seismic stratigraphy is calibrated from industrial wells. We focus on the interactions between the gravity-driven tectonic processes and the sedimentation in the basin. Our seismic interpretation confirms that the formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). The fast subsidence of the basin floor coeval to massive sedimentation induced the undercompaction of early miocene shales during their deposition. Downslope migration of these fine-grained sediments initiated during the deposition of the Langhian siliciclastics. This gravity-driven system was accompanied by continuous basement subsidence and induced disharmonic deformation in Mid Miocene units (i.e. not related to basement deformation). The development of shale-cored anticlines and thrusts in the deep basin is the result of compressive deformation at the front of the gravity-driven system and lasted for ca. 15 Ma. The compressive front has been re-activated by strong siliciclastic deposition, such as in the Serravalian-Tortonian period or more recently during the Quaternary contourites deposition. The Messinian dessication of the Mediterranean Sea and the following catastrophic Pliocene reflooding caused or enhanced re-activation of the deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NHESS..18..397F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NHESS..18..397F"><span>Brief communication: Post-seismic landslides, the tough lesson of a catastrophe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Xuanmei; Xu, Qiang; Scaringi, Gianvito</p> <p>2018-01-01</p> <p>The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S11D2498T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S11D2498T"><span>National Seismic Network of Georgia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tumanova, N.; Kakhoberashvili, S.; Omarashvili, V.; Tserodze, M.; Akubardia, D.</p> <p>2016-12-01</p> <p>Georgia, as a part of the Southern Caucasus, is tectonically active and structurally complex region. It is one of the most active segments of the Alpine-Himalayan collision belt. The deformation and the associated seismicity are due to the continent-continent collision between the Arabian and Eurasian plates. Seismic Monitoring of country and the quality of seismic data is the major tool for the rapid response policy, population safety, basic scientific research and in the end for the sustainable development of the country. National Seismic Network of Georgia has been developing since the end of 19th century. Digital era of the network started from 2003. Recently continuous data streams from 25 stations acquired and analyzed in the real time. Data is combined to calculate rapid location and magnitude for the earthquake. Information for the bigger events (Ml>=3.5) is simultaneously transferred to the website of the monitoring center and to the related governmental agencies. To improve rapid earthquake location and magnitude estimation the seismic network was enhanced by installing additional 7 new stations. Each new station is equipped with coupled Broadband and Strong Motion seismometers and permanent GPS system as well. To select the sites for the 7 new base stations, we used standard network optimization techniques. To choose the optimal sites for new stations we've taken into account geometry of the existed seismic network, topographic conditions of the site. For each site we studied local geology (Vs30 was mandatory for each site), local noise level and seismic vault construction parameters. Due to the country elevation, stations were installed in the high mountains, no accessible in winter due to the heavy snow conditions. To secure online data transmission we used satellite data transmission as well as cell data network coverage from the different local companies. As a result we've already have the improved earthquake location and event magnitudes. We've analyzed data from each station to calculate signal-to-nose ratio. Comparing these calculations with the ones for the existed stations showed that signal-to-nose ratio for new stations has much better value. National Seismic Network of Georgia is planning to install more stations to improve seismic network coverage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2693F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2693F"><span>Denudational slope processes and slope response to global climate changes and other disturbances: insights from the Nepal Himalayas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fort, Monique</p> <p>2016-04-01</p> <p>Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V41B4793C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V41B4793C"><span>Observed inflation-deflation cycles at Popocatepetl volcano using tiltmeters and its possible correlation with regional seismic activity in Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Contreras Ruiz Esparza, M. G., Sr.; Jimenez Velazquez, J. C., Sr.; Valdes Gonzalez, C. M., Sr.; Reyes Pimentel, T. A.; Galaviz Alonso, S. A.</p> <p>2014-12-01</p> <p>Popocatepetl, the smoking mountain, is a stratovolcano located in central Mexico with an elevation of 5450 masl. The active volcano, close to some of the largest urban centers in Mexico - 60 km and 30 km far from Mexico City and Puebla, respectively - poses a high hazard to an estimated population of 500 thousand people living in the vicinity of the edifice. Accordingly, in July 1994 the Popocatepetl Volcanological Observatory (POVO) was established. The observatory is operated and supported by the National Center for Disaster Prevention of Mexico (CENAPRED), and is equipped to fully monitor different aspects of the volcanic activity. Among the instruments deployed, we use in this investigation two tiltmometers and broad-band seismometers at two sites (Chipiquixtle and Encinos), which send the information gathered continuously to Mexico City.In this research, we study the characteristics of the tiltmeters signals minutes after the occurrence of certain earthquakes. The Popocatepetl volcano starts inflation-deflation cycles due to the ground motion generated by events located at certain regions. We present the analysis of the tiltmeters and seismic signals of all the earthquakes (Mw>5) occurred from January 2013 to June 2014, recorded at Chipiquixtle and Encinos stations. First, we measured the maximum tilt variation after each earthquake. Next, we apply a band-pass filter for different frequency ranges to the seismic signals of the two seismic stations, and estimated the total energy of the strong motion phase of the seismic record. Finally, we compared both measurements and observed that the maximum tilt variations were occurring when the maximum total energy of the seismic signals were in a specific frequency range. We also observed that the earthquake records that have the maximum total energy in that frequency range were the ones with a epicentral location south-east of the volcano. We conclude that our observations can be used set the ground for an early warning sytem of the Popocatepetl volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G22A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G22A..02H"><span>Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hashimoto, M.; Ozawa, T.</p> <p>2016-12-01</p> <p>The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation may generate E-W compressive stress, which is dominant in focal mechanism of most earthquakes, in the epicentral area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913962S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913962S"><span>The rockfall observatory in the Reintal, Wetterstein Massif, German Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schöpa, Anne; Turowski, Jens M.; Hovius, Niels</p> <p>2017-04-01</p> <p>The Reintal is an Alpine valley in the Wetterstein Massif close to the Zugspitze, Germany's highest mountain. Due to the variety of active geomorphic processes, including rockfalls off the steep limestone cliffs, debris flows, and snow avalanches, and the river Partnach, the Reintal has been the field area of many geomorphological and hydrological research campaigns over the last few decades. In 2014, the Geomorphology Section of the GFZ Potsdam started to install a monitoring network to detect and classify rockfalls in the Reintal. The network includes six seismic stations, optical and infrared cameras, and two weather stations measuring air and rock temperature, air pressure and relative humidity, precipitation, wind speed and direction, and solar radiation. The continuous observations of the network are supplemented by repeated field campaigns including terrestrial laser scans of a prominent rockfall niche at the Hochwanner mountain. The about 1,500 m high north face of the Hochwanner experienced the detachment of a 2.8 Mio m3 rockfall about 500 years ago that created the so-called Steingerümpel (German for rock debris deposit) and dammed the river Partnach. The cliff still shows high rockfall activity, and an 80,000 m3 block can be expected to fall in the near future. In this contribution, the layout of the observatory and details of the seismic network centered around the Hochwanner north face are described. Furthermore, the network data of a severe thunderstorm event in June 2016, that triggered many rockfalls and debris flows in the Reintal, is presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4450M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4450M"><span>Seismotectonic features of the African plate: the possible dislocation of a continent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meghraoui, Mustapha</p> <p>2014-05-01</p> <p>The African continent is made of seismically active structures with active deformation in between main substratum shields considered as stable continental interiors. Seismically active regions are primarily located along rift zones, thrust and fold mountain belts, transform faults and volcanic fields. The active tectonic structures generated large and destructive earthquakes in the past with significant damage and economic losses in Africa. Although some regions of the continent show a low-level of seismic activity, several large earthquakes (with M > 7) have occurred in the past. The presence of major active faults that generate destructive earthquakes is among the most important geological and geophysical hazards for the continent. National and International scientific projects dealing with the seismic hazards assessment are increasing in seismically active regions in Africa. The UNESCO-SIDA/IGCP (Project 601 http://eost.u-strasbg.fr/~igcp601/) support the preparation and implementation of the "Seismotectonic Map of Africa". Therefore, new seismotectonic data with the regional analysis of earthquake hazards became necessary as a basis for a mitigation of the earthquake damage. A database in historical and instrumental seismicity, active tectonics, stress tensor distribution, earthquake geology and paleoseismology, active deformation, earthquake geodesy (GPS) and gravity, crustal structure studies, magnetic and structural segmentation, volcanic fields, collision tectonics and rifting processes is prepared to constrain the geodynamic evolution of the continent. Taking into account the geological, tectonic and geophysical characteristics, we define six seismotectonic provinces that characterize the crustal deformation. With the previously identified Somalia tectonic block, the seismotectonic and geophysical framework of the continent reveal the existence of the Cameroon volcanic line, the South African tectonic block with transform faulting and Cape folding system, the Libyan rifting and Maghreb thrusting. Although bearing a relatively slow deformation with regards to the East Africa Rift System, the Nubia plate previously considered as a homogeneous tectonic block appears to be dislocating progressively also forming a system of microplates. A synthesis of earthquake studies and regional deformation exposed in a seismotectonic map hitherto serves as a basis for the seismic hazard evaluations and the reduction of seismic risks. * IGCP/SIDA: International Geoscience Program/Swedish International Cooperation Authority http://www.unesco.org/science/IGCP IGCP-601 Working Group: Paulina Amponsah (Ghana Atomic Energy Commission), Atalay Ayele (Addis Ababa University, Ethiopia), Bekoa Ateba (Inst. of Geol. and Min. Res., Buea, Cameroon), Abdelhakim Ayadi (CRAAG, Algeria), Abdunnur Bensuleman (University of Tripoli, Libya), Damien Delvaux (Royal Museum for Central Africa, Tervuren, Belgium), Mohamed El Gabry (National Research Institute of Geophysics, Cairo, Egypt), Rui-Manuel Fernandes (Universidade da Beira Interior, Portugal), Mustapha Meghraoui (IPG Strasbourg, France), Vunganai Midzi & Magda Roos (Council for Geoscience, Pretoria, South Africa), and Youssef Timoulali (CNRST, Rabat, Morocco).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS41B1908M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS41B1908M"><span>Seismic refraction and electrical resistivity tests for fracture induced hydraulic anisotropy in a mountain watershed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mendieta, A. L.; Bradford, J.; Liberty, L. M.; McNamara, J. P.</p> <p>2016-12-01</p> <p>Granitic based terrains often have complex hydrogeological systems. It is often assumed that the bedrock is impermeable, unless it is fractured. If the bedrock is fractured this can greatly affect fluid flow, depending on fracture density and orientation. Recently there has been a substantial increase in the number of geophysical studies designed to investigate hydrologic processes in mountain watersheds, however few of these studies have taken fracture induced geophysical and hydraulic anisotropy into consideration. Vertically oriented fractures with a preferred orientation produce azimuthal anisotropy in the electrical resistivity, the seismic primary wave (P-wave) velocity, and the hydraulic permeability. By measuring the electrical and seismic anisotropy we can estimate fracture orientation and density which improves our understanding of hydraulic properties. Despite numerous previous studies of the hydrologic system, the subsurface hydraulic system at the Dry Creek Experimental Watershed (DCEW), located near Boise, Idaho, is not completely understood. This is particularly true of the deep (>5m) system which is difficult to study using conventional hydrologic measurements, particularly in rugged and remote mountain environments. From previous studies, it is hypothesized that there is a system of fractures that may be aligned according to the local stress field. To test for the preferential alignment, ergo the direction of preferential water flow, we collected seismic and electrical resistivity profiles along different azimuths. The preliminary results show an azimuthal dependence of the P-wave velocities in the bedrock, at depths greater than 18 m; P-wave velocities range from 3500 to 4100 m/s, which represents a 17.5 % difference. We interpret this difference to be caused by fractures present in the bedrock. At the same location, we measured an electric resistivity value of 29 ohm-m, and we expect a difference of 37 %, if the fractures are fully saturated. Future studies will include coincident multi-azimuthal electrical resistivity surveys both to verify the results of the seismic study and to improve our understanding of the hydraulic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1077S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1077S"><span>Mountain rivers may need centuries to adjust to earthquake-triggered sediment pulses, Pokhara, Nepal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stolle, Amelie; Korup, Oliver; Schwanghart, Wolfgang; Bernhardt, Anne; Adhikari, Basanta Raj; Andermann, Christoff; Wittmann, Hella; Merchel, Silke</p> <p>2017-04-01</p> <p>Mountain rivers respond to strong earthquakes by not only adjusting to changes in local base level, but also by rapidly aggrading to accommodate excess sediment delivered by co- and post-seismic landslides. A growing number of detailed sediment budgets suggests that it takes rivers several years to decades to recover from such seismic disturbances, depending on how recovery is defined. We test this notion and study how rivers adjusted to catastrophic sedimentation triggered by at least three medieval earthquakes in the central Nepal Himalaya. In the vicinity of Pokhara, the nation's second largest city, rapid aggradation formed a large fan covering 150 km2 of mountainous terrain over a length of some 70 km. The fan prograded into several tributary valleys, rapidly infilling their lower reaches with several tens of meters of sediment from a major point source tens of kilometers away. A robust radiocarbon chronology of these valley fills provides an ideal framework for gauging average rates of fluvial incision and adjustment. We use high-resolution digital elevation data, geodetic field surveys, aerial photos documenting historic channel changes, and several re-exhumed tree trunks in growth position to define dated geomorphic marker surfaces. We compare various methods of computing the volumes lost from these surfaces to arrive at net sediment yields averaged over decades to centuries. We find that contemporary rates of river incision into the medieval earthquake debris are between 160 and 220 mm yr-1, with corresponding sediment yields of 103 to 105 t km-2 yr-1, several hundred years after the last traceable seismic disturbance. These rates greatly exceed the density-adjusted background rates of catchment-wide denudation inferred from concentrations of cosmogenic 10Be in river sands sampled in different tributaries. The lithological composition of active channel-bed load differs largely from local bedrock and confirms that rivers are still busy with excavating medieval valley fills. Pronounced knickpoints and epigenetic gorges at tributary junctions add to the picture of a drawn-out fluvial response, while the re-exhumed tree trunks indicate that some distal portions of the earthquake-derived sediment wedge have been incised to near their base. Our results challenge the notion that mountain rivers recover within years or even decades following earthquake disturbance. We caution against generalizing the spectrum of fluvial response in this context, as the valley fills around Pokhara document the possibility of a more protracted fluvial response that may have been ongoing for as long as 900 years despite the high and aggressive erosion that characterizes Himalayan rivers. Beyond the scientific community, our results may motivate some rethinking of post-seismic hazard appraisals and infrastructural planning during the rehabilitation phase in earthquake-struck regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T23A4640P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T23A4640P"><span>Reprocessing and Interpretation of Vintage Seismic Reflection Data: Evidence for the Tectonic History of the Rocky Mountain Trench, Northwest Montana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.</p> <p>2014-12-01</p> <p>In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915079A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915079A"><span>Reactivation of a Deep Seated Gravitational Slope Deformation observed during the recent seismic events in Central Italy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amato, Gabriele; Aringoli, Domenico; Devoti, Roberto; Fubelli, Giandomenico; Galvani, Alessandro; Pambianchi, Gilberto; Sepe, Vincenzo</p> <p>2017-04-01</p> <p>Deep-Seated Gravitational Slope Deformations (DSGSDs) represent an important geomorphological feature of the European mountain chains and several cases from Central Apennine (Italy) are accurately described in literature. These phenomena generally present evident geomorphological markers (e.g. double ridges, trenches, counterslopes) and low activity rates (i.e. mm to cm per year), which can be triggered by many different means (e.g. seismic activity, erosional processes, rainfall, post-glacial debuttressing). To understand which is the most influential factor in DSGSDs' activity is rarely an easy task because this can vary from case to case. This work illustrates the outcomes provided by a monitoring activity conducted along the Mt. Frascare slope (Fiastra Lake, Marche region, Italy). The monitoring system is composed by 4 low cost GPS stations, based on single-frequency receivers, and 2 double-frequency GPS stations, aimed to cross-check the surface deformations measured by the two types of monitoring stations. The 6 GPS stations have been operated in place starting from October 2014 grounded on the base of a geomorphological field survey of the investigated phenomenon. Two stations have been equipped with both receiver types in order to facilitate the comparison of the results. The Fiastra DSGSD affects a marly limestone bedrock throughout a >5km2 area and along a slope against which a dam for hydroelectric power leans. Our monitoring system allowed to measure the Fiastra DSGSD's seismically induced relative displacements on the order of two mean steps of about 10 cm, due to the recent seismic sequence occurred in Central Italy in 2016, which resulted considerably higher than the observed mean annual velocity (≈5mm/y).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T54A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T54A..06C"><span>The Dandridge-Vonore Fault Zone in the Eastern Tennessee Seismic Zone (and Rejuvenation of the Smokies?)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cox, R. T.; Hatcher, R. D., Jr.; Forman, S. L.; Gamble, E. D. S.; Warrell, K. F.</p> <p>2017-12-01</p> <p>The eastern Tennessee seismic zone (ETSZ) trends 045o from NE Alabama and NW Georgia through Tennessee to SE Kentucky, and seismicity is localized 5-26 km deep in the basement. The ETSZ is the second most seismically active region in North America east of the Rocky Mountains, although no historic earthquakes larger than Mw 4.8 have been recorded here. Late Quaternary paleoiseismic evidence suggests that the ETSZ is capable of M7+ earthquakes and that neotectonic faults may have significantly influenced the regional relief. We have identified an 80 km-long, 060o-trending corridor in eastern Tennessee that contains collinear northeast-striking thrust, strike-slip, and normal Quaternary faults with displacements of 1-2 m, herein termed the Dandridge-Vonore fault zone (DVFZ). French Broad River alluvium in the northeast DVFZ near Dandridge, TN, is displaced by a 050o-striking, SE-dipping thrust fault and by a set of related fissures that record at least two significant post 25 ka paleo-earthquakes. Southwest of Dandridge near Alcoa, TN, a 060o-striking, SE-dipping thrust fault cuts Little River alluvium and records two significant post-15 ka paleo-earthquakes. Farther southwest at Vonore, colluvium with alluvial cobbles is thrust >1 m by a 057o-striking, steeply SE-dipping fault that may also have a significant strike-slip component, and Little Tennessee River alluvium is dropped >2 m along a 070o- striking normal fault. The DVFZ partly overlaps and is collinear with a local trend of maximum seismicity that extends 30 km farther SW of the DVFZ (as currently mapped), for a total length of 110 km. The DVFZ is coincident with a steep gradient in S-wave velocities (from high velocity on the SE to low velocity on the NW) at mid-crustal depths of 20 to 24 km, consistent with a fault and source zone at hypocentral depths in the crystalline basement. Moreover, the DVFZ parallels the NW foot of Blue Ridge Mountains, and the sense of thrusting at all sites of Quaternary faulting in the DVFZ is consistent with uplift of the Blue Ridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11A0441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11A0441S"><span>Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Servali, A.; Long, M. D.; Benoit, M.</p> <p>2017-12-01</p> <p>The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073541','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073541"><span>Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Levich, R.A.; Linden, R.M.; Patterson, R.L.; Stuckless, J.S.</p> <p>2000-01-01</p> <p>Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program. The first day focuses on the regional setting with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The field trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, an element of the hydrologic system that historically has received little attention. Discussions during the second day will compromise selected topics of Yucca Mountain geology, hydrology and geochemistry and will include the probabilistic volcanic hazard analysis and the seismicity and seismic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the results of recent hydrologic studies by the Nye County Nuclear Waste Program Office, and the relationship of the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810834S"><span>Amphibian Seismological Studies in the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt-Aursch, Mechita; Kuk Hong, Jong; Lee, Won Sang; Geissler, Wolfram; Yun, Sukyoung; Gohl, Karsten; Park, Yongcheol; Yoo, Hyun Jae</p> <p>2016-04-01</p> <p>The Antarctic Ross Sea is one of the key regions for polar research activities. Research stations from several countries located at the coast are the base for inland expeditions. Even in the austral summer, the Ross Sea is party covered with drifting ice fields; this requires an icebreaker for all marine explorations. Therefore, large geophysical surveys in the Ross Sea are difficult. But the area is of special interest for seismologists: The Terror Rift in the western Ross Sea is a prominent neotectonic structure of the West Antarctic Rift System (WARS). It is located near the coast in the Victoria Land Basin and extends parallel to the Transantarctic Mountains. The rifting processes and the accompanying active onshore volcanism lead to increased seismicity in the region. The annual waxing and waning of the sea-ice and the dynamics of the large Ross Ice Shelf and nearby glaciers generate additional seismic signals. Investigation on seismological activities associated with the WARS and the cryogenic signals simultaneously would give us an unprecedented opportunity to have a better understanding of the Evolution of the WARS (EWARS) and the rapid change in the cryospheric environment nearby. The Korea Polar Research Institute (KOPRI) and the Alfred-Wegener-Institut (AWI) have conducted a pilot study off the Korean Jang Bogo research station in the Terra Nova Bay by developing a collaborative research program (EWARS) since 2011 to explore seismicity and seismic noise in this region. Four broadband ocean-bottom seismometers (OBS) from the German DEPAS pool were deployed in January 2012 with the Korean research icebreaker RV Araon. Three instruments could successfully be recovered after 13 months, the fourth OBS was not accessible due to local sea-ice coverage. We have successfully completed a second recovery operation in January 2014. All stations recorded data of good quality, one station stopped after 8 months due to a recorder error. The OBS recovered in 2014 recorded more than 17 months of data until the batteries were discharged. In this contribution, we present data and first results including temporal variation of seismic ambient noise, receiver functions, local seismicity, and noise correlation functions through examining the OBS data incorporating with the onshore seismic observation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.S31C..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.S31C..01S"><span>Interpretations on the Geologic Setting of Yogyakarta Earthquakes 2006 (Central Java, Indonesia) Based on Integration of Aftershock Monitoring and Existing Geologic, Geophysical and Remote Sensing Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Setijadji, L. D.; Watanabe, K.; Fukuoka, K.; Ehara, S.; Setiadji, Y.; Rahardjo, W.; Susilo, A.; Barianto, D. H.; Harijoko, A.; Sudarno, I.; Pramumijoyo, S.; Hendrayana, H.; Akmalludin, A.; Nishijima, J.; Itaya, T.</p> <p>2007-05-01</p> <p>The unprecedented 26 May 2006 Yogyakarta earthquake (central Java, Indonesia) that took victims of 5,700 lives was generally accepted to have a depth of about 10 km and moment magnitude of 6.4. However, the definition of location of active fault is still under debate as the epicenter of mainshock was reported quite differently by several institutions. Many researchers believe that the Opak fault which is located at the eastern boundary of Yogyakarta low-land area (or Yogyakarta Basin) and the high-land region of Southern Mountains was the source of year 2006 earthquakes. However, our result of aftershocks observation suggests that the ruptured zone was not located along the Opak fault but from an unknown fault located about 10 km to the east from it and within the Southern Mountains domain. Unfortunately, surface geologic manifestations are scarce as this area is now largely covered by limestone. Therefore the suspected active fault system must be studied through interpretations of the subsurface geology and evaluation of the Cenozoic geo-history of the region utilizing existing geologic, geophysical and remote sensing data. This work suggests that the Yogyakarta Basin is a volcano-tectonic depression formed gradually since the early Tertiary period (Oligo-Miocene or older). Geological and geophysical evidence suggest that structural trends changed from the Oligocene NE-SW towards the Oligo-Miocene NNE-SSW and the Plio-Pleistocene NW-SE and E-W directions. The ruptured "X" fault during the Yogyakarta earthquakes 2006 is likely to be a NNE-SSW trending fault which is parallel to the Opak fault and both were firstly active in the Oligo-Miocene as sinistral strike-slip faults. However, while the Opak fault had changed into a normal faulting after the Pliocene, the evidence from Kali Ngalang and Kali Widoro suggests that the "X" fault system was still reactivated as a strike-slip one during the Plio-Pleistocene orogeny. As this new interpretation of active fault causes spatial discrepancy between locations of earthquakes epicenters and highly damaged regions, other geo-engineering factors must be considerably important in determining the final scale of seismic hazards. The most vulnerable areas for seismic hazards are those located nearest to the ruptured fault and are underlain by thick Quaternary unconsolidated deposits. In case of regions along the fault line, seismic hazards seem to reach more distance region, such as the case of Gantiwarno region, as the seismic waves can travel more easily along the fault line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tecto..36.2192G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tecto..36.2192G"><span>Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grützner, C.; Walker, R. T.; Abdrakhmatov, K. E.; Mukambaev, A.; Elliott, A. J.; Elliott, J. R.</p> <p>2017-10-01</p> <p>The Zailisky Alatau is a >250 km long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyze the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, meter-scale topography derived from stereo satellite images, and decimeter-scale elevation models from unmanned aerial vehicle surveys. Fault scarps ranging in height from 2 m to >20 m in alluvial fans indicate that surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum. Minimum estimated magnitudes for those earthquakes are M6.8-7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of 1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate that the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework, we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1083/k/OF2010-1083-K.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1083/k/OF2010-1083-K.pdf"><span>Seismicity of the Earth 1900–2010 Middle East and vicinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.</p> <p>2013-01-01</p> <p>No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8303M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8303M"><span>Active folding and thrusting in North Africa: A framework for a seismotectonic model of the Atlas Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meghraoui, Mustapha; Maouche, Said; Timoulali, Youssef; Bouhadad, Youcef; Bouaziz, Samir</p> <p>2013-04-01</p> <p>Large earthquakes in the Atlas Mountains of North Africa are often generated on thrust or reverse faults. For inland faults, surface ruptures and long-term active tectonics appear as a thrust escarpment and fold-related faulting visible in the field and using remote sensing images, or measured using space-borne geodesy (GPS or INSAR). For coastal faults, major uplifts of late Quaternary marine terraces and folding with steplike morphology are exposed indicating the incremental development of coastal active deformation. We have investigated the similarities and differences between different active fault-related folding along the Africa - Eurasia convergent plate boundary. These active structures are seismogenic and the striking case studies are the 1960 Agadir (Mw 5.9), the 1954 Orleansville (Mw 6.7), the 1980 El Asnam (Mw 7.3), the 1992 Gafsa (Mw 5.3), the 1999 Ain Temouchent (Mw 6.0), and the 2003 Zemmouri (Mw 6.8) earthquakes. From paleoseismic investigations the El Asnam active fold shows 0.6 to 1.0 mm/yr uplift rate. West of Algiers on the Sahel anticline, the levelling of uplifted successive coastal benches and notches document the incremental folding uplift with ~ 0.84 - 1.2 mm/yr uplift rate in the last 120-140 ka. The relatively fast folding growth during late Pleistocene and Holocene in the Atlas Mountains attests for the significance of earthquake activity and the importance of convergent movements between Africa and Eurasia in the Western Mediterranean. This work is prepared in the framework of the UNESCO (SIDA) - IGCP Project 601 "Seismotectonics and Seismic Hazards in Africa".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712524M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712524M"><span>A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta</p> <p>2015-04-01</p> <p>In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future) with head scarps near mountain tops and close to faults is similar to the one of large mass movements for which a seismic origin is proved (such as in the Tien Shan, Pamir, Longmenshan, etc.). Thus, correlations between landslide occurrence and combined seismotectonic and climatic factors are needed to support a regional multi-hazard risk assessment. The purpose of this paper is to harmonize for the first time at a regional scale the landslide predisposing factors and seismotectonic triggers and to present a first qualitative insight into the earthquake-induced landslide susceptibility for the Vrancea Seismic Region in terms of a GIS-based analysis of Newmark displacement (ND). In this way, it aims at better defining spatial and temporal distribution patterns of earthquake-triggered landslides. Arias Intensity calculation involved in the assessment considers both regional seismic hazard aspects and singular earthquake scenarios (adjusted by topography amplification factors). The known distribution of landslides mapped through digital stereographic interpretation of high-resolution aerial photos is compared with digital active fault maps and the computed ND maps to statistically outline the seismotectonic influence on slope stability in the study area. The importance of this approach resides in two main outputs. The fist one, of a fundamental nature, by providing the first regional insight into the seismic landslides triggering framework, is allowing us to understand if deep-focus earthquakes may trigger massive slope failures in an area with a relatively smooth relief (compared to the high mountain regions in Central Asia, the Himalayas), considering possible geologic and topographic site effects. The second one, more applied, will allow a better accelerometer instrumentation and monitoring of slopes and also will provide a first correlation of different levels of seismic shaking with precipitation recurrences, an important relationship within a multi-hazard risk preparedness and prevention framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..83....1T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..83....1T"><span>Analysis of La Dehesa paleo-landslide. Central Pre-Andes of Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tapia Baldis, Carla; Rothis, Luis Martín; Perucca, Laura; Esper Angillieri, María; Vargas, Horacio; Ponce, David; Allis, Carlos</p> <p>2018-04-01</p> <p>The main objective of this paper is to consider the influence of Quaternary faults as likely triggering factor for rockslides occurrence in the Central Pre-Andes, a region with intense shallow seismic activity. A rockslide deposit was selected as study case, placed in the western flank of La Dehesa and Talacasto (DT) range (31°3‧37″ S and 68°46‧ 8″ W). Applied methodology includes the characterization of main discontinuities, reconstruction of the topography using a high-resolution digital elevation model, safety factor calculation along the sliding surface and, Newmark displacements estimation for three different hypothetical seismic scenarios, recreated from existing neotectonic local information. Equilibrium-limit method's results confirm that study case, La Dehesa rockslide (LDR), had a stable and safe slope's configuration under static conditions. However, a seismic horizontal coefficient between 0.2 and 0.3 decreases safety factor below the safety threshold. Newmark's displacements for different seismic reconstructed scenarios varies between 4.1 and 15.9 cm, values that agreed with a coherent failure process, likely triggered by Pleistocene to Holocene seismogenic sources in Central Pre-Andes. LDR trigger could be assigned mainly to an earthquake related to La Dehesa Quaternary fault (LDF) activity; however, similar movements produced by neighboring faults should not be discarded. LDR triggering related to climatic conditions is despised. Finally, the methodology presented in this work is easy to reproduce and may be applied to other rockslides located in the mountainous areas of the Central Pre-Andes of Argentina.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1600Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1600Y"><span>Crustal underthrusting in the Crimea - Northern Black Sea area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yegorova, Tamara; Gobarenko, Valentina; Murovskaya, Anna; Sheremet, Yevgeniya</p> <p>2016-04-01</p> <p>The southern Crimean Mountains and the Greater Caucasus form a fold and thrust belt located on the northern margin of the Black Sea, south of Precambrian East European Craton. It is limited to the south by the Main Caucasus Thrust that runs along the whole of the northern margin of the Black Sea and is related to a zone of present day seismicity along the southern Crimea-Caucasus coast of the Sea (Crimean Seismogenic Zone). Strong seismic activity in the region indicates active on-going tectonic processes caused by collision of Eurasian and Arabian plates. In the vicinity of the seismogenic zone there is a transition from thick continental crust on the north to thin suboceanic one on the south in the sea. However, type and structural relations between them are known poorly. To understand better geodynamic processes, there were collected data on the earthquakes that were analyzed together with focal mechanisms of strong earthquakes, new results of geological structural analysis and paleostress reconstructions by kinematic method. These allowed drawing the following conclusions. Seismic activity in the study region, evidenced of active tectonic processes under compression and transpression at the transition from the southern margin of the East European Craton (Scythian Platform) to the Black Sea, is confirmed by predominance of reverse mechanisms among 31 focal mechanisms. In the seismogenic zone, much of which is located along the continental slope, there are three subzones (from east to west): 1) Kerch-Taman one dipping northwards at angle 30 degrees to the depth of 90 km; 2) South-Coast subzone gently dipping to the southeast at angle of 18 degrees with foci depth range 10-45 km, and 3) orthogonal to the latter and confining it from the west the Sevastopol one, characterized by scattered seismicity. The earthquake foci are located in the gradient zone that separates intense Crimea gravity high and positive anomaly of Northern Caucasus from negative gravity field of the Black Sea. The north-south tight band of the South-Coast subzone epicenters relates with highest gravity gradient offshore and is traced northward onshore on transition zone between the Western and Eastern Crimean Mountains. In the eastern part the reverse and strike-slip faulting prevail, while in the western part - the strike-slip and normal faults occur. The Kerch-Taman subzone is characterized by underthrusting the East Black Sea microplate with thin suboceanic (or strongly extended continental) crust below the Scythian Platform with thick continental crust. In the South-Coast subzone this process is complicated by wedging the frontal part of suboceanic crust into the mid-crust of Crimea. Sevastopol branch of the earthquakes is interpreted as zone of strike-slip deformations. The wedging of the East Black Sea microplate into the Scythian Plate crust in Crimea causes intense gravity anomaly of Crimean Mountains and strong present-day uplift of the latter. The analogue of described wedging mechanism seems to be geodynamic processes in the Ivrea area in Western Alps, ccharacterized by similar crust structure and intense gravity anomaly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31E2955J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31E2955J"><span>Deformation fabrics of blueschist facies phengite-rich, epidote-glaucophane schists from Ring Mountain, California and implications for seismic anisotropy in subduction zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, H.; HA, Y.; Raymond, L. A.</p> <p>2016-12-01</p> <p>In many subduction zones, strong seismic anisotropy is observed. A part of the seismic anisotropy can be attributed to the subducting oceanic crust, which is transformed to blueschist facies rocks under high-pressure, high-temperature conditions. Because glaucophane, epidote, and phengite constituting the glaucophane schists are very anisotropic elastically, seismic anisotropy in the oceanic crust in hot subduction zones can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied deformation fabrics and seismic properties of phengite-rich, epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The blueschist samples are mainly composed of glaucophane, epidote, and phengite, with minor garnet, titanite, and chlorite. Some samples contain abundant phengite (up to 40 %). We determined LPOs of minerals using SEM/EBSD and calculated seismic anisotropy of minerals and whole rocks. LPOs of glaucophane have [001] axes aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles subparallel to lineation. LPOs of phengite are characterized by maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes aligned in a girdle subparallel to foliation. Phengite showed much stronger seismic anisotropy (AVP = 42%, max.AVS = 37%) than glaucophane or epidote. Glaucophane schist with abundant phengite showed much stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than epidote-glaucophane schist without phengite (AVP = 13%, max.AVS = 9%). Therefore, phengite clearly can significantly affect seismic anisotropy of whole rocks. When the subduction angle of phengite-rich blueschist facies rocks is considered for a 2-D corner flow model, the polarization direction of fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction angle of 45-70° and shear wave anisotropy (AVS) became stronger for vertically propagating S-waves with increasing subduction angle. Our data showed that phengite-rich blueschist, therefore, can contribute to strong trench-parallel seismic anisotropy observed in many subduction zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S41C..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S41C..03L"><span>Attenuation in the Upper Mantle Beneath the Northern Apennines (Italy) from Teleseismic P- and S-Wave Spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucente, F. P.; Piccinini, D.; Dibona, M.; Levin, V.; Park, J.</p> <p>2007-12-01</p> <p>We present preliminary results for seismic attenuation in the mantle beneath the Italian region. We estimate P- and S-wave spectral ratios from teleseisms recorded at the temporary broadband seismic network deployed during the RETREAT (Retreating-TRrench, Extension, and Accretion Tectonics) project. We examine body-wave attenuation variation across the northern part of the Apennines mountain belt, which represents the accretionary wedge exposed during recent episodes of the subduction process in Italy. The data recorded during the three-year seismic campaign were analyzed using an ad hoc semi-automated procedure based on the cross-correlation analysis of a single phase across all the stations for each event. The seismic phases analyzed (P, S, SKS) display different patterns of seismic attenuation. Furthermore, we observe systematic variations in the distribution of the attenuation values as function of both the azimuth and the incidence angle of the seismic rays. Relatively high attenuation values are found on the Tyrrhenian side by seismic rays coming from the SW for both P- and S-phases. For NE-approaching rays the pattern of high attenuation values varies considerably, depending on the seismic phases: for P-waves it grossly corresponds to the mountain belt, while for S-waves it extends over almost the whole study area. By correlating attenuation estimates and the velocity structure from the existing tomographic models, we can make some inferences on the thermal state of the sublithospheric mantle, and on the physical properties of the tectonic elements which constitute the subduction system in the region. From the analysis of the P-phases we can clearly distinguish three main areas with different attenuation values, corresponding to the back-arc mantle (high attenuation), to the slab (low attenuation) and to the retro-slab mantle (high attenuation). The correspondence between the identified elements of the subduction system and the S- waves attenuation is not straightforward, and need to be further investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023539','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023539"><span>Probabilistic seismic hazard analyses for ground motions and fault displacement at Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stepp, J.C.; Wong, I.; Whitney, J.; Quittmeyer, R.; Abrahamson, N.; Toro, G.; Young, S.R.; Coppersmith, K.; Savy, J.; Sullivan, T.</p> <p>2001-01-01</p> <p>Probabilistic seismic hazard analyses were conducted to estimate both ground motion and fault displacement hazards at the potential geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The study is believed to be the largest and most comprehensive analyses ever conducted for ground-shaking hazard and is a first-of-a-kind assessment of probabilistic fault displacement hazard. The major emphasis of the study was on the quantification of epistemic uncertainty. Six teams of three experts performed seismic source and fault displacement evaluations, and seven individual experts provided ground motion evaluations. State-of-the-practice expert elicitation processes involving structured workshops, consensus identification of parameters and issues to be evaluated, common sharing of data and information, and open exchanges about the basis for preliminary interpretations were implemented. Ground-shaking hazard was computed for a hypothetical rock outcrop at -300 m, the depth of the potential waste emplacement drifts, at the designated design annual exceedance probabilities of 10-3 and 10-4. The fault displacement hazard was calculated at the design annual exceedance probabilities of 10-4 and 10-5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T51B2584R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T51B2584R"><span>Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.</p> <p>2012-12-01</p> <p>The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5206/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5206/"><span>Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kellogg, Karl S.</p> <p>2005-01-01</p> <p>Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in the western Transverse Ranges as part of the U.S. Geological Survey's Southern California Areal Mapping Project (SCAMP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T21C0579G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T21C0579G"><span>Uranium-Series Dating of the East Franklin Mountain's Fault Carbonates in El Paso, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, V. H.; Ma, L.; Pavlis, T. L.; Hurtado, J. M., Jr.</p> <p>2017-12-01</p> <p>Direct dating of fault activity is a fundamentally important part of many paleoseismic studies and has potential implications on the quantity, magnitude, recurrence intervals, and timing of earthquake occurrences in the past and future. Faults in the Rio Grande Rift (RGR) in southern New Mexico and West Texas have often been overlooked in seismic hazard assessments due to inferred low tectonic rates and long recurrence intervals. However, there is geologic evidence from surface ruptures that at least 22 large earthquakes (M > 6.25) have occurred in the RGR within the last 10,000 kyrs. The binational conurbation of the El Paso-Juarez region (home to 2.3 million people) lies in the southern extent of the RGR and is traversed by many Quaternary faults, which pose a potentially catastrophic hazard for the region. One fault in particular, the East Franklin Mountains fault (EFMF), is made up of many smaller fault segments that cross through heavily populated areas of the El Paso-Juarez region. Direct dating of past movement on a central segment of the EFMF is a fundamental and important piece of the puzzle in understanding when and how often seismic activity occurred in the fault. In this study, we applied Uranium-series (U-series) dating of fault carbonates collected from a trench that was dug on the central segment of the EFMF. Fault related calcite precipitants and pedogenic carbonates from a nearby soil profile were collected to (1) constraint the timing of past fault activity and (2) understand the relationship and timing of pedogenic carbonate formation away from the EFMF. U-series dating reveals that pedogenic carbonates collected from colluvial wedges along the fault are approximately half the optically stimulated luminescence age of the deposits, suggesting the U-Series dates record a relatively continuous accumulation of carbonates post-deposition. U-Series dates from within the EFMF, however, provided potentially the best estimates for the age of the most recent seismic event with ages of 10 - 12 kyrs, suggesting this method has potential broader applications in paleoseismic studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511867L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511867L"><span>Seismicity and magmatic processes in the Rwenzori region of the Albertine Rift.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindenfeld, Michael; Rümpker, Georg; Kasereka, Celestin M.; Batte, Arthur; Schumann, Andreas</p> <p>2013-04-01</p> <p>In this presentation we summarize results from two extensive seismic field studies with temporary station networks in the Rwenzori region of the Albertine rift, located at the border between Uganda and the Democratic Republic of Congo. The first network was running from February 2006 to September 2007. It consisted of 27 seismic stations which were deployed in the Ugandan part of the area. A second network of 33 stations was operated between October 2009 and October 2011. It traversed the whole rift segment from the eastern rift shoulder in Uganda to the western shoulder in the D.R. Congo, covering the whole Rwenzori region. The data analysis revealed a pronounced local earthquake activity in this area with an average rate of more than 800 events per month and proves that this segment of the Albertine Rift belongs to the seismically most active regions of the whole East African Rift System. The earthquake distribution is highly heterogeneous. The highest activity is observed in the northeastern part of the Rwenzori area. Here, the mountains are connected to the eastern rift shoulder whereas they are surrounded by rift segments elsewhere. We were able to locate seismicity bursts with more than 300 events per day. The depth extent of seismicity ranges from 20 to 39 km and correlates well with Moho depths that were derived from teleseismic receiver functions. The majority of the derived fault plane solutions exhibit normal faulting with WNW-ESE oriented T-axes, which is perpendicular to the rift axis and in good agreement with kinematic rift models. The area of highest seismic activity is also characterized by the existence of several vertical elongated earthquake clusters in the crust. From petrological considerations we presume that these events are triggered by fluids and gases which originate from a magmatic source below the crust. The existence of a magmatic source within the lithosphere is supported by the detection of mantle earthquakes at about 40 - 60 km depth below the cluster area. We interpret these observations as an indication of deep magmatic infiltration processes that play a significant role in rift formation and that may eventually lead to the complete detachment of the Rwenzori block from the surrounding rift flanks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...636976B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...636976B"><span>Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brocard, Gilles; Anselmetti, Flavio S.; Teyssier, Christian</p> <p>2016-11-01</p> <p>We combine ‘on-fault’ trench observations of slip on the Polochic fault (North America-Caribbean plate boundary) with a 1200 years-long ‘near-fault’ record of seismo-turbidite generation in a lake located within 2 km of the fault. The lake record indicates that, over the past 12 centuries, 10 earthquakes reaching ground-shaking intensities ≥ VI generated seismo-turbidites in the lake. Seismic activity was highly unevenly distributed over time and noticeably includes a cluster of earthquakes spread over a century at the end of the Classic Maya period. This cluster may have contributed to the piecemeal collapse of the Classic Maya civilization in this wet, mountainous southern part of the Maya realm. On-fault observations within 7 km of the lake show that soils formed between 1665 and 1813 CE were displaced by the Polochic fault during a long period of seismic quiescence, from 1450 to 1976 CE. Displacement on the Polochic fault during at least the last 480 years included a component of slip that was aseismic, or associated with very light seismicity (magnitude <5 earthquakes). Seismicity of the plate boundary is therefore either non-cyclic, or dominated by long-period cycles (>1 ky) punctuated by destructive earthquake clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41A0593C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41A0593C"><span>Intracontinental Deformation in the NW Iranian Plateau and Comparisons with the Northern Margin of the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.</p> <p>2017-12-01</p> <p>This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region. The new observations in the NW Iranian plateau combined with those in the Tibetan plateau thus provide solid evidence that intracontinental deformation is primarily controlled by the structure and properties of the continental lithosphere that may or may not have been severely altered by the collisional processes at plate margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2002/0342/pdf/of02-342.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2002/0342/pdf/of02-342.pdf"><span>Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.</p> <p>2002-01-01</p> <p>The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; (2) a description of instruments deployed in the field and their locations; (3) a description of earthquake detection, recording, analysis, and data archival systems; (4) station parameters and velocity models used for earthquake locations; (5) a summary of daily station usage throughout the catalog period; and (6) all HYPOELLIPSE files used to determine the earthquake locations presented in this report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S31D..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S31D..01W"><span>Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, B.; Chen, Y.; Wang, W.; Yang, W.</p> <p>2017-12-01</p> <p>Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity changes prior to several moderate earthquakes are detected around. Seismic velocity measured around the Hutubi underground gas storage show clear correlation with the gas pressure. Those results shed some light on the short term evolution of the shallow to low crust, which may boost our understanding the mechanism of local seismic hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8634L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8634L"><span>Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.</p> <p>2009-04-01</p> <p>Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults, clinoforms, and slide deposits. The major faults are the eastern and western graben fault but numerous additional faults, especially in the northern part of Lake Ohrid, seem to be active, as we can trace them from the basement up to the lake floor. Clinoforms that are mainly found in the southern part of the lake, the main water supply area, indicate major lake level fluctuations. Additionally, slides are widespread and were mainly mapped based on the high resolution sediment echosounder data. In contrast the central basin shows widespread areas with a thick undisturbed sedimentary succession. No indications for a dry lake are found in this part of the lake, hence offering the possibility to recover long, continuous archives for the entire lifetime of Lake Ohrid. The dense net of seismic profiles allowed us to map the total sediment thickness (measured in two-way-travel time because a good velocity model has not been calculated yet) on top of the basement in high lateral resolution. Values vary in between 0 s and 0.84 s TWT at places where the basement strikes out of the lake floor and the central part of the lake, respectively. The maximum sediment thickness of up to 680 m can be calculated assuming an average velocity of 1600 m/s for lacustrine sediments. Five primary drill sites have been chosen as promising ICDP sites. The most important one is located in the central part of Lake Ohrid basin at a water depth of 250 m and will provide substantial information to the age and origin of the lake, a complete record of the environmental history and of tephra deposition, and forms the basis to link evolutionary changes with geological events. Another four drill sites closer to the shore of the lake will provide information to major changes of the hydrological regime, the age of ancient foresets as well as lake level changes, the tectonic activity, and mass movements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0912/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0912/report.pdf"><span>An Evaluation of Seismic Reflection Studies in the Yucca Mountain Area, Nevada Test Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McGovern, Thomas F.; Introduction by Pankratz, L. W.; Ackermann, H.D.</p> <p>1983-01-01</p> <p>As part of a total geophysical evaluation of Yucca Mountain for use as a Nuclear Waste Repository the seismic reflection technique has been applied. This study has been conducted to analyze the historical and technical efforts which have been used by three geophysical contractors employing a wide variety of techniques ranging from the most simple to very elaborate 3-D surveys. In each case elaborate noise studies were conducted, and based upon their evaluation parameters were chosen for multifold CDP recording. In every case, the signal-to-noise ratio was such that no reflections were discernable. Since the reflections cannot be separated from the noise even using very elaborate noise suppression techniques and up to 384 fold multiplicity it is apparent that in this volcanic terrain reflection surveys, can not work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035255','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035255"><span>Rocky Mountain evolution: Tying Continental Dynamics of the Rocky Mountains and Deep Probe seismic experiments with receiver functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.