Sample records for seismometers

  1. Next Generation Qualification: Kinemetrics STS-5A Seismometer Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion John; Slad, George William

    2017-10-01

    Sandia National Laboratories has tested and evaluated two seismometers, the STS-5A, manufactured by Kinemetrics. These seismometers measure three axes of broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self-noise, dynamic range, and self-calibration ability. The Kinemetrics STS-5A seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  2. Next Generation Qualification: Nanometrics T120PH Seismometer Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Slad, George William

    2017-10-01

    Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  3. Initial observations from seismometers frozen into a borehole through the McMurdo Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Prior, David; Eccles, Jennifer; Cooper, Joanna; Craw, Lisa; van Haastrecht, Laurine; Hamish Bowman, M.; Stevens, Craig; Gamble Rosevear, Madi; Hulbe, Christina; Gorman, Andrew; Horgan, Huw; Pyne, Alex

    2017-04-01

    A seismometer cable with two, three-component seismometers was frozen into a hot water borehole through the McMurdo Ice Shelf at Windless Bight in late December 2016. The seismometers are at 39m and 189m depth. The upper seismometer lies just below the firn-ice transition ( 37m) and very close to sea level ( 38m). The lower seismometer is positioned 30m above the base of the ice shelf ( 222m). The seismometers froze in within 40 (upper) to 60 (lower) hours of the last reaming operation. The temperature evolution during freezing is complicated, particularly for the lower seismometer. The complications are interpreted as the result of brine expulsion and brine pocket migration. We conducted an active source experiment using the frozen-in seismometers together with a surface seismometer and four lines of geophones radiating from the borehole, at 45-degree angles, to a distance of 240m. Sources included a traditional hammer and surface plate, two types of hammer activated surface shear wave sources (for hard and soft surfaces) and a hammer activated borehole source. The frozen-in seismometers show excellent separation of P - wave and S - wave arrivals for all sources, particularly on the lower seismometer. The surface shear sources give clearer separation of arrivals on the vertical and horizontal components. For some source to receiver geometries the surface shear sources give no P - wave arrival on the horizontal seismometer components and a very strong S - wave arrival that is partitioned between the horizontal components in correspondence with the source orientation. The borehole source (at 3 to 10m in the firn) also gives clearer separation of P - wave and S - wave arrivals compared to a surface hammer and plate. The frozen-in seismometers were also used to listen for natural events in the ice. Comparing the same events recorded at the surface and at depth, the latter are much less noisy than the former, leading to more clear interpretation. As in the active source experiments, P-wave and S-wave arrivals are clear and the partitioning onto different components (vertical and horizontal) is very clear. Using seismology to interpret the physical properties of ice masses is dependent on quality data. The patterns of anisotropy related to ice crystallographic preferred orientations (CPOs) are particularly rich for S - waves and the ability to measure S - wave velocities and shear wave splitting is of particular importance in using seismology to constrain CPOs. Our initial observations suggest that seismometers frozen-in at depth, together with artificial sources with controlled shear wave kinematics have great potential to help us constrain ice CPOs and resultant plastic anisotropy through seismic data.

  4. Frequency band enlargement of the penetrator seismometer and its application to moonquake observation

    NASA Astrophysics Data System (ADS)

    Yamada, Ryuhei; Nébut, Tanguy; Shiraishi, Hiroaki; Lognonné, Philippe; Kobayashi, Naoki; Tanaka, Satoshi

    2015-07-01

    Seismic data obtained over a broad frequency range are very useful in investigation of the internal structures of the Earth and other planetary bodies. However, planetary seismic data acquired through the NASA Apollo and Viking programs were obtained only over a very limited frequency range. To obtain effective seismic data over a broader frequency range on planetary surfaces, broadband seismometers suitable for planetary seismology must be developed. In this study, we have designed a new broadband seismometer based on a short-period seismometer whose resonant frequency is 1 Hz for future geophysical missions. The seismometer is of an electromagnetic type, light weight, small size and has good shock-durability, making it suitable for being loaded onto a penetrator, which is a small, hard-landing probe developed in the LUNAR-A Project, a previous canceled mission. We modified the short-period seismometer so as to have a flat frequency response above about 0.1 Hz and the detection limit could be lowered to cover frequencies below the frequency. This enlargement of the frequency band will allow us to investigate moonquakes for lower frequency components in which waveforms are less distorted because strong scattering due to fractured structures near the lunar surface is likely to be suppressed. The modification was achieved simply by connecting a feedback circuit to the seismometer, without making any mechanical changes to the short-period sensor. We have confirmed that the broadband seismometer exhibits the frequency response as designed and allows us to observe long-period components of small ground motions. Methods to improve the performance of the broadband seismometer from the current design are also discussed. These developments should promise to increase the opportunity for application of this small and tough seismometer in various planetary seismological missions.

  5. The precision seismometer based on planar electrochemical transducer

    NASA Astrophysics Data System (ADS)

    Shabalina, A. S.; Krishtop, V. G.

    2016-12-01

    In this paper we investigate the possibility of applying a planar electrochemical trancducer (ECT) as a sensing element for a precision seismometer with a high inertial mass. The precision seismometer based on simplest planar ECT was manufactured and tested. We investigated the amplitude-frequency and volt-ampere characteristics, self-noise level and the transducer's impedance frequency dependence. One of the key characteristics for the seismometer is the intrinsic noise level, this work focuses on the self-noise level.

  6. Laboratory and field testing of commercial rotational seismometers

    USGS Publications Warehouse

    Nigbor, R.L.; Evans, J.R.; Hutt, C.R.

    2009-01-01

    There are a small number of commercially available sensors to measure rotational motion in the frequency and amplitude ranges appropriate for earthquake motions on the ground and in structures. However, the performance of these rotational seismometers has not been rigorously and independently tested and characterized for earthquake monitoring purposes as is done for translational strong- and weak-motion seismometers. Quantities such as sensitivity, frequency response, resolution, and linearity are needed for the understanding of recorded rotational data. To address this need, we, with assistance from colleagues in the United States and Taiwan, have been developing performance test methodologies and equipment for rotational seismometers. In this article the performance testing methodologies are applied to samples of a commonly used commercial rotational seismometer, the eentec model R-1. Several examples were obtained for various test sequences in 2006, 2007, and 2008. Performance testing of these sensors consisted of measuring: (1) sensitivity and frequency response; (2) clip level; (3) self noise and resolution; and (4) cross-axis sensitivity, both rotational and translational. These sensor-specific results will assist in understanding the performance envelope of the R-1 rotational seismometer, and the test methodologies can be applied to other rotational seismometers.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slad, George William; Merchant, Bion J.

