Sample records for seismically active subduction

  1. Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone

    NASA Astrophysics Data System (ADS)

    Abbott, Elizabeth R.; Brudzinski, Michael R.

    2015-11-01

    This study characterizes subduction related seismicity with local deployments along the northwestern section of the Mexico Subduction Zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. It has been proposed that the subducted boundary between the Cocos and Rivera plates occurs beneath this region, as indicated by inland volcanic activity, a gap in tectonic tremor, and the Manzanillo Trough and Colima Graben, which are depressions thought to be associated with the splitting of the two plates after subduction. Data from 50 broadband stations that comprised the MARS seismic array, deployed from January 2006 to June 2007, were processed with the software program Antelope and its generalized source location algorithm, genloc, to detect and locate earthquakes within the network. Slab surface depth contours from the resulting catalog indicate a change in subduction trajectory between the Rivera and Cocos plates. The earthquake locations are spatially anti-correlated with tectonic tremor, supporting the idea that they represent different types of fault slip. Hypocentral patterns also reveal areas of more intense seismic activity (clusters) that appear to be associated with the 2003 and 1973 megathrust rupture regions. Seismicity concentrated inland of the 2003 rupture is consistent with slip on a shallowly dipping trajectory for the Rivera plate interface as opposed to crustal faulting in the overriding North American plate. A prominent cluster of seismicity within the suspected 1973 rupture zone appears to be a commonly active portion of the megathrust as it has been active during three previous deployments. We support these interpretations by determining focal mechanisms and detailed relocations of the largest events within the 1973 and inland 2003 clusters, which indicate primarily thrust mechanisms near the plate interface.

  2. Role of H2O in Generating Subduction Zone Earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.

    2017-03-01

    A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.

  3. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  4. Aleutian Array of Arrays (A-cubed) to probe a broad spectrum of fault slip under the Aleutian Islands

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; LI, B.

    2016-12-01

    Alaska-Aleutian subduction zone is one of the most seismically active subduction zones in this planet. It is characterized by remarkable along-strike variations in seismic behavior, more than 50 active volcanoes, and presents a unique opportunity to serve as a natural laboratory to study subduction zone processes including fault dynamics. Yet details of the seismicity pattern, spatiotemporal distribution of slow earthquakes, nature of interaction between slow and fast earthquakes and their implication on the tectonic behavior remain unknown. We use a hybrid seismic network approach and install 3 mini seismic arrays and 5 stand-alone stations to simultaneously image subduction fault and nearby volcanic system (Makushin). The arrays and stations are strategically located in the Unalaska Island, where prolific tremor activity is detected and located by a solo pilot array in summer 2012. The hybrid network is operational between summer 2015 and 2016 in continuous mode. One of the three arrays starts in summer 2014 and provides additional data covering a longer time span. The pilot array in the Akutan Island recorded continuous seismic data for 2 months. An automatic beam-backprojection analysis detects almost daily tremor activity, with an average of more than an hour per day. We imaged two active sources separated by a tremor gap. The western source, right under the Unalaska Island shows the most prolific activity with a hint of steady migration. In addition, we are able to identify more than 10 families of low frequency earthquakes (LFEs) in this area. They are located within the tremor source area as imaged by the bean-backprojection technique. Application of a match filter technique reveals that intervals between LFE activities are shorter during tremor activity and longer during quiet time period. We expect to present new results from freshly obtained data. The experiment A-cubed is illuminating subduction zone processes under Unalaska Island in unprecedented detail.

  5. Detection of earthquake swarms at subduction zones globally: Insights into tectonic controls on swarm activity

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2017-07-01

    Earthquake swarms are characterized by an increase in seismicity rate that lacks a distinguished main shock and does not obey Omori's law. At subduction zones, they are thought to be related to slow-slip events (SSEs) on the plate interface. Earthquake swarms in subduction zones can therefore be used as potential indicators of slow-slip events. However, the global distribution of earthquake swarms at subduction zones remains unclear. Here we present a method for detecting such earthquake sequences using the space-time epidemic-type aftershock-sequence model. We applied this method to seismicity (M ≥ 4.5) recorded in the Advanced National Seismic System catalog at subduction zones during the period of 1995-2009. We detected 453 swarms, which is about 6.7 times the number observed in a previous catalog. Foreshocks of some large earthquakes are also detected as earthquake swarms. In some subduction zones, such as at Ibaraki-Oki, Japan, swarm-like foreshocks and ordinary swarms repeatedly occur at the same location. Given that both foreshocks and swarms are related to SSEs on the plate interface, these regions may have experienced recurring SSEs. We then compare the swarm activity and tectonic properties of subduction zones, finding that swarm activity is positively correlated with curvature of the incoming plate before subduction. This result implies that swarm activity is controlled either by hydration of the incoming plate or by heterogeneity on the plate interface due to fracturing related to slab bending.

  6. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  7. A quantitative analysis of global intermediate and deep seismicity

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas

    2017-04-01

    The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.

  8. Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yojiro; Takahashi, Tsutomu; Kaiho, Yuka; Obana, Koichiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2017-03-01

    We conduct seismic tomography to model subsurface seismicity between 2010 and 2012 and structural heterogeneity off the Kii Peninsula, southwestern Japan, and to investigate their relationships with segmentation of the Nankai and Tonankai seismogenic zones of the Nankai Trough. In order to constrain both the shallow and deep structure of the offshore seismogenic segments, we use both active- and passive-source data recorded by both ocean-bottom seismometers and land seismic stations. The relocated microearthquakes indicate a lack of seismic activity in the Tonankai seismogenic segment off Kumano, whereas there was active intraslab seismicity in the Kii Channel area of the Nankai seismogenic segment. Based on comparisons among the distribution of seismicity, age, and spreading rate of the subducting Philippine Sea plate, and the slip-deficit distribution, we conclude that seismicity in the subducting slab under the Kii Channel region nucleated from structures in the Philippine Sea slab that pre-date subduction and that fluids released by dehydration are related to decreased interplate coupling of these intraslab earthquakes. Our velocity model clearly shows the areal extent of two key structures reported in previous 2-D active-source surveys: a high-velocity zone beneath Cape Shionomisaki and a subducted seamount off Cape Muroto, both of which are roughly circular and of 15-20 km radius. The epicenters of the 1944 Tonankai and 1946 Nankai earthquakes are near the edge of the high-velocity body beneath Cape Shionomisaki, suggesting that this anomalous structure is related to the nucleation of these two earthquakes. We identify several other high- and low-velocity zones immediately above the plate boundary in the Tonankai and Nankai seismogenic segments. In comparison with the slip-deficit model, some of the low-velocity zones appear to correspond to an area of strong coupling. Our observations suggest that, unlike the Japan Trench subduction zone, in our study area there is not a simple correspondence between areas of large coseismic slip or strong interplate coupling and areas of high velocity in the overriding plate.

  9. Seismic velocity structure of the incoming Pacific Plate subducting into the central part of the Japan Trench revealed by traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Miura, S.; Shinohara, M.

    2016-12-01

    Subduction of oceanic plates plays an important role in the water transportation from the earth surface into the deep mantle. Recent active seismic survey studies succeed to image that the seismic velocities within the oceanic crust and the uppermost mantle in the outer rise region decreases toward the trench axis. These velocity changes are considered as an indication of the hydration and alteration of the incoming oceanic plates prior to the subduction. However, the area with sufficient resolution of the active seismic studies is often limited at depths corresponding to the oceanic crust and several km beneath the oceanic Moho. In this study, we have examined the seismic velocity structure of the incoming/subducting Pacific Plate beneath the trench axis and outer trench-slope of the central part of the Japan Trench. The seismicity in the Pacific Plate, including several M7-class intra-plate earthquakes, has been active since the 2011 Tohoku-Oki earthquake in the study area. These activities were observed by the ocean bottom seismographs (OBS) deployed repeatedly. The data obtained from these OBS observations allow us to resolve the seismic velocity structures at greater depths compared to the active seismic surveys. We conducted 3-D traveltime tomography by using double-difference tomography method (Zhang and Thurber, 2003). The results show that the seismic velocities within the oceanic mantle decreased toward the trench axis. The velocity reduction begins at about 80 km seaward of the trench axis and extended to a depth of at least 30 km beneath the trench axis area. If the observed P-wave velocity reduction from 8.4 km/s to 7.7 km/s at a depth of 15 km below the oceanic Moho is caused by the serpentinization of the oceanic mantle (Carlson and Miller, 2003), roughly 2.5 weight per cent of water is expected in the low velocity anomalies in the oceanic mantle.

  10. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.

  11. An Examination of Seismicity Linking the Solomon Islands and Vanuatu Subduction Zones

    NASA Astrophysics Data System (ADS)

    Neely, J. S.; Furlong, K. P.

    2015-12-01

    The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two segments: the South Solomon Trench and the Vanuatu Trench. The two subducting sections are offset by a 200 km long, transform fault - the San Cristobal Trough (SCT) - which acts as a Subduction-Transform Edge Propagator (STEP) fault. The subducting segments have experienced much more frequent and larger seismic events than the STEP fault. The northern Vanuatu trench hosted a M8.0 earthquake in 2013. In 2014, at the juncture of the western terminus of the SCT and the southern South Solomon Trench, two earthquakes (M7.4 and M7.6) occurred with disparate mechanisms (dominantly thrust and strike-slip respectively), which we interpret to indicate the tearing of the Australia plate as its northern section subducts and southern section translates along the SCT. During the 2013-2014 timeframe, little seismic activity occurred along the STEP fault. However, in May 2015, three M6.8-6.9 strike-slip events occurred in rapid succession as the STEP fault ruptured east to west. These recent events share similarities with a 1993 strike-slip STEP sequence on the SCT. Analysis of the 1993 and 2015 STEP earthquake sequences provides constraints on the plate boundary geometry of this major transform fault. Preliminary research suggests that plate motion along the STEP fault is partitioned between larger east-west oriented strike-slip events and smaller north-south thrust earthquakes. Additionally, the differences in seismic activity between the subducting slabs and the STEP fault can provide insights into how stress is transferred along the plate boundary and the mechanisms by which that stress is released.

  12. Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity

    NASA Astrophysics Data System (ADS)

    Bocchini, G. M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P. E.; Ruscic, M.; Papadopoulos, G. A.; Rische, M.; Friederich, W.

    2018-06-01

    This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity along the interplate seismogenic zone.

  13. Seismicity near a Highly-Coupled Patch in the Central Ecuador Subduction Zone

    NASA Astrophysics Data System (ADS)

    Regnier, M. M.; Segovia, M.; Font, Y.; Charvis, P.; Galve, A.; Jarrin, P.; Hello, Y.; Ruiz, M. C.; Pazmino, A.

    2017-12-01

    The temporary onshore-offshore seismic network deployed during the 2-years period of the OSISEC project provides an unprecedented, detailed and well-focused image of the seismicity for magnitudes as low as 2.0 in the Central Ecuadorian subduction zone. Facing the southern border of the Carnegie Ridge, a shallow and discrete highly-coupled patch is correlated to the subduction of a large oceanic relief. No large earthquake is known in this area that is experiencing recurrent seismic swarms and slow slip events. The shallow and locked subduction interface shows no evidence of background seismicity that instead occurred down dip of the coupled patch where it is possibly controlled by structural features of the overriding plate. We show a clear spatial correlation between the background microseismicity, the down dip extension of the locked patch at 20 km depth and the geology of the upper plate. The dip angle of the interplate contact zone, defined by a smooth interpolation through the hypocenters of thrust events, is consistent with a progressive increase from 6° to 25° from the trench to 20 km depth. Offshore, a seismic swarm, concomitant with a slow slip event rupturing the locked area, highlights the reactivation of secondary active faults that developed within the thickened crust of the subducting Carnegie Ridge, at the leading edge of a large oceanic seamount. No seismicity was detected near the plate interface suggesting that stress still accumulates at small and isolated asperities

  14. Tectonic controls on earthquake size distribution and seismicity rate: slab buoyancy and slab bending

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2014-12-01

    There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and tectonic properties may be useful for seismic risk assessment.

  15. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath the inner forearc domain. In comparison, little seismicity is observed beneath the outer forearc domain. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate. At depth, interplate earthquakes observed between 35 and 45 km depth, deeper than the Moho of the forearc (~30 km), possibly reveal the downdip limit of the seismogenic zone. The Thales Scientific Party is composed of: Bayrakci, G., Bécel, A., Charvis, P., Diaz, J., Evain, M., Flueh, E., Gallart, J., Gailler, A., Galve, A., Hello, Y., Hirn, A., Kopp, H., Krabbenhoeft, A., Laigle, M., Lebrun, J. F., Monfret, T., Papenberg, C., Planert, L., Ruiz, M., Sapin, M., Weinzierl, W.

  16. Seismicity pattern: an indicator of source region of volcanism at convergent plate margins

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2004-04-01

    The results of detailed investigation into the geometry of distribution of earthquakes around and below the volcanoes Korovin, Cleveland, Makushin, Yake-Dake, Oshima, Lewotobi, Fuego, Sangay, Nisyros and Montagne Pelée at convergent plate margins are presented. The ISC hypocentral determinations for the period 1964-1999, based on data of global seismic network and relocated by Engdahl, van der Hilst and Buland, have been used. The aim of this study has been to contribute to the solution of the problem of location of source regions of primary magma for calc-alkaline volcanoes spatially and genetically related to the process of subduction. Several specific features of seismicity pattern were revealed in this context. (i) A clear occurrence of the intermediate-depth aseismic gap (IDAG) in the Wadati-Benioff zone (WBZ) below all investigated active volcanoes. We interpret this part of the subducted slab, which does not contain any teleseismically recorded earthquake with magnitude greater than 4.0, as a partially melted domain of oceanic lithosphere and as a possible source of primary magma for calc-alkaline volcanoes. (ii) A set of earthquakes in the shape of a seismically active column (SAC) seems to exists in the continental wedge below volcanoes Korovin, Makushin and Sangay. The seismically active columns probably reach from the Earth surface down to the aseismic gap in the Wadati-Benioff zone. This points to the possibility that the upper mantle overlying the subducted slab does not contain large melted domains, displays an intense fracturing and is not likely to represent the site of magma generation. (iii) In the continental wedge below the volcanoes Cleveland, Fuego, Nisyros, Yake-Dake, Oshima and Lewotobi, shallow seismicity occurs down to the depth of 50 km. The domain without any earthquakes between the shallow seismically active column and the aseismic gap in the Wadati-Benioff zone in the depth range of 50-100 km does not exclude the melting of the mantle also above the slab. (iv) Any earthquake does not exist in the lithospheric wedge below the volcano Montagne Pelée. The source of primary magma could be located in the subducted slab as well as in the overlying mantle wedge. (v) Frequent aftershock sequences accompanying stronger earthquakes in the seismically active columns indicate high fracturing of the wedge below active volcanoes. (vi) The elongated shape of clusters of epicentres of earthquakes of seismically active columns, as well as stable parameters of the available fault plane solutions, seem to reflect the existence of dominant deeply rooted fracture zones below volcanoes. These facts also favour the location of primary magma in the subducting slab rather than in the overlying wedge. We suppose that melts advancing from the slab toward the Earth surface may trigger the observed earthquakes in the continental wedge that is critically pre-stressed by the process of subduction. However, for definitive conclusions it will be necessary to explain the occurrence of earthquake clusters below some volcanoes and the lack of seismicity below others, taking into account the uncertainty of focal depth determination from global seismological data in some regions.

  17. The 2009 Samoa-Tonga great earthquake triggered doublet

    USGS Publications Warehouse

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  18. The 2009 Samoa-Tonga great earthquake triggered doublet.

    PubMed

    Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R

    2010-08-19

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

  19. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  20. Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: Similarities with the Tohoku forearc

    NASA Astrophysics Data System (ADS)

    Laigle, M.; Hirn, A.; Sapin, M.; Bécel, A.; Charvis, P.; Flueh, E.; Diaz, J.; Lebrun, J.-F.; Gesret, A.; Raffaele, R.; Galvé, A.; Evain, M.; Ruiz, M.; Kopp, H.; Bayrakci, G.; Weinzierl, W.; Hello, Y.; Lépine, J.-C.; Viodé, J.-P.; Sachpazi, M.; Gallart, J.; Kissling, E.; Nicolich, R.

    2013-09-01

    The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore-onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged from the conversions of teleseismic body-waves and the locations of earthquakes appears with kinks which increase the dip to 10-20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: "supraslab" earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and "deep flat-thrust" earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.

  1. A non extensive statistical physics analysis of the Hellenic subduction zone seismicity

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Papadakis, G.; Michas, G.; Sammonds, P.

    2012-04-01

    The Hellenic subduction zone is the most seismically active region in Europe [Becker & Meier, 2010]. The spatial and temporal distribution of seismicity as well as the analysis of the magnitude distribution of earthquakes concerning the Hellenic subduction zone, has been studied using the concept of Non-Extensive Statistical Physics (NESP) [Tsallis, 1988 ; Tsallis, 2009]. Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems (Vallianatos, 2011). Using this concept, Abe & Suzuki (2003;2005) investigated the spatial and temporal properties of the seismicity in California and Japan and recently Darooneh & Dadashinia (2008) in Iran. Furthermore, Telesca (2011) calculated the thermodynamic parameter q of the magnitude distribution of earthquakes of the southern California earthquake catalogue. Using the external seismic zones of 36 seismic sources of shallow earthquakes in the Aegean and the surrounding area [Papazachos, 1990], we formed a dataset concerning the seismicity of shallow earthquakes (focal depth ≤ 60km) of the subduction zone, which is based on the instrumental data of the Geodynamic Institute of the National Observatory of Athens (http://www.gein.noa.gr/, period 1990-2011). The catalogue consists of 12800 seismic events which correspond to 15 polygons of the aforementioned external seismic zones. These polygons define the subduction zone, as they are associated with the compressional stress field which characterizes a subducting regime. For each event, moment magnitude was calculated from ML according to the suggestions of Papazachos et al. (1997). The cumulative distribution functions of the inter-event times and the inter-event distances as well as the magnitude distribution for each seismic zone have been estimated, presenting a variation in the q-triplet along the Hellenic subduction zone. The models used, fit rather well to the observed distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena, exhibiting scale-free nature and long range memory effects. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC". GM and GP wish to acknowledge the partial support of the Greek State Scholarships Foundation (ΙΚΥ).

  2. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Angiboust, Samuel; Monié, Patrick; Oncken, Onno; Guigner, Jean-Michel

    2018-04-01

    Geophysical observations on active subduction zones have evidenced high seismicity clusters at 20-40 km depth in the fore-arc region whose origin remains controversial. We report here field observations of pervasive pseudotachylyte networks (interpreted as evidence for paleo-seismicity) in the now-exhumed Valpelline continental unit (Dent Blanche complex, NW. Alps, Italy), a tectonic sliver accreted to the upper plate at c. 30 km depth during the Paleocene Alpine subduction. Pre-alpine granulite-facies paragneiss from the core of the Valpelline unit are crosscut by widespread, mm to cm-thick pseudotachylyte veins. Co-seismic heating and subsequent cooling led to the formation of Ti-rich garnet rims, ilmenite needles, Ca-rich plagioclase, biotite microliths and hercynite micro-crystals. 39Ar-40Ar dating yields a 51-54 Ma age range for these veins, thus suggesting that frictional melting events occurred near peak burial conditions while the Valpelline unit was already inserted inside the duplex structure. In contrast, the base of the Valpelline unit underwent synchronous ductile and brittle, seismic deformation under water-bearing conditions followed by a re-equilibration at c. 40 Ma (39Ar-40Ar on retrograded pseudotachylyte veins) during exhumation-related deformation. Calculated rheological profiles suggest that pseudotachylyte veins from the dry core of the granulite unit record upper plate micro-seismicity (Mw 2-3) formed under very high differential stresses (>500 MPa) while the sheared base of the unit underwent repeated brittle-ductile deformation at much lower differential stresses (<40 MPa) in a fluid-saturated environment. These results demonstrate that some of the seismicity clusters nested along and above the plate interface may reflect the presence of stiff tectonic slivers rheologically analogous to the Valpelline unit acting as repeatedly breaking asperities in the basal accretion region of active subduction zones.

  3. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  4. Difference of the seismic structure between the Hyuga-nada and the Nankai seismogenic segments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2010-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. In the Hyuga-nada region, interplate earthquakes of M~7 occur repeatedly at intervals of about 20 years whereas no megathrust (M > 8) earthquakes had been recognized up to now. However, recent studies show the possibility of simultaneous rupture of the Tokai, Tonankai, Nankai and Hyuga-nada segments was also pointed out [e.g., Hori et al., 2009 AOGS]. To understand the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a wide-angle active source survey and local seismic observation in the western end of the Nankai seismogenic zone, as a part of Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Nakanishi et al [2009, AGU] showed that subducting Philippine Sea Plate can be divided into three zones and there is the zone of the thin oceanic crust of the subducting Philippine Sea Plate between Nankai segment and Kyushu-Palau Ridge segment by analyzing of the active source survey. Deep structure of the subducting slab is also important to consider the possibility of the seismic linkage and the location of the boundary among three zones described above. To obtain the deep seismic image, we performed a three-dimensional seismic tomography using the local seismic data recorded on 158 ocean bottom seismographs and 105 land seismic stations. From these data, we could detect 1141 earthquakes in the Hyuga-nada region. From the result of hypocenter relocation, microseismicity near the trough axis is active on the western part of the ‘thin oceanic crust’, whereas inactive on the eastern part. Besides, velocity structure of the uppermost part of the subducting slab mantle shows spatial heterogeneities. In the thin oceanic crust zone, high velocity slab mantle is imaged from near the trough to coastline. On the other hands, there is low velocity zone in the slab mantle near the trough axis in the Kyusyu-Palau Ridge segment. This low velocity zone may be related to the location of the eastern end of subducted Kyusyu-Palau Ridge.

  5. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  6. Multidisciplinary Observations of Subduction (MOOS) Experiment in South-Central Alaska

    NASA Astrophysics Data System (ADS)

    Christensen, D.; Abers, G.; Freymueller, J.

    2008-12-01

    Seismic and geodetic data are being collected in the Kenai Peninsula and surrounding area of south central Alaska as part of the PASSCAL experiment MOOS. A total of 34 broadband seismic stations were deployed between the summers of 2007 and 2008. Seventeen of these stations continue to operate for an additional year and are scheduled to be removed in the summer of 2009. Numerous GPS campaign sites have and will be visited during the same time period. The MOOS seismic deployment provides coverage across the interplate coupled zone and adjacent transition zone in the shallow parts of the Alaskan subduction zone. It is a southern extension of an earlier broadband deployment BEAAR (Broadband Experiment Across the Alaska Range) to the north. When integrated with the previous BEAAR experiment, these data will allow high-resolution broadband imaging along a 600 km long transect over the Alaska subduction zone, at 10-15 km station spacing. The MOOS deployment allows us to test several hypotheses relating to the postulated subduction of the Yakutat Block and the nature of the coupled zone which ruptured in the great 1964 earthquake. The seismic and geodetic stations cover an area that includes part of the 1964 main asperity and the adjacent, less coupled, region to the southwest. Data gathered from this experiment will shed light on the nature of this boundary from both a geodetic and seismic (or earth structure) perspective. Shallow seismicity recorded by this network greatly improves the catalog of events in this area and helps to delineate active features in the subduction complex. Preliminary results from this project will be presented.

  7. The Calabrian Arc: three-dimensional modelling of the subduction interface.

    PubMed

    Maesano, Francesco E; Tiberti, Mara M; Basili, Roberto

    2017-08-21

    The Calabrian Arc is a one-of-a-kind subduction zone, featuring one of the shortest slab segments (<150 km), one of the thickest accretionary wedges, and one of the oldest oceanic crust in the world. Despite a convergence rate of up to 5 mm/y and well-known intraslab seismicity below 40 km, its shallow interface shows little signs of seismic activity. Nonetheless, it has been attributed as generating historical large earthquakes and tsunamis. To gain insights into this subduction zone, we first made a geological reconstruction of the shallower slab interface (<20 km) and its overlying accretionary wedge by interpreting a grid of 54 seismic reflection lines (8,658 km) with 438 intersections within an area of 10 5  km 2 . Then, we constrained a deeper portion of the slab surface (40-350 km) using the seismicity distribution. Finally, we interpolated the two parts to obtain a seamless 3D surface highlighting geometric details of the subduction interface, its lateral terminations and down-dip curvature, and a slab tear at 70-100 km depth. Our 3D slab model of the Calabrian Arc will contribute to understanding of the geodynamics of a cornerstone in the Mediterranean tectonic puzzle and estimates of seismic and tsunami hazards in the region.

  8. Structure and Deformation of the Hikurangi-Kermadec Subduction Zone - Transitions Revealed by Seismic Wide-angle Data

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2008-12-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate of continental character in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 deg S. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper mantle of both plates are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate, are more similar to MANGO 4. The arc regions appear to be strongly affected by the activity of the arc. The arc crust of the northern MANGO 3 becomes significantly thinner in the backarc region due to extension, whereas the data from MANGO 2 likely show thermal activity from the adjacent arc volcanism.

  9. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Foix, O.; Crawford, W. C.; Koulakov, I.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2017-12-01

    The 1 400 km long Vanuatu subduction zone marks the subduction of the oceanic Australia plate beneath the North-Fijian microplate. Seismic and volcanic activity is high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Northern d'Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the forearc islands of Santo and Malekula. This subduction/collision coincides with a strongly decreased local convergence velocity rate at the trench (35 mm/yr compared to 120-160 mm/yr to the north and south) and significant uplift on the overriding plate. Two large forearc islands located 20-30 km from the subduction front Santo and Malekula to the trench allow excellent coverage of the megathrust seismogenic zone for a seismological study. We use data from the 10 months, 30-station amphibious ARC-VANUATU seismology network to construct a 3D velocity model and locate 11 617 earthquakes. The 3D model reveals low P and S velocities in the uppermost tens of kilometers in front of the Northern d'Entrecasteaux Ridge and the Bougainville Guyot. These anomalies may be due to heavy faulting of related subducted features, possibly including important water infiltration. We also identify a possible seamount entered into subduction beneath a smaller uplifted island between the two main islands. The spatial distribution of earthquakes is highly variable, as is the depth limit of the seismogenic zone, suggests a complex interaction of faults and stress zones related to high and highly variable stress that may be associated with the subducted features.

  10. Preliminary deformation model for National Seismic Hazard map of Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except inmore » the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.« less

  11. Seismogenesis of dual subduction beneath Kanto, central Japan controlled by fluid release.

    PubMed

    Ji, Yingfeng; Yoshioka, Shoichi; Manea, Vlad C; Manea, Marina

    2017-12-04

    Dual subduction represents an unusual case of subduction where one oceanic plate subducts on top of another, creating a highly complex tectonic setting. Because of the complex interaction between the two subducted plates, the origin of seismicity in such region is still not fully understood. Here we investigate the thermal structure of dual subduction beneath Kanto, central Japan formed as a consequence of a unique case of triple trench junction. Using high-resolution three-dimensional thermo-mechanical models tailored for the specific dual subduction settings beneath Kanto, we show that, compared with single-plate subduction systems, subduction of double slabs produces a strong variation of mantle flow, thermal and fluid release pattern that strongly controls the regional seismicity distribution. Here the deepening of seismicity in the Pacific slab located under the Philippine Sea slab is explained by delaying at greater depths (~150 km depth) of the eclogitization front in this region. On the other hand, the shallower seismicity observed in the Philippine Sea slab is related to a young and warm plate subduction and probably to the presence of a hot mantle flow traveling underneath the slab and then moving upward on top of the slab.

  12. Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor

    NASA Astrophysics Data System (ADS)

    Delph, J. R.; Levander, A.; Niu, F.

    2017-12-01

    The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc. Siletzia also contains most of the young arc volcanoes in the Cascades, indicating that water is retained in the slab to depths where it can feed arc volcanism. Thus, the along strike variations in volcanic activity and seismic activity in Cascadia appear to be related to variations in depth of dewatering of the downgoing oceanic lithosphere.

  13. A new database on subduction seismicity at the global scale

    NASA Astrophysics Data System (ADS)

    Presti, D.; Heuret, A.; Funiciello, F.; Piromallo, C.

    2012-04-01

    In the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', a global collection of recent intraslab seismicity has been performed. Based on EHB hypocenter and CMT Harvard catalogues, the hypocenters, nodal planes and seismic moments of worldwide subduction-related earthquakes were extracted for the period 1976 - 2007. Data were collected for centroid depths between sea level and 700 km and for magnitude Mw ≥ 5.5. For each subduction zone, a set of trench-normal transects were constructed choosing a 120km width of the cross-section on each side of a vertical plane and a spacing of 1 degree along the trench. For each of the 505 resulting transects, the whole subduction seismogenic zone was mapped as focal mechanisms projected on to a vertical plane after their faulting type classification according to the Aki-Richards convention. Transect by transect, fist the seismicity that can be considered not related to the subduction process under investigation was removed, then was selected the upper plate seismicity (i.e. earthquakes generated within the upper plate as a result of the subduction process). After deletion from the so obtained event subset of the interplate seismicity as identified in the framework of this project by Heuret et al. (2011), we can be reasonably confident that the remaining seismicity can be related to the subducting plate. Among these earthquakes we then selected the intermediate and deep depth seismicity. The upper limit of the intermediate depth seismicity is generally fixed at 70 km depth in order to avoid possible mixing with interplate seismicity. The ranking of intermediate depth and deep seismicity was in most of cases referred to earthquakes with focal depth between 70-300 km and with depth exceeding 300 km, respectively. Outer-rise seismicity was also selected. Following Heuret et al. (2011), the 505 transects were merged into 62 larger segments that were ideally homogeneous in terms of their seismogenic zone characteristics. Comparisons between main seismic parameters (e.g. cumulated seismic moment, P- and T-axes distributions, spatial and temporal distribution of largest magnitudes) with relation to both the different categories selected and the different segments have been performed in order to obtain a snapshot on the general behaviour of global subduction-related seismicity.

  14. Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Faccenna, Claudio

    2018-05-01

    The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.

  15. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  16. Detailed Velocity and Density models of the Cascadia Subduction Zone from Prestack Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Fortin, W.; Holbrook, W. S.; Mallick, S.; Everson, E. D.; Tobin, H. J.; Keranen, K. M.

    2014-12-01

    Understanding the geologic composition of the Cascadia Subduction Zone (CSZ) is critically important in assessing seismic hazards in the Pacific Northwest. Despite being a potential earthquake and tsunami threat to millions of people, key details of the structure and fault mechanisms remain poorly understood in the CSZ. In particular, the position and character of the subduction interface remains elusive due to its relative aseismicity and low seismic reflectivity, making imaging difficult for both passive and active source methods. Modern active-source reflection seismic data acquired as part of the COAST project in 2012 provide an opportunity to study the transition from the Cascadia basin, across the deformation front, and into the accretionary prism. Coupled with advances in seismic inversion methods, this new data allow us to produce detailed velocity models of the CSZ and accurate pre-stack depth migrations for studying geologic structure. While still computationally expensive, current computing clusters can perform seismic inversions at resolutions that match that of the seismic image itself. Here we present pre-stack full waveform inversions of the central seismic line of the COAST survey offshore Washington state. The resultant velocity model is produced by inversion at every CMP location, 6.25 m laterally, with vertical resolution of 0.2 times the dominant seismic frequency. We report a good average correlation value above 0.8 across the entire seismic line, determined by comparing synthetic gathers to the real pre-stack gathers. These detailed velocity models, both Vp and Vs, along with the density model, are a necessary step toward a detailed porosity cross section to be used to determine the role of fluids in the CSZ. Additionally, the P-velocity model is used to produce a pre-stack depth migration image of the CSZ.

  17. Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals

    NASA Astrophysics Data System (ADS)

    Ducellier, A.; Creager, K.

    2017-12-01

    Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic crust under the arrays. Identifying zones with lower S-wave velocity and a high Poisson's ratio will then help detecting the presence of water in the subducted oceanic crust. Our ultimate goal is contributing to a better understanding of the mechanism of ETS and subduction zone processes.

  18. Wedge geometry, frictional properties and interseismic coupling of the Java megathrust

    NASA Astrophysics Data System (ADS)

    Koulali, Achraf; McClusky, Simon; Cummins, Phil; Tregoning, Paul

    2018-06-01

    The mechanical interaction between rocks at fault zones is a key element for understanding how earthquakes nucleate and propagate. Therefore, estimating frictional properties along fault planes allows us to infer the degree of elastic strain accumulation throughout the seismic cycle. The Java subduction zone is an active plate boundary where high seismic activity has long been documented. However, very little is known about the seismogenic processes of the megathrust, especially its shallowest portion where onshore geodetic networks are insensitive to recover the pattern of elastic strain. Here, we use the geometry of the offshore accretionary prism to infer frictional properties along the Java subduction zone, using Coulomb critical taper theory. We show that large portions of the inner wedge in the eastern part of the Java subduction megathrust are in a critical state, where the wedge is on the verge of failure everywhere. We identify four clusters with an internal coefficient of friction μint of ∼ 0.8 and hydrostatic pore pressure within the wedge. The average effective coefficient of friction ranges between 0.3 and 0.4, reflecting a strong décollement. Our results also show that the aftershock sequence of the 1994 Mw 7.9 earthquake halted adjacent to a critical segment of the wedge, suggesting that critical taper wedge areas in the eastern Java subduction interface may behave as a permanent barrier to large earthquake rupture. In contrast, in western Java topographic slope and slab dip profiles suggest that the wedge is mechanically stable, i.e deformation is restricted to sliding along the décollement, and likely to coincide with a seismogenic portion of the megathrust. We discuss the seismic hazard implications and highlight the importance of considering the segmentation of the Java subduction zone when assessing the seismic hazard of this region.

  19. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located worldwide to investigate the link between magnetic and gravity anomalies and seismic activity and slab structure. In the Southeast Asia region, transects were taken in the Andaman, Sumatra, Marianas and Philippines, while the Central American region is represented by the Ecuadorian subduction zone. The Magnetic data was obtained from the World Digital Magnetic Anomaly Map (WDMAM), the gravimetric data from the International Gravimetric Bureau while data on seismic activity and slab structure was obtained from the USGS earthquake hazards program. We present an initial investigation on the correlation of magnetic and gravimetric anomalies on the one-hand and seismic activity and slab structure on the other to search for patterns that can help detect mantelic wedges and incipient subduction and further our understanding of subduction initiation processes. References Blakely, R.J., Brocher, T.M., Wells, R.E., 2005. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33, 445-448.

  20. Indo-Burmese subduction of the Bengal basin controlled by 90°E ridge collison imaged from deep seismic reflection data

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Maurin, T.

    2009-12-01

    As a result of the Indo Burmese active hyper-oblique subduction, part of the Bay of Bengal is presently subducting eastward below the Burmese microplate. We have conducted two deep penetration seismic reflection surveys in the north-eastern Bay of Bengal, providing the first high resolution seismic image of the Bengal basin fill and basement. On basis of these data, we are able to trace the 90°E ridge much more northward than previously thought, i.e. up to 20°N along the Indo-Burmese plate boundary. We found out that the surface deformation, the deep structure of the subduction zone and the geometry of the plate boundary could all be strongly influenced by the impact of a prominent asperity, the 90°E ridge. These effects are variable along the margin. Between 15°N and 18°N, the ridge asperity brushes the active burmese plate boundary that strikes N10°E. At this latitude, all the structures framing the Indo-Burmese wedge have a similar N10°E trend. Deformation at the plate boundary is mainly strike slip. This is confirmed by the absence of subducted slab at depth as indicated by both seismicity and tomography. The small component of shortening along this plate boundary is probably accommodated partly by the flexure of the ridge and partly within the deformed upper plate. North of 19°N, the ridge vanishes progressively. The absence of basement topography together with the large amount of sediments provided by the Brahmaputra delta facilitates the fast westward growth of the Indo-Burmese wedge. The seismicity fits a well developed subducted slab at depth,. In the narrow transition zone between 18°N and 19°N, the 90°E ridge northern tips collides with the Burmese microplate. This collision could explain the rise of a subsuface flat and ramp system offshore Ramree and Cheduba islands, and the strong uplift of the Indo-Burmese wedge in Mount Victoria area.

  1. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Nishizawa, Azusa; Kaneda, Kentaro; Oikawa, Mitsuhiro; Horiuchi, Daishi; Fujioka, Yukari; Okada, Chiaki

    2017-06-01

    The Ryukyu (Nansei-Shoto) island arc-trench system, southwest of Japan, is formed by the subduction of the Philippine Sea (PHS) plate. Among the subduction zones surrounding the Japan Islands, the Ryukyu arc-trench system is unique in that its backarc basin, the Okinawa Trough, is the area with current extensively active rifting. The length of the trench is around 1400 km, and the geological and geophysical characteristics vary significantly along the trench axis. We conducted multichannel seismic (MCS) reflection and wide-angle seismic surveys to elucidate the along-arc variation in seismic structures from the island arc to the trench regions, shooting seven seismic lines across the arc-trench system and two along-arc lines in the island arc and the forearc areas. The obtained P-wave velocity models of the Ryukyu arc crust were found to be heterogeneous (depending on the seismic lines), but they basically consist of upper, middle, and lower crusts, indicating a typical island arc structure. Beneath the bathymetric depressions cutting the island arc—for example, the Kerama Gap and the Miyako Saddle—the MCS record shows many across-arc normal faults, which indicates the presence of an extensional regime along the island arc. In the areas from the forearc to the trench, the subduction of the characteristic seafloor features on the PHS plate affects seismic structures; the subducted bathymetric high of the Amami Plateau is detected in the northern trench: the Luzon-Okinawa fracture zone beneath the middle and southern trenches. There are low-velocity (< 4.5 km/s) wedges along the forearc areas, except for off Miyako-jima Island. The characteristic high gravity anomaly at the forearc off Miyako-jima Island is caused not by a bathymetric high of a large-scale accretionary wedge but by shallower materials with a high P-wave velocity of 4.5 km/s.[Figure not available: see fulltext.

  2. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip.

    PubMed

    Rogers, Garry; Dragert, Herb

    2003-06-20

    We found that repeated slow slip events observed on the deeper interface of the northern Cascadia subduction zone, which were at first thought to be silent, have unique nonearthquake seismic signatures. Tremorlike seismic signals were found to correlate temporally and spatially with slip events identified from crustal motion data spanning the past 6 years. During the period between slips, tremor activity is minor or nonexistent. We call this associated tremor and slip phenomenon episodic tremor and slip (ETS) and propose that ETS activity can be used as a real-time indicator of stress loading of the Cascadia megathrust earthquake zone.

  3. The geological and petrological studies of the subduction boundaries and suggestion for the geological future work in Japan - How to avoid ultra-mega-earthquakes -

    NASA Astrophysics Data System (ADS)

    Ishii, T.

    2015-12-01

    The Pacific plate is surrounded by circum-Pacific active margin, along which volcanic and seismic activities are very high. Ultra-Mega-Earthquakes (=UMEs, M>9.0) are occasionally observed along the margin, where sedimentary rocks of subducting slaves contact with the accreted sedimentary rocks of subducted slaves. But, those UME have never been occured along western Pacific islandarc-trench system including Izu-Ogasawara (=Bonin)-Mariana-Yap-Palau-Philippine-Tonga-Kermadec Trenches. I assume that the geological and petrological characteristics of the subduction boundaries are very important to understand those different seismic activities. Along the above mentioned trench inner wall, especially in the southern Mariana, mantle peridotites are widely distributed. Subducting slave contacts directly with the olivine dominant mantle peridotites of subducted slave, serpentinite layer can be deposited easily under hydrous oceanic sub-bottom environment and very slippery subduction boundaries are left along the subduction zone.On the other hand, those geological evidences give us some ideas on how to avoid UMEs in the Japanese Islands along Japan Trench and Nankai Trough in future. We will be able to change artificially from normal subduction boundaries with asperity zone into slippery subduction boundaries with serpentine layer, by means of serpentine mud injection toward the subduction boundaries interior by combining the following improved drilling technologies A and B. (A) Deep Sea Drilling Vessel CHIKYU has a drilling ability to reach subduction boundary with asperity zone in the Nankai Trough. (B) Advanced drilling technology in the shale gas industry is tremendous, that is, after one vertical deep drilling, horizontal drilling towards several direction are performed, then shale gas is collected by hydraulic fracturing method. I hope that, after several generations, our posterity will be able to avoid UMEs by continuous serpentine mud injection.

  4. Catalog of offshore seismicity in Cascadia: Insights into the regional distribution of microseismicity and its relation to subduction processes

    NASA Astrophysics Data System (ADS)

    Stone, I.; Vidale, J. E.; Han, S.; Roland, E. C.

    2017-12-01

    We present a catalog of offshore seismicity generated from Cascadia Initiative OBS data. The catalog, which records 271 earthquakes along the coasts of Washington, Oregon, Northern California, and Vancouver Island, spans all 4 years of the OBS deployment and shows distinct along-strike variations in seismicity. Within the subduction zone, seismicity increases significantly from north to south, following trends in decreasing sediment thickness and increasing internal deformation of the incoming plate. Seismicity is sparse off the coasts of Vancouver Island and Washington (49-46°N), but abruptly increases south of the Washington/Oregon border. Off Northern and Central Oregon, widespread earthquakes are observed near the interface between 46 and 45°N, as well as at the previously identified clusters of seismicity off Newport, Oregon. South of Cape Blanco ( 43°N), seismicity is abundant and distributed across a large depth range. We locate an additional 440 events seaward of the deformation front, which show that rates of seismicity are higher in the Juan de Fuca plate south of 46°N, consistent with internal deformation trends observed during recent active source seismic reflection/refraction studies. Our observations imply that the smoothness and degree of hydration of the incoming plate, which are linked to the amount of underthrust sediment and amount of intraplate deformation, are major contributing factors to the distribution of microseismicity in the Cascadia Subduction Zone

  5. Neogene subduction beneath Java, Indonesia: Slab tearing and changes in magmatism

    NASA Astrophysics Data System (ADS)

    Cottam, Michael; Hall, Robert; Cross, Lanu; Clements, Benjamin; Spakman, Wim

    2010-05-01

    Java is a Neogene calc-alkaline volcanic island arc formed by the northwards subduction of the Indo-Australian Plate beneath Sundaland, the continental core of SE Asia. The island has a complex history of volcanism and displays unusual subduction characteristics. These characteristics are consistent with the subduction of a hole in the down going slab that was formed by the arrival of a buoyant oceanic plateau at the trench. Subduction beneath Java began in the Eocene. However, the position and character of the calc-alkaline arc has changed over time. An older Paleogene arc ceased activity in the Early Miocene. Volcanic activity resumed in the Late Miocene producing a younger arc to the north of the older arc, and continues to the present day. An episode of Late Miocene thrusting at about 7 Ma is observed throughout Java and appears to be linked to northward movement of the arc. Arc rocks display typical calc-alkaline characteristics and reflect melting of the mantle wedge and subducted sediments associated with high fluid fluxes. Between West Java and Bali the present arc-trench gap is unusually wide at about 300 km. Seismicity identifies subducted Indian Ocean lithosphere that dips north at about 20° between the trench and the arc and then dips more steeply at about 60-70° from 100 to 600 km depth. In East Java there is gap in seismicity between about 250 and 500 km. Seismic tomography shows that this gap is not an aseismic section of the subduction zone but a hole in the slab. East Java is also unusual in the presence of K-rich volcanoes, now inactive, to the north of the calc-alkaline volcanoes of the active arc. In contrast to the calc-alkaline volcanism of the main arc, these K-rich melts imply lower fluid fluxes and a different mantle source. We suggest that all these observations can be explained by the tearing of the subducting slab when a buoyant oceanic plateau arrived at the trench south of East Java at about 8 Ma. With the slab unable to subduct, continued convergence caused contractional deformation and thrusting in Java. The slab then broke in front of the plateau. The trench stepped back to the south by about 150 km and subduction resumed behind the plateau, causing a hole to develop in the subducting slab. As the hole passed beneath the arc, and fluid flux declined, normal calc-alkaline volcanism ceased. With the mantle wedge melt component ‘switched off' K-rich melts, produced from a deeper mantle component that remained undiluted, dominated arc volcanism. As the hole got deeper K-rich volcanism ceased. Normal, calc-alkaline, arc activity resumed when the untorn slab following the hole was subducted.

  6. Deformation fabrics of blueschist facies phengite-rich, epidote-glaucophane schists from Ring Mountain, California and implications for seismic anisotropy in subduction zone

    NASA Astrophysics Data System (ADS)

    Jung, H.; HA, Y.; Raymond, L. A.

    2016-12-01

    In many subduction zones, strong seismic anisotropy is observed. A part of the seismic anisotropy can be attributed to the subducting oceanic crust, which is transformed to blueschist facies rocks under high-pressure, high-temperature conditions. Because glaucophane, epidote, and phengite constituting the glaucophane schists are very anisotropic elastically, seismic anisotropy in the oceanic crust in hot subduction zones can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied deformation fabrics and seismic properties of phengite-rich, epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The blueschist samples are mainly composed of glaucophane, epidote, and phengite, with minor garnet, titanite, and chlorite. Some samples contain abundant phengite (up to 40 %). We determined LPOs of minerals using SEM/EBSD and calculated seismic anisotropy of minerals and whole rocks. LPOs of glaucophane have [001] axes aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles subparallel to lineation. LPOs of phengite are characterized by maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes aligned in a girdle subparallel to foliation. Phengite showed much stronger seismic anisotropy (AVP = 42%, max.AVS = 37%) than glaucophane or epidote. Glaucophane schist with abundant phengite showed much stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than epidote-glaucophane schist without phengite (AVP = 13%, max.AVS = 9%). Therefore, phengite clearly can significantly affect seismic anisotropy of whole rocks. When the subduction angle of phengite-rich blueschist facies rocks is considered for a 2-D corner flow model, the polarization direction of fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction angle of 45-70° and shear wave anisotropy (AVS) became stronger for vertically propagating S-waves with increasing subduction angle. Our data showed that phengite-rich blueschist, therefore, can contribute to strong trench-parallel seismic anisotropy observed in many subduction zones.

  7. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

    PubMed Central

    Geersen, Jacob; Ranero, César R.; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  8. Investigating subduction reversal in Papua New Guinea from automatic analysis of seismicity recorded on a temporary local network

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.

    2017-12-01

    The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an azimuthal gap of <270°, leaving 147 well-located events. This new seismic catalogue gives a detailed insight into the plate boundary structures at depth in the Papua New Guinea region. We are also able to delineate Wadati-Benioff seismicity to 600 km depth in the subducting Solomon Sea plate beneath the New Britain arc.

  9. Investigating subduction reversal in Papua New Guinea from automatic analysis of seismicity recorded on a temporary local network

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.

    2016-12-01

    The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an azimuthal gap of <270°, leaving 147 well-located events. This new seismic catalogue gives a detailed insight into the plate boundary structures at depth in the Papua New Guinea region. We are also able to delineate Wadati-Benioff seismicity to 600 km depth in the subducting Solomon Sea plate beneath the New Britain arc.

  10. Heterogeneous coupling along Makran subduction zone

    NASA Astrophysics Data System (ADS)

    Zarifi, Z.; Raeesi, M.

    2010-12-01

    The Makran subduction zone, located in the southeast of Iran and southern Pakistan, extends for almost 900 km along the Eurasian-Arabian plate boundary. The seismic activities in the eastern and western Makran exhibit very different patterns. The eastern Makran characterized by infrequent large earthquakes and low level of seismicity. The only large instrumentally recorded earthquake in the eastern Makran, the 27 Nov. 1945 (Mw=8.1) earthquake, was followed by tsunami waves with the maximum run-up height of 13 m and disastrous effects in Pakistan, India, Iran and Oman. The western Makran, however, is apparently quiescent without strong evidence on occurrence of large earthquakes in historical times, which makes it difficult to ascertain whether the slab subducts aseismically or experiences large earthquakes separated by long periods exceeding the historical records. We used seismicity and Trench Parallel Free air and Bouguer Anomalies (TPGA and TPBA) to study the variation in coupling in the slab interface. Using a 3D mechanical Finite Element (FE) model, we show how heterogeneous coupling can influence the rate of deformation in the overriding lithosphere and the state of stress in the outer rise, overriding, and subducting plates within the shortest expected cycle of earthquake. We test the results of FE model against the observed focal mechanism of earthquakes and available GPS measurements in Makran subduction zone.

  11. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents

    NASA Astrophysics Data System (ADS)

    Hacker, Bradley R.; Abers, Geoffrey A.; Peacock, Simon M.

    2003-01-01

    We present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted lherzolite, harzburgite, and serpentinite. We use these data to calculate H2O content, density and seismic wave speeds of subduction zone rocks. These calculations provide a new basis for evaluating the subduction factory, including (1) the presence of hydrous phases and the distribution of H2O within a subduction zone; (2) the densification of the subducting slab and resultant effects on measured gravity and slab shape; and (3) the variations in seismic wave speeds resulting from thermal and metamorphic processes at depth. In considering specific examples, we find that for ocean basins worldwide the lower oceanic crust is partially hydrated (<1.3 wt % H2O), and the uppermost mantle ranges from unhydrated to ˜20% serpentinized (˜2.4 wt % H2O). Anhydrous eclogite cannot be distinguished from harzburgite on the basis of wave speeds, but its ˜6% greater density may render it detectable through gravity measurements. Subducted hydrous crust in cold slabs can persist to several gigapascals at seismic velocities that are several percent slower than the surrounding mantle. Seismic velocities and VP/VS ratios indicate that mantle wedges locally reach 60-80% hydration.

  12. Spatial heterogeneity of the structure and stress field in Hyuga-nada region, southwest Japan, deduced from onshore and offshore seismic observations

    NASA Astrophysics Data System (ADS)

    Uehira, K.; Yakiwara, H.; Yamada, T.; Umakoshi, K.; Nakao, S.; Kobayashi, R.; Goto, K.; Miyamachi, H.; Mochizuki, K.; Nakahigashi, K.; Shinohara, M.; Kanazawa, T.; Hino, R.; Goda, M.; Shimizu, H.

    2010-12-01

    In Hyuga-nada region, the Philippine Sea (PHS) plate is subducting beneath the Eurasian (EU) plate (the southwest Japan arc) along the Nankai trough at a rate of about 5 cm per year. The seismic activity in the boundary between the PHS and the Eurasian (EU) plates varies spatially along the Nankai trough. Especially the region from off coast of Shikoku to the Bungo channel and Hyuga-nada has large variation of seismicity. Although usual microearthquake activity is active in Hyuga-nada, it is inactive near Shikoku. On the other hand, although the great earthquake (M>8) has occurred repeatedly in near Shikoku at intervals of about 100 years, in Hyuga-nada, smaller earthquakes (M7 class) has occurred at intervals of about dozens of years, and so plate coupling varies dozens of kilometers specially. Big earthquakes (M7 class) have occurred in the north region from latitude 31.6 degrees north, but it has not occurred in the south region from latitude 31.6 degrees north. The largest earthquake ever recorded in Hyuga-nada region is the 1968 Hyuga-nada earthquake (Mw 7.5). And microseismicity varies spatially. It is important to understand seismic activity, stress field, and structure in such region in order to understand seismic cycle. We performed extraordinary seismic observation in and around Hyuga-nada region. More than 20 pop-up type OBSs were deployed above hypocentral region of Hyuga-nada using Nagasaki-maru and several data loggers were deployed in order to compensate a regular seismic network on land. We detected earthquakes more than 2 times of JMA. Seismic activity in source region of the 1961 Hyuga-nada Earthquake (M7.0) is low, but around its source region, seismic activity is very high. In order to obtain a 3D seismic velocity structure and precise hypocenter distribution and focal mechanisms around the Hyuga-nada region, we used Double-Difference (DD) Tomography method developed by Zhang and Thurber (2003). We could detect the structure of subduction of Kyushu-Palau Ridge at low seismicity area. We estimated the stress filed using a stress tensor inversion method by polarity of first arrivals from earthquakes [Horiuchi et al. (1995)], and we found that there is a good correlation between the slip distribution at large earthquakes and the angle between maximum principal axis and the plate boundary in northern part of Hyuga-nada region [Uehira et al. (2007)]. Because the shear stress of plate boundary is large on the subducted Kyushu-Palau Ridge, we suspected that it might be caused the strong interplate coupling. We also found a subducted seamount in the southwest margin of source region of the 1968 Hyuga-nada earthquake (Mw 7.5). This may acts as a barrier.

  13. Seismicity and geodynamics in the central part of the Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2013-12-01

    The Vanuatu Arc (VA) in the southwest Pacific ocean (167°E, 13-20°S), is highly seismically active, with more than 35 events of magnitude Mw ≥ 7 since 1973 (USGS catalog). The geodynamics are dominated by the east-dipping subduction of the Australian Plate under the North Fiji Basin microplate. Convergence rates are estimated to be between 130 and 170 mm/yr, except in the central part of the VA where convergence slows to 30-40 mm/yr. This slowing appears to be the result of blockage by the subducting d'Entrecastaux ridge. To quantify the tectonics of this blocked section, we deployed 30 seismometers in 2008-2009 and 8 GPS stations since 2008, in the forearc region of the central VA. The seismometers recorded more than 100 events/day. Detailed analysis of the earthquake catalog reveals: 1) a seismic gap between 40 and 60 km deep under the two largest islands of the VA (Santo and Malekula); 2) subduction plane and intraplate faulting within the down-going plate; and 3) reduced activity beneath Malekula island , perhaps indicating a locked patch on the subduction plane. We infer the geometry of the subduction interface by combining our catalog with unpublished data from the 2000 Santo Mw 6.9 earthquake and aftershocks and the USGS and Global CMT catalogs. The subduction interface appears to be composed of two different panels: a shallow one with a small dip angle and a deeper one with higher dip starting at a depth of ~50 km. We compare finite-element modeling of these panels to the geodetic data to test the connectedness of the two panels and their degree of locking.

  14. Identifying tectonic parameters that influence tsunamigenesis

    NASA Astrophysics Data System (ADS)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  15. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    NASA Astrophysics Data System (ADS)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to the Great Maule earthquake the Collaborative Research Center SFB 574 'Volatiles and Fluids in Subduction Zones' shot several wide-angle profiles and operated a network, also consisting of OBS and land stations for six months in 2008. Both projects provide a great opportunity to study the evolution of a subduction zone within the seismic cycle of a great earthquake. The most profound features are (i) a sharp reduction in intraslab seismic activity after the Maule earthquake and (ii) a sharp increase in seismic activity at the slab interface above 50 km depth, where large parts of the rupture zone were largely aseismic prior to the Maule earthquake. Further, the aftershock seismicity shows a broader depth distribution above 50 km depth.

  16. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration

    PubMed Central

    Wei, S. Shawn; Wiens, Douglas A.; van Keken, Peter E.; Cai, Chen

    2017-01-01

    Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island–based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this “seismic belt” occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting. PMID:28097220

  17. Historical seismicity

    USGS Publications Warehouse

    Dengler, L.

    1992-01-01

    The North Coast region of California in the vicinity of Cape Mendocino is one of the state's most seismically active areas, accounting for 25 percent of seismic energy release in California during the last 50 years. the region is located in a geologically dynamic are surrounding the Mendocino triple junction where three of the Earth's tectonic plates join together ( see preceding article by Sam Clarke). In the historic past the North Coast has been affected by earthquakes occurring on the San Andreas fault system to the south, the Mendocino fault to the southwest, and intraplate earthquakes within both the Gorda and North American plates. More than sixty of these earthquakes have caused damage since the mid-1800's. Recent studies indicate that California's North Coast is also at risk with respect to very large earthquakes (magnitude >8) originating along the Cascadia subduction zone. Although the subduction zone has not generated great earthquakes in historic time, paleoseismic evidence suggests that such earthquakes have been generated by the subduction zone in the recent prehistoric past. 

  18. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles.

    PubMed

    Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun

    2017-07-10

    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60-100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120-160 km depth suggests that the slab's mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.

  19. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    PubMed Central

    Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun

    2017-01-01

    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics. PMID:28691714

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, K.C.; Minster, J.B.

    Revised estimates of seismic slip rates along the Middle America Trench are lower on the average than plate convergence rates but match them locally (for example, Oaxaca). Along the Cocos-North American plate boundary this can be explained by nonuniformities in slip at points of aseismic ridge or fracture zone subduction. For at least 81 yr (and possibly several hundred years), no major (M/sub s/> or =7.5) shallow earthquake is known to have occurred near the Orozco Fracture Zone and Tehuantepec Ridge areas. Compared with the average recurrence periods for large earthquakes (33 +- 8 yr since 1898 and 35 +-more » 24 yr between 1542 and 1979), this suggests that either a large (M> or =8.4) event may be anticipated at such locations, or that these are points of aseismic subduction. Large coastal terraces and evidence suggesting tectonic uplift are found onshore near the Orozco Fracture zone. The larger discrepancy between plate convergence and seismic slip rates along the Cocos-Carribbean plate boundary is more likely due to decoupling and downbending of the subducted plate. We used the limited statistical evidence available to characterize both spatial and temporal deficiencies in recent seismic slip. The observations appear consistent with a possible forthcoming episode of more intense seismic activity. Based on a series of comparisons with carefully delineated aftershock zones, we conclude that the zones of anomalous seismic activity can be indentified by a systematic, automated analysis of the worldwide earthquake catalog (m/sub b/> or =4).« less

  1. Along-strike variations in seismic structure of the locked-sliding transition on the plate boundary beneath the southern part of Kii Peninsula, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Iwasaki, T.; Saiga, A.; Umeyama, E.; Tsumura, N.; Sakai, S.; Hirata, N.

    2013-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. A narrow zone of nonvolcanic tremor has been found in the SW Japan fore-arc, along strike of the arc (Obara, 2002). The epicentral distribution of tremor corresponds to the locked-sliding transition estimated from thermal and deformation models (Hyndman et al., 1995). The spatial distribution of the tremor is not homogeneous in a narrow belt but is spatially clustered. Obara [2002] suggested fluids as a source for tremor because of the long duration and the mobility of the tremor activity. The behavior of fluids at the plate interface is a key factor in understanding fault slip processes. Seismic reflection characteristics and seismic velocity variations can provide important information on the fluid-related heterogeneity of structure around plate interface. However, little is known about the deeper part of the plate boundary, especially the transition zone on the subducting plate. To reveal the seismic structure of the transition zone, we conducted passive and active seismic experiments in the southern part of Kii Peninsula, SW Japan. Sixty 3-component portable seismographs were installed on a 60-km-long line (SM-line) nearly perpendicular to the direction of the subduction of the PHS with approximately 1 km spacing. To improve accuracy of hypocenter locations, we additionally deployed six 3-component seismic stations around the survey line. Waveforms were continuously recorded during a five-month period from December, 2009. In October of 2010, a deep seismic profiling was also conducted. 290 seismometers were deployed on the SM-line with about 200 m spacing, on which five explosives shots were fired as controlled seismic sources. Arrival times of local earthquakes and explosive shots were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). To obtain the detailed structure image of the transition zone on the subducting plate, the explosive shot data recorded on the SM-line were processed using the seismic reflection technique. Seismic reflection image shows the lateral variation of the reflectivity along the top of the PHS. A clear reflection band is present where the clustered tremors occurred. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered tremors are located in and around the high Vp/Vs zone. These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the subducted oceanic lithosphere.

  2. Paleoseismicity and neotectonics of the Aleutian Subduction Zone—An overview

    NASA Astrophysics Data System (ADS)

    Carver, Gary; Plafker, George

    The Aleutian subduction zone is one of the most seismically active plate boundaries and the source of several of the world's largest historic earthquakes. The structural architecture of the subduction zone varies considerably along its length. At the eastern end is a tectonically complex collision zone where the allochthonous Yakutat terrane is moving northwest into mainland Alaska. West of the collision zone a shallow-dipping subducted plate beneath a wide forearc, nearly orthogonal convergence, and a continental-type subduction regime characterizes the eastern part of the subduction zone. In the central part of the subduction zone, convergence becomes increasingly right oblique and the forearc is divided into a series of large clockwise-rotated fault-bounded blocks. Highly oblique convergence and island arc tectonics characterize the western part of the subduction zone. At the extreme western end of the arc, the relative plate motion is nearly pure strike-slip. A series of great subduction earthquakes ruptured most of the 4000-km length of the subduction zone during a period of several decades in the mid 1900s. The majority of these earthquakes broke multiple segments as defined by the large-scale structure of the overriding plate margin and patterns of historic seismicity. Several of these earthquakes generated Pacific-wide tsunamis and significant damage in the southwestern and south-central regions of Alaska. Characterization of previous subduction earthquakes is important in assessing future seismic and tsunami hazards. However, at present such information is available only for the eastern part of the subduction zone. The 1964 Alaska earthquake (M 9.2) ruptured about ˜950 km of the plate boundary that encompassed the Kodiak and Prince William Sound (PWS) segments. Within this region, nine paleosubduction earthquakes in the past ˜5000 years are recognized on the basis of geologic evidence of sudden land level change and, at some sites, coeval tsunami deposits. Carbon 14-based chronologies indicate recurrence intervals between median calibrated ages for these paleoearthquakes range from 333 to 875 years. The most recent occurred about 489 years ago and broke only the Kodiak segment. During the previous three cycles, both the Kodiak and PWS segments were involved in either multiple-segment ruptures or closely timed pairs of single segment ruptures. Evidence for the earlier paleosubduction earthquakes has been found only at sites in the PWS segment. Thus, future work on the paleoseismicity of other segments would by particular valuable in defining the seismic behavior of the subduction zone.

  3. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  4. Subduction of aseismic ridges beneath the Caribbean Plate: Implications for the tectonics and seismic potential of the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    McCann, William R.; Sykes, Lynn R.

    1984-06-01

    Normal seafloor entering the Puerto Rico and northern Lesser Antillean trenches in the northeastern Caribbean is interrupted by a series of aseismic ridges on the North and South American plates. These topographic features lie close to the expected trend of fracture zones created about 80-110 m.y. ago when this seafloor was formed at the Mid-Atlantic Ridge. The northernmost of the ridges that interact with the Lesser Antillean subduction zone, the Barracuda Ridge, intersects the arc in a region of high seismic activity. Some of this seismicity including a large shock in 1974, occurs within the overthrust plate and may be related to the deformation of the Caribbean plate as it overrides the ridge. A large bathymetric high, the Main Ridge, is oriented obliquely to the Puerto Rico trench and intersects the subduction zone north of the Virgin Islands in another cluster of seismic activity along the inner wall of the trench. Data from a seismic network in the northeastern Caribbean indicate that this intersection is also characterized by both interpolate and intraplate seismic activity. Magnetic anomalies, bathymetric trends, and the pattern of deformed sediments on the inner wall of the trench strongly suggest that the Main and Barracuda ridges are parts of a formerly continuous aseismic ridge, a segment of which has recently been overridden by the Caribbean plate. Reconstruction of mid-Miocene to Recent plate motions also suggest that at least two aseismic ridges, and possibly fragments of the Bahama Platform, have interacted with the subduction zone in the northeastern Caribbean. The introduction of these narrow segments of anomalous seafloor into the subduction zone has segmented the arc into elements about 200 km long. These ridges may act as tectonic barriers or asperities during the rupture processes involved in large earthquakes. They also leave a geologic imprint on segments of the arc with which they have interacted. A 50-km landward jump of the locus of island arc volcanism occurred in Late Miocene time along the northern half of the Lesser Antilles. We postulate that the subduction of a segment of seafloor of anomolously thick crust, being more buoyant than adjacent seafloor, resulted in a marked shoaling in the dip of the descending slab and, therefore, a shift of the locus of volcanism. In the region near western Puerto Rico and eastern Hispanolia, Plio-Pleistocene interaction with a similar feature, in this case a part of the Bahama Platform, about 3-4 m.y. ago led to a jump in the locus of subduction as evidenced by a gap in the downgoing seismic zone. That segment of the Bahama Platform interferred with the subduction process and was subsequently sutured onto the Caribbean plate when the boundary jumped about 60 km to the northeast. The maximum size of historic shallow earthquakes along the Lesser Antillean arc varies from about 7.0-7.5 in the center of the arc where the dip of the shallow part of the plate boundary is steep to 8.0-8.5 along the northern part of the arc where the dip is shallow. The interaction of anomalous seafloor, as along the northern Lesser Antilles, can lead to the development of a wider than normal zone of interplate contact and hence to earthquakes that are larger than those associated with more typical seafloor entering subduction zones. Major seismic gaps and regions of high seismic potential currently exist along the northern Lesser Antilles and to the north of Puerto Rico. Both gaps are bounded by anomalous features on the downgoing plate. The intersection of these features with the plate boundary created large asperities that may be good places to search for precursors to future large earthquakes. A great shock in 1787 may have ruptured an existing seismic gap north of Puerto Rico between 65° and 67°W. Thus that gap can be expected to eventually rupture again in a great shock and not to accommodate plate motion by totally aseismic processes.

  5. Crustal deformation associated with an M8.1 earthquake in the Solomon Islands, detected by ALOS/PALSAR

    NASA Astrophysics Data System (ADS)

    Miyagi, Yousuke; Ozawa, Taku; Shimada, Masanobu

    2009-10-01

    On April 1, 2007 (UTC), a large Mw 8.1 interplate earthquake struck the Solomon Islands subduction zone where complicated tectonics result from the subduction of four plates. Extensive ground movements and a large tsunami occurred in the epicentral area causing severe damage over a wide area. Using ALOS/PALSAR data and the DInSAR technique, we detected crustal deformation exceeding 2 m in islands close to the epicenter. A slip distribution of the inferred seismic fault was estimated using geodetic information derived from DInSAR processing and field investigations. The result indicates large slip areas around the hypocenter and the centroid. It is possible that the largest slip area is related to subduction of the plate boundary between the Woodlark and Australian plates. A small slip area between those large slip areas may indicate weak coupling due to thermal activity related to volcanic activity on Simbo Island. The 2007 earthquake struck an area where large earthquake has not occurred since 1970. Most of this seismic gap was filled by the 2007 events, however a small seismic gap still remains in the southeastern region of the 2007 earthquake.

  6. Geometry and spatial variations of seismic reflection intensity of the upper surface of the Philippine Sea plate off the Boso Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuya; Hino, Ryota; Azuma, Ryousuke

    2017-07-01

    In the region off the Boso Peninsula, Japan, the Pacific plate is subducting westward beneath both the Honshu island arc and Philippine Sea plate, while the Philippine Sea plate is subducting northwestward beneath the Honshu island arc. These complex tectonic interactions have caused numerous seismic events occurred in the past. To better understand these seismic events, it is important to determine the geometry of the plate boundary, in particular the upper surface of the Philippine Sea plate. We conducted an active-source seismic refraction survey in July and August 2009 from which we obtained a 2-D P-wave velocity structure model along a 216-km profile. We used the velocity model and previously published data that indicate a P-wave velocity of 5.0 km/s for the upper surface of the subducting Philippine Sea plate to delineate its boundary with the overriding Honshu island arc. Our isodepth contours of the upper surface of the Philippine Sea plate show that its dip is shallow at depths of 10 to 15 km, far off the Boso Peninsula. This shallow dip may be a result of interference from the Pacific plate slab, which is subducting westward under the Philippine Sea plate. Within our survey data, we recognized numerous seismic reflections of variable intensity, some of which came from the upper surface of the Philippine Sea plate. An area of high seismic reflection intensity corresponds with the main slip area of the Boso slow slip events. Our modeling indicates that those reflections can be explained by an inhomogeneous layer close to the upper surface of the Philippine Sea plate.

  7. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio-Atlantic ridge.

  8. From subduction to collision: results of French POP2 program on Taiwan-Philippine festoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchet, R.; Stephan, J.F.; Rangin, C.

    1986-07-01

    A sea-beam, seismic, magnetic, and gravimetric survey was conducted with the R/V Jean-Charcot in three key regions off the Taiwan-Philippine festoon in the western Pacific: (1) Ryukyu active margin and its junction with Taiwan; (2) northern part of the Manila Trench and its junction with the Taiwan tectonic prism; and (3) southern termination of Manila Trench in front of Mindoro Island. Transitions between active subduction along the Manila Trench and collision of Taiwan and Mindoro, and relations between active subduction and extension in the Okinawa-Ryukyu and the northeastern Taiwan systems are particularly studied.

  9. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity

    USGS Publications Warehouse

    Smoczyk, Gregory M.; Hayes, Gavin P.; Hamburger, Michael W.; Benz, Harley M.; Villaseñor, Antonio; Furlong, Kevin P.

    2013-01-01

    The complex tectonics surrounding the Philippine Islands are dominated by the interactions of the Pacific, Sunda, and Eurasia plates with the Philippine Sea plate (PSP). The latter is unique because it is almost exclusively surrounded by zones of plate convergence. At its eastern and southeastern edges, the Pacific plate is subducted beneath the PSP at the Izu-Bonin, Mariana, and Yap trenches. Here, the subduction zone exhibits high rates of seismic activity to depths of over 600 km, though no great earthquakes (M>8.0) have been observed, likely because of weak coupling along the plate interface. In the northeast, the PSP subducts beneath Japan and the eastern margin of the Eurasia plate at the Nankai and Ryukyu trenches, extending westward to Taiwan. The Nankai portion of this subduction zone has hosted some of the largest earthquakes along the margins of the PSP, including a pair of Mw8.1 megathrust events in 1944 and 1946. Along its western margin, the convergence of the PSP and the Sunda plate is responsible for a broad and active plate boundary system extending along both sides of the Philippine Islands chain. The region is characterized by opposite-facing subduction systems on the east and west sides of the islands, and the archipelago is cut by a major transform structure: the Philippine Fault. Subduction of the Philippine Sea plate occurs at the eastern margin of the islands along the Philippine Trench and its northern extension, the East Luzon Trough. On the west side of Luzon, the Sunda Plate subducts eastward along a series of trenches, including the Manila Trench in the north, the smaller Negros Trench in the central Philippines, and the Sulu and Cotabato trenches in the south. Twentieth and early twentyfirst century seismic activity along the boundaries of the Philippine Sea plate has produced seven great (M>8.0) earthquakes and 250 large (M>7) events. Among the most destructive events were the 1923 Kanto, the 1948 Fukui, and the 1995 Kobe, Japan, earthquakes; the 1935 and the 1999 Chi-Chi, Taiwan, earthquakes; and the 1976 M7.6 Moro Gulf and 1990 M7.6 Luzon, Philippines, earthquakes.