</p> <p>2009-01-01</p> <p>In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2216Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2216Z"><span>Understanding continental megathrust earthquake potential through geological mountain building processes: an example in Nepal Himalaya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Huai; Zhang, Zhen; Wang, Liangshu; Leroy, Yves; shi, Yaolin</p> <p>2017-04-01</p> <p>How to reconcile continent megathrust earthquake characteristics, for instances, mapping the large-great earthquake sequences into geological mountain building process, as well as partitioning the seismic-aseismic slips, is fundamental and unclear. Here, we scope these issues by focusing a typical continental collisional belt, the great Nepal Himalaya. We first prove that refined Nepal Himalaya thrusting sequences, with accurately defining of large earthquake cycle scale, provide new geodynamical hints on long-term earthquake potential in association with, either seismic-aseismic slip partition up to the interpretation of the binary interseismic coupling pattern on the Main Himalayan Thrust (MHT), or the large-great earthquake classification via seismic cycle patterns on MHT. Subsequently, sequential limit analysis is adopted to retrieve the detailed thrusting sequences of Nepal Himalaya mountain wedge. Our model results exhibit apparent thrusting concentration phenomenon with four thrusting clusters, entitled as thrusting 'families', to facilitate the development of sub-structural regions respectively. Within the hinterland thrusting family, the total aseismic shortening and the corresponding spatio-temporal release pattern are revealed by mapping projection. Whereas, in the other three families, mapping projection delivers long-term large (M<8)-great (M>8) earthquake recurrence information, including total lifespans, frequencies and large-great earthquake alternation information by identifying rupture distances along the MHT. In addition, this partition has universality in continental-continental collisional orogenic belt with identified interseismic coupling pattern, while not applicable in continental-oceanic megathrust context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029131','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029131"><span>Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fletcher, Joe B.; McGarr, A.</p> <p>2005-01-01</p> <p>A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2633M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2633M"><span>Natural and anthropogenic multi-type hazards for loess territories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mavlyanova, Nadira; Zakirova, Zulfiya</p> <p>2013-04-01</p> <p>Central Asia (CA) is an extremely large region of varied geography from plains to high, rugged mountains (the region belongs to the Tien-Shan and Pamirs mountain system), vast deserts (Kara Kum, Kyzyl Kum, Taklamakan). The area of the CA region is including the territories of following countries: of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. CA is particularly exposed to natural hazards like earthquakes, landslide, rockfalls, avalanches, mudflows, flooding, high mountains lakes, sub flooding, and debris flow. This region is one of the most seismically active in the world. In XX century almost in each of five countries have occurred strong earthquakes with magnitude more than 7, led to human victims. Loess soils are widespread in this region in foothills, foothill plains and intermountain depressions. Loess can cause a number of engineering problems because loess undergoes structural collapse and subsidence due to saturation when both the initial dry density and initial water content are low. By comparison of the map of seismic zoning to a map of distribution of loess soils it is easy to be convinced that the territory of the majority of seismic areas are covering by collapsible loess soils with significant thickness (50-150 m). The natural hazards leads to a disaster, if it develops in an urbanized or industrial areas and directly affects people and economic objects. In this case, risk takes place with all its consequences especially on loess soil. In the past a formation of natural hazards was connected generally with two main groups of factors: geological structure and climatic conditions. Now to them the third factor - of human made influence was added. Intensive influence of human activity to the loess territories in CA for last 60 years is destruction of nature balance and changing in environment of loess land in zone with high seismic hazard. This processes primarily associated with following: 1) irrigation of new lands; 2) the developing of mining manufactures and their waste located in the foothill areas with high seismic risk and where manifested of dangerous geological processes as landslide, collapse, mud stream, rock falls and toxic contamination; 3) development of urbanization with manifestation of difference engineering geological processes in loess soil on the based of constructions in cities (collapse, liquefaction). That example of cascade effects when natural and anthropogenic multi type hazards in loess was the Gissar earthquake (1989) in Tajikistan when the earthquake of rather moderate intensity (M=5.2; H=5-7 km; I=7 - MSK scale) was triggered several landslides and mudslides connected with liquefaction of wetted loess and can cause a large number of human victims. In the pre 20 years steady irrigation of the slope area occurred for cotton field. This moistening has increase and the water content of the soil to wet 24-28%, up to a depth of 20-30 m that increased the vulnerability of this territory. The interactions between different natural hazards, include triggered, especially earthquakes, landslides, collapses, liquefaction in loess soil with taking account of anthropogenic hazard influence was investigate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tecto..36.1275B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tecto..36.1275B"><span>How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei</p> <p>2017-07-01</p> <p>Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH21A0154K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH21A0154K"><span>Seismic Hazard Analysis for Armenia and its Surrounding Areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, E.; Shen-Tu, B.; Mahdyiar, M.; Karakhanyan, A.; Pagani, M.; Weatherill, G.; Gee, R. C.</p> <p>2017-12-01</p> <p>The Republic of Armenia is located within the central part of a large, 800 km wide, intracontinental collision zone between the Arabian and Eurasian plates. Active deformation occurs along numerous structures in the form of faulting, folding, and volcanism distributed throughout the entire zone from the Bitlis-Zargos suture belt to the Greater Caucasus Mountains and between the relatively rigid Back Sea and Caspian Sea blocks without any single structure that can be claimed as predominant. In recent years, significant work has been done on mapping active faults, compiling and reviewing historic and paleoseismological studies in the region, especially in Armenia; these recent research contributions have greatly improved our understanding of the seismogenic sources and their characteristics. In this study we performed a seismic hazard analysis for Armenia and its surrounding areas using the latest detailed geological and paleoseismological information on active faults, strain rates estimated from kinematic modeling of GPS data and all available historic earthquake data. The seismic source model uses a combination of characteristic earthquake and gridded seismicity models to take advantage of the detailed knowledge of the known faults while acknowledging the distributed deformation and regional tectonic environment of the collision zone. In addition, the fault model considers earthquake ruptures that include single and multi-segment or fault rupture scenarios with earthquakes that can rupture any part of a multiple segment fault zone. The ground motion model uses a set of ground motion prediction equations (GMPE) selected from a pool of GMPEs based on the assessment of each GMPE against the available strong motion data in the region. The hazard is computed in the GEM's OpenQuake engine. We will present final hazard results and discuss the uncertainties associated with various input data and their impact on the hazard at various locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614015T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614015T"><span>Analysis of post-earthquake landslide activity and geo-environmental effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Chenxiao; van Westen, Cees; Jetten, Victor</p> <p>2014-05-01</p> <p>Large earthquakes can cause huge losses to human society, due to ground shaking, fault rupture and due to the high density of co-seismic landslides that can be triggered in mountainous areas. In areas that have been affected by such large earthquakes, the threat of landslides continues also after the earthquake, as the co-seismic landslides may be reactivated by high intensity rainfall events. Earthquakes create Huge amount of landslide materials remain on the slopes, leading to a high frequency of landslides and debris flows after earthquakes which threaten lives and create great difficulties in post-seismic reconstruction in the earthquake-hit regions. Without critical information such as the frequency and magnitude of landslides after a major earthquake, reconstruction planning and hazard mitigation works appear to be difficult. The area hit by Mw 7.9 Wenchuan earthquake in 2008, Sichuan province, China, shows some typical examples of bad reconstruction planning due to lack of information: huge debris flows destroyed several re-constructed settlements. This research aim to analyze the decay in post-seismic landslide activity in areas that have been hit by a major earthquake. The areas hit by the 2008 Wenchuan earthquake will be taken a study area. The study will analyze the factors that control post-earthquake landslide activity through the quantification of the landslide volume changes well as through numerical simulation of their initiation process, to obtain a better understanding of the potential threat of post-earthquake landslide as a basis for mitigation planning. The research will make use of high-resolution stereo satellite images, UAV and Terrestrial Laser Scanning(TLS) to obtain multi-temporal DEM to monitor the change of loose sediments and post-seismic landslide activities. A debris flow initiation model that incorporates the volume of source materials, vegetation re-growth, and intensity-duration of the triggering precipitation, and that evaluates different initiation mechanisms such as erosion and landslide reactivation will be developed. The developed initiation model will be integrated with run-out model to simulate the dynamic process of post-earthquake debris flows in the study area for a future period and make a prediction about the decay of landslide activity in future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T24A..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T24A..05C"><span>Comprehensive Seismological Monitoring of Geomorphic Processes in Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chao, W. A.; Chen, C. H.</p> <p>2016-12-01</p> <p>Geomorphic processes such as hillslope mass wasting and river sediment transport are important for studying landscape dynamics. Mass movements induced from geomorphic events can generate seismic waves and be recorded by seismometers. Recent studies demonstrate that seismic monitoring techniques not only fully map the spatiotemporal patterns of geomorphic activity but also allow for exploration of the dynamic links between hillslope failures and channel processes, which may not be resolved by conventional techniques (e.g., optical remote sensing). We have recently developed a real-time landquake monitoring system (RLMS, here we use the term `landquake' to represent all hillslope failures such as rockfall, rock avalanche and landslide), which has been continuously monitoring landquake activities in Taiwan since June 2015 based on broadband seismic records, yielding source information (e.g., location, occurrence time, magnitude and mechanism) for large-sized events (http://140.112.57.117/main.html). Several seismic arrays have also been deployed over the past few years around the catchments and along the river channels in Taiwan for monitoring erosion processes at catchment scale, improving the spatiotemporal resolution in exploring the interaction between geomorphic events and specific meteorological conditions. Based on a forward model accounting for the impulsive impacts of saltating particles, we can further invert for the sediment load flux, a critical parameter in landscape evolution studies, by fitting the seismic observations only. To test the validity of the seismologically determined sediment load flux, we conduct a series of controlled dam breaking experiments that are advantageous in well constraining the spatiotemporal variations of the sediment transport. Incorporating the seismological constrains on geomorphic processes with the effects of tectonic and/or climate perturbations can provide valuable and quantitative information for more fully understanding and modeling of the dynamics of erosional mountain landscapes. Comprehensive seismic monitoring also yields important information for the evaluation, assessment and emergency response of hazardous geomorphic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S42B..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S42B..04T"><span>Tectonic Divisions Based on Gravity Data and Earthquake Distribution Characteristics in the North South Seismic Belt, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, T.; Zhang, J.; Jiang, W.</p> <p>2017-12-01</p> <p>The North South Seismic Belt is located in the middle of China, and this seismic belt can be divided into 12 tectonic zones, including the South West Yunnan (I), the Sichuan Yunnan (II), the Qiang Tang (III), the Bayan Har (IV), the East Kunlun Qaidam (V), the Qi Lian Mountain (VI), the Tarim(VII), the East Alashan (VIII), the East Sichuan (IX), the Ordos(X), the Middle Yangtze River (XI) and the Edge of Qinghai Tibet Block (XII) zone. Based on the Bouguer Gravity data calculated from the EGM2008 model, the Euler deconvolution was used to obtain the edge of tectonic zone to amend the traditional tectonic divisions. In every tectonic zone and the whole research area, the logarithm of the total energy of seismic was calculated. The Time Series Analysis (TSA) for all tectonic zones and the whole area were progressed in R, and 12 equal divisions were made (A1-3, B1-3, C1-3, D1-3) by latitude and longitude as a control group. A simple linear trend fitting of time was used, and the QQ figure was used to show the residual distribution features. Among the zones according to Gravity anomalies, I, II and XII show similar statistical characteristic, with no earthquake free year (on which year there was no earthquake in the zone), and it shows that the more seismic activity area is more similar in statistical characteristic as the large area, no matter how large the zone is or how many earthquakes are in the zone. Zone IV, V, IX, III, VII and VIII show one or several seismic free year during 1970s (IV, V and IX) and 1980s (III, VII and VIII), which may implicate the earthquake activity were low decades ago or the earthquake catalogue were not complete in these zones, or both. Zone VI, X and XI show many earthquake free years even in this decade, which means in these zones the earthquake activity were very low even if the catalogue were not complete. In the control group, the earthquake free year zone appeared random and independent of the seismic density, and in all equal divided zones with seismic free years, the seismic free years all appeared in 1970s, which only related to the incompleteness of the earthquake catalogue in the west area of China. In conclusion, the tectonic divisions based on Gravity anomalies can provide a more efficient way to add space factor in the time series analysis with specific tectonic implications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bssaonline.org/content/84/3/835.abstract','USGSPUBS'); return false;" href="http://www.bssaonline.org/content/84/3/835.abstract"><span>Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bodin, Paul; Gomberg, Joan</p> <p>1994-01-01</p> <p>This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004Tecto..23.5008F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004Tecto..23.5008F"><span>Neotectonics in the foothills of the southernmost central Andes (37°-38°S): Evidence of strike-slip displacement along the Antiñir-Copahue fault zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José</p> <p>2004-10-01</p> <p>The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T33A2607R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T33A2607R"><span>New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.</p> <p>2013-12-01</p> <p>Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017492','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017492"><span>Geophysical investigations of the tectonic boundary between East and West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>ten Brink, Uri S.; Bannister, S.; Beaudoin, B.C.; Stern, T.A.</p> <p>1993-01-01</p> <p>The Transantarctic Mountains (TAM), which separate the West Antarctic rift system from the stable shield of East Antarctica, are the largest mountains developed adjacent to a rift. The cause of uplift of mountains bordering rifts is poorly understood. One notion based on observations of troughs next to many uplifted blocks is that isostatic rebound produces a coeval uplift and subsidence. The results of an over-snow seismic experiment in Antarctica do not show evidence for a trough next to the TAM but indicate the extension of rifted mantle lithosphere under the TAM. Furthermore, stretching preceded the initiation of uplift, which suggests thermal buoyancy as the cause for uplift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.483....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.483....1W"><span>High sedimentation rates and thrust fault modulation: Insights from ocean drilling offshore the St. Elias Mountains, southern Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Worthington, Lindsay L.; Daigle, Hugh; Clary, Wesley A.; Gulick, Sean P. S.; Montelli, Aleksandr</p> <p>2018-02-01</p> <p>The southern Alaskan margin offshore the St. Elias Mountains has experienced the highest recorded offshore sediment accumulation rates globally. Combined with high uplift rates, active convergence and extensive temperate glaciation, the margin provides a superb setting for evaluating competing influences of tectonic and surface processes on orogen development. We correlate results from Integrated Ocean Drilling Program (IODP) Expedition 341 Sites U1420 and U1421 with regional seismic data to determine the spatial and temporal evolution of the Pamplona Zone fold-thrust belt that forms the offshore St. Elias deformation front on the continental shelf. Our mapping shows that the pattern of active faulting changed from distributed across the shelf to localized away from the primary glacial depocenter over ∼300-780 kyrs, following an order-of-magnitude increase in sediment accumulation rates. Simple Coulomb stress calculations show that the suppression of faulting is partially controlled by the change in sediment accumulation rates which created a differential pore pressure regime between the underlying, faulted strata and the overlying, undeformed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111298R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111298R"><span>Evaluating the potential for catastrophic fault-rupture-related hazards affecting a key hydroelectric and irrigation region in central Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rust, D.; Korjenkov, A.; Tibaldi, A.; Usmanova, M.</p> <p>2009-04-01</p> <p>The Toktogul hydroelectric and irrigation scheme is the largest in central Asia, with a reservoir containing almost 20 km3 of water behind a 230 m-high dam. Annually, the scheme generates 1200 MW of electricity that is distributed over Kyrgyzstan, Uzbekistan, Tajikistan, Kazakhstan and Russia. The scheme is vital for the economic, social and agricultural stability and development of the emerging central Asian republics it serves and, since it is no longer administered centrally as it was in Soviet times, is increasingly the focus of cross-border tensions involving competing needs for irrigation water and power supplies. Our work aims to identify and evaluate potential geo-environmental threats to this region for the benefit of stakeholders; with recommendations for measures to mitigate a range of threat scenarios, presented in a user-friendly GIS format. Most notably these scenarios involve the potential for very large magnitude earthquakes, with associated widespread slope instability, occurring on the little known Talas - Fergana fault. This structure, some 700 km long, bisects the Toktogul region within the actively (~20 mm a-1) contracting Tien Shan mountain range and exhibits geological characteristics similar to large strike-slip faults such as the San Andreas. Historical records are limited in this inaccessible mountainous region that, until Soviet times, was occupied by mainly nomadic peoples, but do not indicate recent fault rupture. This highlights the role of geological investigations in assembling a record of past catastrophic events to serve as a guide for what may be expected in the future, as well as the inherent difficulties in attempting geological forecasts to a precision that is useful on human timescales. Such forecasts in this region must also include the presence of some 23 uranium mining waste dumps within the mountain valleys, a legacy from Soviet times, as well as arsenic-rich waste dumps remaining from an earlier era of gold mining. Many of these toxic dumps are vulnerable to seismically induced landsliding, release of reservoir water and breaching of very large (up to several km3) landslide-dammed lakes within the deep mountain valleys typical of the fault zone. The May 2008 earthquake in neighboring Sichuan, in which some 30 landslide-dammed lakes were created, may be useful in refining hazard scenarios developed from the multi-pronged analysis employed in our study. This analysis involves compiling all relevant existing data, such as seismic archives held in paper format, within the project GIS. Spatial and temporal patterns exhibited by these compiled data, together with focal mechanism determinations where possible, are combined with data on the distribution and nature of geological units to provide estimates of peak ground acceleration and the likely incidence of seismically-triggered slope instability. This compilation also identifies data deficiencies to be targeted using a portable seismometer network, geophysical and geodetic surveys, InSAR and other remote sensing data; all combined with geotechnical and palaeoseismological fieldwork. Initial results from this approach confirm the ground-shaking potential of Talas-Fergana rupture events, suggest a long-term slip rate as high as 15 mm a-1, and the occurrence of the last ground-rupturing event some 4-500 years BP. The lack of significant activity since that event suggests the Talas-Fergana structure may comprise a seismic gap within the Tien-Shan, highlighting the importance of hazard scenarios in proposing mitigation measures against potentially catastrophic threats, such as extensive pollution of irrigated lands in the Fergana Valley downstream from Toktogul on which some 10 million people depend.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1341E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1341E"><span>Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eppelbaum, L. V.</p> <p>2012-04-01</p> <p>The Caucasian Mountains occupy an area of about 440,000 km2. A number of important mineral resources are concentrated there. Geophysical data on the geological structure of Caucasus can shed light on the basic principles of evolution of the Earth, the distribution of minerals and seismic activity. However, geophysical surveys under complex conditions are generally riddled by poor accessibility to certain mountainous regions, the unevenness of observation surfaces, as well as by a great variety and frequent changes of tectonic structures and geological bodies with variable physical properties. These factors either restrict geophysical surveys in difficult environments or confine the scope of useful information drawn from the results obtained. This has led to the development of special techniques in geophysical surveys, data processing and interpretation that draws heavily on the experience accumulated in the specific conditions of these mountainous regions. First applied geophysical observations in the Caucasus region - thermal measurements in boreholes - were carried out by Bazevich (1881) in the Absheron Peninsula. At the same time, start of the initial stage is usually referred to as the mid 20-s of the XX century, when the rare, but systematic geophysical observations (mainly gravity and magnetic) were begun in some Caucasian areas. Somewhat later began to apply the resistivity method. Mid 30-s is characterized by the beginning of application of borehole geophysics and seismic prospecting. The marine seismics firstly in the former Soviet Union was tested in the Caspian Sea. In general, the initial stage is characterized by slow, but steady rise (except during World War II) lasted until 1960. A basic stage (1960-1991) is characterized by very intensive employment of geophysical methods (apparently, any possible geophysical methods were tested in this region). At this time the Caucasus region is considered in the former Soviet Union as a geophysical polygon for testing different geophysical methods and methodologies in complicated environments. Airborne magnetic and gravity surveys covered all the Caucasus, regional seismic and magnetotelluric studies were used as reference profiles for deep structure investigation. Numerous effective applications of geophysical methods for searching ore, oil&gas deposits, building raw, fresh water localization, solving engineering, etc. was demonstrated. Seismological investigations (including different methods) were widely applied throughout the entire Caucasian region. Satellite geophysical examinations were successfully combined with other methods. Finally, destruction of the former Soviet Union in 1991 (beginning of the modern stage) caused a sharp common decreasing of the geophysical activity in this region. Only foreign oil-&gas companies (mainly American and England) demonstrated some industrial geophysical activity basically in the Caspian Sea. In the last few years the situation began to straighten out, especially in the field of seismology. This presentation is based of the author's experience (e.g., Eppelbaum, 1989, 1991, 2009; Eppelbaum et al., 1987; Eppelbaum and Finkelstein, 1998; Eppelbaum and Khesin, 1988, 1992, 2002, 2004, 2011, 2012; Eppelbaum and Mishne, 2011; Eppelbaum et al., 2003, 2004; Khesin et al., 1988, 1993a, 1993b, 1996, 1997; Khesin and Eppelbaum, 1986, 1994, 1997, 2007; Pilchin and Eppelbaum, 1997, 2011) and corresponding publications and reviews of other authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T33I..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T33I..06W"><span>Crust and Upper Mantle Structure of Antarctica from Rayleigh Wave Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiens, D. A.; Heeszel, D. S.; Sun, X.; Chaput, J. A.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Wilson, T. J.; Huerta, A. D.</p> <p>2012-12-01</p> <p>We combine data from three temporary arrays of seismometers (AGAP/GAMSEIS 2007-2010, ANET/POLENET 2007-2012, TAMSEIS 2001-2003) deployed across Antarctica, along with permanent stations in the region, to produce a large scale shear velocity model of the continent extending from the Gamburtsev Subglacial Mountains (GSM) in East Antarctica, across the Transantarctic Mountains (TAM) and West Antarctic Rift System (WARS) to Marie Byrd Land (MBL) in West Antarctica. Our combined dataset consists of Rayleigh wave phase and amplitude measurements from 112 stations across the study region. We first invert for 2-D Rayleigh wave phase velocities using the two-plane wave method. These results are then inverted for shear velocity structure using crustal thicknesses derived from ambient noise tomography and teleseismic receiver functions. We refine our shear velocity model by performing a Monte Carlo simulation that explores the tradeoff between crustal thickness and upper mantle seismic velocities. The resulting model is higher resolution than previous studies (~150 km resolution length) and highlights significant differences in crustal and uppermost mantle structure between East and West Antarctica in greater detail than previously possible. East Antarctica is underlain by thick crust (reaching ~55 km beneath the GSM) and fast, cratonic lithosphere. West Antarctica is defined by thinner crust and slow upper mantle velocities indicative of its more recent tectonic activity. The observed boundary in crustal thickness closely follows the TAM front. MBL is underlain by a thicker lithosphere than that observed beneath the WARS, but slow mantle velocities persist to depths greater than 200 km, indicating a 'deep seated' (i.e. deeper than the deepest resolvable features of our model) thermal source for volcanism in the region. The slowest seismic velocities at shallow depths are observed in the Terror Rift region of the Ross Sea along an arc following the TAM front, where the most recent extension has occurred, and in another region of active volcanism. The Ellsworth-Whitmore Mountains are underlain by relatively thick crust and an intermediate thickness lithosphere, consistent with its hypothesized origin as a remnant Precambrian crustal block. We also produce upper mantle viscosity models for the study region using a temperature-dependent rheology, assuming that mantle seismic anomalies are dominated by temperature variations. Initial results closely correlate with the velocity model, with viscosities beneath West Antarctica inferred to be orders of magnitude lower than beneath East Antarctica. These viscosity results have important implications for our understanding of glacial isostatic adjustment, which is of particular interest in producing models of past and future changes in the Antarctic Ice Sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021083','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021083"><span>The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ryberg, T.; Fuis, G.S.</p> <p>1998-01-01</p> <p>During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault zones, where 'fault-valve' action has been postulated. Less likely alternative explanations for this velocity reduction include the presence of magma and a change in composition to serpentinite or metagraywacke. (2) It occurs at or near the brittle-ductile transition, at least in the southern San Gabriel Mountains, a possible zone of concentrated shear. (3) A thin reflection rising from its top in the southern San Gabriel Mountains projects to the hypocenter of the 1987 M 5.9 Whittier Narrows earthquake, a blind thrust-fault earthquake with one focal plane subparallel to the reflection. Alternatively, one could argue that the bends or disruptions in the reflective zone seen at the San Gabriel and San Andreas faults are actually offsets and that the reflective zone is therefore an older feature, possibly an older fault zone. ?? 1998 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9471G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9471G"><span>Millennial strain partitioning revealed by 36Cl cosmogenic data on active bedrock fault scarps from Abruzzo, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, Laura; Roberts, Gerald; Cowie, Patience; Wedmore, Luke; McCaffrey, Ken; Shanks, Richard; Zijerveld, Leo; Phillips, Richard</p> <p>2017-04-01</p> <p>In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. Measuring earthquake slip histories on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with millennial resolution. In this presentation, we present new 36Cl data combined with historical earthquake records to document orogen-wide changes in the distribution of seismicity on millennial timescales in Abruzzo, central Italy. Seismic activity due to extensional faulting was concentrated on the northwest side of the mountain range during the historical period, or since approximately the 14th century. Seismicity is more limited on the southwest side of Abruzzo during historical times. This pattern has led some to suggest that faults on the southwest side of Abruzzo are not active, however clear fault scarps cutting Holocene-aged slopes are well preserved across the whole of the orogen. These scarps preserve an excellent record of Late Pleistocene to Holocene earthquake activity, which can be quantified using cosmogenic isotopes that track the exposure of the bedrock fault scarps. 36Cl accumulates in the fault scarps as the plane is progressively exhumed by earthquakes and the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. We utilise Bayesian modelling techniques to estimate slip histories based on the cosmogenic data. Each sampling site is carefully characterised using LiDAR and GPR to ensure that fault plane exposure is due to slip during earthquakes and not sediment transport processes. In this presentation we will focus on new data from faults located across-strike in Abruzzo. Many faults in Abruzzo demonstrate slip rate variability on millennial timescales, with relatively fast slip interspersed between quiescent periods. We show that heightened activity is co-located and spatially migrates across Abruzzo over time. We highlight the importance of understanding this dynamic fault behaviour of migrating seismic activity, and in particular how our research is relevant to the 2016 Amatrice-Vettore seismic sequence in central Italy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.S31A..14C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.S31A..14C"><span>The Junction of Hellenic and Cyprus Arcs: a Detailed Study of the Morphology and Neogene Tectonic Evolution of the Anaximander Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cranshaw, J.; Aksu, A.; Hall, J.; Cifci, G.; Dondurur, D.; Yaltirak, C.</p> <p>2009-05-01</p> <p>The Anaximander Mountains are enigmatic highs located at the complex corner that links the Cyprus and Hellenic Arcs in the eastern Mediterranean. They are made up of several different highs: Anaximander (sensu stricto), Anaxagoras and Anaximenes. Previous work had shown that rock samples from the Anaximander Mountain have affinity with rocks exposed on land nearby in southern Turkey. This had been explained by rifting of the Mountain away from Turkey. In contrast to that, our interpretation of around 1750 km of high-resolution multi-channel seismic reflection data acquired in 2001 showed that Anaximander Mountain is part of a broadly south-verging Miocene thrust system associated with relative southward motion of the Tauride Mountains in southern Turkey. Post-Miocene motion also involves thrusting but is accompanied by transpression and rotation. The 3-dimensional nature of the geology makes mapping of the linkage of structures difficult, so we collected an additional 500 km of multi-channel seismic reflection data acquired in 2007, extending our 2001 survey further southwards into the Mediterranean Ridge. These new profiles are shot in a grid oblique to that obtained in 2001, such that the new profile intersections provide a basis for better correlation of the earlier data. We are testing our earlier interpretation through processing and interpretation of these new profiles. Here, we present examples of the new profiles and give first indications of how our earlier interpretation is broadly corroborated by the new data, but with minor adjustments. Anaximenes Mountain is imaged to the south of our previously- mapped area and is characterized as a large south-verging thrust lifting pre-Messinian strata by up to 2 km in a 12-km wide pop-up structure. Internally, Anaximenes is dissected by several splays from the bounding thrusts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4904C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4904C"><span>The junction of Hellenic and Cyprus arcs: a detailed study of the morphology and Neogene tectonic evolution of the Anaximander Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cranshaw, J.; Aksu, A.; Hall, J.; Çifçi, G.; Dondurur, D.; Yaltırak, C.</p> <p>2009-04-01</p> <p>The Anaximander Mountains are enigmatic highs located at the complex corner that links the Cyprus and Hellenic Arcs in the eastern Mediterranean. They are made up of several different highs: Anaximander (sensu stricto), Anaxagoras and Anaximenes. Previous work had shown that rock samples from the Anaximander Mountain have affinity with rocks exposed on land nearby in southern Turkey. This had been explained by rifting of the Mountain away from Turkey. In contrast to that, our interpretation of around 1750 km of high-resolution multi-channel seismic reflection data acquired in 2001 showed that Anaximander Mountain is part of a broadly south-verging Miocene thrust system associated with relative southward motion of the Tauride Mountains in southern Turkey. Post-Miocene motion also involves thrusting but is accompanied by transpression and rotation. The 3-dimensional nature of the geology makes mapping of the linkage of structures difficult, so we collected an additional 500 km of multi-channel seismic reflection data acquired in 2007, extending our 2001 survey further southwards into the Mediterranean Ridge. These new profiles are shot in a grid oblique to that obtained in 2001, such that the new profile intersections provide a basis for better correlation of the earlier data. We are testing our earlier interpretation through processing and interpretation of these new profiles. Here, we present examples of the new profiles and give first indications of how our earlier interpretation is broadly corroborated by the new data, but with minor adjustments. Anaximenes Mountain is imaged to the south of our previously-mapped area and is characterized as a large south-verging thrust lifting pre-Messinian strata by up to 2 km in a 12-km wide pop-up structure. Internally, Anaximenes is dissected by several splays from the bounding thrusts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8042W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8042W"><span>Structural profile reconstructions and thermal metamorphic evolution in the slate belt of southern Hsuehshan Range in the active Taiwan mountain belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Yu; Chen, Chih-Tung; Lee, Jian-Cheng; Shyu, J. Bruce H.</p> <p>2017-04-01</p> <p>The fate of passive continental margin in collisional orogens is crucial in understanding tectonic evolution of mountain belts. The active arc-continent collision of Taiwan is considered as a model case in studying mountain building processes, and largely consists of deformed margin basement and cover series. Among the whole orogeny belt, the slate belt of the Hsuehshan Range (HR) is a prominent large-scale pop-up structural on the prowedge part of the orogen, and is composed of metamorphosed Eocene to Miocene sediments which experienced only the Neogene Taiwan orogeny after diagenesis in margin graben. Characterizing the metamorphic history of the HR is essential for reconstructing its geological evolution during the mountain building processes. However, previous studies were mostly focused on northern and central HR, structural investigation coupled with metamorphic documentation in the southern part of HR, which is the most active part of the orogeny belt, is therefore targeted in this work. Since carbonaceous material is common in pelitic protolith of HR slates, the Raman spectrum of carbonaceous material (RSCM) measuring the rock peak temperature is chosen for quantitative thermal metamorphic documentation. In this study, we reconstruct a geological structural profile in western central Taiwan across the prowedge part of the mountain belt containing the southern HR by combining the surface geological data, well log records and published seismic reflection profiles. Although most of the existing data are concentrated in the fold-and-thrust belt, they are now reinforced by new field structural measurements and RSCM samples in the southern HR. In total 27 RSCM samples were collected along 2 transects perpendicular to the average strike with a dense interval about 2 km. The results allow us to map peak temperature distribution across southern HR, and provide new constraints for structural profile reconstruction and reappraisal of the structural evolution of the HR and neighboring fold-and-thrust belt. As shown in the previous thermal metamorphic investigation, we expected that southern HR strata acquired highest temperature during its burial stage than the orogenic stage like their central HR counterparts, thus experiencing mostly retrograde metamorphism in the entire mountain building processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/883623','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/883623"><span>The March 11, 2002 Masafi, United Arab Emirates Earthquake: Insights into the Seismotectonics of the Northern Oman Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rodgers, A; Fowler, A; Al-Amri, A</p> <p>2005-04-26</p> <p>A moderate (M{approx}5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002. The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of obducted crust of the Semailmore » Ophilite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in the UAE and northern Oman.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.282..176B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.282..176B"><span>Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro</p> <p>2017-04-01</p> <p>Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the mountain front along the Sesseri, Siluk, Siku, Siang, Mingo, Sileng, Dikari, and Simen rivers. At some such junctions, landforms associated with the active right-lateral strike-slip faults are superposed over the earlier landforms formed by transverse normal faults. In addition to linear transverse features, we see evidence that the fold-thrust belt of the frontal part of the Arunachal Himalaya has also been affected by the neotectonically active NW-SE trending major fold known as the Siang antiform that again is aligned transverse to the mountain front. The folding of the HFT and MBT along this antiform has reshaped the landscape developed between its two western and eastern limbs running N-S and NW-SE, respectively. The transverse faults are parallel to the already reported deep-seated transverse seismogenic strike-slip fault. Therefore, a single take home message is that any true manifestation of the neotectonics and seismic hazard assessment in the Himalayan region must take into account the role of transverse tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916080F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916080F"><span>Near Fault Observatories: multidisciplinary research infrastructures, high resolution data and scientific products available through dedicated services implemented within the EPOS-IP project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Festa, Gaetano; Chiaraluce, Lauro; Ergintav, Semih; Bernard, Pascal; Clinton, John; Marmureanu, Alexandru; Tataru, Dragos; Vogfjord, Kristin</p> <p>2017-04-01</p> <p>Near Fault Observatories (NFOs) are innovative research infrastructures based on dense, state of the art networks of multi-parametric sensors that continuously monitor the underlying Earth instability processes over a broad time interval. They aim at understanding the physical/chemical processes responsible for earthquakes and faulting and tracking their evolution over time by enabling advancements in ground shaking prediction. EPOS-IP is aimed at contributing in creating and harmonizing data and products distributors from seven NFOs, operating on different tectonic regimes and different areas of Europe. They include plate boundary systems at South Iceland Seismic Zone, the Marmara Sea and the Corinth rift. In mountain settings, NFOs monitor the Alto Tiberina and Irpinia faults in the Apennine mountain range, the Valais region in the Alps, and the Vrancea fault in the Carpathian Mountains. They monitor diverse faulting mechanisms (strike-slip, normal and thrust), high to low angle faults, shallow and deep faults, as well as regions with fast and slow strain rate accumulation. The focus of the observatories varies, ranging from small- to large-scale seismicity and includes the role of different parameters such as fluid playing in fault initiation, the internal structure of fault systems, site effects and derived processes such as earthquake generated landslides and tsunamis. In response to their specific objectives, the NFOs operate a diverse set of monitoring instrumentation using seismic, deformation, strain, geochemical and electromagnetic equipment. Since NFO methodological approach is based on extremely dense networks and less common instruments deserving multi-parameter data description, a main goal of this group is to build inclusive and harmonised services supporting the installation over the next decade of tens of near-fault observatories monitoring active faults in different tectonic environments in Europe. The NFO Thematic Core Service (TCS) relies on external platforms and services for accessing to standard data (e.g. seismic and geodetic) and on the direct access to the e-infrastructures of individual NFOs for distribution of non standard data (e.g. strain- and tilt-meters, geochemical data, electro- magneto-telluric data) and high-level data products. To define standards for formats and metadata, the TCS actively participates into the several harmonization groups across EPOS. Two main specific services are under implementation at the TCS level. FRIDGE (EU - NFO Specific Data and Products Gateway and Virtual Laboratory) is a NFO common gateway that enables the specific data and high-level data products availability also furnishing simple visualization tools. CREW (EU - Testing Centre for Early Warning and Source characterization) is a testing facility built on real-time and offline high-resolution data, whose focus is on operating and benchmarking various existing Earthquake Early Warning (EEW) methodologies. The backbone of the testing centre is the Irpinia NFO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010712','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010712"><span>Airborne geophysical study in the pensacola mountains of antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Behrendt, John C.; Meister, L.; Henderson, J.R.</p> <p>1966-01-01</p> <p>A seismic reflection, gravity, and aeromagnetic reconnaissance was made in the Pensacola Mountains, Antarctica, during the 1965-66 austral summer. Prominent ice streams located between the Neptune and Patuxent Ranges and east of the Forrestal Range overlie channels in the rock surface 2000 meters below sea level which are probably of glacial origin. Seismic reflections show that the Filchner Ice Shelf is 1270 meters thick near its southern margin. Along the boundary between West and East Antarctica, Bouguer anomalies decrease from +60 milligals in West Antarctica to -80 milligals in East Antarctica. An abrupt change in crustal structure across this boundary is required to explain the 2 milligals per kilometer gradient. This may indicate a fault extending through the crust into the mantle. Aeromagnetic profiles delineate anomalies up to 1800 ?? associated with the basic stratiform intrusion which comprises the Dufek and Forrestal ranges. A probable minimum area of 9500 square kilometers is calculated for the intrusive body on the basis of the magnetic anomalies, making it one of the largest bodies of its type. The extension of this magnetic anomaly across a fault forming the north border of the Pensacola Mountains probably precludes transcurrent movement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17814385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17814385"><span>Airborne geophysical study in the pensacola mountains of antarctica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Behrendt, J C; Meister, L; Henderson, J R</p> <p>1966-09-16</p> <p>A seismic reflection, gravity, and aeromagnetic reconnaissance was made in the Pensacola Mountains, Antarctica, during the 1965-66 austral summer. Prominent ice streams located between the Neptune and Patuxent Ranges and east of the Forrestal Range overlie channels in the rock surface 2000 meters below sea level which are probably of glacial origin. Seismic reflections show that the Filchner Ice Shelf is 1270 meters thick near its southern margin. Along the boundary between West and East Antarctica, Bouguer anomalies decrease from +60 milligals in West Antarctica to -80 milligals in East Antarctica. An abrupt change in crustal structure across this boundary is required to explainl the 2 milligals per kilometer gradient. This may indicate a fault extending through the crust into the mantle. Aeromagnetic profiles delineate anomalies up to 1800 gamma associated with the basic stratiform intrusion which comprises the Dufek and Forrestal ranges. A probable minimum area of 9500 square kilometers is calculated for the intrusive body on the basis of the magnetic anomalies, making it one of the largest bodies of its type. The extension of this magnetic anominaly across a fault forming the north border of the Pensacola Mountains probably precludes transcurrent movement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GGG....14..902L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GGG....14..902L"><span>Upper mantle seismic structure beneath central East Antarctica from body wave tomography: Implications for the origin of the Gamburtsev Subglacial Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lloyd, Andrew J.; Nyblade, Andrew A.; Wiens, Douglas A.; Hansen, Samantha E.; Kanao, Masaki; Shore, Patrick J.; Zhao, Dapeng</p> <p>2013-04-01</p> <p>The Gamburtsev Subglacial Mountains (GSM), located near the center of East Antarctica, are the highest feature within the East Antarctic highlands and have been investigated seismically for the first time during the 2007/2008 International Polar Year by the Gamburtsev Mountains Seismic Experiment. Using data from a network of 26 broadband seismic stations and body wave tomography, the P and S wave velocity structure of the upper mantle beneath the GSM and adjacent regions has been examined. Tomographic images produced from teleseismic P and S phases reveal several large-scale, small amplitude anomalies (δVp = 1.0%, δVs = 2.0%) in the upper 250 km of the mantle. The lateral distributions of these large-scale anomalies are similar in both the P and S wave velocity models and resolution tests show that they are well resolved. Velocity anomalies indicate slower, thinner lithosphere beneath the likely Meso- or Neoproterozoic Polar Subglacial Basin and faster, thicker lithosphere beneath the likely Archean/Paleoproterozoic East Antarctic highlands. Within the region of faster, thicker lithosphere, a lower amplitude (δVp = 0.5%, δVs = 1.0%) slow to fast velocity pattern is observed beneath the western flank of the GSM, suggesting a suture between two lithospheric blocks possibly of similar age. These findings point to a Precambrian origin for the high topography of the GSM, corroborating other studies invoking a long-lived highland landscape in central East Antarctica, as opposed to uplift caused by Permian/Cretaceous rifting or Cenozoic magmatism. The longevity of the GSM makes them geologically unusual; however, plausible analogs exist, such as the 550 Ma Petermann Ranges in central Australia. Additional uplift may have occurred by the reactivation of pre-existing faults, for example, during the Carboniferous-Permian collision of Gondwana and Laurussia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..136M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..136M"><span>Crustal properties of the northern Scandinavian mountains and Fennoscandian shield from analysis of teleseismic Receiver Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mansour, Walid Ben; England, Richard W.; Fishwick, Stewart; Moorkamp, Max</p> <p>2018-04-01</p> <p>The presence of high mountains along passive margins is not unusual, as shown by their presence in several regions (Scandinavia, Greenland, East US, SW Africa, Brazil, West India and SE Australia). However, the origin of this topography is not well understood. The mountain range between the Scandinavian passive margin and the Fennoscandian shield is a good example. A simple Airy isostatic model would predict a compensating root beneath the mountains but existing seismic measurements of variations in crustal thickness do not provide evidence of a root of sufficient size to produce the necessary compensation. In order to better constrain the physical properties of the crust in northern Scandinavia two broadband seismic networks were deployed between 2007 and 2009 and between 2013 and 2014. A new map of crustal thickness has been produced from P-receiver function analysis of teleseismic data recorded at 31 seismic stations. The map shows an increase in crustal thickness from the Atlantic coast (38.7 +/- 1.8 km) to the Gulf of Bothnia (43.5 +/- 2.4 km). This gradient in thickness demonstrates that the Moho topography does not mirror the variation in surface topography in this region. Thus, classical Airy isostatic models cannot explain how the surface topography is supported. New maps showing variation in Poisson's ratio and Moho sharpness together with forward and inverse modelling provide new information about the contrasting properties of the Fennoscandian shield and crust reworked by the Caledonian orogeny. A sharp Moho transition (R > 1) and low value of Vs (3.5 +/- 0.2 km.s-1) are observed beneath the orogen. The shield is characterised by a gradual transition across the Moho (R < 1) and Vs of (3.8 +/- 0.1 km.s-1) which is more typical of average continental crust. These observations are explained by a Fennoscandian shield underplated with a thick layer of high velocity, high density material. It is proposed that this layer has been removed or reworked beneath the orogen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.T31F0893S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.T31F0893S"><span>2D Seismic Velocity Modelling in the Southeastern Romanian Carpathians and its Foreland (Vrancea Zone and Focsani Basin)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephenson, R.; Bocin, A.; Tryggvason, A.</p> <p>2003-12-01</p> <p>The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining of new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea Zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube Dalta. A high resolution 2D velocity model of the upper crust along the seismic profile has been determined from a first-arrival tomographic inversion of the DACIA-PLAN data. The shallowing of Palaeozoic-Mesozoic basement, and related structural heterogeneity within it, beneath the eastern flank of the Focsani Basin is clearly seen. Velocity heterogeneity within the Carpathian nappe belt is also evident and is indicative of internal structural complexity, including the presence of salt bodies and basement involvement in thrusting, thus favouring some current geological models over others. The presence of basement involvement implies the compressional reactivation of pre-existing basement normal faults. Members of the DACIA-PLAN/TomoSeis Working Group (see poster) should be considered as co-authors of this presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.193..394G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.193..394G"><span>Crustal and uppermost mantle S-wave velocity structure beneath the Japanese islands from seismic ambient noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Zhi; Gao, Xing; Shi, Heng; Wang, Weiming</p> <p>2013-04-01</p> <p>In this study, the crustal and uppermost mantle shear wave velocities beneath the Japanese islands have been determined by inversion from seismic ambient noise tomography using data recorded at 75 Full Range Seismograph Network of Japan broad-band seismic stations, which are uniformly distributed across the Japanese islands. By cross-correlating 2 yr of vertical component seismic ambient noise recordings, we are able to extract Rayleigh wave empirical Green's functions, which are subsequently used to measure phase velocity dispersion in the period band of 6-50 s. The dispersion data are then inverted to yield 2-D tomographic phase velocity maps and 3-D shear wave velocity models. Our results show that the velocity variations at short periods (˜10 s), or in the uppermost crust, correlate well with the major known surface geological and tectonic features. In particular, the distribution of low-velocity anomalies shows good spatial correlation with active faults, volcanoes and terrains of sediment exposure, whereas the high-velocity anomalies are mainly associated with the mountain ranges. We also observe that large upper crustal earthquakes (5.0 ≤ M ≤ 8.0, depth ≤ 25 km) mainly occurred in low-velocity anomalies or along the boundary between low- and high-velocity anomalies, suggesting that large upper crustal earthquakes do not strike randomly or uniformly; rather they are inclined to nucleate within or adjacent to low-velocity areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23819942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23819942"><span>[Earthquakes--a historical review, environmental and health effects, and health care measures].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nola, Iskra Alexandra; Doko Jelinić, Jagoda; Žuškin, Eugenija; Kratohvil, Mladen</p> <p>2013-06-01</p> <p>Earthquakes are natural disasters that can occur at any time, regardless of the location. Their frequency is higher in the Circum-Pacific and Mediterranean/Trans-Asian seismic belt. A number of sophisticated methods define their magnitude using the Richter scale and intensity using the Mercani-Cancani-Sieberg scale. Recorded data show a number of devastating earthquakes that have killed many people and changed the environment dramatically. Croatia is located in a seismically active area, which has endured a series of historical earthquakes, among which several occurred in the Zagreb area. The consequences of an earthquake depend mostly on the population density and seismic resistance of buildings in the affected area. Environmental consequences often include air, water, and soil pollution. The effects of this kind of pollution can have long-term health effects. The most dramatic health consequences result from the demolition of buildings. Therefore, quick and efficient aid depends on well-organized health professionals as well as on the readiness of the civil defence, fire department, and Mountain Rescue Service members. Good coordination among these services can save many lives Public health interventions must include effective control measures in the environment as secondary prevention methods for health problems caused by unfavourable environmental factors. The identification and control of long-term hazards can reduce chronic health effects. The reduction of earthquake-induced damages includes setting priorities in building seismically safe buildings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S43H2968T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S43H2968T"><span>Collapse and Earthquake Swarm after North Korea's 3 September 2017 Nuclear Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, D.; Yao, J.; Wen, L.</p> <p>2017-12-01</p> <p>North Korea's 3 September 2017 nuclear test was followed by a series of small seismic events, with the first one occurring about eight-and-a-half minutes after the nuclear test, two on 23 September 2017, and one on 12 October 2017. While the characteristics of these seismic events would carry crucial information about current geological state and environmental condition of the nuclear test site and help evaluate the geological and environmental safety of the test site should any future tests be performed there, the precise locations and nature of these seismic events are unknown. In this study, we collect all available seismic waveforms of these five seismic events from China Earthquake Networks Center, F-net, Hi-net, Global Seismographic Network, Japan Meteorological Agency Seismic Network, and Korea National Seismograph Network. We are able to find high-quality seismic data that constitute good azimuth coverage for high-precision determination of their relative locations and detailed analysis of their source characteristics. Our study reveals that the seismic event eight-and-a-half minutes after the nuclear test is an onsite collapse toward the nuclear test center, while the later events are an earthquake swarm occurring in similar locations. The onsite collapse calls for continued close monitoring of any leaks of radioactive materials from the nuclear test site. The occurrence of the collapse should deem the underground infrastructure beneath mountain Mantap not be used for any future nuclear tests. Given the history of the nuclear tests North Korea performed beneath this mountain, a nuclear test of a similar yield would produce collapses in an even larger scale creating an environmental catastrophe. The triggered earthquake swarm indicates that North Korea's past tests have altered the tectonic stress in the region to the extent that previously inactive tectonic faults in the region have reached their state of critical failure. Any further disturbance from a future test could generate earthquakes that may be damaging by their own force or crack the nuclear test sites of the past or the present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/26518','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/26518"><span>Seismic vulnerability analysis of bridges in mountainous states.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-09-01</p> <p>Depending on the location, highway bridges can often support considerable amounts of traffic. Due to the limitations on current earthquake forecasting techniques, a normal amount of traffic will also typically remain on a bridge when an earthquake oc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030325','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030325"><span>Temporal evolution of continental lithospheric strength in actively deforming regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thatcher, W.; Pollitz, F.F.