    The Seismo - Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production seismometers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the seismometers is being conducted at the Pinon Flats Observatory (PFO) , supervised by Sandia National Laboratories, U.S Navy, and RP Kromer Consulting. SNL will conduct evaluation of the collected seismometer data and comment on the performance of the seismometers.

  8. Shear Wave Velocity, Depth to Bedrock, and Fundamental Resonance Applied to Bedrock Mapping using MASW and H/V Analysis

    NASA Astrophysics Data System (ADS)

    Gonsiewski, J.

    2015-12-01

    Mapping bedrock depth is useful for earthquake hazard analysis, subsurface water transport, and other applications. Recently, collaborative experimentation provided an opportunity to explore a mapping method. Near surface glacial till shear wave velocity (Vs) where data is available from an array of 3-component seismometers were studied for this experiment. Vs is related to depth to bedrock (h) and fundamental resonance (Fo); Fo = Vs/(4h). The H/V spectral peak frequency of recordings from a 3-component seismometer yields a fundamental resonance estimate. Where a suitable average Vs is established, the depth to bedrock can be calculated at every seismometer. 3-component seismometer data was provided by Spectraseis. Geophones, seismographs, and an extra 3-component seismometer were provided by Wright State University for this study. For Vs analysis, three MASW surveys were conducted near the seismometer array. SurfSeis3© was used for processing MASW data. Overtones from complicated bedrock structure and great bedrock depth are improved by combining overtones from multiple source offsets from each survey. From MASW Vs and depth to bedrock results, theoretical fundamental resonance (Fo) was calculated and compared with the H/V peak spectral frequency measured by a seismometer at selected sites and processed by Geopsy processing software. Calculated bedrock depths from all geophysical data were compared with measured bedrock depths at nearby water wells and oil and gas wells provided by ODNR. Vs and depth to bedrock results from MASW produced similar calculated fundamental resonances to the H/V approximations by respective seismometers. Bedrock mapping was performed upon verifying the correlation between the theoretical fundamental resonance and H/V peak frequencies. Contour maps were generated using ArcGIS®. Contour lines interpolated from local wells were compared with the depths calculated from H/V analysis. Bedrock depths calculated from the seismometer array correlate with the major trends indicated by the surrounding wells. A final contour map was developed from depth to bedrock measured by all wells and depths calculated from the average Vs and estimated resonance at select Spectraseis 3-component seismometers.

  9. Optimism Experiment and Development of Space-qualified Seismometers in France

    NASA Technical Reports Server (NTRS)

    Lognonne, P.; Karczewski, J. F.

    1993-01-01

    The OPTIMISM experiment will put two magnetometers and two seismometers on the Martian floor in 1995, within the framework of the Mars '94 mission. The seismometers are put within the two small surface stations. The seismometer sensitivity will be better than 10 exp -9 g at 1 Hz, 2 orders of magnitude higher than the Viking seismometer sensitivity. A priori waveform modeling for seismic signals on Mars shows that it will be sufficient to detect quakes with a seismic moment greater than 10 exp 15 Nm everywhere on Mars. Such events, according to the hypothesis of a thermoelastic cooling of the Martian lithosphere, are expected to occur at a rate close to one per week and may therefore be observed within the l-year lifetime of the experiment. Other aspects of the experiment are discussed.

  10. Seismic Characterization Study of the Advanced Inertial Test Laboratory (AITL) Report

    DTIC Science & Technology

    2008-12-08

    with different sensitivities and bandwidths, were used in this study. One was the model KS-2000 seismometer manufacture by Geotech . It was a single...the same for all the seismometers; some were as low as 40 Hz. The second model was a Geotech S-510. It is a single axis seismometer with an

  11. Micromechanisms for optimism seismometer

    NASA Technical Reports Server (NTRS)

    Paulin, Nicolas; Dumas, Pierre; Pochard, Marc

    1995-01-01

    Within the framework of the Mars 94 mission, it was decided to design and build a new vertical axis seismometer in order to continuously record the seismic events occurring on the Mars planet. The mission requirements lead to very stringent constraints on power, volume, mass and shock resistance at the landing. The seismometer must be capable of automatic leveling and automatic fitting to the local gravity. This paper deals with the mechanisms designed for this seismometer. Due to the short allotted time for its development and low cost, the baseline was to apply the rules of spatial tribology and, when it was possible, to customize existing components for space applications.

  12. Broadband FBG resonator seismometer: principle, key technique, self-noise, and seismic response analysis.

    PubMed

    Huang, Wenzhu; Zhang, Wentao; Luo, Yingbo; Li, Li; Liu, Wenyi; Li, Fang

    2018-04-16

    A broadband optical fiber seismometer based on FBG resonator is proposed for earthquake monitoring. The principle and key technique, high-resolution ultralow-frequency wavelength interrogation by dual-laser swept frequency and beat frequency method, are discussed and analyzed. From the simulation and test results, the seismometer works at broadband range from 0.01 Hz to 10 Hz with a sensitivity of better than 330 pm/g and the wavelength resolution of the interrogation system is better than 0.001 pm/√Hz from 0.1 Hz to 10 Hz. A three-channel correlation method is used to measure the self-noise of the seismometer. It reaches a noise level of 2.7 × 10 -7 ms -2 /√Hz@0.1 Hz, which is lower than the earth's background noise (the new high noise model, NHNM). An earthquake monitoring experiment is conducted in a low noise seismic station. The recorded seismic waves are analyzed, which suggests that the proposed seismometer has the ability to record the close microearthquake and distant great earthquake with a high signal-noise ratio (SNR). This is the first time that a FBG-based middle-long period seismometer with lower self-noise than NHNM and large dynamic range (100 dB) is reported.