  10. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  11. Diverse continental subduction scenarios along the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Petrunin, A.; El Khrepy, S.; Al-Arifi, N. S.

    2017-12-01

    The Arabia-Eurasia continental collision zone is one of the largest and most active on the Earth. It has been discussed already long ago that the convergence of these plates implies subduction of the lithosphere. However, scenarios of this process are still debatable. Even direction of the present-day continental subduction is not clear. Previously, principal conclusions about structure of the upper mantle in this region were chiefly based on seismic tomography results. However, seismic velocities not always provide a complete image of the deep interiors since they are chiefly affected by temperature variations and less - by composition. Here we construct a 3D model of the mantle down to 700 km, which is based on a joint inversion of seismic tomography, residual (crust free) gravity field and residual topography (Kaban et al., 2016). Several cross-sections across the collision zone demonstrate principal variations of the continental subduction scenarios from northwest to southeast. In the southeastern part we observe subduction of the Eurasian plate under the West Great Caucasus, Pontic mountains and further under the northwestern part of the Arabian plate. However, the situation is changed when we move to the East Great Caucasus and Zagros, where clear double-sided subduction is observed. The Arabian plate is subducting under the Zagros, while the Eurasian plate - under the Caucasus merging in the transition zone. This situation persists further to the southeast, where we observe the subduction of the South Caspian block under Alborz accompanied by the counteracting penetration of the Arabian plate from the south. More to the southeast, the subduction of the Arabian plate is stagnated, while the subduction of the Eurasian plate can be traced down to the bottom of the transition zone under the northeastern flank of the Arabian plate. In the southern rim of the collision zone under Makran, we don't find any evidence for the present day subduction; remnants of the formerly subducted slabs are located below 200 km. Kaban, M. K., S. El Khrepy, N. Al-Arifi, M. Tesauro, and W. Stolk (2016), Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes, J. Geophys. Res. Solid Earth, 121.

  12. Geodynamic models of the deep structure of the natural disaster regions of the Earth

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.

    2012-04-01

    Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.

  13. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    USGS Publications Warehouse

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2°–7° to 12° where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35–45 km deep) beneath the Cascade Range, with thinner crust (30–35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ∼25 km depth beneath the coastline to perhaps as far west as the deformation front ∼120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  14. New seismic observation on the lithosphere and slab subduction beneath the Indo-Myanmar block: Implications for continent oblique subduction and transition to oceanic slab subduction

    NASA Astrophysics Data System (ADS)

    Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.

    2017-12-01

    The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).

  15. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi:10.1002/2016JB013116. Zhao, D., S. Yu, X. Liu (2016) Seismic anisotropy tomography: New insight into subduction dynamics. Gondwana Res. 33, 24-43.

  16. Seismicity of the Earth 1900‒2013 Mediterranean Sea and vicinity

    USGS Publications Warehouse

    Herman, Matthew W.; Hayes, Gavin P.; Smoczyk, Gregory M.; Turner, Rebecca; Turner, Bethan; Jenkins, Jennifer; Davies, Sian; Parker, Amy; Sinclair, Allison; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2015-09-08

    The Mediterranean region is seismically active due to the convergence of the Africa Plate with the Eurasia plate. Present day Africa-Eurasia motion ranges from ~4 millimeters per year (mm/yr) in a northwest-southeast direction in the western Mediterranean to ~10 mm/yr (north-south) in the eastern Mediterranean. The Africa-Eurasia plate boundary is complex, and includes extensional and translational zones in addition to the dominant convergent regimes characterized by subduction and continental collision. This convergence began at approximately 50 million years ago and was associated with the closure of the Tethys Sea; the Mediterranean Sea is all that remains of the Tethys. The highest rates of seismicity in the Mediterranean region are found along the Hellenic subduction zone of southern Greece and the North Anatolian Fault Zone of northwestern Turkey, but significant rates of current seismicity and large historical earthquakes have occurred throughout the region spanning the Mediterranean Sea.

  17. Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.

    2013-09-01

    This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.

  18. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen Anne

    A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.

  19. Evolution of the Grenada and Tobago basins and the onset of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Zitter, T. A. C.; Rangin, C.

    2012-04-01

    The Lesser Antilles active island arc marks the eastern boundary of the Caribbean plate, where the Atlantic oceanic crust is subducted. Geodynamic history of the Grenada and Tobago basins, accepted as both the back arc and fore arc basins respectively for this convergent zone, is the key for a better understanding of the Antilles arc subduction onset. Still, recent studies propose that these two basins formed as a single paleogene depocenter. Analysis of industrial and academical seismic profiling supports this hypothesis, and shows these basins are two half-graben filled by 15 kilometers of cenozoic sediments. The seismic profiles across these basins, and particularly the Geodinos Bolivar seismic profiles, indicate that the Antilles magmatic arc develops in the midst of the previously-extended Grenada-Tobago basin from Miocene time to present. The pre-cenozoic basement of the Grenada-Tobago basin can be traced from the Aves ridge to the Tobago Island where cretaceous meta-volcanic rocks are cropping out. Therefore, this large basin extension has been initiated in early Paleocene time during stretching or subsidence of the great cretaceous Caribbean arc and long time before the onset of the lesser Antilles volcanic arc. The question arises for the mechanism responsible of this intra-plate extension. The Tobago Ridge consists of the backstop of the Barbados prism. The innermost wedge is particularly well imaged on seismic data along the Darien Ridge, where the isopach paleogene sediments are jointly deformed in latest Oligocene. This deformation is starved with the early miocene piggy-back basin. Hence, we conclude the innermost wedge in contact with the butresss is late Oligocene in age and can be considered as the onset of the subduction along the Antilles arc. This 30 Ma subduction onset is also supported by the 750 km long Atlantic slab, imaged in tomography, indicating this subduction was active with constant velocity of 2.5 km/yr. Consequently, another mechanism, than the Atlantic subduction, has to be invoked for the formation of the Grenada-Tobago depocenter prior to 30 Ma. These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  20. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  1. Subduction, Extension, and a Mantle Plume in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.; Richards, M. A.

    2016-12-01

    Subduction zones are some of the most important systems that control the dynamics and evolution of the earth. The Cascadia Subduction Zone offers a unique natural laboratory for understanding the subduction process, and how subduction interacts with other large-scale geodynamical phenomena. The small size of the Juan de Fuca (JdF) plate and the proximity of the system to the Yellowstone Hotspot and the extensional Basin and Range province allow for detailed study of the effects these important systems have on each other. We present both a P-wave and an S-wave tomographic model of the Pacific Northwestern United States using regional seismic arrays, including the amphibious Cascadia Initiative. These models share important features, such as the Yellowstone plume, the subducting JdF slab, a gap in the subducting slab, and a low-velocity feature beneath the shallowest portions of the slab. But subtle differences in these features between the models—the size of the gap in the subducting JdF slab and the shape of the Yellowstone plume shaft above the transition zone, for example—provide physical insight into the interpretation of these models. The physics that we infer from our seismic tomography and other studies of the region will refine our understanding of subduction zones worldwide, and will help to identify targets for future amphibious seismic array studies. The discovery of a pronounced low-velocity feature beneath the JdF slab as it subducts beneath the coastal Pacific Northwest is, thus far, the most surprising result from our imaging work, and implies a heretofore unanticipated regime of dynamical interaction between the sublithospheric oceanic asthenosphere and the subduction process. Such discoveries are made possible, and rendered interpretable, by ever-increasing resolution that the Cascadia Initiative affords seismic tomography models.

  2. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  3. An image of P- to S-wave velocity ratios in the forearc of the Central Andean subduction zone

    NASA Astrophysics Data System (ADS)

    Wasja Bloch, Nikolai; Kummerow, Jörn; Wigger, Peter; Shapiro, Serge

    2014-05-01

    The ratio of seismic P- to S-wave velocities (the Vp/Vs ratio) of a given rock volume is a sensitive proxy for the detection of fluids and melts. In subduction regimes it has often been inferred from seismic tomography and been used, e.g., to detect pathways of ascending melt above the seismogenic zone, where tomographic methods have their highest resolution. We present Vp/Vs ratios that were computed using only seismic arrival time observations following the approach of Lin and Shearer (2007). This approach has its highest sensitivity in the source volume of a set of nearby seismic events and is hence particularly well suited to directly probe the plate interface. We present data from a temporary local network of short period seismometers that was in operation in the forearc of the Central Andean subduction zone at 21° S between 2005 and 2012. From this database we were able to localize 3253 seismic events (Ml ~0.5--4) with high precision, yielding a detailed image of the seismicity distribution in this region. Seismicity is pervasive within the entire crust of the South American continental plate and exhibits three distinct bands in the subducting slab, the lowermost one being located in the lithospheric mantle of the subducting plate. The highest concentration of seismic events is found in the contact zone between the continental and the oceanic lithosphere at depths between 30 and 50 km. We group seismic events into approximately 100 subsets of nearby events that origin from the same geological structure. For about half of these subsets we are able to extract a reliable local Vp/Vs ratio. In the middle continental crust, Vp/Vs ratios show slightly enhanced values (~1.75). In the lower continental crust towards the plate interface they tend to increase from this value updip and decrease downdip. At the plate interface itself, we observe higher Vp/Vs ratios (>1.8) at shallower depths (between 20 and 40 km). Downdip (40--60 km depth) Vp/Vs ratios decrease to rather typical values (~1.75). The same trend is observed in the lowermost band of mantle seismicity in the subducting slab. Below 80 km depth, where mineral transitions toward the eclogite facies are expected to occur, Vp/Vs ratios tend to be low (<1.75). The consistently high Vp/Vs ratios in the shallow part of the subducting slab hint at the presence of fluids in the porespace of the subducting lithosphere there. In the deeper part, downdip variations of Vp/Vs may be attributed to mineral phase transitions due to the changing P-T-conditions along the subduction pathway.

  4. Fore- and Back-Arc Structures Along the Hikurangi-Kermadec Subduction Zone

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2009-04-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate is continental in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 degrees South. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper arc mantle are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. Here, arc volcanism is relatively active, with many large volcanoes directly on the ridge. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate, are more similar to MANGO 4. The arc regions appear to be strongly affected by the activity of the arc. The arc crust of the northern MANGO 3 becomes significantly thinner in the backarc region due to extension, and much reduced volcanism behind the ridge. The structures on MANGO 2, on the other hand, cover strong and densely spaced thermal activity from the adjacent arc volcanism, possibly linked to a recent, fluid-rich passage of the Hikurangi Plateau.

  5. Putting the slab back: First steps of creating a synthetic seismic section of subducted lithosphere

    NASA Astrophysics Data System (ADS)

    Zertani, S.; John, T.; Tilmann, F. J.; Leiss, B.; Labrousse, L.; Andersen, T. B.

    2016-12-01

    Imaging subducted lithosphere is a difficult task which is usually tackled with geophysical methods. To date, the most promising method is receiver function imaging (RF), which concentrates on first order conversions from p- to s-waves at boundaries (e.g. lithological and structural) with contrasting seismic velocities. The resolution is high for the upper parts of the subducting material. However, in greater depths (40-80 km) the visualization of the subducted slab becomes increasingly blurry, until the slab cannot be distinguished from Earth's mantle anymore, rendering a visualization impossible. This blurry zone is thought to occur due to advancing eclogitization of the subducting slab. However, it is not well understood how micro- to macro-scale structures related to progressive eclogitization affect RF signals. The island of Holsnoy in the Bergen Arcs of western Norway represents a partially eclogitized formerly subducted block of lower crust and serves as an analogue to the aforementioned blurry zone in RF images. This eclogitization can be observed in static fluid induced eclogitization patches or fingers, but is mainly present in localized shear zones of variable sizes (mm to 100s of meters). We mapped the area to gain a better understanding of the geometries of such shear zones, which could possibly function as seismic reflectors. Further, we calculated seismic velocities from thermodynamic modelling on the basis of XRF whole rock analysis and compared these results to velocities calculated from a combination of thin section information, EMPA and physical mineral properties (Voigt-Reuss-Hill averaging). Both methods yield consistent results for p- and s-wave velocities of eclogites and granulites from Holsnoy. In combination with X-ray measurements to identify the microtextures of the characteristic samples to incorporate seismic anisotropy caused by e.g. foliation or lineation, these seismic velocities are used as an input for seismic models to reconstruct the progressive eclogitization of a subducting slab as seen in many RF-images (i.e. blurry zone).

  6. Plateau subduction, intraslab seismicity and the Denali Volcanic Gap

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.; Chuang, L. Y.; Wech, A.; Plourde, A. P.

    2017-12-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40-58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region's unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  7. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  8. 3D absolute hypocentral determination - 13 years of seismicity in Ecuadorian subduction zone

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Theunissen, Thomas

    2010-05-01

    In Ecuador, the Nazca plate is subducting beneath the North Andean Block. This subduction triggered, during the last century, 4 major earthquakes of magnitude greater than 7.7. Between 1994 and 2007, the Geophysical Institute (Escuela National Politecnica, Quito) recorded about 40 000 events in whole Ecuador ranging from Mb 1.5 to 6.9. Unfortunately, the local network shows great density discrepancy between the Coastal and Andean regions where numerous stations were installed to survey volcanic activity. Consequently, seismicity in and around the interplate seismogenic zone - producer of the most destructive earthquakes and tsunamis - is not well constrained. This study aims to improve the location of 13 years seismicity occurred during an interseismic period in order to better localize the seismic deformation and gaps. The first step consists in the construction of a 3D "georealistic" velocity model. Because local tomography cannot provide satisfactory model, we combined all local crustal/lithospheric information on the geometry and velocity properties of different geological units. Those information cover the oceanic Nazca plate and sedimentary coverture the subducting plate dip angle; the North Andean Block margin composed of accreted oceanic plateaus (the Moho depth is approximated using gravity modeling); the metamorphic volcanic chain (oceanic nature for the occidental cordillera and inter-andean valley, continental one for the oriental cordillera); The continental Guyana shield and sedimentary basins. The resulting 3D velocity model extends from 2°N to 6.5°S and 277°E to 283°E and reaches a depth of 300 km. It is discretized in constant velocity blocks of 12 x 12 x 3 km in x, y and z, respectively. The second step consists in selecting an adequate sub-set of seismic stations in order to correct the effect of station density disequilibrium between coastal and volcanic regions. Consequently, we only keep the most representative volcanic stations in terms of azimuthal coverage, record frequency and signal quality. Then, we define 5 domains: Offshore/coast, North-Andean margin, Volcanic chain, Southern Ecuador, and a domain deeper than 50 km. We process earthquake location only if at least 3 proximal stations exist in the event's domain. This data selection allows providing consistent quality location. The third step consists in improving the 3D MAXI technique that is well adapted to perform absolute earthquake location in velocity model presenting strong lateral Vp heterogeneities. The resulting catalogue allows specifying the deformation in the subduction system. All seismicity previously detected before trench occurs indeed between the trench and the coastal range. South of 0°, facing the subducting Carnegie Ridge, the seismicity aligns along the interplate seismogenic zone between an updip limit shallower than ~8 km and a downdip limit that reaches up to 50 km depth. The active seismogenic zone is interrupted by a gap that extends right beneath the coastal range. At these latitudes, a diffuse intraplate deformation also affects the subducting plate, probably induced by the locally thickened lithosphere flexure. Between the trench and the coast, earthquake distribution clearly defines a gap, which size is comparable to the 1942 M7.9 asperity (ellipse of axes ~55/35 km). A slab is clearly defines and dips around 25 to 30°. The slab seismicity is systematically interrupted between 100-170 km, approximately beneath the volcanic chain. North of 0°, i.e. in the megathrust earthquake domain, the interseismic activity is clearly reduced. The interplate distribution seems to gather along alignments perpendicular to the trench attesting probably of the margin segmentation. The North Andean overriding margin is undergoing active deformation, especially at the location where the Andean Chain strike changes of direction. At these latitudes, no earthquake occurs deeper than 100 km depth.

  9. Estimation of Peak Ground Acceleration (PGA) for Peninsular Malaysia using geospatial approach

    NASA Astrophysics Data System (ADS)

    Nouri Manafizad, Amir; Pradhan, Biswajeet; Abdullahi, Saleh

    2016-06-01

    Among the various types of natural disasters, earthquake is considered as one of the most destructive events which impose a great amount of human fatalities and economic losses. Visualization of earthquake events and estimation of peak ground motions provides a strong tool for scientists and authorities to predict and mitigate the aftereffects of earthquakes. In addition it is useful for some businesses like insurance companies to evaluate the amount of investing risk. Although Peninsular Malaysian is situated in the stable part of Sunda plate, it is seismically influenced by very active earthquake sources of Sumatra's fault and subduction zones. This study modelled the seismic zones and estimates maximum credible earthquake (MCE) based on classified data for period 1900 to 2014. The deterministic approach was implemented for the analysis. Attenuation equations were used for two zones. Results show that, the PGA produced from subduction zone is from 2-64 (gal) and from the fault zone varies from 1-191(gal). In addition, the PGA generated from fault zone is more critical than subduction zone for selected seismic model.

  10. Tracing Geophysical Indicators of Fluid-Induced Serpentinization in the Pampean Flat Slab Subduction Region of Chile

    NASA Astrophysics Data System (ADS)

    Bourke, J. R.; Nikulin, A.; Park, J. J.

    2016-12-01

    An activity gap in the Andean volcanic arc in the Pampean section of the subduction zone in Chile ( 28°-33°S) marks a section of flat-slab subduction. Past studies connected this change in geometry to the collision and subduction of the Juan Fernandez Ridge and the resulting migration of both the thrust front and magmatism eastward to the Sierras Pampeanas. The fate of fluids released from the subducting Nazca slab remains uncertain and the degree of their interaction with the basal layer of the continental lithosphere is poorly understood. We present initial results of a receiver-function investigation and forward-modeling effort at station GO03 operated by the Chilean National Seismic Network. Receiver function analysis of 75 well-recorded teleseismic earthquake events recorded at GO03 allow us to constrain the position of the subducting Nazca slab and to address the physical properties of the interplate contact zone. Critically, our analysis indicates presence of a highly-anisotropic zone of low velocities directly above the subucting Nazca slab. We point out a remarkable similarity in geophysical characteristics between the observed seismic anomaly at GO03 and a volume of proposed serpentinization in an area of sub-horizontal subduction above the Juan de Fuca slab in Cascadia. This interpretation is further supported by forward-modeling receiver functions at GO03 relying on a velocity model that incorporates a serpentinized interplate region. The newly-identified low-velocity highly-anisotropic layer may extend beyond the GO03 area and act as a mineral reservoir that captures and, possibly, transports fluids derived from the dehydrating Nazca Plate as it subducts below South America. It is likely that there is a relationship between this feature and the lack of volcanic activity in the Pampean flat slab region. Figure Caption: A) Backazimuth sweep of receiver functions recorded at station GO03 with predicted phase arrivals plotted for 55 km, 65 km, 75 km and 85 km. B) Depth-migrated receiver functions for station GO03 relying on AK-135 velocity model and local seismicity (Mw>4.5) plotted within 15km of a 100km profile centered on GO03 along the dominant direction of subduction (74°).

  11. Sunda-Banda Arc Transition: Marine Multichannel Seismic Profiling

    NASA Astrophysics Data System (ADS)

    Lueschen, E.; Mueller, C.; Kopp, H.; Djajadihardja, Y.; Ehrhardt, A.; Engels, M.; Lutz, R.; Planert, L.; Shulgin, A.; Working Group, S.

    2008-12-01

    After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Shulgin et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of the 4000 m deep forearc Lombok Basin offshore Bali, Lombok, and Sumbawa. The eastern termination of the Lombok Basin is formed by Sumba Island, which shows evidence for recent uplift, probably associated with the collision of the island arc with the continental Scott Plateau. The Sumba area represents the transition from subduction to collision. Our seismic profiles image the bending of the oceanic crust seaward of the trench and associated normal faulting. Landward of the trench, they image the subducting slab beneath the outer arc high, where the former bending-related normal faults appear to be reactivated as reverse faults introducing vertical displacements in the subducting slab. The accretionary prism and the outer arc high are characterized by an ocean-verging system of imbricate thrust sheets with major thrust faults connecting seafloor and detachment. Compression results in shortening and steepening of the imbricated thrust sheets building up the outer arc high. Tilted piggy-back basins and downlaps of tilted sediments in the southern Lombok forearc basin indicate ongoing uplift of the entire outer arc high, abrupt displacements, and recent tectonic activity.

  12. Morphology and Role of the Investigator Fracture Zone on the Sumatra Subduction Zone Process using High-resolution Bathymetry and Seismic Data

    NASA Astrophysics Data System (ADS)

    Villanueva-Robles, F.; Singh, S. C.; Bradley, K. E.; Hananto, N.; Leclerc, F.; Qin, Y.; Wei, S.; Carton, H. D.; Tapponnier, P.; Sieh, K.; Permana, H.; Avianto, P.

    2016-12-01

    The Sumatran subduction zone is one of the most seismically active areas on Earth. Within the last decade, it has produced three great earthquakes plus one earthquake that produced a much larger tsunami than predicted from the magnitude alone. However, the physical factors that limit the lateral extent of these ruptures as well as ancient earthquakes evidenced by paleogeodesy remain poorly understood. It has been suggested that subducted bathymetric features, such as seamounts and fracture zones, may be define many segment boundaries. Offshore of Central Sumatra, the Investigator Fracture Zone (IFZ) impinges on the trench and has been subducted to great depth beneath the overriding accretionary wedge. Where it is still exposed as a bathymetric feature, this fracture zone is 2000 km long and more than 100 km wide, and is composed of four individual ridges that exhibit up to 3.7 km of original relief. In order to study the role of the IFZ on subduction processes, we simultaneously acquired multibeam bathymetry and eight 35-km-long high-resolution seismic reflection profiles across the subduction front during the 2015 MegaTera experiment. We find that subduction of the IFZ ridges significantly deforms the morphology of the overriding accretionary wedge. The steep eastern slope of subducting ridges allowed the development of a long lived frontal thrust that reaches the surface at the trench and is associated with a very large frontal anticline and a flat portion of the accretionary wedge. Extensional deformation of the forearc and transverse basin formation occurs along the trailing edge of the ridges. We suggest that the subducted IFZ defines a segment boundary between the southern limit of coseismic slip of the Mw = 8.7, 2005 Simeulue-Nias earthquake and the northern limit of coseismic slip limit of a major 1797 earthquake recorded by coral paleogeodesy. The presence of four distinct ridges and an intervening 35-km-wide area of normal oceanic crust within the 105-km-wide IFZ should cause extremely heterogeneous coupling that is reflected by frequent earthquakes along the subducted portion of IFZ, and may enhance frictional coupling along the shallowest portions of the megathrust.

  13. Deep Seismic Reflection Images of the Sumatra Seismic and Aseismic Gaps

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Hananto, N. D.; Chauhan, A.; Carton, H. D.; Midenet, S.; Djajadihardja, Y.

    2009-12-01

    The Sumatra subduction zone is seismically most active region on the Earth, and has been the site of three great earthquakes only in the last four years. The first of the series, the 2004 Boxing Day earthquake, broke 1300 km of the plate boundary and produced the devastating tsunami around the Indian Ocean. The second great earthquake occurred three months later in March 2005, about 150 km SE of the 2004 event. The Earth waited for three years, and then broke again in September 2007 at 1300 km SE of the 2004 event producing a twin earthquake of magnitudes of 8.5 and 7.9 at an interval of 12 hours, leaving a seismic gap of about 600 km between the second and third earthquake, the Sumatra Seismic Gap. Seismological and geodetic studies suggest that this gap is fully locked and may break any time. In order to study the seismic and tsunami risk in this locked region, a deep seismic reflection survey (Tsunami Investigation Deep Evaluation Seismic -TIDES) was carried out in May 2009 using the CGGVeritas vessel Geowave Champion towing a 15 long streamer, the longest ever used during a seismic survey, to image the nature of the subducting plate and associated features, including the seismogenic zone, from seafloor down to 50 km depth. A total of 1700 km of deep seismic reflection data were acquired. Three dip lines traverse the Sumatra subduction zone; one going through the Sumatra Seismic Gap, one crossing the region that broke during the 2007 great earthquake, and one going through the aseismic zone. These three dip profiles should provide insight about the locking mechanism and help us to understand why an earthquake occurs in one zone and not in aseismic zone. A strike-line was shot in the forearc basin connecting the locked zone with broken zone profiles, which should provide insight about barriers that might have stopped propagation of 2007 earthquake rupture further northward.

  14. Seismotectonics of New Guinea: a Model for Arc Reversal Following Arc-Continent Collision

    NASA Astrophysics Data System (ADS)

    Cooper, Patricia; Taylor, Brian

    1987-02-01

    The structure and evolution of the northern New Guinea collision zone is deduced from International Seismological Center (ISC) seismicity (1964-1985), new and previously published focal mechanisms and a reexamination of pertinent geological data. A tectonic model for the New Guinea margin is derived which illustrates the sequential stages in the collision and suturing of the Bewani-Toricelli-Adelbert-Finisterre-Huon-New Britain arc to central New Guinea followed by subduction polarity reversal in the west. East of 149°E, the Solomon plate is being subducted both to the north and south; bringing the New Britain and Trobriand forearcs toward collision. West of 149°E the forearcs have collided, and together they override a fold in the doubly subducted Solomon plate lithosphere, which has an axis that is parallel to the strike of the Ramu-Markham suture and that plunges westward at an angle of 5° beneath the coast ranges of northern New Guinea. Active volcanism off the north coast of New Guinea is related to subduction of the Solomon plate beneath the Bismarck plate. Active volcanism of the Papuan peninsula and Quaternary volcanism of the New Guinea highlands are related to slow subduction of the Solomon plate beneath the Indo-Australian plate along the Trobriand Trough and the trough's former extension to the west, respectively. From 144°-148°E, seismicity and focal mechanisms reveal that convergence between the sutured Bismarck and Indo-Australian plates is accommodated by thrusting within the Finisterre and Adelbert ranges and compression of the New Guinea orogenic belt, together with basement-involved foreland folding and thrusting to the south. The Finisterre block overthrusts the New Guinea orogenic belt, whereas the Adelbert block is sutured to New Guinea and overthrusts the oceanic lithosphere of the Bismarck Sea. Along the New Guinea Trench, west of 144°E, seismicity defines a southward dipping Wadati-Benioif zone, and focal mechanisms indicate oblique subduction. Only this oldest, westernmost portion of the collision has progressed past suturing to a full reversal in subduction polarity.

  15. Three-dimensional thermal structure and seismogenesis in the Tohoku and Hokkaido subduction system

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Kita, S.; Nakajima, J.; Bengtson, A. K.; Hacker, B. R.; Abers, G. A.

    2010-12-01

    The Northern Japan arc is characterized by fast subduction of old oceanic lithosphere. The high density instrumentation and high seismicity make this an ideal natural laboratory to study the interplay between subduction zone dynamics, dehydration, migration of fluids, and seismogenesis. In this study we use high resolution finite element models to predict the thermal structure of the subduction slab below Tohoku (Northern Honshu) and Hokkaido. These models allow us to predict the pressure, temperature and mineralogy of the subducted crust and mantle. We use these models to predict the (p,T) conditions of earthquakes that are relocated with a precision of around 1 km by double difference techniques. Below Northern Hokkaido and Tohoku we find that the earthquake activity is strong in crust and the uppermost mantle for temperatures < 450 C. Above this temperature earthquakes occur more sporadically and have significantly reduced integrated seismic moment. The strongest 3D variations in this arc occur below southern Hokkaido. This 200 km wide region is characterized by a change in trench geometry, anomalously low heatflow and an anomalous velocity structure in the mantle wedge. Tomographic imaging suggest that continental crust is subducted to significant depth, thereby insulating the subducting slab from the hot mantle wedge at least at intermediate depths. The thermal insulation is also suggested by the deepening of the earthquakes in the slab (Kita et al., EPSL, 2010). This region may be characterized by active crustal erosion which would lead to a further blanketing of the crust by a sedimentary layer. Further modifications in thermal structure are possible due to the 3D wedge flow that is generated by the along-arc variations in trench geometry. We quantitatively verify the relative importance of these processes using 2D and 3D dynamical models. Without the seismically imaged crustal structure the earthquake temperatures are significantly elevated compared to the Tohoku and (northern) Hokkaido sections. If we take the modified crustal structure into account we find a (p,T) pattern that is quite similar to that in the other sections, suggesting that the processes that lead to earthquakes in crust and uppermost mantle of the downgoing slab are similar across the northern Japan arc.

  16. Fractal analysis of the spatial distribution of earthquakes along the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Papadakis, Giorgos; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    The Hellenic Subduction Zone (HSZ) is the most seismically active region in Europe. Many destructive earthquakes have taken place along the HSZ in the past. The evolution of such active regions is expressed through seismicity and is characterized by complex phenomenology. The understanding of the tectonic evolution process and the physical state of subducting regimes is crucial in earthquake prediction. In recent years, there is a growing interest concerning an approach to seismicity based on the science of complex systems (Papadakis et al., 2013; Vallianatos et al., 2012). In this study we calculate the fractal dimension of the spatial distribution of earthquakes along the HSZ and we aim to understand the significance of the obtained values to the tectonic and geodynamic evolution of this area. We use the external seismic sources provided by Papaioannou and Papazachos (2000) to create a dataset regarding the subduction zone. According to the aforementioned authors, we define five seismic zones. Then, we structure an earthquake dataset which is based on the updated and extended earthquake catalogue for Greece and the adjacent areas by Makropoulos et al. (2012), covering the period 1976-2009. The fractal dimension of the spatial distribution of earthquakes is calculated for each seismic zone and for the HSZ as a unified system using the box-counting method (Turcotte, 1997; Robertson et al., 1995; Caneva and Smirnov, 2004). Moreover, the variation of the fractal dimension is demonstrated in different time windows. These spatiotemporal variations could be used as an additional index to inform us about the physical state of each seismic zone. As a precursor in earthquake forecasting, the use of the fractal dimension appears to be a very interesting future work. Acknowledgements Giorgos Papadakis wish to acknowledge the Greek State Scholarships Foundation (IKY). References Caneva, A., Smirnov, V., 2004. Using the fractal dimension of earthquake distributions and the slope of the recurrence curve to forecast earthquakes in Colombia. Earth Sci. Res. J., 8, 3-9. Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci., 12, 1425-1430. Papadakis, G., Vallianatos, F., Sammonds, P., 2013. Evidence of non extensive statistical physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics, 608, 1037-1048. Papaioannou, C.A., Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull. Seismol. Soc. Am., 90, 22-33. Robertson, M.C., Sammis, C.G., Sahimi, M., Martin, A.J., 1995. Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation. J. Geophys. Res., 100, 609-620. Turcotte, D.L., 1997. Fractals and chaos in geology and geophysics. Second Edition, Cambridge University Press. Vallianatos, F., Michas, G., Papadakis, G., Sammonds, P., 2012. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys., 60, 758-768.

  17. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Foix, Oceane; Crawford, Wayne; Pelletier, Bernard; Regnier, Marc; Garaebiti, Esline; Koulakov, Ivan

    2017-04-01

    The 1400-km long Vanuatu subduction zone results from subduction of the oceanic Australian plate (OAP) beneath the North-Fijian microplate (NFM). Seismic and volcanic activity are both high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the large forearc islands of Santo and Malekula. This collision coincides with a strongly decreased local convergence velocity rate - 35 mm/yr compared to 120-160 mm/yr to the north and south - and significant uplift on the overriding plate, indicating a high degree of deformation. The close proximity of large uplifted forearc islands to the trench provides excellent coverage of the megathrust seismogenic zone for a seismological study. We used 10 months of seismological data collected using the 30-instrument land and sea ARC-VANUATU seismology network to construct a 3D velocity model — using the LOTOS joint location/model inversion software — and locate 11655 earthquakes using the NonLinLoc software suite. The 3-D model reveals low P and S velocities in the first tens of kilometers beneath both islands, probably due to water infiltration in the heavily faulted upper plate. The model also suggests the presence of a subducted seamount beneath south Santo. The earthquake locations reveal a complex interaction of faults and stress zones related to high and highly variable deformation. Both brittle deformation and the seismogenic zone depth limits vary along-slab and earthquake clusters are identified beneath central and south Santo, at about 10-30 km of depth, and southwest of Malekula island between 10-20 km depth.

  18. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    NASA Astrophysics Data System (ADS)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity above background levels occurred contemporaneous to megathrust ruptures. That correlation is stronger for normal fault events than reverse or strike-slip crustal earthquakes. More importantly, for any given megathrust the summation of the Mw accounted by the forearc normal fault aftershocks appears to have a positive linear correlation with the Mw of the subduction earthquake -- the larger the megathrust the larger the energy released by forearc events.

  19. A comparison of seismicity in world's subduction zones: Implication by the difference of b-values

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2013-12-01

    Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated from plate tectonic velocities (Scholz and Campos, 2012). Lithosphere age also has a weak negative correlation with the degree of seismic coupling. Based on differences in b-values for the types of faulting, Schorlemmer et al. (2005) suggested that b-value depends inversely on differential stress. This idea, taken together with correlations in the present study, suggests a model where the buoyancy of subducting slabs which depends on the lithosphere age determines stress state and the b-value in each sunbduction zone. The stress state also controls the seismic coupling. This model is basically consistent with the idea of Ruff and Kanamori (1980). Subduction zones with younger and lighter lithosphere are in a compressive stress state and associate with high coupling and small b-values (Chile), while those with older and heavier lithosphere are in a tensional stress state and correlate with low coupling and large b-values (Mariana). Subduction zones such as Nicaragua and El Salvador where b-values are much higher than the expectation from the above correlations may be explained by considering the fact that local tectonics affects the seismic coupling (LaFemina et al., 2009; Scholz and Campos, 2012).

  20. Structure of crust and upper mantle beneath NW Himalayas, Pamir and Hindukush by multi-scale double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain

    2018-08-01

    The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.

  1. Microstructures and seismic anisotropy of blueschist and eclogite from Ring Mountain and Jenner in California

    NASA Astrophysics Data System (ADS)

    Ha, Yoonhae; Jung, Haemyeong; Raymond, Loren

    2016-04-01

    Seismic anisotropy has been observed in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite were very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.

  2. Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints From Tomography

    NASA Astrophysics Data System (ADS)

    Halpaap, Felix; Rondenay, Stéphane; Ottemöller, Lars

    2018-04-01

    The Western Hellenic Subduction Zone is characterized by a transition from oceanic to continental subduction. In the southern oceanic portion of the system, abundant seismicity reaches depths of 100 km to 190 km, while the northern continental portion rarely exhibits deep earthquakes. Our study investigates how this oceanic-continental transition affects fluid release and related seismicity along strike. We present results from local earthquake tomography and double-difference relocation in conjunction with published images based on scattered teleseismic waves. Our tomographic images recover both subducting oceanic and continental crusts as low-velocity layers on top of high-velocity mantle. Although the northern and southern trenches are offset along the Kephalonia Transform Fault, continental and oceanic subducting crusts appear to align at depth. This suggests a smooth transition between slab retreat in the south and slab convergence in the north. Relocated hypocenters outline a single-planed Wadati-Benioff Zone with significant along-strike variability in the south. Seismicity terminates abruptly north of the Kephalonia Transform Fault, likely reflecting the transition from oceanic to continental subducted crust. Near 90 km depth, the low-velocity signature of the subducting crust fades out and the Wadati-Benioff Zone thins and steepens, marking the outline of the basalt-eclogite transition. Subarc melting of the mantle is only observed in the southernmost sector of the oceanic subduction, below the volcanic part of the arc. Beneath the nonvolcanic part, the overriding crust appears to have undergone large-scale silica enrichment. This enrichment is observed as an anomalously low Vp/Vs ratio and requires massive transport of dehydration-derived fluids updip through the subducting crust.

  3. Crustal Seismicity and 3-D Velocity Structure in the Principal Cordillera of Central Chile (33- 34.5 S, 69.5-71 W): Implications on Andean Geodynamic and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Pardo, M.; Monfret, T.; Vera, E.; Yañez, G.; Eisenberg, A.

    2007-12-01

    Based on data from a dense local temporary seismological network, crustal seismicity is characterized, and a 3- D body wave velocity structure is obtained by tomographic inversion down to the subducted slab. In the framework of Fondecyt 1050758, GeoAzur-IRD and ACT-18 projects, 35 broadband and short period instruments, were deployed in the studied zone for 135 days recording in continuous mode. At this zone the Andean active volcanism reappears after a gap of volcanic activity since late Miocene occurring north of 33 S due to the Central Chile flat slab subduction zone. Crustal seismicity in the depth range 0-30 km is well correlated with known geological faults that become now important in the assessment of the regional seismic hazard. This seismicity also clusters around the giant porphyry cooper deposits in the region (Rio Blanco, El Teniente), and are neither related to mine-blasts nor induced by mining activity. Moreover, the local 3-D velocity structure shows that the zone surrounding each deposit is characterized by high Vp/Vs greater than 1.8, which may indicate fluid phases located in the weakest and more fractured zone of the crust. The body wave velocity pattern shown at depth by the local tomography indicates channels of high Vp/Vs connecting the subducted slab with the surface at places where active volcanism is present, suggesting upward migration of hydrous or melted rocks. This pattern agrees with the one observed with a previous regional tomography that includes this zone, while this Vp/Vs pattern tends to be horizontal at the flat slab zone. At depths of 20-25 km, a layer of high Vp/Vs is observed beneath the Andes Cordillera that could be associated to changes in the rheological properties between the upper and lower crust, or to accumulation of magma. The average stress tensor, derived from focal mechanisms, indicate that the Andean zone is under compression in the plate convergence direction.

  4. Frictional behavior of carbonate-rich incoming sediment in the Hikurangi subduction zone

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B.; Ikari, M.; Collettini, C.

    2017-12-01

    In recent years, the traditional view of the seismogenic zone has been challenged by observations of a range of seismic behaviors both above and below the depths previously considered capable of nucleating earthquakes. The Hikurangi trench is one of the few subduction zones where this transitional seismic behavior has been observed at the shallowest portions of the subduction zone, providing an opportunity to investigate the mechanical controls on seismic behavior through measurements of directly sampled sediment. To this end, an IODP cruise (March-May, 2018; Exp. 375) will recover sample from the faults that participate in this shallow seismic behavior. In order to obtain preliminary frictional characterization of the sedimentary inputs to the Hikurangi Trench, we conducted deformation experiments on samples from an ocean drill core through the incoming sediments (ODP Site 1124). The sedimentary package subducting at Hikurangi contains carbonate-rich lithologies, which have been shown to be more frictionally unstable (velocity-weakening, high healing rates) than the clays that comprise the majority of the sedimentary inputs to global subduction zones. Such frictional properties could promote seismic behavior in the shallower reaches of the subduction zone. We focus on a section of ODP Site 1124 which has a carbonate content of 40 wt% to investigate the effect of this lithology. Samples were saturated with distilled water mixed with 35 g/l sea salt. Velocity-stepping and slide-hold-slide tests were performed in multiple biaxial and triaxial deformation apparatus to investigate a range of pressures, temperatures and velocities relevant to the shallow subduction zone (σeff = 1-150 MPa, sliding velocities of 1.7 nm/s-300 μm/s, hold times of 1-1000 s, and T = 20-100 ºC). We observe transitions from velocity-strengthening to velocity-weakening behavior over these conditions which could contribute to shallow seismic behavior in the Hikurangi trench.

  5. Seismicity, shear failure and modes of deformation in deep subduction zones

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul R.; Giardini, Domenico

    1992-01-01

    The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.

  6. Seismotectonics of the central segment of the Indonesian Arc

    NASA Astrophysics Data System (ADS)

    Eva, C.; Cattaneo, M.; Merlanti, F.

    1988-01-01

    In this paper, a revision of seismicity affecting the central segment of the Indonesian island arc ranging between 110° and 126° E is presented. Using the areal and in-depth distribution of seismic activity, strain release maps and focal mechanisms, lateral changes in the Wadati-Benioff zone have been analyzed to determine possible boundaries between portions of lithosphere with different subduction geometries. The seismicity pattern indicates that the Sumbawa-Flores-Wetar sector shows different forms of behaviour with respect to the adjacent sectors. These include driving mechanism, inclination and continuity of the subducting slab and subduction features. This area therefore seems to be isolated from the Sunda and Banda arcs by two principal boundaries, these having a nearly N-S trend in the Bali region and with a nearly E-W trend in the region ranging between Wetar-Northern Timor and Tanibar. The first boundary, characterized by an absolute minimum of seismic activity at all ranges of depth, has been interpreted in terms of subduction of the Roo Rise aseismic bathymetric ridge. For the second boundary, dividing a northwardly steeply-dipping slab from an E-W subducting slab dipping with an angle of 30 ° -40 °, a tear in the upper part (depth less than 300 km) and a hinge fault system in the deepest part of the lithosphere, have been proposed. From the analysis of focal mechanisms of shallow earthquakes, it was inferred that the central part of the Indonesian Arc is subject to a vortex-shaped stress field centred on the Savu Basin. In this model, the compressive axes appear to rotate counterclockwise (from SW to NNE) in the Sumba-Sumbawa-Western Flores region and clockwise (from W to NNW) in the Timor-Eastern Flores zone. To interpret these features, on the basis of seismological evidence, a lateral discontinuity in the arc-trench system close to Sumba, a collision between Sumba and Sumbawa and a rotation towards the north-northeast of Sumba have been suggested. The proposed structural discontinuity, trending NW-SE, may represent a major transcurrent fault zone through which the Australian continental lithosphere comes into contact with the Indian oceanic lithosphere.

  7. Variations in fluid transport and seismogenic properties in the Lesser Antilles subduction zone: constraints from joint active-source and local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Laigle, M.; Charvis, P.; Galve, A.

    2015-12-01

    The degree of coupling and the seismogenic properties of the plate interface at subduction zones are affected by the abundance of slab fluids and subducted sediments. High fluid input can cause high pore-fluid pressures in the subduction channel and decrease coupling leading to aseismic behaviour. Constraining fluid input and transfer is therefore important for understanding plate coupling and large earthquake hazard, particularly in places where geodetic and seismological constraints are scarce. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 150 km) local earthquakes recorded on a vast amphibious array of OBSs and land stations to recover the Vp and Vp/Vs structure of the central Lesser Antilles subduction zone. Our model extends between Martinique and Antigua from the prism to the arc and from the surface to a depth of 160 km. We find low Vp and high Vp/Vs ratio (> 1.80) on the top of the slab, at depths of up to 100 km. We interpret this high Vp/Vs ratio anomaly as evidence of elevated fluid content either as free fluids or as bound fluids in hydrated minerals (e.g. serpentinite). The strength and depth extent of the anomaly varies strongly from south to north along the subduction zone and correlates with variations in forearc morphology and with sediment input constrained by multi-channel seismic reflection profiles. The anomaly is stronger and extends to greater depth in the south, offshore Martinique, where sediment input is elevated due to the vicinity of the Orinoco delta. The gently dipping forearc slope observed in this region may be the result of weak coupling of the plate interface. A high Vp/Vs ratio is also observed in the forearc likely indicating a fractured and water-saturated overriding plate. On the other hand the anomaly is weaker and shallower offshore Guadeloupe, where sediment input is low due to subduction of the Barracuda ridge. Here a strong plate coupling is likely responsible for uplifting the inner forearc and formation of the Karukera spur. We infer that variations in plate coupling modulated by slab fluid transport and release are a major factor in determining the distribution of seismic slip in the Lesser Antilles subduction zone.

  8. Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance

    NASA Astrophysics Data System (ADS)

    Letort, Jean; Retailleau, Lise; Boué, Pierre; Radiguet, Mathilde; Gardonio, Blandine; Cotton, Fabrice; Campillo, Michel

    2018-05-01

    Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude Mb 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 Mb 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.

  9. Collision-induced rotation in an arc-continent collision: Constrained by continuous GPS observations in Mindoro, Philippines

    NASA Astrophysics Data System (ADS)

    Rau, R.; Hung, H.; Yang, C.; Tsai, M.; Ching, K.; Bacolcol, T.; Solidum, R.; Chang, W.

    2012-12-01

    The Mindoro Island, situated at the southern end of the Manila trench, is a modern arc-continent collision. Seismic activity in Mindoro concentrates mainly in the northern segment of the island as part of the Manila subduction processes; in contrast, seismicity in the middle and the southern parts of the island is rather diffuse. Although the Mindoro Island has been experiencing intense seismic activities and is a type example of arc-continent collision, the modern mode of deformation of the Mindoro collision remains unclear. We have installed eight dual-frequency continuous GPS stations in the island since May 2010. The questions we want to address by using continuous GPS observations are (1) if there are still compressions within the Mindoro collision? Have they ceased as seen by the diffuse seismicity, or are the thrust faults locked? (2) What is the mode of deformation in the Mindoro collision and what are the roles of thrust and strike-slip faults playing in the collision? (3) How does the Mindoro collision compare with the other collision, such as the Taiwan orogen? Do they share similar characteristics for the subduction-collision transition zone? For the results of the first two years GPS measurements, if we take the Sablayan site near the southern end of the Manila trench as the reference station, a large counterclockwise rotation from south to north, with horizontal velocities of 1.9-31.1 mm/yr from 165 to 277 degrees, are found in the island. The deformation of the Mindoro is similar to the pattern of the transition zone from collision to subduction in northeastern Taiwan. This result suggests that collision-induced rotation is occurring in the Mindoro Island and the Mindoro arc-continent collision is still active.

  10. Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

    USGS Publications Warehouse

    Granja, Bruna J.L.; Muñoz-Martín, A.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Llanes, Estrada P.; Martín-Dávila, J.; Cordoba-Barba, D.; Catalan, Morollon M.

    2010-01-01

    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N-S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8?? to 30?? reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin. ?? 2010 Springer Science+Business Media B.V.

  11. Interseismic Coupling and Seismic Potential along the Indo-Burmese Arc and the Sagaing fault

    NASA Astrophysics Data System (ADS)

    Earnest, A.

    2017-12-01

    The Indo-burmese arc is formed by the oblique subduction of the Indian plate under the Eurasia. This region is a transition zone between the main Himalayan collision belt and the Andaman subduction zone. This obliquity causes strain partitioning which causes separation of a sliver plate, the Burma Plate. Considering the geomorphic, tectonic and geophysical signatures, IBR comprises all the structural features of an active subduction zone, whereas the present day tectonics of this region is perplexing. Ni et al. [1989] and Rao and Kalpana [2005] suggested that the subduction might have stopped in recent times or continues relatively in an aseismic fashion. This is implied by the NNE compressional stress orientations, instead of its downdip direction. The focal mechanism stress inversions show distinct stress fields above and below the 90 km depth. It is widely believed that the partitioning of Indian-Eurasia plate motion along the Indo-buremse arc and the Sagaing fault region the reason for earthquake occurrence in this region. The relative motion of 36mm/yr, between India and Eurasia, is partitioned across the Sagaing fault through a dextral movement of ˜20mm/yr and remaining velocity is accommodated at the Churachandapur-Mao fault (CMF) through dextral motion. The CMF and its surroundings are considered as seismically a low hazard region, an observation made from the absence of significant earthquakes and lack of field evidences. This made Kundu and Gahalaut [2013] to propose that the motion across the CMF happens in an aseismic manner. Recently, based on GPS studies Steckler et al. [2016] suggested that the region is still actively subducting and the presence of a locked megathrust plate boundary depicts the region as highly vulnerable for large magnitude seismic activities. Our study, based on various geodetic solutions and earthquake slip vectors, focus on interseisimic block models for the Indo-burmese arc and Sagaing fault region so as to model the crustal deformation of this area using an elastic block modelling approach. Results from our best fit model predicts the spatial distribution of interseismic coupling coefficient (φ) and the backslip component. These coefficients characterize the fault interface, which helps in estimating the seismic potential across Indo-burmese arc and the Sagaing fault region.

  12. Mantle wedge structure beneath the Yamato Basin, southern part of the Japan Sea, revealed by long-term seafloor seismic observations

    NASA Astrophysics Data System (ADS)

    Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.

    2016-12-01

    The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

  13. ­­New Finite-Frequency Teleseismic P-wave Tomography of the Anatolian Sub-continent and the Fate of the Subducted Cyprean Slab

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Biryol, C. B.; Delph, J. R.; Beck, S. L.; Zandt, G.; Özacar, A.; Sandvol, E. A.; Turkelli, N.

    2016-12-01

    The eastern Mediterranean region is characterized by active subduction of Tethyan lithosphere beneath the Anatolian sub-continent at the Aegean and Cyprean trenches. The subduction system is historically characterized by slab roll-back, detachment, and slab settling in the mantle transition zone. Prior mantle tomography studies reveal segmentation of the subducted Tethyan lithosphere, which is thought to have a strong control on surface volcanism and uplift across Anatolia. However, tomographic resolution, particularly in central Anatolia, has been limited, thus making detailed delineations of the subducted slab segments difficult. To improve resolution, we combine two years of seismic data from the recent Continental Dynamics - Central Anatolia Tectonics (CD-CAT) seismic deployment and Turkey's national seismic network ( 33,000 residuals) to 33,000 travel time residuals from Biryol et al. (2011, GJI) in a new finite-frequency teleseismic P-wave tomographic inversion. Our new images reveal with detail a complicated geometry of fast velocity anomalies associated with subducted Tethyan lithosphere. At shallow depths, slow velocities separate the fast anomalies connected to the Aegean and Cyprean trenches. The fast anomaly connected to the Cyprean trench has an arcuate shape in map view, following the trace of the Central Taurus Mountains. This anomaly is separated from a high-amplitude block to the north that appears to dip sub-vertically throughout the upper mantle (200-660 km depth). Other blocks of fast material that may represent subducted Tethyan lithosphere appear down-dip of the vertical block. Additionally, our images indicate that some of the fast velocity anomalies previously seen to flatten in the mantle transition zone may continue into the lower mantle. Thus, our new images provide a more detailed picture of the fate of the Cyprean slab and suggest that some of the fast anomalies associated with the slab continue into the lower mantle, bringing to question the traditional view of a slab graveyard in the mantle transition zone in this region.

  14. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  15. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    PubMed

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  16. Isolated intermediate-depth seismicity north of the Izu peninsula, Japan: implications for subduction of the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi

    2018-01-01

    The subduction of the Philippine Sea (PHS) Plate toward the north of Izu peninsula, Japan, is of great interest because intraslab seismicity is absent where the buoyant Izu volcanic arc has been subducting over the past 15 Myr. This study analyzes 42 earthquakes in an isolated seismic cluster that occurred 100 km north of Izu peninsula at depths of 40-90 km and discusses seismogenesis in the context of plate subduction. We picked P- and S-wave arrival times of earthquakes to produce a complete hypocenter catalogue, carried out double-difference event relocations, and then determined focal mechanism solutions of 7 earthquakes from P-wave polarity data. Based on the focal mechanism solution, the largest earthquake (M3.1) is interpreted as a thrust earthquake along the upper surface of the PHS Plate. Locations of other earthquakes relative to the largest event suggest that most earthquakes occur within the subducting PHS Plate. Our results suggest that the PHS Plate north of Izu peninsula has temperatures low enough to facilitate thrust and intraslab earthquakes at depths of 60-90 km. Earthquakes are likely to occur where pore pressures are locally high, which weakens pre-existing faults. The presence of the intermediate-depth seismic cluster indicates the continuous subduction of the PHS Plate toward the north of Izu peninsula without any disruption.[Figure not available: see fulltext.

  17. The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.

    1983-01-01

    Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.

  18. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  19. Spectral Estimation of Seismic Moment, Corner Frequency and Radiated Energy for Earthquakes in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Satriano, C.; Mejia Uquiche, A. R.; Saurel, J. M.

    2016-12-01

    The Lesser Antilles are situated at a convergent plate boundary where the North- and South-American plates subduct below the Caribbean Plate at a rate of about 2 cm/y. The subduction forms the volcanic arc of Lesser Antilles and generates three types of seismicity: subduction earthquakes at the plate interface, intermediate depth earthquakes within the subducting oceanic plates and crustal earthquakes associated with the deformation of the Caribbean Plate. Even if the seismicity rate is moderate, this zone has generated in the past major earthquakes, like the subduction event on February 8, 1843, estimated M 8.5 (Beauducel et Feuillet, 2012), the Mw 6.3 "Les Saintes" crustal earthquake of November 24, 2004 (Drouet et al., 2011), and the Mw 7.4 Martinique intermediate earthquake of November 29, 2007 (Bouin et al., 2010). The seismic catalogue produced by the Volcanological and Seismological Observatories of Guadeloupe and Martinique comprises about 1000 events per year, most of them of moderate magnitude (M < 5.0). The observation and characterization of this background seismicity has a fundamental role in understanding the processes of energy accumulation and liberation preparing major earthquakes. For this reason, the catalogue needs to be completed by information like seismic moment, corner frequency and radiated energy which give access to important fault properties like the rupture size, the static and the apparent stress drop. So far, this analysis has only been performed for the "Les Saintes" sequence (Drouet et al., 2011). Here we present a systematic study of the Lesser Antilles merged seismic catalogue (http://www.seismes-antilles.fr), between 2002 and 2013, using broadband data from the West Indies seismic network and recordings from the French Accelerometric Network. The analysis is aimed at determining, from the inversion of S-wave displacement spectra, source parameters like seismic moment, corner frequency and radiated energy, as well as the inelastic attenuation factor. The results are discussed, for each type of seismicity in terms of scaling of corner frequency and energy release with seismic moment. We further discuss the steps realized to implement spectral analysis as an automated processing routine at the observatories of Guadeloupe and Martinique.

  20. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-12-01

    A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl—van der Hilst—Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations—episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci—led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a depth of at least 100 km in the aseismic part of the subduction zone.

  1. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-12-01

    A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl-van der Hilst-Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations-episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci-led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a depth of at least 100 km in the aseismic part of the subduction zone.

  2. The Sunda-Banda Arc Transition: New Insights from Marine Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Kopp, H.; Djajadihardja, Y.; Engels, M.; Flueh, E.; Gaedicke, C.; Lueschen, E.; Lutz, R.; Planert, L.; Shulgin, A.; Soemantri, D. D.

    2007-12-01

    After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Planert et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of the 4000 m deep forearc Lombok Basin offshore Bali, Lombok, and Sumbawa. The eastern termination of the Lombok Basin is formed by Sumba Island, which shows evidence for recent uplift, probably associated with the collision of the island arc with the continental Scott Plateau. The Sumba area represents the transition from subduction to collision. Our seismic profiles image the bending of the oceanic crust seaward of the trench and associated normal faulting. Landward of the trench, they image the subducting slab beneath the outer arc high, where the former bending-related normal faults appear to be reactivated as reverse faults introducing vertical displacements in the subducting slab. The accretionary prism and the outer arc high are characterized by an ocean-verging system of imbricate thrust sheets with major thrust faults connecting seafloor and detachment. Compression results in shortening and steepening of the imbricated thrust sheets building up the outer arc high. Tilted piggy-back basins and downlaps of tilted sediments in the southern Lombok forearc basin indicate ongoing uplift of the entire outer arc high, abrupt displacements, and recent tectonic activity.

  3. Discontinuous character of the Wadati-Benioff zone in the Banda Arc region: a consequence of a cyclic character of the process of subduction

    NASA Astrophysics Data System (ADS)

    Matejkova, R.; Spicak, A.; Vanek, J.

    2010-12-01

    Our former investigation into heterogeneous distribution of earthquakes at convergent plate margins led us to an idea of discontinuities in the process of subduction (e.g. Hanuš and Vaněk, 1978; Špičák et al., 2007). This idea suggests the existence of subduction cycles lasting several million years. A fade-out of a subduction process should be caused e.g. by a collision of the slab with the 670 boundary, convergence of hardly subductable seamount provinces, collision with a thick continental crust etc. Such a fade-out of subduction may be followed by an onset of a new subduction cycle, with important consequences to, e.g., position of the volcanic arc. In this contribution, we analyse spatial distribution of intermediate-depth and deep earthquakes in the southern part of the Banda Arc region (5°-10°S and 127°-132°E). The EHB global hypocentral determinations (Engdahl et al., 1998) covering the period 1964-2007 have been used. To visualize depth distribution of earthquake foci, we covered the region of interest by narrow (25 km width) swaths, oriented perpendicular to the plate margin, and displayed earthquake foci in vertical sections. The vertical sections show concentration of earthquake foci of the Wadati-Benioff zone (hereafter denoted as WBZ) in four distinct domains that do not fit a continuous plate-like body. These domains can be clearly distinguished from each other by a distinct gap in seismicity between them and/or a noticeable change in dip angle of neighbouring domains. This observation casts doubt on a generally accepted idea that the seismically active domains of the Banda WBZ represent one continuous slab. The deepest domain D1 of earthquakes (400-700 km depth) is probably associated with deep earthquakes north of Java and corresponds to a subduction cycle that faded about 8 Ma ago. Our estimate of the age of the cycle is based on the assumption of a steady convergence rate of about 7 cm/yr. The domain D2 of earthquakes at depths between 200-400 km corresponds to a subduction cycle that was active 8-4 Ma BP. The remnants of related arc volcanism can be found along the Lucipara and Nieuwerkerk-Emperor of China ridges in the Banda Sea; ages of these volcanic rocks (Honthaas et al., 1998) correspond well with our estimate. This subduction cycle, still running beneath Java and Sumatra, was probably ended by collision with the Australian continent in the Banda Arc region. Such a collisional event is reflected by a vertically situated domain D3 of unusually strong seismicity concentrated at depths 100 - 200 km; the deepest part of the domain corresponds to the beginning of the collisional event 4 Ma BP. A present analogy of the collisional event can be found in the Timor region, west of the region of our interest. The domain D4 of seismicity south/southeast of the Timor-Tanimbar trough (focal depth down to 100 km) corresponds to the recent subduction of the Australian shelf beneath the Banda Arc region. This recent subduction has already reached a depth of about 100 km decisive for arc magma formation (Damar, Teon, Nila volcanoes).

  4. The Gibraltar subduction: A decade of new geophysical data

    NASA Astrophysics Data System (ADS)

    Gutscher, M.-A.; Dominguez, S.; Westbrook, G. K.; Le Roy, P.; Rosas, F.; Duarte, J. C.; Terrinha, P.; Miranda, J. M.; Graindorge, D.; Gailler, A.; Sallares, V.; Bartolome, R.

    2012-10-01

    The Gibraltar arc, spans a complex portion of the Africa-Eurasia plate boundary marked by slow oblique convergence and intermediate and deep focus seismicity. The seemingly contradictory observations of a young extensional marine basin surrounded by an arcuate fold-and-thrust belt, have led to competing geodynamic models (delamination and subduction). Geophysical data acquired in the past decade provide a test for these models and support a narrow east-dipping, subduction zone. Seismic refraction studies indicate oceanic crust below the western Gulf of Cadiz. Tomography of the upper mantle reveals a steep, east-dipping high P-wave velocity body, beneath Gibraltar. The anisotropic mantle fabric from SKS splitting shows arc-parallel "fast directions", consistent with toroidal flow around a narrow, westward retreating subducting slab. The accompanying WSW advance of the Rif-Betic mountain belt has constructed a thick pile of deformed sediments, an accretionary wedge, characterized by west-vergent thrust anticlines. Bathymetric swath-mapping images an asymmetric embayment at the deformation front where a 2 km high basement ridge has collided. Subduction has slowed significantly since 5 Ma, but deformation of recent sediments and abundant mud volcanoes suggest ongoing activity in the accretionary wedge. Three possible origins for this deformation are discussed; gravitational spreading, overall NW-SE convergence between Africa and Iberia and finally a WSW tectonic push from slow, but ongoing roll-back subduction. In the absence of arc volcanism and shallow dipping thrust type earthquakes, evidence in favor of present-day subduction can only be indirect and remains the object of debate. Continued activity of the subduction offers a possible explanation for great (M > 8.5) earthquakes known to affect the area, like the famous 1755 Great Lisbon earthquake. Recent GPS studies show SW motion of stations in N Morocco at velocities of 3-6 mm/yr indicating the presence of an independent block, a "Rif-Betic-Alboran" microplate, situated between Iberia and Africa.

  5. Hiding earthquakes from scrupulous monitoring eyes of dense local seismic networks

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Kiser, E.

    2012-12-01

    Accurate and complete cataloguing of aftershocks is essential for a variety of purposes, including the estimation of the mainshock rupture area, the identification of seismic gaps, and seismic hazard assessment. However, immediately following large earthquakes, the seismograms recorded by local networks are noisy, with energy arriving from hundreds of aftershocks, in addition to different seismic phases interfering with one another. This causes deterioration in the performance of detection and location of earthquakes using conventional methods such as the S-P approach. This is demonstrated by results of back-projection analysis of teleseismic data showing that a significant number of events are undetected by the Japan Meteorological Agency, within the first twenty-four hours after the Mw9.0 Tohoku-oki, Japan earthquake. The spatial distribution of the hidden events is not arbitrary. Most of these earthquakes are located close to the trench, while some are located at the outer rise. Furthermore, there is a relatively sharp trench-parallel boundary separating the detected and undetected events. We investigate the cause of these hidden earthquakes using forward modeling. The calculation of raypaths for various source locations and takeoff angles with the "shooting" method suggests that this phenomenon is a consequence of the complexities associated with subducting slab. Laterally varying velocity structure defocuses the seismic energy from shallow earthquakes located near the trench and makes the observation of P and S arrivals difficult at stations situated on mainland Japan. Full waveform simulations confirm these results. Our forward calculations also show that the probability of detection is sensitive to the depth of the event. Shallower events near the trench are more difficult to detect than deeper earthquakes that are located inside the subducting plate for which the shadow-zone effect diminishes. The modeling effort is expanded to include three-dimensional structure in velocity and intrinsic attenuation to evaluate possible laterally varying patterns. Our study suggests that the phenomenon of hidden earthquakes could be present at other regions around the world with active subductions. Considering that many of these subduction zones are not as well monitored as Japan, the number of missed events, especially after large earthquakes, could be significant. The results of this work can help to identify "blind spots" of present seismic networks, and can contribute to improving monitoring activities.

  6. 3-D Seismic Tomographic Inversion to Image Segmentation of the Sumatra Subduction Zone near Simeulue Island

    NASA Astrophysics Data System (ADS)

    Tang, G.; Barton, P. J.; Dean, S. M.; Vermeesch, P. M.; Jusuf, M. D.; Henstock, T.; Djajadihardja, Y.; McNeill, L. C.; Permana, H.

    2009-12-01

    Oceanic subduction along the Sunda trench to the west of Sumatra (Indonesia) shows significant along-strike variations in seismicity. For example, the great M9.3 earthquake in 2004 occurred in the forearc basin north of Simeulue island, rupturing the fault predominantly towards the northwest, while the 2005 Nias earthquake nucleated near the Banyak islands, rupturing towards the southeast (Ammon et al., 2005; Ishii et al. 2005). The gap between these two active areas indicates segmentation of the subduction zone, but the cause of the segmentation remains enigmatic. To investigate the apparent barriers to rupture, two 3-D refraction surveys were conducted in 2008, one, the topic of this study, around Simeulue island and the other to the southeast of Nias island. Seismic data were collected using ocean bottom seismometers and a 12-airgun tuned array with a total capacity of 5420 cu. in., together with high resolution bathymetry data and gravity data. 174,515 traveltimes of first refracted arrivals were picked for the study area, and 128,138 of them were inverted for a model of minimum structure required by the data using the ‘FAST’ method (Zelt et.al, 1998). Resolution tests show that the model is resolvable mostly on a scale of >40 km horizontally. The final velocity model produced has two distinct features: i. the subducted oceanic plates (represented by 6 km/s contours) seem to be discontinuous along strike; ii. the subduction dip angle appears to be steeper in the southern part of the survey area than in the north. The geometric variation in the subducted plate appears to coincide with the segment boundary approximately across the centre of Simeulue island, and may perhaps associated with the segmentation of the seismicity noted from the earthquake record. More accurate velocity models will be developed by jointly inverting traveltimes of first and later arrivals as well as normal incidence data using the tomographic inversion program JIVE-3D (Hobro et.al, 2003). Some passive earthquake data may also be available for the inversion for this area. These new results will provide insights into along-strike variations in subsurface structure and/or physical properties within the Sumatra subduction zone, which maybe related to the observed segmentation.

  7. Characteristics of the Central Costa Rican Seismogenic Zone Determined from Microseismicity

    NASA Astrophysics Data System (ADS)

    DeShon, H. R.; Schwartz, S. Y.; Bilek, S. L.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2001-12-01

    Large or great subduction zone thrust earthquakes commonly nucleate within the seismogenic zone, a region of unstable slip on or near the converging plate interface. A better understanding of the mechanical, thermal and hydrothermal processes controlling seismic behavior in these regions requires accurate earthquake locations. Using arrival time data from an onland and offshore local seismic array and advanced 3D absolute and relative earthquake location techniques, we locate interplate seismic activity northwest of the Osa Peninsula, Costa Rica. We present high resolution locations of ~600 aftershocks of the 8/20/1999 Mw=6.9 underthrusting earthquake recorded by our local network between September and December 1999. We have developed a 3D velocity model based on published refraction lines and located events within a subducting slab geometry using QUAKE3D, a finite-differences based grid-searching algorithm (Nelson & Vidale, 1990). These absolute locations are input into HYPODD, a location program that uses P and S wave arrival time differences from nearby events and solves for the best relative locations (Waldhauser & Ellsworth, 2000). The pattern of relative earthquake locations is tied to an absolute reference using the absolute positions of the best-located earthquakes in the entire population. By using these programs in parallel, we minimize location errors, retain the aftershock pattern and provide the best absolute locations within a complex subduction geometry. We use the resulting seismicity pattern to determine characteristics of the seismogenic zone including geometry and up- and down-dip limits. These are compared with thermal models of the Middle America subduction zone, structures of the upper and lower plates, and characteristics of the Nankai seismogenic zone.

  8. The nature of subslab slow velocity anomalies beneath South America

    NASA Astrophysics Data System (ADS)

    Portner, Daniel Evan; Beck, Susan; Zandt, George; Scire, Alissa

    2017-05-01

    Slow seismic velocity anomalies are commonly imaged beneath subducting slabs in tomographic studies, yet a unifying explanation for their distribution has not been agreed upon. In South America two such anomalies have been imaged associated with subduction of the Nazca Ridge in Peru and the Juan Fernández Ridge in Chile. Here we present new seismic images of the subslab slow velocity anomaly beneath Chile, which give a unique view of the nature of such anomalies. Slow seismic velocities within a large hole in the subducted Nazca slab connect with a subslab slow anomaly that appears correlated with the extent of the subducted Juan Fernández Ridge. The hole in the slab may allow the subslab material to rise into the mantle wedge, revealing the positive buoyancy of the slow material. We propose a new model for subslab slow velocity anomalies beneath the Nazca slab related to the entrainment of hot spot material.

  9. P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Jincheng; Tian, You; Liu, Cai; Zhao, Dapeng; Feng, Xuan; Zhu, Hongxiang

    2018-01-01

    A high-resolution model of 3-D P-wave velocity structure beneath Northeast Asia and adjacent regions is determined by using 244,180 arrival times of 14,163 local and regional earthquakes and 319,857 relative travel-time residuals of 9988 teleseismic events recorded at ∼2100 seismic stations in the study region. Our tomographic results reveal the subducting Pacific slab clearly as a prominent high-velocity anomaly from the Japan Trench to the North-South Gravity lineament (NSGL) in East China. The NSGL is roughly coincident with the western edge of the stagnant Pacific slab in the mantle transition zone (MTZ). The subducting Pacific slab has partly sunk into the lower mantle beneath Northeast China, but under the Sino-Korean Craton the slab lies horizontally in the MTZ. The NSGL, as an important tectonic line in Mainland China, is marked by sharp differences in the surface topography, gravity anomaly, crustal and lithospheric thickness and mantle seismic velocity from the east to the west. These features of the NSGL and large-scale hot and wet upwelling in the big mantle wedge (BMW) in the east of the NSGL are all related to the subduction processes of the Western Pacific plate. The Changbai intraplate volcanic group is underlain by a striking low-velocity anomaly from the upper MTZ and the BMW up to the surface, and deep earthquakes (410-650 km depths) occur actively in the subducting Pacific slab to the east of the Changbai volcano. We propose that the Changbai volcanic group is caused by upwelling of hot and wet asthenospheric materials and active convection in the BMW. The formation of other volcanic groups in the east of the NSGL is also associated with the subduction-driven corner flow in the BMW.

  10. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    PubMed Central

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael

    2016-01-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676

  11. Detailed Image of the Subducting Plate and Upper mantle Seismic Discontinuities in the Mariana Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tibi, R.; Wiens, D. A.; Shiobara, H.; Sugioka, H.; Yuan, X.