</p> <p>2008-01-01</p> <p>It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic setting of the process being investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AREPS..32..363L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AREPS..32..363L"><span>YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, Jane C. S.</p> <p>2004-05-01</p> <p>The nation has over 40,000 metric tonnes (MT) of nuclear waste destined for disposal in a geologic repository at Yucca Mountain. In this review, we highlight some of the important geoscience issues associated with the project and place them in the context of the process by which a final decision on Yucca Mountain will be made. The issues include understanding how water could infiltrate the repository, corrode the canisters, dissolve the waste, and transport it to the biosphere during a 10,000-year compliance period in a region, the Basin and Range province, that is known for seismic and volcanic activity. Although the site is considered to be "dry," a considerable amount of water is present as pore waters and as structural water in zeolites. The geochemical environment is oxidizing, and the present repository design will maintain temperatures at greater than 100°C for thousands of years. Geoscientists in this project are challenged to make unprecedented predictions about coupled thermal, hydrologic, mechanical, and geochemical processes governing the future behavior of the repository and to conduct research in a regulatory and legal environment that requires a quantitative analysis of repository performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1137/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1137/"><span>Preliminary Earthquake Hazard Map of Afghanistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.</p> <p>2007-01-01</p> <p>Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border. Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T13E2672S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T13E2672S"><span>Pseudotachylyte: Reading the Record of Paleoseismicity in Low-Angle Normal Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, D. M.; Goodwin, L. B.; Feinberg, J. M.; Ellis, A. P.</p> <p>2012-12-01</p> <p>Whether or not low-angle normal faults (LANFs, dipping <30°) can produce earthquakes is hotly debated. Pseudotachylyte - rapidly quenched frictional melt generated during seismic failure - has been noted in several LANF sites but not extensively studied. We recently documented significant pseudotachylyte exposures in both the South Mountains and Catalina-Rincon metamorphic core complexes of Arizona. In both field areas, pseudotachylyte is located below detachment faults, where it is best exposed in fractured areas beneath chlorite breccia zones. Generation veins dip 7-24°, are locally parallel to host rock foliations, and range from 1 mm to 3 cm thick. Where subvertical exposures are available, generation and injection veins either form networks up to 1 m thick or are stacked, such that multiple veins spaced < 1m apart are exposed in zones 2 to 3 m thick. Outcrops do not permit mapping of pseudotachylytes' full lateral extent, but do allow a minimum length of 50 m oblique to strike to be estimated. The magnitude of pseudotachylyte exposure in these core complexes implies significant seismicity. A key question is whether the generation surfaces were in their present orientations when they failed seismically. To answer this, we are applying a fault paleogeometry test. The cornerstone of this test is a comparison of two paleomagnetic vectors. The first will be determined through standard paleomagnetic analyses of oriented pseudotachylyte samples. The second will represent the vector expected if no LANF rotation has occurred and will be determined through correlation of a sample's 40Ar/39Ar age with its coeval magnetic pole location. Any discrepancy between the vectors will be interpreted to represent rotation of the fault since seismicity. Anderson-Byerlee compatible slip will be supported by discrepancies requiring a seismically active dip >30°. An active dip of <30° suggests that additional factors have reduced effective stress and/or frictional resistance to allow seismicity. A third, similarly extensive zone of pseudotachylyte veins in Central Otago, New Zealand will be included with our Arizona sites in this analysis. Previous work in this location shows more than 100 veins dipping 10-30°, from 1- 3 cm thick, extending up to 200 m along strike (Barker, 2005). The Otago site emphasizes seismicity as a component of LANF development in different tectonic regions, and will allow comparison of LANF pseudotachylytes of disparate host rock and ages (Miocene in U.S. sites, Cretaceous in NZ). Preliminary data demonstrate a range in magnetic characteristics of the samples we have collected. Veins within felsic granodiorite and alaskite in the South Mountains show susceptibilities ranging from 0.48 -1.06 x 10-3 SI. These values are indistinguishable from host rock susceptibilities (0.48 - 1.32 x 10-3 SI). In contrast, Rincon pseudotachylyte has magnetic susceptibilities ranging from 29.3 to >80.0 x 10-3 SI and porphyroclastic gneiss host rock values are a considerably lower 7.44 - 8.64 x 10-3 SI. We therefore anticipate this test will only be successfully applied toward some of our samples. Our presentation will include both descriptions of pseudotachlylyte zones and networks and preliminary paleomagnetic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T41B2010N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T41B2010N"><span>Precisely relocated seismicity using 3-D seismic velocity model by double-difference tomography method and orogenic processes in central and southern Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagai, S.; Wu, Y.; Suppe, J.; Hirata, N.</p> <p>2009-12-01</p> <p>The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate and the Eurasian Plate. Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. The active and young tectonics and the associated high seismicity in Taiwan provide us with unique opportunity to explore and understand the processes in the region related to the arc-continent collision. Nagai et al. [2009] imaged eastward dipping alternate high- and low-velocity bodies at depths of 5 to 25 km from the western side of the Central Mountain Range to the eastern part of Taiwan, by double-difference tomography [Zhang and Thurber, 2003] using three temporary seismic networks with the Central Weather Bureau Seismic Network(CWBSN). These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense linear array observations; one is across central Taiwan in 2001, another is across southern Taiwan in 2005, respectively. We proposed a new orogenic model, ’Upper Crustal Stacking Model’ inferred from our tomographic images. To understand the detailed seismic structure more, we carry on relocating earthquakes more precisely in central and southern Taiwan, using three-dimensional velocity model [Nagai et al., 2009] and P- and S-wave arrival times both from the CWBSN and three temporary networks. We use the double-difference tomography method to improve relative and absolute location accuracy simultaneously. The relocated seismicity is concentrated and limited along the parts of boundaries between low- and high-velocity bodies. Especially, earthquakes occurred beneath the Eastern Central Range, triggered by 1999 Chi-Chi earthquake, delineate subsurface structural boundaries, compared with profiles of estimated seismic velocity. The relocated catalog and 3-D seismic velocity model give us some constraints to reconstruct the orogenic model in Taiwan. We show these relocated seismicity with P- and S-wave velocity profiles, with focal mechanisms [e.g. Wu et al., 2008] and spatio-temporal variation, in central and southern Taiwan and discuss tectonic processes in Taiwan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.449...48G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.449...48G"><span>Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol</p> <p>2016-09-01</p> <p>The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly above the imaged LVZs, suggesting that these anomalies are also the source of Cenozoic volcanic rocks throughout the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T13A2670L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T13A2670L"><span>Reexaming Owens Valley: Partitioning of Discrete and Distributed Transtension, Structural Controls on Magmatism, and Seismic Potential within an Active Rift Zone, Eastern California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, D. A.; Haproff, P. J.; Yin, A.</p> <p>2016-12-01</p> <p>Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51C2890W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51C2890W"><span>Offshore Tectonics of the St. Elias Mountains: Insights from Ocean Drilling and Seismic Stratigraphy on the Yakutat Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Worthington, L. L.; Gulick, S. P. S.; Montelli, A.; Jaeger, J. M.; Zellers, S.; Walczak, M. H.; Mix, A. C.</p> <p>2015-12-01</p> <p>Ongoing collision of the Yakutat (YAK) microplate with North America (NA) in southern Alaska has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), much of which is younger than 0.3 Ma. Age models within the trough indicated that initiation of active deformation away from the Bering Trough depocenter likely occurred since 0.3 Ma, suggesting that possible tectonic reorganization due to mass redistribution by glacial processes can occur at time scales on the order of 100kyr-1Myr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.717....1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.717....1Y"><span>Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda</p> <p>2017-10-01</p> <p>We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the far-field effects of the India-Eurasian Collision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI31A0394W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI31A0394W"><span>Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, S.; Yang, Y.; Wang, K.</p> <p>2017-12-01</p> <p>The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13G..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13G..03C"><span>Magmatism and underplating, a broadband seismic perspective on the Proterozoic tectonics of the Great Falls and Snowbird Tectonic Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Y.; Gu, Y. J.; Dokht, R.; Wang, R.</p> <p>2017-12-01</p> <p>The crustal and lithospheric structures beneath the Western Canada Sedimentary Basin (WCSB) and northern Montana contain vital records of the Precambrian tectonic development of Laurentia. In this study, we analyze the broadband seismic data recorded by the USArray and the most complete set of regional seismic networks to date near the WCSB. We adopt an integrated approach to investigate crustal structure and history, based primarily on P-to-S receiver functions but incorporate results from noise correlation functions, finite-frequency tomography and potential field measurements. In comparison with existing regional and global models, our stacked receiver functions show considerable improvements in the resolution of both Moho depth and Vp/Vs ratio. We identify major variations in Moho depth from the WCSB to the adjacent Cordillera. The Moho deepens steeply from 40 km in the Alberta basin to 50 km beneath the foothills, following Airy isostasy, but thermal buoyancy may be responsible for a flat, shallow ( 35 km) Moho to the west of the Rocky Mountain Trench. The Moho depth also increases sharply near the Snowbird Tectonic Zone (STZ), which is consistent with earlier findings from active-source data. Multiple lower crustal phases, a high velocity shallow mantle and elevated Vp/Vs ratios along the westernmost STZ jointly suggest major Proterozoic subduction and magmatism along this collisional boundary. In northern Montana, the Moho deepens along the Great Falls Tectonic Zone (GFTZ), a proposed Proterozoic suture between the Medicine Hat Block and Wyoming craton. This transition occurs near the Little Belt Mountain, which is located south of the Great Falls Shear Zone, an extensive northeast striking fault system characterized by strong potential field gradients. Similar to the STZ, our receiver functions offer new evidence for Proterozoic underplating in the vicinity of the GFTZ. In view of similar rock ages near the collisional boundaries in all parts of northern Montana and the WCSB basement, we conjecture that the Rae, Hearn, Medicine Hat and Wyoming cratons were all active during the Paleoproterozoic era and their interactions, particularly coeval subductions and collisions, are largely responsible for the basement geology beneath western Laurentia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53C0725H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53C0725H"><span>Sediment Volume Record of Paleogene-Neogene Transantarctic Mountains Erosion and Landscape Modification, McMurdo Sound Region, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, T.; Wilson, T. J.; Henrys, S.; Speece, M. A.</p> <p>2016-12-01</p> <p>The interplay of tectonics and climate is recorded in the sedimentary strata within Victoria Land Basin, McMurdo Sound, Antarctica. Patterns of Cenozoic sedimentation are documented from interpretation of seismic reflection profiles calibrated by drillhole data in McMurdo Sound, and these patterns provide enhanced constraints on the evolution of the coupled Transantarctic Mountains-West Antarctic Rift System and on ice sheet advance/retreat through multiple climate cycles. The research focuses on shifts from warm based to cold based ice sheets through the variable climate and ice sheet conditions that characterized the early to middle Miocene. The study seeks to test the view that cold based ice sheets in arid, polar deserts minimally erode the landscape by calculating sediment volumes for critical climatic intervals. Revised seismic mapping through McMurdo Sound has been completed, utilizing the seismic stratigraphic framework first established by Fielding et al. (2006) and new reflectors marking unconformities identified from the AND-2A core (Levy et al., 2016). Reflector age constraints are derived by tying surfaces to the Cape Roberts Project, CIROS-1, and AND-2A drillholes. Seismic facies coupled with AND-2A core provenance information provides insight into depositional mechanisms and ice sheet behavior. Seismic facies transitions occur across the major unconformity surfaces in the AND-2A core. Sediment volume calculations for subareas within McMurdo Sound where reflectors are most continuous indicate substantial decreases in preserved sediment volume between the Oligocene and Early Miocene sequences, and between the early and mid-Miocene sequences. Sediment volumes, used in combination with an ice sheet model in a backstacking procedure, provide constraints on landscape modification and further understanding of how landscapes erode under warm and cold based ice sheet regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028919','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028919"><span>Lithostratigraphy and shear-wave velocity in the crystallized Topopah Spring Tuff, Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buesch, D.C.; Stokoe, K.H.; Won, K.C.; Seong, Y.J.; Jung, J.L.; Schuhen, M.D.</p> <p>2006-01-01</p> <p>Evaluation of the potential future response to seismic events of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities; rims on lithophysae and some fractures; spots (which are similar to rims but without an associated cavity or aperture); amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization; and fractures. Seismic properties, including shear-wave velocity (Vs), have been measured on 38 pieces of core, and there is a good "first order" correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger Vs values compared to samples from lithophysal zones. Some samples have Vs values that are outside the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, "large" lithophysal cavities, or "missing pieces" relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as Vs data from small-scale samples (typical and "flawed" core) to larger scale transects in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31508','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31508"><span>Earthquake fragility assessment of curved and skewed bridges in Mountain West region.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-09-01</p> <p>Reinforced concrete (RC) bridges with both skew and curvature are common in areas with : complex terrains. Skewed and/or curved bridges were found in existing studies to exhibit more : complicated seismic performance than straight bridges, however th...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP204481','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP204481"><span>Crustal Heterogeneity in the Basin and Range,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1995-08-14</p> <p>plutonism ). Seismic velocities are taken from laboratory measurements of rocks with similar compositions and are consistent with the bulk velocities... plutons intruded into Proterozoic North American crust in the Chocolate Mountains (Figure 2, upper crust) as describing the entire crustal column</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.465..126Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.465..126Q"><span>Complicated seismic anisotropy beneath south-central Mongolia and its geodynamic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiang, Zhengyang; Wu, Qingju; Li, Yonghua; Gao, Mengtan; Demberel, Sodnomsambuu; Ulzibat, Munkhuu; Sukhbaatar, Usnikh; Flesch, Lucy M.</p> <p>2017-05-01</p> <p>Two years of high-quality broadband seismic data from 69 temporary stations deployed in south-central Mongolia provide an opportunity to study the anisotropy-forming mechanisms in this area. The majority of shear wave splitting observations determined from the analysis of teleseismic SKS phase are characterized by NW-SE trending fast directions with large splitting delay times (greater than 2.0 s at six stations), which is inferred to be generated by active asthenospheric flow. The variation of the fast direction may be associated with deflection of asthenosphere around the deep Siberian cratonic keel at the base of the lithosphere. Several of the NE-SW trending fast directions with relatively small delay times observed in the Gobi Desert are parallel to the strike of the main faults and sutures, which may represent lithospheric deformation. In addition, it is inferred that small-scale hot mantle upwelling is responsible for generating a cluster of null measurements observed on the south of the Hentiy Mountain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9597P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9597P"><span>Earth sciences, GIS and geomatics for natural hazards assessment and risks mitigation: a civil protection perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara</p> <p>2010-05-01</p> <p>Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2801Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2801Z"><span>Describing earthquakes potential through mountain building processes: an example within Nepal Himalaya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zhen; Zhang, Huai; Shi, Yaolin; Mary, Baptiste; Wang, Liangshu</p> <p>2016-04-01</p> <p>How to reconcile earthquake activities, for instance, the distributions of large-great event rupture areas and the partitioning of seismic-aseismic slips on the subduction interface, into geological mountain building period is critical in seismotectonics. In this paper, we try to scope this issue within a typical and special continental collisional mountain wedge within Himalayas across the 2015 Mw7.8 Nepal Himalaya earth- quake area. Based on the Critical Coulomb Wedge (CCW) theory, we show the possible predictions of large-great earthquake rupture locations by retrieving refined evolutionary sequences with clear boundary of coulomb wedge and creeping path inferred from interseismic deformation pattern along the megathrust-Main Himalaya Thrust (MHT). Due to the well-known thrusting architecture with constraints on the distribution of main exhumation zone and of the key evolutionary nodes, reasonable and refined (with 500 yr interval) thrusting sequences are retrieved by applying sequential limit analysis (SLA). We also use an illustration method-'G' gram to localize the relative positions of each fault within the tectonic wedge. Our model results show that at the early stage, during the initial wedge accumulation period, because of the small size of mountain wedge, there's no large earthquakes happens in this period. Whereas, in the following stage, the wedge is growing outward with occasionally out-of-sequence thrusting, four thrusting clusters (thrusting 'families') are clarified on the basis of the spatio-temporal distributions in the mountain wedge. Thrust family 4, located in the hinterland of the mountain wedge, absorbed the least amount of the total convergence, with no large earthquakes occurrence in this stage, contributing to the emplacement of the Greater Himalayan Complex. The slips absorbed by the remnant three thrust families result in large-great earthquakes rupturing in the Sub-Himalaya, Lesser Himalaya, and the front of Higher Himalaya. The portion rupturing in Sub-Himalaya is mainly great Himalaya earthquakes (M>8), with enough energy to rupture the whole MHT, while the thrusting family 2 and 3 will cause mainly large earthquakes. The averaged lifespan of single segment (inclined short lines) is growing from the deformation front to the hinterland, while the occurrence frequency is just in the opposite way. Thrusting slips in family 1-3 will enhance the coulomb wedge development resulting in mountain building. Note that, all the large earthquake behaviors described in this paper is a statistical characteristic, just the tendency distribution on the MHT in one interval. Although our research domain is a section of the Nepal Himalaya, the treatment proposed in this paper has universality in continental collisional orogenic belt which having the same interseismic pattern. We also summary the differences of seismogenic zones in oceanic subduction zone (Cascadia subduction zone) and arc-continental subduction zone (Taiwan area). The different types of interseismic pattern(mechanical patterns) are the controlling factors controlling seismic potential on megathrust and thus impacting the mountain building history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1086D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1086D"><span>The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan</p> <p>2017-04-01</p> <p>The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (<50 to 80 km). The Central Taurus Mountains, which have experienced 2 km of uplift in the past 6 Ma, are underlain by the fastest shear velocities in the region (>4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (<4.2 km/s) beneath the Central Anatolian Volcanic Province. These slow velocities are interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian Volcanic Province. Finally, we present a model for the evolution of central Anatolia that brings together the volcanism, extension in the Kirsehir Block, uplift of the southern margin of central Anatolia, and our seismic images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geote..50..407G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geote..50..407G"><span>Collision processes at the northern margin of the Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gobarenko, V. S.; Murovskaya, A. V.; Yegorova, T. P.; Sheremet, E. E.</p> <p>2016-07-01</p> <p>Extended along the Crimea-Caucasus coast of the Black Sea, the Crimean Seismic Zone (CSZ) is an evidence of active tectonic processes at the junction of the Scythian Plate and Black Sea Microplate. A relocation procedure applied to weak earthquakes (mb ≤ 3) recorded by ten local stations during 1970-2013 helped to determine more accurately the parameters of hypocenters in the CSZ. The Kerch-Taman, Sudak, Yuzhnoberezhnaya (South Coast), and Sevastopol subzones have also been recognized. Generalization of the focal mechanisms of 31 strong earthquakes during 1927-2013 has demonstrated the predominance of reverse and reverse-normal-faulting deformation regimes. This ongoing tectonic process occurs under the settings of compression and transpression. The earthquake foci with strike-slip component mechanisms concentrate in the west of the CSZ. Comparison of deformation modes in the western and eastern Crimean Mountains according to tectonophysical data has demonstrated that the western part is dominated by strike-slip and normal- faulting, while in the eastern part, reverse-fault and strike-slip deformation regimes prevail. Comparison of the seismicity and gravity field and modes of deformation suggests underthusting of the East Black Sea Microplate with thin suboceanic crust under the Scythian Plate. In the Yuzhnoberezhnaya Subzone, this process is complicated by the East Black Sea Microplate frontal part wedging into the marginal part of the Scythian Plate crust. The indentation mechanism explains the strong gravity anomaly in the Crimean Mountains and their uplift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T22D..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T22D..04W"><span>High-Resolution Body Wave Tomography of the Ross Sea Embayment, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White-Gaynor, A.; Nyblade, A.; Wiens, D. A.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Stephen, R. A.</p> <p>2017-12-01</p> <p>The West Antarctic Rift System (WARS) is one of the least understood continental rift system on the planet. The 1000 km wide WARS includes the Ross Sea Embayment between Marie Byrd Land and the Transantarctic Mountains (TAMS). Active volcanism on Ross Island continues to challenge our understanding of the generally quiescent rift system. Previous regional-scale body wave tomographic investigations have identified areas of low seismic wave speeds to 200 km depth beneath Ross Island. However, the spatial extent of the low velocity structure across the entirety of the WARS remains poorly constrained due to the insufficient resolution of upper mantle structure under the Ross Sea Embayment away from Ross Island. We utilize teleseismic P wave observations recorded on the RIS/DRIS network, which consists of 34 seismometers deployed across the Ross Ice Shelf, along with data from nearby POLENET and TAMSEIS stations to better resolve this region. Relative P wave travel time residuals from 1300 teleseismic events, obtained using a multichannel cross-correlation method, have been inverted for a seismic velocity model of the upper mantle throughout the Ross Sea Embayment. Our results suggest that the low wave speed structure under Ross Island extends roughly halfway across the Embayment and south along the Transantarctic Mountains. This observation is consistent with a two-phase rifting history for the WARS in which broad, late Cretaceous rifting between Marie Byrd Land and the TAMS transitioned to more focused rifting along the TAMS margin in the Cenozoic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S51D0626X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S51D0626X"><span>3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, X.; Wen, L.</p> <p>2017-12-01</p> <p>As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.........1Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.........1Q"><span>Seismic reflection imaging with conventional and unconventional sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quiros Ugalde, Diego Alonso</p> <p></p> <p>This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T24A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T24A..03S"><span>Resolving the tectonic transition between ancestral North America and the northern Cordillera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaeffer, A. J.; Audet, P.; Lebedev, S.</p> <p>2015-12-01</p> <p>The northern Cordillera, situated in the Canadian northwest, is one of the most actively deforming regions in Canada and host to the highest earthquake activity in the country. Furthermore, it presents a largely contiguous snapshot through almost 4 Gyr of Earth's history across a zone <2000 km in linear extent. Deformation is thought to be driven by tectonic forces transferred from the Alaska-Pacific plate collision eastwards to the Cordilleran Deformation Front (CDF), where the westward edge of the Canadian Shield acts as a rigid backstop. Past studies in the southern Yukon indicate a sharp transition into the craton underlying the CDF and evidence of craton growth through shallow subduction. Further north the proximity of the craton edge to the CDF remains largely unresolved; based on studies of the southern Cordillera and Alaska, significant variations in lithospheric architecture are expected. Additionally, significant seismicity is observed further north off the Beaufort Shelf; however, its relationship to the regional stress fields and associated tectonic forcing is unclear. Despite the high seismicity levels across, detailed study of this region has been limited by insufficient coverage of seismological infrastructure, hindering resolution in past models. With the deployment of the USArray Transportable Array in Alaska over the last several years, combined with regional arrays such as the Yukon-Northwest Seismic Network (YNSN), Banks Island Seismic Network (BISN) and Mackenzie Mountains Experiment, new studies will leverage these datasets enabling more detailed imaging of the structure and seismicity across the region. Here we present a new high-resolution, vertically polarized shear speed and azimuthal model of northwestern Canada and Alaska, constrained by vertical component seismogram fits computed using the Automated Multimode Inversion of Surface, S, and multiple-S waveforms. With this new model, we aim to address key questions relating to the dynamics of the northern Cordillera, including how far west the craton edge extends at depth, in addition to the crustal thickness, velocity structure, and pattern of crustal fabrics around major faults throughout the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8478G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8478G"><span>Protective system for civil buildings and industrial structures subjected to the seismic risk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghica, D.; Grigore, A.; Ionescu, C.</p> <p>2009-04-01</p> <p>Romania is a European country with significant seismicity. The most active seismic zone is represented by the Vrancea area, located within the arch of the Carpathians Mountains. Vrancea seismicity is characterized by intermediate depth earthquakes which occur in a narrow epicentral and hypocentral region. During the last 70 years, Romania experienced four strong Vrancea earthquakes: 10 November 1940 (Mw =7.7, 160 km depth), 4 March 1977 (Mw =7.5, 100 km depth), 30 August 1986 (Mw =7.2, 140 km depth), 30 May 30 1990 (Mw =6.9, 80 km depth). The 1977 event was characterized by catastrophic consequences: 1500 casualties and collapsing of 35 high-risk buildings, mostly occurring in Bucharest. The purpose of this paper is to present a protective system designed to be installed in the civil buildings and industrial structures placed in the high seismic regions, and therefore to contribute to the mitigation of the strong earthquake effects on human society. This system proposes an efficient antiseismic protection, respectively shutting down the installations and equipments mounted in the building's infrastructure, which can become extremely dangerous in case of a major earthquake by appearing the possibility of explosions, deflagration, fires, toxic and polluting fluids leakage. The damages are strongly amplified by the fact that, simultaneously, water and electric energy lines distributions are damaged too, making impossible an efficient firemen intervention, for localizing the fire sources. Moreover, the installations of the individual heating stations which operate with open flame increase the risk of explosions inside the buildings during an earthquake. The protective system consists of a seismic switch used for activating through weak-electric-currents of the building's safety systems in case of strong earthquake, especially designed for building's elevators, as well as for moving parts of installations, which require positioning in safety place areas. The originality of this device is based of a network of minimum three seismic sensors (accelerometers), which, through a coincidence circuit, endorses the presence of a seismic shock, excluding the accidental triggers caused by local noises and mechanical shocks from neighboring area. When is activated, the system allows to automatically place in safe position the most dangerous installations located in buildings, such as elevators, heating systems using natural gas or high pressure liquid, water pipes, thermal stations, electrical power line etc. Presently, in Romania, such protective systems installed in the buildings and structures subjected to seismic risk are not available. The only possibility of protection against the potential disastrous effects of earthquakes (wounded, lost of human lives, important material losses, explosions, fires, damages of the water and electricity lines) is to adopt clear solutions for preventing and reducing as much as it is possible the dimensions of material damages and casualties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.449..127Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.449..127Y"><span>Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Xun; Lee, Cin-Ty A.</p> <p>2016-09-01</p> <p>The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from <5% to >30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027753','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027753"><span>Recent deformation along the offshore Malibu Coast, Dume, and related faults west of Point Dume, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fisher, M.A.; Langenheim, V.E.; Sorlien, C.C.; Dartnell, P.; Sliter, R.W.; Cochrane, G.R.; Wong, F.L.</p> <p>2005-01-01</p> <p>Offshore faults west of Point Dume, southern California, are part of an important regional fault system that extends for about 206 km, from near the city of Los Angeles westward along the south flank of the Santa Monica Mountains and through the northern Channel Islands. This boundary fault system separates the western Transverse Ranges, on the north, from the California Continental Borderland, on the south. Previous research showed that the fault system includes many active fault strands; consequently, the entire system is considered a serious potential earthquake hazard to nearby Los Angeles. We present an integrated analysis of multichannel seismic- and high-resolution seismic-reflection data and multibeam-bathymetric information to focus on the central part of the fault system that lies west of Point Dume. We show that some of the main offshore faults have cumulative displacements of 3-5 km, and many faults are currently active because they deform the seafloor or very shallow sediment layers. The main offshore fault is the Dume fault, a large north-dipping reverse fault. In the eastern part of the study area, this fault offsets the seafloor, showing Holocene displacement. Onshore, the Malibu Coast fault dips steeply north, is active, and shows left-oblique slip. The probable offshore extension of this fault is a large fault that dips steeply in its upper part but flattens at depth. High-resolution seismic data show that this fault deforms shallow sediment making up the Hueneme fan complex, indicating Holocene activity. A structure near Sycamore knoll strikes transversely to the main faults and could be important to the analysis of the regional earthquake hazard because the structure might form a boundary between earthquake-rupture segments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33C0884C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33C0884C"><span>Moho Depth and Geometry in the Illinois Basin Region Based on Gravity and Seismic Data from an EarthScope FlexArray Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curcio, D. D.; Pavlis, G. L.; Yang, X.; Hamburger, M. W.; Zhang, H.; Ravat, D.</p> <p>2017-12-01</p> <p>We present results from a combined analysis of seismic and gravity in the Illinois Basin region that demonstrate the presence of an unusually deep and highly variable Moho discontinuity. We construct a new, high-resolution image of the Earth's crust beneath the Illinois Basin using teleseismic P-wave receiver functions from the EarthScope OIINK (Ozarks, Illinois, INdiana, Kentucky) Flexible Array and the USArray Transportable Array. Our seismic analyses involved data from 143 OIINK stations and 80 USArray stations, using 3D plane-wave migration and common conversion point (CCP) stacking of P-to-S conversion data. Seismic interpretation has been done using the seismic exploration software package Petrel. One of the most surprising results is the anomalous depth of the Moho in this area, ranging from 41 to 63 km, with an average depth of 50 km. This thickened crust is unexpected in the Illinois Basin area, which has not been subject to convergence and mountain building processes in the last 900 Ma. This anomalously thick crust in combination with the minimal topography requires abnormally dense lower crust or unusually light upper mantle in order to retain gravitational equilibrium. Combining gravity modeling with the seismically identified Moho and a ubiquitous lower crustal boundary, we solve for the density variation of the middle and lower crust. We test the hypothesis that the anomalously thick crust and its high lower crustal layer observed in most of the central and southeastern Illinois Basin predates the formation and development of the current Illinois Basin. Post-formation tectonic activity, such as late Precambrian rifting or underplating are inferred to have modified the crustal thickness as well. The combination of high-resolution seismic data analysis and gravity modeling promises to provide additional insight into the geometry and composition of the lower crust in the Illinois Basin area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026959','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026959"><span>Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M~7.7 Manas earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.</p> <p>2004-01-01</p> <p>The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T13B3001F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T13B3001F"><span>Geophysical and petrological characterization of the lithospheric mantle in Iberia, Western Mediterranean and North Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez, M.; Torne, M.; Carballo, A.; Jiménez-Munt, I.; Verges, J.; Villasenor, A.; Garcia-Castellanos, D.; Diaz Cusi, J.</p> <p>2015-12-01</p> <p>We present a geophysical and petrological study that aims to define the lithosphere structure and the variations of the chemical composition of the lithospheric mantle along three geo-transects crossing Iberia, the westernmost Mediterranean and North Africa. The modeling is based on an integrated geophysical-petrological methodology that combines elevation, gravity, geoid, surface heat flow, seismic and geochemical data. Unlike previous models, where the density of the lithospheric mantle is only temperature-dependent, the applied methodology allows inferring seismic velocities and density in the mantle down to 400 km depth from its chemical composition through self-consistent thermodynamic calculations. The first geo-transect with a length of 1100 km runs from the NE-Iberian Peninsula to the Tell-Atlas Mountains in Algeria. The second profile crosses the entire Iberian Peninsula, from the Northern Iberian Margin to the Alboran Basin. The third runs from the Iberian Massif to the Sahara Platform crossing the Betic-Rif orogenic system through the Gibraltar Strait and the Atlas Mountains. Results are compared to available tomography models and Pn-velocity data. The obtained lithospheric structure shows large lateral variations in crustal and lithospheric mantle thicknesses and mantle chemical composition. Measured low Pn velocities in the Western Mediterranean basin can be explained either by serpentinization and/or seismic anisotropy and only partly by transient thermal effects. In the Bay of Biscay low Pn velocities are explained only by serpentinization. The negative sub-lithospheric velocity anomalies imaged by tomography models below the Iberian plate and the Atlas Mountains are interpreted in terms of high-temperature/low-density regions being responsible for the high mean topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PEPI..131..155T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PEPI..131..155T"><span>Ground truth seismic events and location capability at Degelen mountain, Kazakhstan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trabant, Chad; Thurber, Clifford; Leith, William</p> <p>2002-07-01</p> <p>We utilized nuclear explosions from the Degelen Mountain sub-region of the Semipalatinsk Test Site (STS), Kazakhstan, to assess seismic location capability directly. Excellent ground truth information for these events was either known or was estimated from maps of the Degelen Mountain adit complex. Origin times were refined for events for which absolute origin time information was unknown using catalog arrival times, our ground truth location estimates, and a time baseline provided by fixing known origin times during a joint hypocenter determination (JHD). Precise arrival time picks were determined using a waveform cross-correlation process applied to the available digital data. These data were used in a JHD analysis. We found that very accurate locations were possible when high precision, waveform cross-correlation arrival times were combined with JHD. Relocation with our full digital data set resulted in a mean mislocation of 2 km and a mean 95% confidence ellipse (CE) area of 6.6 km 2 (90% CE: 5.1 km 2), however, only 5 of the 18 computed error ellipses actually covered the associated ground truth location estimate. To test a more realistic nuclear test monitoring scenario, we applied our JHD analysis to a set of seven events (one fixed) using data only from seismic stations within 40° epicentral distance. Relocation with these data resulted in a mean mislocation of 7.4 km, with four of the 95% error ellipses covering less than 570 km 2 (90% CE: 438 km 2), and the other two covering 1730 and 8869 km 2 (90% CE: 1331 and 6822 km 2). Location uncertainties calculated using JHD often underestimated the true error, but a circular region with a radius equal to the mislocation covered less than 1000 km 2 for all events having more than three observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSMNS22A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSMNS22A..02L"><span>Nonlinear Programming shallow tomography improves deep structure imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, J.; Morozov, I.</p> <p>2004-05-01</p> <p>In areas with strong variations in topography or near-surface lithology, conventional seismic data processing methods do not produce clear images, neither shallow nor deep. The conventional reflection data processing methods do not resolve stacking velocities at very shallow depth; however, refraction tomography can be used to obtain the near-surface velocities. We use Nonlinear Programming (NP) via known velocity and depth in points from shallow boreholes and outcrop as well as derivation of slowness as constraint conditions to gain accurate shallow velocities. We apply this method to a 2D reflection survey shot across the Flame Mountain, a typical mountain with high gas reserve volume in Western China, by PetroChina and BGP in 1990s. The area has a highly rugged topography with strong variations of lithology near the surface. Over its hillside, the quality of reflection data is very good, but on the mountain ridge, reflection quality is poorer. Because of strong noise, only the first breaks are clear in the records, with velocities varying by more than 3 times in the near offsets. Because this region contains a steep cliff and an overthrust fold, it is very difficult to find a standard refraction horizon, therefore, GLI refractive statics conventional field and residual statics do not result in a good image. Our processing approach includes: 1) The Herglotz-Wiechert method to derive a starting velocity model which is better than horizontal velocity model; 2) using shallow boreholes and geological data, construct smoothness constraints on the velocity field as well as; 3) perform tomographic velocity inversion by NP algorithm; 4) by using the resulting accurate shallow velocities, derive the statics to correct the seismic data for the complex near-surface velocity variations. The result indicates that shallow refraction tomography can greatly improve deep seismic images in complex surface conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027028','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027028"><span>Structural geology of the proposed site area for a high-level radioactive waste repository, Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.</p> <p>2004-01-01</p> <p>Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of sequential formation of tectonic joints, in the context of regional paleostress studies, indicate that north- and northwest-striking joint sets formed coevally with the main faulting episode during regional east-northeast-west-southwest extension and that a prominent northeast-striking joint set formed later, probably after 9 Ma. These structural analyses contribute to the understanding of several important issues at Yucca Mountain, including potential hydrologic pathways, seismic hazards, and fault-displacement hazards. ?? 2004 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33C0837B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33C0837B"><span>Determining the Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brenn, G.; Hansen, S. E.; Park, Y.</p> <p>2016-12-01</p> <p>Stretching 3500 km across Antarctica, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth. It has been suggested that the TAMs may have served as a nucleation point for the large-scale glaciation of Antarctica, and understanding their tectonic history has important implications for ice sheet modeling. However, the origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP= -2.0%; δVS=-1.5% to -4.0%) and Terra Nova Bay (TNB; δVP=-1.5% to -2.0%; δVS= -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP=0.5% to 2%; δVS=1.5% to 4.0%). A low velocity region (δVP= -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR41E..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR41E..03S"><span>Fluid-Faulting Interactions Examined Though Massive Waveform-Based Analyses of Earthquake Swarms in Volcanic and Tectonic Settings: Mammoth Mountain, Long Valley, Lassen, and Fillmore, California Swarms, 2014-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shelly, D. R.; Ellsworth, W. L.; Prejean, S. G.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.</p> <p>2015-12-01</p> <p>Earthquake swarms, sequences of sustained seismicity, convey active subsurface processes that sometimes precede larger tectonic or volcanic episodes. Their extended activity and spatiotemporal migration can often be attributed to fluid pressure transients as migrating crustal fluids (typically water and CO2) interact with subsurface structures. Although the swarms analyzed here are interpreted to be natural in origin, the mechanisms of seismic activation likely mirror those observed for earthquakes induced by industrial fluid injection. Here, we use massive-scale waveform correlation to detect and precisely locate 3-10 times as many earthquakes as included in routine catalogs for recent (2014-2015) swarms beneath Mammoth Mountain, Long Valley Caldera, Lassen Volcanic Center, and Fillmore areas of California, USA. These enhanced catalogs, with location precision as good as a few meters, reveal signatures of fluid-faulting interactions, such as systematic migration, fault-valve behavior, and fracture mesh structures, not resolved in routine catalogs. We extend this analysis to characterize source mechanism similarity even for very small newly detected events using relative P and S polarity estimates. This information complements precise locations to define fault complexities that would otherwise be invisible. In particular, although swarms often consist of groups of highly similar events, some swarms contain a population of outliers with different slip and/or fault orientations. These events highlight the complexity of fluid-faulting interactions. Despite their different settings, the four swarms analyzed here share many similarities, including pronounced hypocenter migration suggestive of a fluid pressure trigger. This includes the July 2015 Fillmore swarm, which, unlike the others, occurred outside of an obvious volcanic zone. Nevertheless, it exhibited systematic westward and downdip migration on a ~1x1.5 km low-angle, NW-dipping reverse fault at midcrustal depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.195.1211E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.195.1211E"><span>Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erdman, Monica E.; Hacker, Bradley R.; Zandt, George; Seward, Gareth</p> <p>2013-11-01</p> <p>Crystal preferred orientations were measured in a suite of rocks from three locations in the Basin and Range using electron-backscatter diffraction. Anisotropic velocities were calculated for all rocks using single-crystal stiffnesses, the Christoffel equation and Voigt-Reuss-Hill averaging. Anisotropic velocities were calculated for all three crustal sections using these values combined with rock proportions as exposed in the field. One suite of rocks previously measured in the laboratory was used as a benchmark to evaluate the accuracy of the calculated velocities. Differences in the seismic anisotropy of the Funeral Mountains, Ruby Mountains and East Humboldt Range sections arise because of differences in mineralogy and strain, with the calc-silicate dominated Ruby Mountains section having higher P-wave speeds and V<italic>P</italic>/V<italic>S</italic> ratios because of the reduced quartz content. In all cases, the velocities show either transverse isotropy or nearly so, with a unique slow axis normal to the foliation. Velocity anisotropy can thus be used to infer the flow plane, but not the flow direction in typical crustal rocks. Areas with a subhorizontal foliation have minimal shear wave splitting for vertically propagating waves and are thus good places to measure mantle anisotropy using SKS-splitting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSeis..21.1039A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSeis..21.1039A"><span>New seismic array solution for earthquake observations and hydropower plant health monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.</p> <p>2017-09-01</p> <p>We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6747673-neogene-carbonate-exploration-play-concepts-northern-new-guinea-new-iteration-from-field-work-seismic-stratigraphy-along-northern-new-guinea-fault-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6747673-neogene-carbonate-exploration-play-concepts-northern-new-guinea-new-iteration-from-field-work-seismic-stratigraphy-along-northern-new-guinea-fault-zone"><span>Neogene carbonate exploration play concepts for Northern New Guinea: New iteration from field work and seismic stratigraphy along the Northern New Guinea Fault Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pigott, J.D.; Geiger, C.</p> <p>1994-07-01</p> <p>Recent field reconnaissance, petrography, nanno and foraminifera age determinations, and seismic stratigraphy of the Sepik and Piore subbasins of northern New Guinea reveal the existence of an extensive, tectonically unstable, Miocene-Pliocene carbonate shelf system. These findings represent the first recorded evidence of northern Papuan limestones coeval in age to those of the hydrocarbon productive Salawati Basin of Irian Jaya. Moreover, these observations also demonstrate the significance of episodic activities of the northern New Guinea fault zone upon the changes in carbonate sedimentation and diagenesis. During the Neogene, algal biosparites to foraminiferal biomicrites defined the clean portion of a mixed clastic-carbonatemore » shelf system of the northern New Guinea basin, which began at the central New Guinea cordillera and deepened northward. This shelf was interrupted by coral-coralline algal boundstone fringing- to patch-reef buildups with associated skeletal grainstones. Clean carbonates were spatially and temporally restricted to basement blocks, which episodically underwent uplift while terrigenous dilutes carbonates were more common in adjacently subsiding basement block bathymetric lows. These tectonic expressions were caused by the spatially transient nature of constraining bends of the evolving north New Guinea faults. As shown by seismic stratigraphy, by the late Miocene to the early Pliocene the uplift of the Bewani-Torricelli Mountains sagittally divided the shelf of the northern New Guinea basin into the Ramu-Sepik and the Piore basins. Continued regional sinistral transpression between the Pacific and the New Guinea leading edge of the Indo-Australian plates led to the reverse tilting of the Piore basin, the shallowing of the former distal shelf with concomitant extensive biolithite development (e.g., on subsiding volcanic islands) eventual uplifting of the Oenake Range, and en echelon faulting of the Bewani-Torricelli Mountains.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022145','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022145"><span>Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.</p> <p>2000-01-01</p> <p>The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T13C4670S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T13C4670S"><span>Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.</p> <p>2014-12-01</p> <p>The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic dislocations embedded in a kinematic block model approach, which suggest that the Montello thrust fault is weakly coupled with respect to surrounding segments of the southernmost thrust system. Future works will include the integration of InSAR data and the densification/improvement of the geodetic infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69...97B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69...97B"><span>Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito</p> <p>2017-07-01</p> <p>The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses, from 155 to 440 m. These models also show high velocity contrast at the bedrock depth which results in significant wave amplification.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........40K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........40K"><span>The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kell, Anna Marie</p> <p></p> <p>The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery documents the timing of strain transfer from the Imperial fault onto the San Andreas fault through the application of sequence stratigraphy. Evidence shows that the formation of the Salton and Mesquite sub-basins and the associated change of strain partitioning occurred within the last 20-40 k.y., essentially modifying a broader zone of transtension bounding the Imperial and San Andreas faults into two smaller zones of focused extension. The north-central Walker Lane contains a diffuse network of both strike-slip and normal faults, with some degree of strain partitioning characterized by normal faulting to the west along the eastern edge of the Sierra Nevada mountain range, and strike-slip faults to the east that define a diffuse boundary against the Basin and Range proper. A seismic study across the Mount Rose fault zone, bounding the Carson Range near Reno, Nevada, was carried out to investigate slip across a potential low-angle normal fault. A hammer seismic reflection and refraction profile combined with airborne LiDAR (light detection and ranging) imagery highlights fault scarp modification through minor slumping/landslides, providing a better understanding of the nature of slip on this fault. The northeastern margin of the Walker Lane is a region where both "Basin and Range" style normal faults and dextral strike-slip faults contribute to the northward propagation of the Walker Lane (essentially parallel to an equivalent northward propagation of the Mendocino triple junction). Near this intersection lies Pyramid Lake, bounded to the southwest by the dextral Pyramid Lake fault and to the northeast by the normal Lake Range fault. A high-resolution (sub-meter) seismic CHIRP survey collected in 2010 shows intriguing relationships into fault architecture beneath Pyramid Lake. Over 500 line-km of seismic data reveal a polarity flip in basin structure as down-to-the-east motion at the northern end of the Pyramid Lake fault rapidly gives way to down-to-the-west normal motion along the Lake Range fault. Alternating patterns of asymmetric and symmetric stratal patterns west of the Lake Range fault provides some evidence for segmentation of total slip along this large normal fault. Using dated sediment cores, slip rate for the Lake Range fault was found to be approximately 1 mm/yr during the Holocene. A complex zone of transtenstion was also observed in seismic CHIRP data in the northwest quadrant of the lake, where short, discontinuous faults hint at the development of a nascent shear zone trending to the northwest. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2703N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2703N"><span>Landslide Hazard Assessment In Mountaneous Area of Uzbekistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nyazov, R. A.; Nurtaev, B. S.</p> <p></p> <p>Because of the growth of population and caretaking of the flat areas under agricul- ture, mountain areas have been intensively mastered, producing increase of natural and technogenic processes in Uzbekistan last years. The landslides are the most dan- gerous phenomena and 7240 of them happened during last 40 years. More than 50 % has taken place in the term of 1991 - 2000 years. The situation is aggravated be- cause these regions are situated in zones, where disastrous earthquakes with M> 7 occurred in past and are expected in the future. Continuing seismic gap in Uzbek- istan during last 15-20 years and last disastrous earthquakes occurred in Afghanistan, Iran, Turkey, Greece, Taiwan and India worry us. On the basis of long-term observa- tions the criteria of landslide hazard assessment (suddenness, displacement interval, straight-line directivity, kind of residential buildings destruction) are proposed. This methodology was developed on two geographic levels: local (town scale) and regional (region scale). Detailed risk analysis performed on a local scale and extrapolated to the regional scale. Engineering-geologic parameters content of hazard estimation of landslides and mud flows also is divided into regional and local levels. Four degrees of danger of sliding processes are distinguished for compiling of small-scale, medium- and large-scale maps. Angren industrial area in Tien-Shan mountain is characterized by initial seismic intensity of 8-9 (MSC scale). Here the human technological activity (open-cast mining) has initiated the forming of the large landslide that covers more- over 8 square kilometers and corresponds to a volume of 800 billion cubic meters. In turn the landslide influence can become the source of industrial emergencies. On an example of Angren industrial mining region, the different scenarios on safety control of residing of the people and motion of transport, regulating technologies definition of field improvement and exploitation of mountain water reservoirs are proposed for prevention of dangerous geological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP13B3525M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP13B3525M"><span>Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malatesta, L. C.; Lamb, M. P.</p> <p>2014-12-01</p> <p>Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/58925','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/58925"><span>Interpretations from multichannel seismic-reflection profiles of the deep crust crossing South Carolina and Georgia from the Appalachian Mountains to the Atlantic Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Behrendt, John C.</p> <p>1985-01-01</p> <p>The Appalachian décollement does not appear continuous from the Appalachian Mountains to the coast but rather appears to extend southeastward only to the Carolina slate belt. A series of reflections on lines S4, S6, and S8 and on the COCORP line is interpreted as evidence of southeastward-dipping imbricate faults, from the Brevard fault on the northwest to beyond the Augusta fault, which marks the southeastern extent of the Eastern Piedmont fault zone. The Carolina slate belt is characterized on the four seismic profiles by a complex series of diffractions and reflections extending from less than 1 s to 8 s. These arrivals are possibly the result of layering in the metasedimentary rocks complexly disrupted by the imbricate faults. A number of Triassic (?) basins are apparent in the reflection data for the rifted Charleston terrane identified from low-gradient magnetic anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/671921','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/671921"><span>Drilling, logging, and testing information from borehole UE-25 UZ{number_sign}16, Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thamir, F.; Thordarson, W.; Kume, J.