  13. Effects of thermal variability on broadband seismometers: Controlled experiments, observations, and implications

    USGS Publications Warehouse

    Doody, Claire; Ringler, Adam; Anthony, Robert E.; Wilson, David; Holland, Austin; Hutt, Charles R.; Sandoval, Leo

    2017-01-01

    Isolating seismic instruments from temperature fluctuations is routine practice within the seismological community. However, the necessary degree of thermal stability required in broadband installations to avoid generating noise or compromising the fidelity in the seismic records is largely unknown and likely application dependent. To quantify the temperature sensitivity of seismometers over a broad range of frequencies, we artificially induced local temperature changes on three different models of seismometers to measure the effect of thermal variations on seismometer output. We found that diurnal temperature changes above 0.002°C root mean square (rms) showed significant changes in velocity and acceleration output in comparison to thermally stable reference measurements. We also found that sensor incoherent self‐noise increased with temperature variation; these increases in noise can be modeled as 1/f">1/f noise (pink noise), and are unlikely to be easily corrected for. These experimental results are compared with the data from Incorporated Research Institutions for Seismology (IRIS) U.S. Geological Survey (USGS) Global Seismographic Network (GSN) station TUC (Tucson, Arizona). This station is well instrumented with temperature sensors and has three different broadband seismometers, each of which uses a different method of thermal isolation. We show that the water bricks and borehole installations give ample temperature attenuation to thermally isolate seismometers from diurnal thermal variability that would compromise seismic data. We find that seismometer installations that provide thermal stability below 0.002°C rms could help to improve long‐period vertical seismic data across the GSN by decreasing temperature‐driven 1/f">1/f noise.

  14. Measurement of seismometer orientation using the tangential P-wave receiver function based on harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Lim, Hobin; Kim, YoungHee; Song, Teh-Ru Alex; Shen, Xuzhang

    2018-03-01

    Accurate determination of the seismometer orientation is a prerequisite for seismic studies including, but not limited to seismic anisotropy. While borehole seismometers on land produce seismic waveform data somewhat free of human-induced noise, they might have a drawback of an uncertain orientation. This study calculates a harmonic decomposition of teleseismic receiver functions from the P and PP phases and determines the orientation of a seismometer by minimizing a constant term in a harmonic expansion of tangential receiver functions in backazimuth near and at 0 s. This method normalizes the effect of seismic sources and determines the orientation of a seismometer without having to assume for an isotropic medium. Compared to the method of minimizing the amplitudes of a mean of the tangential receiver functions near and at 0 s, the method yields more accurate orientations in cases where the backazimuthal coverage of earthquake sources (even in the case of ocean bottom seismometers) is uneven and incomplete. We apply this method to data from the Korean seismic network (52 broad-band velocity seismometers, 30 of which are borehole sensors) to estimate the sensor orientation in the period of 2005-2016. We also track temporal changes in the sensor orientation through the change in the polarity and the amplitude of the tangential receiver function. Six borehole stations are confirmed to experience a significant orientation change (10°-180°) over the period of 10 yr. We demonstrate the usefulness of our method by estimating the orientation of ocean bottom sensors, which are known to have high noise level during the relatively short deployment period.

  15. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  16. Design and development of an interferometric readout for planetary seismometers.

    NASA Astrophysics Data System (ADS)

    Fayon, L.; Lognonne, P. H.; Halloin, H.

    2016-12-01

    Seismometers are now likely to be placed on other planets. Indeed, 3 Very Broad Band seismometers (VBB) will land on Mars in 2018 (NASA InSight mission) and new projects are considered for a seismic return on the Moon. The Apollo seismometers had at 0.5Hz a resolution of about 0.5Å in ground displacement but were however unable to detect the Lunar ground seismic noise, which has been estimated to be about 1/100 of their resolution at this frequency and is possibly due to the meteoritic hum, e.g. continuous fall of micro-meteorites (Lognonné et al., 2009). Core seismic phases, although detected through stacking, have not also been individually recorded (Weber et al, 2011, Garcia et al., 2011). New generation of broadband seismometers, 100 to 1000 times more sensitive than the Apollo are therefore requested in order to reach this seismic noise floor, in order to take benefit of all the seismic waves generated by the Moon seismic activity. The core of such seismometer will be the proof mass displacement sensors, with extreme improvement in performances, linearity and noise level. We develop such a prototype, based on the use of gravitational waves detectors' technology which are the reference in term of interferometric measurements at low frequency and very low noise levels. The objective is to improve the sensitivity by 2 orders of magnitude compared to the current seismometers performances (e.g. 4pm/√Hz at 1Hz for InSight VBBs) and to reach sensitivities below 50 fm/√Hz at 1Hz). This prototype is based on the Pound-Drever-Hall laser frequency stabilization technique. The principle of the measurement is shown, as well as the implementation considerations.

  17. Effects of Thermal Variability on Broadband Seismometers: Controlled Experiments, Observations, and Implications

    NASA Astrophysics Data System (ADS)

    Doody, C.; Ringler, A. T.; Anthony, R. E.; Wilson, D.; Holland, A. A.; Hutt, C. R.; Sandoval, L. D.

    2017-12-01

    Although taking steps to isolate seismic instruments from temperature fluctuations is routine practice within the seismological community, the necessary level of thermal stability required in a broadband installation to avoid generating noise is largely unknown. In order to quantify the temperature sensitivity of seismometers over a broad range of frequencies, we artificially induced local temperature changes on three different models of seismometers to empirically measure the effect of thermal variations on seismometer output. We found that temperature changes above 0.002˚C per day show upwards of 10% change in broadband seismometer amplitude when compared to thermally stable reference measurements. We also find that rises in sensor incoherent self-noise increase with temperature variation; these increases in noise can be modeled as 1/f noise (pink noise). While seismometer output changes that correlate with temperature changes are likely correctable, this increase in 1/f noise is unlikely to be easily corrected for. These experimental results are also compared to data from Global Seismographic Network (GSN)-IRIS/USGS network station TUC (Tucson, Arizona) which is well instrumented with temperature sensors, as well as three different broadband sensors, each of which uses a different method of thermal isolation (i.e. Styrofoam box, 1.2m posthole within the pier, and water bricks). We show that isolating sensors with water bricks, as well as posthole and borehole installations, thermally isolate sensors well enough to remove any thermal variability that would affect their output. We find that better seismometer installations which provide thermal stability below 0.002 ˚C per day could help to improve long-period vertical seismic data across the GSN by decreasing temperature-driven 1/f noise.

  18. Revision of IRIS/IDA Seismic Station Metadata

    NASA Astrophysics Data System (ADS)

    Xu, W.; Davis, P.; Auerbach, D.; Klimczak, E.