    2006-12-01

    We use P-to-S converted teleseismic phases recorded at island and ocean bottom stations in Mariana to image the subducting plate and the upper mantle seismic discontinuities in the Mariana subduction zone. The land and seafloor stations which operated from June 2003 to May 2004, were deployed within the framework of the MARGINS Subduction Factory experiment of the Mariana system. The crust in the sudducting plate is observed at about 80--90 km depth beneath the islands of Saipan, Tinian and Rota. For most of the island stations, a low velocity layer is imaged in the forearc at depth between about 20 and 60 km, with decreasing depths toward the arc. The nature of this feature is not yet clear. We found evidence for double seismic discontinuities at the base of the transition zone near the Mariana slab. A shallower discontinuity is imaged at depths of ~650--715 km, and a deeper interface lies at ~740-- 770 km depth. The amplitudes of the seismic signals suggest that the shear velocity contrasts across the two features are comparable. These characteristics support the interpretation that the discontinuities are the results of the phase transformations in olivine (ringwoodite to post-spinel) and garnet (ilminite to perovskite), respectively, for the pyrolite model of mantle composition.

  12. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone

    NASA Astrophysics Data System (ADS)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia

    2016-04-01

    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  13. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    PubMed

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-07-20

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  14. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    DOE PAGES

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; ...

    2016-04-12

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  15. Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    USGS Publications Warehouse

    Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary

    2012-01-01

    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.

  16. Impact of cascadia subduction zone earthquake on the seismic evaluation criteria of bridges : technical report : SPR 770.

    DOT National Transportation Integrated Search

    2016-12-01

    A large magnitude long duration subduction earthquake is impending in the Pacific Northwest, which lies near the : Cascadia Subduction Zone (CSZ). Great subduction zone earthquakes are the largest earthquakes in the world and are the sole source : zo...

  17. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust (<5 km). Double Wadati-Benioff zones, 20-30 km below the crust, are explained by deformation of dry peridotites, not by serpentine dehydration. It reduces the required amount of water stored in solid phases in the slab (Reynard et al., 2010). In the cold (<700°C) fore-arc mantle wedge above the subducting slab, serpentinization is caused by the release of large amounts of hydrous fluids in the cold mantle above the dehydrating subducted plate. Low seismic velocities in the wedge give a time-integrated estimate of hydration and serpentinization. Serpentinization reaches 50-100% in hot subduction, while it is below 10% in cold subduction (Bezacier et al., 2010; Reynard, 2012). Electromagnetic profiles of the mantle wedge reveal high electrical-conductivity bodies. In hot areas of the mantle wedge (> 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (< 700°C), high conductivities in electromagnetic profiles provide "instantaneous" images of fluid circulation because the measured electrical conductivity of serpentine is below 0.1 mS/m (Reynard et al., 2011). A small fraction (ca. 1% in volume) of connective high-salinity fluids accounts for the highest observed conductivities. Low-salinity fluids (≤ 0.1 m) released by slab dehydration evolve towards high-salinity (≥ 1 m) fluids during progressive serpentinization in the wedge. These fluids can mix with arc magmas at depths and account for high-chlorine melt inclusions in arc lavas. High electrical conductivities up to 1 S/m in the hydrated wedge of the hot subductions (Ryukyu, Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (<0.01 S/m) conductivities in the cold subductions (N-E Japan, Bolivia) reflect low fluid flow. This is consistent with the seismic observations of extensive shallow serpentinization in hot subduction zones, while serpentinization is sluggish in cold subduction zones. Bezacier, L., et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289, 198-208. Reynard, B., 2012. Serpentine in active subduction zones. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.10.012. Reynard, B., Mibe, K. & Van de Moortele, B., 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters, 307, 387-394. Reynard, B., Nakajima, J. & Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.

  18. Seismic and thermal evidences for subduction of exhumed mantle oceanic crust beneath the seismically quiet Antigua-St Martin Margin segment in the Northern Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.

  19. Geophysical and geochemical constraints on the geodynamic origin of the Vrancea Seismogenic Zone Romania

    NASA Astrophysics Data System (ADS)

    Fillerup, Melvin A.

    The Vrancea Seismogenic Zone (VSZ) of Romania is a steeply NW-dipping volume (30 x 70 x 200 km) of intermediate-depth seismicity in the upper mantle beneath the bend zone of the Eastern Carpathians. The majority of tectonic models lean heavily on subduction processes to explain the Vrancea mantle seismicity and the presence of a Miocene age calc-alkaline volcanic arc in the East Carpathian hinterland. However, recent deep seismic reflection data collected over the Eastern Carpathian bend zone image an orogen lacking (1) a crustal root and (2) dipping crustal-scale fabrics routinely imaged in modern and ancient subduction zones. The DRACULA I and DACIA-PLAN deep seismic reflection profiles show that the East Carpathian orogen is supported by crust only 30-33 km thick while the Focsani basin (foreland) and Transylvanian basin (hinterland) crust is 42 km and 46 km thick respectively. Here the VSZ is interpreted as the former Eastern Carpathian orogenic root which was removed as a result of continental lithospheric delamination and is seismically foundering beneath the East Carpathian bend zone. Because large volumes of calc-alkaline volcanism are typically associated with subduction settings existing geochemical analyses from the Calimani, Gurghiu, and Harghita Mountains (CGH) have been reinterpreted in light of the seismic data which does not advocate the subduction of oceanic lithosphere. CGH rocks exhibit a compositional range from basalt to rhyolite, many with high-Mg# (Mg/Mg+Fe > 0.60), high-Sr (>1000 ppm), and elevated delta-O18 values (6-8.7 /) typical of arc lavas, and are consistent with mixing of mantle-derived melts with a crustal component. The 143Nd/144Nd (0.5123-0.5129) and 87Sr/86Sr (0.7040-0.7103) ratios similarly suggest mixing of mantle and crustal end members to obtain the observed isotopic compositions. A new geochemical model is presented whereby delamination initiates a geodynamic process like subduction but with the distinct absence of subducted oceanic lithosphere to produce the CGH lavas. The origin of the VSZ presented here suggests that the delamination of continental lithosphere is a process capable of producing mantle earthquakes and calc-alkaline volcanism without subduction tectonics.

  20. Study on the Microstructures and Seismic Anisotropy of Blueschist and Eclogite from Ring Mountain and Jenner in California

    NASA Astrophysics Data System (ADS)

    HA, Y.; Jung, H.; Raymond, L. A.; Bero, D.

    2015-12-01

    Seismic anisotropy has been found in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD technique and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a weak girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite was very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.

  1. Subducted seamounts and recent earthquakes beneath the central Cascadia forearc

    USGS Publications Warehouse

    Tréhu, Anne M.; Blakely, Richard J.; Williams, Mark C.

    2012-01-01

    Bathymetry and magnetic anomalies indicate that a seamount on the Juan de Fuca plate has been subducted beneath the central Cascadia accretionary complex and is now located ∼45 km landward of the deformation front. Passage of this seamount through the accretionary complex has resulted in a pattern of uplift followed by subsidence that has had a profound influence on slope morphology, gas hydrate stability, and sedimentation. Based on potential-field data and a new three-dimensional seismic velocity model, we infer that this is the most recent of several seamounts subducted over the past several million years beneath this segment of Cascadia. More deeply subducted seamounts may be responsible for recent earthquake activity on the plate boundary in this region and for along-strike variations in the thickness of the subduction channel, which may affect coupling across the plate boundary.

  2. Tectono-sedimentary features in the Yap subduction zone, Western Pacific: constraints from latest integrated geophysical survey

    NASA Astrophysics Data System (ADS)

    Dong, D.; Zhang, G.; Bai, Y.; Fan, J.; Zhang, Z.

    2017-12-01

    The Yap subduction zone, western Pacific, is a typical structure related to the ridge subduction, but comparative shortage of the geophysical data makes the structural details unknown in this area. In this study, we present the latest and high-quality multi-beam swath bathymetry and multi-channel seismic data acquired synchronously in the year 2015 across the Yap subduction zone. Multichannel seismic and multi-beam data are mainly applied to investigate the topography of major tectonic units and stratigraphic structure in the Yap subduction zone and discuss the tectonic characteristics controlled by ridge subduction. It suggests that, Parece Vela Basin, as the regional sedimentary center, developed sedimentary layers nearly 800 meters thick. On the contrast, the horizontal sedimentary layers were not obviously identified in the Yap trench, where subduction erosion occurred. Caroline ridge changed the tectonic characteristics of subduction zone, and influenced magmatism of the Yap arc because of the special topography. The seismic profile clearly reveals landslide deposits at the upper slope break of the forearc, north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. Detailed topography and geological structure of horst and graben in the north of Yap are depicted, and topographic high of Caroline ridge is supposed to bring greater bending and tension and the subsequent horst and graben belt. Multichannel seismic evidence has been provided for interpreting the expansion of Sorol Trough and its inferred age. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: proto-Yap Arc rupture in the Oligocene, collision of the Caroline Ridge and the Yap Trench in the Late Oligocene or Middle Miocene, and onset of the Sorol Trough rifting in the Late Miocene. Acknowledge: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030102), the National Natural Science Foundation of China (No. 41476042, 41506055 )

  3. Quantifying potential tsunami hazard in the Puysegur subduction zone, south of New Zealand

    USGS Publications Warehouse

    Hayes, G.P.; Furlong, K.P.

    2010-01-01

    Studies of subduction zone seismogenesis and tsunami potential, particularly of large subduction zones, have recently seen a resurgence after the great 2004 earthquake and tsunami offshore of Sumatra, yet these global studies have generally neglected the tsunami potential of small subduction zones such as the Puysegur subduction zone, south of New Zealand. Here, we study one such relatively small subduction zone by analysing the historical seismicity over the entire plate boundary region south of New Zealand, using these data to determine the seismic moment deficit of the subduction zone over the past ~100 yr. Our calculations indicate unreleased moment equivalent to a magnitude Mw 8.3 earthquake, suggesting this subduction zone has the potential to host a great, tsunamigenic event. We model this tsunami hazard and find that a tsunami caused by a great earthquake on the Puysegur subduction zone would pose threats to the coasts of southern and western South Island, New Zealand, Tasmania and southeastern Australia, nearly 2000 km distant. No claim to original US government works Geophysical Journal International ?? 2010 RAS.

  4. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear internal wave pulses in the South China Sea. Coupling observations from the seismic images with turbulent patterns, we find no evidence for hydraulic jumps in the Luzon passage. Our data suggests geometric resonance may be the underlying physics behind large amplitude nonlinear internal wave pulses seen in the region. We find increased levels of turbulent diffusivity in deep water below 1000 m, associated with internal tide pulses, and near the steep slopes of both the Heng-Chun and Lan-Yu ridges.

  5. Seismic evidence for hydration of the Central American slab: Guatemala through Costa Rica

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Thurber, C. H.

    2011-12-01

    The Central American subduction zone exhibits a wide variability in along-arc slab hydration as indicated by geochemical studies. These studies generally show maximum slab contributions to magma beneath Nicaragua and minimum contributions beneath Costa Rica, while intermediate slab fluid contributions are found beneath El Salvador and Guatemala. Geophysical studies suggest strong slab serpentinization and fluid release beneath Nicaragua, and little serpentinization beneath Costa Rica, but the remainder of the subduction zone is poorly characterized seismically. To obtain an integrated seismic model for the Central American subduction zone, we combine 250,000 local seismic arrivals and 1,000,000 differential arrivals for 6,500 shallow and intermediate-depth earthquakes from the International Seismic Centre, the Central American Seismic Center, and the temporary PASSCAL TUCAN array. Using this dataset, we invert for Vp, Vs, and hypocenters using a variable-mesh double-difference tomography algorithm. By observing low-Vp areas within the normally high-Vp slab, we identify portions of the slab that are likely to contain serpentinized mantle, and thus contribute to higher degrees of melting and higher volatile components observable in arc lavas.

  6. The Cascadia Subduction Zone: two contrasting models of lithospheric structure

    USGS Publications Warehouse

    Romanyuk, T.V.; Blakely, R.; Mooney, W.D.

    1998-01-01

    The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.

  7. Effects of subduction and slab gaps on mantle flow beneath the Lesser Antilles based on observations of seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Bouin, Marie-Paule

    2016-04-01

    Subduction is a key process in the formation of continental crust. However, the interaction of the mantle with the subducting slab is not fully understood and varies between subduction zones. The flow geometry and stress patterns influence seismic anisotropy; since anisotropic layers lead to variations in the speed of seismic waves as a function of the direction of wave propagation, mantle flow can be constrained by investigating the structure of these anisotropic layers. In this study we investigate seismic anisotropy in the eastern Greater and the Lesser Antilles along a subduction environment, including the crust and the upper mantle as regions of interest. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to observe and distinguish between anisotropy in the crust, the mantle wedge and the sub-slab mantle. Local event delay times (0.21±0.12s) do not increase with depth, indicating a crustal origin and an isotropic mantle wedge. Teleseismic delay times are larger (1.34±0.47s), indicating sub-slab anisotropy. The results suggest trench-parallel mantle flow, with the exception of trench-perpendicular alignment in narrow regions east of Puerto Rico and south of Martinique, suggesting mantle flow through gaps in the slab. This agrees with the continuous northward mantle flow that is caused by the subducting slab proposed by previous studies of that region. We were able to identify a pattern previously unseen by other studies; on St. Lucia a trench-perpendicular trend also indicated by the stations around can be observed. This pattern can be explained by a mantle flow through a gap induced by the subduction of the boundary zone between the North and South American plates. This feature has been proposed for that area using tomographic modelling (van Benthem et al., 2013). It is based on previous results by Wadge & Shepherd (1984), who observed a vertical gap in the Wadati-Benioff zone at that location using a seismicity catalogue from local seismic networks. This work strengthens the argument for that location to be the plate boundary between the North and South American plates.

  8. Variability of High Resolution Vp/Vs and Seismic Velocity Structure Along the Nicaragua/Costa Rica Segment of the Middle America Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moore-Driskell, M. M.; DeShon, H. R.

    2012-12-01

    Previous studies of subduction zone earthquakes have shown that fault conditions control earthquake rupture and behavior. There are many potential properties that may vary along the subduction margin that could cause fault zone variability, including plate age, temperature, and/or geometry, convergence rate, state of hydration, overriding geology, subducting sediment packages, or subducting seamounts/ridges. The Nicaragua/Costa Rica segment of the Middle America subduction zone is highly variable along strike and down dip. We use this margin to examine how these variable conditions affect earthquake behavior by determining local ratios of compressional to shear wave velocities (Vp/Vs) and detailed seismic velocity structure. Vp/Vs is one of the best tools available to reliably define fault conditions because it is directly related to the Poisson's ratio of the fault material, and it is sensitive to the presence of fluids and changing permeability. Thus with well-resolved near source Vp/Vs measurements we can infer composition and/or high fluid pressures. Here, we use a technique developed by Lin and Shearer (2007) to determine local Vp/Vs in small areas (~2 x 2 x 2 km) with high seismicity. Within the seismogenic zone, we find the margin to be highly variable along strike in Vp/Vs and seismic velocity. These changes correlate to documented variability in incoming plate properties. Increased Vp/Vs is associated with intraplate earthquakes along Nicaragua and northern Costa Rica. We compare our results with other geophysical studies including new high-resolution images of seismic velocity structure, an extensive catalog of high quality relocated events, apparent stress calculations, coupling, and SSE/NVT occurrence. A better understanding of the connection between fault properties and earthquake behavior gives insight into the role of fluids in seismogenesis, the spectrum of earthquake rupture, and possible hazard at subduction zones.

  9. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  10. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  11. "The Earth Under my Shoes", a Poster Where Research and Outreach Merge

    NASA Astrophysics Data System (ADS)

    Castro-Artola, O. A.; Pérez-Campos, X.

    2007-05-01

    The MesoAmerican Subduction Experiment is a cooperative research project that will help a lot of people to know about the behavior of the subduction of Cocos plate beneath North America, especially in rural communities where its 100 seismic stations are located. MASE is not only focused in its research results, it is also concerned about outreach to the community. To achieve this, MASE conducts an information program on the experiment and seismology, especially targetted to children, to educate them about seismic prevention. MASE field operations in Guerrero, Morelos, Distrito Federal, Estado de México, Hidalgo and Veracruz are ending this year, and our last outreach activity is providing MASE host sites with a poster informing about the experiment and its results. This poster will include pictures about the instruments, a collection of key seismograms, figures of the final seismic model obtained by the MASE research group, showing our enhanced knowledge of the interior of the Earth under each particular site, and a reminder that Mexico is a seismic country and they should be always prepared.

  12. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S-P times in a manner similar to double-difference tomography. Obtaining a reliable Vp/Vs model of the subduction zone is more helpful for understanding its mechanical and petrologic properties. Our applications of the original version of double-difference tomography to several subduction zones beneath northern Honshu, Japan, the Wellington region, New Zealand, and Alaska, United States, have shown evident velocity variations within and around the subducting slab, which likely is evidence of dehydration reactions of various hydrous minerals that are hypothesized to be responsible for intermediate depth earthquakes. We will show the new velocity models for these subduction zones by applying our advanced tomographic methods.

  13. Seismic probing of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (<45°) at depths <100 km, to become much steeper at depths >100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  14. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Yun; Yuan, Xiaohui; Schurr, Bernd; Mechie, James; Oimahmadov, Ilhomjon; Fu, Bihong

    2018-01-01

    The Pamir has experienced more intense deformation and shortening than Tibet, although it has a similar history of terrane accretion. Subduction as a primary way to accommodate lithospheric shortening beneath the Pamir has induced the intermediate-depth seismicity, which is rare in Tibet. Here we construct a 3D S-wave velocity model of the lithosphere beneath the Pamir by surface wave tomography using data of the TIPAGE (Tien Shan-Pamir Geodynamic program) and other seismic networks in the area. We imaged a large-scale low velocity anomaly in the crust at 20-50 km depth in the Pamir overlain by a high velocity anomaly at a depth shallower than 15 km. The high velocity anomalies colocate with exposed gneiss domes, which may imply a similar history of crustal deformation, partial melting and exhumation in the hinterland, as has occurred in the Himalaya/Tibet system. At mantle depths, where the intermediate-depth earthquakes are located, a low velocity zone is clearly observed extending to about 180 km and 150 km depth in the Hindu Kush and eastern Pamir, respectively. Moreover, the geometry of the low-velocity anomaly suggests that lower crustal material has been pulled down into the mantle by the subducting Asian and Indian lithospheric mantle beneath the Pamir and Hindu Kush, respectively. Metamorphic processes in the subducting lower crust may cause the intermediate-depth seismicity down to 150-180 km depth beneath the Pamir and Hindu Kush. We inverted focal mechanisms in the seismic zone for the stress field. Differences in the stress field between the upper and lower parts of the Indian slab imply that subduction and detachment of the Indian lithosphere might cause intense seismicity associated with the thermal shear instability in the deep Hindu Kush.

  15. Aftershock seismicity and Tectonic Setting of the 16 September 2015 Mw 8.3 Illapel earthquake

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-04-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the spatial pattern of coseismic rupture and the temporal and spatial pattern of local seismicity for aftershocks and foreshocks in relation to the tectonic setting in the earthquake area. Aftershock seismicity surrounds the rupture area in lateral and downdip direction. For the first 24 hours following the mainshock we observe aftershock migration to both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern earthquake boundary aftershocks cluster around individual subducted seamounts located on the prolongation of the downthrusting Juan Fernández Ridge indicating stress transfer from the main rupture area. In the northern part of the rupture area a deeper band of local seismicity is observed indicating an alternation of seismic to aseismic behavior of the plate interface in downdip direction. This aseismic region at ~30 km depth that is also observed before the Illapel 2015 earthquake is likely controlled by the intersection of the continental Moho with the subducting slab.

  16. Strength of plate coupling in the southern Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Lo, Chung-Liang; Wu, Wen-Nan; Lin, Jing-Yi; Hsu, Shu-Kun; Huang, Yin-Sheng; Wang, Hsueh-Fen

    2018-01-01

    Understanding the strength of a plate coupling is critical for assessing potential seismic and tsunamic hazards in subduction zones. The interaction between an overriding plate and the associated subducting plate can be used to evaluate the strength of plate coupling by examining the mantle lithospheric buoyancy. Here, we calculate the mantle lithosphere buoyancy across the northern portion of the southern Ryukyu subduction zone based on gravity modeling with the constraints from a newly derived P-wave seismic velocity model. The result indicates that the strength of the plate coupling in the study area is relatively strong, which is consistent with previous observations in the southernmost Ryukyu subduction zone. Because few large earthquakes (Mw > 7) have occurred in the southern Ryukyu subduction zone, a large amount of energy is locked and accumulated by plate coupling, that could be released in the near future.

  17. Seismic Structure of Mantle Transition Zone beneath Northwest Pacific Subduction Zone and its Dynamic Implication

    NASA Astrophysics Data System (ADS)

    Li, J.; Guo, G.; WANG, X.; Chen, Q.

    2017-12-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we argue that the east-retreat trench motion of the subducting Pacific slab might play an important role in the observed broad depression of the 410-km discontinuity.

  18. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  19. The southern Tyrrhenian basin: is something changing in its kinematics?

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Piromallo, C.

    2003-04-01

    The Tyrrhenian Sea is unanimously considered an extensional basin opened through trench retreat and back-arc extension during subduction of the Calabrian slab. This subduction is presently active only beneath the southeasternmost part the Tyrrhenian Sea, as testified by seismicity, occuring from crustal depths down to 400 km, along a well defined Wadati-Benioff zone. If we analyze seismicity distribution and earthquakes focal mechanisms available for the southern part of the basin, the present-day situation looks however quite different from the one inferred from the reconstructions of the most recent evolution of the Tyrrhenian domain. Shallow seismicity with magnitude M_w >= 4.5 (for which computation of the moment tensor is certainly feasible), exhibits a clear compressional deformation, active at least since the last 25 years, and is located immediately off-shore all along the northern coast of Sicily --- also the last northern Sicily sequence, started on September 6, 2002, with a M_L=5.6 event, belongs to this activity. Thrust shallow events are clearly confined to the west of the Aeolian Archipelago, while to the east shallow seismicity is more sparse and rare, and concentrated onland. On the contrary, deep and intermediate seismicity is substantially distributed east of the Aeolian Islands, while almost absent west of them. Moreover, historical seismicity reports strong earthquakes related to extensional faults all along the Calabrian Arc, as in the rest of the Apenninic chain. As a sharp boundary to this transition in seismicity characteristics we therefore identify the location of Aeolian volcanic islands. It is well known that this subduction-related island arc grew over pre-existing tectonic features, coeval and related to the opening of the Tyrrhenian basin itself, through which magmatic material found a way to rise and build up the archipelago. The most relevant of these structures is certainly the Tindari-Giardini fault system which, moving southward from the Aeolian Islands, cross-cuts the Patti Gulf, the Etna volcano and joins with the Malta Escarpment. We discuss here seismological data for the region surrounding this important tectonic feature, together with volcanological and tectonic evidences and new results from seismic tomography, to obtain a sketch of the present-day kinematics and to face an interpretation of dynamics. We propose that, after a long period of extension dominating the evolution of the Tyrrhenian basin, at present something is changing, starting from its southwestern boundary. Slab retreat is likely still occurring, confined to the east of the major tectonic discontinuity, the transcurrent Tindari-Giardini-Etna-Malta Escarpment lineament, where a narrow stripe of oceanic lithosphere is still present in the foreland. Contrarily, to the west of this structure, where oceanic lithosphere is totally consumed and the thick, buoyant African shelf prevents further subduction of continental lithosphere, the retreat process has come to an end and large-scale Africa-Europe plate convergence has probably regained over the internal dynamics of the system.

  20. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    PubMed

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  1. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels. Artemieva, I.M., Thybo, H., and Shulgin, A., 2015. Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2015.06.010

  2. A Seismic Source Model for Central Europe and Italy

    NASA Astrophysics Data System (ADS)

    Nyst, M.; Williams, C.; Onur, T.

    2006-12-01

    We present a seismic source model for Central Europe (Belgium, Germany, Switzerland, and Austria) and Italy, as part of an overall seismic risk and loss modeling project for this region. A separate presentation at this conference discusses the probabilistic seismic hazard and risk assessment (Williams et al., 2006). Where available we adopt regional consensus models and adjusts these to fit our format, otherwise we develop our own model. Our seismic source model covers the whole region under consideration and consists of the following components: 1. A subduction zone environment in Calabria, SE Italy, with interface events between the Eurasian and African plates and intraslab events within the subducting slab. The subduction zone interface is parameterized as a set of dipping area sources that follow the geometry of the surface of the subducting plate, whereas intraslab events are modeled as plane sources at depth; 2. The main normal faults in the upper crust along the Apennines mountain range, in Calabria and Central Italy. Dipping faults and (sub-) vertical faults are parameterized as dipping plane and line sources, respectively; 3. The Upper and Lower Rhine Graben regime that runs from northern Italy into eastern Belgium, parameterized as a combination of dipping plane and line sources, and finally 4. Background seismicity, parameterized as area sources. The fault model is based on slip rates using characteristic recurrence. The modeling of background and subduction zone seismicity is based on a compilation of several national and regional historic seismic catalogs using a Gutenberg-Richter recurrence model. Merging the catalogs encompasses the deletion of double, fake and very old events and the application of a declustering algorithm (Reasenberg, 2000). The resulting catalog contains a little over 6000 events, has an average b-value of -0.9, is complete for moment magnitudes 4.5 and larger, and is used to compute a gridded a-value model (smoothed historical seismicity) for the region. The logic tree weighs various completeness intervals and minimum magnitudes. Using a weighted scheme of European and global ground motion models together with a detailed site classification map for Europe based on Eurocode 8, we generate hazard maps for recurrence periods of 200, 475, 1000 and 2500 yrs.

  3. The Crustal Structure and Seismicity of Eastern Venezuela

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  4. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  5. Heterogeneous structure of the incoming plate in the Japan Trench

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Fujie, G.; Yamaguchi, A.; Kodaira, S.; Miura, S.

    2017-12-01

    We have conducted seismic surveys in around the Japan Trench subduction zone, northeastern Japan, to investigate the structural features of the incoming Pacific plate and the frontal prism. Thickness of the hemiplegic sediments on the deposited on the incoming Pacific plate shows the variation along trench axis between 200 and 600 ms two-way travel time (TWT). This is remarkably thinner than other subduction zones with megathrust earthquakes like Sumatra subduction zone. Off Miyagi, central part of the Japan Trench which is the main ruptured region of 2011 Tohoku earthquake, has 200 - 300 ms TWT of the incoming sediments thickness. Off Iwate, northern part of the Japan Trench, has thicker incoming sediments 500 ms TWT, and Off Fukushima, southern part of the Japan Trench, has 300 - 400 ms TWT. We found at least three areas with anomalously thin sediments; Area I: 38N 145N, Area II: 39.5N 144.5E, Area III: 39N 144.5N. At the Area I, located on the outer rise off Miyagi, the receiver function analysis using Ocean Bottom Seismograph data revealed the existence of PS conversion surfaces below the interpreted basement on the seismic sections. This implies that the interface between sediments and the igneous basement is located below the interpreted basement reflections. Previous studies suggested the existence of the petit spots in this Area I. Area II shows apparently very thin sediments near the trench axis on seismic profiles, where the petit spot volcanism was observed. Shallow sediment sampling conducted in this area indicates no major surface erosion. These observations suggest that the petit spot volcanism, like sill intrusion, masked the original deeper basement reflections and caused the apparent thin sediments on seismic profiles. Area III also has thin sediments and rough basement topography, which has possibly been caused by another petit spot activity. Petit spot area with apparent very thin sediments in the trench axis (Area II) is located next to the northern edge of the large slip zone of the 2011 Tohoku earthquake. The volcanic activities like petit spots on the incoming plate introduce heterogeneous input into the subduction zone, which could be important factors to control the megathrust seismo- and tsunamigenesis in the subduction zone.

  6. Tomography and Dynamics of Western-Pacific Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-01-01

    We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.

  7. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Nakajima, Junichi

    2017-12-01

    We review studies of intermediate-depth seismicity and seismic imaging of the interior of subducting slabs in relation to slab metamorphism and their implications for the genesis of intermediate-depth earthquakes. Intermediate-depth events form a double seismic zone in the depth range of c. 40-180 km, which occur only at locations where hydrous minerals are present, and are particularly concentrated along dehydration reaction boundaries. Recent studies have revealed detailed spatial distributions of these events and a close relationship with slab metamorphism. Pressure-temperature paths of the crust for cold slabs encounter facies boundaries with large H2O production rates and positive total volume change, which are expected to cause highly active seismicity near the facies boundaries. A belt of upper-plane seismicity in the crust nearly parallel to 80-90 km depth contours of the slab surface has been detected in the cold Pacific slab beneath eastern Japan, and is probably caused by slab crust dehydration with a large H2O production rate. A seismic low-velocity layer in the slab crust persists down to the depth of this upper-plane seismic belt, which provides evidence for phase transformation of dehydration at this depth. Similar low-velocity subducting crust closely related with intraslab seismicity has been detected in several other subduction zones. Seismic tomography studies in NE Japan and northern Chile also revealed the presence of a P-wave low-velocity layer along the lower plane of a double seismic zone. However, in contrast to predictions based on the serpentinized mantle, S-wave velocity along this layer is not low. Seismic anisotropy and pore aspect ratio may play a role in generating this unique structure. Although further validation is required, observations of these distinct low P-wave velocities along the lower seismic plane suggest the presence of hydrated rocks or fluids within that layer. These observations support the hypothesis that dehydration-derived H2O causes intermediate-depth intraslab earthquakes. However, it is possible that dual mechanisms generate these earthquakes; the initiation of earthquake rupture may be caused by local excess pore pressure from H2O, and subsequent ruptures may propagate through thermal shear instability. In either case, slab-derived H2O plays an important role in generating intermediate-depth events.

  8. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Nugraha, Andri Dian

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatranmore » fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.« less

  10. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  11. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Christensen, D.H.; Brocher, T.M.; Hansen, R.; Ruppert, N.A.; Haeussler, Peter J.; Abers, G.A.

    2006-01-01

    In southern and central Alaska the subduction and active volcanism of the Aleutian subduction zone give way to a broad plate boundary zone with mountain building and strike-slip faulting, where the Yakutat terrane joins the subducting Pacific plate. The interplay of these tectonic elements can be best understood by considering the entire region in three dimensions. We image three-dimensional seismic velocity using abundant local earthquakes, supplemented by active source data. Crustal low-velocity correlates with basins. The Denali fault zone is a dominant feature with a change in crustal thickness across the fault. A relatively high-velocity subducted slab and a low-velocity mantle wedge are observed, and high Vp/Vs beneath the active volcanic systems, which indicates focusing of partial melt. North of Cook Inlet, the subducted Yakutat slab is characterized by a thick low-velocity, high-Vp/Vs, crust. High-velocity material above the Yakutat slab may represent a residual older slab, which inhibits vertical flow of Yakutat subduction fluids. Alternate lateral flow allows Yakutat subduction fluids to contribute to Cook Inlet volcanism and the Wrangell volcanic field. The apparent northeast edge of the subducted Yakutat slab is southwest of the Wrangell volcanics, which have adakitic composition consistent with melting of this Yakutat slab edge. In the mantle, the Yakutat slab is subducting with the Pacific plate, while at shallower depths the Yakutat slab overthrusts the shallow Pacific plate along the Transition fault. This region of crustal doubling within the shallow slab is associated with extremely strong plate coupling and the primary asperity of the Mw 9.2 great 1964 earthquake. Copyright 2006 by the American Geophysical Union.

  12. Tsunami Size Distributions at Far-Field Locations from Aggregated Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2015-12-01

    The distribution of tsunami amplitudes at far-field tide gauge stations is explained by aggregating the probability of tsunamis derived from individual subduction zones and scaled by their seismic moment. The observed tsunami amplitude distributions of both continental (e.g., San Francisco) and island (e.g., Hilo) stations distant from subduction zones are examined. Although the observed probability distributions nominally follow a Pareto (power-law) distribution, there are significant deviations. Some stations exhibit varying degrees of tapering of the distribution at high amplitudes and, in the case of the Hilo station, there is a prominent break in slope on log-log probability plots. There are also differences in the slopes of the observed distributions among stations that can be significant. To explain these differences we first estimate seismic moment distributions of observed earthquakes for major subduction zones. Second, regression models are developed that relate the tsunami amplitude at a station to seismic moment at a subduction zone, correcting for epicentral distance. The seismic moment distribution is then transformed to a site-specific tsunami amplitude distribution using the regression model. Finally, a mixture distribution is developed, aggregating the transformed tsunami distributions from all relevant subduction zones. This mixture distribution is compared to the observed distribution to assess the performance of the method described above. This method allows us to estimate the largest tsunami that can be expected in a given time period at a station.

  13. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Lim, H.; Kim, Y.; Clayton, R. W.; Thurber, C. H.

    2016-12-01

    We define subducting plate geometries in the Nazca subduction zone by (re)locating intra-slab earthquakes in southern Peru (2-18°S) and taking previously published converted phase analysis results, to clarify the slab geometry and inferred relationships to the seismicity. We also provide both P- and S-wave velocities of the subducting Nazca Plate and mantle wedge portions close to the slab using double-difference tomography (Zhang and Thurber, 2003) to understand upper plate volcanism and subduction process. A total of 492 regional earthquakes from August 2008 to February 2013 recorded from the dense seismic array (PeruSE, 2013) are selected for the relocation and tomography. The relocated seismicity shows a smooth contortion in the slab-dip transition zone for 400 km between the shallow (25°)-to-flat dipping interface in the north and 40°-dipping interface in the south. We find a significant slab-dip difference (up to 10°) between our results and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km). Robust features in both P- and S-wave tomography inversions are dipping low-velocity slabs down to 100 km transitioning to higher-velocities at 100-140 km in both flat slab and dipping slab regions. Differences in the velocities of the mantle wedge between the two regions may indicate different hydration states in the wedge.

  14. The Detection of Very Low Frequency Earthquake using Broadband Seismic Array Data in South-Western Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamanaka, Y.; Kikuchi, M.

    2002-12-01

    The existences of variety of low-frequency seismic sources are obvious by the dense and equalized equipment_fs seismic network. Kikuchi(2000) and Kumagai et.al. (2001) analyzed about 50sec period ground motion excited by the volcanic activities Miyake-jima, Izu Islands. JMA is listing the low frequency earthquakes routinely in their hypocenter determination. Obara (2002) detected the low frequency, 2-4 Hz, tremor that occurred along subducting Philippine Sea plate by envelope analysis of high dense and short period seismic network (Hi-net). The monitoring of continuos long period waveform show us the existence of many unknown sources. Recently, the broadband seismic network of Japan (F-net, previous name is FREESIA) is developed and extends to linear array about 3,000 km. We reviewed the long period seismic data and earthquake catalogues. Many candidates, which are excited by unknown sources, are picked up manually. The candidates are reconfirmed in detail by the original seismograms and their rough frequency characteristics are evaluated. Most events have the very low frequency seismograms that is dominated period of 20 _E30 sec and smaller amplitude than ground noise level in shorter period range. We developed the hypocenter determination technique applied the grid search method. Moreover for the major events moment tensor inversion was performed. The most source locates at subducting plate and their depth is greater than 30km. However the location don_ft overlap the low frequency tremor source region. Major event_fs moment magnitude is 4 or greater and estimated source time is around 20 sec. We concluded that low frequency seismic event series exist in wide period range in subduction area. The very low frequency earthquakes occurred along Nankai and Ryukyu trough at southwestern Japan. We are planing to survey the very low frequency event systematically in wider western Pacific region.

  15. Seismicity of the Earth 1900-2012 Java and vicinity

    USGS Publications Warehouse

    Jones, Eric S.; Hayes, Gavin P.; Bernardino, Melissa; Dannemann, Fransiska K.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio

    2014-01-01

    The Sunda convergent margin extends for 5,600 km from the Bay of Bengal and the Andaman Sea, both located northwest of the map area, towards the island of Sumba in the southeast, and then continues eastward as the Banda arc system. This tectonically active margin is a result of the India and Australia plates converging with and subducting beneath the Sunda plate at a rate of approximately 50 to 70 mm/yr. The main physiographic feature associated with this convergent margin is the Sunda-Java Trench, which stretches for 3,000 km parallel to the Java and Sumatra land masses and terminates at 120° E. The convergence of the Indo-Australia and Sunda plates produces two active volcanic arcs: Sunda, which extends from 105 to 122° E and Banda, which extends from 122 to 128° E. The Sunda arc results solely from relatively simple oceanic plate subduction, while the Banda arc represents the transition from oceanic subduction to continental collision, where a complex, broad deforming zone is found. Based on modern activity, the Banda arc can be divided into three distinct zones: an inactive section, the Wetar Zone, bound by two active segments, the Flores Zone in the west and the Damar Zone in the east. The lack of volcanism in the Wetar Zone is attributed to the collision of Australia with the Sunda plate. The absence of gap in volcanic activity is underlain by a gap in intermediate depth seismicity, which is in contrast to nearly continuous, deep seismicity below all three sections of the arc. The Flores Zone is characterized by down-dip compression in the subducted slab at intermediate depths and late Quaternary uplift of the forearc. These unusual features, along with GPS data interpretations indicate that the Flores Zone marks the transition between subduction of oceanic crust in the west and the collision of continental crust in the east. The Java section of the Sunda arc is considered relatively aseismic historically when compared to the highly seismically active Sumatra section, despite both areas being located along the same active subduction margin. Shallow (0–20 km) events have occurred historically in the overlying Sunda plate, causing damage to local and regional communities. A recent example was the May 26, 2006 M6.3 left-lateral strike-slip event that occurred at a depth of 10 km in central Java, and caused over 5,700 fatalities. Intermediate depth (70–300 km) earthquakes frequently occur beneath Java as a result of intraplate faulting within the Australia slab. Deep (300–650 km) earthquakes occur beneath the Java Sea and the back-arc region to the north of Java. Similar to other intermediate depth events, these earthquakes are also associated with intraslab faulting. However, this subduction zone exhibits a gap in seismicity from 250 to 400 km, interpreted as the transition between extensional and compressional slab stresses. Historical examples of large intraplate events include: the 1903 M8.1 event, 1921 M7.5 event, 1977 M8.3 event, and August 2007 M7.5 event. Large thrust earthquakes close to the Java trench are typically interplate faulting events along the slab interface between the Australia and Sunda plates. These earthquakes also generally have high tsunamigenic potential due to their shallow hypocentral depths. In some cases, these events have demonstrated slow moment-release and have been defined as ‘tsunami’ earthquakes, where rupture is large in the weak crustal layers very close to the seafloor. These events are categorized by tsunamis that are significantly larger than predicted by the earthquake’s magnitude. The most notable tsunami earthquakes in the Java region occurred on June 2, 1994 (M7.8) and July 17, 2006 (M7.7). The 1994 event produced a tsunami with wave runup heights of 13 m, killing over 200 people. The 2006 event produced a tsunami of up to 15 m, and killed 730 people. Although both of these tsunami earthquakes were characterized by rupture along thrust faults, they were followed by an abundance of normal faulting aftershocks. These aftershocks are interpreted to result from extension within the subducting Australia plate, whereas the mainshocks represented interplate faulting between the Australia and Sunda plates.

  16. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  17. Dynamic triggering of low magnitude earthquakes in the Middle American Subduction Zone

    NASA Astrophysics Data System (ADS)

    Escudero, C. R.; Velasco, A. A.

    2010-12-01

    We analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. We use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw >7) earthquakes, we first identify local earthquakes that occurred before and after the mainshocks. We then group the local earthquakes within a cluster radius between 75 to 200 km. We obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as local cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Due to lateral variations of the dip along the subducted oceanic plate, we divide the Mexican subduction zone in four segments. We then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes. We identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. We find no depend of seismicity changes due to focal mainshock mechanism.

  18. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction

    NASA Astrophysics Data System (ADS)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu

    2018-01-01

    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  19. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2017-12-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use controlled-source seismic data collected in 2012 as part of the Ridge-to-Trench seismic experiment to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. We use wide-angle OBS seismic data along a 400-km-long margin-parallel profile 10-15 km seaward from the Cascadia deformation front to obtain P-wave tomography models of the sediments, crust, and uppermost mantle, and effective medium theory combined with a stochastic description of crustal properties (e.g., temperature, alteration assemblages, porosity, pore aspect ratio), to analyze the pore fluid and structurally bound water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the Cascadia margin. Our results demonstrate that the Juan de Fuca lower crust and mantle are much drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Previously documented, variable but limited bend faulting along the margin, which correlates with degree of plate locking, limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. Our results have important implications for a number of subduction processes at Cascadia, such as: (1) the dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust; (2) decompression rather than hydrous melting must dominate arc magmatism in northern-central Cascadia; and (3) dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  20. Mega-thrust and Intra-slab Earthquakes Beneath Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sato, H.; Koketsu, K.; Hagiwara, H.; Wu, F.; Okaya, D.; Iwasaki, T.; Kasahara, K.

    2006-12-01

    In central Japan the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. The vertical proximity of this down going lithospheric plate is of concern because the greater Tokyo urban region has a population of 42 million and is the center of approximately 40% of the nation's economic activities. A M7+ earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The M7+ earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In 2002, a consortium of universities and government agencies in Japan started the Special Project for Earthquake Disaster Mitigation in Urban Areas, a project to improve information needed for seismic hazards analyses of the largest urban centers. Assessment in Kanto of the seismic hazard produced by the Philippine Sea Plate (PSP) mega-thrust earthquakes requires identification of all significant faults and possible earthquake scenarios and rupture behavior, regional characterizations of PSP geometry and the overlying Honshu arc physical properties (e.g., seismic wave velocities, densities, attenuation), and local near-surface seism ic site effects. Our study addresses (1) improved regional characterization of the PSP geometry based on new deep seismic reflection profiles (Sato etal.,2005), reprocessed off-shore profiles (Kimura et al.,2005), and a dense seismic array in the Boso peninsular (Hagiwara et al., 2006) and (2) identification of asperities of the mega-thrust at the top of the PSP. We qualitatively examine the relationship between seismic reflections and asperities inferred by reflection physical properties. We also discuss the relation between deformation of PSP and intra-slab M7+ earthquakes: the PSP is subducting beneath the Hoshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We present a high resolution tomographic image to show a low velocity zone which suggests a possible internal failure of the slab; a source region of the M7+ intra-slab earthquake. Our study contributes a new assessment of the seismic hazard in the Tokyo metropolitan area. tokyo.ac.jp/daidai/index-J.html

  1. The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Almqvist, Bjarne S. G.

    2014-12-01

    The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800-1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic anisotropy.

  2. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow slip events.

  3. Mantle wedge anisotropy beneath the Western Alps: insights from Receiver Function analysis

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Salimbeni, Simone; Pondrelli, Silvia; Malusa', Marco; Zhao, Liang; Eva, Elena; Solarino, Stefano; Paul, Anne; Guillot, Stéphane; Schwartz, Stéphane; Dumont, Thierry; Aubert, Coralie; Wang, Qingchen; Zhu, Rixiang

    2017-04-01

    Orogens and subductions zones are the locus where crustal materials are recycled into the upper mantle. Such rocks undergo to several metamorphic reactions during which their seismic properties vary due to the changes in P-T conditions. Metamorphic reactions can imply: (a) the formation of schist-like materials, and (b) a pronounced water flux from the subducted crust. Both these processes should generate highly anisotropic volumes at upper mantle depths. Thus, unveiling the presence of seismic anisotropy at such depth level can put constraints on the metamorphic reactions and the P-T conditions of the subducted materials. The Alpine orogen is composed of three main regions where different geodynamic processes shaped a highly heterogeneous mountain chain. Beneath the Alps, a high velocity body has been imaged sinking in the upper mantle, indicating the presence of a relict of subduction. Such subduction process has been probably terminated with the closure of the Piemont-Liguria Ocean, but evidence of continental subduction has been found beneath the Western Alps. Seismic anisotropy is likely to develop both in the subducted materials and in the mantle wedge, where serpentinized materials could be found due to the low T conditions. We analysed P receiver function (RF) from 46 seismic stations deployed along a linear array crossing the Western Alps, where previous studies revealed the presence of the subducted European lower crust to 80 km depth. RF is a widely used tool for reconstructing subsurface seismic structures, based on the recognition of P-to-S converted phases in teleseismic P-wave coda. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results show the presence of a Ps phase on the k=0 harmonics along the western portion of the profile, with increasing time-delay toward East. This phase is interpreted as the European Moho Ps, confirming the geometry of the European Moho beneath the Western Alps. Beneath the internal portion of the orogen, the k=1 harmonics display energetic pulses between 3-7 s, indicating the development of anisotropy within a broad volume of rocks, at lower crustal and upper mantle depths. The presence of anisotropic materials is jointly interpreted with the depicted geometry of the main seismic discontinuities and the location of the intermediate-depth seismicity recorded in the region.

  4. Subduction structure beneath the eastern part of the Kii Peninsula, southwestern Japan, revealed by dense seismic array observation

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Tsumura, N.; Iwasaki, T.

    2016-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. In recent years, various slip motions with a different time scale, including episodic tremors and very low-frequency earthquakes have been recognized at or near the updip and downdip limits of seismogenic zone [e.g., Obara, 2002; Ito and Obara, 2006]. Revealing structural factors that control the fault slip behavior is important to understand the earthquake rupture dynamics. In 2006, active-source seismic experiment was conducted to obtain the subduction structure beneath the eastern part of the Kii Peninsula [Iwasaki et al., 2008]. Iwasaki et al. (2008) provided the geometry of the subducting PHS and the overlying crustal structure. However, little is known about the deeper part of the plate boundary, especially Vp/Vs structure in and around the source region of the tremor. Previous studies indicate the fluid pressure on a plate interface is one of the key factors to understand the fault slip process [e.g., Saffer and Tobin, 2011]. Seismic velocity variation provides important information on the fluid-related heterogeneous structure. Passive seismic data is useful to obtain a deep image including the S-wave velocity. Therefore, we conducted passive seismic experiment in the eastern part of the Kii Peninsula. Ninety 3-component portable seismographs were installed on a 90-km-long line nearly parallel to the direction of the subduction of the PHS. Waveforms were continuously recorded during a six-month period from May, 2015. Seismic data from 116 permanent stations around the survey line were also incorporated into our analysis to obtain a high-resolution velocity model. Arrival times of 356 local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures. Velocity structures are resolved down to 50 km depth. Clustered tremors are located in and around the low Vp and high Vp/Vs zone. Reported strong reflector interpreted to be the top of the PHS [Iwasaki et al., 2008] well corresponds to the top of the low Vp and high Vp/Vs zone. The low Vp and high Vp/Vs zone generally suggests the existence of fluid (e.g., Zhao et al., 1996). These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the PHS.

  5. 1D minimum p-velocity model of the Kamchatka subducting zone

    NASA Astrophysics Data System (ADS)

    Nizkous, I.; Sanina, I.; Gontovaya, L.

    2003-04-01

    Kamchatka peninsula is a very active seismic zone. The old Pacific plate subducts below the North American Plate and this causes high seismic and volcanic activity in this region. The extensive Kamchatka Regional Seismic Network (KRSN) has operated since 1962 and registers around 600 earthquakes per year. This provides a large number of high quality seismic data. In this work we are investigate P-velocity structure of the Kamchatka peninsula and subducting zone in Western Pacific. This region is well studied, but we would like to try a little bit different approach. We would like to present 1D minimum P-velocity model of the Kamchatka region created using VELEST program [3]. Data set based on 84 well-located earthquakes (IP, EP, IS and ES phases) recorded by KRSN in 1998 and in 1999. As the initial model Kuzin's model have been taken [1]. But in our calculations we split model into 17 layers instead of initial 5. Maximal investigated depth is 120 km. Using VELEST simultaneous mode we solve coupled hypocenter-velocity model problem for local earthquakes. In this case it is very important to utilize well locatable events for the sake of minimizing a priori added uncertainties. And this is major point of the approach. We apply this idea and the result is looks like the result obtained by A. Gorbatov et. al. [2] Using this 1D minimum model we redefine earthquakes hypocenter parameters and recalculate p-wave travel time residuals. This work is the first step in 3D modeling of the Kamchatka subducting zone. References: 1. I.P Kuzin. 'Focal zone and upper mantle structure of the East Kamchatka region', Moscow, Nauka, 1974. 2. A. Gorbatov, J. Domingues, G.Suarez, V.kostoglodov, D.Zhao, and E. Gordeev, 'Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula', Geophys. J. Int, 1999, 137, 269-279. 3. Kissling, E., W.L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer: Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19635-19646, 1994.

  6. Exploring Interactions Between Subduction Zone Earthquakes and Volcanic Activity in the South Central Alaskan Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lanagan, K. M.; Richardson, E.

    2012-12-01

    Although great earthquakes such as the recent moment-magnitude (M) 9 Tohoku-Oki earthquake have been shown to trigger remote seismicity in volcanoes, the extent to which subduction zone earthquakes can trigger shallow seismic swarms at volcanoes is largely unexplored. Unknowns in this relationship include the upper limit of distance, the lower limit of magnitude, the upper time limit between events, and the effects of rupture directivity. We searched the Advanced National Seismic System earthquake catalog from 1989 - 2011 for correlations in space and time between M > 5.0 earthquakes in the south central Alaskan subduction zone (between 58.5°N and 62.5°N, and 150.7°W and 154.7°W) and volcanic activity at Mt. Redoubt, Mt. Iliamna, and Mt. Spurr volcanoes. There are 48 earthquakes M > 5 in this catalog; five of these are M > 6. The depths of the 48 M>5 events range from 49km to 220km, and they are all between 100km and 350km of the three volcanoes. Preliminary analysis of our catalog shows that four of the five M > 6 earthquakes are followed by a volcanic earthquake swarm at either Redoubt or Spurr within 100 days, and three of them are followed by a volcanic earthquake swarm within a month. None of these events correlated in space and time with swarms at Mt. Iliamna. We are also searching for swarms and moderate earthquakes occurring in time windows far removed from each other. The likeliest case of remotely triggered seismicity in our search area to date occurred on January 24 2009, when a magnitude 5.8 earthquake beneath the Kenai Peninsula at 59.4°N, 152.8°W, and 95km depth was immediately followed by an increase of volcanic activity at Mt. Redoubt approximately 153km away. The first swarm began on Jan 25 2009. On Jan 30 2009, volcanologists at the Alaskan Volcano observatory determined the increased volcanic seismicity was indicative of an impending eruption. Mt. Redoubt erupted on March 15 2009. Proposed mechanisms for triggering of volcanoes by earthquakes include dynamic and static stress changes in the magmatic system, which could affect pressure in the magma chamber and overpressure, or affect phenocryst settling and bubble growth inside the chamber. However, these models have generally not been connected to specific events; expanding our catalog will help to refine these models to describe the mechanics of this relationship.

  7. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Lim, H.; Kim, Y.; Clayton, R. W.

    2015-12-01

    We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).

  8. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms of deviations from the mechanical equilibrium.

  9. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  10. Identifying tectonic parameters that affect tsunamigenesis

    NASA Astrophysics Data System (ADS)

    van Zelst, I.; Brizzi, S.; Heuret, A.; Funiciello, F.; van Dinther, Y.

    2016-12-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact thatsome regions produce more tsunamis than others indicates that tectonics could influencetsunamigenesis. Here, we complement a global earthquake database that contains geometrical,mechanical, and seismicity parameters of subduction zones with tsunami data. We statisticallyanalyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson'sproduct-moment correlation coefficients reveal high positive correlations of 0.65 between,amongst others, the maximum water height of tsunamis and the seismic coupling in a subductionzone. However, these correlations are mainly caused by outliers. The Spearman's rank correlationcoefficient results in statistically significant correlations of 0.60 between the number of tsunamisin a subduction zone and subduction velocity (positive correlation) and the sediment thickness atthe trench (negative correlation). Interestingly, there is a positive correlation between the latter andtsunami magnitude. These bivariate statistical methods are extended to a binary decision tree(BDT) and multivariate analysis. Using the BDT, the tectonic parameters that distinguish betweensubduction zones with tsunamigenic and non-tsunamigenic earthquakes are identified. To assessphysical causality of the tectonic parameters with regard to tsunamigenesis, we complement ouranalysis by a numerical study of the most promising parameters using a geodynamic seismic cyclemodel. We show that the inclusion of sediments on the subducting plate results in an increase insplay fault activity, which could lead to larger vertical seafloor displacements due to their steeperdips and hence a larger tsunamigenic potential. We also show that the splay fault is the preferredrupture path for a strongly velocity strengthening friction regime in the shallow part of thesubduction zone, which again increases the tsunamigenic potential.

  11. Anatomy of the western Java plate interface from depth-migrated seismic images

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-11-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.

  12. Probabilistic Seismic Hazard Maps for Ecuador

    NASA Astrophysics Data System (ADS)

    Mariniere, J.; Beauval, C.; Yepes, H. A.; Laurence, A.; Nocquet, J. M.; Alvarado, A. P.; Baize, S.; Aguilar, J.; Singaucho, J. C.; Jomard, H.

    2017-12-01

    A probabilistic seismic hazard study is led for Ecuador, a country facing a high seismic hazard, both from megathrust subduction earthquakes and shallow crustal moderate to large earthquakes. Building on the knowledge produced in the last years in historical seismicity, earthquake catalogs, active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence models are developed. An area source model is first proposed, based on the seismogenic crustal and inslab sources defined in Yepes et al. (2016). A slightly different segmentation is proposed for the subduction interface, with respect to Yepes et al. (2016). Three earthquake catalogs are used to account for the numerous uncertainties in the modeling of frequency-magnitude distributions. The hazard maps obtained highlight several source zones enclosing fault systems that exhibit low seismic activity, not representative of the geological and/or geodetical slip rates. Consequently, a fault model is derived, including faults with an earthquake recurrence model inferred from geological and/or geodetical slip rate estimates. The geodetical slip rates on the set of simplified faults are estimated from a GPS horizontal velocity field (Nocquet et al. 2014). Assumptions on the aseismic component of the deformation are required. Combining these alternative earthquake models in a logic tree, and using a set of selected ground-motion prediction equations adapted to Ecuador's different tectonic contexts, a mean hazard map is obtained. Hazard maps corresponding to the percentiles 16 and 84% are also derived, highlighting the zones where uncertainties on the hazard are highest.

  13. Anatomy of the western Java plate interface from depth-migrated seismic images

    USGS Publications Warehouse

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  14. Geologic map of Mount Gareloi, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2012-01-01

    As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.

  15. Nature and Role of Subducting Sediments on the Megathrust and Forearc Evolution in the 2004 Great Sumatra Earthquake Rupture Zone: Results from Full Waveform Inversion of Long Offset Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Qin, Y.

    2015-12-01

    On active accretionary margins, the nature of incoming sediments defines the locking mechanism on the megathrust, and the development and evolution of the accretionary wedge. Drilling is the most direct method to characterise the nature of these sediments, but the drilling is very expensive, and provide information at only a few locations. In north Sumatra, an IODP drilling is programmed to take place in July-August 2016. We have performed seismic full waveform inversion of 12 km long offset seismic reflection data acquired by WesternGeco in 2006 over a 35 km zone near the subduction front in the 2004 earthquake rupture zone area that provide detailed quantitative information on the characteristics of the incoming sediments. We first downward continue the surface streamer data to the seafloor, which removes the effect of deep water (~5 km) and brings out the refraction arrivals as the first arrivals. We carry out travel time tomography, and then performed full waveform inversion of seismic refraction data followed by the full waveform inversion of reflection data providing detailed (10-20 m) velocity structure. The sediments in this area are 3-5 km thick where the P-wave velocity increases from 1.6 km/s near the seafloor to more than 4.5 km/s above the oceanic crust. The high velocity of sediments above the basement suggests that the sediments are highly compacted, strengthened the coupling near the subduction front, which might have been responsible for 2004 earthquake rupture propagation up to the subduction front, enhancing the tsunami. We also find several thin velocity layers within the sediments, which might be due to high pore-pressure fluid or free gas. These layers might be responsible for the formation of pseudo-decollement within the forearc sediments that acts as a conveyer belt between highly compacted subducting lower sediments and accreted sediments above. The presence of well intact sediments on the accretionary prism supports this interpretation. Our results provide first hand information about the sediments properties, which will be ground toothed by drilling.

  16. Shallow velocity structure of the Alaska Peninsula subduction zone and implications for controls on seismic behavior

    NASA Astrophysics Data System (ADS)

    Li, J.; Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike variations in the seismic behavior of subduction zone megathrust faults are thought to be strongly controlled by changes in the material properties along the plate boundary. Roughness and hydration of the incoming plate, fluid pressure and lithology in the subducting sediment channel are likely to control the distribution of shallower rupture. Here, we focus on the subduction zone offshore of the Alaska Peninsula. In 2011, the ALEUT program acquired deep penetration multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data across the apparently freely sliding Shumagin Gap, the locked Semidi segment that last ruptured in 1938 M8.2 earthquake, and the locked western Kodiak asperity, which ruptured in the 1964 M9.2 earthquake. Seismic reflection data from the ALEUT cruise reveal significant variability in the thickness of sediment on the incoming plate and entering the trench, and the roughness and degree of hydration of the incoming plate. Oceanic crust entering the trench in the Shumagin gap is rugged with extensive faults and only a thin layer of sediment (<0.5 km thick). Farther east in the Semidi segment, the subducting plate has a smoother surface with thicker sediments (~1 km thick) and less faulting/hydration. To better constrain the properties of the accretionary prism and shallow part of the plate boundary, we are undertaking travel time tomography using reflection/refraction phases in OBS and MCS data, and constraints on the interface geometry from MCS images to estimate the detailed shallow velocity structure, with particular focus on properties within the shallow subduction channel. We observe refractions and reflections in OBS data from the shallow part of the subduction zone in both the Shumagin Gap and Semidi segment, including reflections off the top and base of what appears to be a layer of subducting sediment, which can be used for this work. We plan to present initial models of the shallow part of the subduction zone from both segments and discuss comparisons between the two.

  17. Seismic Activity offshore Martinique and Dominique islands (Lesser Antilles subduction zone)

    NASA Astrophysics Data System (ADS)

    Ruiz Fernandez, Mario; Galve, Audrey; Monfret, Tony; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Gallart, Josep; Hello, Yann

    2010-05-01

    In the framework of the European project Thales was Right, two seismic surveys (Sismantilles II and Obsantilles) were carried out to better constrain the lithospheric structure of the Lesser Antilles subduction zone, its seismic activity and to evaluate the associated seismic hazards. Sismantilles II experiment was conducted in January, 2007 onboard R/V Atalante (IFREMER). A total of 90 OBS belonging to Géoazur, INSU-CNRS and IFM-Geomar were deployed on a regular grid, offshore Antigua, Guadeloupe, Dominique and Martinique islands. During the active part of the survey, more than 2500 km of multichannel seismic profiles were shot along the grid lines. Then the OBS remained on the seafloor continuously recording for the seismic activity for approximately 4 months. On April 2007 Obsantilles experiment, carried out onboard R/V Antea (IRD), was focused on the recovery of those OBS and the redeployment of 28 instruments (Géoazur OBS) off Martinique and Dominica Islands for 4 additional months of continuous recording of the seismicity. This work focuses on the analysis of the seismological data recorded in the southern sector of the study area, offshore Martinique and Dominique. During the two recording periods, extending from January to the end of August 2007, more than 3300 seismic events were detected in this area. Approximately 1100 earthquakes had enough quality to be correctly located. Station corrections, obtained from multichannel seismic profiles, were introduced to each OBS to take in to account the sedimentary cover and better constrain the hypocentral determinations. Results show events located at shallower depths in the northern sector of the array, close to the Tiburon Ridge, where the seismic activity is mainly located between 20 to 40 km depth. In the southern sector, offshore Martinique, hypocenters become deeper, ranging to 60 km depth and dipping to the west. Focal solutions have also been obtained using the P wave polarities of the best azimuthally constrained earthquakes (Gap smaller than 90°). Focal mechanisms also reveal some differences between the northern and southern sector of the array. Whereas in the southern sector most of the analysed events show purely reverse fault solutions, in the northern area events present strike slip and normal fault solutions and could be related to intraplate deformation.

  18. Seismic and aseismic slip on the ``uncoupled'' Tonga subduction megathrust

    NASA Astrophysics Data System (ADS)

    Beavan, R. J.; Wang, X.; Bevis, M. G.; Kautoke, R'

    2010-12-01

    The Tonga subduction zone has been a type example of a weakly coupled subduction interface since soon after the birth of plate tectonics. Yet in the September 2009 double earthquake, the northern Tonga subduction interface failed in a great Mw 8 earthquake that was probably dynamically triggered by a Mw 8 extensional intraplate earthquake in the outer trench slope region of the incoming Pacific Plate. There are some discrepancies between models of the September 2009 doublet derived from seismic data and those derived from geodetic and DART tsunami data, in particular about which fault plane failed in the intraplate earthquake. In this presentation we explore how well the geodetic and tsunami data can be fit using the alternative fault plane. We also present new GPS data that show the subduction interface is continuing to slip faster than its 1996-2005 “long-term” rate, and we speculate on what this means for the mechanisms by which interplate slip is accommodated at the Tonga subduction zone.

  19. The VoiLA ocean bottom seismic array: First insights into the intermediate depth seismicity distribution in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Rietbrock, A.; Harmon, N.; Goes, S. D. B.; Krueger, F.; Bie, L.; Collier, J.; Rychert, C.; Hicks, S. P.; Kendall, J. M.; Henstock, T.

    2017-12-01

    Subduction zones are the most important regions for the exchange of water between the Oceans and the solid Earth. Hydrated oceanic lithosphere is subducted into the deeper Earth and its bound water content is continuously released in a heterogeneous process as temperature and pressure rises with depth. As only small amounts of water can significantly alter the physical properties of materials at depth, water is believed to play a major role in the seismogenesis for both, the shallow megathrust responsible for large destructive earthquakes and the occurrence of Wadati-Benioff zone seismicity at intermediate depth. Up to now most of our observations have been made around the Circum-Pacific subduction were predominantly oceanic lithosphere generated at fast-spreading ridges is being subducted. Contrary, observations of dehydration processes occurring in subducting oceanic lithosphere generated at slow spreading ridges are limited. The Lesser Antilles subduction zone therefore provides the unique opportunity to study the linkage between seismicity and de-hydration reaction for subductiong lithosphere generated at a slow-spreading ridge. Between March 2016 and May 2017 34 Ocean Bottom Broadband Seismometers were deployed along the Lesser Antilles margin in the area 12°-18° N and 63.5°-59.5° W. The network consisted out of 24 DEPAS instruments with 120s Trillium compact sensors provided by the instrument pool of AWI (Germany) and 10 OBSIP instruments with Trillium 240s sensors provided by Scripps Institute of Oceanography (US). All instruments were recovered and only 2 OBSIP instruments did not collect any usable data. The remaining 32 instruments did record continuously all components and no clock timing issues were identified. Preliminary screening of the data shows a low noise level and numerous local/regional earthquakes with M<3 have been detected. We will present the recorded seismicity distribution and earthquake locations based on a refined 1D/2D velocity model.

  20. Slab seismicity in the Western Hellenic Subduction Zone: Constraints from tomography and double-difference relocation

    NASA Astrophysics Data System (ADS)

    Halpaap, Felix; Rondenay, Stéphane; Ottemöller, Lars

    2016-04-01

    The Western Hellenic subduction zone is characterized by a transition from oceanic to continental subduction. In the southern oceanic portion of the system, abundant seismicity reaches intermediate depths of 100-120 km, while the northern continental portion rarely exhibits deep earthquakes. Our study aims to investigate how this oceanic-continental transition affects fluid release and related seismicity along strike, by focusing on the distribution of intermediate depth earthquakes. To obtain a detailed image of the seismicity, we carry out a tomographic inversion for P- and S-velocities and double-difference earthquake relocation using a dataset of unprecedented spatial coverage in this area. Here we present results of these analyses in conjunction with high-resolution profiles from migrated receiver function images obtained from the MEDUSA experiment. We generate tomographic models by inverting data from 237 manually picked, well locatable events recorded at up to 130 stations. Stations from the permanent Greek network and the EGELADOS experiment supplement the 3-D coverage of the modeled domain, which covers a large part of mainland Greece and surrounding offshore areas. Corrections for the sphericity of the Earth and our update to the SIMULR16 package, which now allows S-inversion, help improve our previous models. Flexible gridding focusses the inversion on the domains of highest gradient around the slab, and we evaluate the resolution with checker board tests. We use the resulting velocity model to relocate earthquakes via the Double-Difference method, using a large dataset of differential traveltimes obtained by crosscorrelation of seismograms. Tens of earthquakes align along two planes forming a double seismic zone in the southern, oceanic portion of the subduction zone. With increasing subduction depth, the earthquakes appear closer to the center of the slab, outlining probable deserpentinization of the slab and concomitant eclogitization of dry crustal rocks. Against expectations, we relocate one robust deep event at ≈70 km depth in the northern, continental part of the subduction zone.

  1. Integrated Geophysical Characteristics of the 2015 Illapel, Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Yeck, W. L.; Nealy, J. L.; Hayes, G. P.; Barnhart, W. D.; Benz, H.; Furlong, K. P.

    2015-12-01

    On September 16th, 2015, an Mw 8.3 earthquake (USGS moment magnitude) ruptured offshore of central Chile, 50 km west of the city of Illapel and 200 km north of Santiago. The earthquake occurred just north of where the Juan Fernandez Ridge enters the subduction zone. In this study, we integrate multiple seismic and geodetic datasets, including multiple-event earthquake relocations; moment tensors of the Illapel mainshock, aftershocks, and prior regional seismicity; finite fault models (FFMs) of the mainshock rupture; subduction zone geometry; Coulomb stress transfer calculations; and co-seismic GPS offsets and InSAR images. These datasets allow us to (a) assess the context of the Illapel earthquake sequence with respect to historical seismicity in central Chile; (b) constrain the relationship between subduction geometry and the kinematic characteristics of the earthquake sequence; and (c) understand the distribution of aftershocks with respect to the rupture zone. Double source W-phase moment tensor analysis indicates the Illapel mainshock rupture began as a smaller Mw ~7.2 thrusting event before growing into a great-sized Mw 8.3 earthquake. Relocated aftershock seismicity is concentrated around the main region of slip, and few aftershocks occur on the megathrust shallower than ~15 km, despite the FFM indicating slip near the trench. This distribution is consistent with the aftershock behavior following the 2010 Maule and 2014 Iquique earthquakes: aftershocks primarily surround the rupture zones and are largely absent from regions of greatest slip. However, in contrast to the recent 2014 Iquique and 2010 Maule events, which ruptured in regions of the Chilean subduction zone that had not had large events in over a century, this earthquake occurred in a section of the subduction zone that hosted a large earthquake as recently as 1943, as well as earlier significant events in 1880 and 1822. At this section of the subduction zone, in addition to the impinging Juan Fernandez Ridge, the slab geometry changes from steeply dipping south of the Illapel earthquake to a nearly horizontal dip adjacent to the event. Combining these various observations provides insight into the links between regional tectonics and the timing and distribution of megathrust earthquakes at this segment of the central Chilean subduction zone.

  2. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Collier, Jenny S.; Verdon, James P.; Blundy, Jon; Baptie, Brian; Latchman, Joan L.; Massin, Frederic; Bouin, Marie-Paule

    2016-03-01

    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value `bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones.

  3. The northern Lesser Antilles oblique subduction zone: new insight about the upper plate deformation, 3D slab geometry and interplate coupling.

    NASA Astrophysics Data System (ADS)

    Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.

    2017-12-01

    In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that the slab deepening angle lower beneath the Virgin Islands segment than beneath the St Martin-Barbuda segment possibly generates a northward increasing interplate coupling. As a result, it possibly favors an increase in the seismic activity and the tectonic partitioning beneath the Virgin Islands margin contrary to the St Martin-Barbuda segment.

  4. Three-Dimensional Variation of the Slab Geometry Along Strike and Along Dip in the Cascadia Subduction

    NASA Astrophysics Data System (ADS)

    Gao, H.

    2017-12-01

    The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade arc, is imaged with full-wave propagation simulation and ambient noise tomography. To retrieve Rayleigh-wave Empirical Green's Functions between station pairs, we process the vertical component of continuous seismic data recorded between 2004 and 2015 by about 800 stations, including three offshore seismic networks (the Cascadia Initiative Amphibious Array, the Blanco Transform OBS experiment, and the Gorda Deformation Zone OBS experiment) and all available broadband inland stations. The spreading centers have anomalously low shear-wave velocity beneath the oceanic lithosphere. Around the Cobb axial seamount, we observe a low velocity anomaly underlying a relatively thin oceanic lithosphere, indicating its influence on the Juan de Fuca ridge. The tomographic imaging reveals great details of the seismic feature of the oceanic lithosphere prior to and after subduction, which varies significantly along strike and along dip. On average, the thickness of the oceanic lithosphere is about 30-45 km. The Juan de Fuca lithosphere appears to be relatively thin around the ridge, especially beneath the Cobb axial seamount, and then gradually thickens with increasing distance from the ridge. The thickness of the Gorda plate appears to be constant, which is probably due to the small size of the subduction system from formation to subduction. It is noteworthy that the oceanic plate is imaged relatively weaker beneath the trench compared to other parts of the plate. We suggest that in addition to the possible hydration of the oceanic mantle lithosphere, other mechanisms must be considered to explain the observed seismic feature around the trench. Further landward, very low velocity anomalies are observed above the plate interface along the Cascade forearc, indicative of subducted sediments.