</p> <p></p> <p>Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includesmore » drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/966230','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/966230"><span>Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Adams, A; Brazier, R; Nyblade, A</p> <p>2009-02-23</p> <p>Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated withinmore » the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.303..172G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.303..172G"><span>Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo</p> <p>2018-02-01</p> <p>A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA497492','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA497492"><span>Assessing United States Policy in Iraq: The Kurdish Dilemma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-03-01</p> <p>the Mesopotamian plains and the Iranian and Anatolian plateaux.”1 Through history, this geographic location, locked in the mountains between the great...seismic data from nearly three decades ago.”23 Additionally, “ Geologists and consultants have estimated that relatively unexplored territory in the western</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918135P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918135P"><span>Geological and seismotectonic characteristics of the broader area of the October 15, 2016, earthquake (Ioannina, Greece)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlides, Spyros; Ganas, Athanasios; Chatzipetros, Alexandros; Sboras, Sotiris; Valkaniotis, Sotiris; Papathanassiou, George; Thomaidou, Efi; Georgiadis, George</p> <p>2017-04-01</p> <p>This paper examines the seismotectonic setting of the moderate earthquake of October 15, 2016, Μw=5.3 (or 5.5), in the broader area of ​​Ioannina (Epirus, Greece). In this region the problem of reviewing the geological structure with new and modern methods and techniques, in relation to the geological-seismological evidence of the recent seismic sequence, is addressed. The seismic stimulation of landslides and other soil deformations is also examined. The earthquake is interpreted as indicative of a geotectonic environment of lithospheric compression, which comprises the backbone of Pindos mountain range. It starts from southern Albania and traverses western Greece, in an almost N-S direction. This is a seismically active region with a history of strong and moderate earthquakes, such as these of 1969 (Ms=5.8), 1960 (South Albania, M> 6.5, maximum intensity VIII+) and 1967 (Arta-Ioannina, M = 6.4, maximum intensity IX). The recent earthquake is associated with a known fault zone as recorded and identified in the Greek Database of Seismogenic Sources (GreDaSS, www.gredass.unife.it). Focal mechanism data indicate that the seismic fault is reverse or high-angle thrust, striking NNW-SSE and dipping to the E. The upper part of Epirus crust (brittle), which have an estimated maximum thickness of 10 km, do not show any significant seismicity. The deeper seismicity of 10-20 km, such as this of the recent earthquake, is caused by deep crustal processes with reverse - high-angle thrust faults. We suggest that the case of this earthquake is peculiar, complex and requires careful study and attention. The precise determination of the seismogenic fault and its dimensions, although not possible to be identified by direct field observations, can be assessed through the study of seismological and geodetic data (GPS, satellite images, stress transfer), as well as its seismic behavior. Field work in the broader area, in combination with instrumental data, can contribute to determine if the activated fault is a secondary fault capable of producing earthquakes in the range of 5.0 to 5.5, such as the earthquake of October 15, 2016, or part (seismogenic segment) of a larger fault or a fault zone of a capacity comparable to the historical earthquakes in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998Tectp.290..197A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998Tectp.290..197A"><span>Crustal structure and tectonics of the Hidaka Collision Zone, Hokkaido (Japan), revealed by vibroseis seismic reflection and gravity surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arita, Kazunori; Ikawa, Takashi; Ito, Tanio; Yamamoto, Akihiko; Saito, Matsuhiko; Nishida, Yasunori; Satoh, Hideyuki; Kimura, Gaku; Watanabe, Teruo; Ikawa, Takeshi; Kuroda, Toru</p> <p>1998-05-01</p> <p>This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of ˜7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9-6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995Natur.376..675F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995Natur.376..675F"><span>Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrar, C. D.; Sorey, M. L.; Evans, W. C.; Howle, J. F.; Kerr, B. D.; Kennedy, B. M.; King, C.-Y.; Southon, J. R.</p> <p>1995-08-01</p> <p>MAMMOTH Mountain, in the western United States, is a large dacitic volcano with a long history of vo lean ism that began 200 kyr ago1 and produced phreatic eruptions as recently as 500 +/- 200 yr BP (ref. 2). Seismicity, ground deformation and changes in fumarole gas composition suggested an episode of shallow dyke intrusion in 1989-90 (refs 3, 4). Areas of dying forest and incidents of near asphyxia in confined spaces, first reported in 1990, prompted us to search for diffuse flank emissions of magmatic CO2, as have been described at Mount Etna5 and Vulcano6. Here we report the results of a soil-gas survey, begun in 1994, that revealed CO2 concentrations of 30-96% in a 30-hectare region of killed trees, from which we estimate a total CO2 flux of >=1,200 tonnes per day. The forest die-off is the most conspicuous surface manifestation of magmatic processes at Mammoth Mountain, which hosts only weak fumarolic vents and no summit activity. Although the onset of tree kill coincided with the episode of shallow dyke intrusion, the magnitude and duration of the CO2 flux indicates that a larger, deeper magma source and/or a large reservoir of high-pressure gas is being tapped.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T43B2655A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T43B2655A"><span>Constraints on the Velocity Structure and Accommodation of Shortening in the Atlas Mountains (Morocco) from Travel-Time Inversion of Refraction/Wide Angle Reflection Seismic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayarza, P.; Carbonell, R.; Palomeras, I.; Levander, A.; Teixell, A.; Zelt, C. A.; Kchikach, A.</p> <p>2013-12-01</p> <p>The Atlas Mountains are an intra-continental Cenozoic orogenic belt located at the southern edge of the diffuse plate boundary zone separating Africa and Europe. Its western part, the Moroccan Atlas, has long been under the scope of geoscientists investigating the origin of its high topography, locally exceeding 4000 m. Geological studies indicate that this mountain belt has experienced low to moderate shortening (<24% from balanced sections) and that topography and shortening do not keep a direct relationship. Forward modelling of the SIMA (Seismic Imaging of the Moroccan Atlas) refraction/wide angle reflection seismic data suggests that the total orogenic shortening, is resolved at depth with a Moho offset and a limited lower crust duplication that defines a 40 km-deep root in the northern part of the central High Atlas. However, the shortening accomodated by this feature (50 km) exceeds that estimated with surface data, and the position of the root appears to the north of the highest topography. In order to achieve a better definition of the crust/mantle boundary and to outline a tectonic model more coherent with surface data, we have used the RAYINVR code to carry out travel-time inversion of the SIMA data set. Inversion results depict a small shift to the south of the crustal root, formerly positioned in the northern part of the High Atlas, and define a thrusted mantle wedge. A limited crustal imbrication also appears in the Middle Atlas. The new velocity model implies complex ray trajectories but provides a better travel-time fit between the observed and the calculated data. Also, the amount of shortening implied by the this model is in agreement with that estimated from geological cross-sections. The final crustal thickness, as yet not exceeding 40 km in the root zone and less than 35 km elsewhere, still implies the need of a significant contribution from the mantle to support the topography of the Atlas mountains</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJEaS.107..517V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJEaS.107..517V"><span>Do moderate magnitude earthquakes generate seismically induced ground effects? The case study of the M w = 5.16, 29th December 2013 Matese earthquake (southern Apennines, Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valente, Ettore; Ascione, A.; Ciotoli, G.; Cozzolino, M.; Porfido, S.; Sciarra, A.</p> <p>2018-03-01</p> <p>Seismically induced ground effects characterize moderate to high magnitude seismic events, whereas they are not so common during seismic sequences of low to moderate magnitude. A low to moderate magnitude seismic sequence with a M w = 5.16 ± 0.07 main event occurred from December 2013 to February 2014 in the Matese ridge area, in the southern Apennines mountain chain. In the epicentral area of the M w = 5.16 main event, which happened on December 29th 2013 in the southeastern part of the Matese ridge, field surveys combined with information from local people and reports allowed the recognition of several earthquake-induced ground effects. Such ground effects include landslides, hydrological variations in local springs, gas flux, and a flame that was observed around the main shock epicentre. A coseismic rupture was identified in the SW fault scarp of a small-sized intermontane basin (Mt. Airola basin). To detect the nature of the coseismic rupture, detail scale geological and geomorphological investigations, combined with geoelectrical and soil gas prospections, were carried out. Such a multidisciplinary study, besides allowing reconstruction of the surface and subsurface architecture of the Mt. Airola basin, and suggesting the occurrence of an active fault at the SW boundary of such basin, points to the gravitational nature of the coseismic ground rupture. Based on typology and spatial distribution of the ground effects, an intensity I = VII-VIII is estimated for the M w = 5.16 earthquake according to the ESI-07 scale, which affected an area of at least 90 km2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1514001N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1514001N"><span>Morphotectonic study of the Brahmaputra basin using geoinformatics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino</p> <p>2013-04-01</p> <p>The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C53B..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C53B..01B"><span>Antarctica and Its Ice Sheet: Knowledge Gained During the IGY/IGC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bentley, C. R.</p> <p>2006-12-01</p> <p>At the end of World War II, the interior of Antarctica, with the exception of the mountains south of the Ross Ice Shelf, was still terra incognita. It was described simply as a nearly continuous high plateau. Even less was known about the ice thickness; the eminent glacial geologist, Richard Foster Flint, believed it "unlikely that the ice thickness exceeds 2000 feet except very locally; probably its average thickness is considerably less." Then in the late 1940's and early 1950's, seismic sounding in Greenland by the Expéditions Polaires Françaises and in Queen Maud Land by the Norwegian-British-Swedish Antarctic Expedition, 1949-52, revealed that, inland of the coastal mountains, the beds in both regions lie close to sea level. This led to a reappraisal of the Antarctic ice sheet, such that the prescient glaciologist, Robert P. Sharp, could predict, on the eve of the IGY, that "between 3000 and 4000 meters of ice will be found" in East Antarctica and that "work during IGY will establish an average thickness for Antarctic inland ice in excess of 1600 m." Seismic and gravity soundings on oversnow traverses conducted by eight countries during the IGY and the succeeding IGC showed Sharp to be basically correct, but there were major surprises, such as the vast Gamburtsev Subglacial Mountains, completely hidden by the ice in central East Antarctica, and the equally vast Byrd Subglacial Basin beneath much of the West Antarctic ice sheet, so deep that roughly half the ice in the region lies below sea level. There were major discoveries on and above the surface too, such as the huge size of the Filchner/Ronne Ice Shelf, and the very existence of the Ellsworth and Pensacola Mountains, the former including the highest peak on the continent. Further, the fundamental difference between the crustal structures of East and West Antarctica became clear. A summary paper published in 1960, looking primarily at West Antarctica where the main U.S. activity lay, could conclude that 1) the bed of most of the West Antarctic ice sheet (including the ice shelves) lies below sea level; 2) the Byrd Subglacial Basin represents a fundamental division between the geological provinces of Marie Byrd Land, the Ellsworth Mountains, and the Transantarctic Mountains; 3) the crust of West Antarctica is continental in character and is in approximate isostatic equilibrium, but is only about 30 km thick; and 4) the ice sheet in West Antarctica originated separately in Marie Byrd Land and the Ellsworth-Whitmore-Horlick highland, expanded and converged to form an ice shelf over the open water between them, which then thickened to form the present grounded ice sheet. Thus the background was well laid for all the advances of the last 50 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S44B..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S44B..06K"><span>Active Tectonics of Himalayan Faults/Thrusts System in Northern India on the basis of recent & Paleo earthquake Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, S.; Biswal, S.; Parija, M. P.</p> <p>2016-12-01</p> <p>The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2005/1312/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2005/1312/"><span>Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John</p> <p>2005-01-01</p> <p>The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and October; (5) an earthquake swarm at Akutan in July; and (6) low-level tremor at Okmok Caldera throughout the year (Table 2). Instrumentation and data acquisition highlights in 2004 were the installation of subnetworks on Mount Peulik and Korovin Volcano and the installation of broadband stations to augment the Katmai and Spurr subnetworks.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2004; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T52C..06A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T52C..06A"><span>Collision and subduction structure of the Izu-Bonin arc, central Japan: Recent studies from refraction/wide-angle reflection analysis and seismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.</p> <p>2009-12-01</p> <p>Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a spatial resolution, and confirmed that the final model has an enough resolution down to the depth of 5 km. We also performed a Monte Carlo uncertainty analysis (Korenaga et al, 2000) to estimate the posteriori model variance, showing that most velocities are well constrained with standard deviation of less than 0.20 km/s. Our result strongly indicates the existences of low velocity zones (< 6.0 km/s) along the tectonic boundaries and high velocity bodies (> 6.0 km/s) just beneath MM and TM, which correspond to the middle crust of the Izu-Bonin arc (Kodaira et al., 2007). In the analysis (2), hypocenters and velocity structure were simultaneously determined based on the double-difference method (Zhang and Thurber, 2003). The hypocenter distribution and final velocity structure obtained indicate several interesting features, including low velocity sedimentary layer (< 6.0 km/s) along the KMF and prominent seismic activity in the middle-lower crust (6.0-6.8 km/s) in the Izu-Bonin arc (10-25 km depth beneath TM). These results give us very important constraints for the collision process ongoing in our research area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA089710','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA089710"><span>Body and Surface Wave Modeling of Observed Seismic Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-09-01</p> <p>with a deep root of the Sierra Nevada mountains or crustal transitions along the continental oceanic boundaries. These paths can be identified by...suggests that the Adriatic Sea is a separate microplate , the Apulian plate which may move independently of the larger plates. Except for the existence of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.300...77J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.300...77J"><span>Interaction between active tectonics, erosion and diapirism, a case study from Habble-Rud in Southern Central Alborz (Northern Iran)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad</p> <p>2018-01-01</p> <p>The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036428','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036428"><span>Neotectonic inversion of the Hindu Kush-Pamir mountain region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruleman, C.A.</p> <p>2011-01-01</p> <p>The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSM.S43A..18R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSM.S43A..18R"><span>Morphotectonic aspects of active folding in Zagros Mountains (Fin, SE of Iran)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roustaei, M.; Abbasi, M.</p> <p>2008-05-01</p> <p>Active deformation in Iran, structural province of Zagros is a result of the convergence between the Arabian & Eurasian plates. The Zagros Mountains in southern Iran are one of the seismically active region & is introduced as fold-thrust belt trending NW-SE within the Arabian plate. Fin lies in Hormozgan province; the south of Iran. The vastness is surrounded by central Iran in the north, High Zagros in the North West and west, Folded Zagros in the east, Makran in the south east and Persian Gulf in the south. The study area is determined by complex structures, alternation of folding, salt diapers and faulting. The surface geology mainly comprises Neogene; Marls, Conglomerate, Sandstones (Mishan, Aghajari, Bakhtiyari formations), old fans and alluvium as syncline that Shur River cuts its north limb and passes from the middle of core .The older formations( Ghachsaran, Rzak and Guri member) folded into prominent anticlines. The fold axes mostly follow the parallel trends .Folds trending are NW-SE (Tashkend anticline), NE-SW (Khur anticline), E-W (Guniz & Handun anticline) and the trend of axes Baz fold in the main part is E-W. Hormoz salt also outcrops in the cores of many whaleback anticlines. Thus, anticlines may be cored with evaporates, even though no salt is currently exposed at the surface. Reason of selecting this area as an example referred to active seismcity. Release of energy is gradually in every events, this seismic character cusses that there was not earthquake with high magnitude in the area but it can not be a role. Answer to the question concerning relationship between folding of the crust layer and faulting at depth is more difficult. There is 2 terms to describe this relationship; "detachment folds" and" forced folds". In this paper, we try to analysis of different satellite imagery; Aster, spot and digital elevation model with high resolution (10 m) in order to detect geomorphic indicators which can help us to find a relationship between faulting and folding in the Fin area and interprate the seismcity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930042123&hterms=Eurasia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEurasia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930042123&hterms=Eurasia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEurasia"><span>Gravity field over northern Eurasia and variations in the strength of the upper mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kogan, Mikhail G.; Mcnutt, Marcia K.</p> <p>1993-01-01</p> <p>The correlation of long-wavelength gravity anomalies in northern Eurasia with seismic velocity anomalies in the upper mantle reverses in sign between western and eastern Eurasia. The difference between western and eastern Eurasia can be explained by the presence of a low-viscosity zone in the uppermost mantle beneath eastern Eurasia that is absent to the west. The location of the lateral change in viscosity corresponds with the geologic boundary between the older shields and platforms of the Baltics, Russia, and Siberia and the younger, geologically active mountain belts of eastern Asia. This relation provides evidence that differences in the strength of the upper mantle control the locus of intracontinental deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6060854','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6060854"><span>Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Severson, L.K.</p> <p>1987-05-01</p> <p>Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into themore » nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JGR...10020257S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JGR...10020257S"><span>Strain accumulation across the central Nevada seismic zone, 1973-1994</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savage, J. C.; Lisowski, M.; Svarc, J. L.; Gross, W. K.</p> <p>1995-10-01</p> <p>Five trilateration networks extending for 280 km along the central Nevada seismic zone (1915 Pleasant Valley, M = 7.3; 1954 Dixie Valley, M = 6.8; 1954 Stillwater, M = 6.8; 1954 Rainbow Mountain, M = 6.6; 1954 Fairview Peak, M = 7.1; and 1932 Cedar Mountain, M = 7.2) have been surveyed 6 times since 1973 to determine deformation along the zone. Within the precision of measurement the deformation appears uniform along the zone and is described by the principal strain rates 0.036±0.008 μstrain/yr N60°W±3° and -0.031±0.008 μstrain/yr N30°E±3°, extension reckoned positive. The observed strain rates are consistent with simple, right-lateral, tensor shear at the rate of 0.033 μstrain/yr across a shear zone striking N15°W. This central Nevada shear zone appears to be the northward continuation of the eastern California shear zone. The orientation of the strike-slip and normal-slip ruptures within the central Nevada seismic zone are consistent with principal stress axes parallel to the measured principal strain rate axes. Space-based geodetic measurements (very long baseline interferometry) indicate that the relative motion accommodated across the Basin and Range province west of Ely, Nevada, is about 9.1±1.5 mm/yr N16°W±8° (Dixon et al., 1995.) Notice that the right-lateral shear zone postulated to explain deformation in the central Nevada seismic zone is properly oriented to accommodate that relative motion. However, a 135-km effective width of the shear zone would be required to accommodate all of the 9.1 mm/yr relative motion at the strain rates observed in the Nevada seismic zone; only about 3 mm/yr of that relative motion is accommodated within the span of the trilateration networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V23F..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V23F..04S"><span>The ICDP Hotspot Scientific Drilling Program: Overview of geophysical logging and seismic imaging through basaltic and rhyolitic volcanic deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.</p> <p>2012-12-01</p> <p>The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must relate to the style of alteration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S53D4556W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S53D4556W"><span>Seismicity in Bohai Bay: New Features Revealed by Matched Filter Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, M.; Mao, S.; Li, J.; Tang, C. C.; Ning, J.</p> <p>2014-12-01</p> <p>The Bohai Bay Basin (BBB) is a subsiding trough, which is located in northern China and bounded by outcropping Precambrian crystalline basement: to the north is the Yan Mountains, to the west the Taihang Mountains, to the southeast the Luxi Uplift, and to the east the Jiaodong Uplift and the Liaodong Uplift. It is not only cut through by famous right-lateral strike-slip fault, Tancheng-Lujiang Fault (TLF), but also rifled through by Zhangjiakou-Bohai Seismic Zone (ZBSZ). Its formation/evolution has close relation with continental dynamics, and is concerned greatly by Geoscientists. Although seismicity might shed light on this issue, there is no clear image of earthquake distribution in this region as result of difficulty in seismic observation of bay area. In this paper, we employ Matched Filter Technique (MFT) to better understand the local seismicity. MFT is originally used to detect duplicated events, thus is not capable to find new events with different locations. So we make some improvement on this method. Firstly, we adopt the idea proposed by David Shelly et al. (Nature, 2007) to conduct a strong detection and a weak detection simultaneously, which enable us to find more micro-events. Then, we relocate the detected events, which provides us with more accurate spatial distribution of new events as well as the geometry of related faults, comparing with traditional MFT. Results show that the sites of some famous historical strong events are obviously the locations concentrated with microearthquakes. Accordingly, we detect/determine/discuss the accurate positions of the historical strong events in BBB employing the results of the modified MFT. Moreover, the earthquakes in BBB form many seismic zones, of which the strikes mostly near the one of TLF although they together form the east end of ZBSZ. In the 2014 AGU fall meeting, we will introduce the details of our results and their geodynamical significance. Reference: Shelly, D. R., G. C. Beroza, and S. Ide, 2007, Non-volcanic tremor and low frequency earthquake swarms, Nature, 446, 305-307, doi:10.1038/nature05666</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41D0432M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41D0432M"><span>Grain Boundary Sliding (GBS) as a Plastic Instability Leading to Coeval Pseudotachylyte Development in Mylonites: an EBSD Study of the Seismic Cycle in Brittle-Ductile Transition Rocks of the South Mountains Core Complex, Arizona, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miranda, E.; Stewart, C.</p> <p>2017-12-01</p> <p>Exposures of coeval pseudotachylytes and mylonites are relatively rare, but are crucial for understanding the seismic cycle in the vicinity of the brittle-ductile transition (BDT). We use both field observations and electron backscatter diffraction (EBSD) analysis to investigate the coeval pseudotachylytes and granodiorite mylonites exposed in the footwall of the South Mountains core complex, Arizona, to evaluate how strain is localized both prior to and during pseudotachylyte development at the BDT. In the field, we observe numerous pseudotachylyte veins oriented parallel to mylonitic foliation; the veins have synthetic shear sense with adjacent mylonites, and are < 2 cm thick, laterally discontinuous, and confined to a few m in structural thickness. EBSD analysis reveals that deformation is strongly partitioned into quartz in mylonites, where quartz shows subgrain rotation overprinted by bulging recrystallization microstructures and lattice preferred orientation (LPO) patterns indicative of dislocation creep. Foliation-parallel zones of finely recrystallized, (< 5 μm diameter) bulge-nucleated grains in the mylonites show four-grain junctions and randomized LPO patterns consistent with grain boundary sliding (GBS). Pseudotachylyte veins have elongate polycrystalline quartz survivor clasts that also exhibit GBS traits, suggesting that pseudotachylytes form within GBS zones in mylonites. We interpret the onset of GBS as a triggering mechanism for coeval pseudotachylyte development, where the accompanying decrease in effective viscosity and increase in strain rate initiated seismic slip and pseudotachylyte formation within GBS zones. Strain became localized within the pseudotachylyte until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We associate the pseudotachylyte veins and host mylonites with the coseismic and interseismic parts of the seismic cycle, respectively, where the abundance and lateral discontinuity of pseudotachylyte veins suggests repeated events. We speculate that periodic, GBS-initiated pseudotachylyte generation may correlate with intermediate slip rate seismic events in the vicinity of the BDT, suggesting that coeval pseudotachylytes and mylonites are evidence of a unique class of seismic event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.5880S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.5880S"><span>An efficient repeating signal detector to investigate earthquake swarms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skoumal, Robert J.; Brudzinski, Michael R.; Currie, Brian S.</p> <p>2016-08-01</p> <p>Repetitive earthquake swarms have been recognized as key signatures in fluid injection induced seismicity, precursors to volcanic eruptions, and slow slip events preceding megathrust earthquakes. We investigate earthquake swarms by developing a Repeating Signal Detector (RSD), a computationally efficient algorithm utilizing agglomerative clustering to identify similar waveforms buried in years of seismic recordings using a single seismometer. Instead of relying on existing earthquake catalogs of larger earthquakes, RSD identifies characteristic repetitive waveforms by rapidly identifying signals of interest above a low signal-to-noise ratio and then grouping based on spectral and time domain characteristics, resulting in dramatically shorter processing time than more exhaustive autocorrelation approaches. We investigate seismicity in four regions using RSD: (1) volcanic seismicity at Mammoth Mountain, California, (2) subduction-related seismicity in Oaxaca, Mexico, (3) induced seismicity in Central Alberta, Canada, and (4) induced seismicity in Harrison County, Ohio. In each case, RSD detects a similar or larger number of earthquakes than existing catalogs created using more time intensive methods. In Harrison County, RSD identifies 18 seismic sequences that correlate temporally and spatially to separate hydraulic fracturing operations, 15 of which were previously unreported. RSD utilizes a single seismometer for earthquake detection which enables seismicity to be quickly identified in poorly instrumented regions at the expense of relying on another method to locate the new detections. Due to the smaller computation overhead and success at distances up to ~50 km, RSD is well suited for real-time detection of low-magnitude earthquake swarms with permanent regional networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/541806','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/541806"><span>Geodesy and contemporary strain in the Yucca Mountain region, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.</p> <p></p> <p>Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small upliftsmore » also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2193H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2193H"><span>Deciphering the Tectonic History of the Northern Transantarctic Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Samantha; Graw, Jordan; Brenn, Gregory; Kenyon, Lindsey; Park, Yongcheol; DuBay, Brian</p> <p>2016-04-01</p> <p>The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range in the world, and their structure plays a key role in the climatic and tectonic development of Antarctica. While numerous uplift mechanisms for the TAMs have been proposed, there is little consensus on their origin. Over the past three years, we have operated a network of 15 broadband seismic stations within a previously unexplored portion of the northern TAMs. Using data collected by this array, we have undertaken numerous studies to further assess the crustal and lithospheric structure beneath the mountain range and to differentiate between competing origin models. Receiver functions indicate crustal thickening inland from the Ross Sea coast but comparable crustal thickness beneath the TAMs and the East Antarctic plateau, indicating little evidence for a substantial crustal root beneath the mountain range. Body and surface wave analyses show a pronounced low-velocity anomaly beneath Terror Rift, adjacent to the TAMs, and extending beneath Victoria Land in the upper mantle. Together, these findings support a thermally-buoyant source of uplift for the northern TAMs and broad flexure of the East Antarctic lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2762H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2762H"><span>Microstructures and seismic anisotropy of blueschist and eclogite from Ring Mountain and Jenner in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ha, Yoonhae; Jung, Haemyeong; Raymond, Loren</p> <p>2016-04-01</p> <p>Seismic anisotropy has been observed in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite were very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982MsT.........19C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982MsT.........19C"><span>Geophysical investigation of the Raton Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheney, R. S.</p> <p>1982-05-01</p> <p>This thesis correlates gravity, magnetic, and seismic data for the Raton Basin of Colorado and New Mexico. The gravity data suggest that the study area, and the region around it, is in isostatic equilibrium. The free air anomaly in the southern portion of the study area suggests lack of local compensation due to Quaternary volocanic rock. The volcanic rock thickness, calculated from the free air gravity data, is 180 m. The gravity data indicated a crustal thickness of about 45 km, and the crust thinned from west to east. A basement relief map was constructed from the Bouquer gravity data. Computer techniques were developed to calculate the depth to the basement surface and to plot a contour map of that surface. The Raton Basin magnetic map defined the same surface found on the basement relief map since the overlying sedimentary rocks have no magnetism; therefore, any magnetism present is caused by the basement rock. A seismic survey near capulin Mountain detected a high level of microseismicity that may be caused by adjustment along faults or dormant volcanic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1982/0478/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1982/0478/report.pdf"><span>Reconnaissance Seismic Refraction Studies at Calico Hills, Wahmonie, and Yucca Mountain, Southwest Nevada Test Site, Nye County, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pankratz, L.W.</p> <p>1982-01-01</p> <p>Reconnaissance refraction surveys consisting off a total of 5 spreads were conducted in the Calico Hills, Wahmonie and Yucca Mountain areas, southwestern Nevada Test Site (NTS). Data from Calico Hills and Wahmonie are generally high in quality; data from Yucca Mountain are for the most part low in quality. At Calico Hills and Wahmonie, special attention was focused on the possible occurrence of a major intrusive body at depth. At Calico Hills this occurrence is supported by an inferred dome-shaped velocity interface. possibly associated with the roof of an altered phase of argillite. However, if an intrusive body is present, its top must be buried deeper than 3 km or it must be so pervasively altered that its velocity is similar to that of the calcareous argillite encountered at the bottom of drill hole DE 25a-3. At Wahmonie, the seismic data suggest the occurrence of a massive lenticular unit within 60 m of the ground surface, probably consisting of argillite but possibly consisting of intensively altered intrusive rock. At Yucca Mountain, preliminary interpretations of the most reliable data suggest the occurrence of a major, steeply inclined velocity interface 500 m from the southwest end of the Yucca C spread. This interface may represent a major fault or erosional feature separating the Topopah Spring and Tiva Canyon Members with Paintbrush Tuff at depth. This interface is 800 m east of a previously mapped fault. On the basis of poor-quality data obtained at Yucca Mountain, the subsurface velocity distribution appears to be complex. For example, one spread near drill hole UE25 a-I suggests not only a much thicker section of Tiva but also that this material is down thrown in the valley. This may suggest faulting with throws exceeding 100 meters or an equivalent erosional feature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGeo...82...98C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGeo...82...98C"><span>Frontal compression along the Apennines thrust system: The Emilia 2012 example from seismicity to crustal structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna</p> <p>2014-12-01</p> <p>The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.S33B0329H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.S33B0329H"><span>Seismic component of the STEEP project, Alaska: Results of the first field season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, R. A.; Estes, S.; Stachnik, J.; Lafevers, M.; Roush, J.; Sanches, R.; Fuerst, E.; Sandru, J.; Ruppert, N.; Pavlis, G.; Bauer, M.</p> <p>2005-12-01</p> <p>STEEP (SainT Elias Erosion/tectonics Project) is a five year, multi-disciplinary study that addresses evolution of the highest coastal mountain range on Earth - the St. Elias Mountains of southern Alaska and northwestern Canada. The overall goal of the project is to develop a comprehensive model for the St. Elias orogen that accounts for the interaction of regional plate tectonic processes, structural development, and rapid erosion. The seismic component of this project includes passive seismic experiment utilizing the IRIS PASSCAL Program instruments. The total project consists of 22 new, telemetered, digital broad band seismic stations, most accessible by helicopter only. There are 12 existing short period stations in the area. Eight new stations were installed in the coastal region in June 2005. Freewave IP radios provide the telemetry to the newly installed VSAT at the Bering Glacier camp site. The challenge was to find ice-free locations, on bedrock, large enough to install equipment and still have a helicopter landing zone nearby. The stations consist of Quanterra Q330 digitizers with baler, a STS-2 seismometer installed in a vault, a Freewave IP radio, a Scala 900 Mhz antenna, twenty 100 AH rechargeable batteries with a 2400AH backup Celair primary battery, and three solar panels mounted on hut. The acquired data is recorded in real time at the Alaska Earthquake Information Center located in Fairbanks and is incorporated into the standard data processing procedures. High quality data allows for more reliable automatic earthquake detections in the region with lower magnitude threshold. In addition to tectonic earthquakes, glacial events that occur within the vast ice fields of the region are also regularly detected. Broadband instruments complement regional broadband network for more reliable calculations of the regional moment tensors.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212...42K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212...42K"><span>The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poroelasticity in the Rif and Alboran Sea region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kariche, J.; Meghraoui, M.; Timoulali, Y.; Cetin, E.; Toussaint, R.</p> <p>2018-01-01</p> <p>The 2016 January 25 earthquake (Mw 6.3) follows in sequence from the1994 May 26 earthquake (Mw 6.0) and the 2004 February 24 earthquake (Mw 6.4) in the Rif Mountains and Alboran Sea. The earlier two seismic events which were destructive took place on inland conjugate faults, and the third event occurred on an offshore fault. These earthquake sequences occurred within a period of 22 yr at ˜25 km distance and 11-16-km depth. The three events have similar strike-slip focal mechanism solutions with NNE-SSW trending left-lateral faulting for the 1994 and 2016 events and NW-SE trending right-lateral faulting for the 2004 event. This shallow seismic sequence offers the possibility (i) to model the change in Coulomb Failure Function (ΔCFF with low μ΄ including the pore pressure change) and understand fault-rupture interaction, and (ii) to analyse the effect of pore fluid on the rupture mechanism, and infer the clock-time advance. The variation of static stress change has a direct impact on the main shock, aftershocks and related positive lobes of the 2004 earthquake rupture with a stress change increase of 0.7-1.1 bar. Similarly, the 2004 main shock and aftershocks indicate loading zones with a stress change (>0.25 bar) that includes the 2016 earthquake rupture. The tectonic loading of 19-24 nanostrain yr-1 obtained from the seismicity catalogue of Morocco is comparable to the 5.0 × 1017 N.m yr-1 seismic strain release in the Rif Mountains. The seismic sequence is apparently controlled by the poroelastic properties of the seismogenic layer that depend on the undrained and drained fluid conditions. The short interseismic period between main shocks and higher rate of aftershocks with relatively large magnitudes (4 < Mw < 5.5) implies the pore-fluid physical effect in undrained and drained conditions. The stress-rate ranges between 461 and 582 Pa yr-1 with a ΔCFF of 0.2-1.1 bar. The computed clock-time advance reaches 239 ± 22 yr in agreement with the ˜10 yr delay between main shocks. The calculated static stress change of 0.9-1.3 bar, under pore-fluid stimulus added with well-constrained geodetic and seismic strain rates are critical for any seismic hazard assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4137K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4137K"><span>The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poro-elasticity in the Rif and Alboran Sea region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kariche, Jughurta; Meghraoui, Mustapha; Timoulali, Youssef; Cetin, Esra; Toussaint, Renaud</p> <p>2017-04-01</p> <p>The 25 January 2016 earthquake (Mw 6.3) follows in sequence the 26 May 1994 earthquake (Mw 6.0) and the 24 February 2004 earthquake (Mw 6.4) in the Rif Mountains and Alboran Sea. The earlier two seismic events which were destructive took place on inland conjugate faults, and the third event occurred on an offshore fault. These earthquake sequences occurred within a period of 22 years at 25 km distance and 11 - 16-km-depth. The three events have similar strike-slip focal mechanism solutions with NNE-SSW trending left lateral faulting for the 1994 and 2016 events and NW-SE trending right-lateral faulting for the 2004 event. This shallow seismic sequence offers the possibility a) to model the change in Coulomb Failure Function (CFF with μ' = 0.4 including the pore pressure change) and understand fault-rupture interaction, and b) to analyze the effect of pore-fluid on the rupture mechanism, and infer the clock-time advance. The variation of static stress change has a direct impact on the 1994 mainshock, aftershocks and related positive lobes of the 2004 earthquake rupture with a stress change increase of 0.7 - 1.1 bar. Similarly, the 2004 mainshock and aftershocks indicate loading zones with a stress change (> 0.25 bar) that includes the 2016 earthquake rupture. The tectonic loading 19 - 24 nanostrain/yr obtained from the seismicity catalogue of Morocco are comparable to the 5 1017 N.m/yr seismic strain release in the Rif Mountains. The seismic sequence is apparently controlled by the poro-elastic properties of the seismogenic layer that depend on the undrained and drained fluid condition. The short interseismic period between mainshocks and higher rate of aftershocks with relatively large magnitudes (4< Mw <5.5) implies the pore-fluid physical effect in an undrained condition. The stress-rate ranges between 461 - 582 Pa/yr with a CFF of 0.2 - 1.1 bar. The computed clock-time advance reaches 239 ±22 years in agreement with the 10 years delay between mainshocks. The calculated static stress change of 0.9 - 1.3 bar, under pore-fluid stimulus added with well-constrained geodetic and seismic strain rates are critical for any seismic hazard assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MsT..........4B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MsT..........4B"><span>Determining the upper mantle seismic structure beneath the northern Transantarctic Mountains, Antarctica, from regional P- and S-wave tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brenn, Gregory Randall</p> <p></p> <p>Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5022/p/sir20175022_p.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5022/p/sir20175022_p.pdf"><span>Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.</p> <p>2017-11-20</p> <p>Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391570-upper-crustal-structure-beneath-east-java-from-ambient-noise-tomography-preliminary-result','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391570-upper-crustal-structure-beneath-east-java-from-ambient-noise-tomography-preliminary-result"><span>Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martha, Agustya Adi; Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung; Widiyantoro, Sri</p> <p></p> <p>East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed formore » 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41D2964S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41D2964S"><span>Elemental and Mineralogical Analysis of Silt Fraction from Site U1420, IODP Expedition 341</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salinas, J. K.; Jaeger, J. M.; Penkrot, M. L.</p> <p>2016-12-01</p> <p>In southeastern Alaska, the Chugach-St. Elias Mountains - the world's highest coastal mountain range - exhibit extreme topography due to the collision and subduction of the Yakutat microplate beneath the North American plate. The St. Elias orogen is younger than 30 Ma, with mountain building having occurred during a period of enhanced glacial erosion when erosive ice streams delivered sediment into the Gulf of Alaska. Integrated Ocean Drilling Program Expedition 341 set out to investigate the relationship between mountain building and glacial dynamics in the Gulf of Alaska. Sediment cores from site U1420 were collected, within the Bering trough, just offshore of the Bering Glacier. Analysis of Bering Trough seismic profiles demonstrates an evolution from tectonically-controlled to depositionally-controlled continental margin strata formation (Worthington et al., 2010). The goal of this study is to investigate the provenance of the silt-sized fraction (15-63 μm) of U1420 sediments across this transition in seismic facies using mineralogy and elemental geochemical analyses. XRD mineralogical analysis shows consistent downhole mineralogy with minor variations in relative peak intensities. Elemental ICP-MS geochemical analysis reveal concentrations of both major and trace elements to be very well constrained, with all major (Al, Ca, Fe, Mg, and Ti) and trace elemental data (Ce, Cr, Ga, La, Rb, Sc, Sr, Th, and Y) only varying downhole by few percent/ppm. Both the consistent downhole mineralogy and elemental data suggest that the provenance of the silt-sized sediment deposited offshore has not changed since initial deposition (<0.7 Ma). Comparison with onshore bedrock geochemistry and surface samples from the modern Gulf of Alaska indicate that U1420 silt is similar in composition to modern regional sediment sources and is a mixture of the different bedrock lithologies within the modern Bering Glacier drainage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018303','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018303"><span>Late Cenozoic structure and correlations to seismicity along the Olympic-Wallowa Lineament, northwest United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mann, G.M.; Meyer, C.E.</p> <p>1993-01-01</p> <p>Late Cenozoic fault geometry, structure, paleoseismicity, and patterns of recent seismicity at two seismic zones along the Olympic-Wallowa lineament (OWL) of western Idaho, northeast Oregon, and southeast Washington indicate limited right-oblique slip displacement along multiple northwest-striking faults that constitute the lineament. The southern end of the OWL originates in the Long Valley fault system and western Snake River Plain in western Idaho. The OWL in northeast Oregon consists of a wide zone of northwest-striking faults and is associated with several large, inferred, pull-apart basins. The OWL then emerges from the Blue Mountain uplift as a much narrower zone of faults in the Columbia Plateau known as the Wallula fault zone (WFZ). Stuctural relationships in the WFZ strongly suggest that it is a right-slip extensional duplex. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7736K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7736K"><span>Upper mantle and crustal structure of southwestern Scandinavia: Results of the TopoScandiaDeep project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Köhler, A.; Balling, N.; Ebbing, J.; England, R.; Frassetto, A.; Gradmann, S.; Jacobsen, B. H.; Kvarven, T.; Maupin, V.; Medhus, A. Bondo; Mjelde, R.; Ritter, J.; Schweizer, J.; Stratford, W.; Thybo, H.; Wawerzinek, B.; Weidle, C.</p> <p>2012-04-01</p> <p>The origin of the Scandinavian mountains, located far away from any presently active plate margin, is still not well understood. In particular, it is not clear if the mountains are sustained isostatically either by crustal thickening or by light upper mantle material. Within the TopoScandiaDeep project (a collaborative research project within the ESF TOPO-EUROPE programme), we therefore analyse recently collected passive seismological and active seismic data in the southern Scandes and surrounding regions. We infer crustal and upper mantle (velocity) structures and relate them to results of gravity and temperature-composition modelling. The Moho under the high topography of southern Norway appears from controlled source seismic refraction and Receiver Functions as relatively shallow (<= 45 km) compared to the deeper conversion (>55 km) imaged beneath the low topography in Sweden and elsewhere in the Baltic Shield area outside Norway. The Receiver Function modeling as well as the active seismic results suggest that the differences in the observed Moho response may represent the transition between tectonically reworked Moho under southern Norway and an intact, cratonic crust-mantle boundary beneath the Baltic Shield. Furthermore, the 410km-discontinuity and the LAB is imaged, the latter one suggesting a lithospheric thickening in NE direction. Upper mantle P-wave and S-wave velocities in southern Sweden and southern Norway east of the Oslo Graben are correspondingly relatively high while lower velocities are observed in the southwestern part of Norway and northern Denmark. The lateral velocity gradient, interpreted as the southwestern boundary of thick Baltic Shield lithosphere, is remarkably sharp. Differences in upper mantle velocities are found at depths of 100-400 km and amount to ± 2-3%. S-to-P wave conversions, interpreted to originate from the lithosphere-asthenosphere boundary, are preliminary estimated to 90-120 km depth. Inversion of Rayleigh and Love surface wave phase velocity dispersion curves from observations of ambient noise and earthquakes yield another independent model of the crust and upper mantle structure below southern Norway. Inverted crustal velocities and Moho depths are consistent with the results of seismic refraction and receiver functions. Additionally, indications for radial crustal anisotropy of up to about 3% are found. The inferred upper mantle S-wave velocities show that the lithosphere under southern Norway has characteristics usually found under continental platforms and changes towards a cratonic-like velocity structure in the East, in agreement with the body wave tomography. All in all, these separate investigations give a very consistent and stable picture of the crust and upper mantle configuration. Integrated geophysical modeling of the results shows that a lateral transition from thinner, warmer lithosphere under southern Norway towards thicker, colder lithosphere under Sweden results in a density distribution that significantly adds to the isostatic support of Norway's high topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.9757L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.9757L"><span>Seismic Migration Imaging of the Crust and Upper Mantle Discontinuity Structure beneath Southern Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y.-S.; Kuo, B.-Y.</p> <p>2009-04-01</p> <p>Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G51B0832W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G51B0832W"><span>Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.</p> <p>2005-12-01</p> <p>The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........37S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........37S"><span>Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seelig, William George</p> <p></p> <p>The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and geometry of the NKF/SKF and NKT provide information valuable for seismic hazard analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S31B4390C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S31B4390C"><span>Using P-wave Triplications to Constrain the Mantle Transition Zone beneath Central Iranian Plateau and Surrounding Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chi, H. C.; Tseng, T. L.</p> <p>2014-12-01</p> <p>The Iranian Plateau is a tectonically complex region resulting from the continental collision between the African and Eurasian plates. The convergence of the two continents created the Zagros Mountains, the high topography southwest of Iran, and active seismicity along the Zagros-Bitlis suture. Tomographic studies in Iran reveal low seismic speeds and high attenuation of Sn wave in the uppermost mantle beneath the Iranian Plateau relative to adjacent regions. The deeper structure, however, remains curiously inconclusive. By contrast, a prominent fast seismic anomaly is found under central Tibet near depth of 600 km in the mantle transition zone (TZ), and it is speculated to be the remnant of lithosphere detached during the continental collision. We conduct a comparative study that utilizes triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath the central Iranian Plateau and surroundings. Due to the abrupt increase in seismic wave speeds and density across the 410- and 660-km discontinuities, seismic waves at epicentral distances of 15-30 degrees would form multiple arrivals and the relative times and amplitudes between them are most sensitive to the variations in seismic speeds near the TZ. We combine several broadband arrays to construct 8 seismic profiles, each about 800 km long, that mainly sample the TZ under central Iranian Plateau, Turan shield and part of South Caspian basin. Move-outs between arrivals are clear in the profiles. Relative timings suggest a slightly smaller 660-km contrast under stable Turan shield. In the next stage, it is necessary to model waveforms after the source effect being removed properly. Our preliminary tests show that the F-K method can efficiently calculate the synthetic seismograms. We will determine the 1D velocity model for each sampled sector by minimizing the overall misfits between observed and predicted waveforms. The lateral variations may be further explored by comparing adjacent sectors. The results are important for understanding the lithosphere-mantle interaction during the process of continental collision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.721...70M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.721...70M"><span>Current strain accumulation in the hinterland of the northwest Himalaya constrained by landscape analyses, basin-wide denudation rates, and low temperature thermochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morell, Kristin D.; Sandiford, Mike; Kohn, Barry; Codilean, Alexandru; Fülöp, Réka-H.; Ahmad, Talat</p> <p>2017-11-01</p> <p>Rupture associated with the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake highlighted our incomplete understanding of the structural architecture and seismic cycle processes that lead to Himalayan mountain building in Central Nepal. In this paper we investigate the style and kinematics of active mountain building in the Himalayan hinterland of Northwest India, approximately 400 km to the west of the hypocenter of the Nepal earthquake, via a combination of landscape metrics and long- (Ma) and short-term (ka) erosion rate estimates (from low temperature thermochronometry and basin-wide denudation rate estimates from 10Be concentrations). We focus our analysis on the area straddling the PT2, the physiographic transition between the Lesser and High Himalaya that has yielded important insights into the nature of hinterland deformation across much of the Himalaya. Our results from Northwest India reveal a distinctive PT2 that separates a Lesser Himalaya region with moderate relief (∼1000 m) and relatively slow erosion (<1 mm/yr) from a High Himalaya with extreme relief (∼2500 m), steep channels, and erosion rates that approach or exceed 1 mm/yr. The close spatial similarity in relative rates of long- and short-term erosion suggests that the gradient in rock uplift rates inferred from the landscape metrics across the PT2 has persisted in the same relative position since at least the past 1.5 Ma. We interpret these observations to suggest that strain accumulation in this hinterland region throughout at least the past 1.5 Ma has been accomplished both by crustal thickening via duplexing and overthrusting along transient emergent faults. Despite the >400 km distance between them, similar spatiotemporal patterns of erosion and deformation observed in Northwest India and Central Nepal suggest both regions experience similar styles of active strain accumulation and both are susceptible to large seismic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S31B2240M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S31B2240M"><span>Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menendez, H. M.; Thurber, C. H.</p> <p>2011-12-01</p> <p>Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024440','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024440"><span>Ground truth seismic events and location capability at Degelen mountain, Kazakhstan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Trabant, C.; Thurber, C.; Leith, W.</p> <p>2002-01-01</p> <p>We utilized nuclear explosions from the Degelen Mountain sub-region of the Semipalatinsk Test Site (STS), Kazakhstan, to assess seismic location capability directly. Excellent ground truth information for these events was either known or was estimated from maps of the Degelen Mountain adit complex. Origin times were refined for events for which absolute origin time information was unknown using catalog arrival times, our ground truth location estimates, and a time baseline provided by fixing known origin times during a joint hypocenter determination (JHD). Precise arrival time picks were determined using a waveform cross-correlation process applied to the available digital data. These data were used in a JHD analysis. We found that very accurate locations were possible when high precision, waveform cross-correlation arrival times were combined with JHD. Relocation with our full digital data set resulted in a mean mislocation of 2 km and a mean 95% confidence ellipse (CE) area of 6.6 km2 (90% CE: 5.1 km2), however, only 5 of the 18 computed error ellipses actually covered the associated ground truth location estimate. To test a more realistic nuclear test monitoring scenario, we applied our JHD analysis to a set of seven events (one fixed) using data only from seismic stations within 40?? epicentral distance. Relocation with these data resulted in a mean mislocation of 7.4 km, with four of the 95% error ellipses covering less than 570 km2 (90% CE: 438 km2), and the other two covering 1730 and 8869 km2 (90% CE: 1331 and 6822 km2). Location uncertainties calculated using JHD often underestimated the true error, but a circular region with a radius equal to the mislocation covered less than 1000 km2 for all events having more than three observations. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104..845T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104..845T"><span>Seismic source and structure estimation in the western Mediterranean using a sparse broadband network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thio, Hong Kie; Song, Xi; Saikia, Chandan K.; Helmberger, Donald V.; Woods, Bradley B.