    2017-12-01

    Trustworthy data quality assurance has always been one of the goals of seismic network operators and data management centers. This task is considerably complex and evolving due to the huge quantities as well as the rapidly changing characteristics and complexities of seismic data. Published metadata usually reflect instrument response characteristics and their accuracies, which includes zero frequency sensitivity for both seismometer and data logger as well as other, frequency-dependent elements. In this work, we are mainly focused studying the variation of the seismometer sensitivity with time of IRIS/IDA seismic recording systems with a goal to improve the metadata accuracy for the history of the network. There are several ways to measure the accuracy of seismometer sensitivity for the seismic stations in service. An effective practice recently developed is to collocate a reference seismometer in proximity to verify the in-situ sensors' calibration. For those stations with a secondary broadband seismometer, IRIS' MUSTANG metric computation system introduced a transfer function metric to reflect two sensors' gain ratios in the microseism frequency band. In addition, a simulation approach based on M2 tidal measurements has been proposed and proven to be effective. In this work, we compare and analyze the results from three different methods, and concluded that the collocated-sensor method is most stable and reliable with the minimum uncertainties all the time. However, for epochs without both the collocated sensor and secondary seismometer, we rely on the analysis results from tide method. For the data since 1992 on IDA stations, we computed over 600 revised seismometer sensitivities for all the IRIS/IDA network calibration epochs. Hopefully further revision procedures will help to guarantee that the data is accurately reflected by the metadata of these stations.

  19. A New Design of Seismic Stations Deployed in South Tyrol

    NASA Astrophysics Data System (ADS)

    Melichar, P.; Horn, N.

    2007-05-01

    When designing the seismic network in South Tyrol, the seismic service of Austria and the Civil defense in South Tyrol combined more that 10 years experience in running seismic networks and private communication systems. In recent years the high data return rate of > 99% and network uptime of > 99.% is achieved by the combination of high quality station design and equipment, and the use of the Antelope data acquisition and processing software which comes with suite of network monitoring & alerting tools including Nagios, etc. The new Data Center is located in city of Bolzano and is connected to the other Data Centers in Austria, Switzerland, and Italy for data back up purposes. Each Data Center uses also redundant communication system if the primary system fails. When designing the South Tyrol network, new improvements were made in seismometer installations, grounding, lighting protection and data communications in order to improve quality of data recorded as well as network up-time, and data return. The new 12 stations are equipped with 6 Channels Q330+PB14f connected to STS2 + EpiSensor sensor. One of the key achievements was made in the grounding concept for the whole seismic station - and aluminum boxes were introduced which delivered Faraday cage isolation. Lightning protection devices are used for the equipment inside the aluminum housing where seismometer and data logger are housed. For the seismometer cables a special shielding was introduced. The broadband seismometer and strong-motion sensor are placed on a thick glass plate and therefore isolated from the ground. The precise seismometer orientation was done by a special groove on the glass plate and in case of a strong earthquake; the seismometer is tide up to the base plate. Temperature stability was achieved by styrofoam sheets inside the seismometer aluminum protection box.

  20. Seismometer reading viewed in ALSEP Room in Misson Control during Apollo 17

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seismometer readings from the impact made by the Apollo 17 Saturn S-IVB stage when it struck the lunar surface are viewed in the ALSEP Room in the Misson Control Center at Houston by Dr. Maurice Ewing, professor of geophysics of the Universtiy of Texas at Galveston. The seismic tracings are from sensings made by seismometers of Apollo Lunar Surface Experiments Packages left on the Moon during earlier Apollo lunar landing missions.

  1. Seismic switch for strong motion measurement

    DOEpatents

    Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  2. Seismic switch for strong motion measurement

    DOEpatents

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  3. Extending a Lippmann style seismometer's dynamic range by using a non-linear feedback circuit

    NASA Astrophysics Data System (ADS)

    Romeo, Giovanni; Spinelli, Giuseppe

    2013-04-01

    A Lippmann style seismometer uses a single-coil velocity-feedback method in order to extend toward lower frequencies a geophone's frequency response. Strong seismic signals may saturate the electronics, sometimes producing a characteristic whale-shaped recording. Adding a non linear feedback in the electronic circuit may avoid saturation, allowing the strong-motion use of the seismometer without affecting the usual performance. We show results from both simulations and experiments, using a Teledyne Geotech s13 as a mechanical part.

  4. Real-Time Seismic Data from the Bottom Sea

    PubMed Central

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-01-01

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network. PMID:29642479

  5. Real-Time Seismic Data from the Bottom Sea.

    PubMed

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Del Río, Joaquin; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-04-08

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  6. Dr. Garry Latham - Seismometer Tracings Study - Moon - MSC

    NASA Image and Video Library

    1969-07-22

    S69-39588 (20 July 1969) --- Dr. Garry Latham, with the Lamont Geological Observatory, studies seismometer tracings in the Mission Control Center?s ASEP control room. The electronic data was coming from the Passive Seismic Experiments Package which the Apollo 11 astronauts had just deployed on the surface of the moon. Dr. Lamont is the principal investigator for the PSEP, a component of the Early Apollo Scientific Experiments Package (EASEP). PSEP uses three long-period seismometers and one short-period vertical seismometer for measuring meteoroid impacts and moonquakes. Such data will be useful in determining the interior structure of the moon; for example, does the moon have a core and mantle like Earth? Here, the center trace shows evidence of activity on the moon. The PSEP was sensitive enough to pick up the footsteps of astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. as they walked on the moon.

  7. Dr. Garry Latham studies seismometer tracings from the moon

    NASA Image and Video Library

    1969-07-22

    S69-39587 (20 July 1969) --- Dr. Garry Latham (left) with the Lamont Geological Observatory, studies seismometer tracings in the Mission Control Center's (MCC) ALSEP control room. The electronic data was coming from the Passive Seismic Experiments Package (PSEP) which the Apollo 11 astronauts had just deployed on the surface of the moon. Dr. Lamont is the principal investigator for the PSEP, a component of the Early Apollo Scientific Experiments Package (EASEP). PSEP uses three long-period seismometers and one short-period vertical seismometer for measuring meteoroid impacts and moonquakes. Such data will be useful in determining the interior structure of the moon; for example, does the moon have a core and mantle like Earth? Here, the flapping of the PSEP's solar panels is picked up and registered as a tracing. The PSEP was sensitive enough to pick up the footsteps of astronauts Neil A. Armstrong and Edwin E. Aldrin Jr., as they walked on the moon.