  5. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.

    PubMed

    Jadamec, Margarete A; Billen, Magali I

    2010-05-20

    The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.

  6. Creating realistic models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data

    NASA Astrophysics Data System (ADS)

    Stupina, T.; Koulakov, I.; Kopp, H.

    2009-04-01

    We consider questions of creating structural models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data. For our investigations, we use the PROFIT (Profile Forward and Inverse Tomographic modeling) algorithm which was tested earlier with different datasets. Here we consider offshore seismic profiling data from three areas (Chile, Java and Central Pacific). Two of the study areas are characterized by subduction zones whereas the third data set covers a seamount province. We have explored different algorithmic issues concerning the quality of the solution, such as (1) resolution assessment using different sizes and complexity of synthetic anomalies; (2) grid spacing effects; (3) amplitude damping and smoothing; (4) criteria for rejection of outliers; (5) quantitative criteria for comparing models. Having determined optimal algorithmic parameters for the observed seismic profiling data we have created structural synthetic models which reproduce the results of the observed data inversion. For the Chilean and Java subduction zones our results show similar patterns: a relatively thin sediment layer on the oceanic plate, thicker inhomogeneous sediments in the overlying plate and a large area of very strong low velocity anomalies in the accretionary wedge. For two seamounts in the Pacific we observe high velocity anomalies in the crust which can be interpreted as frozen channels inside the dormant volcano cones. Along both profiles we obtain considerable crustal thickening beneath the seamounts.

  7. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method.more » For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.« less

  8. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Kusnandar, Ridwan; Puspito, Nanang T.; Sakti, Artadi Pria; Yudistira, Tedi

    2015-04-01

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  9. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    NASA Astrophysics Data System (ADS)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at Diglipur (depth: 21 km) and the August 10, 2009, Mw 7.5 normal faulting earthquake near Coco Island (depth: 22 km), within the northern terminus of the 2004 rupture are cited as examples of the alternating pre and post earthquake stress conditions. The major pre and post 2004 clusters were associated with the Andaman Spreading Ridge (ASR). In the Nicobar segment, the most recent earthquake on June 12, 2010, Mw 7.5 (focal depth: 35 km) occurred very close to the plate boundary, through left lateral strike-slip faulting. A segment that does not feature any active volcanoes unlike its northern and southern counterparts, this part of the plate boundary has generated several right lateral strike-slip earthquakes, mostly on the Sumatra Fault System. The left-lateral strike-slip faulting associated with the June 12 event on a nearly N-S oriented fault plane consistent with the trend of the Ninety East ridge and the occasional left-lateral earthquakes prior to the 2004 mega-thrust event suggest the involvement of the Ninety East ridge in the subduction process.

  10. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  11. Characterizing Shallow Seismicity at the Western End of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Abbott, E. R.; Brudzinski, M. R.

    2011-12-01

    The Middle America Trench along southwestern Mexico marks the subduction of both Cocos and Rivera plates. A wide range of seismic activity is seen all along this trench including great earthquakes with short (50-100 y) cycles, abundant microseismicity, prominent earthquake afterslip, recurring interseismic slow slip, and bands of non-volcanic tremor. Despite the fact that each of these different fault behaviors should be controlled by stress on the plate interface, no reliable relationship has been found between these phenomena as of yet. This study focuses on characterizing seismicity at the western end of the subduction zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. The subducted boundary between the Cocos and Rivera plates occurs beneath this region, indicated by the Manzanillo Trough, Colima Graben, inland volcanic activity, and a curious gap in tremor activity. Our data was collected by the MARS seismic array, which consists of about 50 three-component broadband seismometers deployed across Jalisco, Colima and Michoacán from January 2006 to June 2007, covering an along-strike distance of ~400 km. 18 months of data from this array was processed with Antelope for hypocentral locations of shallow (<30 km) earthquakes. To confirm the reliability of the automated locations, analyst refinement was performed on the first ~700 events, revealing little change in location and a similar clustering of events. Compilation of the resulting hypocenters reveals clusters that appear to be associated with the 2003 and 1973 megathrust earthquakes. While there are some events within the 2003 Tecomán earthquake rupture zone, more events are found inland and directly northward. Modeling of geodetic data following the neighboring 1995 Colima-Jalisco earthquake showed significant afterslip immediately downdip from that event, and there are also geodetic signatures consistent with afterslip following the 2003 event such that seismicity patterns in 2006-2007 may be influenced by ongoing afterslip. Seismicity may be concentrated north of the 2003 event as opposed to more broadly covering the region immediately downdip as it appears to follow the western edge of the Colima Graben. The prominent cluster of seismicity within the suspected 1973 rupture zone is curious both in that there is ongoing megathrust related seismicity at this point in the earthquake cycle and that it seems to match a cluster of aftershocks recorded in the days immediately after the 1973 mainshock. Finally, in comparison with observed non-volcanic tremor in the region, shallow seismicity appears to be most prominent where there are notable gaps in tremor distribution indicating that shallow earthquakes are anticorrelated with tremor locations.

  12. Implications of slab mineralogy for subduction dynamics

    NASA Astrophysics Data System (ADS)

    Bina, Craig R.; Stein, Seth; Marton, Frederic C.; Van Ark, Emily M.

    2001-12-01

    Phase relations among mantle minerals are perturbed by the thermal environment of subducting slabs, both under equilibrium and disequilibrium (metastable) conditions. Such perturbations yield anomalies not only in seismic velocities but also in density. The buoyancy forces arising from these density anomalies may exert several important effects. They contribute to the stress field within the slab, in a fashion consistent with observed patterns of seismicity. They may affect subduction rates, both by inducing time-dependent velocity changes under equilibrium conditions and by imposing velocity limits through a thermal feedback loop under disequilibrium conditions. They may affect slab morphology, possibly inhibiting penetration of slabs into the lower mantle and allowing temporary stagnation of deflected or detached slabs. Latent heat release from phase transitions under disequilibrium conditions in slabs can yield isobaric superheating, which may generate adiabatic shear instabilities capable of triggering deep seismicity.

  13. Imaging the ascent path of fluids and partial melts at convergent plate boundaries by geophysical characteristics

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.

    2011-12-01

    During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic chain, to provide under favorable conditions information down to a depth of 150 km. In particular the record of the natural seismicity and its distribution allows the three-dimensional imaging of the entire crust and lithosphere structure above the Wadati Benioff zone with the help of tomographic procedures, and therewith the entire ascent path region of the fluids and melts, which are responsible for volcanism. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. In the lecture findings of different subduction zones are compared and discussed.

  14. How the gas hydrate system gives insight into subduction wedge dewatering processes in a zone of highly-oblique convergence on the southern Hikurangi margin of New Zealand

    NASA Astrophysics Data System (ADS)

    Crutchley, Gareth; Klaeschen, Dirk; Pecher, Ingo; Henrys, Stuart

    2017-04-01

    The southern end of New Zealand's Hikurangi subduction margin is characterised by highly-oblique convergence as it makes a southward transition into a right-lateral transform plate boundary at the Alpine Fault. Long-offset seismic data that cross part of the offshore portion of this transition zone give new insight into the nature of the plate boundary. We have carried out 2D pre-stack depth migrations, with an iterative reflection tomography to update the velocity field, on two seismic lines in this area to investigate fluid flow processes that have implications for the mechanical stability of the subduction interface. The results show distinct and focused fluid expulsion pathways from the subduction interface to the shallow sub-surface. For example, on one of the seismic lines there is a clear disruption of the gas hydrate system at its intersection with a splay fault - a clear indication of focused fluid release from the subduction interface. The seismic velocities derived from tomography also highlight a broad, pronounced low velocity zone beneath the deforming wedge that we interpret as a thick zone of gas-charged fluids that may have important implications for the long-term frictional stability of the plate boundary in this area. The focused flow upward toward the seafloor has the potential to result in the formation of concentrated gas hydrate deposits. Our on-going work on these data will include amplitude versus offset analysis in an attempt to better characterise the nature of the subduction interface, the fluids in that region, and also the shallower gas hydrate system.

  15. Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion?

    USGS Publications Warehouse

    Wells, R.E.; Blakely, R.J.; Sugiyama, Y.; Scholl, D. W.; Dinterman, P.A.

    2003-01-01

    Published areas of high coseismic slip, or asperities, for 29 of the largest Circum-Pacific megathrust earthquakes are compared to forearc structure revealed by satellite free-air gravity, bathymetry, and seismic profiling. On average, 71% of an earthquake's seismic moment and 79% of its asperity area occur beneath the prominent gravity low outlining the deep-sea terrace; 57% of an earthquake's asperity area, on average, occurs beneath the forearc basins that lie within the deep-sea terrace. In SW Japan, slip in the 1923, 1944, 1946, and 1968 earthquakes was largely centered beneath five forearc basins whose landward edge overlies the 350??C isotherm on the plate boundary, the inferred downdip limit of the locked zone. Basin-centered coseismic slip also occurred along the Aleutian, Mexico, Peru, and Chile subduction zones but was ambiguous for the great 1964 Alaska earthquake. Beneath intrabasin structural highs, seismic slip tends to be lower, possibly due to higher temperatures and fluid pressures. Kilometers of late Cenozoic subsidence and crustal thinning above some of the source zones are indicated by seismic profiling and drilling and are thought to be caused by basal subduction erosion. The deep-sea terraces and basins may evolve not just by growth of the outer arc high but also by interseismic subsidence not recovered during earthquakes. Basin-centered asperities could indicate a link between subsidence, subduction erosion, and seismogenesis. Whatever the cause, forearc basins may be useful indicators of long-term seismic moment release. The source zone for Cascadia's 1700 A.D. earthquake contains five large, basin-centered gravity lows that may indicate potential asperities at depth. The gravity gradient marking the inferred downdip limit to large coseismic slip lies offshore, except in northwestern Washington, where the low extends landward beneath the coast. Transverse gravity highs between the basins suggest that the margin is seismically segmented and could produce a variety of large earthquakes. Published in 2003 by the American Geophysical Union.

  16. Tectonic Evolution of the Northern Venezuela Margin and the Onset of the Lesser Antilles Subduction Zone

    NASA Astrophysics Data System (ADS)

    Zitter, T.; Rangin, C.

    2013-05-01

    The Lesser Antilles active island arc marks the eastern boundary of the Caribbean plate, where the Atlantic oceanic crust is subducted. Geodynamic history of the Grenada and Tobago basins, accepted as both the back arc and fore arc basins respectively for this convergent zone, is the key for a better understanding of the Antilles arc subduction onset. Still, recent studies propose that these two basins formed as a single paleogene depocenter. Analysis of industrial and academical seismic profiling supports this hypothesis, and shows these basins are two half-graben filled by 15 kilometers of cenozoic sediments. The seismic profiles across these basins, and particularly the Geodinos Bolivar seismic profiles, indicate that the Antilles magmatic arc develops in the midst of the previously-extended Grenada-Tobago basin from Miocene time to present. The pre-cenozoic basement of the Grenada-Tobago basin can be traced from the Aves ridge to the Tobago Island where cretaceous meta-volcanic rocks are cropping out. Therefore, this large basin extension has been initiated in early Paleocene time during stretching or subsidence of the great cretaceous Caribbean arc and long time before the onset of the lesser Antilles volcanic arc. The question arises for the mechanism responsible of this intra-plate extension. The Tobago Ridge consists of the backstop of the Barbados prism. The innermost wedge is particularly well imaged on seismic data along the Darien Ridge, where the isopach paleogene sediments are jointly deformed in latest Oligocene. This deformation is starved with the early miocene piggy-back basin. Hence, we conclude the innermost wedge in contact with the butresss is late Oligocene in age and can be considered as the onset of the subduction along the Antilles arc. These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  17. Slab Geometry and Deformation in the Northern Nazca Subduction Zone Inferred From The Relocation and Focal mechanisms of Intermediate-Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Warren, L. M.; Prieto, G. A.

    2015-12-01

    In the northern Nazca subduction zone, the Nazca plate is subducting to the east beneath the South American Plate. At ~5.6ºN, the subducting plate has a 240-km east-west offset associated with a slab tear, called the Caldas tear, that separates the northern and southern segments. Our study seeks to better define the slab geometry and deformation in the southern segment, which has a high rate of intermediate-depth earthquakes (50-300 km) between 3.6ºN and 5.2ºN in the Cauca cluster. From Jan 2010 to Mar 2014, 228 intermediate-depth earthquakes in the Cauca cluster with local magnitude Ml 2.5-4.7 were recorded by 65 seismic stations of the Colombian National Seismic Network. We review and, if necessary, adjust the catalog P and S wave arrival picks. We use the travel times to relocate the earthquakes using a double difference relocation method. For earthquakes with Ml ≥3.8, we also use waveform modeling to compute moment tensors . The distribution of earthquake relocations shows an ~15-km-thick slab dipping to the SE. The dip angle increases from 20º at the northern edge of the cluster to 38º at the southern edge. Two concentrated groups of earthquakes extend ~40 km vertically above the general downdip trend, with a 20 km quiet gap between them at ~100 km depth. The earthquakes in the general downdip seismic zone have downdip compressional axes, while earthquakes close to the quiet gap and in the concentrated groups have an oblique component. The general decrease in slab dip angle to the north may be caused by mantle flow through the Caldas tear. The seismicity gap in the slab may be associated with an active deformation zone and the concentrated groups of earthquakes with oblique focal mechanisms could be due to a slab fold.

  18. Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.

    2016-12-01

    Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault, consistent with seismicity and seismic structure data.

  19. Detachments of the subducted Indian continental lithosphere based on 3D finite-frequency tomographic images

    NASA Astrophysics Data System (ADS)

    Liang, X.; Tian, X.; Wang, M.

    2017-12-01

    Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.

  20. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Hawley, William B.; Allen, Richard M.; Richards, Mark A.

    2016-09-01

    The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.

  1. A 80 OBS and 30 Land 3-component seismometers array encompassing the 280 km segment of the Lesser Antilles subduction megathrust seismogenic zone: view of current seismicity

    NASA Astrophysics Data System (ADS)

    Laigle, Mireille; Sapin, Martine; Ruiz, Mario; Diaz, Jordi; Kissling, Edi; Charvis, Philippe; Flueh, Ernst; Hirn, Alfred

    2010-05-01

    An extensive onshore and offshore seismic station array in the Lesser Antilles subduction zone allows to monitor microearthquake activity for a period of 4 months in a region previously outside of reach for detailed observation. Such a network has been possible thanks to a cluster of 3 seismic surveys (TRAIL - F/S Merian, SISMANTILLESII - N/O Atalante, and OBSANTILLES - N/O Antea) for deploying and recovering the instruments from several pools (Geoazur, INSU-IPGP, IFM-GEOMAR, AWI ). It has been followed by an additional deployment of the 28 GeoAzur OBSs (OBSANTILLES - N/O Antea) during 5 months in the south-western half. These operations have been carried out for the seismic investigation of the Antilles megathrust seismogenic zone in the framework of the THALES WAS RIGHT european project, and with also the financial support of the french ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) and by the EU SALVADOR Programme of IFM-GEOMAR. Onshore, 30 3-components land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) have been temporarily deployed. The deep seismic structure of the whole area has been investigated during these seismic surveys by wide-angle reflection and refraction seismics recorded by these instruments as well as multi-channel reflection seismic imaging (MCS) along a dense grid of crossing profiles at the OBS positions providing excellent velocity information for the upper plate. Both the location and the interpretation of the recorded earthquake activity require constraints on the deep seismic structure, which will be discussed with respect to the 3D geometry of the interplate boundary and oceanic Moho, as well as those of the forearc basement and Moho. Preliminary locations have been obtained within a simple 1D velocity model by taking into account corrections for the variable thickness of the mud- and sediments layers beneath each OBS. The latter are estimated for both P- and S-waves to compensate for the huge structural heterogeneity on the arrival times and their effects will be discussed in map and along vertical cross-sections aligned with the seismic profiles. A first order result is that the previously unsampled seaward region remains aseismic through the whole period of observation. Another main result, at least in a model not yet accounting for deep structural heterogeneity, is that the seismicity is principally located deeper than the contact between the forearc crust and the subducting oceanic crust as derived from the refraction-reflection approaches in the general project, and in both plates. Data are being prepared for a joint inversion of earthquake locations, shot first arrival times and 3D heterogeneity.

  2. Investigation of Collisional Styles of the Caribbean Large Igneous Province (CLIP) vs. Normal Oceanic Crust from Seismic Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Mataracioglu, M.; Magnani, M.; DeShon, H. R.; Cox, R. T.

    2011-12-01

    The Caribbean plate subducts beneath the North American and the South American plates at the Muertos Trough and the South Caribbean Deformed Belt (SCDB), respectively. During subduction, large amount of crustal material may enter the subduction zone with the subducting plate or may be incorporated into the accretionary prism. To investigate the changes in collisional style and structures associated with subduction of the Caribbean Large Igneous Province (CLIP) versus normal oceanic crust, we interpret seismic reflection profiles collected around the northern and southern margins of the Venezuelan Basin. We refine the extent of the CLIP in the central and eastern Caribbean by identifying the structural differences at the top of the acoustic basement (Horizon B") on a dataset of 150 multi-channel seismic time stack and migrated marine reflection profiles acquired in eight cruises from 1975 to 2004, as well as some selected Integrated Ocean Drilling Program (IODP) drilling data. We will also attempt to determine whether sedimentary material enters the trench and is recycled back into the mantle, and therefore characterize the northern and southern subduction zones as accretionary or erosive. Our preliminary results show that the CLIP extends spatially to most of the Venezuelan Basin, the western part of the Columbian Basin, and a part of the Beata Ridge, but that it does not extend as far south as suggested by previous interpretations. Furthermore, some portions of the CLIP at the northern and southern boundaries subduct beneath the North and the South American plates at the Muertos Trough and the SCDB, respectively. The change in nature of the subducting plate (CLIP or normal oceanic crust) causes variations in the collisional style (i.e., accretionary versus erosive) and in structures at the accretionary wedge and on the downgoing plate.

  3. A global outer-rise/outer-trench-slope (OR/OTS) earthquake study

    NASA Astrophysics Data System (ADS)

    Wartman, J. M.; Kita, S.; Kirby, S. H.; Choy, G. L.

    2009-12-01

    Using improved seismic, bathymetric, satellite gravity and other geophysical data, we investigated the seismicity patterns and focal mechanisms of earthquakes in oceanic lithosphere off the trenches of the world that are large enough to be well recorded at teleseismic distances. A number of prominent trends are apparent, some of which have been previously recognized based on more limited data [1], and some of which are largely new [2-5]: (1) The largest events and the highest seismicity rates tend to occur where Mesozoic incoming plates are subducting at high rates (e.g., those in the western Pacific and the Banda segment of Indonesia). The largest events are predominantly shallow normal faulting (SNF) earthquakes. Less common are reverse-faulting (RF) events that tend to be deeper and to be present along with SNF events where nearby seamounts, seamount chains and other volcanic features are subducting [Seno and Yamanaka, 1996]. Blooms of SNF OR/OTS events usually occur just after and seaward of great interplate thrust (IPT) earthquakes but are far less common after smaller IPT events. (2) Plates subducting at slow rates (<20 mm/a) often show sparse OR/OTS seismicity. It is unclear if such low activity is a long-term feature of these systems or is a consequence of the long return times of great IPT earthquakes (e.g., the sparse OR/OTS seismicity before the 26 December 2004 M9.2 Sumatra earthquake and many subsequent OR/OTS events). (3) OR/OTS shocks are generally sparse or absent where incoming plates are very young (<20 Ma) (e.g., Cascadia, southern Mexico, Nankai, and South Shetlands). (4) Subducting plates of intermediate age (20 to about 65 Ma) display a diversity of focal mechanisms and seismicity patterns. In the Philippines, NE Indonesia, and Melanesia, bands of reverse faulting events occur at or near the trench and SNF earthquakes are restricted to OR/OTS sites further from the trench. (5) Clustering of OR/OTS events of all types commonly occurs where seamount chains, volcanic ridges, or volcanic plateaus enter OR/OTS regions (e.g., the Louisville Ridge in Tonga, the Juan Fernandez Ridge in Chile, the Ninety East Ridge in Sumatra, and the D’Entrecastaux Ridge in Vanuatu).

  4. Seismicity of the Earth 1900-2010 Mexico and vicinity

    USGS Publications Warehouse

    Rhea, Susan; Dart, Richard L.; Villaseñor, Antonio; Hayes, Gavin P.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2011-01-01

    Mexico, located in one of the world's most seismically active regions, lies on three large tectonic plates: the North American plate, Pacific plate, and Cocos plate. The relative motion of these tectonic plates causes frequent earthquakes and active volcanism and mountain building. Mexico's most seismically active region is in southern Mexico where the Cocos plate is subducting northwestward beneath Mexico creating the deep Middle America trench. The Gulf of California, which extends from approximately the northern terminus of the Middle America trench to the U.S.-Mexico border, overlies the plate boundary between the Pacific and North American plates where the Pacific plate is moving northwestward relative to the North American plate. This region of transform faulting is the southern extension of the well-known San Andreas Fault system.

  5. Experimental study on the deformation microstructures of lawsonite blueschist and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Choi, S.; Jung, H.

    2017-12-01

    Various seismic anisotropy has been observed in the world, especially along subduction zones, and a part of the seismic anisotropy can be caused by the subducting slab, which is poorly understood. One of the main rocks at the top of the subducting slab in cold subduction zones is lawsonite blueschist, which has been rarely studied experimentally. Since lawsonite blueschist is composed of elastically anisotropic minerals such as glaucophane and lawsonite, development of the lattice preferred orientation (LPO) of these minerals can cause a large seismic anisotropy. Therefore, to understand deformation microstructures (i.e., LPOs) of lawsonite and glaucophane and the resultant seismic anisotropy, we conducted deformation experiments of lawsonite blueschist in simple shear using a modified Griggs apparatus. The experiments were performed under the pressures (P = 1 - 2 GPa), temperatures (T = 230 - 400 °), shear strain (γ = 1 - 4), and shear strain rates (10-6 - 10-4 s-1). LPOs of minerals were determined by SEM/EBSD technique. LPO of glaucophane after experiments at the shear strain (1 < γ ≤ 4.0) showed that the maxima of (110) poles and [100] axes were aligned subnormal to the shear plane and the maximum of [001] axes subparallel to the shear direction. LPO of lawsonite showed that at low strain (γ ≤ 1.4) the maximum of [010] axes were aligned sub-parallel to the shear direction, but at high strain (γ ≥ 2.1) the maximum of [100] axes were aligned sub-parallel to the direction with the [001] axes aligned subnormal to the shear plane. Using the LPO data, seismic properties of each minerals were calculated. Glaucophane showed a high P-wave anisotropy (7.7 - 16.9 %) and relatively low maximum S-wave anisotropy (4.4 - 9.2 %). In contrast, lawsonite showed much higher maximum S-wave anisotropy (8.3 - 20.7 %) than glaucophane, but showed a low P-wave anisotropy in the range of 4.7 - 10.3 %. Our results indicate that seismic anisotropy observed at the top of cold subducting slabs and at the slab-mantle interfaces can be attributed to the LPOs of lawsonite & glaucophane in the deformed blueschist facies rocks.

  6. Possibility of existence of serpentinized material at the Izu-Bonin subduction plate boundary around 31N using Q structure by FDM-simulation

    NASA Astrophysics Data System (ADS)

    Kamimura, A.; Kasahara, J.

    2003-12-01

    At the Izu-Bonin subduction zone (IBSZ), there is a chain of serpentine seamounts at the forearc slope of trench axis, and few large earthquakes occurred at shallow depth (<100km) in spite of many large ones at greater depth (>400km). To elucidate these characteristics we carried out a seismic refraction-reflection study at the forearc slope of the IBSZ around 31N using 22 OBSs and chemical explosives and airguns as seismic sources in 1998. As the results of forward and travel-time inversion modeling of the study, P-wave velocity structures were obtained along E-W and N-S survey lines which is perpendicular to and parallel to the trench axis, respectively (Kamimura et al., 2002). The result of E-W line (transect a summit of serpentine seamount) suggests presence of a low velocity zone just above the subducting Pacific plate, and this zone connects to the Torishima Serpentine Forearc Seamount. The interpretation of the result was: dehydration of hydrated oceanic crust supplies water to the mantle wedge, and peridotites of the mantle wedge were serpentinized. The serpentinized peridotites have moved between the oceanic slab and the overriding island arc crust and were diapiring into the serpentine seamount. The serpentine on the plate boundary might act as a lubricant and decrease seismic activity along the subduction zone, and this can explain the characteristics of seismicity of IBSZ. In order to evaluate Q structures of the above low velocity zone on the subducting slab, we calculated synthetic waveforms using FDM (Finite Difference Method) with elastodynamic formulation (E3D code, developed by Dr. Shawn Larsen) and the P-wave velocity 2D structure of Kamimura et al. (2002). The E3D uses staggered grid, and 2nd order and 4th order approximation in time and space, respectively. Grid spacing of the calculation is 30 m in x and z, and 1.5 msec in time. Five-Hz and 0-phase Ricker wavelet_@pressure source was used. Several structure models are used for comparison. One model has no low-Q zone, another one has low-Q zone only just below the serpentine seamount. Other models have low-Q zones just below the serpentine seamount and above the subducting slab, horizontal width of the low-Q zone are different one another. Comparing synthetic waveforms and observed data, we can conclude that there must be a low-Q zone just below the serpentine seamount and on the subducting oceanic slab. The low-Q zone on the slab has ca. 80 km wide east to west and connects to the serpentine seamount. It is very important to understand where serpentinites of the seamounts came from to explain the characteristics of seismicity at the IBSZ. In this presentation we are going to explain an interpretation that serpentine moved through the plate boundary and reached just below the serpentine seamount, using an existence of the low-Q zone. Kamimura, A., Kasahara, J., Masanao S., Hino, R., Shiobara, H., Fujie, G., Kanazawa, T., 2002. Crustal structure study at the Izu-Bonin subduction zone around 31° N: implications of serpentinized materials along the subduction plate boundary, Physics of the Earth and Planetary Interiors, 132, 105-129.

  7. Interactions between strike-slip earthquakes and the subduction interface near the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Gong, Jianhua; McGuire, Jeffrey J.

    2018-01-01

    The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected there.

  8. Seismicity of the Indo-Australian/Solomon Sea Plate boundary in the Southeast Papua region

    NASA Astrophysics Data System (ADS)

    Ripper, I. D.

    1982-08-01

    Seismicity and earthquake focal mechanism plots of the Southeast Papua and Woodlark Basin region for the period January 1960 to May 1979 show that: (a) the West Woodlark Basin spreading centre extends from the deep West Woodlark Basin, through Dawson Strait into Goodenough Bay, Southeast Papua; (b) a southeast seismic trend in the West Woodlark Basin is associated with a left-lateral transform fault, but a gap exists between this zone and the seismic East Woodlark Basin spreading centre; (c) Southeast Papua Seismicity divides into a shallow earthquake zone in which the earthquakes occur mainly in the northeast side of the Owen Stanley Range, and an intermediate depth southwest dipping Benioff zone which extends almost from Mt. Lamington to Goroka. The Benioff zone indicates the presence of a southwest dipping slab of Solomon Sea Plate beneath the Indo-Australian Plate in the Southeast Papua and Ramu-Markham Valley region. This subduction zone has collided with the New Britain subduction zone of the Solomon Sea Plate along the Ramu-Markham Valley. The Solomon Sea Plate is now hanging suspended in the form of an arch beneath Ramu-Markham Valley, inhibiting further subduction beneath Southeast Papua.

  9. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; von Huene, Roland E.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  10. Bathymetry, Crustal Imaging and Tectonics in the South of Islas Marias (Nayarit, Mexico)

    NASA Astrophysics Data System (ADS)

    Carrillo de la Cruz, J. L.; Nunez, D.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Gonzalez-Fernandez, A.; Escalona, F.; Danobeitia, J.

    2016-12-01

    The seismic activity of the Mexican Pacific margin is principally due to the subduction process of the Rivera plate beneath the North America plate and Jalisco Block. In 2014, the TSUJAL geophysical experiment provided new data to archive a better knowledge about the crustal structure and their implications in seismic and tsunamigenic potential hazards. In this study, we present the processed and analyzed bathymetric, WAS and MCS data along the TS11 seismic transect (115 km length) across the southern of Islas Marías. The seismic sources used in this work correspond to the airgun shots provided by RRS James Cook every 120 s and 50 m to recover WAS and MCS data, respectively. These sources were registered by a network of 4 OBS and 30 land seismic stations and the MCS data were acquired with a 5.85 km length streamer with a 468 active channels. Meanwhile, the bathymetric data were obtained with 2 multibeam echo sounders, EM120 and EM710, obtaining a 75 - 80 m of grid resolution. After data processing and interpretation, we have obtained information about two basins (De la Cruz Basin and Tres Marias basin) delimitated with geological lineaments alongside the Sierra de Cleofas from bathymetry, being Tres Marias basin the deepest zone in the area. Moreover, the main canyon founded in this study (De la Cruz Canyon) has been classified as type 3, according to Harris & Whiteway (2011). From seismic data, we have determined the shallow and deep crustal structure of the northern part of Rivera plate subduction with a dip angle between 6° and 8°. In this region, the oceanic crust is 10 km deep, increasing up to 20 km, while the deepest layers of the upper mantle have been determined at 45-50 km.

  11. A real-time cabled observatory on the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Delaney, J. R.; Toomey, D. R.; Bodin, P.; Roland, E. C.; Wilcock, W. S. D.; Houston, H.; Schmidt, D. A.; Allen, R. M.

    2015-12-01

    Subduction zones are replete with mystery and rife with hazard. Along most of the Pacific Northwest margin, the traditional methods of monitoring offshore geophysical activity use onshore sensors or involve conducting infrequent oceanographic expeditions. This results in a limited capacity for detecting and monitoring subduction processes offshore. We propose that the next step in geophysical observations of Cascadia should include real-time data delivered by a seafloor cable with seismic, geodetic, and pressure-sensing instruments. Along the Cascadia subduction zone, we need to monitor deformation, earthquakes, and fluid fluxes on short time scales. High-quality long-term time series are needed to establish baseline observations and evaluate secular changes in the subduction environment. Currently we lack a basic knowledge of the plate convergence rate, direction and its variations along strike and of how convergence is accommodated across the plate boundary. We also would like to seek cycles of microseismicity, how far locking extends up-dip, and the transient processes (i.e., fluid pulsing, tremor, and slow slip) that occur near the trench. For reducing risk to society, real-time monitoring has great benefit for immediate and accurate assessment through earthquake early warning systems. Specifically, the improvement to early warning would be in assessing the location, geometry, and progression of ongoing faulting and obtaining an accurate tsunami warning, as well as simply speeding up the early warning. It would also be valuable to detect strain transients and map the locked portion of the megathrust, and detect changes in locking over the earthquake cycle. Development of the US portion of a real-time cabled seismic and geodetic observatory should build upon the Ocean Observatories Initiative's cabled array, which was recently completed and is currently delivering continuous seismic and pressure data from the seafloor. Its implementation would require substantial initial and ongoing investments from federal and state governments, private partners and the academic community but would constitute a critical resource in mitigating the hazard both through improved earthquake and tsunami warning and an enhanced scientific understanding of subduction processes in Cascadia.

  12. Stratigraphic Signatures of Forearc Basin Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Mannu, U.; Ueda, K.; Gerya, T.; Willett, S.; Strasser, M.

    2014-12-01

    Forearc basins are loci of active sedimentation above the landward portion of accretionary prisms. Although these basins typically remain separated from the frontal prism by a forearc high, their evolution has a significant impact on the structure and deformation of the entire wedge. Formation of forearc basins has been proposed as a consequence of changes in wedge stability due to an increase of slab dip in subduction zones. Another hypothesis attributes this to higher hinterland sedimentation, which causes the rear of the wedge to stabilize and eventually develop a forearc basin. Basin stratigraphic architecture, revealed by high-resolution reflection seismic data and borehole data allows interpretation of structural development of the accretionary prism and associated basins with the goal of determining the underlying driving mechanism(s) of basin formation. In this study we supplement data interpretation with thermo-mechanical numerical models including high-resolution isochronal surface tracking to visualize the developing stratigraphy of basins that develop in subduction zone and wedge dynamic models. We use a dynamic 2D thermo mechanical model incorporating surface processes, strain weakening and sediment subduction. The model is a modification of I2VIS model, which is based on conservative, fully staggered finite differences and a non-diffusive marker- in-cell technique capable of modelling mantle convection. In the model different driving mechanisms for basin formation can be explored. Stratigraphic simulations obtained by isochronal surface tracking are compared to reflection pattern and stratigraphy of seismic and borehole data, respectively. Initial results from a model roughly representing the Nankai Trough Subduction Zone offshore Japan are compared to available seismic and Integrated Ocean Drilling (IODP) data. A calibrated model predicting forearc basin stratigraphy will be used to discern the underlying process of basins formation and wedge dynamics.

  13. Boosting of Nonvolcanic Tremor by Regional Earthquakes 2011-2012 in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Real, J. A.; Kostoglodov, V.; Husker, A. L.; Payero, J. S.; G-GAP Research Team

    2013-05-01

    Sistematic observation of nonvolcanic tremor (NVT) in Guerrero, Mexico started in 2005 after the installation of MASE broadband seismic network. Since 2008 the new "G-GAP" network of 10 seismic mini-arrays provides the data for the NVT detailed studies together with the broadband stations of the Servicio Seimologogico Nacional (SSN). Most of the NVT recorded in the central Guerrero area are of so called ambient type, which in most cases are related with the occurrence of aseismic slow slip events (SSE). While the locations of NVT are estimated relatively well, their depths are not reliable but distributed close to the subduction plate interface. The ambient NVT activity increases periodically every 3-4 months and is strongly modulated by large SSE. Another type of tremor has been observed in Guerrero during and after several large teleseismic events, such as Mw=8.8, 2010 Maule, Chile earthquake. This NVT was triggered by the surface waves when they traveled across the tremor-generating area. Large teleseismic events may also activate a noticeable post-seismic NVT activity. In subduction zones, triggering of the NVT and its post-seismic activation by the regional and local earthquakes have not yet been observed. We tried to detect the NVT triggered or boosting of post-seismic tremor activity by two recent large earthquakes that occurred in Guerrero: December 11, 2011, Mw=6.5 Zumpango, and March 20, 2012, Mw=7.4 Ometepec. The first earthquake was of the intraplate type, with normal focal mechanism, at the depth of 58 km, and the second was the shallow interplate event of the thrust type, at the depth of ~15 km. It is technically difficult to separate the NVT signal in its characteristic 1-10 Hz frequency range from the high frequency input from the regional earthquake. The Zumpango event, which is located closer to the NVT area, produced a noticeable boosting of post-seismic NVT activity to the North of its epicenter. Meanwhile the larger magnitude Ometepec earthquake apparently had no any observable influence on the NVT occurrence, furthermore some NVT activity observed before this event has not persisted after it. Further study should reveal the role of different factors on the NVT triggering and activation such as: the type of the seismic event, its magnitude, depth, and the distance from the NVT zone.

  14. The CAFE Experiment: A Joint Seismic and MT Investigation of the Cascadia Subduction System

    DTIC Science & Technology

    2013-02-01

    In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia...implicit in the standard MT inversion provides tools that enable us to generate a more accurate MT model. This final MT model clearly demonstrates...references within, Hacker, 2008) have given us the tools to better interpret geophysical evidence. Improvements in the thermal modeling of subduction zones

  15. Deep Sources: New constraints on the tectonic origin of the Klyuchevskoy Group upper mantle anomaly

    NASA Astrophysics Data System (ADS)

    Bourke, J. R.; Nikulin, A.; Levin, V. L.

    2017-12-01

    Volcanoes of the Klyuchevskoy Group (KG) form one of the most active volcanic clusters on the planet, yet its position relative to the subducting Pacific Plate seems to be in violation of the understood principles of the flux-induced arc volcanism. Positioned at 170km above the accepted subduction contact, the KG is seemingly outside the maximum fluid flux release zone of 100km, as observed across global subduction zone environments. Past geophysical studies indicate presence of a planar seismic anomaly 110km below the KG, and it has been noted that the KG lavas exhibit anomalous geochemical signatures, possibly associated with two separate melt generation regions. This interpretation was largely based on receiver function analysis of seismic data recorded by 3 stations of the Partnership in International Research and Education (PIRE) network, done prior to this data becoming publically available. We present results of receiver function and a teleseismic, regional, and local source shear wave splitting study, focused on datasets obtained by the full PIRE network of 12 stations, as well as a hybrid summation of all stations. We present our findings in the form of depth migrated receiver function images convolved with a three-dimensional model of the subduction zone and shear-wave splitting measurements. Our results vastly increase the resolution of the previously identified upper mantle anomaly, further constraining its geometry both vertically and laterally. We complement our observations with a forward modeling effort aimed at assessing the geological nature of the anomaly. Specifically, we test three scenarios that were previously invoked to explain the presence of the low-velocity anomaly in the upper mantle below the KG: a 3D flow of mantle material around the corner of the subducting Pacific Plate, a sinking paleoslab left behind as a result of subduction rollback, and a plume of sediments from the subducting plate. We show that presence of remnant paleoslab material remains a likely geodynamic scenario that explains both the observed geophysical anomaly and its impact on volcanic activity of the KG.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: andridn104@gmail.com; Widiyantoro, Sri; Shiddiqi, Hasbi Ash

    Indonesian archipelago region is located in active tectonic setting and high seismicity zone. During the last decade, Indonesian was experienced with destructive major earthquakes causing damage and victims. The information of precise earthquake location parameters are very important in partular for earthquake early warning to the society and for advance seismic studies. In this study, we attempted to improve hypocenter location compiled by BMKG for time periods of April, 2009 up to June, 2014 for about 22,000 earthquake events around Indonesian region. For the firts time, we applied teleseismic double-difference relocation algorithm (teletomoDD) to improve hypocenter region in Indonesia regionmore » combining regional and teleseismic stations. Hypocenter relocation was performed utilizing local, regional, and teleseismic P-wave arrival time data. Our relocation result show that travel-time RMS errors were greatly reduced compared to the BMKG catalog. Seismicity at shallower depth (less than 50 km) shows significantly improvement especially in depth, and refined shallow geological structures, e.g. trench and major strike slip faults. Clustered seismicity is also detected beneath volcanic region, and probably related volcano activities and also major faults nearby. In the Sunda arc region, seismicity at shallower depth centered at two major distributions parallel to the trench strike direction, i.e. around fore-arc and in mainland that related to major fault, e.g. the Sumatran fault, and volcanic fronts. Below Central Java region, relocated hypocenter result showed double seismic zone pattern. A seismic gap is detected around the Sunda-Banda transition zone where transition between oceanic subduction to continental crust collision of Australian plate occurs. In Eastern Indonesia region, shallow earthquakes are observed related to major strike slip faults, e.g. Sorong and Palu-Koro fault, volcanism, and shallow part of subduction and collision zones. We also compare our result in the Sunda Arc region with slab1.0 model and our relocated seismicity shows good agreement with the previous slab geometry. Horizontal position shift of relocated events are mostly perpendicular to the trench directions.« less

  17. Revisiting the physical characterisitics of the subduction interplate seismogenic zones

    NASA Astrophysics Data System (ADS)

    Heuret, Arnauld; Lallemand, Serge; Funiciello, Francesca; Piromallo, Claudia

    2010-05-01

    Based on the Centennial earthquake catalog, the revised 1964-2007 EHB hypocenters catalog and the 1976-2007 CMT Harvard catalog, we have extracted the hypocenters, nodal planes and seismic moments of worldwide subduction earthquakes for the 1900-2007 period. For the 1976-2007 period, we combine the focal solutions provided by Harvard and the revised hypocenters from Engdahl et al. (1998). Older events are extracted from the Centennial catalogue (Engdahl and Villasenor, 2002) and they are used to estimate the cumulated seismic moment only. The selection criteria for the subduction earthquakes are similar to those used by Mc Caffrey (1994), i.e., we test if the focal mechanisms are consistent with 1/ shallow thrust events (depth > 70 km, positive slips, and at least one nodal plane gets dip < 45°), and, 2/ the plate interface local geometry and orientation (one nodal plane is oriented toward the volcanic arc, the azimuth of this nodal plane ranges between ± 45° with respect to the trench one, its dip ranges between ± 20° with respect to the slab one and the epicentre is located seaward of the volcanic arc). Our study concerns segments of subduction zones that fit with estimated paleoruptures associated with major events (M > 8). We assume that the seismogenic zone coincides with the distribution of 5.5 < M < 7 subduction earthquakes. We provide a map of the interplate seismogenic zones for 80% of the trench systems including dip, length, downdip and updip limits, we revisit the statistical study done by Pacheco et al. (1993) and test some empirical laws obtained for example by Ruff and Kanamori (1980) in light of a more complete, detailed, accurate and uniform description of the subduction interplate seismogenic zone. Since subduction earthquakes result from stress accumulation along the interplate and stress depends on plates kinematics, subduction zone geometry, thermal state and seismic coupling, we aim to isolate some correlations between parameters. The statistical analysis reveals that: 1- vs, the subduction velocity is the first order controlling parameter of seismogenic zone variability, both in term of geometry and seismic behaviour; 2- steep dip, large vertical extent and narrow horizontal extent of the seismogenic zone are associated to fast subductions, and cold slabs, the opposite holding for slow subductions and warm slabs; the seismogenic zone usually ends in the fore-arc mantle rather than at the upper plate Moho depth; 3- seismic rate () variability is coherent with the geometry of the seismogenic zone:  increases with the dip and with the vertical extent of the seismogenic zone, and it fits with vs and with the subducting plate thermal state; 4- mega-events occurrence determines the level of seismic energy released along the subduction interface, whatever  is; 5- to some extent, the potential size of earthquakes fits with vs and with the seismogenic zone geometry, but second order controlling parameters are more difficult to detect; 6- the plate coupling, measured through Upper Plate Strain, is one possible second order parameter: mega-events are preferentially associated to neutral subductions, i.e. moderate compressive stresses along the plate interface; high plate coupling (compressive UPS) is thought to inhibit mega-events genesis by enhancing the locking of the plate interface and preventing the rupture to extend laterally. This research was supported as part of the Eurohorcs/ESF — European Young Investigators Awards Scheme (resp. F.F.), by funds from the National Research Council of Italy and other National Funding Agencies participating in the 3rd Memorandum of Understanding, as well as from the EC Sixth Framework Programme.

  18. Variation of b and p values from aftershocks sequences along the Mexican subduction zone and their relation to plate characteristics

    NASA Astrophysics Data System (ADS)

    Ávila-Barrientos, L.; Zúñiga, F. R.; Rodríguez-Pérez, Q.; Guzmán-Speziale, M.

    2015-11-01

    Aftershock sequences along the Mexican subduction margin (between coordinates 110ºW and 91ºW) were analyzed by means of the p value from the Omori-Utsu relation and the b value from the Gutenberg-Richter relation. We focused on recent medium to large (Mw > 5.6) events considered susceptible of generating aftershock sequences suitable for analysis. The main goal was to try to find a possible correlation between aftershock parameters and plate characteristics, such as displacement rate, age and segmentation. The subduction regime of Mexico is one of the most active regions of the world with a high frequency of occurrence of medium to large events and plate characteristics change along the subduction margin. Previous studies have observed differences in seismic source characteristics at the subduction regime, which may indicate a difference in rheology and possible segmentation. The results of the analysis of the aftershock sequences indicate a slight tendency for p values to decrease from west to east with increasing of plate age although a statistical significance is undermined by the small number of aftershocks in the sequences, a particular feature distinctive of the region as compared to other world subduction regimes. The b values show an opposite, increasing trend towards the east even though the statistical significance is not enough to warrant the validation of such a trend. A linear regression between both parameters provides additional support for the inverse relation. Moreover, we calculated the seismic coupling coefficient, showing a direct relation with the p and b values. While we cannot undoubtedly confirm the hypothesis that aftershock generation depends on certain tectonic characteristics (age, thickness, temperature), our results do not reject it thus encouraging further study into this question.

  19. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border. Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon

  20. Relationship between two Solomon Islands Earthquakes in 2007 (M8.1), 2010 (M7.1), and Seismic Gap along the Subduction Zone, Revealed by ALOS/PALSAR

    NASA Astrophysics Data System (ADS)

    Miyagi, Y.; Ozawa, T.

    2010-12-01

    The Solomon Islands are located in the southwest of the Pacific Ocean. The Australian, Woodlark, and Solomon Sea plates subduct toward the northeast beneath the Pacific plate. Interaction among these four plates cause complicated tectonics around the Solomon Islands, and have caused interplate earthquakes in the subduction zone (e.g. Lay and Kanamori, 1980; Xu and Schwarts, 1993). On April 1, 2007 (UTC), an M8.1 interplate earthquake occurred in the subduction zone between the Pacific Plate and the Australian Plate. This earthquake was accompanied by a large tsunami and caused considerable damage in the area. The Japan Aerospace Exploration Agency (JAXA) carried out emergency observations using the Phased Array type L-band Synthetic Aperture Rader (PALSAR) installed on Advanced Land Observing Satellite (ALOS), and detected more than 2m of maximum displacement using differential interferometric SAR (DInSAR) technique. Miyagi et al. (2009) estimated a slip distribution of the seismic fault mainly from the PALSAR/DInSAR data and suggested that most of a seismic gap was filled by the 2007 events, but a small seismic gap connecting to an Mw7.0-sized earthquake still remained. On January 3, 2010, an M7.1 earthquake occurred in the vicinity of the remnant seismic gap. ALOS/PALSAR observed epicentral area both before and after the event, and detected crustal deformation associated with the earthquake. We inferred fault model using the PALSAR/DInSAR data and concluded that the 2010 event was the supposed thrust earthquake filling the remnant seismic gap. A distribution of coulomb failure stress change in the epicentral area after the 2007 event suggested the possibility that the 2010 event was triggered by the 2007 earthquake.

  1. The Effect of Semi-Brittle Rheology on the Seismicity at the Subduction Interface: Coseismic and Aseismic Events

    NASA Astrophysics Data System (ADS)

    Tong, X.; Lavier, L.

    2017-12-01

    Cold and warm subduction zones usually have different seismicity and tectonic structure. Aseismic events like episodic tremor and slip (ETS) and slow slip event (SSE) are often observed in warm and young slabs which typically have less megathrust seismicity and smaller seismogenic area (e.g. southwest Japan). On the other hand, cold and old slabs (e.g. Northeast Japan) have more megathrust events and larger seismogenic area and few aseismic events. Recent studies have try to model the differences in seismic behaviors with different approaches, includes rheological heterogeneity (e.g. frictional vs. viscous), petrological heterogeneity (e.g. hydration-dehydration process and mineral phase changes), and the frictional heterogeneity (e.g. rate-and-state dependent friction). Following previous works, we proposed a new model in which the subduction channel has a temperature dependent material assembly which composed of an explicit mixture of basalt/eclogite and mantle peridotite. Our model also take into account rate and state dependent friction and pore fluid pressure. Depending on the temperature, the basalt and peridotite mixture can behave either as an elastoplastic frictional or a Maxwell viscoelastic material. To model the mixture numerically, we use DynEarthSol3D (DES3D). DES3D is a robust, adaptive, multi-dimensional, finite element method solver which has a composite Elasto-Visco-Plastic rheology. We vary the temperature profile, the ratio of basalt vs. peridotite, the rheology of the mantle peridotites and the loading rate of the subduction interface. Over multiple earthquake cycles, our two end member experiments show that megathrust earthquakes are dominate the seismicity for cold condition (e.g. Japan trench) while both coseismic and aseismic events account for the seismicity for warm condition (e.g. Nankai trench).

  2. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle. The absence of wholesale hydration of forearcs globally can be taken as evidence that most forearcs are too young to be substantially hydrated, that most subducted water bypasses the forearc and is released deeper, or that most fluid passing through the mantle nose does not react with the mantle.

  3. Subduction Zone Dewatering at the Southern End of New Zealand's Hikurangi Margin - Insights from 2D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.

    2016-12-01

    The southern end of New Zealand's Hikurangi subduction margin is characterised by highly-oblique convergence as it makes a southward transition into a right-lateral transform plate boundary. Long-offset seismic data that cross part of the offshore portion of this transition zone give new insight into the nature of the margin. We have carried out two-dimensional pre-stack depth migrations with an iterative reflection tomography to update the velocity field on two seismic lines in this area. The depth-migrated sections show much-improved imaging of faulting within the wedge, and the seismic velocities themselves give clues about the distribution of gas and/or overpressured regions at the plate boundary and within the overlying wedge. A fascinating observation is a major splay fault that has been (or continues to be) a preferred dewatering pathway through the wedge, evidenced by a thermal anomaly that has left its mark on the overlying gas hydrate layer. Another interesting observation is a thick and laterally extensive low velocity zone beneath the subduction interface, which might have important implications for the long-term mechanical stability of the interface. Our on-going work on these data is focused on amplitude versus offset analysis in an attempt to better understand the nature of the subduction interface and also the shallower gas hydrate system. This study is an example of how distinct disturbances of the gas hydrate system can provide insight into subduction zone fluid flow processes that are important for understanding wedge stability and ultimately earthquake hazard.

  4. Oceanic crust in the mid-mantle beneath Central-West Pacific subduction zones: Evidence from S-to-P converted waveforms

    NASA Astrophysics Data System (ADS)

    He, X.

    2015-12-01

    The fate of subducted slabs is enigmatic, yet intriguing. We analyze seismic arrivals at ~20-50 s after the direct P wave in an array in northeast China (NECESSArray) recordings of four deep earthquakes occurring beneath the west-central Pacific subduction zones (from the eastern Indonesia to Tonga region). We employ the array analyzing techniques of 4th root vespagram and beam-form analysis to constrain the slowness and back azimuth of later arrivals. Our analyses reveal that these arrivals have a slightly lower slowness value than the direct P wave and the back azimuth deviates slightly from the great-circle direction. Along with calculation of one-dimensional synthetic seismograms, we conclude that the later arrival is corresponding to an energy of S-to-P converted at a scatterer below the sources. Total five scatterers are detected at depths varying from ~700 to 1110 km in the study region. The past subducted oceanic crust most likely accounts for the seismic scatterers trapped in the mid-mantle beneath the west-central subduction zones. Our observation in turn reflects that oceanic crust at least partly separated from subducted oceanic lithosphere and may be trapped substantially in the mid-mantle surrounding subduction zones, in particular in the western Pacific subduction zones.

  5. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate.

    PubMed

    Hawley, William B; Allen, Richard M; Richards, Mark A

    2016-09-23

    The boundary between Earth's strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics. Copyright © 2016, American Association for the Advancement of Science.

  6. Seismic anisotropy and mantle flow in the Hellenic subduction zone: The possible effects of trench retreat and slab tear at both ends.

    NASA Astrophysics Data System (ADS)

    Evangelidis, Christos

    2017-04-01

    The upper mantle anisotropy pattern in the entire area of the Hellenic subduction zone have been analyzed for fast polarization directions and delay times to investigate the complex 3D pattern of mantle flow around the subducting slab. All previous studies do incorporate a significant number of measurements in the backarc area of the Aegean and in two cross-sections along the Hellenic subduction system. However, the transitional area from oceanic to continental subduction in the Western Hellenic trench has not been adequately sampled so far. Moreover, the eastern termination of the Hellenic subduction and the possible origin of a trench parallel anisotropy remains unclear. Here, I focus on the two possible ends of the high curvature Hellenic arc. I have now measured SKS splitting parameters from all broadband stations of the Hellenic Unified Seismic Network (HUSN), that they have not been measured before, specially concentrated in the transitional area from oceanic to continental subduction system. Complementary, using the Source-Side splitting technique to teleseismic S-wave records from intermediate depth earthquake in the Hellenic trench, the anisotropy measurements are increased in regions where no stations are installed. In western Greece, the Hellenic subduction system is separated by the Cephalonia Transform Fault (CTF), a dextral offset of 100 km, into the northern and southern segments, which are characterized by different convergence rates and slab composition. Recent seismic data show that north of CTF there is a subducted continental lithosphere in contrast to the region south of CTF where the on-going subduction is oceanic. The new measurements, combined with previously published observations, provide the most complete up-to-date spatial coverage for the area. Generally, the pronounced zonation of seismic anisotropy across the subduction zone, as inferred from other studies, is also observed here. Fast SKS splitting directions are trench-normal in the region nearest to the trench. The fast splitting directions change abruptly to trench-parallel above the corner of the mantle wedge and rotate back to trench-normal over the back-arc. Additionally, beneath western Greece, between the western Gulf of Corinth in the south and the Epirus-Thessaly area in the north, a transitional anisotropy pattern emerges that possibly depicts the passage from the continental to the oceanic subducted slabs and the subslab mantle flow due to the trench retreat. At the eastern side of the Hellenic arc, from eastern Crete to the Dodecanese Islands, the inferred subslab measurements of anisotropy show a general trench perpendicular pattern. This area is characterized as a STEP fault region with multiple trench normal strike slip faults. The difference between the fast roll-back in the Aegean and the slow lithospheric processes in the western Anatolia is accommodated by a broad shear zone of lithospheric deformation and a possible slab tear inferred from seismic tomography and geophysical studies but with a relative unknown geometry. Thus, the observed anisotropy pattern possibly resembles the 3D return flow around the slab edge that is caused by the inferred slab break.

  7. An Examination of Upper Plate Aftershocks of the Tohoku-oki Earthquake: Are They Caused by a Long-term Change in the Dip of the Subducting Plate?

    NASA Astrophysics Data System (ADS)

    Oryan, B.; Buck, W. R.

    2017-12-01

    The Tohoku-oki earthquake was one of the strongest earthquakes ever recorded. 50-80 meters of lateral motion of the sloping seafloor resulted in a tsunami that exceeded predictions and caused one of the costliest natural disasters in history. It was also the first time extensional aftershocks were observed in the upper plate over a region as wide as 250km. Inspired by these findings, researchers found similar upper plate extensional earthquakes after reexamining seismic data from past earthquakes that had also produced large tsunamis. Such extensional aftershocks are difficult to explain in terms of standard subduction models. Most models assume that the dip of the subducting plate remains constant with time. However, geological evidence indicates that the dip angle of the subducting plate changes. We hypothesize that a reduction in the dip angle of the subducting plate can cause upper plate extensional earthquakes. This change in dip angle adds extensional bending stress to the upper plate. During an inter-seismic period, the interface is `locked' causing regional compression that prevents the release of extensional energy. Relief of compressional stresses during a megathrust event can trigger the release of the accumulated extensional energy, explaining why extensional earthquakes were observed after some megathrust events. Numerical models will be used to test our hypothesis. First, we will model long term subduction with a nearly constant dip angle. Then, we will impose a `mantle wind' to reduce the dip angle of the subducting plate. Eventually, we will model a full seismic cycle of the subduction resulting in a megathrust event. The generation of extensional earthquakes in the upper plate of our model following the megathrust event will allow us to determine whether a causal link exists between these earthquakes and a reduction in the dip angle of the subducting plate.

  8. Extensional Failure of "Pre-Stressed" Lithosphere Above a Subduction Zone May Have Contributed to the Size of the Tohoku-Oki Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Buck, W. R.; Lavier, L. L.; Petersen, K. D.

    2015-12-01

    The Tohoku-oki earthquake was not only the costliest natural disaster in history it was the best monitored. The unprecedented data set showed that anomalously large lateral motion of the seafloor near the trench contributed to the size of the tsunami. Also, for the first time it was shown that a large subduction earthquake was followed by extensional aftershocks in a broad region of the upper plate (up to 250 km from the Japan Trench). Several observations suggest that the near-trench seafloor motion and the extensional aftershocks are linked. For example, a seismically imaged fault, just landward of the region of large seafloor motion, slipped in a normal sense during the earthquake. Also, inspired by the Tohoku data, researchers have searched for and found upper plate extensional aftershocks associated with several other subduction earthquakes that produced large tsunami. Extension of the upper plate can be driven by a reduction in the dip of a subducting slab. Such a dip change is suggested by the post-Miocene westward migration of the volcanic arc in Honshu. Numerical models show that a long-term reduction in slab dip can generate enough extensional stress to cause normal faulting over a broad region of the upper plate. The time step of the numerical model is then reduced to treat the inter-seismic time scale of 100-1000 years, when the subduction interface is locked. The interface dip continues to be reduced during the inter-seismic period, but extensional fault slip is suppressed by the relative compression of the upper plate caused by continued convergence. The relief of compressional stresses during dynamic weakening of the megathrust triggers a release of bending-related extensional strain energy. This extensional yielding can add significantly to the co-seismic radiated seismic energy and seafloor deformation. This mechanism is analogous to the breaking of a pre-stressed concrete beam supporting a bending moment when the compressional pre-stress is removed. It is plausible that similar bending is occurring at a number of subduction zones. A testable prediction of this bending model is that inter-seismic stresses can be compressional near the surface of the upper plate, but should become extensional at depths accessible to drilling.

  9. Construction of Source Model of Huge Subduction Earthquakes for Strong Ground Motion Prediction

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2013-12-01

    It is a quite important issue for strong ground motion prediction to construct the source model of huge subduction earthquakes. Iwata and Asano (2012, AGU) summarized the scaling relationships of large slip area of heterogeneous slip model and total SMGA sizes on seismic moment for subduction earthquakes and found the systematic change between the ratio of SMGA to the large slip area and the seismic moment. They concluded this tendency would be caused by the difference of period range of source modeling analysis. In this paper, we try to construct the methodology of construction of the source model for strong ground motion prediction for huge subduction earthquakes. Following to the concept of the characterized source model for inland crustal earthquakes (Irikura and Miyake, 2001; 2011) and intra-slab earthquakes (Iwata and Asano, 2011), we introduce the proto-type of the source model for huge subduction earthquakes and validate the source model by strong ground motion modeling.

  10. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  11. Links between the distribution of intermediate depth seismicity and structure of the incoming plate in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Bie, L.; Garth, T.; Rietbrock, A.

    2017-12-01

    The Lesser Antilles subduction zone offers a unique opportunity to study the subduction of oceanic material formed at a slow spreading mid-ocean ridge. The seismicity rates in the Lesser Antilles subduction zone vary strongly along the arc, and low seismicity rates in the Southern part of the Arc have made accurate mapping of the slab at depth difficult. Here we present an innovative method of constraining the slab geometry using global earthquake catalogue data, and a prescribed formula for the geometry of the slab. The global earthquake catalogues are filtered for events of different quality, and the slab fit is weighted to events that are well located by observations at several stations. This allows a series of slab profiles to be fitted to the seismicity within the slab. These profiles are used to produce a smoothed slab geometry for the whole arc. The results confirm the marked difference in the slab geometry between the steeply dipping Northern part (> 14°latitude) of the arc and the more shallow dip of the Southern part of the arc (< 14° latitude). The change in dip at 14° latitude occurs abruptly. We therefore support the hypothesis that the North and South parts of the arc are in fact separate subducting plates with a distinct gap between them. This theory has previously been supported by tele-seismic tomography (Benthem et al., 2013), and shear wave splitting observations in the region. In addition, the subducted slab geometry beneath the Lesser Antilles is used to quantify variations in the thickness of the WBZ (Wadati-Benioff zone) seismicity along strike. We find a significant variation in the WBZ thickness along strike, which cannot be explained by the relatively small variation in age of the incoming plate. We propose that these variations are instead explained by pre-existing structures in the subducting plate. The thickness of the WBZ correlates well with the occurrence of paleo-spreading ridges of the incoming plate, as inferred from global plate age models (Muller et al., 2008). Ridges on the incoming plate, inferred from variations in the gravity anomaly, and related to transform faults at the spreading ridge, correlate with marked changes in the thickness of the WBZ along the arc. These findings support the hypothesis that there is a direct link between WBZ seismicity and hydration of the mantle of the incoming plate.

  12. A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe

    NASA Astrophysics Data System (ADS)

    Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.

    2014-08-01

    We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.

  13. Seismic waves triggering slow slip event on the pressure gauge records in the Hikurangi subducting margin

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Wallace, L. M.; Henrys, S. A.; Kaneko, Y.; Webb, S. C.; Muramoto, T.; Ohta, K.; Mochizuki, K.; Suzuki, S.; Kido, M.; Hino, R.

    2017-12-01

    The two M7-class earthquakes struck in New Zealand in 2016. One is the M7.1 Te Araroa earthquake on 1st September, and the other is the M7.8 Kaikoura earthquake on 14th November. The M7.1 earthquake struck offshore, following a sequence of the Hikurangi slow slip event on the northern Hikurangi Margin. The M7.8 Kaikoura earthquake has triggered a shallow slow slip event of northern Hikurangi subduction margin. We present seismic and tsunami waves radiated from two large earthquakes of M7.8 Kaikoura and M7.1 Te Araroa earthquakes in 2016 using a network of absolute pressure gauges (APG) deployed at the Hikurangi subduction margin offshore New Zealand. We deployed 5 APG on the accretionary wedge at the northen part of the Hikurangi margnin in June 2016 at the northern part of Hikurangi subducting margin, and were recovered in June 2015. The pressure gauge recorded data continuously for one year, with a logging interval of 1 or 2 s. Our processing of the APG data to identify seismic is a band pass filter with a range of 10-100 s is applied for seismic signals. We observed seismic waves radiated from both the M7.8 Kaikoura and M7.1 Te Araroa earthquakes. The pressure fluctuation more than 20 hPa from the arrivals of seismic waves was observed on two both earthquakes. It should be noted that marine pressure records are nearly equivalent to vertical acceleration measurements [Webb, 1998]. Specifically, on the M7.8 Kaikoura earthquake, the characteristic seismic signals with large amplitude more than 20 hPa lasting more than 300 s was observed on the all of four APGs. The long duration seismic waves with relatively large amplitude observed after the 7.8 Kaikoura earthquake would dynamically trigger the Hikurangi slow slip event; the dynamic triggering and characteristic seismic waves in the accretionary wedge has been predicted from a wave-field modeling using a 3D velocity model with a low-velocity sedimentary basin [Wallace et al., 2017].

  14. Impact of The N - S Fracture Zone Along The Indo-Australia Plate Analyzed from Local Seismic Data In The Western Offshore of Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Haridhi, H. A.; Klingelhoefer, F.; Huang, B. S.; Lee, C. S.

    2015-12-01

    Large subduction earthquake have repeatedly occurred along the Sumatra and Andaman subduction zones where the Indo-Australia plate is subducting beneath the Eurasian plate. We have analyzed earthquake data from local seismic network along the Sumatra region that provided by the Meteorology Climatology Geophysical Agencies of Indonesia (MCGAI), giving a reliable P-wave velocity model by using joint inversion of picked P-wave travel time using VELEST and a re-scanned single channel seismic reflection of Sumatra cruise I and II. As much as 1,503 events are being analyzed, that is from two years and three months of data recording (2009/04 - 2011/07). The VELEST and DD technique are used to relocate all events by forcing the obtained velocity model. It is found that the surface deformation and earthquake cluster are strongly influenced by the impact of an N - S subparalel fracture zone along the Indo-Australia plate. This also explains the seismic gaps along the Sumatra and Andaman subduction zones. So far, the intriguing seismogenic behaviour and forearc structure are not well explained by the existing models. Therefore, the planned IODP Expedition 362 is trying to ground truth the scientific questions. The aftershock earthquake data are huge, but they will provide a gateway to help the understanding of this shallow megathrust slip and reduce its devastated harzards.

  15. Triggered aseismic slip adjacent to the 6 February 2013 Mw 8.0 Santa Cruz Islands megathrust earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.; Herman, Matthew W.

    2014-01-01

    Aseismic or slow slip events have been observed in many subduction zones, but whether they affect the occurrence of earthquakes or result from stress changes caused by nearby events is unclear. In an area lacking direct geodetic observations, inferences can be made from seismological studies of co-seismic slip, associated stress changes and the spatiotemporal nature of aftershocks. These observations indicate that the February 2013 Mw 8.0 Santa Cruz Islands earthquake may have triggered slow or aseismic slip on an adjacent section of the subduction thrust over the following hours to days. This aseismic event was equivalent to Mw 7.6, significantly larger than any earthquakes in the aftershock sequence. The aseismic slip was situated within the seismogenic portion of the subduction interface, and must have occurred to the south of the main seismic slip and most aftershocks in order to promote right-lateral faulting in the upper plate, the dominant deformation style of the aftershock sequence. This plate boundary segment can support either stable sliding (aseismic) or stick-slip (seismic) deformation in response to different driving conditions. The complete lack of aftershocks on the thrust interface implies this pair of megathrust slip episodes (seismic and aseismic) released a substantial portion of the stored strain on the northernmost section of the Vanuatu subduction zone.

  16. Seismic imaging along a 600 km transect of the Alaska Subduction zone (Invited)

    NASA Astrophysics Data System (ADS)

    Calkins, J. A.; Abers, G. A.; Freymueller, J. T.; Rondenay, S.; Christensen, D. H.

    2010-12-01

    We present earthquake locations, scattered wavefield migration images, and phase velocity maps from preliminary analysis of combined seismic data from the Broadband Experiment Across the Alaska Range (BEAAR) and Multidisciplinary Observations of Onshore Subduction (MOOS) projects. Together, these PASSCAL broadband arrays sampled a 500+ km transect across a portion of the subduction zone characterized by the Yakutat terrane/Pacific plate boundary in the downgoing plate, and the Denali volcanic gap in the overriding plate. These are the first results from the MOOS experiment, a 34-station array that was deployed from 2006-2008 to fill in the gap between the TACT offshore refraction profile (south and east of the coastline of the Kenai Peninsula), and the BEAAR array (spanning the Alaska Range between Talkeetna and Fairbanks). 2-D images of the upper 150 km of the subduction zone were produced by migrating forward- and back-scattered arrivals in the coda of P waves from large teleseismic earthquakes, highlighting S-velocity perturbations from a smoothly-varying background model. The migration images reveal a shallowly north-dipping low velocity zone that is contiguous near 20 km depth on its updip end with previously obtained images of the subducting plate offshore. The low velocity zone steepens further to the north, and terminates near 120 km beneath the Alaska Range. We interpret this low velocity zone to be the crust of the downgoing plate, and the reduced seismic velocities to be indicative of hydrated gabbroic compositions. Earthquakes located using the temporary arrays and nearby stations of the Alaska Regional Seismic Network correlate spatially with the inferred subducting crust. Cross-sections taken along nearly orthogonal strike lines through the MOOS array reveal that both the dip angle and the thickness of the subducting low velocity zone change abruptly across a roughly NNW-SSE striking line drawn through the eastern Kenai Peninsula, coincident with a distinct change in locking at the subduction interface as revealed by previous geodetic studies. On the west end of the Kenai Peninsula, where seismically imaged downgoing crust appears oceanic, the geodetic signal mainly reflects postseismic deformation from the 1964 earthquake as evinced by southeast trending displacement vectors (with respect to fixed North America). While postseismic relaxation continues east of the boundary, NNW-directed elastic deformation due to locking at the plate boundary dominates the geodetic signal, and imaging reveals thickened Yakutat crust is subducting. The collocation of sharp changes in both deep structure and surface deformation suggest that the nature of the plate interface changes drastically across the western edge of the Yakutat block and that variations in downgoing plate structure control the strain field in the overriding plate.

  17. The Chiloé Mw 7.6 earthquake of 2016 December 25 in Southern Chile and its relation to the Mw 9.5 1960 Valdivia earthquake

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Ruiz, Javier; Carrasco, Sebastián; Manríquez, Paula

    2018-04-01

    On 2016 December 25, an Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (˜15 Ma), and therefore hot, oceanic plate. We estimate the coseismic slip distribution based on a kinematic finite-fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94 × 1020 N.m that occurred over ˜30 s, with the rupture propagating mainly downdip, reaching a peak slip of ˜4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ˜15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.

  18. The Seismic Sequence of the 2016 Mw 7.8 Pedernales, Ecuador Sarthquake

    NASA Astrophysics Data System (ADS)

    Leon, S.; Fuenzalida, A.; Bie, L.; Garth, T.; Gonzalez, P. J.; Holt, J.; Rietbrock, A.; Edwards, B.; Regnier, M. M.; Pernoud, M.; Mercerat, E. D.; Perrault, M.; Font, Y.; Alvarado, A. P.; Charvis, P.; Beck, S. L.; Meltzer, A.

    2016-12-01

    On the 16th April 2016, a Mw 7.8 mega-thrust earthquake occurred in Northern Ecuador, close to the city of Pedernales. The event ruptured an area of 120 x 60 km and was preceded by a Mw 5.0 foreshock, located only 15 km south of the epicentre, and registered 10 minutes before the main event.A few weeks after the main event a large array of instruments was deployed by a collaborative project between the Geophysical Institute of Ecuador (IGEPN), IRIS (USA), Géoazur (France) and the University of Liverpool (UK). This dense seismic network, with more than 70 stations, includes broadband, short period and strong motion instruments and is currently recording the aftershock activity of the earthquake. It is hoped that this data set will give further insights into the structure of the subduction zone mega thrust beneath Ecuador.Using data recorded both on the permanent and the recently deployed network we located and calculated the moment tensor solutions for the foreshock event, and the large aftershocks (M > 5). We analyse the spatial distribution of the seismicity and its relation with the co-seismic slip, estimated by inverting radar satellite interferometry data, and with previous models of inter-seismic coupling (e.g. Chlieh et al., 2014). It is possible to identify two lineations in the aftershock activity located to the north and south of the rupture. Moreover, the geodetic slip model shows that the boundaries of the maximum coseismic slip coincides with the observed lineaments in the aftershocks and with the rupture area of a previous Mw 7.8 event in 1942. This suggests that the features to the north and south may impose a barrier to rupture propagation, creating different segments in the subduction zone beneath Ecuador. In addition, we model the Coulomb stress change caused by the foreshock and mainshock in order to investigate whether this could explain the aftershock distribution and potential earthquake interactions. Previous activity has presented a northward-propagating series of ruptures greater than Mw 7 spaced approximately 20 years apart. An open question is therefore whether the present event is the start of a further series of large magnitude events in northern Ecuador, and/or whether slow slip events/creep south of the rupture have partly accommodated the strain due to subduction.