</p> <p>1999-01-01</p> <p>We present a study of regional earthquakes in the western Mediterranean geared toward the development of methodologies and path calibrations for source characterization using regional broadband stations. The results of this study are useful for the monitoring and discrimination of seismic events under a comprehensive test ban treaty, as well as the routine analysis of seismicity and seismic hazard using a sparse array of stations. The area consists of several contrasting geological provinces with distinct seismic properties, which complicates the modeling of seismic wave propagation. We started by analyzing surface wave group velocities throughout the region and developed a preliminary model for each of the major geological provinces. We found variations of crustal thickness ranging from 45 km under the Atlas and Betic mountains and 37 km under the Saharan shield, to 20 km for the oceanic crust of the western Mediterranean Sea, which is consistent with earlier works. Throughout most of the region, the upper mantle velocities are low which is typical for tectonically active regions. The most complex areas in terms of wave propagation are the Betic Cordillera in southern Spain and its north African counterparts, the Rif and Tell Atlas mountains, as well as the Alboran Sea, between Spain and Morocco. The complexity of the wave propagation in these regions is probably due to the sharp velocity contrasts between the oceanic and continental regions as well as the the existence of deep sedimentary basins that have a very strong influence on the surface wave dispersion. We used this preliminary regionalized velocity model to correct the surface wave source spectra for propagation effects which we then inverted for source mechanism. We found that this method, which is in use in many parts of the world, works very well, provided that data from several stations are available. In order to study the events in the region using very few broadband stations or even a single station, we developed a hybrid inversion method which combines Pnl waveforms synthesized with the traditional body wave methods, with surface waves that are computed using normal modes. This procedure facilitates the inclusion of laterally varying structure in the Green's functions for the surface waves and allows us to determine source mechanisms for many of the larger earthquakes (M > 4) throughout the region with just one station. We compared our results with those available from other methods and found that they agree quite well. The epicentral depths that we have obtained from regional waveforms are consistent with observed teleseismic depth phases, as far as they are available. We also show that the particular upper mantle structure under the region causes the various Pn and Sn phases to be impulsive, which makes them a useful tool for depth determination as well. Thus we conclude that with proper calibration of the seismic structure in the region and high-quality broadband data, it is now possible to characterize and study events in this region, both with respect to mechanism and depth, with a limited distribution of regional broadband stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711550S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711550S"><span>New insights into the kinematics and seismotectonics of the Adria-Eurasia boundary in the eastern Alps from geodetic and seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serpelloni, Enrico; Vannucci, Gianfranco; Bennett, Richard A.; Anderlini, Letizia; Cavaliere, Adriano</p> <p>2015-04-01</p> <p>In this work we describe a new kinematic and seismotectonic model of the eastern Alps, at the boundary between Italy, Austria, Slovenia and Croatia, obtained from the analysis of geodetic (GPS) and seismological data. We use a dense GPS velocity field, obtained from integration of continuous, semi-continuous and survey-mode networks (~200 GPS stations between longitude 10°E and 17°E and latitude 44.5°N and 47.5°N) and an updated seismic and focal mechanisms catalogue, with uniformly calibrated moment magnitudes from ~1000 B.C.. Improved accuracies and precisions of GPS motion rates have been obtained by filtering displacement time-series for the spatially correlated common mode errors. The eastern Alps mark the boundary between the Adriatic microplate and the Eurasian plate through a wide zone of distributed deformation. Geodetic deformation and seismic release are more localized, and characterized by larger earthquakes, along the southeastern Alps fold-and-thrust belt, which accommodates the large part of the ~N-S Adria-Eurasia convergence, and in Slovenia, where a transition from ~N-S shortening to the eastward escape of the Pannonian Basin units occurs through a complex pattern of crustal deformation. GPS velocities well describe the overall kinematics, with a transition from NNW-ward to NE-ward motion trends (in a Eurasian frame) across Slovenia and Austria, but also show small but significant crustal deformation far from the major blocks boundaries. This may suggest internal continuous deformation or a more complex configuration of interacting tectonic blocks in the eastern Alps. This second hypothesis is taken into account and tested in this work. We use seismic moment release rate maps, active faults databases and inspections of GPS velocities in different local frames to define the geometry of a kinematic block model, constrained by GPS horizontal velocities, in order to estimate blocks rotations and elastic strain at blocks bounding faults. The improved GPS velocity field highlights significant strain accumulation off the main thrust fault segments in the southeastern Alps, in regions stroke by large (M>6.5) historical earthquakes (e.g., the 1117 Verona and the 1695 Asolo events). This is evident in the Venetian plain, where GPS highlights significant shortening in areas that are tens of km southward of the south Alpine mountain front. In the Italian southeastern Alps results from the block model, constrained by a denser GPS velocity field (e.g., around the Montello fault), put new lights on i) the way the Adria-Eurasia convergence is partitioned across the southeast Alpine mountain range, ii) about interseismic coupling along the main thrust faults and iii) the way N-S shortening is transferred, through right-lateral shear across the Dinaric system, to shortening across the Sava folds in Slovenia. In the end, a comparison of the estimated seismic moment release rates and the seismic moment accumulation rates, estimated from the model velocities, provide new insights into the seismic potential of the study region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.731...35S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.731...35S"><span>Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang</p> <p>2018-04-01</p> <p>The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EEEV....9..147W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EEEV....9..147W"><span>Revision of seismic design codes corresponding to building damages in the ``5.12'' Wenchuan earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yayong</p> <p>2010-06-01</p> <p>A large number of buildings were seriously damaged or collapsed in the “5.12” Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the “Standard for classification of seismic protection of building constructions GB50223-2008” and “Code for Seismic Design of Buildings GB50011-2001.” The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and pre-cast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840057614&hterms=ductile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dductile','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840057614&hterms=ductile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dductile"><span>Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, R. B.; Bruhn, R. L.</p> <p>1984-01-01</p> <p>Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/920643','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/920643"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Biasi, Glenn; Anderson, John G</p> <p></p> <p>The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (~20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could resultmore » in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: 1. The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in ground motions analyses used in PSHA, it contributes to the extreme values of peak ground acceleration that the PSHA predicts. Also, in some areas precarious rock evidence indicates that no such accelerations have occurred. 2. The disagreement among analyses in the value of kappa. Previous reports indicate that smallest earthquakes yield kappa estimate 12-20 msec larger than average values from M3 to M4.5 aftershocks of Little Skull Mountain earthquake. 3. The source of kappa. Classically and in engineering usage, kappa is attributed largely to the upper tens or hundreds of meters at the recording site. However, borehole recordings imply that a significant contribution to kappa originates below several hundred meters depth. Also, when earthquakes are considered from a small source region, a true site effect should be common to all recordings. In fact kappa observations of LSM aftershocks to stations on Yucca Mountain and at network stations appear to vary greatly, as though much of kappa actually derives from near the seismic source. 4. The repository overburden contribution to kappa. PSHA estimated ground motions to a free surface at 300 meters depth with properties of confined rock at that depth. Rock mechanical and borehole estimates suggest that several milliseconds of the total kappa accrue between 300 meters to the surface. If estimates of kappa are small at the surface, little is left to reduce incident ground accelerations from the seismic source to the repository level. 5. The variability of kappa. In most cases parametric estimates of kappa have some range of values that fit the data equally well in a statistical sense, so errors in kappa estimates must be addressed. As noted above, kappa at a station also varies significantly for events from the same source area. 6. Are kappa values from small to moderate magnitude earthquakes appropriately applied to the larger, potentially damaging earthquakes of engineering concern? Put another way, is there a significant magnitude dependence in kappa? Questions 1 and 6 are of primary importance, but we find answers to several others in the course of our study. Data from southern Nevada are capable of resolving only some of these questions. In a global search, we identified data from the Japanese borehole accelerometer array KiKNet as most likely to address the questions of the shallow site structural contribution to kappa and the usefulness of moderate earthquake kappa estimates to predict strong ground motion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11F..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11F..06S"><span>The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.</p> <p>2017-12-01</p> <p>The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15002023','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15002023"><span>Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vincent, P</p> <p>2001-10-01</p> <p>A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreasmore » Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this magnitude (equivalent to M{sub w} = 5.3 and 5.6 events on the Superstition Hills and San Andreas Faults respectively) are hitherto unknown and have not been captured previously by any geodetic technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1997/4147/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1997/4147/report.pdf"><span>Seismic investigation of the buried horst between the Jornada del Muerto and Mesilla ground-water basins near Las Cruces, Dona Ana County, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Woodward, D.G.; Myers, R.G.</p> <p>1997-01-01</p> <p>Six seismic reflection profiles were collected in the vicinity of the Jornada Horst between Goat Mountain and Tortugas Mountain (northeast and east of Las Cruces, New Mexico) to delineate more precisely the geometry of the horst and to determine whether large, buried channels have been incised into the top of the horst. The Jornada fault zone separates the southern Jornada del Muerto ground-water basin from the Mesilla ground-water basin in the Mesilla drainage basin. The upper part of the Jornada Horst is composed of Tertiary volcanic and volcaniclastic rocks; these rocks overlie Permian sedimentary rocks. The horst, in turn, is overlain by unconsolidated sediments of the upper Santa Fe Group. Some test holes indicate that little or no ground water flows from the Jornada del Muerto ground-water basin to the Mesilla ground-water basin over some portions of the horst. However, some ground water flows through the upper Santa Fe Group deposits above some portions of the horst. Ground-water flow immediately east of the horst near U.S. Highway 70 is deflected northward in the southern Jornada del Muerto ground-water basin presumably because of the change from higher hydraulic-conductivity values of aquifer materials in the southern basin to lower hydraulic-conductivity values of materials in the horst. Incised, buried channels, if present on the horst, could be filled with alluvial material with higher hydraulic- conductivity values than those of the material in the horst. Incised, buried channels would allow ground water to readily move from the Jornada del Muerto ground-water basin to the Mesilla ground-water basin. The gross geometry of the horst--eastern extent, constraints on the western extent, and general altitude of the top--was discerned by interpretations of the seismic profiles. The presence or absence of large channels incised into the top of the horst could not be confirmed by these interpretations. However, the seismic interpretations suggest that the water table is above the top of the horst for most of its extent between U.S. Highway 70 and Tortugas Mountain and that the top of the horst is above the water table and acts as a subsurface flow barrier north of U.S. Highway 70.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13A0492D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13A0492D"><span>Crustal-scale alpine tectonic evolution of the western Pyrenees - eastern Cantabrian Mountains (N Spain) from integration of structural data, low-T thermochronology and seismic constraint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.</p> <p>2017-12-01</p> <p>The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the deepest part of the Iberian crust that may correspond to serpentinized mantle formed during the Cretaceous and later subducted. The Alpine shortening in this transect is estimated in ca. 90 km. Integration of structural, geophysical and thermochronological data, allows a more precise reconstruction of the crustal-scale Alpine cycle in the eastern BCB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51I..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51I..03R"><span>The role of the 2008 Mw 7.9 Wenchuan earthquake in topographic evolution: seismically induced landslides and the associated isostatic response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Z.; Zhang, Z.; Zhang, H.; Zheng, W.; Zhang, P. Z.</p> <p>2017-12-01</p> <p>The widely held understanding that reverse-faulting earthquakes play an important role in building mountains has been challenged by recent studies suggesting that co-seismic landslides of the 2008 Mw 7.9 Wenchuan earthquake led to a net co-seismic lowering of surface height. We use precise estimates of co-seismic landslide volumes to calculate the long-term isostatic response to landsliding during the 2008 Wenchuan earthquake. The total isostatic respond volume is 2.0 km3 which did not change much associated with thickness of Te, however, the distribution of the rebound changes associated with thickness of Te. The total co-seismic mass change could be 1.8 km3. The maximum isostatic response due to Wenchuan earthquake may have been as high as 0.9 meters in the highest Pengguan massif of the central Longmen Shan. We also find that the average net uplift is 0.16 meters within the total landslide region due to the Wenchuan earthquake. Our findings suggest that the local topographic evolution of the middle Longmen Shan region is closely related to repeated tectonic events such as the 2008 Wenchuan Earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V13G2692P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V13G2692P"><span>Long Period Earthquakes Beneath California's Young and Restless Volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.</p> <p>2013-12-01</p> <p>The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain (~320 events), and Long Valley Caldera (~40 events). LP earthquakes are notably absent under Mount Shasta. With the exception of Long Valley Caldera where LP earthquakes occur at depths of ≤5 km, hypocenters are generally between 15-25 km. The rates of LP occurrence over the last decade have been relatively steady within the study areas, except at Mammoth Mountain, where years of gradually declining LP activity abruptly increased after a swarm of unusually deep (20 km) VT earthquakes in October 2012. Epicenter locations relative to the sites of most recent volcanism vary across volcanic centers, but most LP earthquakes fall within 10 km of young vents. Source models for LP earthquakes often involve the resonance of fluid-filled cracks or nonlinear flow of fluids along irregular cracks (reviewed in Chouet and Matoza, 2013, JVGR). At mid-crustal depths the relevant fluids are likely to be low-viscosity basaltic melt and/or exsolved CO2-rich volatiles (Lassen, Clear Lake, Mammoth Mountain). In the shallow crust, however, hydrothermal waters/gases are likely involved in the generation of LP seismicity (Long Valley Caldera).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188394','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188394"><span>The western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>A.P. Lamb,; L.M. Liberty,; Blakely, Richard J.; Pratt, Thomas L.; Sherrod, B.L.; Van Wijk, K.</p> <p>2012-01-01</p> <p>We present evidence that the Seattle fault zone of Washington State extends to the west edge of the Puget Lowland and is kinemati-cally linked to active faults that border the Olympic Massif, including the Saddle Moun-tain deformation zone. Newly acquired high-resolution seismic reflection and marine magnetic data suggest that the Seattle fault zone extends west beyond the Seattle Basin to form a >100-km-long active fault zone. We provide evidence for a strain transfer zone, expressed as a broad set of faults and folds connecting the Seattle and Saddle Mountain deformation zones near Hood Canal. This connection provides an explanation for the apparent synchroneity of M7 earthquakes on the two fault systems ~1100 yr ago. We redefi ne the boundary of the Tacoma Basin to include the previously termed Dewatto basin and show that the Tacoma fault, the southern part of which is a backthrust of the Seattle fault zone, links with a previously unidentifi ed fault along the western margin of the Seattle uplift. We model this north-south fault, termed the Dewatto fault, along the western margin of the Seattle uplift as a low-angle thrust that initiated with exhu-mation of the Olympic Massif and today accommodates north-directed motion. The Tacoma and Dewatto faults likely control both the southern and western boundaries of the Seattle uplift. The inferred strain trans-fer zone linking the Seattle fault zone and Saddle Mountain deformation zone defi nes the northern margin of the Tacoma Basin, and the Saddle Mountain deformation zone forms the northwestern boundary of the Tacoma Basin. Our observations and model suggest that the western portions of the Seattle fault zone and Tacoma fault are com-plex, require temporal variations in principal strain directions, and cannot be modeled as a simple thrust and/or backthrust system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3957V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3957V"><span>Imaging crustal roots in the Europe-Mediterranean region: a surface wave perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villaseñor, Antonio</p> <p>2016-04-01</p> <p>The thickness of crustal roots is a fundamental constrain to understand the geodynamic evolution of mountain ranges. Crustal thickness can be inferred from a variety of geophysical observables (e.g. gravity anomalies, active and passive seismic methods, etc). Deep seismic sounding (DSS) using controlled sources usually provides the most accurate images of the crustal structure and thickness. However it is an expensive method, and often only used for 2D profiles. On the other hand, passive seismology experiments based on earthquakes or ambient noise have generally lower resolution, but are cheaper to conduct and can provide 3D images. As a result of the success of USArray, experiments consisting of dense deployments of broadband seismometers have become the modern standard approach for imaging continental regions. This, in combination with the densification of permanent regional monitoring networks and the use of seismic ambient noise, has allowed to use surface waves to image with increased resolution regions such as Europe and the Mediterranean basin. Surface waves are not very sensitive to the location of discontinuities such as the Moho, but can provide good constraints on the lateral variation of crustal thickness. Here, by combining continuous recordings of array experiments and permanent networks, I present a new tomographic model of surface wave velocities in the Europe-Mediterranean region that can be used as a proxy for crustal thickness. Large low velocity anomalies corresponding to thick crust are observed as expected in mountain ranges such as the Atlas, Pyrenees and Alps where crustal thickening has occurred as a result of continental collision. In addition, similarly large low velocity anomalies are observed in regions where slab roll-back/break-off has occurred (Betic-Rif, NW and SE Carpathians, Apennines, western Balkan peninsula). While these anomalies might not all be originated by thick crust, in some cases such as the Rif-western Betics previously unknown thick crust (without topographic nor gravimetric signature) has been confirmed by recent DSS studies, suggesting different a mechanism for crustal thickening than simply continental collision. This research has been funded by projects MISTERIOS (CGL2013-48601-C2-1-R) and VeTools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021883','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021883"><span>Three-dimensional velocity structure of Siletzia and other accreted terranes in the Cascadia forearc of Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, T.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.</p> <p>1999-01-01</p> <p>Eocene mafic crust with high seismic velocities underlies much of the Oregon and Washington forearc and acts as a backstop for accretion of marine sedimentary rocks from the obliquely subducting Juan de Fuca slab. Arc-parallel migration of relatively strong blocks of this terrane, known as Siletzia, focuses upper crustal deformation along block boundaries, which are potential sources of earthquakes. In a three-dimensional velocity model of coastal Washington, we have combined surface geology, well data, and travel times from earthquakes and controlled source seismic experiments to resolve the major boundaries of the Siletz terrane with the adjacent accreted sedimentary prism and volcanic arc. In southern Washington and northern Oregon the Siletz terrane appears to be a thick block (???20 km) that extends west of the coastline and makes a high-angle contact with the offshore accreted sedimentary prism. On its east flank the high-velocity Siletz terrane boundary coincides with an en echelon zone of seismicity in the arc. In northern Washington the western edge of Siletzia makes a lower-angled, fault-bound contact with the accretionary prism. In addition, alternating, east-west trending uplifts and downwarps of the Siletz terrane centered on the antiformal Olympic Mountains may reflect focusing of north-south compression in the northern part of the Siletz terrane. This compressional strain may result from northward transport and clockwise rotation of the Siletz terrane into the relatively fixed Canadian Coast Mountains restraining bend along the coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/56155','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/56155"><span>Measuring mountain river discharge using seismographs emplaced within the hyporheic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. E. Anthony; R. C. Aster; S. Ryan; S. Rathburn; M. G. Baker</p> <p>2018-01-01</p> <p>Flow and sediment transport dynamics in fluvial systems play critical roles in shaping river morphology, in the design and use of riverine infrastructure, and in the broader management of watersheds. However, these properties are often difficult to measure comprehensively. Previous work has suggested the use of proximal seismic signals resulting from flow and bed load...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16341011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16341011"><span>A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hales, T C; Abt, D L; Humphreys, E D; Roering, J J</p> <p>2005-12-08</p> <p>Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.4136A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.4136A"><span>Lateral Variations in SKS Splitting Across the MAGIC Array, Central Appalachians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aragon, John C.; Long, Maureen D.; Benoit, Margaret H.</p> <p>2017-11-01</p> <p>The eastern margin of North America has been shaped by several cycles of supercontinent assembly. These past episodes of orogenesis and continental rifting have likely deformed the lithosphere, but the extent, style, and geometry of this deformation remain poorly known. Measurements of seismic anisotropy in the upper mantle can shed light on past lithospheric deformation, but may also reveal contributions from present-day mantle flow in the asthenosphere. Here we examine SKS waveforms and measure splitting of SKS phases recorded by the MAGIC experiment, a dense transect of seismic stations across the central Appalachians. Our measurements constrain small-scale lateral variations in azimuthal anisotropy and reveal distinct regions of upper mantle anisotropy. Stations within the present-day Appalachian Mountains exhibit fast splitting directions roughly parallel to the strike of the mountains and delay times of about 1.0 s. To the west, transverse component waveforms for individual events reveal lateral variability in anisotropic structure. Stations immediately to the east of the mountains exhibit complicated splitting patterns, more null SKS arrivals, and a distinct clockwise rotation of fast directions. The observed variability in splitting behavior argues for contributions from both the lithosphere and the asthenospheric mantle. We infer that the sharp lateral transition in splitting behavior at the eastern edge of the Appalachians is controlled by a change in anisotropy in the lithospheric mantle. We hypothesize that beneath the Appalachians, SKS splitting reflects lithospheric deformation associated with Appalachian orogenesis, while just to the east this anisotropic signature was modified by Mesozoic rifting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........60H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........60H"><span>Seismic refraction studies of volcanic crust in Costa Rica and of critical zones in the southern Sierra Nevada, California and Laramie Range, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, Jorden L.</p> <p></p> <p>This work demonstrates the utility of seismic refraction surveys to understanding geologic processes at a range of scales. Each chapter presents subsurface maps of seismic p-wave velocities, which vary due to contrasts in elastic material properties. In the following chapters we examine seismic p-wave velocity variations that result from volcanic and tectonic processes within Earth's crust and chemical and physical weathering processes within Earth's near-surface environment. Chapter one presents results from an across-arc wide-angle seismic refraction survey of the Costa Rican volcanic front. These results support the hypothesis that juvenile continental crust may form along volcanic island arcs if built upon relatively thick substrates (i.e., large igneous provinces). Comparisons of velocity-depth functions show that velocities within the active arc of Costa Rica are lower than other modern island arcs (i.e., volcanic arcs built upon oceanic crust) and within the high-velocity extreme of bulk continental crust. Chapter two shows that physical processes can dominate over chemical processes in generating porosity in the deep critical zone and outlines a new framework for interpreting subsurface chemical and physical weathering at the landscape scale. Direct measurements of saprolite from boreholes at the Southern Sierra Nevada Critical Zone Observatory show that, contrary to convention, saprolite may experience high levels of volumetric strain (>35%) and uniform mass loss in the upper 11 m. By combining observations from boreholes and seismic refraction surveys we create a map of volumetric strain across the landscape. Variations in inferred volumetric strain are consistent with opening-mode fracture patterns predicted by topographic and tectonic stress models. Chapter three is a characterization of fracture distribution in the deep critical zone from geophysical and borehole observations in the Laramie Mountains, Wyoming. Data from core and down-hole acoustic televiewer images show that fracture density not only decreases with depth but also varies with topography. Comparisons of seismic p-wave velocities and fracture density show that increases in seismic velocity at our site (i.e., from 1-4 km/s) correspond to decreasing fracture density. Observations of a seismological boundary layer coupled with weathering interpreted in borehole images suggest a significant change in chemical weathering with depth. These results emphasize the complex interplay of chemical and physical processes in the deep critical zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSeis..21..941K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSeis..21..941K"><span>Seismic hazard estimation of northern Iran using smoothed seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Cramer, Chris H.</p> <p>2017-07-01</p> <p>This article presents a seismic hazard assessment for northern Iran, where a smoothed seismicity approach has been used in combination with an updated seismic catalog and a ground motion prediction equation recently found to yield good fit with data. We evaluate the hazard over a geographical area including the seismic zones of Azerbaijan, the Alborz Mountain Range, and Kopeh-Dagh, as well as parts of other neighboring seismic zones that fall within our region of interest. In the chosen approach, seismic events are not assigned to specific faults but assumed to be potential seismogenic sources distributed within regular grid cells. After performing the corresponding magnitude conversions, we decluster both historical and instrumental seismicity catalogs to obtain earthquake rates based on the number of events within each cell, and smooth the results to account for the uncertainty in the spatial distribution of future earthquakes. Seismicity parameters are computed for each seismic zone separately, and for the entire region of interest as a single uniform seismotectonic region. In the analysis, we consider uncertainties in the ground motion prediction equation, the seismicity parameters, and combine the resulting models using a logic tree. The results are presented in terms of expected peak ground acceleration (PGA) maps and hazard curves at selected locations, considering exceedance probabilities of 2 and 10% in 50 years for rock site conditions. According to our results, the highest levels of hazard are observed west of the North Tabriz and east of the North Alborz faults, where expected PGA values are between about 0.5 and 1 g for 10 and 2% probability of exceedance in 50 years, respectively. We analyze our results in light of similar estimates available in the literature and offer our perspective on the differences observed. We find our results to be helpful in understanding seismic hazard for northern Iran, but recognize that additional efforts are necessary to obtain more robust estimates at specific areas of interest and different site conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411561M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411561M"><span>Emergency preparedness activities during an ongoing seismic swarm: the experience of the 2011-2012 Pollino (Southern Italy) sequence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.</p> <p>2012-04-01</p> <p>Facing natural disasters effects can be a very difficult task lacking suitable activities and tools to preventively prepare the involved community (people, authorities, professionals, …) to the expected events. Therefore, a suite of preventive actions should be carried out to mitigate natural risks, in particular working to reduce the territorial vulnerability with respect to the specific natural hazard at hand, and to increase people response capacity. In fact, building social capacity helps to increase the risk perception and the people capacity to adapt to and cope with natural hazards. Since October 2011 a seismic swarm is affecting the Pollino mountain range, Southern Italy. At present the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area mainly affected by the seismic sequence includes 12 villages, with a total population of about 50.000 inhabitants and, according to the current seismic hazard map it has high seismicity level. Such area was hit by a magnitude Ml=5.7 event in 1998 that produced macroseismic intensity not higher that VII-VIII degree of MCS scale and caused one dead, some injured and widespread damage in at least six municipalities. During the sequence, the National Department of Civil Protection (DPC) and the Civil Protection of Basilicata Region decided to put in action some measures aimed at verifying and enhancing emergency preparedness. These actions have been carried out with a constant and fruitful collaboration among the main stakeholders involved (scientific community, local and national governmental agencies, civil protection volunteers, etc) trough the following main activities: 1. collaboration between scientific community and the local and national offices of Civil Protection especially in the relationship with local authorities (e.g. mayors, which are civil protection authorities in their municipality); 2. interaction between DPC, Italian Institute of Geophysics and Vulcanology (INGV) in order to transfer information to the population to enhance self-protection capability and decrease its state of worry ("what to do" in case of an earthquake); 3. review of local plans of emergency, where available, using ad hoc inspection forms to collect data for verifying and updating the emergency plan content and requirements. Specifically, in order to prepare seismic scenarios of building damage and effects on population for emergency planning and civil defense drills to be organized, two more activities have been carried out: 4. collection of current vulnerability data on the building stock and the strategic infrastructures located in the area; 5. accurate survey of data on post earthquake retrofitting and microzonation actions carried out after the 1998 Pollino earthquake that struck the same involved villages. In some cases, as a consequence of the position of the involved area, the activities were carried out also in collaboration with Calabria Region authorities. Several points have arisen in carrying out the activities, mostly due to the interaction between risk governance and risk perception in the pre-event emergency management. At the abstract submission date the seismic sequence, and thus the activities here described, are still ongoing. Therefore, analysis and discussion of pro's and con's of the actions taken are currently in progress on a week-by-week basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/838329','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/838329"><span>Characterize Eruptive Processes at Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>D. Krier</p> <p>2004-10-04</p> <p>The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004more » [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010254','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010254"><span>Structure and development of the southern Moroccan continental shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dillon, William P.</p> <p>1974-01-01</p> <p>The structure of the continental shelf off southern Morocco was studied by means of 2,100 km of seismic reflection profiles, magnetic and bathymetric surveys, and dredge samples. The research area lies off four geologic divisions adjacent to the coast: the Atlas Mountains; the Souss Trough; the Anti-Atlas Mountains; and the Aaiun Basin. The continental shelf, along with the western Atlas Mountains, the western Souss Trough, and the entire Aaiun Basin, has subsided along a normal fault-flexure system. This system runs along the shore at the Anti-Atlas Mountains, and cuts off this cratonic block from the shelf subsidence. The shelf is narrow and characterized by out-building off the Anti-Atlas range, whereas it is broader and characterized by upbuilding to the north and south. Deposition was essentially continuous at least from Early Cretaceous through Eocene time. Published work suggests that the last cycle of sedimentation began during Permian rifting. After Eocene time, most sediments carried to the shelf must have bypassed it and gone to construct the slope and rise or to the deep sea. Tertiary orogenies caused extensive folding of Mesozoic and early Tertiary deposits off the Atlas Mountains. ?? 1974.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10193997','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10193997"><span>Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p></p> <p>This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is amore » stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.722...11C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.722...11C"><span>Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi</p> <p>2018-01-01</p> <p>The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411977M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411977M"><span>Communication during an evolving seismic sequence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mucciarelli, M.; Camassi, R.</p> <p>2012-04-01</p> <p>Since October 2011 a seismic swarm is affecting the Pollino mountain range, southern Italy. At the abstract submission date the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area was hit by a magnitude 5.7 event in 1998 that caused one dead, some injured and widespread damage in at least six municipalities. The population main fear is that a large event could follow the seismic swarm as it occurred at L'Aquila in 2009. Among the initiatives taken by Civil Protection at national and regional level, it was decided to try to implement at local scale two communication projects that were thought for "peace time" and not for dissemination during a seismic crisis: the "Terremoto-Io non rischio" project for general public and the "EDURISK" project for school children. The main lesson learned during the first months of the activity are: 1) it is possible to take advantage of the increased awareness and risk perception from the population to attract more citizen toward topics that could go unnoticed otherwise; 2) the Civil Protection volunteers could be a very effective mean to reach a large amount of the population, provided they are carefully trained especially when children are involved; 3) the expectations about earthquake prediction raised from media without any scientific support proved to be the most difficult to be tackled: to overcome this bias risk education in "peace time" is absolutely essential; 4) door-to-door communication is perceived much better than official press release on newspapers; 5) training of volunteers must be limited to a few basic information, with special attention to the local context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......280M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......280M"><span>USArray Imaging of North American Continental Crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Xiaofei</p> <p></p> <p>The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Tectp.597...85P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Tectp.597...85P"><span>The Sparta Fault, Southern Greece: From segmentation and tectonic geomorphology to seismic hazard mapping and time dependent probabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papanikolaοu, Ioannis D.; Roberts, Gerald P.; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel</p> <p>2013-06-01</p> <p>The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and post-glacial throw, emphasising how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn < 83) and central parts (121 < ksn < 138) of the Sparta Fault along strike the fault system. Based on fault throw-rates and the bedrock geology a seismic hazard map has been constructed that extracts a locality specific long-term earthquake recurrence record. Based on this map the town of Sparta would experience a destructive event similar to that in 464 B.C. approximately every 1792 ± 458 years. Since no other major earthquake M ~ 7.0 has been generated by this system since 464 B.C., a future event could be imminent. As a result, not only time-independent but also time-dependent probabilities, which incorporate the concept of the seismic cycle, have been calculated for the town of Sparta, showing a considerably higher time-dependent probability of 3.0 ± 1.5% over the next 30 years compared to the time-independent probability of 1.66%. Half of the hanging wall area of the Sparta Fault can experience intensities ≥ IX, but belongs to the lowest category of seismic risk of the national seismic building code. On view of these relatively high calculated probabilities, a reassessment of the building code might be necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9004P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9004P"><span>The Sparta Fault, Southern Greece: From Segmentation and Tectonic Geomorphology to Seismic Hazard Mapping and Time Dependent Probabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papanikolaou, Ioannis; Roberts, Gerald; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel</p> <p>2013-04-01</p> <p>The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2.407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and postglacial throw, emphasizing how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn<83) and central parts (121<ksn<138) of the Sparta fault along strike the fault system. Based on fault throw-rates and the bedrock geology a seismic hazard map has been constructed that extracts a locality specific long-term earthquake recurrence record. Based on this map the town of Sparta would experience a destructive event similar to the 464 B.C. approximately every 1792 ± 458 years. Since no other major earthquake M~7.0 has been generated by this system since 464 B.C., a future event could be imminent. As a result, not only time-independent but also time-dependent probabilities, which incorporate the concept of the seismic cycle, have been calculated for the town of Sparta, showing a considerably higher time-dependent probability of 3.0 ± 1.5% over the next 30 years compared to the time-independent probability of 1.66%. Half of the hangingwall area of the Sparta fault can experience intensities ≥IX, but belongs to the lowest category of seismic risk of the national seismic building code. On view of these relatively high calculated probabilities, a reassessment of the building code might be necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/469586','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/469586"><span>Fractal interrelationships in field and seismic data. Quarterly report, September 21 - December 31, 1995</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilson, T.H.; Dominic, J.; Halverson, J.</p> <p>1995-12-31</p> <p>Under task 1 contour irregularities traced over both study areas in the previous quarter were scanned into the computer and digitized at a 30 meter interval. Patters mapped in both the Granny Creek and Middle Mountain field areas are presented in Figures 1 and 2 respectively. One of the hypotheses of this research project is that contour irregularities must be controlled by a combination of sedimentation features, lithologic variation, and local structure and fracture distribution. The most promising result obtained thus far in this study are those reported under Tasks 4 and 5, seismic analysis. If further tests continue tomore » support the observation that increased fractal dimension reflects the presence of detached structure, the analytical techniques employed here may be of use in the routine evaluation of seismic data to locate subtle traps. The observations may allow one to predict the variation of fractal dimension within a subsurface fracture network based on seismic observation of resolvable structural parameters. Such predictions would provide a working hypothesis, which could be modified within the context of available subsurface data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.703...42L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.703...42L"><span>Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, En-Jui; Chen, Po</p> <p>2017-04-01</p> <p>More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T43B2997H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T43B2997H"><span>Study on the Microstructures and Seismic Anisotropy of Blueschist and Eclogite from Ring Mountain and Jenner in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>HA, Y.; Jung, H.; Raymond, L. A.; Bero, D.</p> <p>2015-12-01</p> <p>Seismic anisotropy has been found in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD technique and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a weak girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite was very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190041','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190041"><span>Updating the USGS seismic hazard maps for Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.</p> <p>2015-01-01</p> <p>The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19....6G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19....6G"><span>Active geodynamics of the Caucasus/Caspian region educed from GPS, and seismic Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gadirov (Kadirov), Fakhraddin; Floyd, Michael; Reilinger, Robert; Alizadeh, Akif; Guliyev, Ibrahim; Mammadov, Samir; Safarov, Rafig</p> <p>2017-04-01</p> <p>The geodynamic and earthquake activity in the Caucasus/Caspian region is due to the ongoing collision of the Arabian plate with Eurasia. The Caucasus and Caspian Sea are historically among the most seismically active regions on earth. These earthquakes have caused thousands of deaths and great economic distress. Future earthquakes in the Caucasus and Caspian Sea must be considered and planned for in order to limit their impact on the people, ecology, and infrastructure of the region. Within this plate tectonics context, we examine deformation of the Caucasus region and show that most crustal shortening in the collision zone is accommodated by the Greater Caucasus Fold-and-Thrust Belt (GCFTB) along the southern edge of the Greater Caucasus Mountains. The eastern GCFTB appears to bifurcate west of Baku, with one branch following the accurate geometry of the Greater Caucasus, turning towards the south and traversing the Neftchala Peninsula. A second branch may extend directly into the Caspian Sea south of Baku, likely connecting to the Central Caspian Seismic Zone. We model deformation in terms of a locked thrust fault that coincides in general with the main surface trace of the GCFTB. We consider two end-member models, each of which tests the likelihood of one or other of the branches being the dominant cause of observed deformation. Our models indicate that strain is actively accumulating on the fault along the 200 km segment of the fault west of Baku (approximately between longitudes 47-49°E). Parts of this segment of the fault broke in major earthquakes historically (1191, 1859, 1902) suggesting that significant future earthquakes (M 6-7) are likely on the central and western segment of the fault. We observe a similar deformation pattern across the eastern end of the GCFTB along a profile crossing the Kura Depression and Greater Caucasus Mountains in the vicinity of Baku. Along this eastern segment, a branch of the fault changes from a NW-SE striking thrust to an N-S oriented strike-slip fault. The similar deformation pattern along the eastern and central GCFTB segments raises the possibility that major earthquakes may also occur in eastern Azerbaijan. However, the eastern segment of the GCFTB has no record of large historic earthquakes, and is characterized by thick, highly saturated and over-pressured sediments within the Kura Depression and adjacent Caspian Basin that may inhibit elastic strain accumulation in favour of fault creep, and/or distributed faulting and folding. Thus, while our analyses suggest that large earthquakes are likely in central and western Azerbaijan, it is still uncertain whether significant earthquakes are also likely along the eastern segment, and on which structure. Ongoing and future focused studies of active deformation promise to shed further light on the tectonics and earthquake hazards in this highly populated and developed part of Azerbaijan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S31A2004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S31A2004S"><span>Seismic Tomography of the South Carpathian System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stuart, G. W.; Ren, Y.; Dando, B. D.; Houseman, G.; Ionescu, C.; Hegedus, E.; Radovanovic, S.; South Carpathian Project Working Group</p> <p>2010-12-01</p> <p>The South Carpathian Mountain Range is an enigmatic system, which includes one of the most seismically active regions in Europe today. That region, Vrancea in the SE Carpathians, is well studied and its deep structure may be geologically unique, but the mantle structures beneath the western part of the South Carpathian Range are not well resolved by previous tomographic studies. The South Carpathian Project (SCP) is a major temporary deployment (2009-2011) of seismic broadband systems extending across the eastern Pannonian Basin and the South Carpathian Mountains. In this project we aim to map the upper mantle structure in central Europe with the objective of testing geodynamic models of the process that produced extension in the Pannonian, synchronous with convergence and uplift in the Carpathians. Here, we describe initial results of finite-frequency tomography using body waves to image the mantle of the region. We have selected teleseismic earthquakes with magnitude greater than 5.9, which occurred between 2005 and 2010. The data were recorded on 57 temporary stations deployed in the South Carpathian Project, 56 temporary stations deployed in the earlier Carpathian Basins Project (CBP), and 41 permanent broadband stations. The differential travel times are measured in high, intermediate and low frequencies (0.5-2.0 Hz, 0.1-0.5 Hz and 0.03-0.1 Hz for both P-wave, 0.1-0.5 Hz, 0.05-0.1 Hz and 0.02-0.05 Hz for S-wave), and are inverted to produce P and S-wave velocity maps at different depths in the mantle. An extensive zone of high seismic velocities is located in the Mantle Transition zone beneath the Pannonian Basin, and is related to down-welling associated with an earlier phase of continental convergence in the Pannonian region. These results will be used in conjunction with 3D geodynamical modelling to help understand the geological evolution of this region. SCP working group: G. Houseman, G. Stuart, Y. Ren, B. Dando, P. Lorinczi, School of Earth and Environment, University of Leeds, UK; E. Hegedus, A. Kovács, I. Török, I. László, R. Csabafi, Eötvös Loránd Geophysical Institute, Budapest, Hungary; C. Ionescu, M. Radulian, V. Raileanu, D. Tataru, B. Zaharia, F. Borleanu, C. Neagoe, G. Gainariu, National Institute of Earth Physics, Bucharest, Romania; S. Radovanovic, V. Kovacevic, D. Valcic, S. Petrovic-Cacic, G. Krunic, Seismological Survey of Serbia, Belgrade, Serbia; A. Brisbourne, D. Hawthorn, V. Lane, SEIS-UK, Leicester University, UK.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1083/j/OF2010-1083-J_508.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1083/j/OF2010-1083-J_508.pdf"><span>Seismicity of the Earth 1900–2010 Himalaya and vicinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Turner, Bethan; Jenkins, Jennifer; Turner, Rebecca; Parker, Amy; Sinclair, Alison; Davies, Sian; Hayes, Gavin P.; Villaseñor, Antonio; Dart, Rirchard L.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.</p> <p>2013-01-01</p> <p>Seismicity in the Himalaya region predominantly results from the collision of the India and Eurasia continental plates, which are converging at a relative rate of 40–50 mm/yr. Northward underthrusting of India beneath Eurasia generates numerous earthquakes and consequently makes this area one of the most seismically hazardous regions on Earth. The surface expression of the plate boundary is marked by the foothills of the north-south trending Sulaiman Range in the west, the Indo-Burmese Arc in the east, and the east-west trending Himalaya Front in the north of India. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Further north again, the Tian Shan is a seismically active intra-continental mountain belt defined by a series of east-west trending thrust faults thought to be related to the broad footprint of the India-Eurasia collision. Tectonics in northern India are dominated by motion along the Main Frontal Thrust and associated thrust faults of the India-Eurasia plate boundary, which have resulted in a series of large and devastating earthquakes in (and prior to) the 20th century. The Tibetan Plateau to the north of the main plate boundary is a broad region of uplift associated with the India-Eurasia collision, and is cut by a series of generally east-west trending strike-slip faults. These include the Kunlun, Haiyuan, and the Altyn Tagh faults, all of which are left-lateral structures, and the Kara-Koram right-lateral fault. Throughout the plateau, thrust faults accommodate the north-south compressional component of crustal shortening associated with the ongoing collision of India and Eurasia, while strike-slip and normal faults accommodate east-west extension. To the east, The Longmen Shan thrust belt marks the eastern margin of the Tibetan Plateau separating the complex tectonics of the plateau region from the relatively undeformed Sichuan Basin. Further south, the left-lateral Xiangshuihe-Xiaojiiang, right-lateral Red River and right-lateral Sagaing strike-slip fault systems accommodate deformation along the eastern margin of the India plate. Deep earthquakes have also occurred in the Indo-Burmese Arc region, thought to be an expression of eastward-directed subduction of the India plate, though whether subduction is ongoing is still debated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6279W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6279W"><span>Fluid-driven normal faulting earthquake sequences in the Taiwan orogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui</p> <p>2017-04-01</p> <p>Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5.87 earthquake and the rise of the high pressure fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030924','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030924"><span>Quaternary tectonic faulting in the Eastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wheeler, R.L.</p> <p>2006-01-01</p> <p>Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismic-hazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Published studies proposed Quaternary tectonic faulting at 31 faults, folds, seismic zones, and fields of earthquake-induced liquefaction phenomena in the Appalachian Mountains and Coastal Plain. Of the 31 features, seven are of known origin. Four of the seven have nontectonic origins and the other three features are liquefaction fields caused by moderate to large historical and Holocene earthquakes in coastal South Carolina, including Charleston; the Central Virginia Seismic Zone; and the Newbury, Massachusetts, area. However, the causal faults of the three liquefaction fields remain unclear. Charleston has the highest hazard because of large Holocene earthquakes in that area, but the hazard is highly uncertain because the earthquakes are uncertainly located. Of the 31 features, the remaining 24 are of uncertain origin. They require additional work before they can be clearly attributed either to Quaternary tectonic faulting or to nontectonic causes. Of these 24, 14 features, most of them faults, have little or no published geologic evidence of Quaternary tectonic faulting that could indicate the likely occurrence of earthquakes larger than those observed historically. Three more features of the 24 were suggested to have had Quaternary tectonic faulting, but paleoseismological and other studies of them found no evidence of large prehistoric earthquakes. The final seven features of uncertain origin require further examination because all seven are in or near urban areas. They are the Moodus Seismic Zone (Hartford, Connecticut), Dobbs Ferry fault zone and Mosholu fault (New York City), Lancaster Seismic Zone and the epicenter of the shallow Cacoosing Valley earthquake (Lancaster and Reading, Pennsylvania), Kingston fault (central New Jersey between New York and Philadelphia), and Everona fault-Mountain Run fault zone (Washington, D.C., and Arlington and Alexandria, Virginia). ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015c2011B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015c2011B"><span>Finite-element simulation of possible natural disasters on landfall dams with changes in climate and seismic conditions taken into account</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandurin, M. A.; Volosukhin, V. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.</p> <p>2018-05-01</p> <p>At present theoretical substations for fundamental methods of forecasting possible natural disasters and for quantitative evaluating remaining live technical state of landfall dams in the mountain regions with higher danger are lacking. In this article, the task was set to carry out finite-element simulation of possible natural disasters with changes in the climate as well as in modern seismic conditions of operation in the mountain regions of the Greater Caucasus with higher danger. The research is aimed at the development of methods and principles for monitoring safety of possible natural disasters, evaluating remaining live technical state of landfall dams having one or another damage and for determination of dam failure riskiness, as well. When developing mathematical models of mudflow descents by inflows tributaries into the main bed, an intensive danger threshold was determined, taking into consideration geomorphological characteristics of earthflow courses, physico-chemical and mechanical state of mudflow mass and the dynamics of their state change. Consequences of mudflow descents into river basins were simulated with assessment of threats and risks for projects with different infrastructures located in the river floodplain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Tectp.609..353C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Tectp.609..353C"><span>The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbonell, Ramon; Levander, Alan; Kind, Rainer</p> <p>2013-12-01</p> <p>The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43B2833J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43B2833J"><span>Anisotropy and tectonic deformation in the Ordos basin revealed by an active source seismic experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jun, W. S.; Wang, F.; Xu, T.</p> <p>2016-12-01</p> <p>With the purpose of exploring the Ordos block, western North China Craton, two controlled-source deep seismic transects were conducted across this region. The first one is a 650 km long profile oriented N-S; the second is 1530 km and is oriented E-W. The upper mantle P wave-velocity derived from these profiles features a 0.25 km/s difference between them. Being the E-W higher that the N-S. The results obtained from both seismic profiles indicate that the upper mantle beneath the Ordos block presents seismic anisotropy in terms of discrepancy in Pn-wave velocity, such as the apparent seismic velocities observed along the two reference profiles demonstrate. This result is consistent with SKS-wave splitting measurements in the interior of the Ordos block. This indicates that the compressive stress state in Ordos during the Mesozoic became an extensional stress state in the Cenozoic. The high-velocity anomaly in the uppermost mantle under the west-east profile suggests that the lithospheric mantle is still not water-rich. Unlike what happened in the NCC to east of the Taihang Mountains, where the lithosphere experienced its thinning and destruction since the Mesozoic, the lithosphere in the interior of Ordos has suffered less deformation and remained tectonically stable. Keywords: wide-angle seismic profiling, Pn phase, high-velocity anomaly, upper mantle anisotropy, Ordos block, North China Craton. ReferencesChen L., 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys. Earth Planet. Inter. 173, 216-227. Gao S., Rudnick R.L., Xu W.L., et al., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270, 41-53. Xu T., Zhang Z.J., Gao E.G., et al., 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seism. Soc. Am. 100, 841-850. Zhu R.X., Zheng T.Y., 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chinese Sci. Bull. 54(14), 1950-1961 (in Chinese).