  8. Housing a Raspberry Pi Connected AS-1 Seismometer in a Solar-Paneled Shed

    NASA Astrophysics Data System (ADS)

    Marton, F.; Tokman, T. L.; Echreshzadeh, M.; Palaric, K. D.; Filippone, N. V.; Sivo, J.

    2016-12-01

    Last year, students working on the SeismoSTEM project at Bergen Community College successfully manufactured and assembled an AS-1 seismometer1. However, issues students encountered were not knowing where to place the TC-1 and AS-1 seismometers, nor how to configure the instruments with a computer for monitoring and measuring earthquakes. Our solution was to purchase a Raspberry Pi 3 model B, which has four USB ports and a Wi-Fi adapter. We then installed the Raspbian operating system that can run jAmaSeis, which allows for the collection and analysis of seismic data. In terms of the shed that was constructed last summer2, we installed roof shingles, as well as a ventilation system to prevent overheating. The seismometers will then be placed on a concrete slab. In the future, we plan on applying a wood varnish around the exterior of the shed, as well as gravel around the shed for water drainage as well as to make it more visually appealing. Moreover, we plan on mounting a 170-W solar panel on the roof to charge a 12-V deep cycle marine battery, which will provide electricity to the system. References: 1Tokman, T.L. et al., What's shaking? Manufacturing & assembling an AS-1 educational seismometer for undergraduate stem research, Geological Society of America Abstracts with Programs. Vol. 47, No. 7, p.524, 2015. 2Palaric, K.D., et al., Constructing a solar-powered seismic station for educational seismometers, Geological Society of America Abstracts with Programs. Vol. 47, No. 7, p.524, 2015.

  9. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  10. Brady's Geothermal Field Nodal Seismometers Metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesley Parker

    Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.

  11. Development, Manufacturing, and Preparation for Serial Production of Low Noise Seismometers Final Report CRADA No. TC02096.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergino, E. S.; Passmore, P. R.

    2012-01-23

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Refraction Technology, Inc. (REF TEK), to collaborate on the development of a broadband, competitive low-noise seismometer, rugged and easy to use for field deployments. The work involved collaborative work between LLNL, REF TEK and a group led by Federal State Unitary Enterprise, Research Institute of Pulse Technique (RIPT), Moscow, Russia. The proposed work focused on bringing an improved version of the Russian SDSE seismometer from development phase to production in two versions. The first was a very lowmore » cost, rugged, broadband seismometer for field deployment that would achieve noise levels comparable to the standard earth low noise model (LNM) of the USGS. All three components were integrated into one case, and have sensitivity near 2000 v/m/s, and analog output with bandwidth of .01 to 40 Hz with high coherence.« less

  12. Map, Excite, Jump, and Measure: An Outreach Activity That Utilizes Seismology to Engage Students in Technology, Science, Engineering, and Mathematics

    NASA Astrophysics Data System (ADS)

    van der Lee, S.; Tekverk, K.; Rooney, K.; Boxerman, J.

    2013-12-01

    We designed and will present a lesson plan to teach students STEM concepts through seismology. The plan addresses new generation science standards in the Framework for K-12 Science Education as well AAAS Benchmarks for Science Literacy. The plan can be executed at a facility with a seismometer in a research facility or university, on a field trip, but it can also be used in a school setting with a school seismometer. Within the lesson plan, the students first use technology to obtain earthquake location data and map them. Next, the students learn about the science of earthquakes, which is followed by an engineering activity in which the students design a hypothetical seismometer and interact with the actual seismometer and live data display. Lastly the students use mathematics to locate an earthquake through trilateration. The lesson plan has been fine-tuned through implementation with over 150 students from grades 3-12 from the Chicago area.

  13. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications

    PubMed Central

    Jaroszewicz, Leszek R.; Kurzych, Anna; Krajewski, Zbigniew; Marć, Paweł; Kowalski, Jerzy K.; Bobra, Piotr; Zembaty, Zbigniew; Sakowicz, Bartosz; Jankowski, Robert

    2016-01-01

    Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s. PMID:27999299

  14. Analysis on typhoon-induced microseisms from ocean bottom seismometer array

    NASA Astrophysics Data System (ADS)

    Lee, Tzu-Chuan; Lin, Jing-Yi

    2013-04-01

    Ocean-bottom seismometer (OBS) is usually used for active sources and passive listening experiments, such as air guns, explosives, earthquakes and other signals. In fact, the seismometer records not only the seismic waveforms but also noises generated by winds, waves, tides and other external forces. From the end of August to early September 2011, 15 OBSs were deployed offshore northeastern Taiwan for a recording period of about 20 days. At the end of August, the typhoon NANMADOL formed in the western Pacific and moved northwestward from the East Philippines and finally landed on the island of Taiwan. Due to storms or pressure changes caused by the typhoon, elastic waves would be directly or indirectly produced and recorded by the seismometers. In this study, by analyzing the seismic signals collected by the OBSs and the BATS stations, we investigate the influence induced by the changes of typhoon path and intensity on the submarine seismic noises. Preliminary results indicate that the seismic energy change related to the typhoon occurred mainly at 0.2-0.5 Hz, which is a relatively low frequency compared to that of earthquakes. The amplitude of this low-frequency noise increased when the distance between the typhoon and seismometer decreased. By comparing the seismic waves with the data collected from the marine weather buoy, we observed a positive correlation between the power of the low frequency microseisms and the wave height. This clearly indicates that the typhoon was the main source of microseisms during their passing. Owing to the ocean waves generated by the typhoon, the pressure altered by the water column change and recorded by the seismometers as seismic waves before being transmitted to the sea?oor. The spectrum analysis shows the presence of a high energy signals at 0.2-1 Hz with a period of about 12 hours which could be related to the tidal movements. In addition, the amplitude of the recorded microseisms is also affected by the depth of seismometers. In general, the deeper the seismometer is located, the smaller the amplitude of microseisms it recorded. All these observations show the seismic signal can respond to the wave and wind changes. However, some exceptions, probably induced by site effect, are observed. Analysis based on the data recorded by hydrophones and inland stations displays consistent results with that of geophones, showing that ocean wave heights appear to be the main origin of the low frequency microseisms signals. Therefore, we suggest that the low frequency ground motions are mostly induced by nearby water pressure ?elds, and transmitted through the rock to the stations.