  19. Potential Flooding area for local Tsunami in Nayarit Region (Western Coast of Mexico).

    NASA Astrophysics Data System (ADS)

    Trejo-Gomez, E.; Ortiz, M.; Nuñez-Cornu, F. J.

    2016-12-01

    The western coast of Mexico in the region of Jalisco and Nayarit states has a complex tectonics and a high seismic activity. In the last century, four big tsunamis occurred in this area, (three of them in 1932 and one in 1995, that hit the coast of Colima, Jalisco and Nayarit. Three of these tsunamis were generated by earthquakes and one more (22 June 1932) by an underwater landslide. Currently, there is a seismic Gap on the north coast of Jalisco and southern Nayarit. Recent published papers (Urías-Espinosa et al, 2016) and the first results of TsuJal Project (Núñez- Cornú et al, 2016) suggest that subduction regime to the north of Cabo Corrientes changes and the Rivera plate subducts with a very low angle and this structure remains until Maria Madre Island at north of the Marias Islands. The hypothesis of this work is the estimation of the tsunami run up and the flooding zone after a great magnitude earthquake generated by the rupture of the hypothetical subduction structure north of Cabo Corrientes. The possible effects on the coasts of Nayarit, Islas Marias and Banderas Bay (Puerto Vallarta) are proposed in this study.

  20. Searching for tremor in seismic noise on the 84 OBS (Ocean Bottom Seismometers) and 40 Land Seismometers, 3 months deployment in the Lesser Antilles subduction

    NASA Astrophysics Data System (ADS)

    Becel, A.; Diaz, J.; Laigle, M.; L. A. S. T., T.

    2008-12-01

    THALES, L.A.S.T., stands for Lesser Antilles Subduction zone Team of the THALES WAS RIGHT project (Coord. A. Hirn) of the European Union FP6, which gathers the scientific teams of a cluster of surveys and cruises in 2007. This cluster comprises the German cruise TRAIL with the vessel F/S Merian (PI E. Flueh and H. Kopp, IFM-GEOMAR), the French cruise SISMANTILLES 2 with the IFREMER vessel N/O Atalante (PI M. Laigle, IPG Paris and JF. Lebrun, Univ. Antilles Guyane), and French cruise OBSANTILLES with the IRD vessel N/O Antea (PI P. Charvis, Geoazur, Nice, France). Presentation T53A-1109 at last year, 2007 AGU Fall Meeting, of THALES, L.A.S.T. summarized the goals and first results of these experiments dedicated specifically to image at depth the seismic structure and activity of this subduction zone segment, which comprised: - MCS, multi-channel reflection seismic profiles as well as coincident multi-beam bathymetry that have been collected for 3700 km along a grid comprising 300 km along strike from North of Guadeloupe to Martinique islands and extending 150 km offshore over the forearc and accretionary wedge. - 84 OBSs at the nodes of this grid of profiles and 40 land stations. These instruments recorded the marine shots for a coincident refraction survey. They recorded local seismicity for precise location and focal mechanisms. The recovery of the continuous recording at this dense and extensive set of temporary sensors (1), recently completed allows to initiate an analysis of the continuously recorded seismic noise. Changes and transients of the noise character, and their possible correlations among instruments in the array will be searched for in the view of checking evidence of possible seismic tremor episodes or seismic transients, as have been described elsewhere with the specific aspect that most observations were acquired at sea-bottom as the forearc extends here broadly offshore. Preliminary results will be documented. (1) During these cruises and surveys, 84 Ocean Bottom multi-components Seismometers (OBS) have been brought together from several pools (Geosciences Azur, INSU-IPGP, IFM-GEOMAR, AWI), with up to 40 land stations (CSIC Barcelona, IPG-Paris, INSU-RLBM and LITHOSCOPE), for 3 months in early 2007, with a lesser number of instruments for similar period before and after. Support for the surveys came principally by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) to IPGP, by the EU SALVADOR Programme of IFM-GEOMAR, the OBSISMER CPER project of IPGP, Région Martinique and EU-FEDER, as well as by the EU project THALES WAS RIGHT on the Antilles and Hellenic active subductions to which contribute IPG- Paris and Geosciences Azur (France), IFM-GEOMAR (Germany), ETH Zurich (Switzerland), CSIC Barcelona (Spain), Univ. Trieste (Italy) and NOA Athens (Greece).

  1. The 2014 Mw6.9 Gokceada and 2017 Mw6.3 Lesvos Earthquakes in the Northern Aegean Sea: The Transition from Right-Lateral Strike-Slip Faulting on the North Anatolian Fault to Extension in the Central Aegean

    NASA Astrophysics Data System (ADS)

    Cetin, S.; Konca, A. O.; Dogan, U.; Floyd, M.; Karabulut, H.; Ergintav, S.; Ganas, A.; Paradisis, D.; King, R. W.; Reilinger, R. E.

    2017-12-01

    The 2014 Mw6.9 Gokceada (strike-slip) and 2017 Mw6.3 Lesvos (normal) earthquakes represent two of the set of faults that accommodate the transition from right-lateral strike-slip faulting on the North Anatolian Fault (NAF) to normal faulting along the Gulf of Corinth. The Gokceada earthquake was a purely strike-slip event on the western extension of the NAF where it enters the northern Aegean Sea. The Lesvos earthquake, located roughly 200 km south of Gokceada, occurred on a WNW-ESE-striking normal fault. Both earthquakes respond to the same regional stress field, as indicated by their sub-parallel seismic tension axis and far-field coseismic GPS displacements. Interpretation of GPS-derived velocities, active faults, crustal seismicity, and earthquake focal mechanisms in the northern Aegean indicates that this pattern of complementary faulting, involving WNW-ESE-striking normal faults (e.g. Lesvos earthquake) and SW-NE-striking strike-slip faults (e.g. Gokceada earthquake), persists across the full extent of the northern Aegean Sea. The combination of these two "families" of faults, combined with some systems of conjugate left-lateral strike-slip faults, complement one another and culminate in the purely extensional rift structures that form the large Gulfs of Evvia and Corinth. In addition to being consistent with seismic and geodetic observations, these fault geometries explain the increasing velocity of the southern Aegean and Peloponnese regions towards the Hellenic subduction zone. Alignment of geodetic extension and seismic tension axes with motion of the southern Aegean towards the Hellenic subduction zone suggests a direct association of Aegean extension with subduction, possibly by trench retreat, as has been suggested by prior investigators.

  2. Seismic tomographic constraints on plate-tectonic reconstruction of Nazca subduction under South America since late Cretaceous (~80 Ma)

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wei; Wu, Jonny; Suppe, John; Liu, Han-Fang

    2016-04-01

    Our understanding of the global plate tectonics is based mainly on seafloor spreading and hotspot data obtained from the present earth surface, which records the growth of present ocean basins. However, in convergent tectonic settings vast amounts of lithosphere has been lost to subduction, contributing to increasing uncertainty in plate reconstruction with age. However, subducted lithosphere imaged in seismic tomography provides important information. By analyzing subducted slabs we identify the loci of subduction and assess the size and shape of subducted slabs, giving better constrained global plate tectonic models. The Andean margin of South America is a classic example of continuous subduction up to the present day, providing an opportunity to test the global plate prediction that ~24×10e6 km2 (4.7% of earth surface) lithosphere has been subducted since ~80 Ma. In this study, we used 10 different global seismic tomographies and Benioff zone seismicity under South America. To identify slabs, we first compared all data sets in horizontal slices and found the subducted Nazca slab is the most obvious structure between the surface and 750 km depth, well imaged between 10°N and 30°S. The bottom of the subducted Nazca slab reaches its greatest depth at 1400 km at 3°N (Carnegie Andes) and gradually shallows towards the south with 900 km minimum depth at 30°S (Pampean Andes). To assess the undeformed length of subducted slab, we used a refined cross-sectional area unfolding method from Wu et al. (in prep.) in the MITP08 seismic tomography (Li et al., 2008). Having cut spherical-Earth tomographic profiles that parallel to the Nazca-South America convergence direction, we measured slab areas as a function of depth based on edges defined by steep velocity gradients, calculating the raw length of the slab by the area and dividing an assumed initial thickness of oceanic lithosphere of 100km. Slab areas were corrected for density based on the PREM Earth model (Dziewonski and Anderson, 1981). We found the unfolded length of the Nazca slab is 7000km at 5°N and gradually decreases to 4700 km at 30°S, with total area of ~24×10e6 km2. Finally, we imported our unfolded Nazca slab into Gplates software to reconstruct its tectonic evolution, using the Seton et al. (2012) and Gibbons et al. (2015) global plate model. We find that our unfolded base of the Nazca slab fits tightly against South America at ~80 Ma if the pre-deformed South America margin of McQuarrie (2002) is used. This close fit implies a plate reorganization at the South American margin, marking the beginning of Nazca subduction at ~80 Ma. This observation is in agreement with a beginning of Andian magmatism ~80 Ma, following a 80-100 Ma hiatus in magmatism (Haschke et al., 2002). This result illustrates the importance of subducted-slab constraints in convergent plate-tectonic reconstruction. Our study also provides tracers for mantle flow yielding Nazca slab sinking rates between 1.2 cm/yr and 1.6 cm/yr, which are similar to other global results.

  3. Crustal Structure across Rivera Plate and Jalisco Block (MEXICO): TsuJal Project

    NASA Astrophysics Data System (ADS)

    Nuñez-Cornu, F. J.; Nunez, D.; Barba, D. C., Sr.; Trejo, E.; Escalona, F.; Danobeitia, J.; Gutierrez Pena, Q. J.

    2015-12-01

    Located on the western margin of Mexico, the collision zone between Rivera, Cocos and North American plates is a complex tectonic collage with high seismic hazards and potential tsunamigenic sources. During the spring of 2014, within the framework of TSUJAL project, Spanish and Mexican scientists investigated this region with the main objective of defining the crustal architecture of this active margin and recognizing potential structural sources that can trigger earthquakes and tsunamis at the convergence between Rivera plate-Jalisco block with the North American Plate. To achieve these goals, a wide-ranging of geophysical data was acquired in this region both offshore and onshore. In this paper, we present the preliminary results obtained from this project about bathymetric, structural geology and wide-angle seismic data of the southern coast of Bahía de Banderas. A crustal P-wave velocity model for the southern coast of Bahía de Banderas was obtained using WAS data recorded by OBS and land seismic stations for more than 150 km across Rivera Plate and Jalisco Block. The thickness of the slab in this area is about 10 km and presents a dip angle about 8º. Continental crustal thickness below Puerto Vallarta is about 20 km, no evidence of continental Moho was found in this study. This model support that due to the convergence of Rivera Plate against Jalisco Block, the region of Bahía de Banderas is under strong crustal stresses that generate structural lineaments and have the same trends offshore and inland. Most of the seismicity reported can be associated to the main structural lineaments. The Banderas Canyon apparently is in an opening process from west to east, which seems to continue through the Rio Pitillal river valley. There is no seismic or morphological evidence to consider that the Banderas Canyon is a continuation of Vallarta Graben.South of María Cleofas Island, the SC marks the limit between RP and JB, possibly being the result of the RP against JB push, and where it is established the beginning of current subduction process with seismic activity associated. If a subduction type earthquake occurs in the SC, which is 100 km length, the associated magnitude will be about 7.5 and could be tsunamigenic. In the studied area, no clear subduction features (trench, accretionary prism) are observed.

  4. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related to the deep seismicity. However, many of these results are still preliminary, due to the lack of seismic stations in the Japan Sea. The key to resolving these critical geoscientific issues is seismic instrumentation in the Japan Sea, for which international cooperation of geoscience communities in the East Asian countries is necessary.

  5. Structural controls on the hydrogeology of the Costa Rica subduction thrust NW of the Osa Peninisula (Invited)

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J.; Ranero, C. R.

    2013-12-01

    Three-dimensional seismic reflection data from the Costa Rica margin NW of the Osa peninsula have enabled us to map the subduction megathrust from the trench to ~12 km subseafloor beneath the shelf. The subduction thrust has a large, abrupt downdip transition in seismic reflection amplitude from very high to low amplitude 6 km subseafloor beneath the upper slope. This transition broadly corresponds with an increase in concentration of microseismic earthquakes potentially due to a significant increase in plate coupling (Bangs et al., 2012, AGU Fall Meeting, T13A-2587), thus linking seismic reflection amplitude to fluid content and mechanical coupling along the fault. A detailed look at the overriding plate reflectivity shows numerous high-amplitude, continuous seismic reflections through the upper plate, many of which are clearly reversed-polarity from the seafloor reflection and are thus likely active fluid conduits through the overriding margin wedge, the slope cover sediment, and the seafloor. Broadly, the structural grain of the margin wedge trends E-W and dips landward across the lower slope and onto the shelf, presumably due to stress imparted by subducting ridges. However, directly above the abrupt high-to-low plate-boundary reflection amplitude transition, structures within the overlying margin wedge reverse dip, steepen, and change strike to an ESE direction. Within this zone we interpret a set of parallel reflections with small offsets and reverse-polarity as high-angle reverse faults that act as fluid conduits leading directly into shallow fluid migration systems described by Bangs et al., 2012 (AGU Fall Meeting, T13A-2587) and Kluesner et al. [this meeting]. The coincidence between the plate-boundary reflection amplitude patterns and the change in structure implies that the fluid migration pathways that drain the plate interface are locally disrupted by overriding plate structure in two possible ways: 1) by focusing up dip fluid migration along the plate interface into a thinner but richer fluid zone along the subduction thrust, or 2) by creating a more direct, nearly vertical route along high-angle reverse faults through the overlying margin wedge to the seafloor (possibly shortened by a factor of two) and draining deeper portions of the plate-boundary more efficiently.

  6. Seismicity of the Earth 1900-2013, seismotectonics of South America (Nazca Plate Region)

    USGS Publications Warehouse

    Hayes, Gavin P.; Smoczyk, Gregory M.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2015-01-01

    The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their descent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate, the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 millimeters/year (mm/yr) in the south, to approximately 65 mm/yr in the north. Although the rate of subduction varies little along the entire arc, there are complex changes in the geologic processes along the subduction zone that dramatically influence volcanic activity, crustal deformation, earthquake generation and occurrence all along the western edge of South America.

  7. Study of time dynamics of seismicity for the Mexican subduction zone by means of the visibility graph method.

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, Alejandro; Telesca, Luciano; Lovallo, Michele; Flores, Leticia

    2015-04-01

    By using the method of the visibility graph (VG), five magnitude time series extracted from the seismic catalog of the Mexican subduction zone were investigated. The five seismic sequences represent the seismicity which occurred between 2005 and 2012 in five seismic areas: Guerrero, Chiapas, Oaxaca, Jalisco and Michoacan. Among the five seismic sequences, the Jalisco sequence shows VG properties significantly different from those shown by the other four. Such a difference could be inherent in the different tectonic settings of Jalisco with respect to those characterizing the other four areas. The VG properties of the seismic sequences have been put in relationship with the more typical seismological characteristics (b-value and a-value of the Gutenberg-Richter law). The present study was supported by the Bilateral Project Italy-Mexico "Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences", jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016

  8. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  9. Submarine gas seepage in a mixed contractional and shear deformation regime: Cases from the Hikurangi oblique-subduction margin

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, Andreia; Pecher, Ingo; Crutchley, Gareth; Barnes, Philip M.; Bünz, Stefan; Golding, Thomas; Klaeschen, Dirk; Papenberg, Cord; Bialas, Joerg

    2014-02-01

    Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology, and climate change. Although the relationship between hydrates, gas chimneys, and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study, we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e., protothrusts, normal faults from flexural extension, and shallow (<1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2 × 7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for subseafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.

  10. Crustal Deformation in the Kanto District, Central Japan, Following the 2000 Seismo-volcanic Activity of the Izu Islands

    NASA Astrophysics Data System (ADS)

    Sagiya, T.

    2004-12-01

    Starting from June 26, 2000, an unprecedented seismic activity occurred around the Miyake-jima, Kohzu-shima, and Nii-jima Islands, in the northern Izu islands. This seismic swarm activity was initiated by the volcanic magma intrusion beneath the Miyake-jima volcano. An intrusion of massive (about 1km3) magma caused the seismic swarm activity and magnificent crustal deformation in the surrounding area within about 200km from the source region. After the seismic swarm activity calmed down, we detect a change in crustal displacement rates in the southern Kanto region from daily coordinate solutions of the continuous GPS network. Interestingly, the change appears mostly in the E-W components. Comparison of GPS velocity data for two time periods (1996-200 and 2001-2002) indicate that the westward displacement rate decreased by about 25% (from 23 mm/yr to 17 mm/yr) at Tateyama, the southern tip of the Boso Peninsula. On the other hand, we do not see significant changes in the N-S and vertical components. Continuous monitoring of crustal displacements with GPS has revealed that the post-swarm deformation is now coming back to the pre-swarm steady state. That is, the time series of E-W component show transient curves, converging into the original steady state. The transient curve can be equally well reproduced by an exponential decay or a logarithmic function. The relaxation time for the exponential curve is estimated as about 3 years. One possible explanation for this transient deformation is viscoelastic relaxation. Since the Izu Islands are situated on the oceanic Philippine Sea plate, the upper mantle with a low viscosity would response to the huge stress change cause by the magma intrusion. The other possibility is a change of frictional property on the plate interface between the Philippine Sea and the Pacific plate. Under the southern Kanto area, the subducted Philippine Sea slab leans on the subdcted Pacific slab. Interaction between these two oceanic plates is still not understood well. But the massive dyke intrusion strongly pushed the subducted Philippine Sea slab, changing the frictional status at the bottom of the Philippine Sea plate. Since the motion of the Pacific plate subduction is nearly westward, this idea can be a solution for the observation that only the E-W components are affected.

  11. Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling

    NASA Astrophysics Data System (ADS)

    Métois, M.; Socquet, A.; Vigny, C.; Carrizo, D.; Peyrat, S.; Delorme, A.; Maureira, E.; Valderas-Bermejo, M.-C.; Ortega, I.

    2013-09-01

    No major earthquake occurred in North Chile since the 1877 Mw 8.6 subduction earthquake that produced a huge tsunami. However, geodetic measurements conducted over the last decade in this area show that the upper plate is actually deforming, which reveals some degree of locking on the subduction interface. This accumulation of elastic deformation is likely to be released in a future earthquake. Because of the long elapsed time since 1877 and the rapid accumulation of deformation (thought to be 6-7 cm yr-1), many consider this area is a mature seismic gap where a major earthquake is due and seismic hazard is high. We present a new Global Positioning System (GPS) velocity field, acquired between 2008 and 2012, that describes in some detail the interseismic deformation between 18°S and 24°S. We invert for coupling distribution on the Nazca-South America subduction interface using elastic modelling. Our measurements require that, at these latitudes, 10 to 12 mm yr-1 (i.e. 15 per cent of the whole convergence rate) are accommodated by the clockwise rotation of an Andean block bounded to the East by the subandean fold-and-thrust belt. This reduces the accumulation rate on the subduction interface to 56 mm yr-1 in this area. Coupling variations on the subduction interface both along-strike and along-dip are described. We find that the North Chile seismic gap is segmented in at least two highly locked segments bounded by narrow areas of weak coupling. This coupling segmentation is consistent with our knowledge of the historical ruptures and of the instrumental seismicity of the region. Intersegment zones (Iquique, Mejillones) correlate with high background seismic rate and local tectonic complexities on the upper or downgoing plates. The rupture of either the Paranal or the Loa segment alone could easily produce a Mw 8.0-8.3 rupture, and we propose that the Loa segment (from 22.5°S to 20.8°S) may be the one that ruptured in 1877.

  12. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    USGS Publications Warehouse

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  13. Upper crustal fault reactivation and the potential of triggered earthquakes on the Atacama Fault System, N-Chile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken

    2016-04-01

    The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.

  14. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et al. (2009). Acknowledgement The marine seismic experiment was conducted by R/V Hakuhou-maru of Japan Agency for Marine-Earth Science and Technology, and the OBSs were retrieved by Shincho-maru of Shin-Nihon-Kaiji co. Ltd. (Present, Fukada salvage co. Ltd.). We would like to thank captains and the crew of Hakuho-maru and Shincho-maru. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under its Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions, and from the Grants in Aid for Scientific Research (25287109).

  15. Seismic evidence for rotating mantle flow around subducting slab edge associated with oceanic microplate capture

    NASA Astrophysics Data System (ADS)

    Mosher, Stephen G.; Audet, Pascal; L'Heureux, Ivan

    2014-07-01

    Tectonic plate reorganization at a subduction zone edge is a fundamental process that controls oceanic plate fragmentation and capture. However, the various factors responsible for these processes remain elusive. We characterize seismic anisotropy of the upper mantle in the Explorer region at the northern limit of the Cascadia subduction zone from teleseismic shear wave splitting measurements. Our results show that the mantle flow field beneath the Explorer slab is rotating anticlockwise from the convergence-parallel motion between the Juan de Fuca and the North America plates, re-aligning itself with the transcurrent motion between the Pacific and North America plates. We propose that oceanic microplate fragmentation is driven by slab stretching, thus reorganizing the mantle flow around the slab edge and further contributing to slab weakening and increase in buoyancy, eventually leading to cessation of subduction and microplate capture.

  16. Metamorphic records of multiple seismic cycles during subduction

    PubMed Central

    Hacker, Bradley R.; Seward, Gareth G. E.; Kelley, Chris S.

    2018-01-01

    Large earthquakes occur in rocks undergoing high-pressure/low-temperature metamorphism during subduction. Rhythmic major-element zoning in garnet is a common product of such metamorphism, and one that must record a fundamental subduction process. We argue that rhythmic major-element zoning in subduction zone garnets from the Franciscan Complex, California, developed in response to growth-dissolution cycles driven by pressure pulses. Using electron probe microanalysis and novel techniques in Raman and synchrotron Fourier transform infrared microspectroscopy, we demonstrate that at least four such pressure pulses, of magnitude 100–350 MPa, occurred over less than 300,000 years. These pressure magnitude and time scale constraints are most consistent with the garnet zoning having resulted from periodic overpressure development-dissipation cycles, related to pore-fluid pressure fluctuations linked to earthquake cycles. This study demonstrates that some metamorphic reactions can track individual earthquake cycles and thereby opens new avenues to the study of seismicity. PMID:29568800

  17. Analysis of the Seismic Activity During the Preparatory Phase of the Mw 8.2 Iquique Earthquake, Chile 2014

    NASA Astrophysics Data System (ADS)

    Aden-Antoniow, F.; Satriano, C.; Poiata, N.; Bernard, P.; Vilotte, J. P.; Aissaoui, E. M.; Ruiz, S.; Schurr, B.; Sobiesiak, M.

    2015-12-01

    The 2014 Iquique seismic crisis, culminating with the main Mw 8.2 Iquique earthquake (Chile), 1st of April 2014, and the largest Mw 7.7 aftershock, 3rd of April, highlighted a complex unlocking of the North Chile subduction interface. Indeed, during many months preceding this event, at least three large seismic clusters have been observed, in July 2013, in January and in March 2014. Their location and final migration towards the mainshock rupture area represents the main motivation of this work.We built a new, more complete catalogue for the period over December 2013 to March 2014 in Northern Chile, using a new automated array method for earthquake detection and location [Poiata et al. 2015]. With the data-set provided by the IPOC and ILN networks, we detected an average of 8000 events per month, forty times more than the catalogue produced by Centro Sismologico National del Chile. The new catalogue decreases the magnitude of completeness by more than two units, from 3.3 to 1.2. We observe two shallow clusters offshore of the cities of Iquique and Pisagua in January 2014, and a strong one covering the rupture zone of Mw 8.2 mainshock in March. A spatial-temporal statistical analysis of these three clusters allows us to better characterize the whole preparatory phase. We interpret our results in light of the location, timing and energy of several aseismic slip events, evidenced by Boudin et al. [AGU 2014], which coincide with the seismic clusters. We propose that the preparatory phase of the Iquique earthquake consists of a complex interplay of seismic and aseismic slip along the subduction surface. Furthermore, our analysis raises new questions regarding the complex slip during the Mw 7.7 aftershock, and the spatial variation of the effective coupling along the subduction interface, imaged by GPS studies, suggesting new research direction that will be outlined.

  18. TEM PSHA2015 Reliability Assessment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Wang, Y. J.; Chan, C. H.; Ma, K. F.

    2016-12-01

    The Taiwan Earthquake Model (TEM) developed a new probabilistic seismic hazard analysis (PSHA) for determining the probability of exceedance (PoE) of ground motion over a specified period in Taiwan. To investigate the adequacy of the seismic source parameters adopted in the 2015 PSHA of the TEM (TEM PSHA2015), we conducted several tests of the seismic source models. The observed maximal peak ground acceleration (PGA) of the ML > 4.0 mainshocks in the 23-year data period of 1993-2015 were used to test the predicted PGA of PSHA from the areal and subduction zone sources with the time-independent Poisson assumption. This comparison excluded the observations from 1999 Chi-Chi earthquake, as this was the only earthquake associated with the identified active fault in this past 23 years. We used tornado diagrams to analyze the sensitivities of these source parameters to the ground motion values of the PSHA. This study showed that the predicted PGA for a 63% PoE in the 23-year period corresponded to the empirical PGA and the predicted numbers of PGA exceedances to a threshold value 0.1g close to the observed numbers, confirming the parameter applicability for the areal and subduction zone sources. We adopted the disaggregation analysis from a hazard map to determine the contribution of the individual seismic sources to hazard for six metropolitan cities in Taiwan. The sensitivity tests of the seismogenic structure parameters indicated that the slip rate and maximum magnitude are dominant factors for the TEM PSHA2015. For densely populated faults in SW Taiwan, maximum magnitude is more sensitive than the slip rate, giving the concern on the possible multiple fault segments rupture with larger magnitude in this area, which was not yet considered in TEM PSHA2015. The source category disaggregation also suggested that special attention is necessary for subduction zone earthquakes for long-period shaking seismic hazards in Northern Taiwan.

  19. Data Mining for Tectonic Tremor in a Large Global Seismogram Database using Preprocessed Data Quality Measurements

    NASA Astrophysics Data System (ADS)

    Rasor, B. A.; Brudzinski, M. R.

    2013-12-01

    The collision of plates at subduction zones yields the potential for disastrous earthquakes, yet the processes that lead up to these events are still largely unclear and make them difficult to forecast. Recent advancements in seismic monitoring has revealed subtle ground vibrations termed tectonic tremor that occur as long-lived swarms of narrow bandwidth activity, different from local earthquakes of comparable amplitude that create brief signals of broader, higher frequency. The close proximity of detected tremor events to the lower edge of the seismogenic zone along the subduction interface suggests a potential triggering relationship between tremor and megathrust earthquakes. Most tremor catalogs are constructed with detection methods that involve an exhausting download of years of high sample rate seismic data, as well as large computation power to process the large data volume and identify temporal patterns of tremor activity. We have developed a tremor detection method that employs the underutilized Quality Analysis Control Kit (QuACK), originally built to analyze station performance and identify instrument problems across the many seismic networks that contribute data to one of the largest seismogram databases in the world (IRIS DMC). The QuACK dataset stores seismogram amplitudes at a wide range of frequencies calculated every hour since 2005 for most stations achieved in the IRIS DMC. Such a preprocessed dataset is advantageous considering several tremor detection techniques use hourly seismic amplitudes in the frequency band where tremor is most active (2-5 Hz) to characterize the time history of tremor. Yet these previous detection techniques have relied on downloading years of 40-100 sample-per-second data to make the calculations, which typically takes several days on a 36-node high-performance cluster to calculate the amplitude variations for a single station. Processing times are even longer for a recently developed detection algorithm that utilize the ratio of amplitudes between tremor frequencies and those of local earthquakes (10-15 Hz) and surface waves (0.02-0.1 Hz). Using the QuACK dataset, we can make the more advanced calculations in a fraction of the time. This method works well to quickly detect tremor in the Cascadia region by finding similar times of increased tremor activity when comparing across a variety of stations within a 100km radius of a reference station. We confirm the legitimacy of this method by demonstrating comparable results to several previously developed tremor detection techniques despite a much shorter processing time. The rapid processing time has allowed us to refine the detection algorithm by seeking more optimal frequency bands by comparing results from our technique and others, using several stations across the Cascadia subduction zone. As we move forward, we will apply the method to other subduction zones, and ultimately to the vast set of seismic data stored at the IRIS DMC for which tremor has not been previously investigated.

  20. Historical Seismicity of Central Panama

    NASA Astrophysics Data System (ADS)

    Camacho, E.

    2013-05-01

    Central Panama lies in the Panama microplate, neighboring seismically active regions of Costa Rica and Colombia. This region, crossed by the Panama Canal, concentrates most of the population and economic activity of the Republic of Panama. Instrumental observation of earthquakes in Panama began on 1882 by the Compagnie Universelle du Canal Interocéanique de Panama and continued from 1904 to 1977 by the Panama Canal Company. From October 1997 to March 1998 the USGS deployed a temporary digital seismic network. Since 2003 this region is monitored by a digital seismic network operated by the Panama Canal Authority and I complemented by the broad band stations of the University of Panama seismic network. The seismicity in this region is very diffuse and the few events which are recorded have magnitudes less than 3.0. Historical archives and antique newspapers from Spain, Colombia, Panama and the United Sates have been searched looking for historical earthquake information which could provide a better estimate of the seismicity in this region. We find that Panama City has been shaken by two destructive earthquakes in historical times. One by a local fault (i.e. Pedro Miguel fault) on May 2, 1621 (I=Vlll MM), and a subduction event from the North Panama Deformed Belt (NPDB) on September 7, 1882 (I=Vll MM). To test these findings two earthquakes scenarios were generated, using SELENA, for Panama City Old Quarter. Panama City was rebuilt on January 21, 1673, on a rocky point facing the Pacific Ocean after the sack by pirate Morgan on January 28, 1671. The pattern of damage to calicanto (unreinforced colonial masonry) and wood structures for a crustal local event are higher than those for an event from the NPDB and seem to confirm that the city has not been shaken by a major local event since May 2, 1621 and a subduction event since September 7, 1882

  1. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert the measured compliances in this frequency band using a genetic algorithm that solves for the S-wave velocity, P-wave velocity, and density in a layered structure. By including constraints on the Vp distribution from active-source studies, these parameters appear well constrained down to about 4 km depth from our dataset. There is a clear difference in observed compliance values between stations close to the deformation front (~10 km) and those further up the continental slope (~30-40 km) indicating a region of unconsolidated, high-porosity sediment similar to the off-Tohoku region. The low S-wave velocities and high Vp/Vs ratios in the up-dip region correspond to unconsolidated high-porosity sediments. We calculated the effect of this material property contrast on the inter-seismic strain accumulation in the up-dip region of the subduction zone using a finite element model and find that the sediments can increase the amount of inter-seismic strain accumulated in the up-dip region by >100% relative to a homogenous elastic model.

  2. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs

    USGS Publications Warehouse

    Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.

    1991-01-01

    The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.

  3. Subduction of lower continental crust beneath the Pamir imaged by receiver functions from the seismological TIPAGE network

    NASA Astrophysics Data System (ADS)

    Schneider, F. M.; Yuan, X.; Schurr, B.; Mechie, J.; Sippl, C.; Kufner, S.; Haberland, C. A.; Minaev, V.; Oimahmadov, I.; Gadoev, M.; Abdybachaev, U.; Orunbaev, S.

    2013-12-01

    As the northwestern promontory of the Tibetan Plateau, the Pamir forms an outstanding part of the India-Asia convergence zone. The Pamir plateau has an average elevation of more than 4000 m surrounded by peaks exceeding 7000 m at its northern, eastern and southern borders. The Pamir is thought to consist of the same collage of continental terranes as Tibet. However, in this region the Indian-Asian continental collision presents an extreme situation since, compared to Tibet, in the Pamir a similar amount of north-south convergence has been accommodated within a much smaller distance. The Pamir hosts a zone of intermediate depth earthquakes being the seismic imprint of Earth's most spectacular active intra-continental subduction zone. We present receiver function (RF) images from the TIPAGE seismic profile giving evidence that the intermediate depth seismicity is situated within a subducted layer of lower continental crust: We observe a southerly dipping 10-15 km thick low-velocity zone (LVZ), that starts from the base of the crust and extends to a depth of more than 150 km enveloping the intermediate depth earthquakes that have been located with high precision from our local network records. In a second northwest to southeast cross section we observe that towards the western Pamir the dip direction of the LVZ bends to the southeast following the geometry of the intermediate depth seismic zone. Our observations imply that the complete arcuate intermediate depth seismic zone beneath the Pamir traces a slab of subducting Eurasian continental lower crust. These observations provide important implications for the geodynamics of continental collision: First, it shows that under extreme conditions lower crust can be brought to mantle depths despite its buoyancy, a fact that is also testified by the exhumation of ultra-high pressure metamorphic rocks. Recent results from teleseismic tomography show a signal of Asian mantle lithosphere down to 600 km depth, implying a great amount of mantle lithosphere to be involved in the subduction, which possibly transmits pull forces to the lower crust to overcome its buoyancy. Secondly, the observation that earthquakes occur within the subducted crust implies that similar to oceanic subduction, metamorphic processes within the lower continental crust can cause or enable earthquakes at depths, where the high pressure and temperature conditions would normally not allow brittle failure of rocks. For imaging of the dipping LVZ, cross sections of Q- and T-component RFs are generated using a migration technique that accounts for the inclination of the conversion layers. Furthermore we present a Moho map of the Pamir, showing crustal thickness in most places of the Pamir ranging between 65 km and 75 km, while the greatest Moho depths of around 80 km are observed at the upper end of the LVZ. The surrounding areas namely the Tajik Depression, and the Ferghana and Tarim Basins show Moho depths of around 40 to 45 km giving an estimate of the pre-collisional crustal thickness of the former Basin area that was overthrust by the Pamir.

  4. Seafloor Structural Geomorphic Evolution in Response to Seamount Subduction, Poverty Bay Indentation, New Zealand

    NASA Astrophysics Data System (ADS)

    Bodger, K. L.; Pettinga, J. R.; Barnes, P. M.

    2006-12-01

    More than 4000 km2 of high quality bathymetric and backscatter imaging of the Poverty Bay Indentation across the northern part of the Hikurangi subduction zone provide new insights into the relationship between seafloor morphology and active structures. The swath bathymetry extends from the edge of the continental shelf to the abyssal plain, at depths of between 100 to 3500 metres. The origin of the slope re-entrant is inferred to be related to multiple seamount impacts, and these collisions have initiated numerous large-scale gravitational collapse structures, multiple debris flow and avalanche deposits, which range in down-slope length from a few hundred metres to more than 40 km. The Poverty Bay Indentation has been simultaneously eroded by canyon systems that exhibit many of the features of incised river systems onshore. The swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as a limited number of core samples. Seismic reflection profiles and seafloor morphology are used to provide three morpho-structural sections. The comparison of these sections highlights the different effects of seamount subduction on the evolution of the margin and the re-entrant. The northern two sections are located to the north side of the re-entrant and reveal the role of seamount impact on the interrelationship between the structural evolution with respect to seafloor morphology. Here the development of an over-steepened margin with fault reactivation, inversion and over- printing leads to very complex structural styles of deformation and geometry in both seismic reflection profiles and seafloor morphology. There is evidence of an older, inactive thrust front buried beneath the upper and mid- slope basins. Beneath the mid-slope a subducted seamount is revealed by the presence of relief on the subduction interface and associated structural complexity in the over-riding wedge. The Poverty Bay canyon represents a structural transition zone coinciding with the re-entrant. The accretionary slope south of the re- entrant conforms more closely to the classic accretionary slope style of deformation. Backthrusts in this section propagate from a much shallower level than in the northern sections. Inversion is commonly observed in the mid slope and continental shelf basins, particularly to the south. Initial interpretations indicate that: i) seamount impact significantly influences the structural evolution, and submarine geomorphology of the inboard slope of the Hikurangi subduction zone, including the generation of large-scale gravitational collapse features; ii) the large gully systems located at the upper shelf slope boundary represent the most likely source areas for the multiple mega debris flows recognised from seafloor morphology and in seismic sections; iii) there exists a complex interaction between the evolving thrust-driven submarine ridges, ponded slope basins and the structural geometry and evolution of the near-surface fault zones (imbrication); iv) the submarine canyons may initiate complex patterns of fault zone segmentation and displacement transfer within the accretionary slope; and v) seamount subduction and subsequent instability of the margin may directly result in tsunami generation.

  5. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta block, the Perija Range, and the Merida Andes (Kellogg and Bonini, 1982). The steep descent of the CAR under Maracaibo implies that the CAR plate is torn somewhere between the Merida Andes and the Caribbean Sea, where it forms the ocean floor. An upcoming broadband seismic experiment will examine the CAR flat slab and the suspected slab tear in detail.

  6. The Cascadia Paradox: Understanding Mantle Flow in the Cascadia Subduction System

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2015-12-01

    The pattern of mantle flow in subduction systems, and the processes that control the mantle flow field, is a fundamental but still poorly understood aspect of subduction dynamics. Mantle flow plays a key role in controlling the transport of volatiles and melt in the wedge, deformation of the overriding plate, mass transfer between the upper and lower mantle, and the morphology and dynamics of slabs. The Cascadia subduction zone provides a compelling system in which to understand the controls on mantle flow, particularly given the dense geophysical observations provided by EarthScope, GeoPRISMS, the Cascadia Initiative, and related efforts. Cascadia is a particularly intriguing system because observations of seismic anisotropy, which provide relatively direct constraints on mantle flow, seem to yield contradictory views of the mantle flow field in different parts of the system. Observations of seismic anisotropy on the overriding plate apparently require a significant component of three-dimensional, toroidal flow around the slab edge, while new observations from offshore stations are compellingly explained with a simple two-dimensional entrained flow model. Recent evidence from seismic tomography for the fragmentation of the Cascadia slab at depth provides a further puzzle: how can a fragmented slab provide a driving force for either two-dimensional entrained flow or three-dimensional toroidal flow due to slab rollback? I will present a synthesis of recent observations of seismic anisotropy in the Cascadia subduction system, and how they can be integrated with constraints from geodynamical modeling, geochemistry, and the history and timing of Pacific Northwest volcanism. I will discuss the compelling but contradictory evidence for each of the endmember mantle flow models (two-dimensional entrained flow vs. three-dimensional toroidal flow) and explore possible avenues for resolving the Cascadia Paradox.

  7. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  8. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  9. Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2012-12-01

    Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).

  10. Deep seismic reflection evidence for ancient subduction and collision zones within the continental lithosphere of northwestern Europe

    NASA Astrophysics Data System (ADS)

    Balling, N.

    2000-12-01

    Deep seismic profiling experiments in the region of NW Europe (including BABEL in the Gulf of Bothnia and the Baltic Sea, Mobil Search in the Skagerrak and MONA LISA in the North Sea) have demonstrated the existence of seismic reflectors in the mantle lithosphere beneath the Baltic Shield, the Tornquist Zone and the North Sea basins. Different sets of reflectors are observed, notably dipping and sub-horizontal. Dipping, distinct reflectivity, which may be followed from Moho/Moho offsets into the deeper parts of the continental lithosphere, is of special interest because of its tectonic and geodynamic significance. Such reflectivity, observed in several places, dipping 15-35° and covering a depth range of 30-90 km, constrained by surface geological information and radiometric age data, is interpreted to represent fossil, ancient subduction and collison zones. Subduction slabs with remnant oceanic basaltic crust transformed into eclogite is assumed, in particular, to generate deep seismic reflectivity. Deep seismic evidence is presented for subduction, crustal accretion and collision processes with inferred ages from 1.9 to 1.1 Ga from the main structural provinces within the Baltic Shield including Svecofennian, Transscandinavian Igneous Belt, Gothian and Sveconorwegian. Along the southwestern border of Baltica (in the southeastern North Sea) south-dipping crustal and sub-crustal reflectivity is observed down to a depth of about 90 km, close to the lithosphere-asthenosphere boundary. These structures are interpreted to reveal a lithosphere-scale Caledonian (ca. 440 Ma) suture zone resulting from the closure of the Tornquist Sea/Thor Ocean and the amalgamation of Baltica and Eastern Avalonia. These results demonstrate that deep structures within the continental lithosphere, originating from early crust-forming plate tectonic processes, may survive for a very long time and form seismic marker reflectivity of great value in geotectonic interpretation and reconstructions. Furthermore, the depth of dipping reflectivity from ancient structures, such as subduction slabs, significantly contributes information about the thickness of the coherent lithosphere. The seismic observations and our interpretations support plate tectonic and structural models, suggesting crustal growth and amalgamation of tectonic units in the Baltic Shield and along its southwestern margin generally from the northeast (in present-day orientation) towards the southwest and west, likely to result in regional deep structural and tectonic age zonations.

  11. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com; Lantu,; Aswad, Sabrianto

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). Themore » result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.« less

  12. Is the Local Seismicity in Haiti Capable of Imaging the Northern Caribbean Subduction?

    NASA Astrophysics Data System (ADS)

    Corbeau, J.; Clouard, V.; Rolandone, F.; Leroy, S. D.; de Lepinay, B. M.

    2017-12-01

    The boundary between the Caribbean (CA) and North American (NAM) plates in the Hispaniola region is the western prolongation of the NAM plate subduction evolving from a frontal subduction in the Lesser Antilles to an oblique collision against the Bahamas platform in Cuba. We analyze P-waveforms arriving at 27 broadband seismic temporary stations deployed along a 200 km-long N-S transect across Haiti, during the Trans-Haiti project. We compute teleseismic receiver functions using the ETMTRF method, and determine crustal thickness and bulk composition (Vp/Vs) using the H-k stacking method. Three distinctive crustal domains are imaged. We relate these domains to crustal terranes that have been accreted along the plate boundary during the northeastwards displacement of the CA plate. We propose a N-S crustal profile across Haiti accounting for the surface geology, shallow structural history and these new seismological constraints. Local seismicity recorded by the temporary network from April 2013 to June 2014 is used to relocate the seismicity. A total of 593 events were identified with magnitudes ranging from 1.6 to 4.5. This local seismicity, predominantly shallow (< 20 km) and situated in the southern part of Haiti along the major Enriquillo-Plantain-Garden strike-slip fault zone (EPGFZ) and offshore in Gonâve Bay, helps us to image deep active structures. Moment tensors for earthquakes with magnitudes between 3 and 4 were calculated by full waveform inversion using the ISOLA software. The analysis of the new moment tensors for the Haiti upper lithosphere indicates that normal, thrust and strike-slip faulting are equitably distributed. We found strike-slip events along the EPGFZ, near the location of the January 12th, 2010 earthquake. Most of the normal events are located in the area of Enriquillo and Azuei lakes, while the thrust events are located on both sides of the southern Peninsula of Haiti. The preliminary seismic data of our Haitian network, even noisy, tend to confirm that the North American slab in western Hispaniola is disappearing and that the scarcity of the seismic events could not be only the effect of the lack of a seismic network. Due to the geometry of the plate boundary, the deformation is predominantly strike-slip and there is no accommodation of an important part of convergence in this area.

  13. Megathrust Earthquakes and Sediment Input to the Subduction Channel

    NASA Astrophysics Data System (ADS)

    Scholl, David W.; Keranen, Katie; von Huene, Roland; Wells, Ray; Ryan, Holly; Kirby, Stephen

    2010-05-01

    HABITATS OF GREAT MEGATHRUST EARTHQUAKES: Great megathrust earthquakes (Mw8.5 or higher) most commonly (~65%) nucleate along subduction zones (SZ) bordered by laterally continuous (more than 500 km), sediment-flooded trenches. Examples include: south-central Chile (1922, Mw8.5; 1960, Mw9.5), eastern Alaska (1964, Mw9.2), Sumatra (2004, Mw9.1), Cascadia (1700, Mw9.0), Colombia (1906, Mw8.8), Sumatra (1883, Mw8.8), west-central Aleutian (1965, Mw8.7), central Aleutian (1986, Mw8.7), Sumatra (2005, Mw8.6), and Nankai (1707, Mw8.5). All known megathrust events greater than Mw9 ruptured at sediment-charged SZs (Alaska, S.C. Chile, Sumatra). Sediment entering high-seismicity SZs is typically a 1-3-km-thick wedge of trench-axis turbidite beds overlying a 0.3-2-km-thick sequence of hemipelagic or abyssal turbiditic deposits that accrued seaward of the trench. Most commonly, laterally-continuous turbidite wedges are built by down-axis flowing turbidity currents sourced from mountainous and/or glaciated drainages (e.g., SE Alaska, Cascadia, Southern Andes, Himalaya). Great rupture events also occur at SZs receiving little sediment, for example Kamchatka (1952, Mw9.0), Kuril Islands (1963, Mw8.5) and north Chile SZs (1868, Mw9.0). These SZs exhibit evidence of upper plate thinning, subsidence, and truncation effected by frontal and basal subduction erosion. They also have a SC filled with ~1 km or more of debris in transport toward the mantle. WORKINGS OF THE SUBDUCTION CHANNEL (SC): Beneath the submerged forearc, the SC functions to transport subducted ocean floor sediment and tectonically eroded forearc debris toward and ultimately into the mantle. The SC is the lowest structural unit containing upper plate crustal material and the seismogenic zone runs along the SC's upper boundary. It has long been conjectured (e.g., Ruff, 1989; PAGEOPH, v. 129. Nos 1/2) that a laterally uninterrupted, sediment- or debris-charged SC serves to smooth the surface of interplate slip to set up conditions for lengthy, high moment-release ruptures. Maximum slip is commonly concentrated beneath a locally thinned, upper plate crust underlying prominent forearc basins. These structures, in positive feed back, are likely deepened co-seismically by enhance basal subduction erosion. The removed material presumably lowers the effective stress on the decollement and sets up conditions for follow-on events of high, co-seismic slip. The SC also works tectonically to underplate the base of the inner submerged forearc and induce co-seismic uplift at high-angle reverse faults. SEISMIC CONSEQUENCES OF SUBDUCTION ZONE FEEDING: Observations imply that subducted bathymetric ridges and seamounts act to both nucleate seismic rupture and also arrest lateral rupturing. Thick sections of sedimentary and erosional debris entering the subduction channel appear to act differently and favor (1) continuation of rupture, (2) large slip beneath forearc basins, and (3) propogation of slip upward at outer-forearc splay faults and nearshore reverse faults to generate both local and trans-oceanic tsunamis. The potential for nucleation of great megathrust earthquakes along thickly sediment SZs, no matter the rate or lower plate underthrusting, obliquity of convergence, or crustal age, must be set high. Similarly, seismogenic risk for highly erosional SZs little perturbed by subducting relief must also be set high.

  14. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  15. Considering potential seismic sources in earthquake hazard assessment for Northern Iran

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila

    2014-07-01

    Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.

  16. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    NASA Astrophysics Data System (ADS)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  17. GPS Monitoring of Subduction Zone Deformation in Costa Rica

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The subduction of the Cocos plate beneath Costa Rica is among the highest convergence rates in the world. The high subduction rate and nearness of the Nicoya Peninsula, Costa Rica to the Middle America Trench (MAT) provide a unique opportunity to map variations in interseismic strain of the crust above the seismogenic zone in response to variations in seismic coupling.

  18. Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow

    NASA Astrophysics Data System (ADS)

    Evangelidis, C. P.

    2017-12-01

    The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve a more definite image of the structure and geodynamics of this area.

  19. Depth-varying azimuthal anisotropy in the Tohoku subduction channel

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We determine a detailed 3-D model of azimuthal anisotropy tomography of the Tohoku subduction zone from the Japan Trench outer-rise to the back-arc near the Japan Sea coast, using a large number of high-quality P and S wave arrival-time data of local earthquakes recorded by the dense seismic network on the Japan Islands. Depth-varying seismic azimuthal anisotropy is revealed in the Tohoku subduction channel. The shallow portion of the Tohoku megathrust zone (<30 km depth) generally exhibits trench-normal fast-velocity directions (FVDs) except for the source area of the 2011 Tohoku-oki earthquake (Mw 9.0) where the FVD is nearly trench-parallel, whereas the deeper portion of the megathrust zone (at depths of ∼30-50 km) mainly exhibits trench-parallel FVDs. Trench-normal FVDs are revealed in the mantle wedge beneath the volcanic front and the back-arc. The Pacific plate mainly exhibits trench-parallel FVDs, except for the top portion of the subducting Pacific slab where visible trench-normal FVDs are revealed. A qualitative tectonic model is proposed to interpret such anisotropic features, suggesting transposition of earlier fabrics in the oceanic lithosphere into subduction-induced new structures in the subduction channel.

  20. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    NASA Astrophysics Data System (ADS)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image of velocity structure from scattered wave migration, we can test whether the thrust zone is above the Yakutat terrane or between the Yakutat terrane and the subducting Pacific plate. Our refined relocations will also improve our understanding of other active faults (e.g., splay faults) and their relationship to the plate boundary.

  1. Structure and Evolution of the Forearc-Arc Crust Along the Tonga-Kermadec Subduction System from Integrated Geophysical Data

    NASA Astrophysics Data System (ADS)

    Funnell, M.; Peirce, C.; Robinson, A. H.; Watts, A. B.; Grevemeyer, I.

    2016-12-01

    Variations in tectonic forces and inputs to subduction systems generate, alter, and deform overriding crustal material. Although these processes are recorded in the crustal structure of volcanic arcs and their backarcs, the continuous nature of plate convergence superimposes subsequent episodes of crustal evolution on older features. Seismic imaging at modern subduction zones enhances our understanding of forearc development and variations in present-day deformation caused by inherited structures. In 2011 a set of multichannel and wide-angle seismic profiles imaged the forearc-arc crust and upper mantle structure along the 2700 km-long NNE-SSW trending Tonga-Kermadec subduction zone. The Tonga forearc region exhibits an 100 km-wide, 2 km high bathymetric elevation, with a 3 km-thick upper and mid-crust (Vp <6 km s-1), and a lower-crustal ridge 30 km wide comprising velocities up to 7.4 km s-1 that characterize an extinct Eocene ( 50 Ma) arc. By contrast, the active arc is <10 km wide and exhibits lower-crustal velocities below 7.0 km s-1, most likely representing intermediate compositions. This structural change suggests significant evolution, alteration, and modification of the overriding crust since the onset of subduction at this margin. Gravity anomaly modelling suggests that the extinct arc within the Tonga forearc region comprises relatively dense mafic-ultrabasic material that extends south beneath the Kermadec forearc and terminates at 32°S. The apparent southern termination of the extinct arc coincides with the partitioning of morphological features at 32°S, including a 10-km westward-step of the active arc and a 1.5 km deeper backarc to the south. We propose that tectonic partitioning about the 32°S boundary is the result of variations in the inherited crustal structure, which is divided by the presence and absence, to the north and south respectively, of the extinct volcanic arc.

  2. Two-dimensional thermal modeling associated with subduction of the Philippine Sea plate in southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Yoshioka, Shoichi; Matsumoto, Takumi; Ji, Yingfeng

    2018-01-01

    In Hyuga-nada, southern Kyushu in southwest Japan, afterslip events were found in association with the two large interplate earthquakes, which occurred on October 19 and December 3, 1996. In Kyushu, low-frequency earthquakes (LFEs) and tectonic tremors are not common, but a considerable concentration of tectonic tremors is observed beneath the Pacific coast of the Miyazaki prefecture. To investigate the generation mechanisms of these seismic events, we performed 2-D box-type time-dependent thermal modeling in southern Kyushu. As a result, the temperature range of the upper surface of the subducting Philippine Sea (PHS) plate, where the afterslip occurred, reached approximately 300 to 350 °C. The temperatures where the tectonic tremors occurred ranged from 450 to 650 °C in the mantle wedge corner. We also estimated the spatial distribution of water content within the subducting PHS plate, using phase diagrams of hydrous mid-ocean ridge basalt (MORB) and ultramafic rock. Then, we found that no characteristic phase transformations accompany the dehydration of the subducting PHS plate in the afterslip region, but phase transformation from lawsonite blueschist to lawsonite eclogite is expected within the oceanic crust of the PHS plate just below the active region of the tectonic tremors. Our estimated water content distribution is consistent with the VP/VS ratio calculated from the seismic tomography. Therefore, we conclude that the occurrence of the afterslip is controlled by the temperature condition at the plate boundary, and occurs near the down-dip limit of the seismogenic zone. On the other hand, determining the major factors leading to the occurrence of the tectonic tremors is difficult, we estimated the temperature in the mantle wedge is ranging from 450 °C to 650 °C, and dehydration of 1.0 wt% would be expected from the subducting PHS plate near the active region of the tectonic tremors.

  3. Constraining central Neo-Tethys Ocean reconstructions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Nerlich, Rainer; Colli, Lorenzo; Ghelichkhan, Siavash; Schuberth, Bernhard; Bunge, Hans-Peter

    2017-04-01

    A striking feature of the Indian Ocean is a distinct geoid low south of India, pointing to a regionally anomalous mantle density structure. Equally prominent are rapid plate convergence rate variations between India and SE Asia, particularly in Late Cretaceous/Paleocene times. Both observations are linked to the central Neo-Tethys Ocean subduction history, for which competing scenarios have been proposed. Here we evaluate three alternative reconstructions by assimilating their associated time-dependent velocity fields in global high-resolution geodynamic Earth models, allowing us to predict the resulting seismic mantle heterogeneity and geoid signal. Our analysis reveals that a geoid low similar to the one observed develops naturally when a long-lived back-arc basin south of Eurasia's paleomargin is assumed. A quantitative comparison to seismic tomography further supports this model. In contrast, reconstructions assuming a single northward dipping subduction zone along Eurasia's margin or models incorporating a temporary southward dipping intraoceanic subduction zone cannot sufficiently reproduce geoid and seismic observations.

  4. Constraining central Neo-Tethys Ocean reconstructions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Nerlich, Rainer; Colli, Lorenzo; Ghelichkhan, Siavash; Schuberth, Bernhard; Bunge, Hans-Peter

    2016-09-01

    A striking feature of the Indian Ocean is a distinct geoid low south of India, pointing to a regionally anomalous mantle density structure. Equally prominent are rapid plate convergence rate variations between India and SE Asia, particularly in Late Cretaceous/Paleocene times. Both observations are linked to the central Neo-Tethys Ocean subduction history, for which competing scenarios have been proposed. Here we evaluate three alternative reconstructions by assimilating their associated time-dependent velocity fields in global high-resolution geodynamic Earth models, allowing us to predict the resulting seismic mantle heterogeneity and geoid signal. Our analysis reveals that a geoid low similar to the one observed develops naturally when a long-lived back-arc basin south of Eurasia's paleomargin is assumed. A quantitative comparison to seismic tomography further supports this model. In contrast, reconstructions assuming a single northward dipping subduction zone along Eurasia's margin or models incorporating a temporary southward dipping intraoceanic subduction zone cannot sufficiently reproduce geoid and seismic observations.

  5. Constraint on the magma sources in Luzon Island Philippines by using P and S wave local seismic tomography

    NASA Astrophysics Data System (ADS)

    Nghia, N. C.; Huang, B. S.; Chen, P. F.

    2017-12-01

    The subduction of South China Sea beneath the Luzon Island has caused a complex setting of seismicity and magmatism because of the proposed ridge subduction and slab tearing. To constrain the validity of slab tearing induced by ridge subduction and their effect, we performed a P and S wave seismic tomography travel time inversion using LOTOS code. The dataset has been retrieved from International Seismological Centre from 1960 to 2008. A 1D velocity inverted by using VELEST with a Vp/Vs ratio of 1.74 is used as the starting input velocity for tomographic inversion. Total of 20905 P readings and 8126 S readings from 2355 earthquakes events were used to invert for velocity structure beneath Luzon Island. The horizontal tomographic results show low-velocity, high Vp/Vs regions at the shallow depth less than 50 km which are interpreted as the magmatic chambers of the volcanic system in Luzon. At the suspected region of slab tearing at 16oN to 18oN, two sources of magma have been indentified: slab window magma at shallow depth (< 50 km) and magma induced by mantle wedge partial melting from higher depth. This slab melting may have changed the composition of magmatic to become more silicic with high viscosity, which explains the volcanic gap in this region. At the region of 14oN to 15oN, large magma chambers under active volcanos are identified which explain the active volcanism in this region. Contrast to the region of slab tearing, in this region, the magma chambers are fed by only magma from partial melting of mantle wedge from the depth higher than 100 km. These observations are consistent with previous work on the slab tearing of South China Sea and the activities of volcanism in the Luzon Island.

  6. Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation

    NASA Astrophysics Data System (ADS)

    Villegas-Lanza, J. C.; Chlieh, M.; Cavalié, O.; Tavera, H.; Baby, P.; Chire-Chira, J.; Nocquet, J.-M.

    2016-10-01

    Over 100 GPS sites measured in 2008-2013 in Peru provide new insights into the present-day crustal deformation of the 2200 km long Peruvian margin. This margin is squeezed between the eastward subduction of the oceanic Nazca Plate at the South America trench axis and the westward continental subduction of the South American Plate beneath the Eastern Cordillera and Subandean orogenic wedge. Continental active faults and GPS data reveal the rigid motion of a Peruvian Forearc Sliver that extends from the oceanic trench axis to the Western-Eastern Cordilleras boundary and moves southeastward at 4-5 mm/yr relative to a stable South America reference frame. GPS data indicate that the Subandean shortening increases southward by 2 to 4 mm/yr. In a Peruvian Sliver reference frame, the residual GPS data indicate that the interseismic coupling along the Nazca megathrust is highly heterogeneous. Coupling in northern Peru is shallow and coincides with the site of previous moderate-sized and shallow tsunami-earthquakes. Deep coupling occurs in central and southern Peru, where repeated large and great megathrust earthquakes have occurred. The strong correlation between highly coupled areas and large ruptures suggests that seismic asperities are persistent features of the megathrust. Creeping segments appear at the extremities of great ruptures and where oceanic fracture zones and ridges enter the subduction zone, suggesting that these subducting structures play a major role in the seismic segmentation of the Peruvian margin. In central Peru, we estimate a recurrence time of 305 ± 40 years to reproduce the great 1746 Mw 8.8 Lima-Callao earthquake.

  7. Mapping Yakutat Subduction with Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Wech, A.

    2015-12-01

    Subduction of the Yakutat microplate (YAK) in south-central Alaska may be responsible for regional high topography, large slip during the 1964 earthquake, and the anomalous gap in arc volcanism, but the exact geodynamics and its relationship with the underlying Pacific Plate (PP) are not fully understood. Refraction data support distinct subducting layers, and both GPS and body wave tomography suggest the YAK extends from the Cook Inlet volcanoes in the west to the Wrangell volcanic field in the east. Earthquakes, however, are limited to normal faulting within the PP with an abrupt eastern boundary 80 km west of the inferred YAK edge, and more recent active source seismic data suggest subduction of one homogenous thickened oceanic plateau. Here, I perform a search for tectonic tremor to investigate the role of tremor and slow slip in the system. I scan continuous waveforms from 2007-2015 using all available data from permanent and campaign seismic stations in south-central Alaska. Using envelope cross-correlation, I detect and locate ~9,000 tectonic tremor epicenters, providing a map of the transition zone downdip of the 1964 earthquake. Tremor epicenters occur downdip of discrete slow slip events, and tremor rates do not correlate temporally with slow slip behavior. Depth resolution is poor, but horizontal locations are well constrained and spatially correlate with the velocity images of the YAK. Likewise, tremor extends 80 km further east than intraslab seismicity. Tremor swarms occur intermittently and manifest as ambient tremor. I interpret tremor to mark slow, semi-continuous slip occurring at the boundary between the YAK and North American plates, whose interface continues beyond the eastern edge of the PP. In this model, the YAK is welded to the underlying PP in the west, but extends past the eastern terminus of the PP. This geometry explains the correlation between tremor and the YAK, the discrepancy between deep seismicity and tremor, and the paucity of thrust events - convergence is accommodated by the YAK-North America interface, while earthquakes mark deformation within the PP. Finally, the model corroborates the eastern edge of the YAK and its role in controlling Wrangell magmatism and the gap in Aleutian arc volcanism.

  8. Seismic Strong Motion Array Project (SSMAP) to Record Future Large Earthquakes in the Nicoya Peninsula area, Costa Rica

    NASA Astrophysics Data System (ADS)

    Simila, G.; McNally, K.; Quintero, R.; Segura, J.

    2006-12-01

    The seismic strong motion array project (SSMAP) for the Nicoya Peninsula in northwestern Costa Rica is composed of 10 13 sites including Geotech A900/A800 accelerographs (three-component), Ref-Teks (three- component velocity), and Kinemetric Episensors. The main objectives of the array are to: 1) record and locate strong subduction zone mainshocks [and foreshocks, "early aftershocks", and preshocks] in Nicoya Peninsula, at the entrance of the Nicoya Gulf, and in the Papagayo Gulf regions of Costa Rica, and 2) record and locate any moderate to strong upper plate earthquakes triggered by a large subduction zone earthquake in the above regions. Our digital accelerograph array has been deployed as part of our ongoing research on large earthquakes in conjunction with the Earthquake and Volcano Observatory (OVSICORI) at the Universidad Nacional in Costa Rica. The country wide seismographic network has been operating continuously since the 1980's, with the first earthquake bulletin published more than 20 years ago, in 1984. The recording of seismicity and strong motion data for large earthquakes along the Middle America Trench (MAT) has been a major research project priority over these years, and this network spans nearly half the time of a "repeat cycle" (50 years) for large (Ms 7.5- 7.7) earthquakes beneath the Nicoya Peninsula, with the last event in 1950. Our long time co-collaborators include the seismology group OVSICORI, with coordination for this project by Dr. Ronnie Quintero and Mr. Juan Segura. Numerous international investigators are also studying this region with GPS and seismic stations (US, Japan, Germany, Switzerland, etc.). Also, there are various strong motion instruments operated by local engineers, for building purposes and mainly concentrated in the population centers of the Central Valley. The major goal of our project is to contribute unique scientific information pertaining to a large subduction zone earthquake and its related seismic activity when the next large earthquake occurs in Nicoya. A centralized data base will be created within the main seismic network files at OVSICORI, with various local personnel working in teams that will be responsible to collect data within 3 days following a large mainshock.

  9. Geodynamic Modeling of the Subduction Zone around the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Honda, S.

    2017-06-01

    In this review, which focuses on our research, we describe the development of the thermomechanical modeling of subduction zones, paying special attention to those around the Japanese Islands. Without a sufficient amount of data and observations, models tended to be conceptual and general. However, the increasing power of computational tools has resulted in simple analytical and numerical models becoming more realistic, by incorporating the mantle flow around the subducting slab. The accumulation of observations and data has made it possible to construct regional models to understand the detail of the subduction processes. Recent advancements in the study of the seismic tomography and geology around the Japanese Islands has enabled new aspects of modeling the mantle processes. A good correlation between the seismic velocity anomalies and the finger-like distribution of volcanoes in northeast Japan has been recognized and small-scale convection (SSC) in the mantle wedge has been proposed to explain such a feature. The spatial and temporal evolution of the distribution of past volcanoes may reflect the characteristics of the flow in the mantle wedge, and points to the possibility of the flip-flopping of the finger-like pattern of the volcano distribution and the migration of volcanic activity from the back-arc side to the trench side. These observations are found to be qualitatively consistent with the results of the SSC model. We have also investigated the expected seismic anisotropy in the presence of SSC. The fast direction of the P-wave anisotropy generally shows the trench-normal direction with a reduced magnitude compared to the case without SSC. An analysis of full 3D seismic anisotropy is necessary to confirm the existence and nature of SSC. The 3D mantle flow around the subduction zone of plate-size scale has been modeled. It was found that the trench-parallel flow in the sub-slab mantle around the northern edge of the Pacific plate at the junction between the Aleutian arc and the Kurile arc is generally weak and we have suggested the possible contribution of a hot anomaly in the sub-slab mantle as the origin of possible trench-parallel flow there. A 3D mantle flow model of the back-arc around the junction between the northeast Japan arc and the Kurile arc shows a trench-normal flow at a shallow depth. As a result, the expected seismic anisotropy shows the fast direction normal to the arc, even in the region of oblique subduction. This result is generally consistent with observations there. The existence of a hot anomaly in the sub-slab mantle under the Pacific plate was proposed from an analysis of the seismic tomography, and we have studied its possible origins. The origin of a hot anomaly adjacent to the cold downgoing flow, typically observed in internally heated convection, is preferable to that of a hot anomaly, such as a plume head, carried far from the subduction zone. The nature of the western edge of the stagnant slab under northeast China has been investigated with modeling studies, which take into account the subduction history and the phase changes in the mantle. It is likely to be a ridge-type plate boundary between the extinct Izanagi plate and the Pacific plate. Thus, we have concluded that the slab gap under northeast China is not a breakage of the stagnant slab. Further studies have suggested that the existence of the rheological weakening of the slab in the transition zone, and the additional effects of a hot anomaly in the sub-slab mantle under the Pacific plate, may explain the differences in slab morphology under the northern Okhotsk arc and the northeast Japan arc.

  10. Structures in the transition zone of the northeast South China Sea: serpentinite dome vs mantle exhumation, or evidence of Mesozoic active subduction transferring to Cenozoic passive extension?

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Zhou, D.

    2013-12-01

    Complete sedimentary sequences and weak erosion make the transition zone of the South China Sea the optimal place to study the entire evolution history of marginal sea basins, as well as the transition mechanism from active subduction to passive extension. 2D long cable seismic profiles revealed that both Baiyun and Liwan sag in the northeast South China Sea margin were lack of large controlling faults, especially in Liwan sag, syn-rift sequences waved above the basement. Dome-like uplifts(serpetinite uplifts?) or diapirs(?) came from below the basement, caused the syn-rift sequences pushed up around 36Ma(T80). Gravity inversion based on seismic reflection indicated that the dome has a lower density and a lower layer velocity than normal crust. Also around the Continent-Ocean Boundary (COB), a small segment similar to the lower crust was exposed. Between this exposed segment and the Cenozoic oceanic crust, mantle seems to be exhumed along the breakup point. Between the COB and roughly the shelf break, high velocity lower crust was discriminated in the northeast continental margin. Structures in northeast South China Sea seems having many similarities with Newfoundland-Iberia margin, by serpentinite(?) dome and exhumed mantle, although spreading rate here is intermediate. In fact, regional background suggests that there might be another interpretation: transition from Mesozoic subduction to Cenozoic extension occurred through paleo oceanic crust breakup in the northeast, which in turn retained Mesozoic subduction system beneath the northeast continental margin. Confined with magnetic anomaly, Bouguer gravity gradient anomaly, and well drilling lithological evidences, Cenozoic Baiyun sag developed upon Mesozoic fore-arc, while Cenozoic Liwan sag developed upon Mesozoic accretionary prism. The high velocity lower crust was caused by both remnant subducted slab and by Oceanic-Continent interaction due to subduction. There might also be serpentinite dome and exhumed mantle, but may be caused by extension and breakup of paleo oceanic slab, not the depth-dependent extension. IODP drillings are needed to test all these scientific conjectures.

  11. Reconstruction of far-field tsunami amplitude distributions from earthquake sources

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2016-01-01

    The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.

  12. Stress on the seismogenic and deep creep plate interface during the earthquake cycle in subduction zones

    NASA Astrophysics Data System (ADS)

    Ruff, Larry J.

    2001-04-01

    The deep creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the overlying lithosphere in subduction zones. Seismogenic/deep creep zone interaction during the earthquake cycle produces spatial and temporal variations in strains within the surrounding elastic material. Strain observations in the Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic observations has been a 2-D Savage-type model where a plate interface is placed in an elastic half-space and co-seismic slip occurs in the upper seismogenic portion of the interface, while inter-seismic deformation is modeled by a locked seismogenic zone and a constant slip velocity across the deep creep interface. Here, I use the simplest possible 2-D mechanical model with just two blocks to study the stress interaction between the seismogenic and deep creep zones. The seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear constitutive law for the deep creep zone connects the shear stress (σ) to the slip velocity across the plate interface (s') with the material property of interface viscosity (ζ ) as: σ = ζ s'. The analytic solution for the steady-state two-block model produces simple formulas that connect some spatially-averaged geodetic observations to model quantities. Aside from the basic subduction zone geometry, the key observed parameter is τ, the characteristic time of the rapid post-seismic slip in the deep creep interface. Observations of τ range from about 5 years (Nankai and Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from 8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting on deep creep interface averaged over the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile). These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops. Since the great earthquake recurrence time ( T recur) is much larger than τ for Nankai, Alaska, and Chile, the model predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change; geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) ≫1, the model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about (2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent with a deep creep rate of R rather than (2/3) R. This discrepancy is quite puzzling and is difficult to explain in the context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.