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/433218-new-way-ask-experts-rating-radioactive-waste-risks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/433218-new-way-ask-experts-rating-radioactive-waste-risks"><span>A new way to ask the experts: Rating radioactive waste risks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kerr, R.A.</p> <p>1996-11-08</p> <p>The possible risks of a proposed nuclear waste repository at Yucca Mountain include the dozen or more young volcanos near by. Now some earth scientists have a new approach to evaluating hazards accounting for uncertainty at every step - `expert elicitation.` This pulls together a panel of experts, carefully assesses the uncertainties of each of their views then mathematically combines their risk estimates along with the accompanying uncertainties. The article goes on to describe just such a panel which considered seismic hazards to Yucca Mountain, how they came to their conclusions, the arguments about the conclusions, and the future ofmore » expert elicitation in evaluating the risks of nuclear waste disposal.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013522','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013522"><span>SHINING ROCK WILDERNESS, NORTH CAROLINA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lesure, Frank G.; Dunn, Maynard L.</p> <p>1984-01-01</p> <p>The Shining Rock Wilderness, in the Blue Ridge Mountains of Haywood County, North Carolina, is underlain by complexly folded mica gneiss and schist of Precambrian age. A mineral-resource survey determined that two commodities, quartz as a source of silica (SiO//2) and gneiss and schist suitable for common building stone and crushed rock, are present in large quantities. Demonstrated resources of silica occur at Shining Rock Mountain and small amounts of sheet muscovite (mica) and scrap mica are present at about 10 localities. Until deep drilling is done to test the results of the seismic studies, no estimate of the potential for gas can be made, but the presence of gas cannot be totally discounted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.211.1328R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.211.1328R"><span>Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.</p> <p>2017-12-01</p> <p>A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43B2851N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43B2851N"><span>High-resolution Body Wave Tomography of the Ross Sea Embayment, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nyblade, A.; White-Gaynor, A.; Wiens, D.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Stephen, R. A.; Winberry, J. P.; Huerta, A. D.; Anandakrishnan, S.; Wilson, T. J.</p> <p>2016-12-01</p> <p>The West Antarctic Rift System (WARS) remains the least understood continental rift system on the planet. The WARS is largely composed of the Ross Sea Embayment, which is overlain by the Ross Ice Shelf between Marie Byrd Land and the Transantarctic Mountains. Active volcanism on Ross Island continues to challenge our understanding of the seismically quiescent rift system. Previous regional-scale body wave tomographic investigations have identified areas of low seismic wave speed to about 200 km depth beneath Ross Island. However mantle structure under the Ross Sea Embayment away from Ross Island has not been previously well imaged. For this investigation we utilize teleseismic P waves recorded on the recently deployed RIS/DRIS network, which consists of 34 seismometers deployed across the Ross Ice Shelf, along with data from nearby POLENET stations and TAMSEIS stations. Relative P wave travel time residuals were obtained from 560 events using a multichannel cross correlation method, and have been inverted to obtain a preliminary model of the upper mantle. Initial results suggest that the low wave speed structure under Ross Island does not extend beneath the Ross Sea Embayment portion of the WARS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH43C1874R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH43C1874R"><span>Analysis and determination of susceptibility Risk from slope instability at Colima State Mexico due to the accelerators factors of rain and seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez-Ruiz, J. J.</p> <p>2016-12-01</p> <p>Slope instability is presented each year in the mountain region of the Colima State, Mexico. It occurs due to the combination of different factors existing in this area as: Precipitation, topography contrast, type and mechanical properties of deposits that constitute the rocks and soils of the region and the erosion due to the elimination of vegetation deck to develop and grow urban areas. To these geological factors we can extend the tectonic activity of the Western part of Mexico that originate high seismicity by the interaction of Cocos plate and North America plate forming the region of Graben de Colima, were is located our study area. Here we will present a Zonification and determination of the Susceptibility maps of slope instability due to the rain and seismicity accelerators factors. The North part of the State Colima is covered by deposits of the Volcan de Colima with an elevation of 3860 masl. It is the area of major precipitation yearly with more than 1200 mm in comparison to the average precipitation of about 900 mm of the State of Colima. Using a SIG system and the mapping of more than 30 sites we realize a zonification and analysis of the Risk using a methodology developed by CENAPRED. The susceptibility map developed in this area in combination with erosion factors permit us to determine an approximation of the Risk considering some limitations that will be present in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1038125','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1038125"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roberts, Peter M.; Schultz-Fellenz, Emily S.; Kelley, Richard E.</p> <p></p> <p>This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-eastmore » Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3. Understanding the subtle differences between Tshirege Member cooling units and the nature of the contacts between cooling units is critical to identifying the presence or absence of faults associated with the Pajarito fault system on the Pajarito Plateau. The Los Alamos Seismic Network (LASN) continuously monitors local earthquake activity in the Los Alamos area in support of LANL's Seismic Hazards program. Seismic monitoring of LANL facilities is a requirement of DOE Order 420.1B (Facility Safety). LASN currently consists of nine permanent seismic instrument field stations that telemeter real-time sensitive ground motion data to a central recording facility. Four of these stations are located on LANL property, with three of those within 2.5 miles of TA-63. The other five stations are in remote locations in the Jemez Mountains, Valles Caldera, St Peters Dome, and the Caja del Rio plateau across the Rio Grande from the Los Alamos area. Local earthquakes are defined as those with locations within roughly 100 miles of Los Alamos. Plate 1 shows the current LASN station locations and all local earthquakes recorded from 1973 through 2011. During this time period, LASN has detected and recorded over 850 local earthquakes in north-central New Mexico. Over 650 of these were located within about 50 miles of Los Alamos, and roughly 60 were within 10 miles. The apparent higher density of earthquakes close to Los Alamos, relative to the rest of north-central New Mexico, is due largely to the fact that LASN is a sensitive local seismic network, recording many very small nearby events (magnitude less than 1.0) that are undetectable at greater distances.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27881794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27881794"><span>First Map of Residential Indoor Radon Measurements in Azerbaijan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffmann, M; Aliyev, C S; Feyzullayev, A A; Baghirli, R J; Veliyeva, F F; Pampuri, L; Valsangiacomo, C; Tollefsen, T; Cinelli, G</p> <p>2017-06-15</p> <p>This article describes results of the first measurements of indoor radon concentrations in Azerbaijan, including description of the methodology and the mathematical and statistical processing of the results obtained. Measured radon concentrations varied considerably: from almost radon-free houses to around 1100 Bq m-3. However, only ~7% of the total number of measurements exceeded the maximum permissible concentrations. Based on these data, maps of the distribution of volumetric activity and elevated indoor radon concentrations in Azerbaijan were created. These maps reflect a mosaic character of distribution of radon and enhanced values that are confined to seismically active areas at the intersection of an active West Caspian fault with sub-latitudinal faults along the Great and Lesser Caucasus and the Talysh mountains. Spatial correlation of radon and temperature behavior is also described. The data gathered on residential indoor radon have been integrated into the European Indoor Radon Map. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2001/4058/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2001/4058/report.pdf"><span>Structural controls on ground-water conditions and estimated aquifer properties near Bill Williams Mountain, Williams, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pierce, Herbert A.</p> <p>2001-01-01</p> <p>As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9083L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9083L"><span>Reactivation of slow-moving landslides by earthquakes, kinematics measurements and mechanical implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lacroix, Pascal; Perfettini, Hugo; Berthier, Etienne; Taipe, Edu; Guillier, Bertrand</p> <p>2015-04-01</p> <p>Major earthquakes in mountainous areas often trigger landslides. The impact of earthquakes on slow-moving landslides is however not well constrained due to few co-seismic measurements of landslide motion. We document the first time-series of a landslide reactivation by an earthquake (Mw6.0, distance 20 km), using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is three times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a post seismic displacement. Finally, a multi-temporal survey using images from the very high resolution Pléiades optical satellite, allowed us to detect 9 active slow-moving landslides over the whole valley. Their pattern of motion show they have been reactivated by the same earthquake. We analyze this small but comprehensive database of landslides reactivated by the earthquake. We find that the landslide motion due to the earthquake is function of the shaking intensity, suggesting a friction at the basal interface dependent on the earthquake solicitation. These various observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840007560','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840007560"><span>Combined use of remote sensing and seismic observations to infer geologically recent crustal deformation, active faulting, and stress fields. [California and Pennsylvania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, S. S. (Principal Investigator)</p> <p>1982-01-01</p> <p>Characteristic traits for earthquakes associated with strike-slip motion in Central California and the Salton Sea area, as revealed in ground based studies and LANDSAT imagery, were compared. The mapped lineaments are found to be oriented in several dominant directions. One direction is the same as the trend of the San Andreas fault. The other directions differ from area to area and may reflect the stresses of earlier geologic processes. The pattern of lineament orientations is significantly LANDSAT MSS data, SEASAT synthetic aperture radar data, and magnetic field data from the South Mountain area west of Gettysburg, Pennsylvania were registered to match each other in spatial position and merged. Pattern recognition techniques were applied to the composite data set to determine its utility in recognizing different rock types and structures in vegetated terrain around South Mountain. With the use of a texture algorithm to enhance geologic features, a classification of the entire area was made. A test of the correlation between SAR tone and texture, LANDSAT tone and texture, and magnetic field data revealed no tone or texture measures linking any two of the original data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S34A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S34A..07B"><span>Seasonal Modulation of Earthquake Swarm Activity Near Maupin, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braunmiller, J.; Nabelek, J.; Trehu, A. M.</p> <p>2012-12-01</p> <p>Between December 2006 and November 2011, the Pacific Northwest Seismic Network (PNSN) reported 464 earthquakes in a swarm about 60 km east-southeast of Mt. Hood near the town of Maupin, Oregon. Relocation of forty-five MD≥2.5 earthquakes and regional moment tensor analysis of nine 3.3≤Mw≤3.9 earthquakes reveals a north-northwest trending, less than 1 km2 sized active fault patch on a 70° west dipping fault. At about 17 km depth, the swarm occurred at or close to the bottom of the seismogenic crust. The swarm's cumulative seismic moment release, equivalent to an Mw=4.4 earthquake, is not dominated by a single shock; it is rather mainly due to 20 MD≥3.0 events, which occurred throughout the swarm. The swarm started at the southern end and, during the first 18 months of activity, migrated to the northwest at a rate of about 1-2 m/d until reaching its northern terminus. A 10° fault bend, inferred from locations and fault plane solutions, acted as geometrical barrier that temporarily halted event migration in mid-2007 before continuing north in early 2008. The slow event migration points to a pore pressure diffusion process suggesting the swarm onset was triggered by fluid inflow into the fault zone. At 17 km depth, triggering by meteoritic water seems unlikely for a normal crustal permeability. The double couple source mechanisms preclude a magmatic intrusion at the depth of the earthquakes. However, fluids (or gases) associated with a deeper, though undocumented, magma injection beneath the Cascade Mountains, could trigger seismicity in a pre-stressed region when they have migrated upward and reached the seismogenic crust. Superimposed on overall swarm evolution, we found a statistically significant annual seismicity variation, which is likely surface driven. The annual seismicity peak during spring (March-May) coincides with the maximum snow load on the near-by Cascades. The load corresponds to a surface pressure variation of about 6 kPa, which likely causes an annual peak-to-peak vertical displacement of about 1 cm at GPS sites in the Cascades and GPS signals that decay with increasing distance from the Cascades. Stress changes due to loading and unloading of snow pack in the Cascades can act in two ways to instantaneously enhance seismicity. For a strike-slip fault roughly parallel to the trend of the load and 10s of km away from it, normal stress decreases slightly leading to slight fault unclamping. The load also leads to simultaneous compression of fluid conduits at greater depth driving fluids rapidly upward into the swarm source region. The small, temporally variable stress changes on the order of a few kPa or less seem to be adequate to modulate seismicity by varying fault normal stresses and controlling fluid injection into a critically stressed fault zone. The swarm region has been quiet since February 2012 suggesting stresses on the fault have been nearly completely released.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ..tmp...13P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ..tmp...13P"><span>Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo</p> <p>2018-01-01</p> <p>A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ...26.1009P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ...26.1009P"><span>Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo</p> <p>2018-06-01</p> <p>A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21740806','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21740806"><span>Motor function and activities of daily living capacity of patients with fractures sustained during the Wenchuan earthquake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jin-Long; He, Hong-Chen; Lin, Hai-Dan; Luo, Qing-Lu; Xia, Lu; Li, Sha-Sha; He, Cheng-Qi</p> <p>2011-05-01</p> <p>On the afternoon of May 12, 2008, a 8.0-magnitude earthquake hit Sichuan Province, a mountainous region in Western China, killing about 70 000 people and leaving over 18 000 missing. What about the survivors motor functions and activities of daily living (ADL) capacity, especially for fractures? We need the data to guide the rehabilitation for the seismic wounded and it's important to collect the data for the future. We study the survivors to understand the motor functions and ADL capacity of patients with fractures sustained in the Wenchuan earthquake, to provide a basis for rehabilitation and treatment. We used the Manual Muscle Testing method to evaluate muscle strength, the joint angle scale to measure joint range of motion (ROM), and the Barthel index to evaluate the activities of daily living status. SPSS 13.0 software was used to analyze the data and the results were tested using one-way analysis of variance (ANOVA). The number of seismic wounded amounted to 487; 81.1% of patients had fractures. Most of the injured had fractures in multiple regions (53.9% of all fracture patients), followed by fractures of the upper limb (34.0% of patients); cranial fractures were rare (2.3%). Totally 82.0% had restricted range of motion, 23.5% had decreased muscle force, and 72.2% of the patients had restricted activities of daily living capacities. With time the activities of daily living capacity of female increased (P < 0.05), compared with the male fracture patients who did not show any relative improvement (P > 0.05). The difference between the patients' ages and ADL capacities did not reach statistical significance (P > 0.05), nor was there a significant difference between their ages and the numbers of days in hospital (P > 0.05). Fractures were the main issue in the seismic wounded, many of them had reductions in the ROM, muscle force and ADL capacities. The physicians involved in rehabilitation should pay greater attention to muscle force exercises, joint mobilization, and occupational therapy during the early phases post disaster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51G3004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51G3004A"><span>Seismic anisotropy in the upper mantle beneath the MAGIC array, mid-Atlantic Appalachians: Constraints from SKS splitting and quasi-Love wave propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.</p> <p>2016-12-01</p> <p>North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS12A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS12A..01H"><span>CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haar, K. K.; Balch, R. S.; Lee, S. Y.</p> <p>2017-12-01</p> <p>The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13G..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13G..07S"><span>Distributions of high-velocity lower crust and seismic anisotropy across the continental U.S.: Integration of seismic, xenolith, and surface geologic data to address lithospheric dynamics and history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schulte-Pelkum, V.; Mahan, K. H.; Shen, W.; Stachnik, J.; Caine, J. S.; Russo, R.</p> <p>2017-12-01</p> <p>Continental crust contains an integrated record of its tectonic history in its composition and preserved rock deformation fabrics. In this contribution, we highlight efforts to synthesize aspects of both of these records for the North American continent employing a variety of seismic and geologic data. We used EarthScope and pre-existing active source seismic data and selected xenolith studies to map the distribution of high-velocity lower crust, indicating mafic or garnet-bearing material, across the U.S. and assess its relationship to proposed emplacement and loss mechanisms such as under- and intraplating, collision, extension, heating, cooling, hydration, and delamination. Thin layers of high-velocity crust related to regional processes are found scattered throughout the continent. Thicker layers in large areas are found in the central and eastern U.S. in areas with thick crust, bounded roughly by the Rocky Mountain Front, which cuts across Proterozoic provinces. Hence, the difference between the two domains may reflect garnet growth with aging of continental crust in much of the central and eastern U.S., while conditions in the western U.S. appear unfavorable for growth and maintenance of thick layers of high-velocity garnet-bearing lower crust. In new research, we aim to complete a synthesis of seismic data and structural geologic data to derive constraints on the deformation history of the continent. EarthScope data have already been used to image seismic anisotropy from local scales along brittle faults and ductile shear zones to regional and continent-wide scales. These studies used multiple methods sensitive to different anisotropic parameters over a range of depths from shallow through deep crust and into the lithospheric mantle. Regional- to continent-wide comparisons of these results to geological data are currently hampered by a lack of large-scale geological data compilations. Our research seeks to facilitate ingestion of existing digital structural data (e.g., foliations, lineations, and orientations of major ductile and brittle faults) into EarthCube-funded and USGS-held databases. We will test scaling methods to link representative rock tensors via mapped rock fabric patterns to seismic wavelength-scale anisotropy in order to relate anisotropy to continental strain history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....14313M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....14313M"><span>Canadian Seismicity Catalogue - Western Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mulder, T.</p> <p>2003-04-01</p> <p>The first seismograph station in western Canada was installed in Victoria, BC, in 1898, under the Meteorological Service of Canada. By 1940, seismograph installations in Canada were amalgamated under the Dominion Observatory. The first short-period instruments were installed in western Canada in the early 1950's. The first digital instruments were installed in the mid-1970's. To date there are now 54 digital stations in western Canada that are routinely used in analysis as well as 2 paper-record stations. Detection ability has increased significantly over the past 20 years. Magnitude thresholds for locations vary over space and time reflecting seismicity levels, station distribution, and staffing levels. Currently the magnitude thresholds are (these do not necessarily equate to completeness levels): M=2.5-3.0 for western Canada; M=2.0 in the St Elias Mountains, YT, the northern Coast Mountains, BC, most of southern BC, and southwestern Alberta; M=1.0-1.5 in the Queen Charlotte Islands, southern Coast Mountains, and northern Vancouver Island; M=0.7-0.8 in southern Vancouver Island and the adjacent mainland. Events have been located with a variety of location programs over the years. A number of velocity models have been in use over time, currently resulting in a generic model for all of western Canada, and a model each for offshore, the Queen Charlotte Islands, and Vancouver Island. Recently purchased Antelope software will allow improved ability to maintain and possibly extend current magnitude thresholds as much of the daily analyst housekeeping tasks are decreased. Recent additions to the catalogue are regular computation of P-nodal and moment tensor solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Tectp.410..293P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Tectp.410..293P"><span>Near-vertical seismic reflection image using a novel acquisition technique across the Vrancea Zone and Foscani Basin, south-eastern Carpathians (Romania)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panea, I.; Stephenson, R.; Knapp, C.; Mocanu, V.; Drijkoningen, G.; Matenco, L.; Knapp, J.; Prodehl, K.</p> <p>2005-12-01</p> <p>The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August-September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW-ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as "Texans"), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (˜10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10-25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33A0689S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33A0689S"><span>Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.</p> <p>2017-12-01</p> <p>The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina peninsular and the South China is occurring. Moreover, a low-velocity layer on the top of the lower-crust was also modeled, and its intersection with the fractured zone formed a weak zone where stresses concentrated, and led to those abovementioned earthquakes along the LFZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918037T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918037T"><span>ULF radio monitoring network in a seismic area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru</p> <p>2017-04-01</p> <p>ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low frequency. In both cases we use spectrum analysis in three bands of frequency with different filters. More results showed that tectonic stress generated by seismicity is more important than effects of solar flares. This work was partially supported by the Partnership in Priority Areas Program - PNII, under MEN-UEFISCDI, DARING Project no. 69/2014 and the Nucleu Program - PN 16-35, Project no. 03 01.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T21F..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T21F..02N"><span>Integrated structural model for active arc-continental collision from southern Taiwan to central Taiwan inferred from seismogenic views</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagai, S.; Wang, Y.; Ma, K.; Wu, Y.; Huang, H.</p> <p>2010-12-01</p> <p>The Taiwan Island is located in ongoing arc-continent collision zone between the Philippine Sea Plate and the Eurasian Plate. Numerous geophysical and geological studies have explained the tectonic processes and developed various models. There are two end-member models for Taiwan collision; Thin-skinned model [e.g. Suppe, 1987] and Lithospheric collision model [Wu et al., 1997]. One of most important issue is that collision in Taiwan involves and contributes deformation to what depth. We have presented on this point in central Taiwan through seismological views, including both observed facts and results of tomographic inversion [Nagai et al., 2010 in WPGM 2010]. We have concluded that orogenic process should involve and contribute to depth of 30 km at least in central Taiwan, and suggested ’Upper Crustal Stacking Model’. We have indicated that existence of low-velocity blocks under Central Mountain Range (CMR) is one of the most important factors to understand Taiwan arc-continental collision process. We extend this idea to southern and northern Taiwan and to connect with balanced cross-sections proposed in Ustaszewski et al. [2010]. In this talk, we focused on the structural variation from southern Taiwan to central Taiwan. We have been performing the local double-difference tomography [Zhang and Thurber, 2003] in southern and northern Taiwan using the Central Weather Bureau Seismic Network with temporary array observations. These results in seismic tomography show variation of seismic velocity under the CMR like in central Taiwan. Low-velocity anomalies are also detected. Although it should be checked carefully, velocity blocks segmented some parts and seismic activities seem to be located on their boundaries. The Jiaxian earthquake on 4th Mar, 2010 occurred on one of these segmentation boundaries. The tectonic process in Taiwan arc-continental collision consists of different-scale structures, which means finer resolution structures may be nested with the larger ones. The thin-skinned model is the first step and the finest structural model in collision process, dominated in south and western Taiwan. After thin-skinned process, processes in the UCS model deformed and pushed up these finest structures in thin-skinned model, and then eroded on the CMR. Although this idea for integrated model for Taiwan orogeny should be verified more through geological and geophysical views both, it is pretty simple and can explain many features among various models between two end-members. Previous presentation for central Taiwan Nagai et al., (2010), Integrated structural model for arc-continent collision in Taiwan inferred from seismic velocity, relocated seismicity, and attenuation inverted by seismic tomography, Eos Trans. AGU, 91(26), West. Pac. Geophys. Meet. Suppl., Abstract T22A-06.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.tmp...41T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.tmp...41T"><span>Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick-skinned thrust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanner, David C.; Krawczyk, Charlotte M.</p> <p>2017-04-01</p> <p>Reverse movement on the Harz Northern Boundary Fault was responsible for the Late Cretaceous uplift of the Harz Mountains in northern Germany. Using the known geometry of the surface position and dip of the fault, and a published cross section of the Base Permian horizon, we show that it is possible to predict the probable shape of the fault at depth, down to a detachment level. We use the `inclined-shear' method with constant heave and argue that a shear angle of 30° was most likely. In this case, the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a ca. 4 km depression. Airy-Heiskanen isostatic equilibrium adjustment of the Harz Mountains restores the Base Permian horizon to the horizontal, as well as raising the Moho to a depth of 32 km, a typical value for northern Germany. Restoration also causes a rotation of tectonic fabrics within the Harz Mountains of about 11° clockwise. We show that this model geometry is very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3924K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3924K"><span>The susceptibility analysis of landslides induced by earthquake in Aso volcanic area, Japan, scoping the prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubota, Tetsuya; Takeda, Tsuyoshi</p> <p>2017-04-01</p> <p>Kumamoto earthquake on April 16th 2016 in Kumamoto prefecture, Kyushu Island, Japan with intense seismic scale of M7.3 (maximum acceleration = 1316 gal in Aso volcanic region) yielded countless instances of landslide and debris flow that induced serious damages and causalities in the area, especially in the Aso volcanic mountain range. Hence, field investigation and numerical slope stability analysis were conducted to delve into the characteristics or the prediction factors of the landslides induced by this earthquake. For the numerical analysis, Finite Element Method (FEM) and CSSDP (Critical Slip Surface analysis by Dynamic Programming theory based on limit equilibrium method) were applied to the landslide slopes with seismic acceleration observed. These numerical analysis methods can automatically detect the landslide slip surface which has minimum Fs (factor of safety). The various results and the information obtained through this investigation and analysis were integrated to predict the landslide susceptible slopes in volcanic area induced by earthquakes and rainfalls of their aftermath, considering geologic-geomorphologic features, geo-technical characteristics of the landslides and vegetation effects on the slope stability. Based on the FEM or CSSDP results, the landslides occurred in this earthquake at the mild gradient slope on the ridge have the safety factor of slope Fs=2.20 approximately (without rainfall nor earthquake, and Fs>=1.0 corresponds to stable slope without landslide) and 1.78 2.10 (with the most severe rainfall in the past) while they have approximately Fs=0.40 with the seismic forces in this earthquake (horizontal direction 818 gal, vertical direction -320 gal respectively, observed in the earthquake). It insists that only in case of earthquakes the landslide in volcanic sediment apt to occur at the mild gradient slopes as well as on the ridges with convex cross section. Consequently, the following results are obtained. 1) At volcanic hillside, mild slopes of 7-10 ° gradient with volcanic sediment such as pumice are prone to collapse to be landslide by strong earthquake. 2) The slopes at the mountain ridge with convex cross section where the seismic vibration tends to concentrate are prone to form landslides in case of earthquake. 3) Due to the most severe precipitation of the past or in the aftermath of earthquake, no landslides occurred in these mild gradient slopes or on the mountain ridges with convex cross section. This information will be a great help in the aspect of landslide prediction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.484..318P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.484..318P"><span>Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.</p> <p>2018-02-01</p> <p>The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow gas reservoir. Moreover, we show that both, short-lived (months to years) and long-lived (hundreds of years) events of magmatic fluid injection can lead to critical pressures within the reservoir and potentially trigger fault reactivation. Our sensitivity analysis suggests that observed temporal fluctuations in surface degassing are only indirectly controlled by variations in magmatic degassing and are mainly the result of temporally variable fault permeability. Finally, we suggest that long-term CO2 emission monitoring, seismic tomography and coupled thermal-hydraulic-mechanical modeling are important for CO2-related hazard mitigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U23C0048B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U23C0048B"><span>INTEGRATION OF SHORT-TERM CO-SEISMIC DEFORMATION (InSAR) IN THE GEOMORPHIC DEVELOPMENT OF AN ACTIVELY UPLIFTING FOOTWALL, L’AQUILA EARTHQUAKE (06 APRIL, 2009), ITALY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berti, C.; Pazzaglia, F. J.; Ramage, J. M.; Miccadei, E.; Piacentini, T.</p> <p>2009-12-01</p> <p>Central Italy is a well know region of frequent seismic activity focused along the topographic axis of the Apennines, with several, damaging > M. 5 events in the past decade. Conversely, the integrated effect of these earthquakes in shaping the long term development of the landscape is a poorly understood, but potentially powerful process in describing the region’s paleoseismicity and steadiness of hazardous earthquakes. The recent M. 6.3 L’Aquila earthquake of 06 April, 2009 ruptured a fault in a region of well-known geologic, geomorphic, and geodetic constraining data including hanging wall continental basin Quaternary deposits, footwall stream networks with distinct knickpoints, a dense GPS network, and InSAR interferometry. Collectively, the geodetic data describe the short-term, co- and immediately post-seismic behavior of the earthquake, whereas the geologic and geomorphic data record how discrete rupture events are encoded in the landscape and reflected in processes actively shaping the topography. Envisat and ALOS derived interferograms generated using ROI PAC show close spatial overlap of the InSAR-determined rupture and the Paganica fault, separating a deeply incised, uplifted carbonate footwall block and an actively subsiding Quaternary continental basin. Deposition in the continental basin has been unsteady and is commonly attributed to climate-modulated sediment flux from the uplifted footwall. We note however, that the longitudinal profiles of streams in the footwall are marked by distinct knickpoints that do not correspond to known or obvious lithologic or structural controls. Rather, the knickpoints are located a linear distance from the Paganica fault and at a topographic elevation consistent with detachment-limited stream-power erosional retreat processes instigated by instantaneous base level fall at the mountain front. Furthermore, the magnitude of river incision and elevation of the knickpoints scales with the co-seismic deformation pattern we measure through our InSAR approach. The time of the base level falls can be estimated assuming a model for knickpoint retreat rate and through correlation of knickpoints to lithostratigraphic packages of sediment in the continental basin. These results suggest that the Paganica fault has a characteristic rupture geometry, but an unsteady rupture behavior punctuated by periods of frequent activity interspersed with periods of quiescence that persist for several millennia. We conclude that the Paganica fault is currently in an active rupture phase. Regional geomorphic metrics suggest that as the Paganica fault passes through its current active phase, deformation should be transferred to the Campo Imperatore fault, which is currently in a relatively inactive, interseismic phase. Such a prediction is testable by geodetic techniques including InSAR to capture the slow, but cumulative interseismic component of active extension for this part of the Apennines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013750','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013750"><span>POPO AGIE PRIMITIVE AREA, WYOMING.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pearson, Robert C.; Patten, L.L.</p> <p>1984-01-01</p> <p>A mineral-resource appraisal was made of the Popo Agie Primitive Area and some adjoining lands. This scenic mountainous region of the Wind River Range in west-central Wyoming is composed largely of ancient granitic rocks in which virtually no evidence of mineral deposits was found. Deep crustal seismic-reflection profiles obtained across the southern Wind River Range suggest the possibility that young sedimentary rocks, similar to those at the surface along the northeast flank of the range, are present at depth beneath the granite in the Popo Agie primitive Area. If present, such buried sedimentary rocks could be petroleum bearing. Additional seismic and gravity studies would probably add valuable information, but ultimately very expensive, very deep drilling will be necessary to test this possibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29752497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29752497"><span>Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L</p> <p>2018-05-11</p> <p>Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042575','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042575"><span>Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.</p> <p>2011-01-01</p> <p>We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GMS...132.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GMS...132.....B"><span>Mountain Building in the Uralides: Pangea to the Present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Dennis; Juhlin, Christopher; Puchkov, Victor</p> <p></p> <p>Extending for more than 2000 kilometers from the islands of Novaya Zemlya in the north to the Aral Sea in the south, the Uralide orogen forms the geographical and geological divide between Europe and Asia. For more than a century the Uralides have been one of the key areas of geological research in Russia, and have provided much of its mineral and petroleum wealth for the last 50 years. Nevertheless, the geology and tectonic evolution of the Uralide orogen were relatively unknown in the international literature until recently, when EUROPROBE and GEODE (European Science Foundation scientific programmes) brought together Russian, European, and American earth scientists to work in the Uralides project and the Urals Mineral Province project, respectively. Much of the recent research has focused around two deep seismic surveys, Europrobe's Seismic Reflection Profiling in the Urals (ESRU) survey in the Middle Urals and the multicomponent Urals Seismic Experiment and Integrated Studies (URSEIS) survey in the South Urals. These experiments were accompanied by a large number of geological, geochemical, geochronological, and geophysical studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168555','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168555"><span>Small explosions interrupt 3-year quiescence at Mount St. Helens, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Myers, B.</p> <p>1992-01-01</p> <p>These ash-producing explosions are part of a series of at least 28 explosion-like seismic events that began on August 24, 989. Seismic signals from these events resemble those associated with confirmed ash-producing explosions in April-May 1986. Yet not all of the 1989-1991 events produced ash plumes. Excellent visual observations during four of the events indicated that neither a steam nor ash plume was generated. There is little information about the other events because they occurred when the mountain was not visible, nor was there physical evidence of ashfall or surface changes when scientists visited the crater days to weeks alter. Considerable deformation of the north side of the dome occurred during the series of explosion-like seismic events. Sections of the dome slumped northward and two new vents were formed. However, monitoring the changes associated with individual events was often impossible because several key electronic-distance-meter (EDM) targets and tiltmeters were destroyed by the series of events. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1138/ofr20151138.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1138/ofr20151138.pdf"><span>Preliminary interpretation of industry two-dimensional seismic data from Susitna Basin, south-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lewis, Kristen A.; Potter, Christopher J.; Shah, Anjana K.; Stanley, Richard G.; Haeussler, Peter J.; Saltus, Richard W.</p> <p>2015-07-30</p> <p>The eastern seismic lines show evidence of numerous short-wavelength antiforms that appear to correspond to a series of northeast-trending lineations observed in aeromagnetic data, which have been interpreted as being due to folding of Paleogene volcanic strata. The eastern side of the basin is also cut by a number of reverse faults and thrust faults, the majority of which strike north-south. The western side of the Susitna Basin is cut by a series of regional reverse faults and is characterized by synformal structures in two fault blocks between the Kahiltna River and Skwentna faults. These synforms are progressively deeper to the west in the footwalls of the east-vergent Skwentna and northeast-vergent Beluga Mountain reverse faults. Although the seismic data are limited to the south, we interpret a potential regional south-southeast-directed reverse fault striking east-northeast on the east side of the basin that may cross the entire southern portion of the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860021671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860021671"><span>The Heart Mountain fault: Implications for the dynamics of decollement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melosh, H. J.</p> <p>1985-01-01</p> <p>The Hart Mountain docollement in Northwestern Wyoming originally comprised a plate of rock up to 750m thick and 1300 sq kilometers in area. This plate moved rapidly down a slope no steeper than 2 deg. during Early Eocene time, transporting some blocks at least 50m from their original positions. Sliding occurred just before a volcanic erruption and was probably accompanied by seismic events. The initial movement was along a bedding plane fault in the Bighorn Dolomite, 2 to 3 meters above its contact with the Grove Creek member of the Snowy Range formation. The major pecularity of this fault is that it lies in the strong, cliff-forming Bighorn Dolomite, rather than in the weaker underlying shales. The dynamics of decollement are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013072','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013072"><span>Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olson, C.G.; Doolittle, J.A.</p> <p>1985-01-01</p> <p>Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.G14A..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.G14A..02G"><span>Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.</p> <p>2010-12-01</p> <p>Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP43B0962S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP43B0962S"><span>Structure and builtup of the Middle Bengal Fan at 8°N from multichannel seismic surveys and the IODP Expedition 354 drilling transect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spiess, V.; Bergmann, F.; Schwenk, T.; Lantzsch, H.; Bahk, J. J.; Weber, M. E.; France-Lanord, C.; Klaus, A.</p> <p>2016-12-01</p> <p>IODP Expedition 354 to the Bengal Fan drilled a 320 km long e-W transect at 8°N with 7 drill sites, fully covering the uppermost 150-200 meters of fan deposits at distances of 50 km, originating from Himalayan mountain ranges and the Ganges-Brahmaputra river system. A major goal of this transect approach was to ensure a continuous record of turbiditic material delivered over the last appx. 1 million year, considering frequent longitudinal depocenter shifts of the active channel. By extensively utilizing the new half-APC coring technique, high quality and high recovery cores could be retrieved representing a wide range of grain sizes from hemipelagic deposits through clay rich turbidites to coarse silt and sandy units. Up to medium sand grain sizes were retrieved within the basal units of levees, which correspond to high-reflectivity units in high-resolution multichannel seismic profiles. Finely laminated sections with mm to cm-thick turbidites represents levee formations. At Site U1453 for example, core logging and downhole logging data confirm the representative sampling based on a very good match of several physical property data sets. An expanded section was cored at Site U1454, where the presumably currently active channel has built a levee, which likely represents major sediment supply within the last 30 kyr. A spatial grid of seismic and echosounder data in the vicinity of the active channel reveals a high spatial variability in sedimentation rates and distinct depocenter shifts in response to changes in channel geometry. Site U1452 has provided a full record a levee growth including interlevee sedimentation, sandy basal units characterized by a lobe formation, and a pronounced fining upward trend following the phase of channel erosion and levee builtup. From all sites, detailed comparisons of physical and sedimentological shipboard results with seismic data will be presented. Expedition 354 has provided a unique sample and data set to better understand fan deposition and channel-levee growth including silt and sand grain sizes. It will also provide valuable constraints on the volume, nature and composition of suspension flows contributing to fan growth in the Middle Bengal Fan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711826P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711826P"><span>Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio</p> <p>2015-04-01</p> <p>Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic events (magnitude >3 up to 5.4) experienced in the Tuscany, Emilia-Romagna and Umbria regions during the period 2012-2014, and these geochemical anomalies. Changes in pH (decreasing) and PCO2 (increasing) are generally observed from a few months to a few weeks before the main shock. This trend has been recognized for the Parma quake of 27 January 2012 (M = 5.4), for the Pieve Fosciana quake of 13 January 2013 (M = 4.8), for the Garfagnana-Lunigiana seismic sequence started June 21, 2013 (Mmax = 5.2), for the Montefeltro seismic sequence started July 11, 2013 (Mmax = 3.9), for the Gubbio seismic sequences of July and December 2013 (Mmax = 3.9), for the Città di Castello seismic sequences of April 2013 and December 2013 (Mmax = 3.9), for the Casentino seismic sequence started October 17, 2014 (Mmax = 3.5), and for the Chianti seismic sequence started December 19, 2014 (Mmax = 4.1). These features suggest that the selected mineral springs can be considered as appropriate sites for the search of geochemical earthquake precursors. Further investigations focused on in-depth analysis of signals are currently in progress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzPSE..54..415L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzPSE..54..415L"><span>Peculiarity of the Relationship between the Seismicity and Tectonic Structure of the Pyrenees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lukk, A. A.; Shevchenko, V. I.</p> <p>2018-05-01</p> <p>The geotectonic position of the Pyrenees mountain massif in the Alpine-Indonesian mobile belt is considered. The geological data testify to the formation of the structure of the Pyrenees in the setting of a subhorizontal compression perpendicular to the ridge. The commonly accepted interpretation considers this compression in the context of plate tectonic notions related to the collision between the Iberian and Eurasian lithospheric plates resulting from the convergence of the Eurasian and African plates. However, this interpretation is challenged by the the geodetic and seismological measurements. The GPS measurements suggest a certain cross-strike spreading rather than shortening of the Earth's crust; the focal mechanisms of the earthquakes indicate the predominance of a subhorizontal extension perpendicular to the strike of the Pyrenees mountain range. The processes of the gravitational collapse of the mountain chain during the isostatic upwelling of the orogenic crust are considered as the most probable cause of this spreading by a number of the authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6452767','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6452767"><span>Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Isachsen, Y.W.</p> <p>1978-09-27</p> <p>Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T23A2878D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T23A2878D"><span>Shear deformation in the northeastern margin of the Izu collision zone, central Japan, inferred from GPS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doke, R.; Harada, M.; Miyaoka, K.; Satomura, M.</p> <p>2016-12-01</p> <p>The Izu collision zone, which is characterized by the collision between the Izu-Bonin arc (Izu Peninsula) and the Honshu arc (the main island of Japan), is located in the northernmost part of the Philippine Sea (PHS) plate. Particularly in the northeastern margin of the zone, numerous large earthquakes have occurred. To clarify the convergent tectonics of the zone related to the occurrence of these earthquakes, in this study, we performed Global Positioning System (GPS) observations and analysis around the Izu collision zone. Based on the results of mapping the steady state of the GPS velocity and strain rate fields, we verified that there has been wide shear deformation in the northeastern part of the Izu collision zone, which agrees with the maximum shear directions in the left-lateral slip of the active faults in the study area. Based on the relative motion between the western Izu Peninsula and the eastern subducting forearc, the shear zone can be considered as a transition zone affected by both collision and subduction. The Higashi-Izu Monogenic Volcano Group, which is located in the southern part of the shear deformation zone, may have formed as a result of the steady motion of the subducting PHS plate and the collision of the Izu Peninsula with the Honshu arc. The seismic activities in the Tanzawa Mountains, which is located in the northern part of the shear deformation zone, and the eastern part of the Izu Peninsula may be related to the shear deformation zone, because the temporal patterns of the seismic activity in both areas are correlated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990103108&hterms=sauber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsauber','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990103108&hterms=sauber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsauber"><span>Short-Term Uplift Rates and the Mountain Building Process in Southern Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sauber, Jeanne; Herring, Thomas A.; Meigs, Andrew; Meigs, Andrew</p> <p>1998-01-01</p> <p>We have used GPS at 10 stations in southern Alaska with three epochs of measurements to estimate short-term uplift rates. A number of great earthquakes as well as recent large earthquakes characterize the seismicity of the region this century. To reliably estimate uplift rates from GPS data, numerical models that included both the slip distribution in recent large earthquakes and the general slab geometry were constructed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5720624-model-development-rif-prerif-basin-implications-hydrocarbon-prospectivity-northern-morocco','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5720624-model-development-rif-prerif-basin-implications-hydrocarbon-prospectivity-northern-morocco"><span>Model of the development of the Rif/Prerif basin and implications for the hydrocarbon prospectivity of northern Morocco</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Munro, S.E.</p> <p>1988-08-01</p> <p>The geology of northern Morocco is dominated by the mountainous areas of the Rif and the Prerif. These mountains form the southern half of the Rif-Betic arc. The surface geology of the Prerif area is characterized by the allochthonous mass of the Prerif nappe, which is variously described as a tectonic melange, an olistostrome, or a combination of the two. It is structurally extremely complex and this fact has, in the past, deterred international companies from exploring for oil in the area. Recently acquired seismic data shed some light on the structure within the Prerif nappe; it tends to supportmore » a tectonic origin rather than one based on gravity drive. In this framework, a model is proposed for the tectonic development of the Rif/Prerif in particular and the Rif/Betic arc in general, based upon the interaction of the Iberian, Moroccan, and Alboran plates from the Triassic to the Neogene. The seismic data also show, however, that a sizeable Mesozoic trough exists beneath the mass of the Prerif nappe. In addition, several piggyback basins are developed above the nappe. Therefore, considerable potential for oil and gas discoveries exists both above and below the nappe.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16541027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16541027"><span>Geophysics: hot fluids or rock in eclogite metamorphism?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bjørnerud, M G; Austrheim, H</p> <p>2006-03-16</p> <p>The mechanisms by which mafic rocks become converted to denser eclogite in the lower crust and mantle are fundamental to our understanding of subduction, mountain building and the long-term geochemical evolution of Earth. Based on larger-than-expected gradients in argon isotopes, Camacho et al. propose a new explanation--co-seismic injection of hot (700 degrees C) aqueous fluids into much colder (400 degrees C) crust--for the localized nature of eclogite metamorphism during Caledonian crustal thickening, as recorded in the rocks of Holsnøy in the Bergen arcs, western Norway. We have studied these unusual rocks, which were thoroughly dehydrated under granulite facies conditions during a Neoproterozoic event (about 945 million years (945 Myr) ago); we also concluded that fracture-hosted fluids were essential as catalysts and components in the conversion to eclogite about 425 Myr ago. However, we are sceptical of the assertion by Camacho et al. that eclogite temperatures were reached only in the vicinity of fluid-filled fractures. Determining whether these rocks were strong enough to fracture at depths of 50 km because they were cold or because they were very dry is crucial to understanding the mechanics of the lower crust in mountain belts, including, for example, the causes of seismicity in the Indian plate beneath the modern Himalayas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13B0513Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13B0513Y"><span>Crustal velocity structure of the Northern Victoria Land, Antarctica, from ambient seismic noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoo, H. J.; Park, Y.; Lee, W. S.; Graw, J. H.; Hansen, S. E.; Kang, T. S.</p> <p>2017-12-01</p> <p>A shear wave velocity model of the Northern Victoria Land, Antarctica, was derived using Rayleigh-wave group velocity dispersions estimated from the cross correlation of ambient seismic noise. The continuous data, from January to November 2015, recorded on 29 broadband stations operated by Korea Polar Research Institute and Alabama University were used for retrieving the fundamental mode Rayleigh-wave Green's functions of each station pair. Rayleigh-wave group dispersions at period ranging from 3 to 23 s were determined by applying the multi-filter analysis technique. The measured group velocities were inverted to obtain 2-D group velocity maps using a fast marching method. We constructed a pseudo-3-D shear velocity model of the study region using 1-D shear velocity inversions at each node followed by a linear interpolation. The resulting shear velocity maps and cross-sections showed the significant velocity differences in the crust across the East Antarctica, Transantarctic Mountains, and the coastal region. The velocity changes are well correlated with the aeromagnetic lineaments, especially in shallow depth. The velocities in the Transantarctic Mountains are relatively high at shallow depth and lower at deeper depth, while those of the coastal region are relatively low in shallow depth and higher at deeper depth, implying thin crust over this area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GGG....15..975B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GGG....15..975B"><span>Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.</p> <p>2014-04-01</p> <p>The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH53B2004K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH53B2004K"><span>Increasing of Gas Bubbling at Wariishi Flowing Spring, Central Japan, before and after the 2014 Ontake Volcano Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kimata, F.; Tasaka, S.; Asai, Y.</p> <p>2016-12-01</p> <p>Wariishi Spa is locating at Atotsugawa active fault, and it is an flowing spring from the 850m depth by the bore hole. The spring is coming from the rain fall through the geological boundary. Discharge was measured 100L/minute by manual every week in 1977. In 1990, measurement system was updated to 1Hz by electromagnetic flowmeter system. Co-seismic discharge rises are measured for about 100 examples of the earthquake occurrence in around area. The discharge rise is decreasing asymptotic convergence with time. In 2011 Tohoku Earthquake, the discharge of spring is a rise of 30 L/minutes, and it took 1 and half year to return to 20 L/minute. Ontake Volcano is one of the active volcanoes in same mountain range, but it is located about 50 km south from the Wariishi spa. There are three active volcanoes between Wariishi Spa and Ontake Volcano. The volcano was erupted in a phreatic explosion on September 27, 2014. There is no observation of the discharge change at the eruption in the hot spring. There are other hot spring systems in Wariishi spa. The spa has a periodic spring with one to two-hour frequencies. The periodic frequencies are depended on the discharge volume. Therefore, at the co-seismic discharge rise, the shortenings of periodic frequencies are observed. Hence, the mechanism of main discharge and periodic spring is located at the depth of 850 m. Based on discussion on time series of discharge spa, there are observed many pulsed noises between the periodic springs. The noises are caused by gas bubbling from the precise examinations. It is suggested that gas bubbling is different mechanism with periodic spring, because no effects on the periodic spring frequency. Bubbling is sourced from more deep than 850 m. Gas bubbling was observed about 50 times between the periodic spa around the Ontake volcano eruption. There is no report on such gas bubbling rise since 2012. Discussed above, it is suggested some changes of strain field at central Japan, especially in the mountain region before and after the 2014 Ontake volcano eruption. As result, gas bubbling was rise and Ontake volcano was erupted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11C0363K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11C0363K"><span>Three-dimensional velocity models of the Mount St. Helens magmatic system using the iMUSH active-source data set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiser, E.; Levander, A.; Zelt, C. A.; Palomeras, I.; Creager, K.; Ulberg, C. W.; Schmandt, B.; Hansen, S. M.; Harder, S. H.; Abers, G. A.; Crosbie, K.