  15. Cruise report for P1-13-LA, U.S. Geological Survey gas hydrates research cruise, R/V Pelican April 18 to May 3, 2013, deepwater Gulf of Mexico

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Ruppel, Carolyn; O'Brien, Thomas; Baldwin, Wayne; White, Jenny; Moore, Eric; Dal Ferro, Peter; Lemmond, Peter

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise in the Gulf of Mexico from April 18 to May 3, 2013, with the objectives of (1) achieving improved imaging and characterization at two established gas hydrate study sites, and (2) refining geophysical methods for gas hydrate characterization in other locations. We conducted this acquisition aboard the R/V Pelican, and used a pair of 105/105-cubic-inch generator/injector air guns to provide seismic energy that we recorded using a 450-meter 72-channel digital hydrophone streamer and 25 multicomponent ocean-bottom seismometers. In the area of lease block Green Canyon 955, we deployed 21 ocean-bottom seismometers and acquired approximately 400 kilometers of high-resolution two-dimensional streamer seismic data in a grid with line spacing as small as 50 meters and along radial lines that provide source offsets up to 10 kilometers and diverse azimuths for the ocean-bottom seismometers. In the area of lease block Walker Ridge 313, we deployed 25 ocean-bottom seismometers and acquired approximately 450 kilometers of streamer seismic data in a grid pattern with line spacing as small as 250 meters and along radial lines that provide source offsets up to 10 kilometers for the ocean-bottom seismometers. The data acquisition effort was conducted safely and met the scientific objectives.

  16. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep boreholemore » is located kilometers away.« less

  17. A Brief Test of the Tokyo Sokushin VSE-355G3 Strong Motion Velocity Seismometer

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Yokoi, Isamu

    2008-01-01

    The VSE-355G3 seismometer is a broadband seismometer (called a 'servo velocity meter' by Tokyo Sokushin) with a specified clip level of 2 m/s and a flat response to earth velocity from 0.008 Hertz (Hz) to 70 Hz. Mr. Yokoi and Mr. Kurahashi of Tokyo Sokushin shipped one instrument to the U. S. Geological Survey's Albuquerque Seismological Laboratory (ASL) for testing in early September 2007. They gave a presentation on this instrument and some of their other products to the authors and others on September 6, 2007. Testing of the VSE-355G3, Serial Number 70520, commenced on Friday, September 7, 2007.

  18. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  19. Teaching Geophysics with a Vertical-Component Seismometer

    ERIC Educational Resources Information Center

    van Wijk, Kasper; Channel, Ted; Viskupic, Karen; Smith, Martin L.

    2013-01-01

    Earthquakes are some of the more dramatic expressions of the dynamics of our planet. The sudden release of stress built up slowly by tectonic or volcanic processes often has far-reaching consequences, and can be measured (in classrooms) around the world. This is one reason why designing and building seismometers has been a popular activity, and…

  20. Australian Seismometers in Schools - eyes on seismology

    NASA Astrophysics Data System (ADS)

    Salmon, M.; Balfour, N.; Sambridge, M.

    2014-12-01

    The Australian Seismometers in Schools (AuSIS) program has installed 42 research quality broadband seismometers in schools around Australia. The school's infrastructure allows for real time data transfers, and eager young students monitor the instruments and report any recorded events. The reporting feature ("Caught it? Report it!") through our website works as a crude type of detection to inform us of what instruments pick up the earthquakes. It also has the added benefits of keeping schools engaged in the program, ongoing learning about earth science and geography, and obviously keeps them returning to our website. A network of professional and amateur seismologists provides support to the schools and helps promote earth science education and earthquake risk awareness. The data is publically available through the IRIS DMC and is used by not just our volunteers but also by government departments, universities and private agencies for research and monitoring. One of the challenges has been to provide a way for schools and to interact with the real time data in an accessible format. We have achieved this through website and mobile app development alongside step-by step how to guides. These tools have the added advantage that they also allow schools without their own seismometer to connect with nearby schools that do. The government run national network of seismometers in Australia is sparse; the AuSIS program provides additional instruments that are now being incorporated into the national network for improved regional earthquake locations. Although schools are not the ideal site for broadband seismometers, the program has proven that with a well-chosen location within the school we can recover high quality data for much of the day. The schools are generally well distributed across the country enabling the program to supplement the national network at the same time as bringing earth science to rural communities that often miss out on this type of opportunity.

  1. Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, N.; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, W. T.

    2017-10-01

    NASA's InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3-1.0 mm, surface densities of 1.3-1.8 g cm^{-3}, and an effective regolith Young's modulus of 2.5^{+1.9}_{-1.4} MPa. At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02-0.04 for the vertical component and 0.01-0.02 for the horizontal component. These values are 3-6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be ˜2×10^{-10} ms^{-2} Hz^{-1/2} with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of 10^{-8} ms^{-2} Hz^{-1/2}.

  2. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  3. Use of a bubble tiltmeter as a horizontal seismometer

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Geller, R. J.; Stein, S.

    1978-01-01

    A bubble tiltmeter has been used as a horizontal seismometer. With the appropriate filters, the bubble system has good response for displacement over the passband of conventional seismometers (from about 10 Hz to 200 s), and for tilt from about 1 Hz to DC. The accuracy of the response is confirmed by comparing the filtered bubble output to conventional seismic instruments. The agreement between the filtered bubble records and broad band and short period conventional records is extremely good in every case. The small size, broad-band response, and lack of moving parts make the bubble ideal as an instrument for remote environments. In particular, the instrument seems ideal for the ocean bottom, land and marine boreholes and planetary missions.

  4. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.

    2016-12-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.

  5. Brady's Geothermal Field Nodal Seismometer Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml +/- 0.4 Location: 38.479 deg N 118.366 deg W +/- 0.7 km Depth: 9.9 km +/- 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC

  6. Teaching Geophysics with a Vertical-Component Seismometer

    NASA Astrophysics Data System (ADS)

    van Wijk, Kasper; Channel, Ted; Viskupic, Karen; Smith, Martin L.

    2013-12-01

    Earthquakes are some of the more dramatic expressions of the dynamics of our planet. The sudden release of stress built up slowly by tectonic or volcanic processes often has far-reaching consequences, and can be measured (in classrooms) around the world. This is one reason why designing and building seismometers has been a popular activity, , 2 and why different versions of "Seismometer in Schools" projects thrive in the United States, Australia, and Europe. We present a cheap, robust, and easy-to-build seismometer—called the TC1 —to measure seismic displacements in the vertical direction. Its components are easy to obtain and assemble, yet the resulting instrument is accurate enough to record earthquakes from around the globe. The parts list and building instructions of the TC1 seismometer are freely available online. Alternatively, a complete kit can be purchased for around US300. Assembling the system naturally introduces students to a number of concepts in physics and engineering, while upon completion seismic recordings trigger discussions about the dynamics and internal structure of the Earth. The discussions are fostered by service learning and shared in the network of TC1s called the Z-NET.