  13. An integrated approach to the seismic activity and structure of the central Lesser Antilles subduction megathrust seismogenic zone

    NASA Astrophysics Data System (ADS)

    Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria

    2010-05-01

    In order to increase the understanding of plate boundaries that show currently low seismic activity, as was the Sumatra-Andaman subduction before the major earthquake in 2004, a cluster of surveys and cruises has been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project on the Lesser Antilles subduction zone of the Carribean-America plate boundary. A segment of the corresponding transform boundary just tragically ruptured in the 2010 January 12, Haïti earthquake. This cluster is composed by the German cruise TRAIL with the vessel F/S M. A. MERIAN, the French cruise SISMANTILLES II with the IFREMER vessel N/O ATALANTE), and French cruise OBSANTILLES with the IRD vessel N/O ANTEA. During these cruises and surveys, 80 OBS, Ocean Bottom Seismometers, 64 of which with 3-components seismometers and hydrophones, and 20 OBH with hydrophones have been brought together from several pools (Geoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven), with up to 30 land stations (CSIC Barcelona, IPG Paris, INSU-RLBM and -Lithoscope, ETH Zurich). The deployment of all these instruments has been supported principally in addition by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT. The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the main target has been localized along 3 transects to the Arc, thanks to a preliminary survey in 2001, the French SISMANTILLES cruise. We will present the first results obtained during these experiments dedicated specifically to image at depth the seismic structure and activity of this region. To image faults at depth and the detailed upper-crustal structure, 3700 km of multi-beam bathymetry and multi-channel reflection seismic profiles have been collected along a grid comprising 7 strike-lines of up to 300 km long and spaced by 15 km and 12 transects of up to 150 km long and spaced by 25 km (SISMANTILLES II). All these airgun shots dedicated to deep penetration have been recorded by the 80 OBSs and 20 OBHs deployed by the F/S Merian and N/O Atalante on the nodes of this grid of profiles. It will permit to get Vp constraints on the deep forearc region and mantle wedge by wide-angle refraction studies, as well as constraints on the updip and downdip limits of the seismogenic part of the mega-thrust fault plane. Two of these transects have been extended across the whole arc during the TRAIL survey, with up to 50 OBSs deployed along both 240 km long profiles. All these OBSs remained several months after the shot experiments to gather data for accurate location of local earthquakes and possibly Vp and Vp/Vs tomography. They have been recovered and partly redeployed by N/O Antea during the OBSANTILLES survey. A significant number of those instruments had broadband seismometers, a notable originality in the case of the OBSs to probe the conditions for detecting low-frequency transient signals which have been found recently in the case of the Cascadia and Central Japan subductions and associated to their seismogenic character.

  14. Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling

    NASA Astrophysics Data System (ADS)

    Métois, Marianne; Socquet, Anne; Vigny, Christophe; Carrizo, Daniel; Sophie, Peyrat

    2013-04-01

    The North Chile area did not rupture since the 1877 Mw 8.6 earthquake that produced a huge tsunami. Considering that upper plate deformation measured there by modern geodetic tools is due to some degree of locking on the subduction interface and the long elapsed time since 1877, many consider this area is a mature seismic gap where seismic hazard is high. We present a new GPS velocity field that describes in some detail the interseismic deformation between 18°S and 24°S. We invert for coupling distribution on the subduction interface using elastic modeling. Our measurements require that, at these latitudes, 10 to 12 mm/yr (i.e ~15% of the whole convergence rate) are taken up by the clockwise rigid rotation of an Andean block bounded to the East by the subandean fold-and-thrust belt. This reduces the accumulation rate on the subduction interface to ~56 mm/yr in this area. We describe coupling variations on the subduction interface both along-strike and along-dip. We find that this gap is segmented in at least two highly locked segments and two narrow low coupled intersegment zones (Iquique and Mejillones areas). This coupling segmentation is consistent with our knowledge of the historical ruptures and of the instrumental seismicity of the region. Intersegments correlate with high background seismic rate and local tectonic complexities on the upper or downgoing plates. The rupture of either the Paranal or the Loa segment alone could easily produce a Mw 8.0-8.3 rupture, and we propose that the Loa segment (from 22.5°S to 20.8°S) may be the one that ruptured in 1877.

  15. Seventeen Years of Geodynamic Monitoring of a Seismic Gap that was Partially Filled by the Nicoya, Costa Rica, Mw=7.6 Earthquake of September 5th, 2012

    NASA Astrophysics Data System (ADS)

    Protti, M.; Gonzalez, V. M.; Schwartz, S. Y.; Dixon, T. H.; Newman, A. V.; Lundgren, P.; Kaneda, Y.; Kato, T.

    2013-05-01

    Nicoya is a segment of the subduction zone at the Middle American Trench, where the Cocos plate subducts under the Caribbean plate. Nicoya had large earthquakes (Mw>7) in 1853, 1900, 1950 and in 2012. The September 5th, 2012, Mw=7.6, Nicoya earthquake ruptured mainly the deeper portion of the seismogenic zone. Pre, co and post earthquake deformation data suggests that the shallow portion of the plate interface might still be locked. Since 1995 a geodynamic control network has been built up over a around what was defined as the Nicoya seismic gap. The aim of this network was to map and understand the seismogenic zone, as well as to record deformation changes at different stages within the earthquake cycle. The Nicoya peninsula sits on top of the seismogenic zone allowing monitoring crustal deformation in the near field at a much lower cost than on most subduction zones in the world. With the goals of finding the upper and lower limits of the seismogenic zone and for documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan has been carried out in the region. This effort involved the installation of temporary and permanent seismic and geodetic networks. We will be presenting the history and results of these networks, including co-seismic records from the September 5th, 2012 Nicoya earthquake and will emphasize on the importance of continuous monitoring for the understanding of subduction zone processes.

  16. Potential Seismic Signatures of Megathrust Preparatory Zones

    NASA Astrophysics Data System (ADS)

    Parameswaran, R. M.; Maheswari, K.; Rajendran, K.

    2017-12-01

    The Mw 9.2, 2004 Sumatra earthquake awakened the otherwise inactive Andaman-Sumatra subduction zone (ASSZ), pushing it into an era of amplified seismicity. The subduction zone has since witnessed an array of inter- and intra-plate events along and around its trench. Several intra-plate events like the 2012 Wharton Basin earthquakes (Mw 8.6 and 8.2), are believed to be the triggered response of the plateward transmission of stresses due to the 2004 earthquake (Ishii et al., 2013). On the other hand, the Mw 7.5, 2009 33-km-deep intra-plate normal-faulting event in the northern Andaman segment is an example of outer-rise seismicity resulting from the post-seismic relaxation of the subducting slab (Andrade and Rajendran, 2011). These are aftermaths of a drastic change in the stress regime from compressional to extensional, following the 2004 megathrust event. But, pre-megathrust, aside from the inter-plate thrust mechanisms that are widely observed along the trench, how does the plate-motion-driven compression manifest in the regional seismicity? What happens to the stresses accumulating within the bending subducting slab; does it source deeper compressional events prior to a megathrust? The 2009 normal outer-rise earthquake was preceded by the 13 September 2002, Mw 6.5 Diglipur outer-rise thrust earthquake (22 km depth), both occurring at the northern terminus of the 2004-rupture, in the compressing forearc that experienced surface uplift pre-megathrust (Rajendran et al., 2003; Rajendran et al., 2007). This work, therefore, examines the slip models of such pre-event outer-rise thrust earthquakes along the stretch of the 2004 rupture zone in the ASSZ. The work is also being extended to understand the preparatory zones of other global megathrust earthquakes.

  17. Seismic evidence for deep fluid circulation in the overriding plate of subduction zones

    NASA Astrophysics Data System (ADS)

    Tauzin, B.; Reynard, B.; Bodin, T.; Perrillat, J. P.; Debayle, E.

    2015-12-01

    In subduction zones, non-volcanic tremors are associated with fluid circulations (Obara, 2002). Their sources are often located on the interplate boundary (Rogers and Dragert, 2003; Shelly et al, 2006; La Rocca, 2009), consistent with fluids released by the dehydration of subducted plates (Hacker et al., 2003). Reports of tremors in the overriding continental crust of several subduction zones in the world (Kao et al., 2005; Payero et al., 2008; Ide, 2012) suggest fluid circulation at shallower depths but potential fluid paths are poorly documented. Here we obtained seismic observations from receiver functions that evidence the close association between the shallow tremor zone, electrical conductivity, and tectonic features of the Cascadia overriding plate. A seismic discontinuity near 15 km depth in the crust of the overriding North American plate is attributed to the Conrad discontinuity. This interface is segmented, and its interruption is spatially correlated with conductive regions and shallow swarms of seismicity and non-volcanic tremors. These observations suggest that shallow fluid circulation, tremors and seismicity are controlled by fault zones limiting blocks of accreted terranes in the overriding plate (Brudzinski and Allen, 2007). These zones constitute fluid "escape" routes that may contribute unloading fluid pressure on the megathrust. Obara, K. (2002). Science, 296, 1679-1681. Rogers, G., & Dragert, H. (2003). Science, 300, 1942-1943. Shelly, D. R., et al. (2006). Nature, 442, 188-191. La Rocca, M., et al. (2009). Science, 323, 620-623. Kao, H., et al. (2005). Nature, 436, 841-844. Payero, J. S., et al. (2008). Geophysical Research Letters, 35. Ide, S. (2012). Journal of Geophysical Research: Solid Earth, 117. Brudzinski, M. R., & Allen, R. M. (2007). Geology, 35, 907-910.

  18. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-12-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and three distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane-continent collision leaving behind accreted terranes 25-40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to accrete and others to subduct. In many modern FATs on the ocean floor, a sub-crustal layer of high seismic velocities, interpreted as ultramafic material, could serve as a detachment or delaminate during subduction.

  19. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    NASA Astrophysics Data System (ADS)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated metropolitan areas such as Vancouver, Seattle and Portland.

  20. The Mw6.7 October 12, 2013 western Hellenic Arc earthquake and seismotectonic implications for the descending slab

    NASA Astrophysics Data System (ADS)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Vallianatos, Filippos

    2015-04-01

    The 2013 earthquake is the largest that occurred in the last four decades along the western part of the Hellenic subduction zone, causing light damage in western Crete. Since rupture dimensions and properties of subduction events are in general more difficult to estimate due to their position in relation with seismological networks geometry, its occurrence provides an opportunity to investigate its rupture characteristics as in detail as possible, and consequently to shed more light in the geometry of the descending slab. The western almost rectilinear part of the convergent front accommodated the great 365 AD Mw8.3 earthquake, the largest event ever reported in the Mediterranean region, generating a tsunami that affected almost its entire eastern part. The oceanic plate of eastern Mediterranean, the front part of the northward moving African lithospheric plate, is subducting northeasterly beneath the Aegean microplate, the southern portion of Eurasian lithospheric plate in this area, at a rate of 4.5 cm/yr, frequently accommodating large destructive earthquakes with magnitudes M>6.5 along the main thrust zone. Historical and instrumental information reveals that strong (M>6.0) earthquakes, both shallow and intermediate ones are frequent in the area, although there is not any reference to any other such strong event. Plate motion is far above the manifestation of seismicity, probably due to the fact that the seismic coupling coefficient at this plate boundary has been estimated at approximately 10% or less. The main shock is associated with a fault patch onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. The first 10-days relocated seismicity shows activation of the upper part of the descending slab, with most activity being concentrated between 10 and 30 km, with the main shock being located at the bottom of the activated segment. Cross sectional views of the relocated seismicity evidenced the extent of the main rupture, along with the off fault aftershock activity. This later is proved to be immediately triggered by the downdip stress transfer because of the coseismic slip of the main shock. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the 'THALES Program: SEISMO FEAR HELLARC' project of the 'Education & Lifelong Learning' Operational Programme.

  1. Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.

    2017-12-01

    Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in slip rate, the plate interface is only moderately fluid-rich, because the underlying plateau had already had an episode of Gondwana dehydration. Here the dehydrated plateau has subducted deeper, to 140-km depth, there is no volcanism, and the mantle wedge lacks low Q.

  2. Fault zone structure and seismic reflection characteristics in zones of slow slip and tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Henrys, Stuart; Sutherland, Rupert; Barker, Daniel; Wallace, Laura; Holden, Caroline; Power, William; Wang, Xiaoming; Morgan, Joanna; Warner, Michael; Downes, Gaye

    2015-04-01

    Over the last couple of decades we have learned that a whole spectrum of different fault slip behaviour takes place on subduction megathrust faults from stick-slip earthquakes to slow slip and stable sliding. Geophysical data, including seismic reflection data, can be used to characterise margins and fault zones that undergo different modes of slip. In this presentation we will focus on the Hikurangi margin, New Zealand, which exhibits marked along-strike changes in seismic behaviour and margin characteristics. Campaign and continuous GPS measurements reveal deep interseismic coupling and deep slow slip events (~30-60 km) at the southern Hikurangi margin. The northern margin, in contrast, experiences aseismic slip and shallow (<10-15 km) slow slip events (SSE) every 18-24 months with equivalent moment magnitudes of Mw 6.5-6.8. Updip of the SSE region two unusual megathrust earthquakes occurred in March and May 1947 with characteristics typical of tsunami earthquakes. The Hikurangi margin is therefore an excellent natural laboratory to study differential fault slip behaviour. Using 2D seismic reflection, magnetic anomaly and geodetic data we observe in the source areas of the 1947 tsunami earthquakes i) low amplitude interface reflectivity, ii) shallower interface relief, iii) bathymetric ridges, iv) magnetic anomaly highs and in the case of the March 1947 earthquake v) stronger geodetic coupling. We suggest that this is due to the subduction of seamounts, similar in dimensions to seamounts observed on the incoming Pacific plate, to depths of <10 km. We propose a source model for the 1947 tsunami earthquakes based on geophysical data and find that extremely low rupture velocities (c. 300 m/s) are required to model the observed large tsunami run-up heights (Bell et al. 2014, EPSL). Our study suggests that subducted topography can cause the nucleation of moderate earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and the role of subducted rough topography in seismic hazard should not be under-estimated. 2D seismic reflection data along the northern Hikurangi margin also image thick (c. 2 km) high-amplitude reflectivity zones (HRZ) coinciding broadly with the source areas of shallow SSEs. The HRZ may be the result of high-fluid content within subduction sediments, suggesting fluids may exert an important control on the generation of SSEs by reducing effective stress (Bell et al. 2010, GJI). However, this hypothesis remains untested. In this presentation, using synthetic models, we will discuss planned future applications of an advanced seismic imaging technique called Full-waveform inversion, integrated with drilling, at subduction margins like Hikurangi to recover fault physical properties at high-resolution in 3D to examine the properties of heterogeneous fault zones.

  3. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  4. 3D seismic structures in different subduction zones (Central Java, Toba Caldera, Central Chile, Costa-Rica and others): common and particular features

    NASA Astrophysics Data System (ADS)

    Koulakov, I.

    2009-12-01

    We present several seismic models for different subduction zones derived using the LOTOS tomographic code based on travel times from local earthquakes. The quality and reliability of all these models are supported by various tests (odd/even test, reconstructions with different starting models and free parameters, synthetic modeling with realistic setup, etc). For two datasets (Central Chile and Costa-Rica) we present the results of anisotropic inversion, which determines the orientations and values of fastest and slowest velocities in each point of the study volume. Comparing the velocity models for all considered subduction zones reveals some common features and differences. For example, in all cases we observe a clear low velocity anomaly which appears to link the cluster of intermediate seismicity in the Benioff zone with the volcanoes of the main arc. This pattern is interpreted as paths of ascending fluids and melts which are related to phase transitions in the slab. However, the depths of the seismicity clusters and dipping angle of the low-velocity anomaly are considerably different. For example, beneath Toba the cluster is at 100-130 km depth, and the anomaly is vertical. In Central Java the anomaly is strongly inclined to the direction of the slab, while beneath Central Chile it has the opposite orientation. The amplitudes of velocity anomalies are considerably different. The strongest heterogeneity (up to 30% of negative anomaly) is observed in the crust beneath Central Java, while much lower amplitudes (~15%) are found beneath the Toba Caldera, where a catastrophic super-eruption took place about 70000 years ago. The anisotropic inversion reveal similar features in Costa-Rica and Central Java: trench perpendicular fast velocity orientations in the subducting plate and trench parallel orientations in the mantle wedge. This is consistent with shear wave splitting results obtained for many other subduction zones. Such anisotropy in the corner flow may be due to presence of B-type olivine which appears in conditions of high water or/and melting content. The character of seismicity and velocity anomalies in slabs are considerably different that can be related to the different ages and rates of the subductions. We discuss also the possibility of subduction and/or delamination in the case of continent-continent collision based on models in Pamir-Hindukush and in Vrancea (Romania). The free user-friendly version of the LOTOS code will be distributed during the presentation.

  5. The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Reyners, Martin

    2013-01-01

    Recent work involving relocation of New Zealand seismicity using a nationwide 3-D seismic velocity model has located the subducted western edge of the Hikurangi Plateau. Both the thickness (ca. 35 km) and the area of the plateau subducted in the Cenozoic (ca. 287,000 km2) are much larger than previously supposed. From ca. 45 Ma, the westernmost tip of the plateau controlled the transition at the Pacific/Australia plate boundary from subduction to the north to Emerald Basin opening to the south. At ca. 23 Ma, curvature of the subduction zone against the western flank of the buoyant plateau became extreme, and a Subduction-Transform Edge Propagator (STEP fault) developed along the western edge of the plateau. This STEP fault corresponds to the Alpine Fault, and the resulting Pacific slab edge is currently defined by intermediate-depth seismicity under the northernmost South Island. Alpine STEP fault propagation was terminated at ca. 15 Ma, when the western edge of the plateau became parallel to the trench, and thus STEP fault formation was no longer favoured. Wholesale subduction of the plateau at the Hikurangi subduction zone began at ca. 10 Ma. The development of a subduction décollement above the plateau mechanically favoured deformation within the overlying Australian plate continental crust. This led to inception of the Marlborough fault system at ca. 7 Ma, and the North Island fault system at 1-2 Ma. At ca. 7 Ma, the western edge of the converging plateau again became more normal to the trench, and there is evidence supporting the development of a second STEP fault beneath the Taupo Volcanic Zone until ca. 3 Ma. Both episodes of STEP fault development at the plateau edge led to rapid slab rollback, and correspond closely with episodes of backarc basin opening to the north in the wider Southwest Pacific. The Cenozoic tectonics of New Zealand and the Southwest Pacific has been strongly influenced not only by the resistance to subduction of the buoyant Hikurangi Plateau, but also by the shape of its western edge and changing angle of attack of this edge at the plate boundary.

  6. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS velocity field is best fit by a model with strongly locked faults in the volcanic arc and a weakly coupled subduction interface. In this region, seismic hazards associated with subduction are therefore low, but are high for crustal faults, in agreement with records of historic seismicity.

  7. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  8. How geometry and structure control the seismic radiation : spectral element simulation of the dynamic rupture of the Mw 9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, G.; Vilotte, J.; Scala, A.

    2012-12-01

    The M 9.0, 2011 Tohoku earthquake, along the North American-Pacific plate boundary, East of the Honshu Island, yielded a complex broadband rupture extending southwards over 600 km along strike and triggering a large tsunami that ravaged the East coast of North Japan. Strong motion and high-rate continuous GPS data, recorded all along the Japanese archipelago by the national seismic networks K-Net and Kik-net and geodetic network Geonet, together with teleseismic data, indicated a complex frequency dependent rupture. Low frequency signals (f< 0.1 Hz) inverted from seismic, geodetic and tsunami data, evidenced an extremely compact region of large slip (between 30 to 50 meters), extending along-dip over about 100 km, between the hypocenter and the trench, and 150 to 200 km along strike. This slip asperity was likely the cause of the localized tsunami source and of the large amplitude tsunami waves. High-frequency signals (f>0.5 Hz) were instead generated close to the coast in the deeper part of the subduction zone, by at least four smaller size asperities, with possible repeated slip, and were mostly the cause for the ground shaking felt in the Eastern part of Japan. The deep origin of the high-frequency radiation was also confirmed by teleseismic high frequency back projection analysis. Intermediate frequency analysis showed a transition between the shallow and deeper part of the fault, with the rupture almost confined in a small stripe containing the hypocenter before propagating southward along the strike, indicating a predominant in-plane rupture mechanism in the initial stage of the rupture itself. We numerically investigate the role of the geometry of the subduction interface and of the structural properties of the subduction zone on the broadband dynamic rupture and radiation of the Tohoku earthquake. Based upon the almost in-plane behavior of the rupture in its initial stage, 2D non-smooth spectral element dynamic simulations of the earthquake rupture propagation are performed including the non planar and kink geometry of the subduction interface, together with bi-material interfaces taking into account rapid and large variations of the impedance properties along the subduction interfaces and dynamic normal stress coupling. Based on a number of tomographic studies of the NE Japan subduction zone at different space, evidencing a high-velocity "toe" mantle wedge, and wide-angle reflection and refraction studies, supporting a non planar geometry of the subduction interface with at least two strong bending or kink features, we constrain the subduction geometry and the structural properties of the subduction zone model along an off-Miyagi profile. Through several simulations, we investigate possible structural control on the broadband rupture process of the Tohoku earthquake, in terms of the rupture velocity, seismic radiation and slip/stress distribution along the subduction interface. We Explored the influence of initial stress and interface behavior to capture the main features of the rupture and its radiation pattern. Implications for the broad band strong motion observation are discussed, together with implications for the seismic cycle and future earthquake nucleation.

  9. The rigid Andean sliver hypothesis challenged : impact on interseismic coupling on the Chilean subduction zone

    NASA Astrophysics Data System (ADS)

    Metois, M.

    2017-12-01

    Convergence partitioning between subduction zones and crustal active structures has been widely evidenced. For instance, the convergence between the Indian and Sunda plates is accommodated both by the Sumatra subduction zone and the Great Sumatran strike-slip fault, that defines a narrow sliver. In Cascadia, small-scale rotating rigid blocks bounded by active faults have been proposed (e.g. McCaffrey et al. 2007). Recent advances in geodetic measurements along the South-American margin especially in Ecuador, Peru and Chile and the need for precise determination of the coupling amount on the megathrust interface in particular for seismic hazard assessment, led several authors to propose the existence of large-scale Andean slivers rotating clockwise and counter-clockwise South and North of the Arica bend, respectively (e.g. Chlieh et al. 2011, Nocquet et al. 2014, Métois et al. 2013). In Chile, one single large Andean sliver bounded to the west by the subduction thrust and to the east by the subandean fold-an-thrust belt active front is used to mimic the velocities observed in the middle to far field that are misfitted by elastic coupling models on the megathrust interface alone (Métois et al. 2016). This rigid sliver is supposed to rotate clockwise around a Euler pole located in the South Atlantic ocean, consistently with long-term observed rotations detected by paleomagnetism (e.g. Arriagada et al. 2008). However, recent GPS data acquired in the Taltal area ( 26°S, Klein et al. submitted) show higher than expected middle-field eastward velocities and question the first-order assumption of a rigid Andean sliver. Mis-modeling the fore-arc deformation has a direct impact on the inverted coupling amount and distribution, and could therefore bias significantly the megathrust rupture scenarios. Correctly estimating the current-day deformation of the Andes is therefore required to properly assess for coupling on the plate interface and is challenging since crustal active structures are often hidden by the intense seismic activity of the subduction zone. Here we discuss the validity of the rigid Andean sliver hypothesis based on GPS velocities, present alternative models for both coupling and sliver kinematics along the Chilean margin, and discuss the relationship between upper plate long and short-term deformation.

  10. The 2012 August 27 Mw7.3 El Salvador earthquake: expression of weak coupling on the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor; LaFemina, Peter C.; DeMets, Charles; Hernandez, Douglas Antonio; Mattioli, Glen S.; Rogers, Robert; Rodriguez, Manuel; Marroquin, Griselda; Tenorio, Virginia

    2015-09-01

    Subduction zones exhibit variable degrees of interseismic coupling as resolved by inversions of geodetic data and analyses of seismic energy release. The degree to which a plate boundary fault is coupled can have profound effects on its seismogenic behaviour. Here we use GPS measurements to estimate co- and post-seismic deformation from the 2012 August 27, Mw7.3 megathrust earthquake offshore El Salvador, which was a tsunami earthquake. Inversions of estimated coseismic displacements are in agreement with published seismically derived source models, which indicate shallow (<20 km depth) rupture of the plate interface. Measured post-seismic deformation in the first year following the earthquake exceeds the coseismic deformation. Our analysis indicates that the post-seismic deformation is dominated by afterslip, as opposed to viscous relaxation, and we estimate a post-seismic moment release one to eight times greater than the coseismic moment during the first 500 d, depending on the relative location of coseismic versus post-seismic slip on the plate interface. We suggest that the excessive post-seismic motion is characteristic for the El Salvador-Nicaragua segment of the Central American margin and may be a characteristic of margins hosting tsunami earthquakes.

  11. Crust and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data (Postprint). Annual Report 1

    DTIC Science & Technology

    2012-05-10

    Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and

  12. Interseismic Coupling, Co- and Post-seismic Slip: a Stochastic View on the Northern Chilean Subduction Zone

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Duputel, Z.; Simons, M.; Jiang, J.; Riel, B. V.; Moore, A. W.; Owen, S. E.

    2017-12-01

    Mapping subsurface fault slip during the different phases of the seismic cycle provides a probe of the mechanical properties and the state of stress along these faults. We focus on the northern Chile megathrust where first order estimates of interseismic fault locking suggests little to no overlap between regions slipping seismically versus those that are dominantly aseismic. However, published distributions of slip, be they during seismic or aseismic phases, rely on unphysical regularization of the inverse problem, thereby cluttering attempts to quantify the degree of overlap between seismic and aseismic slip. Considering all the implications of aseismic slip on our understanding of the nucleation, propagation and arrest of seismic ruptures, it is of utmost importance to quantify our confidence in the current description of fault coupling. Here, we take advantage of 20 years of InSAR observations and more than a decade of GPS measurements to derive probabilistic maps of inter-seismic coupling, as well as co-seismic and post-seismic slip along the northern Chile subduction megathrust. A wide InSAR velocity map is derived using a novel multi-pixel time series analysis method accounting for orbital errors, atmospheric noise and ground deformation. We use AlTar, a massively parallel Monte Carlo Markov Chain algorithm exploiting the acceleration capabilities of Graphic Processing Units, to derive the probability density functions (PDF) of slip. In northern Chile, we find high probabilities for a complete release of the elastic strain accumulated since the 1877 earthquake by the 2014, Iquique earthquake and for the presence of a large, independent, locked asperity left untapped by recent events, north of the Mejillones peninsula. We evaluate the probability of overlap between the co-, inter- and post-seismic slip and consider the potential occurrence of slow, aseismic slip events along this portion of the subduction zone.

  13. The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network

    NASA Astrophysics Data System (ADS)

    Arroyo, Ivonne G.; Husen, Stephan; Flueh, Ernst R.

    2014-10-01

    Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes ( M ~ 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated ~1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25-30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than ~100 to 120 °C along the plate boundary. The downdip limit of the stick-slip behaviour collocates with relative low temperatures of ~150 to 200 °C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.

  14. On the consistency of tomographically imaged lower mantle slabs

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.; Matthews, Kara J.; Hosseini, Kasra; Domeier, Mathew

    2017-04-01

    Over the last few decades numerous seismic tomography models have been published, each constructed with choices of data input, parameterization and reference model. The broader geoscience community is increasingly utilizing these models, or a selection thereof, to interpret Earth's mantle structure and processes. It follows that seismically identified remnants of subducted slabs have been used to validate, test or refine relative plate motions, absolute plate reference frames, and mantle sinking rates. With an increasing number of models to include, or exclude, the question arises - how robust is a given positive seismic anomaly, inferred to be a slab, across a given suite of tomography models? Here we generate a series of "vote maps" for the lower mantle by comparing 14 seismic tomography models, including 7 s-wave and 7 p-wave. Considerations include the retention or removal of the mean, the use of a consistent or variable reference model, the statistical value which defines the slab "contour", and the effect of depth interpolation. Preliminary results will be presented that address the depth, location and degree of agreement between seismic tomography models, both for the 14 combined, and between the p-waves and s-waves. The analysis also permits a broader discussion of slab volumes and subduction flux. And whilst the location and geometry of slabs, matches some the documented regions of long-lived subduction, other features do not, illustrating the importance of a robust approach to slab identification.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  16. Shear deformation in the northeastern margin of the Izu collision zone, central Japan, inferred from GPS observations

    NASA Astrophysics Data System (ADS)

    Doke, R.; Harada, M.; Miyaoka, K.; Satomura, M.

    2016-12-01

    The Izu collision zone, which is characterized by the collision between the Izu-Bonin arc (Izu Peninsula) and the Honshu arc (the main island of Japan), is located in the northernmost part of the Philippine Sea (PHS) plate. Particularly in the northeastern margin of the zone, numerous large earthquakes have occurred. To clarify the convergent tectonics of the zone related to the occurrence of these earthquakes, in this study, we performed Global Positioning System (GPS) observations and analysis around the Izu collision zone. Based on the results of mapping the steady state of the GPS velocity and strain rate fields, we verified that there has been wide shear deformation in the northeastern part of the Izu collision zone, which agrees with the maximum shear directions in the left-lateral slip of the active faults in the study area. Based on the relative motion between the western Izu Peninsula and the eastern subducting forearc, the shear zone can be considered as a transition zone affected by both collision and subduction. The Higashi-Izu Monogenic Volcano Group, which is located in the southern part of the shear deformation zone, may have formed as a result of the steady motion of the subducting PHS plate and the collision of the Izu Peninsula with the Honshu arc. The seismic activities in the Tanzawa Mountains, which is located in the northern part of the shear deformation zone, and the eastern part of the Izu Peninsula may be related to the shear deformation zone, because the temporal patterns of the seismic activity in both areas are correlated.

  17. Bridge seismic retrofit measures considering subduction zone earthquakes.

    DOT National Transportation Integrated Search

    2015-07-01

    Over the years, earthquakes have exposed the vulnerability of reinforced concrete structures under : seismic loads. The recent occurrence of highly devastating earthquakes near instrumented regions, e.g. 2010 Maule, Chile : and 2011 Tohoku, Japan, ha...

  18. Possible correlation between annual gravity change and shallow background seismicity rate at subduction zone by surface load

    NASA Astrophysics Data System (ADS)

    Mitsui, Yuta; Yamada, Kyohei

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.

  19. Subduction-Related Structure in the Mw 9.2, 1964 Megathrust Rupture Area Offshore Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; von Huene, R.; Klaeschen, D.; Miller, J. J.

    2016-12-01

    Some of the largest earthquakes worldwide, including the 1964 9.2 Mw megathrust earthquake, occurred in Alaskan subduction zones. To better understand rupture processes and their mechanisms, we relate seafloor morphology from multibeam and regional bathymetric compilations with sub-seafloor images and seismic P-wave velocity structures. We re-processed legacy multichannel seismic (MCS) data including shot- and intra-shotgather interpolation, multiple removal and Kirchhoff depth migration. These images even reveal the shallow structure of the subducting oceanic crust. Traveltime tomography of a coincident vintage (1994) wide angle dataset reveals the P-wave velocity distribution as well as the deep structure of the subducting plate to the ocean crust Moho. The subducting oceanic crust morphology is rough and partly hidden by a thick sediment cover that reaches 3 km depth at the trench axis. Bathymetry shows two major contrasting upper plate morphologies: the shallow dipping lower slope consists of trench-parallel ridges that form the accreted prism whereas the steep rough middle and upper slopes are composed of competent older rock.Thrust faults are distributed across the entire slope, some of which connect with the subducted plate interface. A subtle change in seafloor gradient from the lower to the middle slope coincides with a thrust fault zone marking the boundary between the margin framework and the frontal prism. It corresponds to the most prominent lateral increase in seismic P-wave velocities, 25 km landward of the trench axis.Major thrusts in several MCS-lines are correlated with bathymetric data, showing their > 100 km lateral extent, which might also be tsunamigenic paths of earthquake rupture from the seismogenic zone to the seafloor.

  20. Motions of Australia and surroundings since 43 Ma as recorded by subducted mantle lithosphere--evidence for a lost ocean between the Pacific and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Renqi, L.; Wu, J. E.; Suppe, J.; Kanda, R. V.

    2013-12-01

    It is well known from seafloor spreading and hotspot data that the Australian plate has moved ~2500km northward in a mantle reference frame since 43Ma, during which time the Pacific plate moved approximately orthogonally ~3000km in a WNW direction. In addition the Australian plate has expanded up to 2000 km as a result of back arc spreading associated with evolving subduction systems on its northern and eastern margins. Here we attempt to account for this plate motion and subduction using new quantitative constraints of mapped slabs of subducted mantle lithosphere underlying the Australian plate and its surroundings. We have mapped a large swath of sub-horizontal slabs in the lower mantle under onshore and offshore NE Australia using global mantle seismic tomography. When restored together with other mapped slabs from the Asia Pacific region, these slabs reveal the existence of a major ocean between NE Australia, E. Asian, and the Pacific at 43 Ma, which we call the East Asian Sea. The southern half of this East Asian Sea was overrun and completely subducted by northward-moving Australia and the expanding Melanesian arcs, and the WNW-converging Pacific. This lost ocean fills a major gap in plate tectonic reconstructions and also constraints the possible motion of the Caroline Sea and New Guinea arcs. Slabs were mapped from MITP08 global P-wave seismic tomography data (Li and Hilst, 2008) and the TX2011 S-wave seismic tomography data (Grand and Simmons, 2011) using Gocad software. The mapped slabs were unfolded to the spherical Earth surface to assess their pre-subduction geometry. Gplates software was used to constrain plate tectonic reconstructions within a fully animated, globally consistent framework.

  1. Rheological behavior of the crust and mantle in subduction zones in the time-scale range from earthquake (minute) to mln years inferred from thermomechanical model and geodetic observations

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan; Muldashev, Iskander

    2016-04-01

    The key achievement of the geodynamic modelling community greatly contributed by the work of Evgenii Burov and his students is application of "realistic" mineral-physics based non-linear rheological models to simulate deformation processes in crust and mantle. Subduction being a type example of such process is an essentially multi-scale phenomenon with the time-scales spanning from geological to earthquake scale with the seismic cycle in-between. In this study we test the possibility to simulate the entire subduction process from rupture (1 min) to geological time (Mln yr) with the single cross-scale thermomechanical model that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. First we generate a thermo-mechanical model of subduction zone at geological time-scale including a narrow subduction channel with "wet-quartz" visco-elasto-plastic rheology and low static friction. We next introduce in the same model classic rate-and state friction law in subduction channel, leading to stick-slip instability. This model generates spontaneous earthquake sequence. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We observe many interesting deformation patterns and demonstrate that contrary to the conventional ideas, this model predicts that postseismic deformation is controlled by visco-elastic relaxation in the mantle wedge already since hour to day after the great (M>9) earthquakes. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-4year time range.

  2. Towards marine seismological Network: real time small aperture seismic array

    NASA Astrophysics Data System (ADS)

    Ilinskiy, Dmitry

    2017-04-01

    Most powerful and dangerous seismic events are generated in underwater subduction zones. Existing seismological networks are based on land seismological stations. Increased demands for accuracy of location, magnitude, rupture process of coming earthquakes and at the same time reduction of data processing time require information from seabed seismic stations located near the earthquake generation area. Marine stations provide important contribution for clarification of the tectonic settings in most active subduction zones of the world. Early warning system for subduction zone area is based on marine seabed array which located near the area of most hazardous seismic zone in the region. Fast track processing for location of the earthquake hypocenter and energy takes place in buoy surface unit. Information about detected and located earthquake reaches the onshore seismological center earlier than the first break waves from the same earthquake will reach the nearest onshore seismological station. Implementation of small aperture array is based on existed and shown a good proven performance and costs effective solutions such as weather moored buoy and self-pop up autonomous seabed seismic nodes. Permanent seabed system for real-time operation has to be installed in deep sea waters far from the coast. Seabed array consists of several self-popup seismological stations which continuously acquire the data, detect the events of certain energy class and send detected event parameters to the surface buoy via acoustic link. Surface buoy unit determine the earthquake location by receiving the event parameters from seabed units and send such information in semi-real time to the onshore seismological center via narrow band satellite link. Upon the request from the cost the system could send wave form of events of certain energy class, bottom seismic station battery status and other environmental parameters. When the battery life of particular seabed unit is close to became empty, the seabed unit is switching into sleep mode and send that information to surface buoy and father to the onshore data center. Then seabed unit can wait for the vessel of opportunity for recovery of seabed unit to sea surface and replacing seabed station to another one with fresh batteries. All collected permanent seismic data by seabed unit could than downloaded for father processing and analysis. In our presentation we will demonstrate the several working prototypes of proposed system such as real time cable broad band seismological station and real time buoy seabed seismological station.

  3. Seismic observation of a sharp post-garnet phase transition within the Farallon crust: Evidence for oceanic plateau subduction

    NASA Astrophysics Data System (ADS)

    Maguire, R.; Ritsema, J.

    2017-12-01

    The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0

  4. High Resolution Hypocenter Relocation for Events in Central Java, Indonesia using Double-Difference Technique

    NASA Astrophysics Data System (ADS)

    Sahara, D. P.; Widiyantoro, S.; Nugraha, A. D.; Sule, R.; Luehr, B. G.

    2010-12-01

    Seismic and volcanic activities in Central Java are highly related to the subduction of the Indo-Australian plate. In the MERapi AMphibious Experiments (MERAMEX), a network consisting of 169 seismographic stations was installed onshore and offshore in central Java and recorded 282 events during the operation. In this study, we present the results of relative hypocenters relocation by using Double Difference (DD) method to image the subduction beneath the volcanic chain in central Java. The DD method is an iterative procedure using Least Square optimization to determine high-resolution hypocenter locations over large distances. This relocation method uses absolute travel-time measurements and/or cross-correlation of P- and S-wave differential travel-time measurements. The preliminary results of our study showed that the algorithm could collapse the diffused event locations obtained from previous study into a sharp image of seismicity structure and reduce the residual travel time errors significantly (7 - 60%). As a result, narrow regions of a double seismic zone which correlated with the subducting slab can be determined more accurately. The dip angle of the slab increases gradually from almost horizontal beneath offshore to very steep (65-80 degrees) beneath the northern part of central Java. The aseismic gap at depths of 140 km - 185 km is also depicted clearly. The next step of the ongoing research is to provide detailed quantitative constraints on the structures of the mantle wedge and crust beneath central Java and to show the ascending paths of fluids and partially molten materials below the volcanic arc by applying Double-Difference Tomography method (TomoDD).

  5. Cascadia Initiative Reveals Accumulation of Buoyant Material Beneath the Subducting Juan de Fuca Plate

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.; Richards, M. A.

    2015-12-01

    The Cascadia Initiative is a four-year (2011-2015) amphibious seismic deployment that covers the Juan de Fuca plate and the Cascadia Subduction Zone. It is comprised of 70 broadband ocean-bottom seismometers that occupy 120 sites in total, as well as 27 land-based stations. This array offers a unique opportunity to study the 3D structure of a subduction zone in unprecedented detail. We present the results of an inversion using teleseismic body waves recorded by the Cascadia Initiative, EarthScope, and other regional and temporary networks in the Pacific Northwest. A low-velocity feature is visible beneath the subducting slab at shallow depths. Previous studies report ponding of low-viscosity, buoyant material at the top of the asthenosphere, unable to rise through the impermeable lithospheric lid. We show that as the lithospheric lid descends into the mantle, this material is not advected with it; rather, due to its own weakness and buoyancy, it accumulates at the subduction zone. Such material could be partly responsible for the rapid uplift and volcanism in the Coast Range of California, in the wake of the northward migration of the Mendocino Triple Junction. This newly observed feature may play an important role in the structure of subduction zones, but understanding the extent of that role on a global scale will require amphibious seismic deployments in other subduction zones.

  6. Crustal architecture of the cascadia forearc.

    PubMed

    Trehu, A M; Asudeh, I; Brocher, T M; Luetgert, J H; Mooney, W D; Nabelek, J L; Nakamura, Y

    1994-10-14

    Seismic profiling data indicate that the thickness of an accreted oceanic terrane of Paleocene and early Eocene age, which forms the basement of much of the forearc beneath western Oregon and Washington, varies by approximately a factor of 4 along the strike of the Cascadia subduction zone. Beneath the Oregon Coast Range, the accreted terrane is 25 to 35 kilometers thick, whereas offshore Vancouver Island it is about 6 kilometers thick. These variations are correlated with variations in arc magmatism, forearc seismicity, and long-term forearc deformation. It is suggested that the strength of the forearc crust increases as the thickness of the accreted terrane increases and that the geometry of the seaward edge of this terrane influences deformation within the subduction complex and controls the amount of sediment that is deeply subducted.

  7. Forearc structure in the Lesser Antilles inferred from depth to the Curie temperature and thermo-mechanical simulations

    NASA Astrophysics Data System (ADS)

    Gailler, Lydie; Arcay, Diane; Münch, Philippe; Martelet, Guillaume; Thinon, Isabelle; Lebrun, Jean-Frédéric

    2017-06-01

    Imaging deep active volcanic areas remains a challenge in our understanding of their activity and evolution, especially in subduction zones. Study of magnetic anomalies is appropriate to access such dynamics in depth. The magnetic anomaly pattern of the Lesser Antilles Arc (LAA) subduction is studied through Curie Point Depth (CPD), interpreted as the depth of the 580 °C isotherm, and developed to better assess the deep thermal structure of the arc. The depth of the estimated CPD exhibits a complex topography. Keeping in mind the overall uncertainty associated with this method, a main doming is evidenced below the Guadeloupe archipelago. Its apex is shifted towards the ancient arc, suggesting a very hot state of the fore-arc/arc domain. To better understand the LAA thermal state, we perform 2D thermo-mechanical simulations of the subduction zone. Recalling that magnetite is a serpentinization by-product, we simulate water transfer triggered by slab dehydration to test the assumption of fore-arc serpentinization suggested by the positive magnetic anomaly in the vicinity of the Guadeloupe archipelago. In this area, the subduction-induced arc lithosphere hydration and related weakening trigger a fast heating of the upper plate by basal convective removal. This process of fast arc lithosphere thinning may apply where simultaneously the volcanic arc is split in two and normal convergence is high enough. As serpentinization strongly decreases P-wave velocity, we propose a new interpretation of a published seismic profile below Guadeloupe. The seismic layer previously interpreted as the arc lower crust may rather be a layer of serpentinized mantle, as supported by spatial correlations between gravimetric and magnetic anomalies. Consequently, at the scale of Guadeloupe Island, the fore-arc Moho would be shallower than initially assumed, with a dome shape more consistent with both the extensive deformation active since the Oligocene in the inner fore-arc and the CPD doming.

  8. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    NASA Astrophysics Data System (ADS)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  9. New insights on co- and post-seismic deformation and slip behavior associated with the Mw7.8 2016 Pedernales, Ecuador earthquake and its aftershock sequence

    NASA Astrophysics Data System (ADS)

    Soto-Cordero, L.; Nealy, J. L.; Meltzer, A.; Agurto-Detzel, H.; Alvarado, A. P.; Beck, S. L.; Benz, H.; Bergman, E. A.; Charvis, P.; Font, Y.; Hayes, G. P.; Hernandez, S.; Hoskins, M.; Leon Rios, S.; Lynner, C.; Regnier, M. M.; Rietbrock, A.; Stachnik, J. C.; Yeck, W. L.

    2017-12-01

    On April 16, 2016, a Mw7.8 earthquake, associated with oblique subduction of the Nazca Plate under South America, ruptured a segment approximately 130x100km in the region north of the intersection of the Carnegie ridge with the Ecuador subduction zone. The rupture coincides with the rupture area of the Mw7.8 1942 earthquake. To characterize the aftershock sequence, we analyze seismic data recorded by 30 stations from April 17, 2016 to May 8, 2017; 11 stations belong to Ecuador's national network and 19 are part of a PASSCAL temporary deployment. We apply a kurtosis detector to obtain automatic P- and S-wave picks. Earthquake locations, magnitudes, and regional moment tensors are obtained using the U.S. Geological Survey National Earthquake Information Center (NEIC) processing system. We also determine calibrated relocations using the Hypocentroidal Decomposition approach for a subset of events for which we combine phase readings from local and temporary PASSCAL stations with regional and teleseismic phase readings from the NEIC. In contrast with other earthquake relocation approaches, this method evaluates absolute location uncertainties for each event in the cluster, which allows us to more confidently assess the relationships between mainshock slip and aftershock activity. We find the aftershock sequence is characterized by a series of event clusters that predominantly surround the main rupture patches. However, the aftershocks extend beyond the mainshock rupture area, covering a region approximately 250x100km. Aftershocks north of the 2016 rupture fall in the rupture area of the Mw7.7 1958 earthquake. The southernmost region of elevated seismicity occurs south of a region of low coupling where the Carnegie ridge meets the subduction zone. The characterization of this sequence allows a detailed spatial and temporal analysis of the rupture processes, stress patterns and slip behavior during this earthquake sequence in Ecuador subduction zone.

  10. Slab geometry of the South American margin from joint inversion of body waves and surface waves

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.

    2016-12-01

    The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.

  11. Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Maury, Julie

    2018-04-01

    Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.

  12. From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust

    NASA Astrophysics Data System (ADS)

    Saillard, M.; Audin, L.; Rousset, B.; Avouac, J. P.; Chlieh, M.; Hall, S. R.; Husson, L.; Farber, D.

    2017-12-01

    Measurement of interseismic strain along subduction zones reveals the location of both locked asperities, which might rupture during megathrust earthquakes, and creeping zones, which tend to arrest such seismic ruptures. The heterogeneous pattern of interseismic coupling presumably relates to spatial variations of frictional properties along the subduction interface and may also show up in the fore-arc morphology. To investigate this hypothesis, we compiled information on the extent of earthquake ruptures for the last 500 yrs and uplift rates derived from dated marine terraces along the South American coastline from central Peru to southern Chile. We additionally calculated a new interseismic coupling model for that same area based on a compilation of GPS data. We show that the coastline geometry, characterized by the distance between the coast and the trench; the latitudinal variations of long-term uplift rates; and the spatial pattern of interseismic coupling are correlated. Zones of faster and long-term permanent coastal uplift, evidenced by uplifted marine terraces, coincide with peninsulas and also with areas of creep on the megathrust where slip is mostly aseismic and tend to arrest seismic ruptures. This correlation suggests that these areas prevent elastic strain buildup and inhibit lateral seismic rupture propagation. Correlation between the location of these regions across and along strike of convergence and the long-term morphology of the subduction margin suggests that the barrier effect might be due to rheology, namely rate-strengthening friction, although geometric effects might also play a secondary role. Higher shear stress along creeping segments of the megathrust than along segments dominated by recurring large earthquakes would favor more rapid viscoplastic (permanent) deformation of the fore arc and thus uplift. Marine terrace sequences attest to frictional properties along the megathrust persisting for million-year time scales. Peninsulas are the surface expression of large subduction earthquakes segment boundaries and show evidence for their stability over multiple seismic cycles. We conclude spatial variations of frictional properties along the megathrust dictate the tectono-geomorphological evolution of the coastal zone and the extent of seismic ruptures along strike.

  13. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Kim, Daeyeong; Katayama, Ikuo; Michibayashi, Katsuyoshi; Tsujimori, Tatsuki

    2013-09-01

    Investigations of microstructures are crucial if we are to understand the seismic anisotropy of subducting oceanic crust, and here we report on our systematic fabric analyses of glaucophane, lawsonite, and epidote in naturally deformed blueschists from the Diablo Range and Franciscan Complex in California, and the Hida Mountains in Japan. Glaucophanes in the analyzed samples consist of very fine grains that are well aligned along the foliation and have high aspect ratios and strong crystal preferred orientations (CPOs) characterized by a (1 0 0)[0 0 1] pattern. These characteristics, together with a bimodal distribution of grain sizes from some samples, possibly indicate the occurrence of dynamic recrystallization for glaucophane. Although lawsonite and epidote display high aspect ratios and a strong CPO of (0 0 1)[0 1 0], the occurrence of straight grain boundaries and euhedral crystals indicates that rigid body rotation was the dominant deformation mechanism. The P-wave (AVP) and S-wave (AVS) seismic anisotropies of glaucophane (AVP = 20.4%, AVS = 11.5%) and epidote (AVP = 9.0%, AVS = 8.0%) are typical of the crust; consequently, the fastest propagation of P-waves is parallel to the [0 0 1] maxima, and the polarization of S-waves parallel to the foliation can form a trench-parallel seismic anisotropy owing to the slowest VS polarization being normal to the subducting slab. The seismic anisotropy of lawsonite (AVP = 9.6%, AVS = 19.9%) is characterized by the fast propagation of P-waves subnormal to the lawsonite [0 0 1] maxima and polarization of S-waves perpendicular to the foliation and lineation, which can generate a trench-normal anisotropy. The AVS of lawsonite blueschist (5.6-9.2%) is weak compared with that of epidote blueschist (8.4-11.1%). Calculations of the thickness of the anisotropic layer indicate that glaucophane and lawsonite contribute to the trench-parallel and trench-normal seismic anisotropy beneath NE Japan, but not to that beneath the Ryukyu arc. Our results demonstrate, therefore, that lawsonite has a strong influence on seismic velocities in the oceanic crust, and that lawsonite might be the cause of complex anisotropic patterns in subduction zones.

  14. Opportunities for Undergraduates to Engage in Research Using Seismic Data and Data Products

    NASA Astrophysics Data System (ADS)

    Taber, J. J.; Hubenthal, M.; Benoit, M. H.

    2014-12-01

    Introductory Earth science classes can become more interactive through the use of a range of seismic data and models that are available online, which students can use to conduct simple research regarding earthquakes and earth structure. One way to introduce students to these data sets is via a new set of six intro-level classroom activities designed to introduce undergraduates to some of the grand challenges in seismology research. The activities all use real data sets and some require students to collect their own data, either using physical models or via Web sites and Web applications. While the activities are designed to step students through a learning sequence, several of the activities are open-ended and can be expanded to research topics. For example, collecting and analyzing data from a deceptively simple physical model of earthquake behavior can lead students to query a map-based seismicity catalog via the IRIS Earthquake Browser to study seismicity rates and the distribution of earthquake magnitudes, and make predictions about the earthquake hazards in regions of their choosing. In another activity, students can pose their own questions and reach conclusions regarding the correlation between hydraulic fracturing, waste water disposal, and earthquakes. Other data sources are available for students to engage in self-directed research projects. For students with an interest in instrumentation, they can conduct research relating to instrument calibration and sensitivity using a simple educational seismometer. More advanced students can explore tomographic models of seismic velocity structure, and examine research questions related to earth structure, such as the correlation of topography to crustal thickness, and the fate of subducted slabs. The type of faulting in a region can be explored using a map-based catalog of focal mechanisms, allowing students to analyze the spatial distribution of normal, thrust and strike-slip events in a subduction zone region. For all of these topics and data sets, the societal impact of earthquakes can provide an additional motivation for students to engage in their research. www.iris.edu

  15. Evolution of seismically active İzmir-Balıkesir Transfer Zone: A reactivated and deep-seated structure since the Miocene

    NASA Astrophysics Data System (ADS)

    Uzel, Bora; Sözbilir, Hasan; Kaymakci, Nuretdin; Özkaymak, Caglar; Ozkaptan, Murat; Ay, Selin; Langereis, Cornelis G.

    2017-04-01

    Within the Aegean extensional system, the İzmir-Balikesir Transfer Zone (İBTZ) is a recently recognized structure that have played important role in the late Cenozoic evolution of western Anatolia by accommodating the differential deformation between the Cycladic (CCC) and the Menderes (MCC) metamorphic core complexes. There is wealth of information about the transform nature of the zone during the late Cretaceous. Some of the faults within the İBTZ have earliest record of their activity in the late Cretaceous related to closure of the Neotethys. In this contribution we will present; (i) the vertical axis rotational history of western Anatolia using paleomagnetic data from the Miocene volcano-sedimentary rocks, (ii) kinematics of the major faults based on fault slip analysis of, and (iii) focal mechanism solutions of the recent seismic activity to better understand the İBTZ since the Miocene. Paleomagnetic results reveal two discrete and opposite major rotational phases since the early Miocene. Kinematics of structures agrees with these results while three major deformational phases are identified along the İBTZ. The focal mechanism solutions of recent seismic events -such as 1992 Doǧanbey, 2003 Seferihisar and 2005 Sıǧacık earthquakes- occurred along the İBTZ corroborate that it is still an active structure and transfers west Anatolian extensional strain into the Aegean Sea. Combining mantle tomography, paleomagnetic, kinematic, and seismic activity along the zone suggests that the İBTZ is not only links two core complexes, the MCC and the CCC, but also corresponds to a deep-seated structure related to a tear along the subducted northern edge of the African slab. Hence, it is not only a surface expression of a tear in the subducting African slab, but also one of the main seismic sources of the region. This work is supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK) research grant of ÇAYDAǧ-109Y044 and partly by the Dokuz Eylül University Scientific Research (BAP) Project: 2007.KB.FEN.039.

  16. Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.; Ramachandran, K.; Trehu, A.M.

    2003-01-01

    Seismic reflection profiles shot across the Cascadia forearc show that a 5-15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave velocities of 6750-7000 ms-1. Elsewhere, the forearc mantle, which is probably partially serpentinized, exhibits velocities of approximately 7500 ms-1. The rocks with velocities of 6750-7000 ms-1 are anomalous with respect to the surrounding mantle, and may represent either: (1) locally high mantle serpentinization, (2) oceanic crust trapped by backstepping of the subduction zone, or (3) rocks from the lower continental crust that have been transported into the uppermost mantle by subduction erosion. The association of subparallel seismic reflectors with these anomalously low velocities favours the tectonic emplacement of crustal rocks. Copyright 2003 by the American Geophysical Union.

  17. Activity of Small Repeating Earthquakes along Izu-Bonin and Ryukyu Trenches

    NASA Astrophysics Data System (ADS)

    Hibino, K.; Matsuzawa, T.; Uchida, N.; Nakamura, W.; Matsushima, T.

    2014-12-01

    There are several subduction systems near the Japanese islands. The 2011 Mw9.0 Tohoku-oki megathrust earthquake occurred at the NE Japan (Tohoku) subduction zone. We have revealed a complementary relation between the slip areas for huge earthquakes and small repeating earthquakes (REs) in Tohoku. Investigations of REs in these subduction zones and the comparison with Tohoku area are important for revealing generation mechanism of megathrust earthquakes. Our target areas are Izu-Bonin and Ryukyu subduction zones, which appear to generate no large interplate earthquake. To investigate coupling of plate boundary in these regions, we estimated spatial distribution of slip rate by using REs. We use seismograms from the High Sensitivity Seismograph Network (Hi-net), Full Range Seismograph Network of Japan (F-net), and permanent seismic stations of Japan Meteorological Agency (JMA), Tohoku University, University of Tokyo, and Kagoshima University from 8 May 2003 (Izu-Bonin) and 14 July 2005 (Ryukyu) to 31 December 2012 to detect REs along the two trenches, by using similarity of seismograms. We mainly follow the procedure adopted in Uchida and Matsuzawa (2013) that studied REs in Tohoku area to compare our results with the REs in Tohoku. We find that the RE distribution along the Ryukyu trench shows two bands parallel to the trench axis. This feature is similar to the pattern in Tohoku where relatively large earthquakes occur between the bands. Along the Izu-Bonin trench, on the other hand, we find much fewer REs than in Tohoku or Ryukyu subduction zones and only one along-trench RE band, which corresponds to the area where the subducting Pacific plate contacts with the crust of the Philippine Sea plate. We also estimate average slip rate and coupling coefficient by using an empirical relationship between seismic moment and slip for REs (Nadeau and Johnson, 1998) and relative plate motion model. As a result, we find interplate slip rate in the deeper band is higher than shallower one along the Ryukyu trench suggesting larger locking along the shallower band. This feature is also similar to the pattern in the NE Japan. Our results indicate that the Ryukyu subduction zone is very similar to the NE Japan subduction zone, while the Izu-Bonin subduction zone appears to be different from the other two zones according to the RE analyses.

  18. P-wave tomography of the Chile Triple Junction region

    NASA Astrophysics Data System (ADS)

    Miller, M. R.; Priestley, K. F.; Tilmann, F. J.; Iwamori, H.; Bataille, K.

    2010-12-01

    We investigate the crustal and upper mantle structure of the Aysén region of Chile. This region is situated from 44 to 49oS, a place where the diverging oceanic Nazca and Antarctic plates subduct beneath the South American continent. The Seismic Experiment in the Aysén Region of CHile (SEARCH) project operated a network of up to 60 land-based seismometers in this region between 2004 and 2006, centred over a 6 Ma subducted spreading centre between the oceanic plates. The data is used to examine the P-wave velocity structure beneath the region using relative-arrival teleseismic travel time tomography, using 2534 P-wave residuals from 173 teleseismic earthquakes. It is possible to image the velocity structure beneath the seismic network down to ˜300 km depth. The velocity structure has a maximum resolution of ˜60 km and shows a large difference between the northern and southern parts of the region. To the north, a ˜100 km thick fast anomaly exists which dips away from the subduction trench; this is likely to be related to the subducting Nazca plate. Going to the south, as the age of this plate at the subduction trench decreases, the fast anomaly migrates further from the trench suggesting that the Nazca plate subducts at a low angle over a larger distance before the subduction angle steepens and hence slab tears exist across the fracture zones between parts of the slab of different age. Where the 6 Ma subducted ridge segment is predicted to lie there is a region of lower velocities between ˜200 and ˜100 km depth, and no fast region associated with a subducting slab is present. Instead, the lower velocities indicate the presence of an asthenospheric window between the subducted Nazca and Antarctic plate.

  19. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing.

    PubMed

    Audet, Pascal; Bostock, Michael G; Christensen, Nikolas I; Peacock, Simon M

    2009-01-01

    Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction-and indeed plate tectonics-to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented. Here we use converted teleseismic waves to obtain observations of anomalously high Poisson's ratios within the subducted oceanic crust from the Cascadia continental margin to its intersection with forearc mantle. On the basis of pressure, temperature and compositional considerations, the elevated Poisson's ratios indicate that water is pervasively present in fluid form at pore pressures near lithostatic values. Combined with observations of a strong negative velocity contrast at the top of the oceanic crust, our results imply that the megathrust is a low-permeability boundary. The transition from a low- to high-permeability plate interface downdip into the mantle wedge is explained by hydrofracturing of the seal by volume changes across the interface caused by the onset of crustal eclogitization and mantle serpentinization. These results may have important implications for our understanding of seismogenesis, subduction zone structure and the mechanism of episodic tremor and slip.

  20. Project SUMATRA: The Fore-arc Basin System of Sumatra

    NASA Astrophysics Data System (ADS)

    Neben, S.; Franke, D.; Gaedicke, C.; Ladage, S.; Berglar, K.; Damm, V.; Ehrhardt, A.; Heyde, I.; Schnabel, M.; Schreckenberger, B.

    2006-12-01

    The main scientific objective of the project SUMATRA is to determine or estimate the geological setting and evolution of the Sumatra fore-arc region. RV SONNE cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. During the cruise a total of 4375km of multichannel seismic (MCS), magnetics (M) and gravity (G) data were acquired and additional 990km with M and G alone. Along two lines with a total length of 390km refraction/wide-angle seismic experiments were carried out. 41 MCS lines cover as close grids the three fore- arc basins. Five lines extend nearly orthogonal to the subduction front covering the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the fore-arc basins. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub- basin. The maximum thickness was determined to be 6s TWT. In the southern sub-basin carbonate build-ups (which were already identified during the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55km the maximum sediment thickness exceeds 5s TWT. The largest investigated fore-arc basin is the Siberut Basin. It extends over 550km and has a maximum width of 140km between Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. As offshore northern Sumatra, both landward and seaward verging folds are developed at the deformation front off Nias and Siberut. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. Two refraction lines were acquired parallel to the subduction front at 2.5N and 1.5S approximately 40-50km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set is consists now of over 38,000km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (6.5N/95E) to Mid Java (8.5S/110E). Gravity modelling in parallel with refraction seismic data interpretation was carried out along two lines during the cruise. The preliminary results show that the incoming oceanic crust is at 5-6 km unusual thin, both in the south off Nias (5km) and in the north off Simeulue (6km).

  1. 15 Years Of Ecuadorian-French Research Along The Ecuadorian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Charvis, P.

    2015-12-01

    The Ecuadorian segment of the Nazca/South America subduction zone is an outstanding laboratory to study the seismic cycle. Central Ecuador where the Carnegie ridge enters the subduction marks a transition between a highly coupled segment that hosted one of the largest seismic sequence during the 20thcentury and a ~1200-km long weakly coupled segment encompassing southern Ecuador and northern Peru. A shallow dipping subduction interface and a short trench-coast line distance ranging from 45 to 80 km, together with La Plata Island located only 33 km from the trench axis, allow to document subduction processes in the near field with an exceptional resolution. Since 2000, a close cooperation between the Institute of Geophysics (Quito), INOCAR (Oceanographic Institute of the Ecuadorian Navy) with French groups allowed us to conduct up to 6 marine geophysics cruises to survey the convergent margin and jointly develop dense GPS and seismological networks. This fruitful collaboration now takes place in the framework of an International Joint Laboratory "Earthquakes and Volcanoes in the Northern Andes" (LMI SVAN), which eases coordinating research projects and exchanges of Ecuadorian and French scientists and students. This long-term investigation has already provided a unique view on the structure of the margin, which exhibits a highly variable subduction channel along strike. It allowed us to evidence the contrast between creeping and coupled segments of subduction at various scale, and the existence of large continental slivers whose motion accommodates the obliquity of the Nazca/South America convergence. Finally, we could evidence the first Slow Slip Events (SSE) that oppositely to most SSE documented so far, are accompanied with intense micro-seismicity. The recent support of the French National Research Agency and the Ecuadorian Agency for Sciences and Technology (Senescyt) will enable us to integrate the already obtained results, in an attempt to develop an earthquake forecast model for Ecuador.

  2. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Becker, Thorsten W.; Monsalve, Gaspar

    2014-12-01

    The Nazca, Caribbean, and South America plates meet in northwestern South America where the northern end of the Andean volcanic arc and Wadati-Benioff zone seismicity indicate ongoing subduction. However, the termination of Quaternary volcanism at ~5.5°N and eastward offset in seismicity underneath Colombia suggest the presence of complex slab geometry. To help link geometry to dynamics, we analyze SKS splitting for 38 broadband stations of the Colombian national network. Measurements of fast polarization axes in western Colombia close to the trench show dominantly trench-perpendicular orientations. Orientations measured at stations in the back arc, farther to the east, however, abruptly change to roughly trench parallel anisotropy. This may indicate along-arc mantle flow, possibly related to the suggested "Caldas" slab tear, or a lithospheric signature, but smaller-scale variations in anisotropy remain to be explained. Our observations are atypical globally and challenge our understanding of the complexities of subduction zone seismic anisotropy.

  3. CAFE: a seismic investigation of water percolation in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Abers, G. A.; Creager, K. C.; Malone, S. D.; MacKenzie, L.; Zhang, Z.; van Keken, P. E.; Wech, A. G.; Sweet, J. R.; Melbourne, T. I.; Hacker, B. R.

    2008-12-01

    Subduction zones transport water into the Earth's interior. The subsequent release of this water through dehydration reactions may trigger intraslab earthquakes and arc volcanism, regulate slip on the plate interface, control plate buoyancy, and regulate the long-term budget of water on the planet's surface. As part of Earthscope, we have undertaken an experiment named CAFE (Cascadia Arrays for Earthscope) seeking to better constrain these effects in the Cascadia subduction zone. The basic experiment has four components: (1) a 47-element broadband imaging array of Flexible Array instruments integrated with Bigfoot; (2) three small-aperture seismic arrays with 15 additional short-period instruments near known sources of Episodic Tremor and Slip (ETS) events; (3) analysis of the PBO and PANGA GPS data sets to define the details of episodic slip events; and (4) integrative modeling with complementary constraints from petrology and geodynamics. Here, we present a summary of the results that have been obtained to date by CAFE, with a focus on high-resolution seismic imaging. A 250 km-long by 120 km-deep seismic profile extending eastward from the Washington coast was generated by 2-D Generalized Radon Transform Inversion of the broadband data. It images the subducted crust as a shallow-dipping, low-velocity layer from 20km depth beneath the coast to 40km depth beneath the forearc. The termination of the low-velocity layer is consistent with the depth at which hydrated metabasalts of the subducted crust are expected to undergo eclogitization, a reaction that is accompanied by the release of water and an increase in seismic velocities. Slab earthquakes are located in both the oceanic crust and mantle at depths <40 km, and exclusively in the oceanic mantle at greater depth, as would be expected if they are related to slab dehydration. Two ETS events have occurred during the course of the deployment. They were precisely located and are confined to the region above which the crust exhibits low-velocities and is believed to undergo progressive dehydration, further supporting the proposition that water plays a role in ETS.

  4. Forward Analyses of Dehydration Reactions in Mafic Rocks Along the P-T Trajectories of the Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Kuwatani, T.; Okamoto, A.; Toriumi, M.

    2005-12-01

    Fluids in the subduction zone play an important role in magmatism, metamorphism, and mechanical processes involving seismic activity. Additionally, recent geophysical researches found low-frequency tremors which may be related to the movement of fluid (Obara, 2002) and a zone of high Poisson_fs ratio which reflects high pore fluid pressure (Kodaira et al.,2004) in the Southwest Japan fore-arc. It is widely accepted that these fluids are supplied by the dehydration of hydrous metamorphic minerals in the subducting oceanic plate. Although many previous studies attempted to estimate the water content of the subducting oceanic crust experimentally and theoretically (e.g., Schmidt and Poli, 1998; Hacker et al., 2003), there have been no studies which quantify the continuous dehydration reactions in detail. The aim of this study is to quantify the progress of the continuous dehydration reactions of mafic rocks in the condition of greenschist facies, corresponding to low-intermediate depth (10-50km) of warm subduction zone. We use the differential thermodynamics (Spear 1993) which include mass balance to predict the continuous metamorphic reaction history of mafic rocks along the P-T trajectory of the subducting slab. With fixed bulk chemical composition the thermodynamic system is divariant, as specified in Duhem_fs theorem. In differential thermodynamics, applying a series of changes in pressure and temperature (ΔP and ΔT, respectively) from initial conditions (P0, T0, X0s, M0s), we can trace ΔXs and ΔMs, that is, the progress (history) of the metamorphic reactions along the arbitrary P-T trajectory (Thermodynamic forward modeling). According to Okamoto and Toriumi, 2001, we modeled the greenschist/ blueschist/ (epidote -) amphibolite assemblage of mafic rocks, which consist of the following phases: Amphibole ± Epidote ± Chlorite + Plagioclase + Quartz + Fluid (H2O), in the system of Na2O - CaO - MgO - FeO - Fe2O3 - Al2O3 - SiO2 - H2O. The reference compositions and modes of minerals were assumed according to the natural sample of greenschist which has MORB-like bulk composition (Hacker et al. 2003). The reference temperature and pressure were set to be 300°C, 0.3GPa. Calculations were performed along the P-T paths of the Southwest Japan (4MPa/°C) and the Cape Mendocino (the North California, 2MPa/°C) predicted by Yamasaki and Seno, 2003. As a result, the water production rates have the peak depths at the boundary between the greenschist facies and the epidote-amphibolite facies in the Southwest Japan, and at the boundary between the greenschist facies and the amphibolite facies in the Cape Mendocino, respectively. Chlorite decomposition is the main dehydration reaction. These peak depths correspond to the zone of low frequency tremors, high Poisson_fs ratio and active seismicity (30-50km) in the Southwest Japan, and active seismicity (10-20km) in the Cape Mendocino, respectively.

  5. Crustal-Scale Seismic Structure From Trench to Forearc in the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Rathnayaka, Sampath; Gao, Haiying

    2017-09-01

    The (de)hydration process and the amount of hydrated sediment carried by the downgoing oceanic plate play a key role in the subduction dynamics. A high-resolution shear velocity model from the crust down to the uppermost mantle, extending from trench to forearc, is constructed in the northern Cascadia subduction zone to investigate seismic characteristics related to slab deformation and (de)hydration at the plate boundary. A total of 220 seismic stations are used, including the Cascadia Initiative Amphibious Array and inland broadband and short-period stations. The empirical Green's functions extracted from continuous ambient noise data from 2006 to 2014 provide high-quality Rayleigh wave signals at periods of 4-50 s. We simulate wave propagation using finite difference method to generate station Strain Green's Tensors and synthetic waveforms. The phase delays of Rayleigh waves between the observed and synthetic data are measured at multiple period ranges. We then invert for the velocity perturbations from the reference model and progressively improve the model resolution. Our tomographic imaging shows many regional- and local-scale low-velocity features, which are possibly related to slab (de)hydration from the oceanic plate to the overriding plate. Specifically, we observe (1) NW-SE oriented linear low-velocity features across the trench, indicating hydration of the oceanic plate induced by bending-related faultings; (2) W-E oriented fingerlike low-velocity structures off the continental margins due to dehydration of the Juan de Fuca plate; and (3) seismic lows atop the plate interface beneath the Washington forearc, indicating fluid-rich sediments subducted and overthrusted at the accretionary wedge.

  6. Regional distribution of volcaniclastic layer and its implication for segmentation of the Nankai seismogenic zone

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Lim, J.; Higashi, M.; Park, J.