</p> <p>2017-12-01</p> <p>Building upon previously published 2D results, this presentation will show the first 3D velocity models down to the Moho using the iMUSH (imaging Magma Under St. Helens) active-source seismic data set. Direct P and S wave travel times from 23 borehole shots recorded at approximately 6000 seismograph locations are used to model Vp, Vs, and Vp/Vs over an area extending approximately 75 km from the edifice of Mount St. Helens and down to approximately 15 km depth. At shallow depths, results show several high and low velocity anomalies that correspond well with known geological features. These include the Chehalis Basin northwest of Mount St. Helens, and the Silver Star Mountain, Spirit Lake, and Spud Mountain plutons. Starting at 4 km depth, low velocities and high Vp/Vs values are observed near Mount St. Helens, which may be associated with shallow magmatic fluids. High Vp/Vs values are also observed beneath the Indian Heaven Volcanic Field southeast of Mount St. Helens. At the regional scale, high amplitude north/south trending low and high velocity features extend from the western margin of the resolved models to approximately 30 km west of Mount St. Helens. In general these high and low velocity features also correspond to high and low Vp/Vs anomalies, respectively. These results are in agreement with previous studies that conclude that the accreted terrane Siletzia is composed of multiple igneous bodies interspersed with sedimentary units in this region. Another regional feature of interest is a broad low Vp/Vs area between Mount St. Helens, Mount Adams, and Mount Rainier that spatially correlates with the Southern Washington Cascades Conductor, indicating a non-magmatic origin to this body at shallow and mid-crustal depths. In addition to these shallow results, preliminary 3D velocity models of the entire crust will be presented that utilize both direct and reflected seismic phases from the Moho and other mid-crustal discontinuities. These models will constrain the lateral extents of lower-crustal high and low velocity features observed in previous 2D results. This information will be critical for understanding the distribution of cumulate bodies, magma reservoirs, and accreted terranes in the lower crust, and how these features have affected recent volcanic activity in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S33A2059P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S33A2059P"><span>The ambient noise and earthquake surface wave tomography of the North China Craton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, J.; Obrebski, M. J.; Wu, Q.; Li, Y.</p> <p>2010-12-01</p> <p>The North China Craton (NCC) is unique for its unusual Phanerozoic tectonic activity. The NCC was internally tectonically stable until Jurassic when its southern margin collided with the Yangzte Craton. Subsequently, the eastern and central part of the NCC underwent distinctive evolutions during the Late Mesozoic and Cenozoic. In contrast to the Erdos block located in the western part of NCC and that seems to have preserved the typical features of a stable craton, the eastern NCC has experienced significant lithospheric thinning as evidenced by widespread magmatism activity and normal faulting, among other manifestations. The eastern part of the NCC is also one of the most seismically active intracontinental regions in the world. Here we focus on the region that comprises the North China Basin and the Yanshan-Taihang Mountains, two major tectonic units located to the east and in the center of the NCC, respectively. We combine ambient noise data and ballistic surface wave data recorded by the dense temporary seismic array deployed in the North China to obtain phase velocity maps at periods ranging from 5s to 60s. 1587 and 3667 ray paths were obtained from earthquake surface waves and ambient noise correlations, respectively. The phase velocity distribution was reconstructed with grid size 0.25x0.25 degrees and 0.5x0.5 degrees from ambient noise tomography and earthquake surface wave tomography. For periods shorter than 15s, the phase velocity variations are well correlated with the principal geological units in the NCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20s to 30s, the phase velocity variations seem to be related to the local variations of the crustal thickness. For the periods above 30s, the strength of the phase velocity variations decreases with increasing periods, which may imply that the uppermost mantle is much more homogeneous than the crust. In contrast with typical phase velocities documented worldwide in continental cratons, the phase velocities we measured within the NCC are low. Their range is actually similar to that of the typical phase velocities observed in rift regions around the globe (eg, Rio Grande rift), indicating that the lithosphere of the central and eastern NCC has apparently been eroded and modified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGeo..tmp...22H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGeo..tmp...22H"><span>The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen</p> <p>2018-04-01</p> <p>The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730013015&hterms=mortar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmortar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730013015&hterms=mortar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmortar"><span>Active seismic experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kovach, R. L.; Watkins, J. S.; Talwani, P.</p> <p>1972-01-01</p> <p>The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26657245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26657245"><span>Anthropogenic disruption to the seismic driving of beach ridge formation: The Sendai coast, Japan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goff, James; Knight, Jasper; Sugawara, Daisuke; Terry, James P</p> <p>2016-02-15</p> <p>The expected geomorphic after-effects of the Mw 9.0 Tōhoku-oki earthquake of 11 March 2011 (eastern Japan) are summarized by a schematic model of seismic driving, which details seismogenic disturbances to sediment systems that affect the rate or timing of sediment delivery to coastlines over timescales of 10(2)-10(4)years. The immediate physical environmental responses to this high-magnitude earthquake included a large tsunami and extensive region-wide slope failures. Normally, slope failures within mountain catchments would have significant impacts on Japan's river and coastal geomorphology in the coming decades with, for example, a new beach ridge expected to form within 20-100 years on the Sendai Plain. However, human activity has significantly modified the rate and timing of geomorphic processes of the region, which will have impacts on likely geomorphic responses to seismic driving. For example, the rivers draining into Sendai Bay have been dammed, providing sediment traps that will efficiently capture bedload and much suspended sediment in transit through the river system. Instead of the expected ~1 km of coastal progradation and formation of a ~3m high beach ridge prior to the next large tsunami, it is likely that progradation of the Sendai Plain will continue to slow or even cease as a result of damming of river systems and capture of river sediments behind dams. The resulting reduction of fluvial sediment delivery to the coast due to modification of rivers inadvertently makes seawalls and other engineered coastal structures even more necessary than they would be otherwise. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JESS..126..116S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JESS..126..116S"><span>Mapping debris flow susceptibility using analytical network process in Kodaikkanal Hills, Tamil Nadu (India)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sujatha, Evangelin Ramani; Sridhar, Venkataramana</p> <p>2017-12-01</p> <p>Rapid debris flows, a mixture of unconsolidated sediments and water travelling at speeds > 10 m/s are the most destructive water related mass movements that affect hill and mountain regions. The predisposing factors setting the stage for the event are the availability of materials, type of materials, stream power, slope gradient, aspect and curvature, lithology, land use and land cover, lineament density, and drainage. Rainfall is the most common triggering factor that causes debris flow in the Palar subwatershed and seismicity is not considered as it is a stable continental region and moderate seismic zone. Also, there are no records of major seismic activities in the past. In this study, one of the less explored heuristic methods known as the analytical network process (ANP) is used to map the spatial propensity of debris flow. This method is based on top-down decision model and is a multi-criteria, decision-making tool that translates subjective assessment of relative importance to weights or scores and is implemented in the Palar subwatershed which is part of the Western Ghats in southern India. The results suggest that the factors influencing debris flow susceptibility in this region are the availability of material on the slope, peak flow, gradient of the slope, land use and land cover, and proximity to streams. Among all, peak discharge is identified as the chief factor causing debris flow. The use of micro-scale watersheds demonstrated in this study to develop the susceptibility map can be very effective for local level planning and land management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tecto..37..758C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tecto..37..758C"><span>Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cadenas, P.; Fernández-Viejo, G.; Pulgar, J. A.; Tugend, J.; Manatschal, G.; Minshull, T. A.</p> <p>2018-03-01</p> <p>The Alpine Pyrenean-Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill-hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first-order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift-related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.712..523S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.712..523S"><span>Shallow and deep lithosphere slabs beneath the Dinarides from teleseismic tomography as the result of the Adriatic lithosphere downwelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Šumanovac, Franjo; Markušić, Snježana; Engelsfeld, Tihomir; Jurković, Klaudia; Orešković, Jasna</p> <p>2017-08-01</p> <p>The study area covers the Dinarides and southwestern part of the Pannonian basin as the marginal zone between the Adriatic microplate (African plate) and the Pannonian tectonic segment (Eurasian plate). We created a three-dimensional seismic velocity model to 450 km depth using teleseismic tomography. Our travel-time dataset was collected by means of 40 seismic stations from the ORFEUS database and Croatian Seismological Survey database. A set of 90 teleseismic earthquakes were selected in the time range 2014-2015, and relative P-wave travel-time residuals were calculated. For the first time the seismic P-wave velocity model of a relatively high resolution on the entire Dinaridic mountain belt was obtained. Based on this model, a more reliable insight in the relations of the lithosphere plates has been achieved. We imaged a fast velocity anomaly extending underneath the entire Dinaridic mountain belt which indicates cold, rigid materials. The anomaly is steeply sloping towards the northeast and directly indicates the sinking of the Adriatic microplate underneath the Pannonian tectonic segment. In the Northern Dinarides the anomaly extends to the depth of 250 km, whereas in the Southern Dinarides it covers greater depths, up to 450 km. The shallow Adriatic slab extends along the External Dinarides, while the deep Adriatic slab extends beneath the Internal Dinarides and ophiolite zones in the area of central and southern Dinarides. Different slab depths are interpreted as the faster convergence of the plate in the southern Dinarides than in the northern, or the convergence of the plates had started in the southern part and systematically developed to the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41B0627A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41B0627A"><span>Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.</p> <p>2017-12-01</p> <p>The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188357','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188357"><span>Regional seismic-wave propagation from the M5.8 23 August 2011, Mineral, Virginia, earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, Fred; Mooney, Walter D.</p> <p>2015-01-01</p> <p>The M5.8 23 August 2011 Mineral, Virginia, earthquake was felt over nearly the entire eastern United States and was recorded by a wide array of seismic broadband instruments. The earthquake occurred ~200 km southeast of the boundary between two distinct geologic belts, the Piedmont and Blue Ridge terranes to the southeast and the Valley and Ridge Province to the northwest. At a dominant period of 3 s, coherent postcritical P-wave (i.e., direct longitudinal waves trapped in the crustal waveguide) arrivals persist to a much greater distance for propagation paths toward the northwest quadrant than toward other directions; this is probably related to the relatively high crustal thickness beneath and west of the Appalachian Mountains. The seismic surface-wave arrivals comprise two distinct classes: those with weakly dispersed Rayleigh waves and those with strongly dispersed Rayleigh waves. We attribute the character of Rayleigh wave arrivals in the first class to wave propagation through a predominantly crystalline crust (Blue Ridge Mountains and Piedmont terranes) with a relatively thin veneer of sedimentary rock, whereas the temporal extent of the Rayleigh wave arrivals in the second class are well explained as the effect of the thick sedimentary cover of the Valley and Ridge Province and adjacent Appalachian Plateau province to its northwest. Broadband surface-wave ground velocity is amplified along both north-northwest and northeast azimuths from the Mineral, Virginia, source. The former may arise from lateral focusing effects arising from locally thick sedimentary cover in the Appalachian Basin, and the latter may result from directivity effects due to a northeast rupture propagation along the finite fault plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912778K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912778K"><span>Seismotectonic zoning of Azerbaijan territory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad</p> <p>2017-04-01</p> <p>Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Tectp.476..226F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Tectp.476..226F"><span>Active transpression in the northern Calabria Apennines, southern Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferranti, L.; Santoro, E.; Mazzella, M. E.; Monaco, C.; Morelli, D.</p> <p>2009-10-01</p> <p>An integrated analysis of geomorphologic and structural data, offshore seismic profiles and local network seismicity, is used to shed light on the hitherto poorly known active deformation field that affects the Southern Apennines orogen in northern Calabria region. In the Southern Apennines, Middle Pleistocene waning of Miocene-Early Pleistocene thin-skinned frontal thrust belt motion toward the Apulian foreland to the NE was coeval to onset of regional uplift, which is documented by flights of raised marine terraces. Short-wavelength (˜ 5-10 km) and amplitude (˜ 20-50 m) undulations are superposed to the regional uplift (˜ 100 km length and ˜ 500 m amplitude scale) profile of Middle-Upper Pleistocene marine terraces on the Ionian Sea coast of northern Calabria stretching along the borders of the Sila and Pollino mountain ranges and across the intervening Sibari coastal plain. The secondary undulations spatially coincide with the last generation of ˜ W- to ˜ WNW-striking folds traced in bedrock and locally within Early to Middle Pleistocene continental to transitional deposits. The very recent activity of these structures is highlighted by a range of fluvial geomorphic anomalies and by involvement in folding and locally transpressional faulting of the Middle Pleistocene and younger depositional sequences submerged beneath the continental shelf. We argue that the local-scale, but pervasive undulations in the deformation profile of marine terraces represent shallow-crustal folds grown within a recent and still active transpressional field. A major structural culmination bound by fore- and retro-verging transpressional shear zones is represented by the Pollino mountain range and its offshore extension in the Amendolara ridge, and a further SW-directed transpressional belt is found in northern Sila and adjacent sea bottom. Epicenter distribution and focal solutions of low- to moderate crustal earthquakes illuminate the two NW-SE trending structural belts beneath the Amendolara ridge and northern Sila, where partitioning between thrust and left strike-slip motion occurs in response to ˜ E to ˜ NE directed shortening. A local ˜ NW-SE extension is recorded by fault-kinematic analysis on NE-SW striking fault segments parallel to the coast on the eastern flank of Pollino. These small-length normal faults do not form a through-going lineament, rather they accommodate the seaward collapse of the uppermost crust above the deeper shortening compartment. Conversely, the active transpression testified by geomorphic, structural and seismicity data is accommodated along deep-seated oblique back-thrusts that involve the Apulian foreland plate underlying the now inactive thin-skinned accretionary wedge down to near-Moho depths. In light of the tight interlacing between regional and local components of deformation affecting the marine terraces, we suggest that the large-scale uplift in this sector of Calabria may reflect whole crustal-scale folding. The novel seismotectonic frame reconstructed for this region is consistent with GPS velocities suggesting that large part of geodetic shortening detected between the Apennines and the Apulian block on the eastern side of southern Italy might be accommodated in northern Calabria.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016653','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016653"><span>Application of uphole data from petroleum seismic surveys to groundwater investigations, Abu Dhabi (United Arab Emirates)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Woodward, D.; Menges, C.M.</p> <p>1991-01-01</p> <p>Velocity data from uphole surveys were used to map the water table and the contact at the base dune sand/top alluvium as part of a joint National Drilling Company-United States Geological Survey Ground Water Research Project in the Emirate of Abu Dhabi. During 1981-1983, a reconnaissance seismic survey was conducted for petroleum exploration in the eastern region of Abu Dhabi. Approximately 2800 kilometers of seismic data, consisting of 92 lines, were acquired in the 2500 km2 concession area near Al Ain. Uphole surveys were conducted about 2 km apart along each seismic line, and were used to calculate weathering corrections required to further process in the seismic data. Approximately 1300 uphole surveys were completed in the concession area between March 1981 and June 1983. Reinterpretation of the velocity profiles derived from the uphole surveys provided data for determining the following subsurface layers, listed in descending order: (1) a surficial, unconsolidated weathering layer with a velocity from 300 to 450 m/s; (2) surficial dune sand, from 750 to 900 m/s; (3) unsaturated, unconsolidated alluvium, from 1000 to 1300 m/s; and (4) saturated, unconsolidated alluvium, from 1900 to 2200 m/s. Two interfaces-the water table and the base dune sand/top alluvium - were identified and mapped from boundaries between these velocity layers. Although the regional water table can fluctuate naturally as much as 3 m per year in this area and the water-table determinations from the uphole data span a 27-month period, an extremely consistent and interpretable water-table map was derived from the uphole data throughout the entire concession area. In the northern part of the area, unconfined groundwater moves northward and northwestward toward the Arabian Gulf; and in the central and southern parts of the area, groundwater moves westward away from the Oman Mountains. In the extreme southern area east of Jabal Hafit, groundwater moves southward into Oman. The map of the base dune sand/top alluvium suggests a buried paleodrainage network trending westward to southwestward away from the Oman Mountains. These paleodrainages, now buried by dune sand, probably contain alluvial fill and are logical targets for groundwater exploration. ?? 1991.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014802','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014802"><span>DEFORESTATION AND LANDSLIDES IN YUNNAN, CHINA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wieczorek, Gerald F.; Wu, Jishan; Li, Tianchi</p> <p>1987-01-01</p> <p>Landslides historically have caused severe erosion problems in the Xiao River drainage region of northeastern Yunnan Province, China, that hence resulted in serious economic and social consequences. Owing to monsoonal storms of high rainfall intensity, the erosion potential is high in this mountainous, seismically active region. Landslides transported large quantities of materials into the ravines. During intense storms, high runoff from the deforested areas has mobilized this material into debris flows. Where these flows emerged onto flatter slopes in the lower parts of the watersheds, the channels were too small to hold them, so farmland and villages were inundated. Debris flows in this region during June-August 1985 killed 12 people, damaged roads and the main rail line to Kunming, the capital of Yunnan Province, inundated farmland, and overflowed debris-retention structures. To mitigate these severe erosion problems, several different methods have been used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1083/e/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1083/e/"><span>Seismicity of the Earth 1900-2007, Nazca Plate and South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rhea, Susan; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Tarr, Arthur C.; Benz, Harley</p> <p>2010-01-01</p> <p>The South American arc extends over 7,000 km, from the Chilean triple junction offshore of southern Chile to its intersection with the Panama fracture zone, offshore the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their decent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 mm/yr in the south to approximately 70mm/yr in the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JAESc..35..391S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JAESc..35..391S"><span>The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safaei, Homayon</p> <p>2009-08-01</p> <p>The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAfES.111..399K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAfES.111..399K"><span>Multi-phase inversion tectonics related to the Hendijan-Nowrooz-Khafji Fault activity, Zagros Mountains, SW Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kazem Shiroodi, Sadjad; Ghafoori, Mohammad; Faghih, Ali; Ghanadian, Mostafa; Lashkaripour, Gholamreza; Hafezi Moghadas, Naser</p> <p>2015-11-01</p> <p>Distinctive characteristics of inverted structures make them important criteria for the identification of certain structural styles of folded belts. The interpretation of 3D seismic reflection and well data sheds new light on the structural evolution and age of inverted structures associated to the Hendijan-Nowrooz-Khafji Fault within the Persian Gulf Basin and northeastern margin of Afro-Arabian plate. Analysis of thickness variations of growth strata using "T-Z plot" (thickness versus throw plot) method revealed the kinematics of the fault. Obtained results show that the fault has experienced a multi-phase evolutionary history over six different extension and compression deformation events (i.e. positive and negative inversion) between 252.2 and 11.62 Ma. This cyclic activity of the growth fault was resulted from alteration of sedimentary processes during continuous fault slip. The structural development of the study area both during positive and negative inversion geometry styles was ultimately controlled by the relative motion between the Afro-Arabian and Central-Iranian plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V53E2670W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V53E2670W"><span>May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.</p> <p>2011-12-01</p> <p>Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011 eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43B2841G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43B2841G"><span>High resolution P-wave velocity structure beneath Northeastern Tibet from multiscale seismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, B.; Gao, X.; Chen, J.; Liu, Q.; Li, S.</p> <p>2016-12-01</p> <p>The continuing collision of the northward advancing Indian continent with the Eurasia results in the high elevations and thickened Tibetan Plateau. Numerous geologic and geophysical studies engaged in the mechanics of the Tibetan Plateau deformation and uplift. Many seismic experiments were deployed in south and central Tibet, such as INDEPTH and Hi-climb, but very few in northeastern Tibet. Between 2013 and 2015, The China Seismic Array-experiment operated 670 broadband seismic stations with an average station spacing of 35km. This seismic array located in northeastern Tibet and covered the Qilian Mountains, Qaidam Basin, and part of Songpan-Ganzi, Gobi-Alashan, Yangzi, and Ordos. A new multiscale seismic traveltime tomography technique with sparsity constrains were used to map the upper mantle P-wave velocity structure beneath northeastern Tibet. The seismic tomography algorithm employs sparsity constrains on the wavelet representation velocity model via the L1-norm regularization. This algorithm can efficiently deal with the uneven-sampled volume, and give multiscale images of the model. Our preliminary results can be summarized as follows: 1) in the upper mantle down to 200km, significate low-velocity anomalies exist beneath the northeastern Tibet, and slight high-velocity anomalies beneath the Qaidam basin; 2) under Gobi-Alashan, Yangzi, and Ordos, high-velocity anomalies appear to extend to a depth of 250km, this high-velocity may correspond to the lithosphere; 3) there exist relative high-velocity anomalies at depth of 250km-350km underneath north Tibet, which suggests lithospheric delamination; 4) the strong velocity contrast between north Tibet and Yangzi, Gabi-Alashan is visible down to 200km, which implies the north Tibet boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513663S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513663S"><span>Seismotectonics of the Pamir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schurr, Bernd; Sippl, Christian; Yuan, Xiaohui; Mechie, James; Lothar, Ratschbacher</p> <p>2013-04-01</p> <p>The Pamir Mountains form a complex orographic node north of the western Himalayan Syntaxis. Due to the Pamir's remote location, crustal tectonics of the region is not well studied. We report new data on distribution and kinematics of crustal earthquakes in the Pamir and its surroundings. Our data set stems from a deployment of seismometers between 2008-2010 that covered the SW Tien Shan, Pamir and Tajik basin. We detected and carefully relocated several thousand crustal earthquakes that are confined to the uppermost 20 km of the crust and thereby clearly separated from Pamir's unique intermediate depth seismicity. For the larger earthquakes (M<3) we use both full waveform inversion and first motion polarities to determine source mechanisms. A string of earthquakes outlines the thrust system along the northern Pamir's perimeter. In the east, where the Pamir collides with the Tien Shan, the M6.7 Nura earthquake activated several faults. Whereas the main shock shows almost pure reverse faulting on a south dipping thrust, many aftershocks also show sinistral strike-slip faulting along a NE striking lineamnet. In the centre, where the Pamir overthrusts the intramontane Alai valley, micro-seismicity recedes southward from the Frontal and Trans Alai thrust systems. The largest of these earthquakes show mostly strike-slip mechanisms. Further west, where the Pamir thrust system bends southward, earthquakes show thrust mechanisms again with strikes following the oroclinal structures. Inside the Pamir a NE striking lineament runs from the eastern end of Lake Sarez across Lake Kara Kul to the Pamir thrust system. Source mechanisms along the lineament are sinistral strike slip and transtensional. This lineament approximately separates the deeply incised western Pamir, which shows significant seismic deformation, from the relatively aseismic eastern Pamir. In the western Pamir earthquakes cluster along approximately the Vanch valley and near Lake Sarez. Diffuse seismicity is also visible beneath the SW Pamir's basement domes. Source mechanisms exhibit mostly sinistral strike slip faulting on NE striking or conjugate planes indicating north-south compression and east-west extension. At the Pamir's western margin, where the mountains merge into the Tajik basin's fold and thrust belt, we observe numerous earthquakes with mechanisms exhibiting EW slip on subhorizontal planes. We interpret this as movement along the Jurassic evaporite decollement that detaches the sedimentary section from the basement. Our data indicate that in the western Pamir NS compression is accommodated by westward escape, i.e. the western Pamir is pushed into the Tajik depression ontop of a weak evaporite detachment. This is in accordance with the observed GPS displacement vectors rotating anticlockwise from NS to EW when traversing from the eastern Pamir into the Tajik depression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T41B2576L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T41B2576L"><span>The gravitational extension in the Central Range of Taiwan induced by the instability of intrinsic buoyancy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo, C.; Kuo-Chen, H.; Hsu, S.</p> <p>2013-12-01</p> <p>The active Taiwan orogen is situated in the tectonic convergence between the Philippine Sea plate and Eurasian passive margin. The thick crust under the Central Range of Taiwan was demonstrated by the results from the TAIGER project during 2004-2009. The results show that the deepest moho (~60 km thickness) is located at the eastern flank of the Central Range, while the averaged crust thickness is over 50 km beneath the whole mountain ranges from south to north. Physically the thickened crust provides an excess of the gravitational potential energy (GPE) with respect to the vicinity, implying that the Central Range itself behaves intrinsic extension stress environment. However, due to limited geophysical information such a phenomenon was not well evaluated and not considered to be one of the important factors for the Taiwan mountain building process. In this study, we calculate the GPE of the whole Taiwan region from recent Vp tomography via seismic velocity-rock density empirical relationship. From the catalogue of the earthquake focal mechanisms of Broadband Array in Taiwan for Seismology (BATS), a quite number of extensional earthquakes are distributed in the 10-40 km deep in and around the Central Range, where the crustal potential energy is distinctively higher. Besides, the principal axes of these extensional earthquakes are mainly normal to the large gradient of crust ΔGPE at the edge of Central Range. Accordingly, we conclude that the Central Range is undergoing the mountain building by the strong plate collision; meanwhile it is also bearing the gravitationally instable extension due to inherent buoyant thickening crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.1824P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.1824P"><span>Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.</p> <p>2017-05-01</p> <p>We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs < 4.3) that we interpret as asthenosphere that has replaced the continental margin lithosphere which was viscously removed by Alboran plate subduction. The southernmost part of the model features an anomalously thin lithosphere beneath the Atlas Mountains that could be related to lateral flow induced by the Alboran slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029986','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029986"><span>Late Quaternary alluviation and offset along the eastern Big Pine fault, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeLong, S.B.; Minor, S.A.; Arnold, L.J.</p> <p>2007-01-01</p> <p>Determining late Quaternary offset rates on specific faults within active mountain belts is not only a key component of seismic hazard analysis, but sheds light on regional tectonic development over geologic timescales. Here we report an estimate of dip-slip rate on the eastern Big Pine oblique-reverse fault in the upper Cuyama Valley within the western Transverse Ranges of southern California, and its relation to local landscape development. Optically stimulated luminescence (OSL) dating of sandy beds within coarse-grained alluvial deposits indicates that deposition of alluvium shed from the Pine Mountain massif occurred near the southern margin of the Cuyama structural basin at the elevation of the Cuyama River between 25 and 14??ka. This alluvial deposit has been offset ??? 10??m vertically by the eastern Big Pine fault, providing a latest Quaternary dip-slip rate estimate of ??? 0.9??m/ky based on a 50?? fault dip. Incision of the adjacent Cuyama River has exposed a section of older Cuyama River sediments beneath the Pine Mountain alluvium that accumulated between 45 and 30??ka on the down-thrown footwall block of the eastern Big Pine fault. Corroborative evidence for Holocene reverse-slip on the eastern Big Pine fault is ??? 1??m of incised bedrock that is characteristically exposed beneath 2-3.5??ka fill terraces in tributaries south of the fault. The eastern Big Pine fault in the Cuyama Valley area has no confirmed record of historic rupture; however, based on our results, we suggest the likelihood of multiple reverse-slip rupture events since 14??ka. ?? 2007 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSeis..20..197I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSeis..20..197I"><span>Lateral and depth variations of coda Q in the Zagros region of Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irandoust, Mohsen Ahmadzadeh; Sobouti, Farhad; Rahimi, Habib</p> <p>2016-01-01</p> <p>We have analyzed more than 2800 local earthquakes recorded by the Iranian National Seismic Network (INSN) and the Iranian Seismological Center (IRSC) to estimate coda wave quality factor, Q c , in the Zagros fold and thrust belt and the Sanandaj-Sirjan metamorphic zone in Iran. We used the single backscattering model to investigate lateral and depth variations of Q c in the study region. In the interior of Zagros, no strong lateral variation in attenuation parameters is observed. In SE Zagros (the Bandar-Abbas region) where transition to the Makran subduction setting begins, the medium shows lower attenuation. The average frequency relations for the SSZ, the Bandar-Abbas region, and the Zagros are Q c = (124 ± 11) f 0.82 ± 0.04, Q c = (109 ± 2) f 0.99 ± 0.01, and Q c = (85 ± 5) f 1.06 ± 0.03, respectively. To investigate the depth variation of Q c , 18 time windows between 5 and 90 s and at two epicentral distance ranges of R < 100 km and 100 < R < 200 km were considered. It was observed that with increasing coda lapse time, Q 0 ( Q c at 1 Hz) and n (frequency dependence factor) show increasing and decreasing trends, respectively. Beneath the SSZ and at depths of about 50 to 80 km, there is a correlation between the reported low velocity medium and the observed sharp change in the trend of Q 0 and n curves. In comparison with results obtained in other regions of the Iranian plateau, the Zagros along with the Alborz Mountains in the north show highest attenuation of coda wave and strongest frequency dependence, an observation that reflects the intense seismicity and active faulting in these mountain ranges. We also observe a stronger depth dependence of attenuation in the Zagros and SSZ compared to central Iran, indicating a thicker lithosphere in the Zagros region than in central Iran.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U53A0055Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U53A0055Y"><span>BASE Flexible Array Preliminary Lithospheric Structure Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeck, W. L.; Sheehan, A. F.; Anderson, M. L.; Siddoway, C. S.; Erslev, E.; Harder, S. H.; Miller, K. C.</p> <p>2009-12-01</p> <p>The Bighorns Arch Seismic Experiment (BASE) is a Flexible Array experiment integrated with EarthScope. The goal of BASE is to develop a better understanding of how basement-involved foreland arches form and what their link is to plate tectonic processes. To achieve this goal, the crustal structure under the Bighorn Mountain range, Bighorn Basin, and Powder River Basin of northern Wyoming and southern Montana are investigated through the deployment of 35 broadband seismometers, 200 short period seismometers, 1600 “Texan” instruments using active sources and 800 “Texan” instruments monitoring passive sources, together with field structural analysis of brittle structures. The novel combination of these approaches and anticipated simultaneous data inversion will give a detailed structural crustal image of the Bighorn region at all levels of the crust. Four models have been proposed for the formation of the Bighorn foreland arch: subhorizontal detachment within the crust, lithospheric buckling, pure shear lithospheric thickening, and fault blocks defined by lithosphere-penetrating thrust faults. During the summer of 2009, we deployed 35 broadband instruments, which have already recorded several magnitude 7+ teleseismic events. Through P wave receiver function analysis of these 35 stations folded in with many EarthScope Transportable Array stations in the region, we present a preliminary map of the Mohorovicic discontinuity. This crustal map is our first test of how the unique Moho geometries predicted by the four hypothesized models of basement involved arches fit seismic observations for the Bighorn Mountains. In addition, shear-wave splitting analysis for our first few recorded teleseisms helps us determine if strong lithospheric deformation is preserved under the range. These analyses help lead us to our final goal, a complete 4D (3D spatial plus temporal) lithospheric-scale model of arch formation which will advance our understanding of the mechanisms accommodating and driving basement-involved arch formation as well as continental lithospheric rheology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.S51A..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.S51A..08F"><span>Seismic activity in northeastern Brazill-new perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, J. M.; Do Nascimento, A. F.; Vilar, C. S.; Bezerra, F. H.; Assumpcao, M.; Berrocal, J.; Fuck, R. A.</p> <p>2007-05-01</p> <p>Northeastern Brazil is the most seismic active region in the country. Some earthquakes with magnitude above 5.0 and intensity VII MM associated with swam-like seismic activity lasting for many years are a serious social concern. Since the 1980's macroseismic and instrumental surveys have been carried out in this region and they are an important data archive which allows the composition of a reliable catalogue of seismic activity for this region. Among the many scientific results it was possible to identify the main seismogenic areas, obtain reliable hypocentres and focal mechanisms. As a consequence, it was possible also to analyse the relationship between seismicity and geological features. It was also possible to determined maximum horizontal stress direction for the region. An important induced seismic activity case has also been reported in the area as being a classical example of pore pressure diffusion triggering mechanism. The majority of the results were obtained using analogic data. Recently, a new research project is being conducted and will allow us to provide a regional scale monitoring with 6 broad-band stations and a new portable six station digital seismic network equipped with short- period sensors. Thus, with the continuous seismic activity in the area we trust that the results of this project will increase the present knowledge of seismic activity in northeastern Brazil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028821','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028821"><span>Crustal P-wave velocity structure from Altyn Tagh to Longmen mountains along the Taiwan-Altay geoscience transect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wang, Y.-X.; Mooney, W.D.; Han, G.-H.; Yuan, X.-C.; Jiang, M.</p> <p>2005-01-01</p> <p>Based upon the seismic experiments along Geoscience Transect from the Altyn Tagh to the Longmen Mountains, the crustal P-wave velocity structure was derived to outline the characteristics of the crustal structure. The section shows a few significant features. The crustal thickness varies dramatically, and is consistent with tectonic settings. The Moho boundary abruptly drops to 73km depth beneath the southern Altyn Tagh from 50km below the Tarim basin, then rises again to about 58km depth beneath the Qaidam basin. Finally, the Moho drops again to about 70km underneath the Songpan-Garze Terrane and rises to 60km near the Longmen Mountains with a step-shape. Further southeast, the crust thins to 52km beneath the Sichuan basin in the southeast of the Longmen Mountains. In the north of the Kunlun fault, a low-velocity zone, which may be a layer of melted rocks due to high temperature and pressure at depth, exists in the the bottom of the middle crust. The two depressions of the Moho correlate with the Qilian and Songpan-Garze terranes, implying that these two mountains have thick roots. According to our results, it is deduced that the thick crust of the northeastern Tibetan Plateau probably is a result of east-west and northwest-southeast crustal shortening since Mesozoic time during the collision between the Asian and Indian plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3195M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3195M"><span>Shallow Moho with aseismic upper crust and deep Moho with seismic lower crust beneath the Japanese Islands obtained by seismic tomography using data from dense seismic network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsubara, Makoto; Obara, Kazushige</p> <p>2015-04-01</p> <p>P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust. The Moho discontinuity deepens over 35 km in the collision zone like as Kanto Mountains, the volcanic underplating zone as the Tohoku backbone range, and non-tension region like as Chugoku Mountains. These regions associated with deep Moho are characterized by the crustal seismicity within the depth range from 20 to 30 km. The iso-depth contour of 35 km beneath the southwestern Japan is consistent with that derived from the receiver function method (Shiomi et al. 2006). There are nonvolcanic tremors and short-time slow slip events (SSE) beneath the southwestern Japan (eg. Obara, 2002). Matsubara et al. (2009) consider that the tremors and SSEs occur along the contact zone of Moho discontinuity beneath the Eurasian plate and the subducting Philippine Sea plate beneath southwestern Japan. Our Moho model is consistent with this since they exist along the southern edge of the Moho discontinuity of the continental Eurasian plate. Reference: Hirata, N., Sakai, S., Nakagawa, S., Ishikawa, M., Sato, H., Kasahara, K., Kimura, H. and Honda, R. (2012) A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region, EOS, Transactions, AGU, T11C-06. Kita, S., T. Okada, A. Hasegawa, J. Nakajima, and T. Matsuzawa (2010) Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: Possible evidence for thermal shielding caused by subducted forearc crust materials, Earth Planet. Science Lett., 290, 415-426. Matsubara, M. and K. Obara (2011) The 2011 Off the Pacific Coast of Tohoku earthquake related to a strong velocity gradient with the Pacific plate, Earth Planets Space, 63, 663-667. Matsubara, M., K. Obara, and K. Kasahara (2009) High-Vp/Vs zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan, Tectonophysics, 472, 6-17, doi:10.1016/j.tecto.2008.06.013. Obara, K. (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679-1681. Shiomi, K., K. Obara, and H. Sato (2006) Moho depth variation beneath southwestern Japan revealed from the velocity structure based on receiver function inversion , Tectonophysics, 420, 205-221, doi:10.1016/j.tecto.2006.01.017. Shiomi, K., M. Matsubara, Y. Ito, and K. Obara (2008) Simple relationship between seismic activity along Philippine Sea slab and geometry of oceanic Moho beneath southwest Japan, Geophys. J. Int., 173, 1018-1029.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S43B2547K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S43B2547K"><span>Crustal Structure Beneath the Gulf of ST. Lawrence, Atlantic Canada, from Ambient Seismic Noise Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Spence, G.</p> <p>2013-12-01</p> <p>The Gulf of St. Lawrence (GSL), located north of the southwest-northeast trending Appalachian mountain in eastern Canada, is a major sedimentary basin with huge potentials for hydrocarbon accumulation. Important questions about the geometry and evolution of the crustal and basin structure beneath the gulf are yet to be answered. To address these issues, the Geological Survey of Canada (GSC) with support from the Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity (POLARIS) deployed a temporary array of broadband seismic stations in the GSL region between October 2005 and October 2008. Combined with the permanent stations of the Canadian National Seismograph Network (CNSN) in the region, the station density is sufficient for detailed seismic tomography inversion. In this study, we investigate the upper crustal structure beneath the gulf using 3 years of continuous ambient noise waveforms recorded at 25 (POLARIS and CNSN) stations around the GSL. Cross-correlation functions of the vertical component of the ambient noise wavefield for simultaneously recording station pairs (corresponding to inter-station Green's functions) are computed and analyzed using the frequency-time analysis method. Dispersion curves are measured and Rayleigh wave group velocities are subsequently extracted for periods between 2 and 20s, which are periods sensitive to the upper crustal structures. Preliminary results from the dispersion measurements indicate that mean group velocities in the region range from 2.8 to 3.2 km/s across the range of period specified. 2-D group velocity distribution for each period is determined by linearized inversion of the dispersion data. Our tomography results show prominent lateral velocity variation. Low velocity anomalies are observed at shorter periods (up to ~10 s) which correspond to the sedimentary structures at shallow depths (between 5-10 km), whereas the characteristics of upper crustal structures are shown by velocity anomalies at longer periods. Our results show striking similarities with the tomographic images obtained in the previous Canada-wide ambient noise analysis for areas where both studies overlap and are also consistent with results from receiver function and active seismic profiling studies previously done in the region. A detailed inversion of the 3-D shear velocity structure will be conducted to appropriately delineate the thickness and seismic velocity of the composite geologic units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V23A3079U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V23A3079U"><span>Seismic array observations for monitoring phreatic eruptions in Iwojima Island, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ueda, H.; Kawaguchi, R.; Chiba, K.; Fujita, E.; Tanada, T.</p> <p>2015-12-01</p> <p>Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The volcanic activity is characterized by intensive earthquake activity associated with an island-wide uplift with high uplift rate (30~40 cm/year) and hydrothermal activity. In the last 10 years, phreatic eruptions took place in and near the island in 2012, 2013, and 2015. In such restless volcano, predictions and detections of occurrence points of phreatic eruptions are important for ensuring safety of residents. In the previous studies, we found that the earthquake activity of Iwojima highly correlates with the island wide large uplift, but the precursory activity of the phreatic eruption in 2012 was deviated from the correlation (Ueda et al. 2013 AGU Fall Meeting). For prediction of occurrence points of phreatic eruptions and investigation of the eruption mechanism, we began observation by seismic arrays at two areas in December 2014. The seismic arrays enable to locate epicenters of volcanic tremors, which are not well located by existing seismic stations. In May and June 2015, Japan Maritime Self-Defense Force stayed in Iwojima and a live camera of Japan Meteorological Agency found very small phreatic eruptions occurred at the northern beach. Existing seismic stations could not detect seismic signals related with the eruptions. The seismic array could detect weak seismic signals related with the eruptions. Although the seismic arrays could not detect precursory signals because of too small eruption, we expect the seismic arrays can detect precursory seismic signals suggesting occurrence points of small or medium-sized phreatic eruptions. The seismic arrays also detected epicenters of harmonic and monotonic tremors took place at an active fumarolic field in the north earthen part of Iwojima. The apparent velocity of seismic waves (~1km/s) strongly suggests that the tremors relate with hydrothermal activity near ground surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615287B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615287B"><span>Reevaluation of the Seismicity and seismic hazards of Northeastern Libya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ben Suleman, abdunnur; Aousetta, Fawzi</p> <p>2014-05-01</p> <p>Libya, located at the northern margin of the African continent, underwent many episodes of orogenic activities. These episodes of orogenic activities affected and shaped the geological setting of the country. This study represents a detailed investigation that aims to focus on the seismicity and its implications on earthquake hazards of Northeastern Libya. At the end of year 2005 the Libyan National Seismological Network starts functioning with 15 stations. The Seismicity of the area under investigation was reevaluated using data recorded by the recently established network. The Al-Maraj earthquake occurred in May 22nd 2005was analyzed. This earthquake was located in a known seismically active area. This area was the sight of the well known 1963 earthquake that kills over 200 people. Earthquakes were plotted and resulting maps were interpreted and discussed. The level of seismic activity is higher in some areas, such as the city of Al-Maraj. The offshore areas north of Al-Maraj seem to have higher seismic activity. It is highly recommended that the recent earthquake activity is considered in the seismic hazard assessments for the northeastern part of Libya.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018903','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018903"><span>Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farrar, C.D.; Sorey, M.L.; Evans, William C.; Howle, J.F.; Kerr, B.D.; Kennedy, B.M.; King, C.-Y.; Southon, J.R.</p> <p>1995-01-01</p> <p>MAMMOTH Mountain, in the western United States, is a large dacitic volcano with a long history of volcamsm that began 200 kyr ago1 and produced phreatic eruptions as recently as 500 ?? 200 yr BP (ref. 2). Seismicity, ground deformation and changes in fumarole gas composition suggested an episode of shallow dyke intrusion in 1989-90 (refs 3, 4). Areas of dying forest and incidents of near asphyxia in confined spaces, first reported in 1990, prompted us to search for diffuse flank emissions of magmatic CO2, as have been described at Mount Etna5 and Vulcano6. Here we report the results of a soil-gas survey, begun in 1994, that revealed CO2 concentrations of 30-96% in a 30-hectare region of killed trees, from which we estimate a total CO2 flux of ???1,200 tonnes per day. The forest die-off is the most conspicuous surface manifestation of magmatic processes at Mammoth Mountam, which hosts only weak fumarolic vents and no summit activity. Although the onset of tree kill coincided with the episode of shallow dyke intrusion, the magnitude and duration of the CO2 flux indicates that a larger, deeper magma source and/or a large reservoir of high-pressure gas is being tapped.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7516S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7516S"><span>Crustal structure, and topographic relief in the high southern Scandes, Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stratford, W.; Thybo, H.; Frassetto, A.</p> <p>2010-05-01</p> <p>Resolving the uplift history of southern Norway is hindered by the lack of constraint available from the geologic record. Sediments that often contain information of burial and uplift history have long since been stripped from the onshore regions in southern Norway, and geophysical, dating methods and geomorphological studies are the remaining means of unraveling uplift history. New constraints on topographic evolution and uplift in southern Norway have been added by a recent crustal scale refraction project. Magnus-Rex (Mantle investigation of Norwegian uplift Structure, refraction experiment) recorded three ~400 km long active source seismic profiles across the high southern Scandes Mountains. The goal of the project is to determine crustal thickness and establish whether these mountains are supported at depth by a crustal root or by other processes. The southern Scandes Mountains were formed during the Caledonian Orogeny around 440 Ma. These mountains, which reach elevations of up to ~2.5 km, are comprised of one or more palaeic (denudation) surfaces of rolling relief that are incised by fluvial and glacial erosion. Extreme vertical glacial incision of up to 1000 m cuts into the surfaces in the western fjords, while the valleys of eastern Norway are more fluvial in character. Climatic controls on topography here are the Neogene - Recent effects of rebound due to removal of the Fennoscandian ice sheet and isostatic rebound due to incisional erosion. However, unknown tectonic uplift mechanisms may also be in effect, and separating the tectonic and climate-based vertical motions is often difficult. Sediment and rock has been removed by the formation of the palaeic surfaces and uplift measurements cannot be directly related to present elevations. Estimates so far have indicated that rebound due to incisional erosion has a small effect of ~500 m on surface elevation. Results from Magnus-Rex indicate the crust beneath the high mountains is up to 40 km thick. This thickness implies that the high elevations of the southern Scandes Mountains are not entirely compensated by an Airy type of isostatic model, and other mechanisms for uplift and sustained topographic relief must be in effect. Moreover, there is an observed lateral offset between the highest mountains and the thickest crust beneath the southern Scandes indicating that the Moho topography is modulated by the flexural strength of the lithosphere. We relate new crustal thickness measurements to observed topography to quantify how much of the present elevation of the southern Scandes Mountains can be accounted for by crustal thickness alone. This new understanding of crustal structure can be used to help separate the climatic and tectonic effects on landscape evolution of the southern Scandes Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....8409B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....8409B"><span>Post-orogenic subsidence and uplift of the Carpathian belt: An integrated approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertotti, G.; Matenco, L.; Drijkonigen, G.; Krijgsman, W.; Tarapoanca, M.; Panea, I.; Vasiliev, I.; Milea, M.; Cloetingh, S.</p> <p>2003-04-01</p> <p>Several hundred metres thick Pliocene to Quaternary sequences outcropping along the Carpathian front steeply dip away from the mountain belt towards the Carpathian foredeep. They overly the Carpathian fold-and-thrust belt and document that, following the main contractional stages, the orogenic wedge first subsided and was then uplifted. Uplift occurred coeval with substantial subsidence in the basin adjacent to the E, the Focsani Depression. To define the precise kinematics of such movements and thereby constrain these vertical movements taking place in the "wrong" place and in the "wrong" time, the Netherlands Research Center for Integrated Solid Earth Science has launched a large campaign of geological and geophysical investigation. The main components of the project are as follows: 1) acquisition of nearly 100km of seismic data designed to image the uppermost hundred metres of the Earth's crust and thereby making a precise connection between features visible in Industry lines and at the surface 2) paleomagnetic investigations in order to constrain the age of the poorly dated continental to lacustrine sediments 3) A seismic experiment designed to detect 3-D effects on 2-D acquisition 4) Structural work to determine the stress/strain conditions during subsidence and subsequent uplift At a larger scale, these activities are embedded in the effort made by ISES and connected groups to precisely constrain the kinematics of the Pannonian-Carpathian system. Seismic acquisition has been performed during the summer 2002 and has been technically very successful thanks also to the effort of the prospecting company Prospectiunii SA. Lines have been processed and are currently being interpreted. The most apparent feature is the lack of localized deformation demonstrating that subsidence and tilting affected areas of several tens of kilometers and are not related to single faults. Sampling for paleomagnetic studies has been carried out in 2002 along the same section where seismic acquisition took place. Preliminary measurements show good analytical results and will therefore produce relevant results in the coming months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41A2866B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41A2866B"><span>Seismic Reflectivity of the Crust in the Northern Salton Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.</p> <p>2015-12-01</p> <p>The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...144..104B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...144..104B"><span>Bridge pier foundation evaluation using cross-hole seismic tomographic imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butchibabu, B.; Sandeep, N.; Sivaram, Y. V.; Jha, P. C.; Khan, P. K.</p> <p>2017-09-01</p> <p>An ambitious project connecting Jammu and Srinagar through a railway link in tectonically active and geologically complex Himalayan Mountain terrain is under progress. Under this project, the world's highest (359 m) railway arch-bridge is under construction across the River Chenab in the northern territory of India. This mega engineering structure has a two-fold ribbed arch design, comprising of steel girders. During the excavation for one of the concrete pillars on the right abutment, wide open joints and weak/shear zones were noticed. The width of these joints varies from 30 to 50 cm, trending along N170° with a dip of 65°. The foundation area of this pillar is 13 m × 24 m and on the cut slopes of the right bank of Chenab River. These exposed joints and weak zones were treated with consolidation grouting to strengthen the foundation area. To delineate the extent of these joints and weak zones below the foundation level, seismic tomography was carried out in five boreholes drilled for this purpose to cover the 300 sq-m area. The results of cross-hole seismic tomography reveals the presence of three low velocity (≤ 2600 m/s) anomalous zones below the foundation area. This also ascertained the efficacy of grouting in consolidating the joints and weak zones. Later, rock-mass quality (Q) was determined based on the relationship between the P-wave velocity and the Q-value (Barton, 2002) to infer the support system for the slope stabilization below the foundation. 3-D visualization of the seismic velocity demarcates the extent of weak or untreated zones. This methodology facilitates to update the design parameters according to Q-values during the construction stage and estimate the required level of reinforcement and support system. Similar methodology can be applicable in other areas under same site conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1021069','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1021069"><span>INVESTIGATION OF CRUSTAL MOTION IN THE TIEN SHAN USING INSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mellors, R J</p> <p>2011-02-25</p> <p>The northern Tien Shan of Central Asia is an area of active mid-continent deformation. Although far from a plate boundary, this region has experienced 5 earthquakes larger than magnitude 7 in the past century and includes one event that may as be as large as Mw 8.0. Previous studies based on GPS measurements indicate on the order of 23 mm/yr of shortening across the entire Tien Shan and up to 15 mm/year in the northern Tien Shan (Figure 1). The seismic moment release rate appears comparable with the geodetic measured slip, at least to first order, suggesting that geodetic ratesmore » can be considered a proxy for accumulation rates of stress for seismic hazard estimation. Interferometric synthetic aperture radar may provide a means to make detailed spatial measurements and hence in identifying block boundaries and assisting in seismic hazard. Therefore, we hoped to define block boundaries by direct measurement and by identifying and resolving earthquake slip. Due to political instability in Kyrgzystan, the existing seismic network has not performed as well as required to precisely determine earthquake hypocenters in remote areas and hence InSAR is highly useful. In this paper we present the result of three earthquake studies and show that InSAR is useful for refining locations of teleseismically located earthquakes. ALOS PALSAR data is used to investigate crustal motion in the Tien Shan mountains of Central Asia. As part of the work, considerable software development was undertaken to process PALSAR data. This software has been made freely available. Two damaging earthquakes have been imaged in the Tien Shan and the locations provided by ALOS InSAR have helped to refine seismological velocity models. A third earthquake south of Kyrgyzstan was also imaged. The use of InSAR data and especially L band is therefore very useful in providing groundtruth for earthquake locations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T13C2742W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T13C2742W"><span>Earth's structure and evolution inferred from topography, gravity, and seismicity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watkinson, A. J.; Menard, J.; Patton, R. L.