  7. Trillium 360 Seismometer Initial Test Results

    NASA Astrophysics Data System (ADS)

    Bainbridge, Geoffrey; Devanney, Peter; Upadhyaya, Sarvesh

    2017-04-01

    Test results for Trillium 360 show this seismometer can resolve the Peterson New Low Noise Model down to 300 seconds period. This has been confirmed at multiple sites: Pinon Flat (California), Albuquerque Seismological Laboratory (New Mexico) and Nanometrics (Ottawa, Canada). The Pinon Flat deployment captured the March 2, 2016 Mw=7.9 Indonesian event and showed a response coherent with reference sensors including an STS-1 at periods down to 0.0015 Hz. At frequencies below 0.0015 Hz the reference sensors showed a noncoherent spurious response, i.e. noise in the presence of signal, whereas the Trillium 360 was relatively unaffected. Magnetic sensitivity has been measured to be 0.01 m/s^2/T in two independent tests at ASL and Nanometrics. Temperature sensitivity is 3*10^-4 m/s^2/T. This combination of low sensitivity to both magnetic field and temperature is achieved through magnetic shielding which resolves the side effect of magnetic sensitivity in temperature-compensated ferromagnetic spring alloys. The T360 seismometer components are sufficiently miniaturized for deployment in a borehole. This enables low-noise performance even in an urban environment with thick sediments (at Nanometrics, Ottawa) since the seismometer can be emplaced in bedrock below surface sediments and away from surface noise.

  8. Obtaining changes in calibration-coil to seismometer output constants using sine waves

    USGS Publications Warehouse

    Ringler, Adam T.; Hutt, Charles R.; Gee, Lind S.; Sandoval, Leo D.; Wilson, David C.

    2013-01-01

    The midband sensitivity of a broadband seismometer is one of the most commonly used parameters from station metadata. Thus, it is critical for station operators to robustly estimate this quantity with a high degree of accuracy. We develop an in situ method for estimating changes in sensitivity using sine‐wave calibrations, assuming the calibration coil and its drive are stable over time and temperature. This approach has been used in the past for passive instruments (e.g., geophones) but has not been applied, to our knowledge, to derive sensitivities of modern force‐feedback broadband seismometers. We are able to detect changes in sensitivity to well within 1%, and our method is capable of detecting these sensitivity changes using any frequency of sine calibration within the passband of the instrument.

  9. Proposed Construction of Boulder Seismic Station Monitoring Sites, Boulder, Wyoming. Environmental Assessment

    DTIC Science & Technology

    2009-02-01

    power battery box and controllers, WiFi radio, network switch, vault seismometers, infrasonic digitizers, and excess cabling. In addition to the...installed around the boreholes. Immediately upon completion, each site will be cleared of all unused equipment, debris, materials, and trash . All...controllers, WiFi radio, network switch, vault seismometers, infrasonic digitizers, and excess cabling. In addition to the permanent infrastructure listed

  10. A Laser Interferometric Miniature Seismometer

    DTIC Science & Technology

    2010-09-01

    A LASER INTERFEROMETRIC MINIATURE SEISMOMETER Dustin W. Carr, Patrick C. Baldwin, Shawn A. Knapp-Kleinsorge, Howard Milburn, and David Robinson...Symphony Acoustics, Inc. Sponsored by the National Nuclear Security Administration Award No. DE-FG02-08ER85108.001 ABSTRACT The threat of...performance, compact device can enable rapid deployment of large-scale arrays , which can in turn be used to provide higher-quality data during times of

  11. Results of the first Seismometer to Investigate Ice and Ocean Structure (SIIOS) Analogue Mission

    NASA Astrophysics Data System (ADS)

    Della-Giustina, Daniella; Bray, Veronica; "Hop" Bailey, Samuel; Pettit, Erin; Schmerr, Nicholas; Dahl, Peter; Avenson, Brad; Byrne, Shane; SIIOS Team

    2017-10-01

    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich interiors, likely providing the ingredients needed for life as we know it. The possibility of life forming in the ocean or in melt pockets, relies on the presence of a source of energy and chemistry for biological molecule formation. A thick, stagnant ice crust would likely prevent transfer of oxidants from the surface to the water, halting the development of life. The ice thickness and structure is therefore one of the most important and controversial topics in astrobiology.The best way to access an icy moon’s interior structure is with a lander-based seismometer. Our team has identified a commercial-off-the-shelf device as a flight-candidate for operation in the extreme environment of the icy moons. Based on estimates of Europan seismicity, the flight candidate device is sensitive enough to detect the ice-water boundary and pockets of liquid within the ice. Its low mass and low power enables deployment of multiple seismometers in a short-baseline array on a lander. The performance, mass, and volume of this device meet or exceed flight requirements identified in lander studies making a field test of these seismometers highly representative of a flight unit developed for an Ocean Worlds mission.We report the results of the first field campaign for the SIIOS Analogue Mission Program (AMP), which has evaluates the performance of the flight candidate seismometer in Ocean World terrestrial analogue environments. In particular, the first SIIOS AMP field exercise is performed at Gulkana Glacier, Alaska. During the summer melt season Gulkana provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing areas with the desired analogue seismic contrasts. During this first mission, we have demonstrated device sensitivity to the detection of seismicity from high frequency (> 50 Hz) active and passive sources, the depth of ice-water boundaries, and to the ice properties using a short-baseline (1 m2) seismic array and a “lander-mounted” single station seismometer.