    2010-12-01

    The Nankai Trough is known as one of the best-suited convergent plate margins for studying accretionary prism growth as well as subduction zone earthquakes. Along the Nankai accretionary margin off southwest Japan, the Shikoku Basin which formed 26-15 Ma as backarc spreading in the Philippine Sea Plate is being subducted about 4 cm/year to the northwest. The Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) penetrated the Nankai accretionary prism and the incoming sedimentary section along the Ashizuri and Muroto transects, off Shikoku Island. Also, Integrated Ocean Drilling Program (IODP), which represented just one part of a multi-stage project known as the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has been conducting drilling cruises now. IODP Expedition 322 in 2009, the coring was carried out at two drilling sites on the northern part of the Shikoku Basin in the subducting Philippine Sea plate. One of the major achievements of Expedition 322 is a discovery of late Miocene (10.2-7.6 Ma) tuffaceous and volcaniclastic sandstone layer (Underwood et al., IODP Prel. Rept. 322, 2009) that has not been previously recognized in the Nankai Trough. Based on age and volcanic sand content analysis, these volcaniclastic layers were unique to the Shikoku Basin off Kii Peninsula. The closest source of this volcanic layer was supposed to be the Izu-Bonin arc. Subducted sediments ultimately affect subduction zone geochemistry, thermal structure, and seismogenesis. High porosity of the volcaniclastic sandstone layer suggests the transportation of fluid to the subduction zone, it might affect the initiation and evolution of the decollement zone or plate boundary fault in the Nankai Trough. We interpreted single channel and multichannel seismic reflection profiles that have been acquired in the Nankai Trough margin by Japan Agency for Marine-Earth Science and Technology (JAMSTEC) since the year of 1997. We tried to map the major seismic layers such as volcaniclastic layer, volcanic ash layer and turbidite layers which were found at drilling sites in the IODP Expedition 322 in the northern Shikoku Basin. As a result, we recognized that these prominent seismic layers are widely distributed in the northern Shikoku Basin. In this talk, we will show specific seismic layers directly connecting to the decollement at the Nankai Trough axis, and discuss its implications for subduction processes in the Nankai Trough margin.

  7. Earth science: lasting earthquake legacy

    USGS Publications Warehouse

    Parsons, Thomas E.

    2009-01-01

    On 31 August 1886, a magnitude-7 shock struck Charleston, South Carolina; low-level activity continues there today. One view of seismic hazard is that large earthquakes will return to New Madrid and Charleston at intervals of about 500 years. With expected ground motions that would be stronger than average, that prospect produces estimates of earthquake hazard that rival those at the plate boundaries marked by the San Andreas fault and Cascadia subduction zone. The result is two large 'bull's-eyes' on the US National Seismic Hazard Maps — which, for example, influence regional building codes and perceptions of public safety.

  8. Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation

    NASA Astrophysics Data System (ADS)

    Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras

    2016-04-01

    At subduction megathrusts, propagation of large ruptures may be confined between the up-dip and down-dip limits of the seismogenic zone. This opens a primary role for lateral rupture dimensions to control the magnitude and severity of megathrust earthquakes. The goal of this study is to improve our understanding of the ways in which the inherent variability of the subduction interface may influence the degree of interseismic locking, and the propensity of a rupture to propagate over regions of variable slip potential. The global absence of a historic record sufficiently long to base risk assessment on, makes us rely on numerical modelling as a way to extend our understanding of the spatio-temporal occurrence of earthquakes. However, the complex interaction of the subduction stress environment, the variability of the subduction interface, and the structure and deformation of the crustal wedge has made it very difficult to construct comprehensive numerical models of megathrust segmentation. We develop and exploit the power of a plastic 3D continuum representation of the subduction megathrust, as well as off-megathrust faulting to model the long-term tectonic build-up of stresses, and their sudden seismic release. The sheer size of the 3D problem, and the time scales covering those of tectonics as well as seismology, force us to explore efficient and accurate physical and numerical techniques. We thus focused our efforts on developing a staggered grid finite difference code that makes use of the PETSc library for massively parallel computing. The code incorporates a newly developed automatic discretization algorithm, which enables it to handle a wide variety of equations with relative ease. The different physical and numerical ingredients - like attenuating visco-elasto-plastic materials, frictional weakening and inertially driven seismic release, and adaptive time marching schemes - most of which have been implemented and benchmarked individually - are now combined into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.

  9. The CASEIS project: toward a better understanding of the seismic cycle and paleoseismology of the Lesser Antilles megathrust

    NASA Astrophysics Data System (ADS)

    Nathalie, F.; Seibert, C.; Morena, P.; Bieber, A.; Beck, C.; Carlut, J. H.; Caron, B.; Cattaneo, A.; Ducassou, E.; Goldfinger, C.; Klingelhoefer, F.; Le Friant, A.; Moreno, E.; Mulder, T.; Ratzov, G.; St-Onge, G.

    2017-12-01

    The Lesser Antilles arc results from the subduction of the Caribbean and North American plates at rate of 2cm/yr. Although this area is the site of multiple natural hazards, the seismic potential of this subduction zone remains poorly constrained. The historical catalog of earthquakes is short, and any very large earthquakes that may have occurred, were prior to modern times. Consequently this subduction system has often been assumed to be aseismic. Since the occurrence of three M9-class earthquakes in the recent years, many questions have arisen concerning the behavior and seismic history of megathrusts. We cannot exclude any subduction zone from producing such large events, and it becomes urgent to re-evaluate the seismic potential of the Lesser Antilles subduction zone. To this goal, we conducted the CASEIS cruise (doi 10.17600/16001800) aboard the French R/V Pourquoi Pas ? between May 27 and July 5 2016. We collected 42 giant piston cores up to 30 m-long in isolated slope basins, slope canyons, at the subduction trench, in turbidite channels and levee systems, above the plate interface, to address long-term earthquake recurrence by using the turbidite paleoseismology method. Petrophysical data including gamma density, P-wave velocity, magnetic susceptibility, resistivity, color reflectivity, and color imagery were systematically acquired aboard on the 500 m of sediment cores we collected. Later analysis included XRF profiles, CT-scanning, laser microgranulometry, anisotropy of magnetic susceptibility, isotopic stratigraphy, and 14C dating on several cores. We documented and established the chronology of several sedimentary facies including turbidites and homogenites interbedded with hemipelagites and tephra in numerous cores. Analysis of chirp data shows that some events can be correlated between multiple core sites over a large distance and may have been triggered by large earthquakes on the plate interface. Several cores offshore Guadeloupe, in the area struck by the 1843 earthquakes show four alternations of several meters-thick turbitites (Tu) and/or homogenites (Hm) and hemipelagites. Such Hm or Tu deposits have been documented elsewhere and may have emplaced during megathrust events and tsunamis repeating at intervals of several tens of millennia.

  10. Dynamic Passage of Topography Beneath the Southern Costa Rica Forearc seen with Seismic Stratigraphy

    NASA Astrophysics Data System (ADS)

    Edwards, J. H.; Kluesner, J. W.; Silver, E. A.

    2014-12-01

    3D seismic reflection data (CRISP) collected across the southern Costa Rica margin reveals that a thick, deforming sedimentary wedge underlies the younger slope sediments (Silver et al., this meeting). The older wedge material and younger slope sediments are separated by a high-amplitude regional unconformity. Seismic stratigraphy of the sedimentary strata overlying this regional unconformity reflects a dynamic deformation history of the margin. The younger slope sediments contain series of more localized unconformities, separating sedimentary units as thick as 1 km that reveal a dynamically changing set of inverted, overlapping basins. The geometry of these overlapping, inverted basins indicate sequential uplift events. The direction of basin thickening varies upsection, and these basins are cut by both thrust and normal faults and are deformed by folding. Structural development appears to be controlled by relief on the subducting plate interface, which induces uplift and subsidence and thereby controls the pattern of erosion and deposition. We interpret the evolution of these inverted stratigraphic packages as forming from subducting topography. Correlating these seismic-stratigraphic packages to recent drilling based on preliminary magnetostratigraphy from IODP site U1413 (Expedition 344 Scientists, 2013), allows us to date the passage of the subducting plate topography beginning ~2 Ma.

  11. A recent deep earthquake doublet in light of long-term evolution of Nazca subduction

    NASA Astrophysics Data System (ADS)

    Zahradník, J.; Čížková, H.; Bina, C. R.; Sokos, E.; Janský, J.; Tavera, H.; Carvalho, J.

    2017-03-01

    Earthquake faulting at ~600 km depth remains puzzling. Here we present a new kinematic interpretation of two Mw7.6 earthquakes of November 24, 2015. In contrast to teleseismic analysis of this doublet, we use regional seismic data providing robust two-point source models, further validated by regional back-projection and rupture-stop analysis. The doublet represents segmented rupture of a ˜30-year gap in a narrow, deep fault zone, fully consistent with the stress field derived from neighbouring 1976-2015 earthquakes. Seismic observations are interpreted using a geodynamic model of regional subduction, incorporating realistic rheology and major phase transitions, yielding a model slab that is nearly vertical in the deep-earthquake zone but stagnant below 660 km, consistent with tomographic imaging. Geodynamically modelled stresses match the seismically inferred stress field, where the steeply down-dip orientation of compressive stress axes at ˜600 km arises from combined viscous and buoyant forces resisting slab penetration into the lower mantle and deformation associated with slab buckling and stagnation. Observed fault-rupture geometry, demonstrated likelihood of seismic triggering, and high model temperatures in young subducted lithosphere, together favour nanometric crystallisation (and associated grain-boundary sliding) attending high-pressure dehydration as a likely seismogenic mechanism, unless a segment of much older lithosphere is present at depth.

  12. Double subduction of continental lithosphere, a key to form wide plateau

    NASA Astrophysics Data System (ADS)

    Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie

    2016-04-01

    The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".

  13. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  14. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-07-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate during subduction by accretionary processes. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and have 3 distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. In addition many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. And other times we find evidence of collision leaving behind accreted terranes 25 to 40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to accrete and others to accrete. In many modern FATs on the ocean floor, a sub-crustal layer of high seismic velocities, interpreted as ultramafic material, could serve as a detachment or delaminate during subduction.

  15. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau within the Nazca slab. These intra-slab velocity anomalies provide the most complete tomographic evidence to date in support the classic, but still controversial hypothesis of subducted, relatively buoyant oceanic lithosphere features along the Andean margin.

  16. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  17. How the Slip Distribution Complexities Control the Tsunami Scenarios: a Sensitivity Analysis for the Hellenic and Calabrian Subduction Interfaces.

    NASA Astrophysics Data System (ADS)

    Scala, A.; Murphy, S.; Herrero, A.; Maesano, F. E.; Lorito, S.; Romano, F.; Tiberti, M. M.; Tonini, R.; Volpe, M.; Basili, R.

    2017-12-01

    Recent giant tsunamigenic earthquakes (Sumatra 2004, Chile 2010, Tohoku 2011) have confirmed that the complexity of seismic slip distributions may play a fundamental role in the generation and the amplitude of the tsunami waves. In particular, big patches of large slip on the shallower part of the subduction zones, as well as slow rupture propagation within low rigidity areas, can contribute to increase the tsunamigenic potential thus generating devastating coastal inundation. In the Mediterranean Sea, some subduction structures can be identified, such as the Hellenic Arc at the boundary between the African and Aegean plates, and the Calabrian Arc between the European and African plates. We have modelled these areas using discretized high-resolution 3D fault geometries with realistic variability of the strike and dip angles. In particular, the latter geometries have been constrained from the analysis of a dense network of seismic reflection profiles and the seismicity of the areas. To study the influence of different rigidity conditions, we compare the tsunami scenarios deriving from homogeneous slip to those obtained from depth-dependent slip distributions at different magnitudes. These depth-dependent slip distributions are obtained by imposing a variability with depth of both shear modulus and seismic rate, and the conservation of the dislocation over the whole subduction zone. Furthermore, we generate along the Hellenic and Calabrian arc subduction interfaces an ensemble of stochastic slip distributions using a composite source model technique. To mimic either single or multiple asperity source models, the distribution of sub-events whose sum produces the stochastic slip, are distributed based on a PDF, defined as the combination of either one or more Gaussian functions. Tsunami scenarios are then generated from this ensemble in order to address how the position of the main patch of slip can affect the tsunami amplitude along the coast.

  18. Cascadia Seismicity Related to Seamount Subduction as detected by the Cascadia Initiative Amphibious Data

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2016-12-01

    Unlike other subduction zones, the Cascadia subduction zone (CSZ) is notable for the absence of detected and located small and moderate magnitude interplate earthquakes, despite the presence of recurring episodic tremor and slip (ETS) downdip and evidence of pre-historic great earthquakes. Thermal and geodetic models indicate that the seismogenic zone exists primarily, if not entirely, offshore; therefore the perceived unusual seismic quiescence may be a consequence of seismic source location in relation to land based seismometers. The Cascadia Initiative (CI) amphibious community seismic experiment includes ocean bottom seismometers (OBS) deployed directly above the presumed locked seismogenic zone. We use the CI dataset to search for small magnitude interplate earthquakes previously undetected using the on-land sensors alone. We implement subspace detection to search for small earthquakes. We build our subspace with template events from existing earthquake catalogs that appear to have occurred on the plate interface, windowing waveforms on CI OBS and land seismometers. Although our efforts will target the entire CSZ margin and full 4-year CI deployment, here we focus on a previously identified cluster off the coast of Oregon, related to a subducting seamount. During the first year of CI deployment, this target area yields 293 unique detections with 86 well-located events. Thirty-two of these events occurred within the seamount cluster, and 13 events were located in another cluster to the northwest of the seamount. Events within the seamount cluster are separated into those whose depths place them on the plate interface, and a shallower set ( 5 km depth). These separate event groups track together temporally, and seem to agree with a model of seamount subduction that creates extensive fracturing around the seamount, rather than stress concentrated at the seamount-plate boundary. During CI year 2, this target area yields >1000 additional event detections.

  19. Crustal structure of the Izu Collision zone, central Japan, revealed by dense seismic array observations

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.

    2009-12-01

    In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with permanent seismic station data. P- and S-wave arrival time data were obtained from 247 events and 16,144 P- and 13,723 S-wave arrival times were used for the inversion analysis. Arrival times of local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The P-wave velocity structure shows that low velocity zones exist along the estimated deeper extension of the active faults and high velocity zones exist beneath the Tanzawa Mountains and Misaka Mountains. The Tanzawa Mountains and the Misaka Mountains are considered as fragments of the IBA (e.g. Niitsuma, 1989). We obtained a seismic velocity model revealing good correlations with the surface geology along the profile. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.

  20. Local thickening of the Cascadia forearc crust and the origin of seismic reflectors in the uppermost mantle

    USGS Publications Warehouse

    Calvert, A.J.; Ramachandran, K.; Kao, H.; Fisher, M.A.

    2006-01-01

    Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a − 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.

  1. In the Footsteps of Charles Darwin: Patterns of Coastal Subsidence and Uplift Associated with Seamount Subduction, Basal Fore-arc Erosion and Seamount Accretion in Latin America

    NASA Astrophysics Data System (ADS)

    Fisher, D. M.; Kirby, S. H.; David, S. W.

    2004-12-01

    In Geological Observations on South America (1846), Charles Darwin described beds of late Cenozoic marine seashells that were uplifted to elevations as much as several hundred meters above some localities on the western coastline of South America and implied that the whole coast was uplifting at geologic time scales. We know now that such evidence is generally restricted to coastal embayments above fore-arc basins where offshore seamounts are colliding with the South American fore arc (e.g., the Juan Fernandez seamount chain, Valpariso Basin and Valpariso Bay). We suggest that the phenomena of basal fore-arc erosion and basin formation and coastal uplift are closely related to effects of seamount subduction. Marine multibeam sonar images and multichannel seismic reflection surveys by others demonstrate that seamounts, although locally cut by normal faults in the outer-rise/near-trench region, initally subduct intact and the primary interaction with the toe of the fore arc is plowing, with material eroded from the fore arc that accumulates above and on the margins of the seamount. Submarine landslides above such regions over-steepened by plowing can lead to coastal embayments far upslope of the plowing. Such plowing interaction can therefore lead to the formation of large forearc basins and coastal embayments such as those at Valpariso, Chile, or narrow corridors of subsidence in the wake of subducting seamounts in Costa Rica. It is also known that the transition between interplate thrust seismicity, representing mechanical coupling between the plates, and aseismic slip occurs at depths of typically 30-60 km and often geographically near coastlines that mark the boundary between outer fore-arc subsidence and inner fore-arc uplift. We suggest that decoupling can occur at the base of seamounts (i.e., the originally sedimented seafloor on which the seamount lavas are laid down) and that such seamounts can be accreted to the fore arc above and lead to coastal uplift. Such basal decoupling is known to occur under active volcanic islands in the open ocean in connection with rifting and gravitational spreading, such as beneath the island of Hawaii. The spatial and temporal patterns of coastal uplift and subsidence on active margins can therefore record the local history of seamount subduction. This conceptual model explains the spatial patterns of offshore subsidence and coastal uplift in Chile and Costa Rica and also has implications for patterns of seismicity along the interplate thrust boundary.

  2. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  3. The Aysen (Southern Chile) 2007 Seismic Swarm: Volcanic or Tectonic Origin?

    NASA Astrophysics Data System (ADS)

    Comte, D.; Gallego, A.; Russo, R.; Mocanu, V.; Murdie, R.; Vandecar, J.

    2007-05-01

    The Aysen seismic swarm began January 23, 2007, with a magnitude 5.2 (USGS) earthquake and, after an apparent decrease in activity, continued with a magnitude 5.6 event on February 26. The swarm is characterized by numerous felt earthquakes of small to moderate magnitude, located at crustal depths beneath the Aysen Canal, a prominent fiord of the Chilean littoral. The region is characterized by the subduction of an active oceanic spreading ridge: the Chile Ridge, the divergent Nazca-Antarctic plate boundary, is currently subducting beneath continental South America along the Chile Trench at approximately 46.5°S, forming a plate triple junction in the vicinity of the Taitao Peninsula, somewhat south and west of the swarm. Also, the Liquine-Ofqui dextral strike- slip fault traverses the Aysen Canal in the vicinity of the swarm. This fault has been interpreted as a 1000 km long dextral intra-arc strike-slip fault zone, consisting of two major strands which extend north from the Chile Margin triple junction. The Liquiñe-Ofqui system is marked by several pull-apart basins along its trace through the area. Seismic activity along the Liquiñe-Ofqui fault zone has been poorly studied to date, largely because teleseismic events clearly related to the fault have been few, and southern hemisphere seismic stations are lacking. However, we deployed a dense temporary broad-band seismic network both onland and on the islands in the Aysen region, which allowed us to capture the initial phases of the swarm on some 20 stations, and to determine the background seismicity patterns in this area for the two years preceding the swarm. The swarm could be caused by several processes: the spatial and depth distribution of the events suggests that they are well correlated with reactivation of the southern end of the Liquiñe-Ofqui fault, as defined by geologic studies and onshore gravity data collected in southern Chile. The swarm may be related to formation of new volcanic center between Volcan Hudson (last erupted 1991) and Volcan Maca. Given uncertainties in the event locations, the 2007 seismic swarm could also result from a combination of tectonic motions on the Liquiñe-Ofqui fault system and magmatic arc activity. The two earthquakes with magnitudes over 5 and the numerous felt earthquake of the swarm clearly indicate that seismic hazard estimations in this previously quiescent region must be re-estimated.

  4. Seismicity of the Earth 1900-2012 Sumatra and vicinity

    USGS Publications Warehouse

    Hayes, Gavin P.; Bernardino, Melissa; Dannemann, Fransiska; Smoczyk, Gregory; Briggs, Richard W.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2013-01-01

    The plate boundary southwest of Sumatra is part of a long tectonic collision zone that extends over 8,000 km from Papua, New Guinea, in the east to the Himalayan front in the west. The Sumatra-Andaman part of the collision zone forms a subduction zone plate boundary, which accommodates convergence between the Indo-Australia and Sunda plates. This convergence is responsible for the intense seismicity in Sumatra. The Sumatra Fault, a major transform structure that bisects Sumatra, accommodates the northwest-increasing lateral component of relative plate motion. Most strain accumulation and release between the two plates occurs along the Sunda megathrust. The increasingly oblique convergence moving northwest is accommodated by crustal seismicity along several transform and normal faults, including the Sumatra Fault. Plate-boundary related deformation is also not restricted to the subduction zone and overriding plate: the Indo-Australian plate actually comprises two somewhat independent plates (India and Australia) that are joined along a broad, actively deforming region that produces seismicity up to several hundred kilometers west of the trench. This deformation is exemplified by the recent April 2012 earthquake sequence, which includes the April 11 M 8.6 and M 8.2 strike-slip events and their subsequent aftershocks. Since 2004, much of the Sunda megathrust between the northern Andaman Islands and Enggano Island, a distance of more than 2,000 km, has ruptured in a series of large subduction zone earthquakes—most rupturing the plate boundary south of Banda Aceh. These events include the great M 9.1 earthquake of December 26, 2004; the M 8.6 Nias Island earthquake of March 28, 2005; and two earthquakes on September 12, 2007, of M 8.5 and M 7.9. On October 25, 2010, a M 7.8 on the shallow portion of the megathrust to the west of the Mentawai Islands caused a substantial tsunami on the west coast of those islands.

  5. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data

    PubMed Central

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side. PMID:23240075

  6. Slab tears and intermediate-depth seismicity

    USGS Publications Warehouse

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  7. The tectonic puzzle of the Messina area (Southern Italy): insights from new seismic reflection data.

    PubMed

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side.

  8. Shallow Moho with aseismic upper crust and deep Moho with seismic lower crust beneath the Japanese Islands obtained by seismic tomography using data from dense seismic network

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust. The Moho discontinuity deepens over 35 km in the collision zone like as Kanto Mountains, the volcanic underplating zone as the Tohoku backbone range, and non-tension region like as Chugoku Mountains. These regions associated with deep Moho are characterized by the crustal seismicity within the depth range from 20 to 30 km. The iso-depth contour of 35 km beneath the southwestern Japan is consistent with that derived from the receiver function method (Shiomi et al. 2006). There are nonvolcanic tremors and short-time slow slip events (SSE) beneath the southwestern Japan (eg. Obara, 2002). Matsubara et al. (2009) consider that the tremors and SSEs occur along the contact zone of Moho discontinuity beneath the Eurasian plate and the subducting Philippine Sea plate beneath southwestern Japan. Our Moho model is consistent with this since they exist along the southern edge of the Moho discontinuity of the continental Eurasian plate. Reference: Hirata, N., Sakai, S., Nakagawa, S., Ishikawa, M., Sato, H., Kasahara, K., Kimura, H. and Honda, R. (2012) A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region, EOS, Transactions, AGU, T11C-06. Kita, S., T. Okada, A. Hasegawa, J. Nakajima, and T. Matsuzawa (2010) Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: Possible evidence for thermal shielding caused by subducted forearc crust materials, Earth Planet. Science Lett., 290, 415-426. Matsubara, M. and K. Obara (2011) The 2011 Off the Pacific Coast of Tohoku earthquake related to a strong velocity gradient with the Pacific plate, Earth Planets Space, 63, 663-667. Matsubara, M., K. Obara, and K. Kasahara (2009) High-Vp/Vs zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan, Tectonophysics, 472, 6-17, doi:10.1016/j.tecto.2008.06.013. Obara, K. (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679-1681. Shiomi, K., K. Obara, and H. Sato (2006) Moho depth variation beneath southwestern Japan revealed from the velocity structure based on receiver function inversion , Tectonophysics, 420, 205-221, doi:10.1016/j.tecto.2006.01.017. Shiomi, K., M. Matsubara, Y. Ito, and K. Obara (2008) Simple relationship between seismic activity along Philippine Sea slab and geometry of oceanic Moho beneath southwest Japan, Geophys. J. Int., 173, 1018-1029.

  9. Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska

    USGS Publications Warehouse

    Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew

    2013-01-01

    High-resolution sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.

  10. Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska

    NASA Astrophysics Data System (ADS)

    Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew

    2013-10-01

    sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.

  11. Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2013-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.

  12. The Sundaland Block in SE Asia: A Tectonic Entity Surrounded by Earthquake Hazards

    NASA Astrophysics Data System (ADS)

    Simons, W. J.; Vigny, C.; Socquet, A.; Ambrosius, B. A.; Naeije, M. C.

    2007-12-01

    The present-day crustal deformation of SE Asia results from the convergent motion between the Sundaland (SU) block, which covers most of SE Asia, and the adjacent Philippine (PH), Australian (AU) and Indian (IN) tectonic plates in highly active subduction zones. To the north, SU is disconnected from the 'stable' Eurasian (EU) plate by the IN-EU collision which shaped the crustal deformation zones in and around the Himalayan Region. The oblique relative motion between IN/AU and SU caused the 2004 Sumatra-Andaman earthquake/tsunami disaster. A unique (100+ points) GPS velocity field (in ITRF2000 and ITRF2005) that spans the entire SE Asia region, based on a decade of regional measurements (1994-2004), was exploited to resolve Sundaland's motion and boundaries and perform a detailed study of the inter-seismic intraplate deformation [1]. This revealed previously undetected deformation patterns on Java, North Borneo and North Thailand and the much larger subduction deformation zone extending (>600 ~km) from the Sumatra trench towards Peninsular Malaysia and South Thailand. There far-field data implies a ~220~km wide locked trench fault plane below SU at shallow (≤gslant 13°) dip angle and full coupling on the subduction. This matches the very large magnitude of the 26/12/2004 earthquake and the subsequently recorded wide-spread co-seismic deformations throughout the network also provided the first unambiguous evidence of the rupture plane length [2]. The post-seismic motions (both at spatial and temporal scales) of ~50 GPS sites (2005-2006) provide information on the contribution of various mechanisms (aftershocks/afterslip, visco-elastic relaxation and poro- elasticity). These post-seismic motions are very significant in the far-field, e.g. the island of Phuket additionally moved ~1.5 times the initial 2004 and 2005 co-seismic displacements. References: [1] Simons, W.J.F, et al al.(2007), J .Geophys. Res., 112, B06420, doi:10.1029/2005JB003868. [2] Vigny, C. et al.(2005), Nature, 436, 201-206, doi: 10.1038/nature03937

  13. Eclogitization-induced mechanical instanility in granulite: Implications for deep seismicity in southern Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shi, F.; Yu, T.; Zhu, L.; Zhang, J.; Gasc, J.; Incel, S.; Schubnel, A.; Li, Z.; Liu, W.; Jin, Z.

    2017-12-01

    Southern Tibet is the most active orogenic region on Earth where the Indian plate thrusts under the Eurasian continent, pushing the Moho to unusual depths of 80 km. Seismicity is wide spread, reaching 100 km depth. Mechanisms of these deep earthquakes remain enigmatic. Here we examine the hypothesis of metamorphism induced mechanical instability in granulite-facies rocks, which are the dominant constituent in subducted Indian lower crust. We conducted deformation experiments on natural and nominally dry granulite in a DDIA apparatus within the stability fields of both granulite and eclogite. The system is interfaced with an acoustic emission (AE) monitoring system, allowing in-situ detection of mechanical instability along with the progress of eclogitization. We found that granulite deformed within its own stability field behaved in a ductile fashion without any AE activity. In contrast, numerous AE events were observed during deformation of metastable granulite in the eclogite field. The observed AE activities were episodic. Correlating closely to the AE burst episodes, measured differential stresses rose and fell during deformation, suggesting unstable fault slip. Microstructural observation shows that strain is highly localized around grain boundaries, which are decorated by eclogitization products. Time-resolved event location analysis showed large episodes corresponded to the growth of branches of macroscopic faults in recovered samples. It appears that ruptures originate from weakened grain boundaries, propagate through grains, and self-organize into macroscopic fault zones. No melting is required in the fault zones to facilitate brittle failure. This process may be responsible for the deep crustal seismicity in Southern Tibet and other continental-continental subduction regions.

  14. SSI-bridge : soil bridge interaction during long-duration earthquake motions.

    DOT National Transportation Integrated Search

    2014-09-01

    The seismic response of a complete soil-bridge system during shallow, crustal and subduction zone earthquakes is the topic of this report. Specifically, the effects of earthquake duration on the seismic performance of soil-bridge systems are examined...

  15. Surface cracks as a long-term record of Andean plate boundary segmentation

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Allmendinger, R. W.; Pritchard, M. E.

    2007-12-01

    Meter-scale surface cracks throughout the northern Chilean and southern Peruvian forearcs provide a long-term record of seismic segmentation along the Andean plate boundary. The cracks, mapped on high-resolution satellite imagery, show strong preferred orientations over large regions and the mean strikes of cracks vary systematically as a function of position along the margin. The spatial scale of this variation suggests that stress fields operating with similar dimensions, namely those produced by strong subduction zone earthquakes, are primarily responsible for crack evolution. The orientations of cracks are consistent with the static and dynamic coseismic stress fields calculated for several recent and historical earthquakes on distinct segments of the subduction interface. Field observations indicate that the cracks have experienced multiple episodes of opening and proximal age evidence suggests that they represent deformation as old as several hundred thousand years. We invert the crack orientation data to solve for plausible slip distributions on the Iquique, Chile segment of the margin (19°--23° S), which last ruptured in a M~8--9 event in 1877. We find that concentrations of coseismic slip resolved by the inversion coincide spatially with negative gravity anomalies, consistent with recent studies correlating subduction zone earthquake slip with forearc structure. These results suggest that distinct seismic segments or asperities on the subduction interface define characteristic earthquakes with rupture dimensions and magnitudes that are similar over many seismic cycles.

  16. Surface cracks as a long-term record of Andean plate boundary segmentation

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Allmendinger, R. W.; Pritchard, M. E.

    2004-12-01

    Meter-scale surface cracks throughout the northern Chilean and southern Peruvian forearcs provide a long-term record of seismic segmentation along the Andean plate boundary. The cracks, mapped on high-resolution satellite imagery, show strong preferred orientations over large regions and the mean strikes of cracks vary systematically as a function of position along the margin. The spatial scale of this variation suggests that stress fields operating with similar dimensions, namely those produced by strong subduction zone earthquakes, are primarily responsible for crack evolution. The orientations of cracks are consistent with the static and dynamic coseismic stress fields calculated for several recent and historical earthquakes on distinct segments of the subduction interface. Field observations indicate that the cracks have experienced multiple episodes of opening and proximal age evidence suggests that they represent deformation as old as several hundred thousand years. We invert the crack orientation data to solve for plausible slip distributions on the Iquique, Chile segment of the margin (19°--23° S), which last ruptured in a M~8--9 event in 1877. We find that concentrations of coseismic slip resolved by the inversion coincide spatially with negative gravity anomalies, consistent with recent studies correlating subduction zone earthquake slip with forearc structure. These results suggest that distinct seismic segments or asperities on the subduction interface define characteristic earthquakes with rupture dimensions and magnitudes that are similar over many seismic cycles.

  17. A dipping, thick Farallon slab below central United States

    NASA Astrophysics Data System (ADS)

    Sun, D.; Gurnis, M.; Saleeby, J.; Helmberger, D. V.

    2015-12-01

    It has been hypothesized that much of the Laramide orogeny was caused by dynamic effects induced by an extensive flat slab during a period of plateau subduction. A particularly thick block containing the Shatsky Rise conjugate, now in the mid-mantle, left a distinctive deformation footprint from southern California to Denver, Colorado. Thus mid-mantle, relic slabs can provide fundamental information about past subduction and the history of plate tectonics if properly imaged. Here we find clear evidence for a northeastward dipping (35° dip), slab-like, but fat (up to 400-500 km thick) seismic anomaly within the top of the lower mantle below the central United States. Using a deep focus earthquake below Spain with direct seismic paths that propagate along the top and bottom of the anomaly, we find that the observed, stacked seismic waveforms recorded with the dense USArray show multi-pathing indicative of sharp top and bottom surfaces. Plate tectonic reconstructions in which the slab is migrated back in time suggest strong coupling of the slab to North America. In combination with the reconstructions, we interpret the structure as arising from eastward dipping Farallon subduction at the western margin of North America during the Cretaceous, in contrast with recent interpretations. The slab could have been fattened through a combination of pure shear thickening during flat-slab subduction and a folding instability during penetration into the lower mantle.

  18. Finite-fault slip model of the 2016 Mw 7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin

    2017-05-01

    Subduction earthquakes have been widely studied in the Chilean subduction zone, but earthquakes occurring in its southern part have attracted less research interest primarily due to its lower rate of seismic activity. Here I use Sentinel-1 interferometric synthetic aperture radar (InSAR) data and range offset measurements to generate coseismic crustal deformation maps of the 2016 Mw 7.5 Chiloé earthquake in southern Chile. I find a concentrated crustal deformation with ground displacement of approximately 50 cm in the southern part of the Chiloé island. The best fitting fault model shows a pure thrust-fault motion on a shallow dipping plane orienting 4° NNE. The InSAR-determined moment is 2.4 × 1020 Nm with a shear modulus of 30 GPa, equivalent to Mw 7.56, which is slightly lower than the seismic moment. The model shows that the slip did not reach the trench, and it reruptured part of the fault that ruptured in the 1960 Mw 9.5 earthquake. The 2016 event has only released a small portion of the accumulated strain energy on the 1960 rupture zone, suggesting that the seismic hazard of future great earthquakes in southern Chile is high.

  19. Seismic Microzonation of the City of Cali (Western Colombia)

    NASA Astrophysics Data System (ADS)

    Dimate, C.; Romero, J.; Ojeda, A.; Garcia, J.; Alvarado, C.

    2007-05-01

    The city of Cali is located in the western margin of the Cauca Valley in the flat area between the Western and Central cordilleras of the Colombian Andes, at 70 km east of the Eastern Pacific Subduction Zone. Even though present seismic activity associated with nearest faults is low, historical records demonstrate that earthquakes have caused damage in the city going up to intensity VIII (EMS). Those earthquakes have had origin on diverse sources: the intermediate-depth Benioff zone, near and far continental crustal faults and the Pacific Subduction Zone. Taking into account the location of the city and the seismologic history of the region, neotectonic and seismological studies extending over a region of about 120000 km2 were required to compute seismic hazard. Construction of the geotechnical model of the city included detailed geological mapping, geophysical profiling, single station ambient vibration essays and the deployment of a 12-stations accelerographic network. Geotechnical properties of the soils were determined by mechanical perforations, CPTU (piezocone) and CPT (static penetration) essays, flat plate dilatometer (DMT) tests and down-hole essays which were complemented in the Lab by analysis of consolidation and static and cyclic three-axial essays. As a result, ten geotechnical zones were outlined and characterized. Finally, expected ground motions were calculated at 39 sites in the city using numerical modeling methods.

  20. Seafloor morphology in the different domains of the Calabrian Arc subduction complex - Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riminucci, F.; Polonia, A.; Torelli, L.; Mussoni, P.

    2010-05-01

    The Calabrian Arc (CA) is a subduction system that develops along the African-Eurasian plate boundary in the Ionian Sea and connects the E-W trending Sicilian Maghrebian belt with the NW-SE trending Southern Apennines. The first systematic geophysical investigation in the offshore region of the CA was conducted during the 70's by the Institute of Marine Geology (now ISMAR) with the R/V 'Bannock' [1]. In the last 30 years, further geophysical data (high penetration multichannel seismics, CHIRP and multibeam data) has been acquired in the offshore of the CA, down to the Ionian Abyssal Plain. The integrated interpretation of the existing geophysical data [2] has outlined the regional architecture of the subduction complex, the main tectonic features absorbing plate motion and variation of seafloor morphology in the different structural domains. Pre-stack depth migrated seismic profiles has revealed that the accretionary complex is constituted by two distinct wedges whose geometry, structural style and seafloor morphology widely vary. The outermost accretionary wedge has been emplaced in post-messinian times. It is a salt-bearing complex as pointed out by the internal structure of the wedge (acoustically transparent assemblage), very low taper angle and high seismic velocities. The seafloor shows a rough morphology, short wavelength folds and depressions superimposed on a rather constant gentle regional slope. Landward of the outer wedge, the evaporites are no longer present and the transition to the clastic rock assemblage is reflected in a different structural architecture, which shows steeper slopes and a succession of topographic scarps separated by sedimentary basins and mid slope terraces. The topographic scarps are controlled in depth by a series of high angle landward dipping reflectors, that we interpreted as out of sequence thrust faults absorbing shortening at the rear of the wedge. Landward of the inner wedge a mid slope terrace develops (inner plateau) between 1300 and 1600 m water depth. It is a relatively flat area of variable width ranging from 10 to 50 Km, represented by the forearc basin and the innermost accretionary wedge. Seafloor morphology is related to small undulation of the seafloor. A thick section of Plio-Quaternary and Messinian sediments is present below the flat terrace. Sediments appear to be folded and, in some regions highly disrupted along local sub-circular structures that affect the seafloor morphology as well. Geometry and seismic facies of these sub-circular swells rising from the surrounding suggest they are diapiric structures. Variation of seafloor morphology is strictly related to the progression of structural domains within the Calabrian Arc subduction complex. The integrated analysis of seafloor morphology and structural style through an integrated approach involving the interpretation of seismic data at different scales has been carried out in order to outline relationships between shallow tectonic processes and deep structures. Moreover, the analysis of morphobathymetric and seismic data, combined with well targeted sediment samples has the potential to reveal relationships between tectonics, sedimentation and fluid flow in the different portions of the accretionary wedge. References: 1 - Rossi S., Sartori R. 1981. A seismic reflection study of the External Calabrian Arc in the Northern Ionian Sea (Eastern Mediterranean). Marine Geoph. Res., 4, 403-426. 2 - Polonia A. et al., The Calabrian Arc subduction complex: plate convergence, active faults, and mud diapirism. New results from the CALAMARE-2008 cruise (N/R CNR Urania). Submitted to G3.

  1. Transfer fault earthquake in compressionally reactivated back-arc failed rift: 1948 Fukui earthquake (M7.1), Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin

    2017-04-01

    Back-arc rift structures in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, the mechanical contrasts between the crustal thrust wedges of the pre-rift continental crust and high velocity lower crust have fundamentally controlled the styles of post-rift, Quaternary active deformation (Ishiyama et al. 2016). In this study, we show a possibility that strike-slip M>7 devastating earthquakes in this region have been gregion enerated by reactivation of transfer faults highly oblique to the rift axes. The 1948 Fukui earthquake (M7.1), onshore shallow seismic event with a strike-slip faulting mechanism (Kanamori, 1973), resulted in more than 3,500 causalities and destructive damages on the infrastructures. While geophysical analyses on geodetic measurements based on leveling and triangulation networks clearly show coseismic left-lateral fault slip on a NNW striking vertical fault plane beneath the Fukui plain (Sagiya, 1999), no evidence for coseismic surface rupture has been identified based on both post-earthquake intensive fieldwork and recent reexamination of stereopair interpretations using 1/3,000 aerial photographs taken in 1948 (Togo et al., 2000). To find recognizable fault-related structures that deform Neogene basin fill sediments, we collected new 9.6-km-long high-resolution seismic reflection data across the geodetically estimated fault plane and adjacent subparallel active strike slip faults, using 925 offline recorders and Envirovib truck as a seismic source. A depth-converted section to 1.5 km depth contains discontinuous seismic reflectors correlated to Miocene volcaniclastic deposits and depression of the overlying Plio-Pleistocene sediments above the geodetically determined fault plane. We interpreted these structural features as negative flower structures related to the strike-slip fault activated during the 1948 seismic event. Locations of these strike-slip faults are consistent with Miocene transfer faults that offset syn- and post-rift sediments and underlying crustal wedges, suggesting that reactivation of transfer faults resulted in active strike-slip faulting including the 1948 seismic event. These findings demonstrate that not only rift-related normal faults but also transfer faults have strong structural inheritances and played essential roles on their active reactivation and seismicity during the post-rift stress regime.

  2. Structure of the Peruvian Margin as imaged by Wide Angle and Reflection Seismic Data

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Broser, A.; Hampel, A.; Kukowski, N.

    2001-12-01

    Within the GEOPECO project seismic reflection and refraction data were acquired during RV SONNE cruise SO-146 off Peru. The objectives were a quantitative characterization of the structures and geodynamics of the Peruvian section of the Andean subduction zone in regions with different tectonic development. Six wide angle seismic profiles (each app. 100 nm) were shot with three 32 l airguns and recorded by up to 14 OBH/S stations. The profiles cover the area which has been passed by the subducting Nazca ridge during the last 8 million years, from Yaquina basin in the North to about 15° South where the ridge currently subducts. Thorough modeling reveals the structure of the oceanic crust, the trench, and the adjacent continental slope in great detail. A small accretionary wedge was established some 2 million years after trespassing of the subducting ridge but did not increase in volume since then. Even compared to the one at 9° South, where Nazca Ridge subducted some 8 million years ago, the accretionary wedge is of similar size, some 30 km wide with a thickness of about 3 to 4 km. The relatively large subduction taper of 12° to 17° resulting from forward modeling is indicative for high basal friction and non-accretive subduction. Low p-wave velocities modeled at the top of the downgoing oceanic plate infer the presence of a subduction channel. The crustal thickness of the oceanic plate is 10 km between Nazca ridge and the Mendana fracture zone. North of the fracture zone, the age of the crust is some 10 million years younger (28 million years) than in the South and the crustal thickness is of typical oceanic values of 7 km. Two cross lines in Lima basin give insight into its internal structure. Along dip, the basin is some 150 km wide with a seperating basement high at the landward termination. The basin has an asymmetric shape and its depth varies between 1 and 3 km depth below sea floor. Along strike, the basin floor is almost horizontal. The top of the subducting oceanic plate is modeled at 25 km depth underneath the South-Eastern part of the basin.

  3. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  4. Adaptively Parameterized Tomography of the Western Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hansen, S. E.; Papadopoulos, G. A.

    2017-12-01

    The Hellenic subduction zone (HSZ) is the most seismically active region in Europe and plays a major role in the active tectonics of the eastern Mediterranean. This complicated environment has the potential to generate both large magnitude (M > 8) earthquakes and tsunamis. Situated above the western end of the HSZ, Greece faces a high risk from these geologic hazards, and characterizing this risk requires detailed understanding of the geodynamic processes occurring in this area. However, despite previous investigations, the kinematics of the HSZ are still controversial. Regional tomographic studies have yielded important information about the shallow seismic structure of the HSZ, but these models only image down to 150 km depth within small geographic areas. Deeper structure is constrained by global tomographic models but with coarser resolution ( 200-300 km). Additionally, current tomographic models focused on the HSZ were generated with regularly-spaced gridding, and this type of parameterization often over-emphasizes poorly sampled regions of the model or under-represents small-scale structure. Therefore, we are developing a new, high-resolution image of the mantle structure beneath the western HSZ using an adaptively parameterized seismic tomography approach. By combining multiple, regional travel-time datasets in the context of a global model, with adaptable gridding based on the sampling density of high-frequency data, this method generates a composite model of mantle structure that is being used to better characterize geodynamic processes within the HSZ, thereby allowing for improved hazard assessment. Preliminary results will be shown.

  5. Rupture process of the April 24, 2017, Mw 6.9 Valparaíso earthquake from the joint inversion of teleseismic body waves and near-field data

    NASA Astrophysics Data System (ADS)

    Ruiz, Javier A.; Contreras-Reyes, Eduardo; Ortega-Culaciati, Francisco; Manríquez, Paula

    2018-06-01

    The central Chilean margin (32°-33°S) is characterized by the subduction of the Juan Fernández Ridge (JFR) beneath the continental South American plate. The JFR corresponds to a hotspot track composed by seamounts typically 3-3.5 km high above the surrounding seafloor, with a ridge-trench collision zone underlying the prominent Valparaiso Forearc Basin (VFB). This region has been affected by several large and mega earthquakes, where the last event corresponds to a complex seismic sequence that took place at the southern edge of VFB in April 2017. The spatio/temporal distribution of the seismic events is characterized by a predominant southeast migration of the seismicity. An Mw 6.9 earthquake triggered two days after the sequence started and occurred at the northern end of the rupture area of the 1985 Mw 8.0 Valparaiso earthquake. We compute the kinematic rupture process of the 2017 Mw 6.9 Valparaiso earthquake from the joint inversion of teleseismic body waves and near-field data. The Akaike's Bayesian Information Criterion was used to objectively estimate both, the relative weighting between datasets and the weighting of spatial and temporal constraints used as a priori information. The coseismic slip is distributed over an area of dimensions ∼35 × 10 km2, with a maximum slip of 1.5 m. The rupture propagated unilaterally downdip. The source duration from the moment-rate solution is ∼20 s, with a total seismic moment of 3.05 × 1019 Nm (Mw 6.9). The analysis of the seismicity shows that most of the events occurred along the plate interface, foreshock clustered northern from the mainshock epicenter and the aftershocks occurred to the southeast, at a deeper location. The inverted regional moment tensors show similar faulting mechanism than the mainshock. The seismic sequence started two days before the mainshock and lasted for about two weeks, and a migration pattern of the seismicity was observed. The rupture of the 2017 Mw 6.9 earthquake nucleated where the San Antonio seamount (belonging to the JFR) is subducting, and propagated downwards along a zone that presents high interseismic coupling. The complex seismic sequence might be explained by an aseismic slip transient in the zone and the influence of the downdip migration of fluids from the accretionary prism along the subduction channel. The erosive and tunneling effect left by the sudden slip of the subducting seamount might provide the cavity for downdip migration of fluids and subsequent swarm seismicity.

  6. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  7. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic reflection/refraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocher, T.M.; Fuis, G.S.; Fisher, M.A.

    1993-04-01

    In the northern Gulf of Alaska and Prince William Sound, wide-angle seismic reflection/refraction profiling, earthquake studies, and laboratory measurements of physical properties are used to determine the geometry of the Prince William and Yakutat terranes, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along 5 seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18-km depth) agree closely with laboratorymore » velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 KBAR). An interpretation consistent with these data extends the Prince William terrane to at least 18-km depth. A landward dipping reflection at depths of 16--24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Beneath this reflector is a 6.9-km/s refractor, that is strongly reflective and magnetic, and is interpreted to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Both wide-angle seismic and magnetic anomaly data indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9 to 10[degree] landward dip of the subducting Pacific plate, distinctly different from the inferred average 3 to 4[degree] dip of the overlying 6.9-km/s refractor and Wadati-Benioff seismic zone. The preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific and Yakutat plates, is subducting beneath southern Alaska.« less

  8. Attenuation in the Upper Mantle Beneath the Northern Apennines (Italy) from Teleseismic P- and S-Wave Spectra

    NASA Astrophysics Data System (ADS)

    Lucente, F. P.; Piccinini, D.; Dibona, M.; Levin, V.; Park, J.

    2007-12-01

    We present preliminary results for seismic attenuation in the mantle beneath the Italian region. We estimate P- and S-wave spectral ratios from teleseisms recorded at the temporary broadband seismic network deployed during the RETREAT (Retreating-TRrench, Extension, and Accretion Tectonics) project. We examine body-wave attenuation variation across the northern part of the Apennines mountain belt, which represents the accretionary wedge exposed during recent episodes of the subduction process in Italy. The data recorded during the three-year seismic campaign were analyzed using an ad hoc semi-automated procedure based on the cross-correlation analysis of a single phase across all the stations for each event. The seismic phases analyzed (P, S, SKS) display different patterns of seismic attenuation. Furthermore, we observe systematic variations in the distribution of the attenuation values as function of both the azimuth and the incidence angle of the seismic rays. Relatively high attenuation values are found on the Tyrrhenian side by seismic rays coming from the SW for both P- and S-phases. For NE-approaching rays the pattern of high attenuation values varies considerably, depending on the seismic phases: for P-waves it grossly corresponds to the mountain belt, while for S-waves it extends over almost the whole study area. By correlating attenuation estimates and the velocity structure from the existing tomographic models, we can make some inferences on the thermal state of the sublithospheric mantle, and on the physical properties of the tectonic elements which constitute the subduction system in the region. From the analysis of the P-phases we can clearly distinguish three main areas with different attenuation values, corresponding to the back-arc mantle (high attenuation), to the slab (low attenuation) and to the retro-slab mantle (high attenuation). The correspondence between the identified elements of the subduction system and the S- waves attenuation is not straightforward, and need to be further investigated.

  9. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  10. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru.

    NASA Astrophysics Data System (ADS)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.

    2008-12-01

    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  11. Full-waveform seismic tomography of the Vrancea, Romania, subduction region

    NASA Astrophysics Data System (ADS)

    Baron, Julie; Morelli, Andrea

    2017-12-01

    The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful, information.

  12. Mechanisms of postseismic relaxation after a great subduction earthquake constrained by cross-scale thermomechanical model and geodetic observations

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan; Muldashev, Iskander

    2016-04-01

    According to conventional view, postseismic relaxation process after a great megathrust earthquake is dominated by fault-controlled afterslip during first few months to year, and later by visco-elastic relaxation in mantle wedge. We test this idea by cross-scale thermomechanical models of seismic cycle that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. As initial conditions for the models we use thermomechanical models of subduction zones at geological time-scale including a narrow subduction channel with low static friction for two settings, similar to the Southern Chile in the region of the great Chile Earthquake of 1960 and Japan in the region of Tohoku Earthquake of 2011. We next introduce in the same models classic rate-and state friction law in subduction channels, leading to stick-slip instability. The models start to generate spontaneous earthquake sequences and model parameters are set to closely replicate co-seismic deformations of Chile and Japan earthquakes. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing integration step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We show that for the case of the Chile earthquake visco-elastic relaxation in the mantle wedge becomes dominant relaxation process already since 1 hour after the earthquake, while for the smaller Tohoku earthquake this happens some days after the earthquake. We also show that our model for Tohoku earthquake is consistent with the geodetic observations for the day-to-4year time range. We will demonstrate and discuss modeled deformation patterns during seismic cycles and identify the regions where the effects of afterslip and visco-elastic relaxation can be best distinguished.

  13. Subduction and dehydration of slow-spread oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Laigle, M.; Galve, A.; Charvis, P.

    2016-12-01

    Water transported by subducting slabs affects the dynamics of subduction zones and is a major gateway in the global geochemical water cycle. During subduction much of the water stored in the slab is released via pore fluid escape and through metamorphic reactions that depend on the thermal regime. The most notable are eclogitization of hydrated basalt and gabbro and breakdown of serpentinite. Most constraints to date have been obtained at Pacific subduction zones, and have contributed to a model of slab dehydration applicable to normal fast-spread oceanic lithosphere with a mafic crust. Slow-spread crust however, is heterogeneous in thickness and composition and has a different water distribution than fast-spread crust. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 160 km) local earthquakes recorded on a vast amphibious array of OBSs and land seismometers to recover the 3D Vp and Vp/Vs structure of the central Lesser Antilles subduction zone from the surface to 160 km depth. This slab was formed by slow accretion at the Mid-Atlantic ridge and represents the global slow accretion rate end-member. We image the dipping low-Vp layer at the top of the slab corresponding to the hydrated slab crust penetrating to about 100 km depth. High Vp/Vs ratio on the slab top and in the forearc crust is interpreted as evidence of elevated fluid content either as free fluids or as bound water in hydrated minerals. A local minimum in Vp is observed on the slab top at 50 km depth, and forms an elongated trench-parallel anomaly. This anomaly is interrupted at the projection of the Marathon fracture zone. We suggest that this is the result of lateral variations in slab crust composition from normal mafic oceanic crust to tectonized oceanic crust consisting to a large extent of serpentinized peridotite near the fracture zone. Slab regions with normal mafic oceanic crust likely undergo eclogitization, resulting in voluminous water release over a narrow depth range. Serpentinized ultramafic crust, in contrast, may release water at a more constant rate. We infer that subduction of slow-spread lithosphere may result in heterogeneous water transport and release at subduction zones with implications for seismicity, magma generation and the geochemical budget.

  14. Deep Subducction in a Compressible Mantle: Observations and Theory

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2017-12-01

    Our understanding of slab dynamics is primarily based on the results of numerical models of subduction. In such models coherent, cold slabs are clearly visible from the surface of the Earth to the core mantle boundary. In contrast, fast seismic anomalies associated with cold subducted slabs are difficult to identify below 1500-2000 km in tomographic models of Earth's mantle. One explanation for this has been the resolution, or lack thereof, of seismic tomography in the mid-mantle region; however in this work I will explore the impact of compressibility on the dynamics of subducting slabs, specifically shear heating of the slab and latent heat of phase transformations. Most geodynamic models of subduction have used an incompressible formulation, thus because subducted slabs are assumed to be cold and stiff, the primary means of thermal equilibration is conduction. With an assumed sinking velocity of approximately 0.1 m/yr, a subducted slab reaches the core-mantle boundary in approximately 30 Myrs—too fast for significant conductive cooling of the downgoing slab. In this work I consider a whole-mantle geometry and include both phase transformations with associated latent heat and density changes from the olivine-wadsleyite-ringwoodite-bridgmanite system and the pyroxene-garnet system. The goal of this work is to understand both the eventual fate and thermal evolution of slabs beneath the transition zone.

  15. Shear anisotropy in textured carbonates and the detection of carbonated regions in subducting slabs

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, C.; Pluckthun, C.; Kupenko, I.; Rosa, A. D.; Petitgirard, S.; Crichton, W. A.; Merkel, S.

    2017-12-01

    Constraining the amount of carbon that is reintroduced into the mantle via subduction is a critical parameter to quantify the deep carbon cycle [1]. Carbonate minerals are the main hosts of carbon in subducted oceanic crust and their stability to lower mantle depths has been documented by experiments and thermodynamic models (e.g., [2,3]). A better knowledge of their physical properties (namely seismic velocities and anisotropy) is thus required for the detection of carbonated lithologies by geophysical methods and to constrain the extent of carbon recycling at depth. Previous sound velocity measurements in Mg-Fe carbonates concluded that the seismic contrast between carbonated and non-carbonated lithologies is within the resolution of seismic methods [4,5], although it could be enhanced further by velocity anomalies associated to spin transitions in Fe2+ in Fe-bearing carbonates [6]. Alternatively, the large shear anisotropy displayed by carbonates (35%) is likely the best diagnostic feature to identify carbonated regions at depth [4], but the effect of textures on the propagation of seismic waves remains unknown. In this contribution, we present results from plastic deformation studies on Mg-Ca-Fe carbonates (magnesite, dolomite and ferromagnesite) conducted to lower mantle pressures in a diamond anvil cell by radial X-ray diffraction. The results show the development of strong textures upon compression that preserve anisotropy in the deformed polycrystalline aggregates. Moreover, the strength of carbonates rapidly increases with pressure and become comparable to that of coexisting phases in subducted lithologies, thus modifying the strain localization in the slab below the transition zone. Specifically, we will discuss the observed slip systems active in axial compression and the effect of textures on the propagation of shear waves, as well as the detectability of carbonated regions at depth. [1]Dasgupta R (2013) RiMG 75:183-229.[2]Kerrick DM, Connolly JAD (2001) Nature 411:293-296. [3]Isshiki M et al., (2004) Nature 427:60- 63. [4]Sanchez-Valle C, Ghosh S, Rosa AD (2011) Geophys Res Lett 38: L24315. [5]Yang J, Mao Z, Lin J-F, Prakapenka VB (2014) Earth Planet Sci Lett 392:292-299. [6]Liu J, Lin J-F, Mao Z, Prakapenka VB (2014) Am Miner 99:84-93.

  16. The Loyalty—New Hebrides Arc collision: Effects on the Loyalty Ridge and basin system, Southwest Pacific (first results of the ZoNéCo programme)

    NASA Astrophysics Data System (ADS)

    Lafoy, Yves; Missegue, Francois; Cluzel, Dominique; Le Suave, Raymond

    1996-06-01

    The ZoNéCo 1 and 2 cruises of Ifremer's Research Vessel L'Atalante, collected new swath bathymetry and geophysical data over the southern and northern segments of the basins and ridges forming the Loyalty system. Between the two surveyed areas, previous studies found evidence for the resistance of the Loyalty Ridge to subduction beneath the New Hebrides trench near 22°S 169°E. On the subducted plate, except for seismicity related to the downbending of the Australian plate, recorded shallow seismicity is sparse within the Loyalty system (Ridge and Basin) where reliable focal mechanism solutions are almost absent. Swath bathymetry, seismic reflection and magnetic data acquired during the ZoNéCo 1 and 2 cruises revealed a transverse asymmetric morphology in the Loyalty system, and an along-strike horst and graben structure on the discontinuous Loyalty Ridge. South of 23°50'S and at 20°S, the two WSW-ENE-trending fault systems, respectively, sinistral and dextral, that crosscut the southern and northern segments of the Loyalty system, are interpreted as due to the early effects of collision with the New Hebrides Arc. A NNW-SSE trend, evident along the whole Loyalty system and on the island of New Caledonia, is interpreted as an inherited structural trend that may have been reactivated through flexure of the Australian lithospheric plate at the subduction zone. Overall then, the morphology, structure and evolution of the southern and northern segments of the Loyalty system probably result from the combined effects of the Australian plate lithospheric bulge, the active Loyalty-New Hebrides collision and the overthrust of the New Caledonian ophiolite.

  17. Body wave tomography of Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Alinaghi, A.; Koulakov, I.; Thybo, H.

    2004-12-01

    The inverse teleseismic tomography approach has been adopted to study the P and S velocity structure of the crust and upper mantle across the Iranian Plateau. The method uses phase readings from earthquakes in a study area as reported by stations at teleseismic and regional distances to compute the velocity anomalies in the area. This use of source-receiver reciprocity allows tomographic studies of regions with sparse distribution of seismic stations, if only the region has sufficient seismicity. The input data for the algorithm are the arrival times of events located in Iran which were taken from the ISC catalogue (1964-1996). All the sources were located anew using a 1D spherical Earth model taking into account variable Moho depth and topography. The inversion provides relocation of events which is done simultaneously with calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm to resolve both fancy and realistic anomalies using available earthquake sources and introducing measurement errors and outliers. The velocity anomalies show that the crust and upper mantle below the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block, in agreement with models of the active Iranian plate trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of subduction at Makran in the southeastern corner of Iran where the oceanic crust of the Oman Sea subducts underneath the Iranian Plateau, a movement which is mainly aseismic. On the other hand, the subduction and collision of the two plates along the Zagros suture zone is highly seismic and in our images appear less consistent than the Makran region.

  18. Time-Varying Upper-Plate Deformation during the Megathrust Subduction Earthquake Cycle

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Govers, Rob; Herman, Matthew

    2015-04-01

    Over the past several decades of the WEGENER era, our abilities to observe and image the deformational behavior of the upper plate in megathrust subduction zones has dramatically improved. Several intriguing inferences can be made from these observations including apparent lateral variations in locking along subduction zones, which differs from interseismic to coseismic periods; the significant magnitude of post-earthquake deformation (e.g. following the 20U14 Mw Iquique, Chile earthquake, observed on-land GPS post-EQ displacements are comparable to the co-seismic displacements); and incompatibilities between rates of slip deficit accumulation and resulting earthquake co-seismic slip (e.g. pre-Tohoku, inferred rates of slip deficit accumulation on the megathrust significantly exceed slip amounts for the ~ 1000 year recurrence.) Modeling capabilities have grown from fitting simple elastic accumulation/rebound curves to sparse data to having spatially dense continuous time series that allow us to infer details of plate boundary coupling, rheology-driven transient deformation, and partitioning among inter-earthquake and co-seismic displacements. In this research we utilize a 2D numerical modeling to explore the time-varying deformational behavior of subduction zones during the earthquake cycle with an emphasis on upper-plate and plate interface behavior. We have used a simplified model configuration to isolate fundamental processes associated with the earthquake cycle, rather than attempting to fit details of specific megathrust zones. Using a simple subduction geometry, but realistic rheologic layering we are evaluating the time-varying displacement and stress response through a multi-earthquake cycle history. We use a simple model configuration - an elastic subducting slab, an elastic upper plate (shallower than 40 km), and a visco-elastic upper plate (deeper than 40 km). This configuration leads to an upper plate that acts as a deforming elastic beam at inter-earthquake loading times and rates with a viscously relaxed regime at depths greater than 40 km. Analyses of our preliminary model results lead to the following: 1. Co-seismic stress transfer from the unloading elastic layer (shallow) into an elastically loading visco-elastic layer (deeper) - extends ~ 100 km inboard of locked zone. This stress transfer affects both coseismic and post-seismic surface displacements. 2. Post-seismic response of upper plate involves seaward motion for initial 10-20 years (~ 2 Maxwell times) after EQ. This occurs in spite of there being no slip on locked plate boundary - i.e. this is not plate boundary after-slip but rather is a consequence of stress relaxation in co-seismically loaded visco-elastic layer. However standard inversions of the surface displacement field would indicate significant after-slip along the locked plate interface. 3. By approximately 80 years (8 Maxwell times) system has returned to simple linear displacement pattern - the expected behavior for a shortening elastic beam. Prior to that time, the surface (observable) displacement pattern changes substantially over time and would result in an apparent temporal variation in coupling - from near-zero coupling to fully locked over ~ 80 years post-earthquake. These preliminary results indicate that care is needed in interpreting observed surface displacement fields from GPS, InSAR, etc. during the interseismic period. temporal variations in crustal deformation observed in regions such as the recent Tohoku, Maule, and Iquique megathrust events which are ascribed to fault plane after-slip may in fact reflect processes associated with re-equilibration of the visco-elastic subduction system.

  19. Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.

    2010-12-01

    Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.

  20. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel the Aleutian Trench from the Gulf of Alaska to the Rat Islands.

  1. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.

  2. Large-scale displacement following the 2016 Kaikōura earthquake

    NASA Astrophysics Data System (ADS)

    Wang, T.; Peng, D.; Barbot, S.; Wei, S.; Shi, X.

    2017-12-01

    The 2016 Mw 7.9 Kaikōura earthquake occurred near the southern termination of the Hikurangi subduction system, where a transition from subduction to strike-slip motion dominates the pre-seismic strain accumulation. Dense spatial coverage of the GPS measurements and large amount of Interferometric Synthetic Aperture Radar (InSAR) images provide valuable constraints, from the near field to the far field, to study how the slip is distributed among the subduction interface and the overlying fault system before, during and after the earthquake. We extract time-series deformation from the New Zealand continuous GPS network, and SAR images acquired from Japanese ALOS-2 and European Sentinel-1A/B satellites to image the surface deformation related to the 2016 Kaikōura earthquake. Both GPS and InSAR data, which cover the entire New Zealand region, show that the co-seismic and post-seismic deformations are distributed in an extraordinary large area, as far as to the north tip of the North Island. Based on a coseismic slip model derived from seismic and geodetic observations, we calculate the stress perturbation incurred by the earthquake. We explore a range of possibilities of friction laws and rheology via a linear combination of strain rate in finite volumes and slip velocity on ruptured faults. We obtain the slip distribution that can best explain our geodetic measurements using outlier-insensitive hierarchical Bayesian model, to better understand different mechanisms behind the localized shallow after slip and distributed deformation. Our results indicate that complex interactions between the subduction interface and the overlying fault system play an important role in causing such large-scale deformation during and after the earthquake event.

  3. Ups and downs in western Crete (Hellenic subduction zone)

    PubMed Central

    Tiberti, Mara Monica; Basili, Roberto; Vannoli, Paola

    2014-01-01

    Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5–2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6–3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0–3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone. PMID:25022313

  4. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.

  5. Earthquake hazards on the cascadia subduction zone.

    PubMed

    Heaton, T H; Hartzell, S H

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.

  6. Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean: Ancient Slab Beneath the Indian Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.

    In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less

  7. Thermal state of the Explorer segment of the Cascadia subduction zone: Implications for seismic and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Wang, Kelin; Davis, Earl E.; Jiang, Yan; Insua, Tania L.; He, Jiangheng

    2017-04-01

    The Explorer segment of northernmost Cascadia is an end-member "warm" subduction zone with very young incoming plate and slow-convergence rate. Understanding the megathrust earthquake potential of this type of subduction zone is of both geodynamic and societal importance. Available geodetic observations indicate that the subduction megathrust of the Explorer segment is currently locked to some degree, but the downdip extent of the fault area that is potentially seismogenic is not known. Here we construct finite-element models to estimate the thermally allowed megathrust seismogenic zone, using available knowledge of regional plate kinematics, structural data, and heat flow observations as constraints. Despite ambiguities in plate interface geometry constrained by hypocenter locations of low-frequency earthquakes beneath Vancouver Island, the thermal models suggest a potential rupture zone of ˜60 km downdip width located fully offshore. Using dislocation modeling, we further illustrate that a rupture zone of this size, even with a conservative assumption of ˜100 km strike length, can cause significant tsunami-genic deformation. Future seismic and tsunami hazard assessment in northern Cascadia must take the Explorer segment into account.

  8. Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean: Ancient Slab Beneath the Indian Ocean

    DOE PAGES

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; ...

    2015-11-14

    In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less

  9. Building a risk-targeted regional seismic hazard model for South-East Asia

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Nyst, M.; Seyhan, E.

    2015-12-01

    The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.

  10. Seismic sequences in the Sombrero Seismic Zone

    NASA Astrophysics Data System (ADS)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of unrelated events in plots of the general catalog. One characteristic of these sequences is that their magnitudes tend to be consistently small (1.0 - 3.5 mb, with only five events greater than 3.5 mb) and they typically do not include an event that could confidently be identified as a "main" shock. Nevertheless, the numbers of events, temporal and geographic distribution of shocks in each sequence suggests that these are aftershock sequences, yet none includes an event that could confidently be identified as a "main" shock. This observation suggests several questions. Do these sequences truly represent aftershocks? If so, where are the main events? Are they perhaps related to "silent" or "slow" earthquakes in the subduction zone? If so, could such slow earthquakes be related to the dropping away of the subducting slab beneath the deep Puerto Rico Trench? Or do the sequences indicate tearing of the NA lithosphere of the North America plate as it subducts beneath the Caribbean plate?

  11. Collision and subduction structure of the Izu-Bonin arc, central Japan: Recent studies from refraction/wide-angle reflection analysis and seismic tomography

    NASA Astrophysics Data System (ADS)

    Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.

    2009-12-01

    Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a spatial resolution, and confirmed that the final model has an enough resolution down to the depth of 5 km. We also performed a Monte Carlo uncertainty analysis (Korenaga et al, 2000) to estimate the posteriori model variance, showing that most velocities are well constrained with standard deviation of less than 0.20 km/s. Our result strongly indicates the existences of low velocity zones (< 6.0 km/s) along the tectonic boundaries and high velocity bodies (> 6.0 km/s) just beneath MM and TM, which correspond to the middle crust of the Izu-Bonin arc (Kodaira et al., 2007). In the analysis (2), hypocenters and velocity structure were simultaneously determined based on the double-difference method (Zhang and Thurber, 2003). The hypocenter distribution and final velocity structure obtained indicate several interesting features, including low velocity sedimentary layer (< 6.0 km/s) along the KMF and prominent seismic activity in the middle-lower crust (6.0-6.8 km/s) in the Izu-Bonin arc (10-25 km depth beneath TM). These results give us very important constraints for the collision process ongoing in our research area.

  12. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, Andreas; Babeyko, Andrey Y.; Zamora, Natalia

    2016-06-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  13. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, A.; Babeyko, A. Y.; Zamora, N.

    2015-09-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  14. Defining the worst case scenario for the Makran Subduction Zone: the 1008 AD tsunami

    NASA Astrophysics Data System (ADS)

    Hoffmann, Goesta

    2016-04-01

    The Makran Subduction Zone is located within the Arabian Sea (Northern Indian Ocean) and marks the boundary between the Arabian and the Eurasian plate. The sinistral strike-slip Sonne fault separates the subduction zone in an eastern and western segment. The convergence rate is about 40 mm/yr and slightly faster in the east than in the west. The seismicity is low in general and the few documented seismic events are concentrated in the eastern segment. No seismic activity is known from the western segment in historic times. The hazard potential is enigmatic as the only documented and recorded tsunamigenic earthquake (MW 8.1) within the subduction zone occurred in Nov 1945. However, thermal modelling suggests a wide potential seismogenic zone, apparently capable of generating very significant (>MW 8.5) tsunamigenic earthquakes. Furthermore, submarine slumping is another tsunami trigger which has to be taken into account. We used the modelling results as a hypothesis and mapped extreme wave event deposits along the coastline of Oman, bordering the Arabian Sea. We were able to document extensive boulder fields along rocky parts of the coastline. These boulders are decorated with marine sessile organism such as e.g oysters or barnacles testifying for an intertidal setting of the boulder prior to dislocation. The organism remains were used for radiocarbon dating assuming that the death of the organism was related to the relocation of the boulder. Storm-induced boulder movement is possible as the coastline is subject to infrequent tropical cyclone impact. However, boulder movement was not observed during the strongest storm on record in 2007. The dating exercise revealed a cluster of dates around 1000 AD, coinciding with a potential earthquake event known from a historic Persian text dating to the year 1008 AD. Archaeological evidence, mainly pottery artefacts found along the sea shore near the capital area Muscat/Oman also indicate a catastrophic event which may be correlated to the 1008 AD earthquake and tsunami inundation. The boulder deposits as well as the archaeological remains testify for a maximum tsunami runup of 15m, exceeding by far the inundation as observed in 1945. We define this as the worst case scenario for the Makran Subduction Zone. However, the return period is rather large (>500 years).