</p> <p>2016-12-01</p> <p>Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long-wavelength (l < 14) low-amplitude portion of Earth's gravity field to be consistent with loading of the mesosphere by subducted slabs. The Earth that emerges from this work might be characterized as a self-gravitating, self-peeling onion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024286','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024286"><span>Paleoseismology at high latitudes: Seismic disturbance of upper Quaternary deposits along the Castle Mountain fault near Houston, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haeussler, Peter J.; Best, Timothy C.; Waythomas, Christopher F.</p> <p>2002-01-01</p> <p>Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61°30′ N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes east-northeast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes.The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5–1.0 m indicates faulting when the ground was not frozen—i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and colluvial wedge. In only one trench did we observe a discrete fault plane with measurable offset. It lay beneath a 2-m-thick carapace of liquefied sand and silt and displayed a total of 0.9–1.85 m of thrust motion since deposition of the oldest deposits in the trenches at ca. 13,500 yr B.P. We found liquefaction ejecta on paleosols at only one other trench, where there were bluejoint (Calamagrostis canadensis) tussocks that lacked an extensive root mat. From crosscutting relationships, we interpret three paleoliquefaction events on the main trace of the Castle Mountain fault: 2145–1870, 1375–1070, and 730–610 cal. yr B.P. These four earthquakes on the Castle Mountain fault in the past ∼2700 yr indicate an average recurrence interval of ∼700 yr. As it has been 600–700 yr since the last significant earthquake, a significant (magnitude 6–7) earthquake in the near future may be likely. Paleoseismic data indicate that the timing and recurrence interval of megathrust earthquakes is similar to the timing and recurrence interval of Castle Mountain fault earthquakes, suggesting a possible link between faulting on the megathrust and on “crustal” structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA283905','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA283905"><span>Power System Assessment for the Burnt Mountain Seismic Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-03-01</p> <p>aluminum alloy anode, an oxygen cathode, a caustic (potassium hydroxide) electrolyte. tankage to hold the electrodes and electrolyte plus a small pump...ground shifting which is characteristic of tundra. Movement of the tundra can subject any buried lines to heavy shear loads which could stress the...with the forks fully engaged under the pallet, or by an overhead hoist or crane attached to the handling sling. All ma- terials handling equipment</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzPSE..54..430T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzPSE..54..430T"><span>Gravity and Displacement Variations in the Areas of Strong Earthquakes in the East of Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Timofeev, V. Yu.; Kalish, E. N.; Stus', Yu. F.; Ardyukov, D. G.; Valitov, M. G.; Timofeev, A. V.; Nosov, D. A.; Sizikov, I. S.; Boiko, E. V.; Gornov, P. Yu.; Kulinich, R. G.; Kolpashchikova, T. N.; Proshkina, Z. N.; Nazarov, E. O.; Kolmogorov, V. G.</p> <p>2018-05-01</p> <p>The modern gravimetry methods are capable of measuring gravity with an accuracy of up to 10-10 of the normal value, which is commensurate with the accuracy of the up-to-date methods of displacement measurements by satellite geodesy. Significant changes, e.g., in the coseismic displacements of the Earth's surface are recorded in the zones of large earthquakes. These changes should manifest themselves in the variations of gravity. Absolute measurements have been conducted by various modifications of absolute ballistic gravimeters GABL since the mid-1970s at the Klyuchi point (Novosibirsk) in the south of the West Siberian plate. Monitoring observations have been taking place in the seismically active regions since the 1990s. In this paper we consider the results of the long-term measurements of the variations in gravity and recent crustal displacements for different types of earthquakes (the zones of shear, extension, and compression). In the seismically active areas in the east of Russia, the longest annual series of absolute measurements starting from 1992 was recorded in the southeastern segment of Baikal region. In this area, the Kultuk earthquake with magnitude 6.5 occurred on August 27, 2008, at a distance of 25 km from the observation point of the Talaya seismic station. The measurements in Gornyi (Mountainous) Altai have been conducted since 2000. A strikeslip earthquake with magnitude 7.5 took place in the southern segment of the region on September 27, 2003. The effects of the catastrophic M = 9.0 Tohoku, Japan, earthquake of March 11, 2011 were identified in Primor'e in the far zone of the event. The empirical data are consistent with the results of modeling based on the seismological data. The coseismic variations in gravity are caused by the combined effect of the changes in the elevation of the observation point and crustal deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916475W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916475W"><span>Multidisciplinary approach for the characterization of landslides in volcanic areas - a case study from the Palma Sola-Chiconquiaco Mountain Range, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilde, Martina; Rodríguez Elizarrarás, Sergio R.; Morales Barrera, Wendy V.; Schwindt, Daniel; Bücker, Matthias; Flores Orozco, Adrián; García García, Emilio; Pita de la Paz, Carlos; Terhorst, Birgit</p> <p>2017-04-01</p> <p>The Palma Sola-Chiconquiaco mountain range, situated in the State of Veracruz, Mexico, is highly susceptible to landslides, which is evidenced by the high frequency of landslide events of different sizes. The study area is located near the Gulf of Mexico coastline in the eastern sector of the Trans Mexican Volcanic Belt. There, landslide triggers are intense rainfalls related to tropical storms and hurricanes. Steeper slopes are commonly affected by rockfalls, whereas moderate slopes, covered by massive slope deposits, are affected by shallow as well as deep seated landslides. Some of the landslides in the slope deposits reach dimensions of more than 1000 m in length and depths of over 30 m. The heterogeneous parent material as well as older slide masses hamper the detailed characterization of the involved materials. Therefore, in this study, a multidisciplinary approach is applied that integrates geomorphological, geological, and geophysical data. The aim is the reconstruction of process dynamics by analyzing the geomorphological situation and subsurface conditions before and after the event. The focus lies on the identification of past landslide areas, which represent areas with high susceptibility for the reactivation of old slide masses. Furthermore, the analysis of digital terrain models, generated before the landslide event, indicate initial movements like extension cracks, which are located close to the current scarp area. In order to characterize the subsurface of slide masses geophysical investigations are applied. The geophysical survey consists of a total of nine profiles covering relevant key features of the large affected area. Along these profiles, electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) data were collected. Both, electrical and seismic images reveal a sharp contrast between relatively loose and dry material of the slide mass (high resistivities and low seismic velocities) and the former land surface that is characterized by significantly reduced resistivities and higher seismic velocities. This contrast allows to establish the thicknesses of slope deposits and geological layers along all geophysical profiles. Furthermore, the investigations are complemented by a high resolution digital terrain model of the landslide and its surroundings, which was reconstructed from orthophotos derived from unmanned aerial vehicle photogrammetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T43D2152F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T43D2152F"><span>The Western Edge of Cratonic North America and Topography of the Northern U.S. Rocky Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, D. A.; Russo, R. M.; van der Lee, S.; Mueller, P. A.</p> <p>2009-12-01</p> <p>We used seismic structure of the upper mantle determined via waveform inversions of surface and regional shear waves (Beadle and van der Lee, 2007) to examine the 3-D geometry of the base of North American lithosphere at the junction between thick, stable cratonic eastern North America and the thinner, recently tectonized western part of the continent. This boundary has been affected by long-term subduction beneath North America. Variability in convergence rates and directions, and especially in slab dip, have been postulated as important controls on the configuration of the transition from thick to thin lithosphere, and on the distribution and degree of crustal deformation and volcanism in the western U.S. We show that the lithospheric thickness transition at depths of 70-130 km - defined as contours of zero shear velocity anomaly - correlates strongly with the high topography of Laramide uplifts in the northern Rockies, which lie west of this seismically defined craton edge. The transition from thick to thin lithosphere also includes an embayment symmetrically centered on the Yellowstone hotspot, offset cratonward from the surface position of the hotspot by ca. 140-180 km at depths of 130-150 km. We interpret this structure as a reduction of cratonic seismic velocities reflecting the thermal halo around the hotspot, and perhaps associated with the separation of the lower lithosphere. The steep velocity gradient (boundary) east of the hotspot occurs along the Big Horn Mountains, and distributed mountain ranges of southwestern Montana. The steep transition between thin and thick lithosphere turns sharply west along the northern margin of the Helena thrust salient-Lewis and Clark fault zone, where it may reflect the edge of the Archean Medicine Hat Block and/or the northern termination of the influence shallow Farallon slab subduction the during Laramide time. Laramide-style basement uplifts are absent north of this zone and the eastern front ranges of the Rockies in northern Montana and Alberta are located further west. South of the Yellowstone lithospheric embayment, a westward salient of high seismic velocities at 70-130 km depths coincides with near surface structures along the Cheyenne Belt, possibly representing an accreted relict subduction margin. Relationships between anomalously hot asthenosphere and thin lithosphere are widely supported for the Basin and Range Province. East of this region, the location of the western edge of thick cratonic North American lithosphere and associated transitions from high to lower topography suggests a strong relationship that dates back to Laramide subduction erosion, and subsequent influence on the thermal/chemical modifications to the lithosphere during Cenozoic and Recent times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187335','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187335"><span>Geophysical study of the San Juan Mountains batholith complex, southwestern Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Drenth, Benjamin J.; Keller, G. Randy; Thompson, Ren A.</p> <p>2012-01-01</p> <p>One of the largest and most pronounced gravity lows over North America is over the rugged San Juan Mountains of southwestern Colorado (USA). The mountain range is coincident with the San Juan volcanic field (SJVF), the largest erosional remnant of a widespread mid-Cenozoic volcanic field that spanned much of the southern Rocky Mountains. A buried, low-density silicic batholith complex related to the volcanic field has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was based on gravity data processed with standard techniques that are problematic in the SJVF region. The combination of high-relief topography, topography with low densities, and the use of a common reduction density of 2670 kg/m3produces spurious large-amplitude gravity lows that may distort the geophysical signature of deeper features such as a batholith complex. We applied an unconventional processing procedure that uses geologically appropriate densities for the uppermost crust and digital topography to mostly remove the effect of the low-density units that underlie the topography associated with the SJVF. This approach resulted in a gravity map that provides an improved representation of deeper sources, including reducing the amplitude of the anomaly attributed to a batholith complex. We also reinterpreted vintage seismic refraction data that indicate the presence of low-velocity zones under the SJVF. Assuming that the source of the gravity low on the improved gravity anomaly map is the same as the source of the low seismic velocities, integrated modeling corroborates the interpretation of a batholith complex and then defines the dimensions and overall density contrast of the complex. Models show that the thickness of the batholith complex varies laterally to a significant degree, with the greatest thickness (∼20 km) under the western SJVF, and lesser thicknesses (<10 km) under the eastern SJVF. The largest group of nested calderas on the surface of the SJVF, the central caldera cluster, is not correlated with the thickest part of the batholith complex. This result is consistent with petrologic interpretations from recent studies that the batholith complex continued to be modified after cessation of volcanism and therefore is not necessarily representative of synvolcanic magma chambers. The total volume of the batholith complex is estimated to be 82,000–130,000 km3. The formation of such a large felsic batholith complex would inevitably involve production of a considerably greater volume of residuum, which could be present in the lower crust or uppermost mantle. The interpreted vertically averaged density contrast (–60 to –110 kg/m3), density (2590–2640 kg/m3), and seismic expression of the batholith complex are consistent with results of geophysical studies of other large batholiths in the western United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195108','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195108"><span>Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.</p> <p>2018-01-01</p> <p>The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108 t) in a shallow gas reservoir. Moreover, we show that both, short-lived (months to years) and long-lived (hundreds of years) events of magmatic fluid injection can lead to critical pressures within the reservoir and potentially trigger fault reactivation. Our sensitivity analysis suggests that observed temporal fluctuations in surface degassing are only indirectly controlled by variations in magmatic degassing and are mainly the result of temporally variable fault permeability. Finally, we suggest that long-term CO2 emission monitoring, seismic tomography and coupled thermal–hydraulic–mechanical modeling are important for CO2-related hazard mitigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16193922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16193922"><span>[Correlation between the microbiological (S. aureus) and seismic activities with regard to the sun-earth interactions and neutron flux generation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shestopalov, I P; Rogozhin, Iu A</p> <p>2005-01-01</p> <p>The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3205H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3205H"><span>Distant, delayed and ancient earthquake-induced landslides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Havenith, Hans-Balder; Torgoev, Almaz; Braun, Anika; Schlögel, Romy; Micu, Mihai</p> <p>2016-04-01</p> <p>On the basis of a new classification of seismically induced landslides we outline particular effects related to the delayed and distant triggering of landslides. Those cannot be predicted by state-of-the-art methods. First, for about a dozen events the 'predicted' extension of the affected area is clearly underestimated. The most problematic cases are those for which far-distant triggering of landslides had been reported, such as for the 1988 Saguenay earthquake. In Central Asia reports for such cases are known for areas marked by a thick cover of loess. One possible contributing effect could be a low-frequency resonance of the thick soils induced by distant earthquakes, especially those in the Pamir - Hindu Kush seismic region. Such deep focal and high magnitude (>>7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area and others in Central Asia we computed landslide event sizes related to scenario earthquakes with M>7.5. The second particular and challenging type of triggering is the one delayed with respect to the main earthquake event: case histories have been reported for the Racha earthquake in 1991 when several larger landslides only started moving 2 or 3 days after the main shock. Similar observations were also made after other earthquake events in the U.S., such as after the 1906 San Francisco, the 1949 Tacoma, the 1959 Hebgen Lake and the 1983 Bora Peak earthquakes. Here, we will present a series of detailed examples of (partly monitored) mass movements in Central Asia that mainly developed after earthquakes, some even several weeks after the main shock: e.g. the Tektonik and Kainama landslides triggered in 1992 and 2004, respectively. We believe that the development of the massive failures is a consequence of the opening of tension cracks during the seismic shaking and their filling up with water during precipitations that followed the earthquakes. The third particular aspect analysed here is the use of large ancient landslides for paleoseismic studies. As Central Asian mountain regions are marked by a relatively high ratio of seismically versus climatically triggered landslides, they represent a prime test area for such studies. This observation is contrasting with known landslide activity in Europe where by far most landslides are triggered by climatic factors, besides for some seismically active regions in the Eastern Alps, around the Mediterranean Sea and in the Carpathians (Vrancea, Romania). We will discuss how we may identify such earthquake-triggered landslides and how we may distinguish them from rainfall-induced slope failures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912160G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912160G"><span>3D model of Campo de Dalías basement from H/V spectral ratio of ambient seismic noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García-Jerez, Antonio; Seivane, Helena; Luzón, Francisco; Navarro, Manuel; Molina, Luis; Aranda, Carolina; Piña-Flores, José; Navarro, Francisco; Sánchez-Martos, Francisco; Vidal, Francisco; Posadas, Antonio M.; Sánchez-Sesma, Francisco J.</p> <p>2017-04-01</p> <p>Campo de Dalías is a large coastal plain in the southeastern mountain front of the Betic Cordillera (SE of the Iberian Peninsula), being one of the most seismically active regions of Spain. This area has a population of about 213.000 inhabitants, with a high growth rate during the last decades due to the development of intensive agricultural activities. Seismic risk assessment and hydrogeological issues are major topics of interest for this area, relaying on the knowledge of the geophysical properties of the basin. A passive seismic survey has been conducted throughout the basin. We have recorded ambient noise at 340 sites located approximately on the vertexes of a 1000 x 1000 m square grid, as well as around a set of deep boreholes reaching the Triassic basement. These broad-band records, of at least 45 minutes long each, have been analyzed by using the horizontal-to-vertical spectral ratio method (H/V). The spectral analysis shows clear H/V peaks with periods ranging from 0.3 s to 4 s, approximately, associated to relevant contrasts in S-wave velocity (Vs) at depth. Simulations based on the diffuse field approach (Sánchez-Sesma et al. 2011) show that long periods are explained by the effect of several hundred meters of soft sedimentary rocks (mainly Miocene marls). Well-developed high-frequency secondary peaks have been found in some specific zones (e.g. N of Roquetas de Mar town). Then, fundamental frequencies and basement depths at borehole sites have been fitted by means of a power law, which can be applied down to 900 - 970m. Larger depths are estimated by extrapolation. This relationship has been used to map the basement (main Vs contrast) throughout the plain. The prospected basement model describes well the main structural features of this smoothly folded region, namely, the El Ejido Synform and the Guardias Viejas Antiform, with ENE-WSW-trend. These features are shifted toward the south in comparison with Pedrera et al. (2015). The homogeneous resolution provides new insights which cannot be reached from analysis of deep boreholes, due to their very irregular distribution and it complements 2D Vp models derived from seismic reflection surveys. ACKNOWLEDGEMENTS: This research has been supported by the Spanish Ministry of Economy and Competitiveness under grant CGL2014-59908 and by the European Union with ERDF funds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034488','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034488"><span>Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.</p> <p>2011-01-01</p> <p>We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/of01-393/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/of01-393/"><span>Thickness and geometry of Cenozoic deposits in California Wash area, Nevada, based on gravity and seismic-reflection data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langenheim, V.E.; Miller, J.J.; Page, W.R.; Grow, J.A.</p> <p>2001-01-01</p> <p>Gravity and seismic-reflection data provide insights into the subsurface stratigraphy and structure of the California Wash area of southern Nevada. This area is part of the Lower Colorado flow system and stratigraphic and structural data are important inputs into developing the hydrogeologic framework. These data indicate that the basin beneath California Wash reaches depths of 2-3 km. The eastern margin of the basin coincides with a system of young (Quaternary and late Tertiary) faults, although both seismic and gravity data indicate that the major basin-bounding fault is 2-3 km west of the mapped young faults. Dry Lake Valley, the adjacent valley to the west, is characterized by thinner basin fill. The basin configuration beneath both California Wash and Dry Lake Valleys based on the inversion of gravity data is unconstrained because of the lack of gravity stations north of 36030?. Broad aeromagnetic anomalies beneath pre-Cenozoic basement in the Muddy Mountains and Arrow Canyon Range reflect Precambrian basement at depths of ~ 5 km. These rocks are probably barriers to ground-water flow,except where fractured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T53G..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T53G..06B"><span>Seismic Expression of Fault Related Folding in Southeastern Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beauchamp, W.; McDonald, D.</p> <p>2009-12-01</p> <p>Weldon Beauchamp, and David McDonald,TransAtlantic Petroleum Corp. 5910 N. Central Expressway, Suite 1755, Dallas, TX 75206 weldon@tapcor.com, 214-395-7125 The Zagros fold belt extends northwest from Iran and Iraq into southeastern Turkey. Large scale fault related folds control the topography of this region and the path of the Tigris river. Large surface anticlines in the Zagros Mountains provide traps for giant oil and gas fields in Iran and Iraq. Similar scale folds extend into southeast Turkey. These southward verging fault related folds are believed to detach in the Paleozoic. Borehole data, surface geological maps, satellite data and digital topographic models were used to create models to constrain structure at depth. Structural modeling of these folds was used to design, acquire and process seismic reflection data in the region. The seismic reflection data confirmed the presence of asymmetrical, south verging complex fault related folding. Faults related to these folds detach in the Lower Ordovician to Cambrian age shales. These folds are believed to form doubly plunging structures that fold Tertiary through Paleozoic age rocks forming multiple levels of possible hydrocarbon entrapment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.S31A..15G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.S31A..15G"><span>The Junction of Hellenic and Cyprus Arcs: the Bey Daglari Lineament, Offshore Termination of the Antalya Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gogacz, A.; Hall, J.; Cifci, G.; Yasar, D.; Kucuk, M.; Yaltirak, C.; Aksu, A.</p> <p>2009-05-01</p> <p>The Antalya Basin is one of a series of basins that sweep along the Cyprus Arc in the forearc region between the (formerly) volcanic Tauride Mountains on Turkey in the north and the subduction zone and associated suture between the African plate and the Aegean-Anatolian microplate in the eastern Mediterranean, south of Cyprus. Miocene contraction occurs widely on southwest verging thrusts. Pliocene-Quaternary structures vary from extension/transtension in the northeast, adjacent to the Turkish coastline, to transpression in the southwest, farther offshore. All these structures are truncated at the northwest end of the Antalya Basin by a broad zone of NNE-SSW-trending transverse structure that appears to represent a prolongation of the extreme easterly transform end of the Hellenic arc. Our mapping suggests that this broad zone links the Hellenic Arc with the Isparta Angle in southern Turkey, which we suggest is an earlier location of the junction of Hellenic and Cyprus Arcs: the junction migrated to the southwest over time, as the Hellenic Arc rolled back. The Turkish coastline turns from parallel to the Antalya Basin structures in the east to a N-S orientation, cutting across the trend of the Antalya Basin. The Antalya Complex and the Bey Dağları Mountains provide a spectacular backdrop to this edge of the offshore basin. Somewhere offshore lies the structural termination of the Antalya Basin. In 2001, we acquired around 400 km of high-resolution multi-channel seismic reflection data across the western end of the Antalya Basin to explore the nature of the termination, which we call the Bey Dağları lineament. We present a selection of the seismic profiles with interpretation of the nature and Neogene history of the lineament. Landward of the N-S-trending coastline, ophiolites of the Antalya Complex are exposed in a series of westerly-verging thrust slivers that extend to the carbonate sequences of the Bey Dağları Mountains. Our seismic data indicate that N-S trending west- and east-verging thrusts define a transpressional continental margin. The shelf is underlain by a prominent angular unconformity between overlying shallow-dipping Pliocene-Quaternary sediments and underlying, easterly- dipping ?Miocene sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5835G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5835G"><span>P-wave and surface wave survey for permafrost analysis in alpine regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.</p> <p>2012-04-01</p> <p>In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing of seismic data involved the tomographic interpretation of traveltime P-wave first arrivals by considering the continuous refraction of the ray-paths. Several surface-wave dispersion curves were extracted in f-k domain along the seismic line and then inverted through a laterally constrained inversion algorithm to obtain a pseudo-2D section of S-wave velocity. Georadar investigation (about 2 km of georadar lines in the first site) confirmed the presence both of fine and coarse sediments in the uppermost layer; the seismic data allowed the moraines to be characterized down to 20-25 meters of depth. At the elevation of 2700 m asl, we observed a general decrease of the P-wave traveltimes collected in November, when the near surface layer was in frozen condition, respect to the data acquired in June. The frozen layer is responsible of the inversion of P-wave velocity with depth; the higher velocity layer (frozen) cannot be detected in the tomographic interpretation of refraction tomographic of the P-wave arrivals. Compressional wave velocity ranges from 700 m/s on the uppermost part, to 2000-2500 m/s in the internal part of the sediments reaching values higher than 5000 m/s at depth about 20 m. The analysis of surface wave permitted to estimate a slight increase from summer to winter of the S-wave velocity, in the depth range between 0 to 5 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/921944','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/921944"><span>Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Joe Hachey</p> <p>2007-09-30</p> <p>The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal moundsmore » for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wells in the project area. Multivariate regressions of seismic attributes versus engineering parameters, such as porosity, were then used to guide interpolation away from well control. These formed the basis for dynamic reservoir simulations. The simulations were used to assess the potential for additional reservoir development, and to provide insight as to how well the multivariate approach worked for assigning more realistic values of internal mound reservoir properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMNS34A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMNS34A..01S"><span>Airborne Gravity Measurements using a Helicopter with Special Emphases on Delineating Local Gravity Anomalies Mainly for Detecting Active Seismic Faults (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Segawa, J.</p> <p>2010-12-01</p> <p>The first aerial gravity measurement in Japan started in 1998 using a Japanese airborne gravimeter ‘ Segawa-TKeiki airborne gravimeter Model FGA-1’. We lay emphasis on the measurement of detailed gravity structures at the land-to-sea border areas and mountainous areas. This is the reason why we use a helicopter and make surveys at low altitude and low speed. We have so far made measurement at twelve sites and the total flight amounts to 20,000km. The accuracy of measurement is 1.5 mgal and half-wavelength resolution is 1.5 km. The Japanese type gravimeter consists of a servo-accelerometer type gravity sensor, a horizontal platform controlled by an optical fiber gyro, GPS positioning system, and a data processing system. Helicopter movement has to be precisely monitored three-dimensionally to calculate the vehicle’s acceleration noises. The necessary accuracy of positioning of the vehicle must be better than 10 cm in positioning error. Our helicopter gravity measurement has a special target in Japan to investigate active seismic faults located across land-to-sea borderlines. In Japan, it is generally thought that gravity over most of the country has already been measured by the governmental surveys, leaving the land-sea border lines and mountainous zones unsurveyed as difficult-to-access areas. In addition the use of airplane or helicopter in Japan appeared disadvantageous because of the narrowness of the Japanese Islands. Under such situations the author thought there still remained a particular as well as unique need for aerial gravity measurement in Japan, i.e. the need for detailed and seamless knowledge of gravity structures across land-to-sea border lines to elucidate complicated crustal structures of the Japanese Islands as well as distribution of active seismic faults for disaster prevention. The results of gravity measurements we have conducted so far include those of 12 sites. In the following the brief logs of our measurements are listed. 1)April 2000. Saitama-Tsukuba-Kashima-Nada. Flight Length 1,300km. Discovery of inconsistency between land and marine gravity nearby. 2)July 2000. Suruga Bay. Flight Length 1,500km. Gravity was contoured in the Suruga Bay. 3)November 2000. Enshu-Nada Sea. Flight Length 1,700km. First measurement of land-sea border line of the Tokai area. 4)October 2001. Enshu-Nada Sea. Flight Length 1,500km. Revisit to Enshu Nada sea. 5)December 2001. Kohdu-shima and Miyake Jima. Flight Length 1,800km. Measurement of gravity over the basin between Miyake and Kohdu. 6)June 2002. Enshu-Nada Sea. Flight Length 2,200km. Measurement of gravity across the Tenryu-River active fault. 7)November 2004. Iyonada and Sata Peninsula. (Commercial works). 8)March 2006. Middle Noto Peninsula. (Commercial works). 9)November 2006. Wakasa Bay. (Commercial works). 10)October 2008. North Noto Peninsula. (Commercial works). 11)November 2008. West Seto Inland Sea. (Commercial works). 12)November 2009. Shimokita Peninsula and Seto Inland Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001515','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001515"><span>Martian seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phillips, Roger J.; Grimm, Robert E.</p> <p>1991-01-01</p> <p>The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3376H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3376H"><span>Autonomous telemetry system by using mobile networks for a long-term seismic observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirahara, S.; Uchida, N.; Nakajima, J.</p> <p>2012-04-01</p> <p>When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H14A..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H14A..03F"><span>Effects of High Carbon Dioxide Soil-Gas Concentrations and Emission Rates From Mammoth Mountain, California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrar, C. D.; Evans, W. C.</p> <p>2006-12-01</p> <p>High concentrations (90 vol %) of carbon dioxide (CO2) are present in shallow soils, and CO2 is emitted to the atmosphere at high rates (1,000 g/d/m2), in several locations around Mammoth Mountain. The CO2 emissions have been diffuse and at ambient temperature. CO2 in the soil has killed most of the coniferous forest in five areas totaling 35 ha around the north, west, and south sides of the mountain at altitudes between 2,600 and 3,000 m. Part of the CO2 has dissolved in ground water, causing acidic conditions and severely corroding steel casings in several wells. The high CO2 emission rates are implicated in the deaths of four people in the past eight years. During winter, a large quantity of CO2 is sequestered in the snow pack on parts of the mountain, posing potential dangers for winter recreation. One U.S. Forest Service campground has been closed and safety plans have been implemented by the local ski resort. Mammoth Mountain is a dormant Quaternary volcanic center, but overlies an area that has been affected by periods of magmatic unrest during the past two decades. Hypocenters of long-period earthquakes indicate that basaltic intrusions reach depths as shallow as 20 to 15 km, from which CO2 has exsolved during decompression and (or) crystallization of these intrusions. CO2 moves to the land surface along fracture zones associated with faults and possibly geologic contacts. The magmatic source of CO2 is confirmed by ¦Ä13C = -3 to -5 PDB, a lack of 14C, and 3He/4He = 4 to 5 R/RA. The present-day high CO2 soil-gas concentrations and emission rates were first documented in 1994; however, anecdotal information and low 14C in post-1989 tree rings suggest that an abrupt increase in both concentrations and emission rates probably began in 1990, following a 6-month period of seismic swarm activity beneath the mountain. Emissions in an area on the south flank of the mountain have been the focus of CO2 monitoring and have shown no indications of abatement between 1994 and 2005, during which estimates of the total CO2 efflux ranged from 90 to 150 MT/d. The variations can be partly attributed to the precision of the techniques and to minor differences in measurement protocols between researchers; variations in soil- moisture and atmospheric conditions alone can cause fluctuations in efflux of ± 10% over periods of hours to days.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11276P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11276P"><span>Variations of seismic parameters during different activity levels of the Soufriere Hills Volcano, Montserrat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, T.; Neuberg, J.</p> <p>2003-04-01</p> <p>The low-frequency seismic events on Montserrat are linked to conduit resonance and the pressurisation of the volcanic system. Analysis of these events tell us more about the behaviour of the volcanic system and provide a monitoring and interpretation tool. We have written an Automated Event Classification Algorithm Program (AECAP), which finds and classifies seismic events and calculates seismic parameters such as energy, intermittency, peak frequency and event duration. Comparison of low-frequency energy with the tilt cycles in 1997 allows us to link pressurisation of the volcano with seismic behaviour. An empirical relationship provides us with an estimate of pressurisation through released seismic energy. During 1997, the activity of the volcano varied considerably. We compare seismic parameters from quiet periods to those from active periods and investigate how the relationships between these parameters change. These changes are then used to constrain models of magmatic processes during different stages of volcanic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T11B0371G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T11B0371G"><span>Oblique Northeastward Lateral Extrusion of a Crustal Block in North-central Taiwan: a Mechanism for Syn-tectonic Extension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourley, J. R.; Byrne, T.</p> <p>2005-12-01</p> <p>An integrated data set of earthquake locations (Taiwan's Central Weather Bureau), focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS), GPS velocities and geologic data are combined to constrain the geometry and kinematics of a crustal block within the metamorphic basement of Taiwan's northeastern Central Range. The active block is bounded by two parallel seismic zones that accommodate uplift and northeastward oblique lateral extrusion. The western shear zone is a region that dips vertically to steeply west and projects generally to the western boundary between the Slate Belt and pre-Tertiary metamorphic basement. BATS focal mechanisms consistently show east-side-up, left-lateral normal displacements. Late-stage geologic structures published previously show left-lateral faulting followed by east-west extension. The eastern shear zone dips vertically to steeply west and projects to the eastern boundary of the metamorphic basement, which correlates with the eastern mountain front in this area. BATS focal mechanisms show west-side-up reverse displacements. The kinematics of these two zones define a crustal scale block that is interpreted to be moving up and northeast towards the Okinawa Trough. The extrusion of this crustal block may be driven in part by the topographic difference between the Central Range and the Okinawa Trough, as well as by the active collision between the Philippine Sea Plate and the Eurasian basement high. This proposed northeastern lateral extrusion mirrors the active lateral extrusion in southwestern Taiwan which is observed on the southern side of the Eurasian basement high collision. The involvement of the basement high in the collision and adjacent regions appears to be an important factor in understanding local structural variations in the arc-continent collision and should be considered in both forward and reverse modeling of Taiwan deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA483581','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA483581"><span>Earthquakes: Risk, Monitoring, Notification, and Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-06-19</p> <p>Washington, Oregon, and Hawaii . The Rocky Mountain region, a portion of the central United States known as the New Madrid Seismic Zone, and portions...California, Washington, Oregon, and Alaska and Hawaii . Alaska is the most earthquake-prone state, experiencing a magnitude 7 earthquake1 almost every...Oakland, CA $349 23 Las Vegas, NV $28 4 San Francisco, CA $346 24 Anchorage, AK $25 5 San Jose, CA $243 25 Boston, MA $23 6 Orange, CA $214 26 Hilo , HI $20</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA612776','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA612776"><span>Collaborative Research: High-Resolution Seismic Velocity and Attenuation Models of Western China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-07-20</p> <p>type of attenuation from multiple layers and aligned fractures is actually a shape preferred orientation, and is one of the major mechanisms for the...1996] and the recent volcanism just south of the Kunlun Mountains, and a mechanism for heating the crust and gradual erosion of the remaining...However, the mechanism of focusing and defocusing is mostly caused by small-scale velocity anomalies, probably less than 10 km (Sarker and Abers, 1998</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179651','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179651"><span>Flooding: A unique year</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Putnam, A.L.</p> <p>1984-01-01</p> <p>Floods have been and continue to be one of the most destructive hazards facing the people of the United States. Of all the natural hazards, floods are the most widespread and the most ruinous to life and property. Today, floods are a greater menace to our welfare than ever before because we live in large numbers near water and have developed a complex reliance upon it. From large rivers to country creeks, from mountain rills to the trickles that occasionally dampen otherwise arid wastelands, every stream in the United States is subject to flooding at some time. Floods strike in myriad forms, including sea surges driven by wild winds or tsunamis churned into fury by seismic activity. By far the most frequent, however, standing in a class by themselves, are the inland, freshwater floods that are caused by rain, by melting snow and ice, or by the bursting of structures that man has erected to protect himself and his belongings from angry waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PApGe.169..659G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PApGe.169..659G"><span>An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gok, Elcin; Polat, Orhan</p> <p>2012-04-01</p> <p>A temporary earthquake station network of 11 seismological recorders was operated in the Bursa region, south of the Marmara Sea in the northwest of Turkey, which is located at the southern strand of the North Anatolian Fault Zone (NAFZ). We located 384 earthquakes out of a total of 582 recorded events that span the study area between 28.50-30.00°E longitudes and 39.75-40.75°N latitudes. The depth of most events was found to be less than 29 km, and the magnitude interval ranges were between 0.3 ≤ ML ≤ 5.4, with RMS less than or equal to 0.2. Seismic activities were concentrated southeast of Uludag Mountain (UM), in the Kestel-Igdir area and along the Gemlik Fault (GF). In the study, we computed 10 focal mechanisms from temporary and permanents networks. The predominant feature of the computed focal mechanisms is the relatively widespread near horizontal northwest-southeast (NW-SE) T-axis orientation. These fault planes have been used to obtain the orientation and shape factor (R, magnitude stress ratio) of the principal stress tensors (σ1, σ2, σ3). The resulting stress tensors reveal σ1 closer to the vertical (oriented NE-SW) and σ2, σ3 horizontal with R = 0.5. These results confirm that Bursa and its vicinity could be defined by an extensional regime showing a primarily normal to oblique-slip motion character. It differs from what might be expected from the stress tensor inversion for the NAFZ. Different fault patterns related to structural heterogeneity from the north to the south in the study area caused a change in the stress regime from strike-slip to normal faulting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ESRv...89..177B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ESRv...89..177B"><span>Mountain building processes during continent continent collision in the Uralides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, D.; Juhlin, C.; Ayala, C.; Tryggvason, A.; Bea, F.; Alvarez-Marron, J.; Carbonell, R.; Seward, D.; Glasmacher, U.; Puchkov, V.; Perez-Estaun, A.</p> <p>2008-08-01</p> <p>Since the early 1990's the Paleozoic Uralide Orogen of Russia has been the target of a significant research initiative as part of EUROPROBE and GEODE, both European Science Foundation programmes. One of the main objectives of these research programmes was the determination of the tectonic processes that went into the formation of the orogen. In this review paper we focus on the Late Paleozoic continent-continent collision that took place between Laurussia and Kazakhstania. Research in the Uralides was concentrated around two deep seismic profiles crossing the orogen. These were accompanied by geological, geophysical, geochronological, geochemical, and low-temperature thermochronological studies. The seismic profiles demonstrate that the Uralides has an overall bivergent structural architecture, but with significantly different reflectivity characteristics from one tectonic zone to another. The integration of other types of data sets with the seismic data allows us to interpret what tectonic processes where responsible for the formation of the structural architecture, and when they were active. On the basis of these data, we suggest that the changes in the crustal-scale structural architecture indicate that there was significant partitioning of tectonothermal conditions and deformation from zone to zone across major fault systems, and between the lower and upper crust. Also, a number of the structural features revealed in the bivergent architecture of the orogen formed either in the Neoproterozoic or in the Paleozoic, prior to continent-continent collision. From the end of continent-continent collision to the present, low-temperature thermochronology suggests that the evolution of the Uralides has been dominated by erosion and slow exhumation. Despite some evidence for more recent topographic uplift, it has so far proven difficult to quantify it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAESc..62..269B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAESc..62..269B"><span>Thin-skinned tectonics in the Central Basin of the Iranian Plateau in the Semnan area, Central Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouzari, Soheila; Konon, Andrzej; Koprianiuk, Marek; Julapour, Ali A.</p> <p>2013-01-01</p> <p>During continent-continent convergence of the Arabian and Eurasian plates, and after the late Eocene inversion of a back-arc rift, the Iranian Plateau underwent broad subsidence resulting in the formation of the Central Basin (Morley et al., 2009). New 2D seismic data acquired by National Iranian Oil Company (NIOC) in the NW-SW-trending arm of the Central Basin suggest that during the main stage of shortening (middle-late? Miocene to Pliocene), strain concentrations resulted in the development of the thin-skinned Kuh-e-Gachab, Kuh-e-Gugerd, Garmsar and Sorkh-e-Kuh structures. These structures are built of Oligocene-Miocene/Pliocene(?) rocks belonging to the Lower Red, Qom and Upper Red formations. Seismic data suggest that one of these structures comprises the south-verging Kuh-e-Gachab anticline, which is bounded by the N-dipping Kuh-e-Gachab thrust and cored by a complex array of thrust sheets forming a triangle zone. During the deformation process, two salt evaporate levels played a significant role as detachment horizons. The main detachment horizon was rooted within the Lower Red Formation, whereas the second detachment horizon was located along evaporites belonging to the Upper Red Formation. Variations in the thin-skinned style of deformation between the larger triangle zone in the western part of the Kuh-e-Gachab structure contrasts with less shortening in the smaller triangle zone to the east. This suggests that the change resulted from the increase of thickness of the mobile detachment horizon to the east. Contraction deformations are still active south of the Alborz Mountains, which is confirmed by GPS data and present-day seismicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-04-09/pdf/2010-8167.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-04-09/pdf/2010-8167.pdf"><span>75 FR 18160 - Small Takes of Marine Mammals Incidental to Specified Activities; Antioch Bridge Seismic Retrofit...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-04-09</p> <p>... of Marine Mammals Incidental to Specified Activities; Antioch Bridge Seismic Retrofit Project... pile driving associated with the Antioch Bridge Seismic Retrofit Project. DATES: Effective August 15... request from Caltrans to harass marine mammals incidental to the Antioch Bridge Seismic Retrofit Project...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-03-22/pdf/2010-6252.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-03-22/pdf/2010-6252.pdf"><span>75 FR 13498 - Small Takes of Marine Mammals Incidental to Specified Activities; Dumbarton Bridge Seismic...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-03-22</p> <p>... of Marine Mammals Incidental to Specified Activities; Dumbarton Bridge Seismic Retrofit Project... pile driving associated with the Dumbarton Bridge Seismic Retrofit Project. DATES: Effective August 15... request from Caltrans to harass marine mammals incidental to the Dumbarton Bridge Seismic Retrofit Project...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ794482.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ794482.pdf"><span>Ride with Abandon: Practical Ideas to Include Mountain Biking in Physical Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Palmer, Steve</p> <p>2006-01-01</p> <p>Cycling and mountain biking are among the most popular fitness activities in America. Considering that the purpose of physical education is to encourage lifelong activity for all, it is logical to include lifetime activities such as mountain biking in physical education programs. Many perceived barriers to adding mountain biking in physical…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S51A4418G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S51A4418G"><span>A probabilistic assessment of waste water injection induced seismicity in central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goebel, T.; Hauksson, E.; Ampuero, J. P.; Aminzadeh, F.; Cappa, F.; Saleeby, J.</p> <p>2014-12-01</p> <p>The recent, large increase in seismic activity within the central and eastern U.S. may be connected to an increase in fluid injection activity since ~2001. Anomalous seismic sequences can easily be identified in regions with low background seismicity rates. Here, we analyze seismicity in plate boundary regions where tectonically-driven earthquake sequences are common, potentially masking injection-induced events. We show results from a comprehensive analysis of waste water disposal wells in Kern county, the largest oil-producing county in California. We focus on spatial-temporal correlations between seismic and injection activity and seismicity-density changes due to injection. We perform a probabilistic assessment of induced vs. tectonic earthquakes, which can be applied to different regions independent of background rates and may provide insights into the probability of inducing earthquakes as a function of injection parameters and local geological conditions. Our results show that most earthquakes are caused by tectonic forcing, however, waste water injection contributes to seismic activity in four different regions with several events above M4. The seismicity shows different migration characteristics relative to the injection sites, including linear and non-linear trends. The latter is indicative of diffusive processes which take advantage of reservoir properties and fault structures and can induce earthquakes at distances of up to 10 km. Our results suggest that injection-related triggering processes are complex, possibly involving creep, and delayed triggering. Pore-pressure diffusion may be more extensive in the presence of active faults and high-permeability damage zones thus altering the local seismic hazard in a non-linear fashion. As a consequence, generic "best-practices" for fluid injections like a maximum distance from the nearest active fault may not be sufficient to mitigate a potential seismic hazard increase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2963N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2963N"><span>Hydromechanical Earthquake Nucleation Model Forecasts Onset, Peak, and Falling Rates of Induced Seismicity in Oklahoma and Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norbeck, J. H.; Rubinstein, J. L.</p> <p>2018-04-01</p> <p>The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. We develop a reservoir model to calculate the hydrologic conditions associated with the activity of 902 saltwater disposal wells injecting into the Arbuckle aquifer. Estimates of basement fault stressing conditions inform a rate-and-state friction earthquake nucleation model to forecast the seismic response to injection. Our model replicates many salient features of the induced earthquake sequence, including the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. We present evidence for variable time lags between changes in injection and seismicity rates, consistent with the prediction from rate-and-state theory that seismicity rate transients occur over timescales inversely proportional to stressing rate. Given the efficacy of the hydromechanical model, as confirmed through a likelihood statistical test, the results of this study support broader integration of earthquake physics within seismic hazard analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1245/pdf/of2013-1245.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1245/pdf/of2013-1245.pdf"><span>Extreme ground motions and Yucca Mountain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.</p> <p>2013-01-01</p> <p>Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program as they have developed over the past 5 years; what follows will be focused on Yucca Mountain, but not restricted to it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JIEIA.tmp..108M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JIEIA.tmp..108M"><span>Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.</p> <p>2017-11-01</p> <p>The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51D0516B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51D0516B"><span>Gravity and Seismic Investigations of the Northern Rio Grande Rift Area, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braile, L. W.; Deepak, A.; Helprin, O.; Kondas, S.; Maguire, H.; McCallister, B.; Orubu, A.; Rijfkogel, L.; Schumann, H.; Vannette, M.; Wanpiyarat, N.; Carchedi, C.; Ferguson, J. F.; McPhee, D.; Biehler, S.; Ralston, M. D.; Baldridge, W. S.</p> <p>2017-12-01</p> <p>Participants in the Summer of Applied Geophysical Experience (SAGE, a research and education program in applied geophysics for undergraduate and graduate students) program have studied the northern Rio Grande rift (RGR) area of New Mexico for the past thirty-five years. In recent years, the SAGE program has focused on the western edge of the Española basin and the transition into the Santo Domingo basin and the Valles caldera. During this time, we have collected about 50 km of seismic reflection and refraction data along approximately East-West profiles using a 120 channel data acquisition system with a 20 m station interval and a Vibroseis source. We also have access to several energy-industry seismic reflection record sections from the 1970s in the study area. During SAGE 2017, new gravity measurements north of the Jemez Mountains and a seismic reflection profile (Rio de Truchas Profile) in the Valarde graben adjacent to the eastern boundary of the RGR have added new constraints to a west-to-east transect in area of the northern RGR. The recorded near-vertical and wide-angle seismic refection data were processed to produce a CMP (common midpoint) stacked record section. Bandpass filtering, muting, deconvolution, and F-K velocity filtering were found to be effective in enhancing the seismic reflections. Modeling and interpretation of the northern RGR west-to-east geophysical profile indicates that the sedimentary rock fill in the Velarde graben is at least 3 km near the center of the graben. Gravity modeling also suggests the presence of a high-density intrusion at the top of the crystalline basement in an area to the north and west of Abiquiu, NM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33A0850J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33A0850J"><span>Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.</p> <p>2017-12-01</p> <p>Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2634A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2634A"><span>Elastic Reverse Time Migration (RTM) From Surface Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akram, Naveed; Chen, Xiaofei</p> <p>2017-04-01</p> <p>Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS22A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS22A..02N"><span>Elastic Reverse Time Migration (RTM) From Surface Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naveed, A.; Chen, X.</p> <p>2016-12-01</p> <p>Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNH41A3770H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNH41A3770H"><span>Broadband analysis of landslides seismic signal : example of the Oso-Steelhead landslide and other recent events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hibert, C.; Stark, C. P.; Ekstrom, G.</p> <p>2014-12-01</p> <p>Landslide failures on the scale of mountains are spectacular, dangerous, and spontaneous, making direct observations hard to obtain. Measurement of their dynamic properties during runout is a high research priority, but a logistical and technical challenge. Seismology has begun to help in several important ways. Taking advantage of broadband seismic stations, recent advances now allow: (i) the seismic detection and location of large landslides in near-real-time, even for events in very remote areas that may have remain undetected, such as the 2014 Mt La Perouse supraglacial failure in Alaska; (ii) inversion of long-period waves generated by large landslides to yield an estimate of the forces imparted by the bulk accelerating mass; (iii) inference of the landslide mass, its center-of-mass velocity over time, and its trajectory.Key questions persist, such as: What can the short-period seismic data tell us about the high-frequency impacts taking place within the granular flow and along its boundaries with the underlying bedrock? And how does this seismicity relate to the bulk acceleration of the landslide and the long-period seismicity generated by it?Our recent work on the joint analysis of short- and long-period seismic signals generated by past and recent events, such as the Bingham Canyon Mine and the Oso-Steelhead landslides, provides new insights to tackle these issues. Qualitative comparison between short-period signal features and kinematic parameters inferred from long-period surface wave inversion helps to refine interpretation of the source dynamics and to understand the different mechanisms for the origin of the short-period wave radiation. Our new results also suggest that quantitative relationships can be derived from this joint analysis, in particular between the short-period seismic signal envelope and the inferred momentum of the center-of-mass. In the future, these quantitative relationships may help to constrain and calibrate parameters used in inversion or simulation of long-period waves generated by landslides. Relating the center-of-mass dynamics to the short-period seismic signal might also yield a new means to estimate kinematic parameters for the smaller events that generate too weak long-period seismic waves to allow inversion or simulation of the seismic source.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>