  15. Downdip and along-strike variations in the properties of the Alaska megathrust from active-source seismic imaging

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Li, J.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike changes in slip behavior at subduction zones are often attributed to changes in the properties of the megathrust. Here we review information on the subduction megathrust offshore of the Alaska Peninsula from MCS reflection and wide-angle seismic data acquired in 2011 during the Alaska Langseth Experiment to Understand the megaThrust (ALEUT) program, and compare them with constraints from other data and experiments. This region encompasses the full spectrum of coupling: 1) the weakly coupled Shumagin Gap; 2) the Semidi segment, which last ruptured in the 1938 M8.2 event, appears to be locked at present, and 3) the western Kodiak asperity, which marked the western extent of the 1964 M9.2 rupture and also appears to be locked. Our data reveal substantial along-strike variations in incoming sediment thickness and plate structure and along-strike and downdip variations in megathrust reflection characteristics. Over 1 km of sediment is observed on the incoming oceanic plate in the Semidi segment prior to subduction, and a relatively thick and continuous layer interpreted as subducted sediment can be imaged at the plate boundary here up to ~50 km from the trench . In the Shumagin Gap, where the incoming sediment section is half as thick and more pervasively faulted at the outer rise, a subducting sediment layer is also observed but it is thinner, less continuous and is not observed to continue as far from the trench. ,Although the Semidi segment is capable of producing great earthquakes, the comparatively thick sediment here may contribute to the relative paucity of seismicity compared with adjacent segments. At greater depths, simple and bright reflections are generally observed at depths of ~12-25 km, ~40-100 km from the trench, within the center of the estimated locked zone. The character changes where the megathrust appears to intersect the forearc mantle wedge to a wide (~2 km thick), bright band of reflections and may arise from a change in deformation style, distribution of fluids, and/or plate boundary properties. Although the overall patterns in reflection characteristics are consistent between profiles across different segments, this transition in reflection characteristics occurs at larger distances from the trench within the Semidi segment than in the Shumagin Gap.

  16. A bird's eye view of "Understanding volcanoes in the Vanuatu arc"

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Métrich, N.

    2016-08-01

    The Vanuatu intra-oceanic arc, located between 13 and 22°S in the southwest Pacific Ocean (Fig. 1), is one of the most seismically active regions with almost 39 earthquakes magnitude 7 + in the past 43 years (Baillard et al., 2015). Active deformation in both the Vanuatu subduction zone and the back-arc North-Fiji basin accommodates the variation of convergence rates which are c.a. 90-120 mm/yr along most of the arc (Taylor et al., 1995; Pelletier et al., 1998). The convergence rate is slowed down to 25-43 mm/yr (Baillard et al., 2015) in the central segment where the D'Entrecasteaux ridge - an Eocene-Oligocene island arc complex on the Australian subducting plate - collides and is subducted beneath the fore-arc (Taylor et al., 2005). Hence, the Vanuatu arc is segmented in three blocks which move independently; as the north block rotates counter-clockwise in association with rapid back-arc spreading ( 80 mm/year), the central block translates eastward and the south block rotates clockwise (Calmant et al., 2003; Bergeot et al., 2009). (See Fig. 1.)

  17. Probabilistic seismic hazard assessment for the two layer fault system of Antalya (SW Turkey) area

    NASA Astrophysics Data System (ADS)

    Dipova, Nihat; Cangir, Bülent

    2017-09-01

    Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58-73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173-215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.

  18. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  19. Deep-focus earthquakes and recycling of water into the earth's mantle

    NASA Technical Reports Server (NTRS)

    Meade, Charles; Jeanloz, Raymond

    1991-01-01

    For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.

  20. On the Complicated 410 km Discontinuity beneath Eastern China with the Seismic Triplications

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Li, G.; Sui, Y.

    2013-12-01

    The seismic triplications from the seismograms of mid-deep earthquakes at the Ryuku subduction zone recorded by the Chinese Digital Seismic Network (CDSN) between the epicentral distance between 10°-23° are used to study the upper mantle structure beneath Eastern China. Comparing the observed seismograms with the synthetic ones from different models based on IASP91 earth model and using the ray-tracing method, we found that the 410 km discontinuity is a gradient zone with the thickness of 20 km and there is low velocity layer atop the discontinuity which becomes thin from north to south beneath Eastern China. The complicated 410 km discontinuity with an atop low velocity layer may be caused by the dehydration of the Philippine sea subducting materials which are observed by the seismic tomopgraphy (Qu, et al., 2007; Li and van der Hilst, 2010). The low velocity gradient zone between the depths of 80-200 km is also been observed and may be related to the lithospheric-asthenosphere boundary.

  1. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-07-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry is presented based on three-dimensional density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into Northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. To the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a terminal depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  2. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-10-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry in Costa Rica is presented based on 3-D density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. Contrary to commonly assumed, to the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a maximum depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth (> 75 km) intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  3. Anomalous Seismic Radiation in the Shallow Subduction Zone Explained by Extensive Poroplastic Deformation in the Overriding Wedge

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ma, S.

    2012-12-01

    The deficiency of high-frequency seismic radiation from shallow subduction zone earthquakes was first recognized in tsunami earthquakes (Kanamori, 1972), which produce larger tsunamis than expected from short-period (20 s) surface wave excitation. Shallow subduction zone earthquakes were also observed to have unusually low energy-to-moment ratios compared to regular subduction zone earthquakes (e.g., Newman and Okal, 1998; Venkataraman and Kanamori, 2004; Lay et al., 2012). What causes this anomalous radiation and how it relates to large tsunami generation has remained unclear. Here we show that these anomalous observations can be due to extensive poroplastic deformation in the overriding wedge, which provides a unifying interpretation. Ma (2012) showed that the pore pressure increase in the wedge due to up-dip rupture propagation significantly weakens the wedge, leading to widespread Coulomb failure in the wedge. Widespread failure gives rise to slow rupture velocity and large seafloor uplift (landward from the trench) in the case of a shallow fault dip. Here we extend this work and demonstrate that the large seafloor uplift due to the poroplastic deformation significantly dilates the fault behind the rupture front, which reduces the normal stress on the fault and increases the stress drop, slip, and rupture duration. The spectral amplitudes of the moment-rate time function is significantly less at high frequencies than those from elastic simulations. Large tsunami generation and deficiency of high-frequency radiation are thus two consistent manifestations of the same mechanism (poroplastic deformation). Although extensive poroplastic deformation in the wedge represents a significant portion of total seismic moment release, the plastic deformation is shown to act as a large energy sink, leaving less energy to be radiated and leading to low energy-to-moment ratios as observed for shallow subduction zone earthquakes.

  4. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id; Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strongmore » correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.« less

  5. Modifications to risk-targeted seismic design maps for subduction and near-fault hazards

    USGS Publications Warehouse

    Liel, Abbie B.; Luco, Nicolas; Raghunandan, Meera; Champion, C.; Haukaas, Terje

    2015-01-01

    ASCE 7-10 introduced new seismic design maps that define risk-targeted ground motions such that buildings designed according to these maps will have 1% chance of collapse in 50 years. These maps were developed by iterative risk calculation, wherein a generic building collapse fragility curve is convolved with the U.S. Geological Survey hazard curve until target risk criteria are met. Recent research shows that this current approach may be unconservative at locations where the tectonic environment is much different than that used to develop the generic fragility curve. This study illustrates how risk-targeted ground motions at selected sites would change if generic building fragility curve and hazard assessment were modified to account for seismic risk from subduction earthquakes and near-fault pulses. The paper also explores the difficulties in implementing these changes.

  6. Geophysical evidence for a transform margin in Northwestern Algeria: possible vestige of a Subduction-Transform Edge Propagator

    NASA Astrophysics Data System (ADS)

    Badji, R.; Charvis, P.; Bracene, R.; Galve, A.; Badsi, M.; Ribodetti, A.; Benaissa, Z.; Klingelhoefer, F.; Medaouri, M.; Beslier, M.

    2013-12-01

    This work is part of the Algerian-French SPIRAL program (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) which provides unprecedented images of the deep structure of the western Algerian Margin based on several wide-angle and multichannel seismic data shot across the Algerian Margin. One of the different hypotheses for the opening of the western Mediterranean Sea, we are testing is that the western part of the Algerian margin was possibly part of the southern edge of the Alboran continental block during its westward migration related to the rollback of the Betic-Rif-Alboran subduction zone. A tomographic inversion of the first arrival traveltimes along a 100-km long wide-angle seismic profile shot over 40 Ocean Bottom Seismometers, across the Margin offshore Mostaganem (Northwestern Algerian Margin) was conducted. The final model reveals striking feature in the deep structure of the margin from north to south: 1- the oceanic crust is as thin as 4-km, with velocities ranging from 5.0 to 7.1 km/s, covered by a 3.3 km thick sedimentary pile (seismic velocities from 1.5 to 5.0 km/s) characterized by an intense diapiric activity of the Messinian salt layer. 2- a sharp transition zone, less than 10 km wide, with seismic velocities intermediate between oceanic seismic velocities (observed northward) and continental seismic velocities (observed southward). This zone coincides with narrow and elongated pull apart basins imaged by multichannel seismic data. No evidence of volcanism nor of exhumed serpentinized upper mantle as described along many extensional continental margins are observed along this segment of the margin. 3- a thinned continental crust coincident with a rapid variation of the Moho depth imaged from 12 to ~20 km with a dip up to 50%. The seafloor bathymetry is showing a steep continental slope (>20%). Either normal or inverse faults are observed along MCS lines shot in the dip direction but they do not present large vertical displacement and could be related primarily to strike slip motion. These results support the hypothesis, that the margin offshore Mostaganem is not an extensional margin but rather a transform margin. There is little evidence of tectonic inversion as described eastward along the Kabylian Margin. Possibly strike slip motion affected the thinned continental crust and the transition zone suggesting that this margin is a vestige of the Subduction-Transform Edge Propagator (STEP) related to the westward migration of the Alboran block.

  7. Earthquake Potential in Myanmar

    NASA Astrophysics Data System (ADS)

    Aung, Hla Hla

    Myanmar region is generally believed to be an area of high earthquake potential from the point of view of seismic activity which has been low compared to the surrounding regions like Indonesia, China, and Pakistan. Geoscientists and seismologists predicted earthquakes to occur in the area north of the Sumatra-Andaman Islands, i.e. the southwest and west part of Myanmar. Myanmar tectonic setting relative to East and SE Asia is rather peculiar and unique with different plate tectonic models but similar to the setting of western part of North America. Myanmar crustal blocks are caught within two lithospheric plates of India and Indochina experiencing oblique subduction with major dextral strike-slip faulting of the Sagaing fault. Seismic tomography and thermal structure of India plate along the Sunda subduction zone vary from south to north. Strong partitioning in central Andaman basin where crustal fragmentation and northward dispersion of Burma plate by back-arc spreading mechanism has been operating since Neogene. Northward motion of Burma plate relative to SE Asia would dock against the major continent further north and might have caused the accumulation of strain which in turn will be released as earthquakes in the future.

  8. Impact of great subduction earthquakes on the long-term forearc morphology, insight from mechanical modelling

    NASA Astrophysics Data System (ADS)

    Cubas, Nadaya

    2017-04-01

    The surge of great subduction earthquakes during the last fifteen years provided numerous observations requiring revisiting our understanding of large seismic events mechanics. For instance, we now have clear evidence that a significant part of the upper plate deformation is permanently acquired. The link between great earthquakes and long-term deformation offers a new perspective for the relief construction understanding. In addition, a better understanding of these relations could provide us with new constraints on earthquake mechanics. It is also of fundamental importance for seismic risk assessment. In this presentation, I will compile recent results obtained from mechanical modelling linking megathrust ruptures with upper-plate permanent deformation and discuss their impact. We will first show that, in good accordance with lab experiments, aseismic zones are characterized by frictions larger or equal to 0.1 whereas seismic asperities have dynamic frictions lower than 0.05. This difference will control the long-term upper-plate morphology. The larger values along aseismic zones allow the wedge to reach the critical state, and will lead to active thrust systems forming a relief. On the contrary, low dynamic friction along seismic asperities will place the taper in the sub-critical domain impeding any internal deformation. This will lead to the formation of forearc basins inducing negative gravity anomalies. Since aseismic zones have higher friction and larger taper, fully creeping segments will tend to develop peninsulas. On the contrary, fully locked segments with low dynamic friction and very low taper will favor subsiding coasts. The taper variation due to megathrust friction is also expressed through a correlation between coast-to-trench distance and forearc coupling (e.g., Mexican and South-American subduction zones). We will then discuss how variations of frictional properties along the megathrust can induce splay fault activation. For instance, we can reactivate normal faults at the down-dip limit of the seismogenic zone or at an increasing slip transition (e.g., Chile and Japan). Finally, we will show that the fault vergence is controlled by the frictional properties. Sudden and successive decreases of the megathrust effective friction during frontal propagation of earthquakes will lead to the formation of landward-vergent frontal thrusts in the accretionary prism. Therefore, a particular attention needs to be paid to accretionary prisms with normal faults implying large up-dip ruptures (e.g., Alaska and Japan) or with frontal landward-vergent thrust faults, markers of past seafloor coseismic ruptures leading to very large tsunamis (e.g., Cascadia and Sumatra). If the forearc long-term deformation seems in good accordance with our understanding of earthquake mechanics, recent studies have pointed to a major discrepancy between short- and long-term deformation at the coast (i.e., the Central Andes subduction zone). An analogue discrepancy has been pointed out for the Himalaya after the 2015 Mw 7.8 Gorkha earthquake. Melnick (2016) proposed that the coastal long-term deformation could be related to deep and less frequent earthquakes instead of standard subduction events. It is now of fundamental importance to understand the link between the coastal long-term record and the short-term deformation for seismic risk assessment and relief building processes understanding. It will probably constitute the next challenge for mechanical modelling.

  9. Splay Fault Branching from the Hikurangi Subduction Shear Zone: Implications for Slow Slip and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Plaza-Faverola, A. A.; Pecher, I. A.; Klaeschen, D.; Wallace, L.

    2016-12-01

    Seismic reflection data along the East Coast of the New Zealand North Island are used to map the offshore character and geometry of the central Hikurangi subduction thrust and outer wedge in a region of short term ( 2-3 weeks duration) geodetically determined slow-slip events (SSEs). Pre-stack depth migration of line 05CM-38 was used to derive subducting slab geometry and upper crustal structure together with a Vp image of the crust that is resolved to 14 km depth. The subduction interface is a shallow dipping thrust at < 7 km deep near the trench and steps down to 14 km depth along an approximately 18 km long ramp, beneath Porangahau Ridge. This bend in the subducted plate is associated with splay fault branching and coincides with the zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. We infer that the step down in the décollement transfers slip on the plate interface from the top of subducting sediments to the oceanic crust and drives underplating beneath the inner margin of central Hikurangi margin. Low-velocity subducting sediments (LVZ) beneath the plate interface, updip of the plate interface ramp, are interpreted as being capped with a low permeability condensed layer of chalk and interbedded mudstones. We interpret this LVZ as fluid-rich overpressured sediments that have been displaced and later imbricated by splay faults in a region that may mark the up-dip transition from seismic to aseismic behavior. Further, we hypothesize that fluids derived from the overpressured sediment are channeled along splay faults to the shallow sub-seafloor near Porangahau Ridge where seafloor seepage and an upwarping of the gas hydrate Bottom-Simulating Reflector have been documented.

  10. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc

    NASA Astrophysics Data System (ADS)

    Kong, Xiangchao; Li, Sanzhong; Wang, Yongming; Suo, Yanhui; Dai, Liming; Géli, Louis; Zhang, Yong; Guo, Lingli; Wang, Pengcheng

    2018-01-01

    Statistics about the occurrence frequency of earthquakes (1973-2015) at shallow, intermediate and great depths along the Izu-Bonin-Mariana (IBM) Arc is presented and a percent perturbation relative to P-wave mean value (LLNL-G3Dv3) is adopted to show the deep structure. The correlation coefficient between the subduction rate and the frequency of shallow seismic events along the IBM is 0.605, proving that the subduction rate is an important factor for shallow seismic events. The relationship between relief amplitudes of the seafloor and earthquake occurrences implies that some seamount chains riding on the Pacific seafloor may have an effect on intermediate-depth seismic events along the IBM. A probable hypothesis is proposed that the seamounts or surrounding seafloor with high degree of fracture may bring numerous hydrous minerals into the deep and may result in a different thermal structure compared to the seafloor where no seamounts are subducted. Fluids from the seamounts or surrounding seafloor are released to trigger earthquakes at intermediate-depth. Deep events in the northern and southern Mariana arc are likely affected by a horizontal propagating tear parallel to the trench.

  11. Present coupling along the Peruvian subduction asperity that devastated Lima while breaking during the 1746 earthquake

    NASA Astrophysics Data System (ADS)

    Cavalié, O.; Chlieh, M.; Villegas Lanza, J. C.

    2016-12-01

    Subduction zone are particularly prone to generating large earthquakes due to its wide lateral extension. In order to understand where, and possibly when, large earthquakes will occur, interseismic deformation observation is a key information because it allows to map asperities that accumulate stress on the plate interface. South American subduction is one of the longest worldwide, running all along the west coast of the continent. Combined with the relatively fast convergence rate between the Nazca plate and the South American continent, Chile and Peru experience regularly M>7.5 earthquakes. In this study, we focused on the Peruvian subduction margin and more precisely on the Central segment containing Lima where the seismic risk is the highest in the country due the large population that lives in the Peruvian capital. On the Central segment (10°S and 15°S), we used over 50 GPS interseismic measurements from campaign and continuous sites, as well as InSAR data to map coupling along the subduction interface. GPS data come from the Peruvian GPS network and InSAR data are from the Envisat satellite. We selected two tracks covering the central segment (including Lima) and with enough SAR image acquisitions between 2003 and 2010 to get a robust deformation estimation. GPS and InSAR data show a consistent tectonic signal with a maximum of surface displacement by the coast: the maximum horizontal velocities from GPS is about 20 mm and InSAR finds 12-13 mm in the LOS component. In addition, InSAR reveals lateral variations along the coast: the maximum motion is measured around Lima (11°S) and fades on either side. By inverting the geodetic data, we were able to map the coupling along the segment. It results in a main asperity where interseismic stress is loading. However, compared the previous published models based on GPS only, the coupling in the central segment seems more heterogeneous. Finally, we compared the deficit of seismic moment accumulating in the interseismic period with the long-term seismicity. Based on the instrumental and historical seismicity, and the present seismic coupling, a M>8.8 earthquake is expected before the end of the century. However, the actual magnitude relies on how much aseismic slip, that has not been measured during the geodesy period (i.e since 2003) occurred.

  12. Present coupling along the Peruvian subduction asperity that devastated Lima while breaking during the 1746 earthquake

    NASA Astrophysics Data System (ADS)

    Cavalié, O.; Chlieh, M.; Villegas Lanza, J. C.

    2017-12-01

    Subduction zone are particularly prone to generating large earthquakes due to its wide lateral extension. In order to understand where, and possibly when, large earthquakes will occur, interseismic deformation observation is a key information because it allows to map asperities that accumulate stress on the plate interface. South American subduction is one of the longest worldwide, running all along the west coast of the continent. Combined with the relatively fast convergence rate between the Nazca plate and the South American continent, Chile and Peru experience regularly M>7.5 earthquakes. In this study, we focused on the Peruvian subduction margin and more precisely on the Central segment containing Lima where the seismic risk is the highest in the country due the large population that lives in the Peruvian capital. On the Central segment (10°S and 15°S), we used over 50 GPS interseismic measurements from campaign and continuous sites, as well as InSAR data to map coupling along the subduction interface. GPS data come from the Peruvian GPS network and InSAR data are from the Envisat satellite. We selected two tracks covering the central segment (including Lima) and with enough SAR image acquisitions between 2003 and 2010 to get a robust deformation estimation. GPS and InSAR data show a consistent tectonic signal with a maximum of surface displacement by the coast: the maximum horizontal velocities from GPS is about 20 mm and InSAR finds 12-13 mm in the LOS component. In addition, InSAR reveals lateral variations along the coast: the maximum motion is measured around Lima (11°S) and fades on either side. By inverting the geodetic data, we were able to map the coupling along the segment. It results in a main asperity where interseismic stress is loading. However, compared the previous published models based on GPS only, the coupling in the central segment seems more heterogeneous. Finally, we compared the deficit of seismic moment accumulating in the interseismic period with the long-term seismicity. Based on the instrumental and historical seismicity, and the present seismic coupling, a M>8.8 earthquake is expected before the end of the century. However, the actual magnitude relies on how much aseismic slip, that has not been measured during the geodesy period (i.e since 2003) occurred.

  13. Establishment of a Taiwan Marine cable hosted observatory (Ma-Cho project)

    NASA Astrophysics Data System (ADS)

    Lee, C.; Hsu, S.; Shin, T.

    2006-12-01

    Taiwan is located in a junction corner between the Philippine Sea Plate and Eurasian Plate. Because of the active convergence, numerous earthquakes have occurred in and around Taiwan. On average, there are about two earthquakes greater than magnitude 6 each year and 80% of earthquakes occurred in the offshore area. Because of the subduction of Philippine Sea Plate beneath the western end of the Ryukyu Arc and northern Taiwan, both the tectonics and seismic activity are intensive. The 2004 Sumatra earthquake has induced giant tsunami attacking coastal countries of South Asia. Due to a similar geodynamic context, the Sumatra event has aroused the attention of Taiwan government. Soon, specialists from Taiwan earth scientists and ocean engineers have teamed up to discuss the potential and mitigation of natural hazards from the western end of the Ryukyu subduction zone. The constructing a submarine cable observatory off eastern Taiwan (Ma-Cho project) was suggested. Ma-Cho means a sea goddess who protects people at sea. The purpose of Ma-Cho project has several folds. Firstly, the extension of seismic stations on land to offshore area can increase the resolution of earthquake locating. Secondly, the extension of seismic stations may obtain tens of second before the destructing seismic waves arrive on land or tens of minute before the arrival of giant tsunami, which is helpful for earthquake or tsunami warning. Thirdly, the seafloor scientific station can monitor the active volcanoes in the Okinawa Trough, which is directly adjacent to the Ilan plain in northeastern Taiwan. Fourthly, the seafloor observatory can be used to continuously study the Kurosho current, off eastern Taiwan. The Ma- Cho project has been granted for the first year. From 2007, we will start with a submarine route survey and a construction of the submarine cable land station. The main submarine cable frame and the connection of scientific instruments to cable nodes will be finished in 2009.

  14. Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Dolenc, D.

    2004-12-01

    Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.

  15. Investigating Segmentation in Cascadia: Anisotropic Crustal Structure and Mantle Wedge Serpentinization from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Krueger, Hannah E.; Wirth, Erin A.

    2017-10-01

    The Cascadia subduction zone exhibits along-strike segmentation in structure, processes, and seismogenic behavior. While characterization of seismic anisotropy can constrain deformation processes at depth, the character of seismic anisotropy in Cascadia remains poorly understood. This is primarily due to a lack of seismicity in the subducting Juan de Fuca slab, which limits shear wave splitting and other seismological analyses that interrogate the fine-scale anisotropic structure of the crust and mantle wedge. We investigate lower crustal anisotropy and mantle wedge structure by computing P-to-S receiver functions at 12 broadband seismic stations along the Cascadia subduction zone. We observe P-to-SV converted energy consistent with previously estimated Moho depths. Several stations exhibit evidence of an "inverted Moho" (i.e., a downward velocity decrease across the crust-mantle boundary), indicative of a serpentinized mantle wedge. Stations with an underlying hydrated mantle wedge appear prevalent from northern Washington to central Oregon, but sparse in southern Oregon and northern California. Transverse component receiver functions are complex, suggesting anisotropic and/or dipping crustal structure. To constrain the orientation of crustal anisotropy we compute synthetic receiver functions using manual forward modeling. We determine that the lower crust shows variable orientations of anisotropy along-strike, with highly complex anisotropy in northern Cascadia, and generally NW-SE and NE-SW orientations of slow-axis anisotropy in central and southern Cascadia, respectively. The orientations of anisotropy from this work generally agree with those inferred from shear wave splitting of tremor studies at similar locations, lending confidence to this relatively new method of inferring seismic anisotropy from slow earthquakes.

  16. Past seismic slip-to-the-trench recorded in Central America megathrust

    NASA Astrophysics Data System (ADS)

    Vannucchi, Paola; Spagnuolo, Elena; Aretusini, Stefano; Di Toro, Giulio; Ujiie, Kohtaro; Tsutsumi, Akito; Nielsen, Stefan

    2017-12-01

    The 2011 Tōhoku-Oki earthquake revealed that co-seismic displacement along the plate boundary megathrust can propagate to the trench. Co-seismic slip to the trench amplifies hazards at subduction zones, so its historical occurrence should also be investigated globally. Here we combine structural and experimental analyses of core samples taken offshore from southeastern Costa Rica as part of the Integrated Ocean Drilling Program (IODP) Expedition 344, with three-dimensional seismic reflection images of the subduction zone. We document a geologic record of past co-seismic slip to the trench. The core passed through a less than 1.9-million-year-old megathrust frontal ramp that superimposes older Miocene biogenic oozes onto late Miocene-Pleistocene silty clays. This, together with our stratigraphic analyses and geophysical images, constrains the position of the basal decollement to lie within the biogenic oozes. Our friction experiments show that, when wet, silty clays and biogenic oozes are both slip-weakening at sub-seismic and seismic slip velocities. Oozes are stronger than silty clays at slip velocities of less than or equal to 0.01 m s-1, and wet oozes become as weak as silty clays only at a slip velocity of 1 m s-1. We therefore suggest that the geological structures found offshore from Costa Rica were deformed during seismic slip-to-the-trench events. During slower aseismic creep, deformation would have preferentially localized within the silty clays.

  17. Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran

    NASA Astrophysics Data System (ADS)

    Alinaghi, Alireza; Koulakov, Ivan; Thybo, Hans

    2007-06-01

    The inverse tomography method has been used to study the P- and S-waves velocity structure of the crust and upper mantle underneath Iran. The method, based on the principle of source-receiver reciprocity, allows for tomographic studies of regions with sparse distribution of seismic stations if the region has sufficient seismicity. The arrival times of body waves from earthquakes in the study area as reported in the ISC catalogue (1964-1996) at all available epicentral distances are used for calculation of residual arrival times. Prior to inversion we have relocated hypocentres based on a 1-D spherical earth's model taking into account variable crustal thickness and surface topography. During the inversion seismic sources are further relocated simultaneously with the calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm and the data to reconstruct introduced anomalies using the ray paths of the real data set and taking into account the measurement errors and outliers. The velocity anomalies show that the crust and upper mantle beneath the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block. This is in agreement with global tomographic models, and also tectonic models, in which active Iranian plateau is trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of the mainly aseismic subduction of the oceanic crust of the Oman Sea underneath the Iranian Plateau. However, along the Zagros suture zone, the subduction pattern is more complex than at Makran where the collision of the two plates is highly seismic.

  18. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  19. Teleseismic P-wave tomography of the Sunda-Banda Arc subduction zone

    NASA Astrophysics Data System (ADS)

    Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.

    2017-12-01

    The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-wave velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-wave travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition zone. The resolution added by the targeted USC deployment is clear when comparing models that use only BMKG data to models that incorporate the YS network as well.

  20. Love-to-Rayleigh Conversions and Seismic Anisotropy in Cascadia

    NASA Astrophysics Data System (ADS)

    Rieger, Duayne Matthew

    Seismic anisotropy is often attributed to the development of lattice-preferred orientation (LPO) of olivine crystals in peridotite, induced by the dislocation creep component of mantle deformation (Karato et al., 2008; Ribe, 1992). Mantle-flow-induced seismic anisotropy is often modeled in the simple form of hexagonal symmetry, where the anisotropic volume is uniaxially fast or slow. This relationship between seismic anisotropy and mantle deformation allows for the mapping of mantle dynamics using measurements of seismic anisotropy. Presently, methods of measuring seismic anisotropy in Earth's mantle include shear-wave splitting and surface-wave tomography. These methods are tuned to seismically fast axes laying in the horizontal or surface-tangent plane and are limited in discerning clipping seismic fast axes. This is a shortcoming. It is reasonable to suspect the presence of dipping seismic fast axes induced by mantle flow in several tectonic regimes such as subduction zones. The slab rollback model of the subduction zone system has been argued to exhibit trench-parallel subslab anisotropy due to the lateral evacuation of the subslab mantle material (Hall et al., 2000; Russo and Silver, 1994). This model has been emboldened by the dominance of trench-parallel shear-wave-splitting measurements in the subslab mantle of global subduction zones. This model has significant geodynamic implications, requiring viscous decoupling between the subslab mantle and the sub-ducting slab. The Cascadian subduction zone is of particular scientific interest. While experiencing slab rollback (Zandt and Humphreys, 2008), trench-perpendicular shear-wave-splitting measurements are observed in the subslab mantle of Cascadia (Currie et al., 2004; Eakin et al., 2010; Long and Silver, 2008; 2009). This suggests either viscous coupling resulting in slab-entrained flow or the presence of an alternate relationship between finite strain in the mantle and seismic anisotropy. The ability to discern a clipping anisotropic axis would help gain insight into the mantle dynamics of regions such as Cascadia. Lateral gradients of seismic anisotropy in Earth's upper mantle induce coupling among Earth's spheroidal and toroidal normal modes. This coupling can manifest as observable surface-wave polarization anomalies resulting from Love to Rayleigh wave conversions. These Love to Rayleigh conversions are known in the literature as Quasi-Love (QL) waves (Park and Yu, 1992) and are sensitive to both the strike and the dip of an anisotropic symmetry axis. In this dissertation I investigate the phenomenology of QL surface-wave scattering, including its sensitivity to the type and orientation of seismic anisotropy. I then apply my findings to observations of QL wave scattering in Cascada in order to further constrain subslab mantle anisotropy in the region. First, I make initial observations and confirm the presence of QL scattering in Cascada and the western U.S. using data recorded on USArray. I then move on to develop an algorithm to model efficiently QL wave scattering in the presence of 3-dimensional anisotropic structure. Using this forward-modeling algorithm, I investigate the dependence of QL wave scattering on the type and orientation of seismic Anisotropy. I find that P and S anisotropies exhibit independent effects on scattering. Scattering due to S anisotropy is stronger than that due to P anisotropy for all orientations and dominates in the observed scattering pattern. Both the phase and amplitude of the QL wave is dependent on the orientation (strike and dip) of the symmetry axis relative to the incident propagation azimuth of the source-receiver great-circle path. Due to this, the orientation of the anisotropic symmetry axis provides a distinct signature which is observable in the variation of QL wave scattering with wave-propagation azimuth. Finally, using data recorded on USArray, I observe the variation in QL wave scattering with propagation azimuth. I then attempt to forward-model the observed behavior using the algorithm developed earlier. The best-fitting model suggests coherent trench-perpendicular mantle anisotropy with an eastward dip in the sublsab mantle of the Cascadian subduction zone. The resulting anisotropic model adds confidence to the entrained subslab mantle-flow model for Cascadia and further refutes the 3-D return-flow model associated with slab rollback.

  1. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be compressed above the upwelling flow. The reason for this is that the strong lateral mantle flow originating from the upwelling flow generates resistance drag force at the base of the overriding plates. This situation may apply to a case of East Asia, under which the typical morphology of sub-horizontal slabs can be seen by seismic tomography. The strong lateral velocity observed in the shallower mantle wedge in the present numerical simulation may account for both the compressional subduction tectonics and back arc compression in the Japan-Kuril-Kamchatka, Aleutian, and South Chile trenches, as well as for weak plate-slab coupling, strong seismic coupling, and the possibility of great earthquakes along these trenches.

  2. Spatial distribution of random velocity inhomogeneities in the western part of Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2011-12-01

    In the Nankai trough, there are three seismogenic zones of megathrust earthquakes (Tokai, Tonankai and Nankai earthquakes). Lithospheric structures in and around these seismogenic zones are important for the studies on mutual interactions and synchronization of their fault ruptures. Recent studies on seismic wave scattering at high frequencies (>1Hz) make it possible to estimate 3D distributions of random inhomogeneities (or scattering coefficient) in the lithosphere, and clarified that random inhomogeneity is one of the important medium properties related to microseismicity and damaged structure near the fault zone [Asano & Hasegawa, 2004; Takahashi et al. 2009]. This study estimates the spatial distribution of the power spectral density function (PSDF) of random inhomogeneities the western part of Nankai subduction zone, and examines the relations with crustal velocity structure and seismic activity. Seismic waveform data used in this study are those recorded at seismic stations of Hi-net & F-net operated by NIED, and 160 ocean bottom seismographs (OBSs) deployed at Hyuga-nada region from Dec. 2008 to Jan. 2009. This OBS observation was conducted by JAMSTEC as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Spatial distribution of random inhomogeneities is estimated by the inversion analysis of the peak delay time of small earthquakes [Takahashi et al. 2009], where the peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. We assumed the von Karman type functional form for the PSDF. Peak delay times are measured from root mean squared envelopes at 4-8Hz, 8-16Hz and 16-32Hz. Inversion result can be summarized as follows. Random inhomogeneities beneath the Quaternary volcanoes are characterized by strong inhomogeneities at small spatial scale (~ a few hundreds meter) and weak spectral gradient. Those in the Hyuga-nada region are characterized by the strong inhomogeneities at large spatial wavelength and steep spectral gradient. Random inhomogeneities in the Hyuga-nada region are similar with those in the frontal arc high in northern Izu-Bonin arc, which is thought to be a remnant arc that is presently inactive [Takahashi et al. 2011]. This coincidence implies the existence of subducted Kyushu-Palau ridge in this anomaly of random inhomogeneities, which is also suggested by the seismic refraction survey in this region [Nakanishi et al. 2010 AGU Fall Mtg.]. Source rupture areas of large earthquakes (M>6) in Hyuga-nada regions tend to locate around this anomaly of inhomogeneities. We may say that this anomalously inhomogeneous region is a structural factor affecting the seismic activity in Hyuga-nada region.

  3. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the megathrust fault behavior.

  4. 3D velocity imaging of Hikurangi subduction beneath the Wellington region, New Zealand

    NASA Astrophysics Data System (ADS)

    Wech, A.; Henrys, S. A.; Sutherland, R.; Seward, A. M.; Stern, T. A.; Sato, H.; Okaya, D. A.; Bassett, D.

    2011-12-01

    We present first results from the Seismic Array HiKurangi Experiment (SAHKE). This joint project involving institutions from New Zealand, Japan and the USA aims to investigate the subduction zone fault characteristics beneath the southernmost part of New Zealand's North Island. Situated above where the Pacific Plate is subducting beneath the Australian plate at a rate of ~42 mm/yr, the Wellington region provides a unique opportunity to investigate the frictional properties, geometry, and seismic potential of a shallow, locked megathrust fault. Here the coupled plate interface is 20-30 km deep beneath land and can be sampled with onshore-offshore data from 3 sides. An added interest to this project is that the elevated, oceanic, Hikurangi plateau has entered the subduction zone, east of Wellington, but it is still unclear how far the plateau has advanced westward into the subduction zone. SAHKE combines active and passive source data comprising 4 distinct data sets. 1) A dense temporary array of 50 seismometers with ~7 km spacing augmented 25 regional network instruments to record 49 local and 45 teleseismic earthquakes over a four month period. 2) These stations also recorded 69,000 offshore airgun shots from 17 lines crisscrossing two sides of the array. 3) An additional coast-to-coast transect of 50 stations cutting through the temporary array recorded ~2000 offshore shots on either side. 4) 1000 stations with 100m spacing along that same transect separately recorded 12 in-line, 500 kg onshore dynamite explosions. First inspection of the recent onshore shot gathers show excellent signal to noise and a band of three strong reflectors between 20 and 38 km at the western end of the profile. We combine shot and earthquake recordings to simultaneously invert ~750,000 first arrivals for velocity structure and hypocenters in the densely sampled volume. First results from 3D, Vp tomography and relocated hypocenters agree with previous studies and suggest the later weak signals are reflections from the top of the Pacific plate. Our improved velocity model provides a high-resolution geometry of the subducting plate to support interpretation of other phases identified in SAHKE shot gathers.

  5. The structure of the Calabrian subduction system from the fore-arc to the back-arc: new insights from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Prada, M.; Sallares, V.; Ranero, C. R.; Grevemeyer, I.; Zitellini, N.

    2017-12-01

    The Calabrian arc is a Neogene-Quaternary arcuate orogen result from the subduction of the Ionian Lithosphere under Calabria. The SE migration of this subduction system, triggered by slab rollback, caused the opening of the Tyrrhenian back-arc basin. The large-scale lithospheric structure of the subduction system is mostly imaged by regional earthquake tomography studies. The limited resolution of these studies, however, hinders the definition of smaller-scale details on the location, nature and transition of different lithospheric domains, which are crucial to study the geodynamic evolution of the system. Here we perform travel-time tomography of offshore and onshore active-source wide-angle seismic data to define the 2D Vp structure of the entire Calabrian subduction system. The data were acquired along a 550 km-long transect that extends from the Tyrrhenian back-arc domain to the fore-arc in the Ionian Sea, across Calabria. From NW to SE, the tomographic model shows abrupt variations of the velocity structure. In the back-arc system, particularly in the Vavilov and Marsili basins, OBS sections lack PmP-like arrivals and the velocity structure shows a continuous and strong vertical velocity gradient of 1 s-1. These results strongly support the presence of a basement made of exhumed mantle rocks. Between the Vavilov and Marsili basins, a relatively thick, low-velocity block is interpreted to be of continental affinity. The transition between Marsili Basin and Calabria is marked by a steep Moho geometry that shallows from SE to NW, revealing a dramatic crustal thinning along the N Calabrian margin. The lower crust of the margin has localized Vp of 7 km/s under the submarine volcanic arc. SE Calabria, the model shows a strong horizontal velocity gradient that is interpreted as the backstop of the subduction. In the Ionian, a 3-5 km thick sedimentary wedge thickens towards the NW. The frontal part of the wedge shows sub-vertical low-velocity anomalies indicating the presence of fluid-saturated large thrusts faults.

  6. Seismic risk assessment for road in Indonesia

    NASA Astrophysics Data System (ADS)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  7. Transition from Subduction to Strike-Slip in the Southeast Caribbean: Effects on Lithospheric Structures and Overlying Basin Evolution

    NASA Astrophysics Data System (ADS)

    Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.

    2013-12-01

    Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a lithospheric weakness during subduction. We propose that this fracture zone is a key transition point between the subduction of South American/Atlantic oceanic lithosphere; which descends into the mantle, to the northeast, and the under-thrusting of transitional to continental South American lithosphere which resists subduction to the southwest. Maps of South American basement and its overlying Cretaceous passive margin illustrates a northwesterly basement dip with a distinct change in angle of the northwest dip across the paleo-fracture zone consistent with our tomographic model. We propose that flexure of the subducting South American plate at this location exerts a critical control on the formation and evolution of the basins and the lateral distribution of Cretaceous through Pleistocene stratigraphic fill. East of the fracture zone, the overlying strata is deformed by active subduction and accretionary prism processes with a wider zone of shortening with lower overall topography, while to the west of the fracture zone there is active oblique collision with a narrower zone of shortening and greater uplift.

  8. A detailed map of the 660-kilometer discontinuity beneath the izu-bonin subduction zone.

    PubMed

    Wicks, C W; Richards, M A

    1993-09-10

    Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.

  9. Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala

    NASA Astrophysics Data System (ADS)

    Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han

    2016-05-01

    We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the southern Motagua fault zone, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.

  10. Microzonation of Seismic Hazard Potential in Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, K. S.; Lin, Y. P.

    2017-12-01

    The island of Taiwan lies at the boundary between the Philippine Sea plate and the Eurasia plate. Accordingly, the majority of seismic energy release near Taiwan originates from the two subduction zones. It is therefore not surprising that Taiwan has repeatedly been struck by large earthquakes such as 1986 Hualien earthquake, 1999 Chi Chi and 2002 Hualien earthquake. Microzonation of seismic hazard potential becomes necessary in Taipei City for the Central Geological Survey announced the Sanchiao active fault as Category II. In this study, a catalog of more than 2000 shallow earthquakes occurred from 1900 to 2015 with Mw magnitudes ranging from 5.0 to 8.2, and 11 disastrous earthquakes occurred from 1683-1899, as well as Sanchiao active fault in the vicinity are used to estimate the seismic hazard potential in Taipei City for seismic microzonation. Furthermore, the probabilities of seismic intensity exceeding CWB intensity 5, 6, 7 and MMI VI, VII, VIII in 10, 30, and 50-year periods in the above areas are also analyzed for the seismic microzonation. Finally, by comparing with the seismic zoning map of Taiwan in current building code that was revised after 921 earthquakes, Results of this study will show which areas with higher earthquake hazard potential in Taipei City. They provide a valuable database for the seismic design of critical facilities. It will help mitigate Taipei City earthquake disaster loss in the future, as well as provide critical information for emergency response plans.

  11. Plate Tectonics and Taiwan Orogeny based on TAIGER Experiments

    NASA Astrophysics Data System (ADS)

    Wu, F. T.; Kuochen, H.; McIntosh, K. D.

    2014-12-01

    Plate tectonics framework is usually complex in a collision zone, where continental lithosphere is involved. In the young Taiwan orogeny, with geologic understanding and large new geodetic and subsurface datasets now available an environment has been created for testing tectonic hypotheses regarding collision and orogeny. Against the background of the commonly accepted view of Taiwan as a southward propagating, self-similar 2-D orogen, a fully 3-D structure is envisaged. Along the whole length of the island the convergence of the Eurasian plate (EUP) the Philippine Sea plate (PSP) takes shape with different plate configurations. In northern Taiwan the convergence occurs with simultaneous collision of the oceanic PSP with continental EUP and the northward subduction of the PSP; in the south, EUP, in the guise of the South China Sea rifted Eurasian continent, subducts toward the east; in central Taiwan collision of oceanic PSP with continental EUP dominates. When relocated seismicity and focal mechanisms are superposed on subsurface P and Vp/Vs velocity images the configurations and the kinematics of the PSP and EUP collision and subduction become clear. While in northern Taiwan the subduction/collision explains well the high peaks and their dwindling (accompanied by crustal thinning) toward the north. In the south, mountains rise above the east-dipping EUP subduction zone as the Eurasian continental shelf veers toward the southwest, divergent from the trend of the Luzon Arc - calling into question the frequently cited arc-continent collision model of Taiwan orogeny. High velocity anomaly and Benioff seismicity coexist in the south. Going north toward Central Taiwan the high velocity anomaly persists for another 150 km or so, but it becomes seismically quiescent. Above the quiescent section the PSP and EUP collide to build the main part of the Central Range and its parallel neighbor the eastern Coastal Range. Key implications regarding orogeny include: 1) Significant petrological changes may accompany the crustal thickening, e.g., eclogitization, and delamination, 2) Rather than the detachment the exhumation of the metamorphic core of the Central Range is the main engine of the orogeny, and 3) The lithosphere has a complex rheological structure, indicated, in part, by the spatial distribution of seismicity.

  12. Comprehensive understanding of a deep transition zone from an unstable- to stable-slip regime of the megathrust interplate earthquake

    NASA Astrophysics Data System (ADS)

    Kato, A.; Iidaka, T.; Ikuta, R.; Yoshida, Y.; Katsumata, K.; Iwasaki, T.; Sakai, S.; Yamaoka, K.; Watanabe, T.; Kunitomo, T.; Yamazaki, F.; Tsumura, N.; Nozaki, K.; Okubo, M.; Suzuki, S.; Hirata, N.; Zhang, H.; Thurber, C. H.

    2009-12-01

    Most slow slips have occurred in the deep transition zone from an unstable- to stable-slip regime. Detailed knowledge about a deep transition zone is essentially important to understand the mechanism of the slow slips, and the stress concentration process to the source region of the megathrust interplate earthquake. We have conducted a very dense seismic observation in the Tokai-region from the April to the August in 2008 through a linear deployment of 75 portable stations, in Japan. The array extended from the bottom part of the source region of the Tokai earthquake to deep low-frequency earthquakes (LFE, ~ 35 km depth) including the long-term slow-slip region (~ 25 km depth). Here we present a high-resolution tomographic imaging of seismic velocities and highly-accurate hypocenters including LFEs, using first arrival data from the dense seismograph deployment. We manually picked the first arrivals of P- and S- waves from each waveform for about 700 earthquakes including about 20 LFEs observed by the dense array. Then, we applied the TomoDD-code [Zhang and Thurber, 2003] to the arrival data set, adding an accurate double-difference data estimated by a waveform cross-correlation technique. A low velocity (Vp, Vs) layer with high Poisson’s ratio is clearly imaged, and tilts to the northwestward with a low dip angle, which corresponds to the subducting oceanic crust of the Philippine Sea Slab. Although seismicity within the oceanic crust is significantly low, few earthquakes occur within the oceanic crust. The LFEs are linearly aligned along the top surface of the subducting oceanic crust at depths from 30 to 40 km. The Poisson’s ratio within the oceanic crust does not show significant depth-dependent increase beneath the linear alignment of LFEs. This result argues against a depth section of Poisson’s ratio obtained in the SW Japan [Shelly et al., 2006]. Beneath the LFEs, active cluster of slab earthquakes are horizontally distributed. At the depths greater than the slab seismicity, the oceanic crust (low velocity layer with high Poisson’s ratio) rapidly changes to a high velocity layer with low Poisson’s ratio. This transition of the oceanic crust corresponds to the MORB phase transition to amphibolites. Most interestingly, we found out that the long-term slow-slip region shows a high-Vp, but low-Vs values, which led to higher Poisson’s ratio than the surrounding oceanic crust. It is interpreted that the long-term slow-slip could be caused by a fluid-rich subducted ridge undeplated beneath the island arc. Since the Philippine Sea Slab is also subducting beneath the Kanto-region, understanding of the deep transition zone contributes to a study of seismic hazard assessments utilizing MeSO-net (Metropolitan Seismic Observation network in Japan).

  13. Mapping the rheology of the Central Chile subduction zone with aftershocks

    NASA Astrophysics Data System (ADS)

    Frank, William B.; Poli, Piero; Perfettini, Hugo

    2017-06-01

    The postseismic deformation following a large (Mw >7) earthquake is expressed both seismically and aseismically. Recent studies have appealed to a model that suggests that the aseismic slip on the plate interface following the mainshock can be the driving factor in aftershock sequences, reproducing both the geodetic (afterslip) and seismic (aftershocks) observables of postseismic deformation. Exploiting this model, we demonstrate how a dense catalog of aftershocks following the 2015 Mw 8.3 Illapel earthquake in Central Chile can constrain the frictional and rheological properties of the creeping regions of the subduction interface. We first expand the aftershock catalog via a 19 month continuous matched-filter search and highlight the log-time expansion of seismicity following the mainshock, suggestive of afterslip as the main driver of aftershock activity. We then show how the time history of aftershocks can constrain the temporal evolution of afterslip. Finally, we use our dense aftershock catalog to estimate the rate and state rheological parameter (a - b)σ as a function of depth and demonstrate that this low value is compatible either with a nearly velocity-neutral friction (a≈b) in the regions of the megathrust that host afterslip, or an elevated pore fluid pressure (low effective normal stress σ) along the plate interface. Our results present the first snapshot of rheology in depth together with the evolution of the tectonic stressing rate along a plate boundary. The framework described here can be generalized to any tectonic context and provides a novel way to constrain the frictional properties and loading conditions of active faults.

  14. Acoustic Reverse Time Migration of the Cascadia Subduction Zone Dataset

    NASA Astrophysics Data System (ADS)

    Jia, L.; Mallick, S.

    2017-12-01

    Reverse time migration (RTM) is a wave-equation based migration method, which provides more accurate images than ray-based migration methods, especially for the structures in deep areas, making it an effective tool for imaging the subduction plate boundary. In this work, we extend the work of Fortin (2015) and applied acoustic finite-element RTM on the Cascadia Subduction Zone (CSZ) dataset. The dataset was acquired by Cascadia Open-Access Seismic Transects (COAST) program, targeting the megathrust in the central Cascadia subduction zone (Figure 1). The data on a 2D seismic reflection line that crosses the Juan de Fuca/North American subduction boundary off Washington (Line 5) were pre-processed and worked through Kirchhoff prestack depth migration (PSDM). Figure 2 compares the depth image of Line 5 of the CSZ data using Kirchhoff PSDM (top) and RTM (bottom). In both images, the subducting plate is indicated with yellow arrows. Notice that the RTM image is much superior to the PSDM image by several aspects. First, the plate boundary appears to be much more continuous in the RTM image than the PSDM image. Second, the RTM image indicates the subducting plate is relatively smooth on the seaward (west) side between 0-50 km. Within the deformation front of the accretionary prism (50-80 km), the RTM image shows substantial roughness in the subducting plate. These features are not clear in the PSDM image. Third, the RTM image shows a lot of fine structures below the subducting plate which are almost absent in the PSDM image. Finally, the RTM image indicates that the plate is gently dipping within the undeformed sediment (0-50 km) and becomes steeply dipping beyond 50 km as it enters the deformation front of the accretionary prism. Although the same conclusion could be drawn from the discontinuous plate boundary imaged by PSDM, RTM results are far more convincing than the PSDM.

  15. Subduction bottom-to-top: The northeast Caribbean

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.

    2017-12-01

    The Northeast Caribbean provides a prime example for the surficial expression of deep subduction processes and their combined effect on natural hazard. The subducting North American slab, recognized in tomography to depths of hundreds of kilometers, has been moving primarily westward at 2 cm/yr relative to the overlying Caribbean plate throughout most of the Cenozoic. A proposed tear in the slab northeast of Puerto Rico, separating a steeply-dipping slab to the west from less-steep slab to the east, is likely responsible for deep (<125 km) and frequent earthquake swarms. The tear is evidenced by the exceptional depth and low gravity of the trench, Puerto Rico's post-Miocene uplift and trenchward tilting and by the island's trenchward component of modern motion. This modern motion implies low seismic coupling on a mainly strike-slip component of the subduction zone. At Hispaniola, by contrast, large 20th century thrust earthquakes (e.g., in 1946) demonstrate seismic subduction, the trench there is shallow, and strain partitioning is expressed as strike-slip earthquakes onshore (e.g., Haiti in 2010). Slab geometry of the transition between these two subducting segments is unclear, as are the surficial effects of the westward "plowing" of the North American slab through the Caribbean mantle. East and south of the inferred tear, subduction accompanied by volcanism is taking place off the northern Lesser Antilles. Tectonic variability of subduction in the northeast Caribbean is likely responsible for faulting within the overlying plate that have generated large earthquakes and tsunamis in 1867 in the Virgin Islands, and in 1918 off the west coast of Puerto Rico. This variability, however, may limit to a few hundred kilometers, the maximum rupture length along the subduction zone. Extreme-wave deposits at Anegada, British Virgin Islands, may represent a large thrust earthquake east of the tear or a smaller normal earthquake on the trench outer wall. The deep trench likely shields Puerto Rico from tsunamis of remote origin, as shown during the 1755 Lisbon tsunami.

  16. How does Subduction Interface Roughness influence Megathrust Earthquakes: Insights from Natural Data and Analogue Models

    NASA Astrophysics Data System (ADS)

    van Rijsingen, E.; Lallemand, S.; Peyret, M.; Corbi, F.; Funiciello, F.; Arcay, D.; Heuret, A.

    2017-12-01

    The role of subducting oceanic features on the seismogenic behavior of subduction zones has been increasingly addressed over the past years, although their exact relationship remains unclear. Do features like seamounts, fracture zones or submarine ridges act as barriers, prohibiting ruptures to propagate, or do they initiate megathrust earthquakes instead? With this question in mind, we aim to better understand the influence of subduction interface roughness on the location of an earthquake's hypocenter, rupture area and seismic asperity. Following the work on compiling a dual-wavelength subduction interface roughness (SubRough) database, we used this roughness proxy for a global comparison with large subduction earthquakes (MW > 7.5), which occurred since 1900 (SubQuake, new catalogue). We made a quantitative comparison between the earthquake data on the landward side of the trench and the roughness proxy on the seaward side, taking into account the most appropriate direction of roughness extrapolation. Main results show that areas with low roughness at long wavelengths (i.e. 80-100 km) are more prone to host large- to mega-earthquakes. In addition to this natural data study, we perform analogue experiments, which allow us to investigate the role subducting oceanic features play over the course of multiple seismic cycles. The experimental setup consists of a gelatin wedge and an underthrusting rigid aluminum plate (i.e. the analogues of the overriding and downgoing plates, respectively). By adding scaled 3D-printed topographic features (e.g. seamounts) on the downgoing plate, we are able to accurately monitor the initiation and propagation of ruptures with respect to the subducting features. Here we show the results of our natural data study, some preliminary results of the analogue models and our first conclusions on how the subduction interface roughness may influence the seismogenic potential of an area.

  17. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009.

    PubMed

    Beavan, J; Wang, X; Holden, C; Wilson, K; Power, W; Prasetya, G; Bevis, M; Kautoke, R

    2010-08-19

    The Earth's largest earthquakes and tsunamis are usually caused by thrust-faulting earthquakes on the shallow part of the subduction interface between two tectonic plates, where stored elastic energy due to convergence between the plates is rapidly released. The tsunami that devastated the Samoan and northern Tongan islands on 29 September 2009 was preceded by a globally recorded magnitude-8 normal-faulting earthquake in the outer-rise region, where the Pacific plate bends before entering the subduction zone. Preliminary interpretation suggested that this earthquake was the source of the tsunami. Here we show that the outer-rise earthquake was accompanied by a nearly simultaneous rupture of the shallow subduction interface, equivalent to a magnitude-8 earthquake, that also contributed significantly to the tsunami. The subduction interface event was probably a slow earthquake with a rise time of several minutes that triggered the outer-rise event several minutes later. However, we cannot rule out the possibility that the normal fault ruptured first and dynamically triggered the subduction interface event. Our evidence comes from displacements of Global Positioning System stations and modelling of tsunami waves recorded by ocean-bottom pressure sensors, with support from seismic data and tsunami field observations. Evidence of the subduction earthquake in global seismic data is largely hidden because of the earthquake's slow rise time or because its ground motion is disguised by that of the normal-faulting event. Earthquake doublets where subduction interface events trigger large outer-rise earthquakes have been recorded previously, but this is the first well-documented example where the two events occur so closely in time and the triggering event might be a slow earthquake. As well as providing information on strain release mechanisms at subduction zones, earthquakes such as this provide a possible mechanism for the occasional large tsunamis generated at the Tonga subduction zone, where slip between the plates is predominantly aseismic.

  18. Seismic subduction of the Nazca Ridge as shown by the 1996-97 Peru earthquakes

    USGS Publications Warehouse

    Spence, W.; Mendoza, C.; Engdahl, E.R.; Choy, G.L.; Norabuena, E.

    1999-01-01

    By rupturing more than half of the shallow subduction interface of the Nazca Ridge, the great November 12, 1996 Peruvian earthquake contradicts the hypothesis that oceanic ridges subduct aseismically. The mainshock's rupture has a length of about 200 km and has an average slip of about 1.4 m. Its moment is 1.5 x 1028 dyne-cm and the corresponding M(w) is 8.0. The mainshock registered three major episodes of moment release as shown by a finite fault inversion of teleseismically recorded broadband body waves. About 55% of the mainshock's total moment release occurred south of the Nazca Ridge, and the remaining moment release occurred at the southern half of the subduction interface of the Nazca Ridge. The rupture south of the Nazca Ridge was elongated parallel to the ridge axis and extended from a shallow depth to about 65 km depth. Because the axis of the Nazca Ridge is at a high angle to the plate convergence direction, the subducting Nazca Ridge has a large southwards component of motion, 5 cm/yr parallel to the coast. The 900-1200 m relief of the southwards sweeping Nazca Ridge is interpreted to act as a 'rigid indenter,' causing the greatest coupling south of the ridge's leading edge and leading to the large observed slip. The mainshock and aftershock hypocenters were relocated using a new procedure that simultaneously inverts local and teleseismic data. Most aftershocks were within the outline of the Nazca Ridge. A three-month delayed aftershock cluster' occurred at the northern part of the subducting Nazca Ridge. Aftershocks were notably lacking at the zone of greatest moment release, to the south of the Nazca Ridge. However, a lone foreshock at the southern end of this zone, some 140 km downstrike of the mainshock's epicenter, implies that conditions existed for rupture into that zone. The 1996 earthquake ruptured much of the inferred source zone of the M(w) 7.9-8.2 earthquake of 1942, although the latter was a slightly larger earthquake. The rupture zone of the 1996 earthquake is immediately north of the seismic gap left by the great earthquakes (M(w) ~8.8-9.1) of 1868 and 1877. The M(w) 8.0 Antofagasta earthquake of 1995 occurred at the southern end of this great seismic gap. The M(w) 8.2 deep-focus Bolivian earthquake of 1994 occurred directly downdip of the 1868 portion of that gap. The recent occurrence of three significant earthquakes on the periphery of the great seismic gap of the 1868 and 1877 events, among other factors, may signal an increased seismic potential for that zone.

  19. Tectonic evolution and mantle structure of the Caribbean

    NASA Astrophysics Data System (ADS)

    van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus

    2013-06-01

    investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past 45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge, and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an "Intra-Americas origin" and a "Pacific origin" of the Caribbean plate.

  20. Tectonic evolution and mantle structure of the Caribbean

    NASA Astrophysics Data System (ADS)

    Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus

    2013-06-01

    investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge, and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an "Intra-Americas origin" and a "Pacific origin" of the Caribbean plate.

  1. A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano

    2015-04-01

    The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.

  2. Analysis of deep seismic reflection and other data from the southern Washington Cascades. Final report, September 15, 1992--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.

    1993-12-01

    This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that maymore » have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.« less

  3. The intermediate-depth Tonga double-seismic zone and relationship to slab thermal structure

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Wiens, D.; Van Keken, P. E.; Adams, A. N.; Cai, C.

    2015-12-01

    We used data from the ocean bottom seismographs and island-based stations deployed in the Tonga-Fiji area from 2009 to 2010 to investigate the seismicity of the Tonga subducting slab. We relocated 785 events from the Reviewed ISC Bulletin with local array data, 379 newly detected intermediate-depth events, as well as 1976-2012 events with Global Centroid-Moment-Tensor (CMT) solutions. The events were relocated with both local and teleseismic P, pP, and S arrivals using a hypocentroidal decomposition relative location algorithm. The results show a double-seismic zone (DSZ) with a separation of about 30 km along the Tonga slab within a depth range of about 70 - 300 km. The upper plane is more seismically active and characterized by downdip compressional stress whereas the lower plane is characterized by downdip tensional stress, consistent with the slab unbending model. Accordingly, focal mechanisms of the earthquakes along the surface of the slab show downdip extension above the depth of 80 km, but turn to compression below it, coinciding with the change of the slab dip angle from 30˚ to 60˚ at the same depth. The lower limit of the DSZ beneath Tonga is significantly deeper than that in Japan and Mariana (about 200 km), implying the importance of thermal variations in controlling the DSZ. Since the Tonga slab, with the fastest subduction rate, is cooler than other slabs, thermally controlled processes such as dehydration embrittlement can occur at greater depths, resulting in a deeper depth extent of the DSZ.

  4. Understanding Seismotectonic Aspects of Central and South American Subduction Zones

    NASA Astrophysics Data System (ADS)

    Vargas-Jiménez, Carlos A.; Monsalve-Jaramillo, Hugo; Huérfano, Victor

    2004-10-01

    The Circum-Pacific, and particularly the Central and South America, subduction zones are complex structures that are subject to frequent, large-magnitude earthquakes, volcanic activity, tsunamis, and geological hazards. Among these natural hazards, earthquakes produce the most significant social and economic impacts in Latin America, and the subduction zones therefore demand constant vigilance and intensive study. The American continent has witnessed serveral earthquakes that rank among the most destrive in the world. Earthquakes such as the ones that occurred in Colombia-Ecuador [Mw = 8.9, 1906], Chile [Mw = 9.6, 1960; Mw = 8.9, 1995], Mexico [Mw = 9.6, 1985], and Peru [Mw = 8.0, 2001], as well as a number of destuctive events related to crustal fault systems and volcanic eruptions [e.g., Soufrière, El Ruiz, Galeras, ect.], have produced significant human and economic loss.The latent seismic hazards in the Caribbean, and Central and South America demand from the regional Earth sciences community accurate models to explain the mechanisms of these natural phenomena.

  5. Slab-plume interaction beneath the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Obrebski, Mathias; Allen, Richard M.; Xue, Mei; Hung, Shu-Huei

    2010-07-01

    The Pacific Northwest has undergone complex plate reorganization and intense tectono-volcanic activity to the east during the Cenozoic (last 65 Ma). Here we show new high-resolution tomographic images obtained using shear and compressional data from the ongoing USArray deployment that demonstrate first that there is a continuous, whole-mantle plume beneath the Yellowstone Snake River Plain (YSRP) and second, that the subducting Juan de Fuca (JdF) slab is fragmented and even absent beneath Oregon. The analysis of the geometry of our tomographic models suggests that the arrival and emplacement of the large Yellowstone plume had a substantial impact on the nearby Cascadia subduction zone, promoting the tearing and weakening of the JdF slab. This interpretation also explains several intriguing geophysical properties of the Cascadia trench that contrast with most other subduction zones, such as the absence of deep seismicity and the trench-normal fast direction of mantle anisotropy. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu.

  6. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    PubMed

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  7. InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Peterson, K.; Barnhart, W. D.

    2017-12-01

    On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest surface displacements are characterized by dominantly fault- parallel displacements, indicating that post-seismic deformation in the observed time period following the 2013 earthquake likely cannot account for the 4-6 m convergence deficit left by that earthquake.

  8. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  9. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  10. Numerical modeling of the deformations associated with large subduction earthquakes through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Fleitout, L.; Trubienko, O.; Garaud, J.; Vigny, C.; Cailletaud, G.; Simons, W. J.; Satirapod, C.; Shestakov, N.

    2012-12-01

    A 3D finite element code (Zebulon-Zset) is used to model deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes: Sumatra, Japan and Chile. The mesh featuring a broad spherical shell portion with a viscoelastic asthenosphere is refined close to the subduction zones. The model is constrained by 6 years of postseismic data in Sumatra area and over a year of data for Japan and Chile plus preseismic data in the three areas. The coseismic displacements on the subduction plane are inverted from the coseismic displacements using the finite element program and provide the initial stresses. The predicted horizontal postseismic displacements depend upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. Non-dimensionalized by the coseismic displacements, they present an almost uniform value between 500km and 1500km from the trench for elastic plates 80km thick. The time evolution of the velocities is function of the creep law (Maxwell, Burger or power-law creep). Moreover, the forward models predict a sizable far-field subsidence, also with a spatial distribution which varies with the geometry of the asthenosphere and lithosphere. Slip on the subduction interface does not induce such a subsidence. The observed horizontal velocities, divided by the coseismic displacement, present a similar pattern as function of time and distance from trench for the three areas, indicative of similar lithospheric and asthenospheric thicknesses and asthenospheric viscosity. This pattern cannot be fitted with power-law creep in the asthenosphere but indicates a lithosphere 60 to 90km thick and an asthenosphere of thickness of the order of 100km with a burger rheology represented by a Kelvin-Voigt element with a viscosity of 3.1018Pas and μKelvin=μelastic/3. A second Kelvin-Voigt element with very limited amplitude may explain some characteristics of the short time-scale signal. The postseismic subsidence is conspicuous over Thailand and Malaysia (Satirapod et al., ASR, 2012). A low viscosity wedge, with a viscosity of the order of 3. 1018 Pas is necessary to explain data in the middle-field (volcanic arc area). Post-seismic slip on the fault plane (15% of the cosismic slip) in the months after the earthquakes explains near-field deformations. The creep law and geometry deduced from postseismic data can be used to predict deformations through the seismic cycle. Far away (500 to 1500km) sizable (5mm/yr to 1cm/yr) interseismic horizontal velocities are expected. Although one should not deny the presence of long-term intraplate geologic deformations, the seismic cycle contributes significantly to the intraplate compressive preseismic deformations in the Sunda and Amurian plates. The interseismic peak in vertical velocity, predicted by elastic backslip models over the end of the locked portion of the interface can be, in viscoelastic models, pushed over the continentward border of the LVW. This may explain the pattern of vertical velocities in Northern Honshu previous to Tohoku earthquake. The deviatoric stresses associated with the seismic cycle add up to the long-term tectonic stresses and are predicted to induce a peak in extensional stress in the subducting and overriding plates with a time delay which increases with the distance to the subduction zone.

  11. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  12. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  13. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    NASA Astrophysics Data System (ADS)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  14. Geodetic insights on the post-seismic transients from the Andaman Nicobar region: 2005-2013

    NASA Astrophysics Data System (ADS)

    Earnest, A.; Vijayan, M.; Jade, S.; Krishnan, R.; Sringeri, S. T.

    2013-12-01

    The 2004 Mw 9.2 Sumatra-Andaman mega-thrust rupture broke the whole 1300 km long fore-arc sliver boundary of the Indo- Burmese collision. Earlier events of 1679 (M~7.5), 1941 (M 7.7), 1881 (M~7.9) and 2002 (Mw 7.3) generated spatially restricted ruptures along this margin. GPS based geodetic measurements of post-seismic deformation following the 2004 M9.2 Sumatra-Andaman earthquake gives insights on the spatio-temporal evolution of transient tectonic deformation happening at the Suda-Andaman margin. This work encompasses the near-field geodetic data collected from the Andaman-Nicobar Islands and far-field CGPS site data available from SUGAR, UNAVCO and IGS from 2005-2013. Precise geodetic data analysis shows that the GPS benchmarks in the Andaman-Nicobar region moved immediately after 2004 event towards the sea-ward trench in the SW direction, following very much the co-seismic offset directions. This can be possibly because of the continued predominant after-slip occurrence around the 2004 rupture zone due to the velocity-strengthening behavior at the downdip segments of the rupture zone. Lately a progressive reversal of motion direction away from the oceanic trench (and the co-seismic offset direction) of the coastal and inland GPS sites of Andaman-Nicobar Islands are observed. The site displacement transients shows a rotation of the displacement vector moving from south-west to north. Spatio-temporal analysis of the earthquakes show dense shallow seismicity in the back-arc region, normal and thrust faulting activity towards the trench. The hypo-central distribution highlights the shallow subduction at the northern segment, which becomes steeper and deeper to the south. The stress distribution, inferred from the P and T-axes of earthquake faulting mechanisms, represents the compressional fore-arc and extensional back-arc stress regimes. Our analysis results will be discussed in detail by integrating the kinematics and seismo-tectonic evolution of this subducting margin for the post-seismic period from 2005 - 2013.

  15. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, Uri S.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.

  16. Horizontal mantle flow controls subduction dynamics.

    PubMed

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  17. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Kirsch, Josephine; Oncken, Onno; Glodny, Johannes; Monié, Patrick; Rybacki, Erik

    2015-06-01

    The transition zone at the downdip end of seismic coupling along subduction interfaces is often the site of megathrust earthquake nucleation and concentrated postseismic afterslip, as well as the focus site of episodic tremor and slip features. Exhumed remnants of the former Alpine subduction zone found in the Swiss Alps allow analyzing fluid and deformation processes near the transition zone region (30-40 km paleodepth). The Dent Blanche Thrust (DBT) is a lower blueschist-facies shear zone interpreted as a fossilized subduction interface where granitic mylonites overlie a metamorphosed accretionary wedge. We report field observations from the DBT region where multiple, several tens of meters thick foliated cataclastic networks are interlayered within the basal DBT mylonites. Petrological results and microstructural observations indicate that the various cataclasis events took place at near-peak metamorphic conditions (400-500°C, 1.1-1.3 GPa) during subduction of the Tethyan seafloor in Eocene times (42-48 Ma). Some of these networks exhibit mutual crosscutting relationships between mylonites, foliated cataclasites, and vein systems indicating mutual overprinting between brittle deformation and ductile creep. Whole-rock chemical compositions, in situ 40Ar-39Ar age data of recrystallized phengite, and Sr isotopic signatures reveal that DBT rocks also underwent multiple hydrofracturing and metasomatic events via the infiltration of fluids mainly derived from the oceanic metasediments underneath the DBT. From the rock fabrics, we infer strain rate fluctuations of several orders of magnitude beyond subduction strain rates (˜10-12 s-1) accompanied by fluctuation of supralithostatic and quasi-lithostatic fluid pressures (1 ≥ λ > 0.95). DBT brittle-plastic deformation switches highlight the diversity of deformation processes and fluid-rock interactions in the transition zone region of the subduction interface.

  18. Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)

    NASA Astrophysics Data System (ADS)

    Selva, J.; Tonini, R.; Molinari, I.; Tiberti, M. M.; Romano, F.; Grezio, A.; Melini, D.; Piatanesi, A.; Basili, R.; Lorito, S.

    2016-06-01

    We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.

  19. Seismicity of the Earth 1900–2010 Australia plate and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Australia plate and vicinity not presented in Tarr and others (2010). The boundary of the Australia plate includes all fundamental plate boundary components: mid-ocean ridges, subduction zones, arc-continent collisions, and large-offset transform faults. Along the southern edge of the plate the mid-ocean ridge separates the Australia and Antarctica plates and its behavior is straightforward. In contrast, the other boundary segments that ring the Australia plate represent some of the most seismically active elements of the global plate boundary system, and some of the most rapidly evolving plate interactions. As a result, there are some very complex structures which host many large and great earthquakes

  20. Seismicity and deep structure of the Indo-Burman plate margin

    NASA Astrophysics Data System (ADS)

    Vaněk, J.; Hanuš, V.; Sitaram, M. V. D.

    Two differently inclined segments of the Wadati-Benioff zone beneath the Chin Hills and Naga Hills segments of the Indo-Burman Ranges were verified on the basis of the geometrical analysis of distribution of 566 earthquakes. The Wadati-Benioff zone and young calc-alkaline volcanism point to the existence of a Mio-Pliocene subduction with the trench at the western boundary of the Oligocene Indo-Burman orogenic belt. A system of ten seismically active fracture zones was delineated in the adjacent Indian and Burman plates, the tectonic pattern of which represents the eastern manifestation of the continental collision of the Indian and Eurasian plates. The position of historical disastrous earthquakes confirms the reality of this pattern.

Top