  12. The SEIS Experiment for the InSight mission: status and performance expectations

    NASA Astrophysics Data System (ADS)

    Mimoun, David; Lognonne, Philippe; Banerdt, W. Bruce; Laudet, Philippe; De Raucourt, Sébastien; IJpelaan, Frans; Kerjean, Laurent; Perez, Rene; Pont, Gabriel; Sylvestre-Baron, Annick; verdier, Nicolas; Denise, Robert; Feldman, Jason; Hurst, Ken; Klein, Kerry; Giardini, Domenico; Zweifel, Peter; Pike, W. Tom; Calcutt, Simon; Bramanti, Christina

    2015-04-01

    The Insight NASA Discovery mission, led by the Jet Propulsion Laboratory, will deploy in September 2016 a very broadband seismometer on the Mars surface, SEIS (Seismic Experiment for Interior Structure). It is a hybrid 3-axes instrument, which encloses 3 very broadband oblique sensors and 3 short period sensors. The sensor assembly and its wind and thermal shield will by deployed on the Mars surface from the Phoenix-like spacecraft by a robotic arm (IDS). The acquisition system will be hosted in the spacecraft warm electronics box, and connected to the deployed sensor assembly by a tether. The SEIS experiment is provided by CNES, the French Space Agency that makes the coordination of a wide consortium including IPGP of Paris (SEIS PI Institution), Imperial College of London, Oxford University, MPS of Göttingen, ETH of Zürich, ISAE from Toulouse and the Jet Propulsion Laboratory of Pasadena. In addition to the seismometer, the Insight payload will also include a suite of instruments complementary to the seismometer, such as a precision temperature sensor, a micro-barometer, a magnetometer and a wind sensor, making it the first geophysical multi-parameter station on another planet. A heat flow sensor and geodetic measurements will provide additional science measurements, in order to constrain the internal structure of Mars. Several challenges have been overcome to design and realize the planetary seismometer, which will exhibit a noise of about 10-9 m/s2/sqrt(Hz) in its seismic bandwidth bandwidth (0.01-1 Hz) for the very broadband component. These challenges include a very efficient insulation from the external temperature variations, and a finely crafted mechanical design to keep the extreme sensitivity of the seismometer, while allowing enough robustness for the harsh mechanical environment encountered during the launch and landing sequences. Also, specific attention has been paid to understanding the various environment contributions to the noise figure. A discussion will be presented, on how to understand the seismometer performance figure in a changing environment, and how to secure the mission science goals in the challenging environment of the Mars surface.

  13. Development of compact long-term broadband ocean bottom seismometer for seafloor observation of slow earthquakes

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Shiobara, H.

    2017-12-01

    It is important to understand coupling between plates in a subduction zone for studies of earthquake generation. Recently low frequency tremor and very low frequency earthquake (VLFE) were discovered in plate boundary near a trench. These events (slow earthquakes) in shallow plate boundary should be related to slow slip on a plate boundary. For observation of slow earthquakes, Broad Band Ocean Bottom Seismometer (BBOBS) is useful, however a number of BBOBSs are limited due to cost. On the other hand, a number of Long-term OBSs (LT-OBSs) with recording period of one year are available. However, the LT-OBS has seismometer with a natural period of 1 second. Therefore frequency band of observation is slightly narrow for slow earthquakes. Therefore we developed a compact long-term broad-band OBS by replacement of the seismic sensor of the LT-OBSs to broadband seismometer.We adopted seismic sensor with natural period of 20 seconds (Trillium Compact Broadband Seismometer, Nanometrics). Because tilt of OBS on seafloor can not be controlled due to free-fall, leveling system for seismic sensor is necessary. The broadband seismic senor has cylinder shape with diameter of 90 mm and height of 100 mm, and the developed levelling system can mount the seismic sensor with no modification of shape. The levelling system has diameter of 160 mm and height of 110 mm, which is the same size as existing levelling system of the LT-OBS. The levelling system has two horizontal axes and each axis is driven by motor. Leveling can be performed up to 20 degrees by using micro-processor (Arduino). Resolution of levelling is less than one degree. The system immediately starts leveling by the power-on of controller. After levelling, the the seismic senor is powered and the controller records angles of levelling to SD RAM. Then the controller is shut down to consume no power. Compact long-term broadband ocean bottom seismometer is useful for observation of slow earthquakes on seafloor. In addition, seafloor observations of teleseismic events and deep earthquakes to estimate seismic structure of deep regions and observations of submarine volcanoes are expected.

  14. The Wireless Data Acquisition System for the Vibration Table

    NASA Astrophysics Data System (ADS)

    Teng, Y. T.; Hu, X.

    2014-12-01

    The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides, the acquisition system uses built-in power supply, which provides power to the system with Li-On rechargeable battery with high capacity, then all the cable link between the vibration table and the ground equipment have been removed. With all these changes, the whole system is immobilized on board of the vibration table after being packaged.

  15. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  16. Evaluation of Two Guralp Preamplifiers for GS21 Seismometer Application.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Slad, George William

    2015-08-01

    Sandia National Laboratories has tested and evaluated two Guralp preamplifiers for use with a GS21 seismometer application. The two preamplifiers have a gain factor of 61.39. The purpose of the preamplifier evaluation was to determine a measured gain factor, transfer function, total harmonic distortion, self-noise, application passband, dynamic range, seismometer calibration pass-through, and to comment on any issues encountered during the evaluation. The test results included in this report were in response to static, tonal, and dynamic input signals. The Guralp GS21 preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treatymore » Organization (CTBTO). Test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters« less

  17. Scale Factor and Noise Performance Tests of the Bendix Corporation Rate Gyro Assembly (RGA).

    DTIC Science & Technology

    1980-08-01

    tiltmeters , seismometers, and an ambient temperature monitor. 3.2 Test Support Equipment Bendix supplied all necessary test support equipment and...001A 2-Axis Tiltmeter Electrotechnical Lab EV22C Portable Seismic Mon- itor (PRM) Sensors USAF Sieler Laboratory PSM Electronics Rockland 816...acquisition system recorded the tiltmeter , seismometer, and temperature data on magnetic tape. The seismic, tilt, and temperature information was filtered

  18. Compilation of Reprints Number 63.

    DTIC Science & Technology

    1986-03-01

    Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG

  19. Viking-2 Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Nakamura, Yosio; Murphy, James R.

    2017-11-01

    A data product has been generated and archived on the NASA Planetary Data System (Geosciences Node), which presents the seismometer readings of Viking Lander 2 in an easy-to-access form, for both the raw ("high rate") waveform records and the compressed ("event mode") amplitude and frequency records. In addition to the records themselves, a separate summary file for each instrument mode lists key statistics of each record together with the meteorological measurements made closest in time to the seismic record. This juxtaposition facilitates correlation of the seismometer instrument response to different meteorological conditions, or the selection of seismic data during which wind disturbances can be expected to be small. We summarize data quality issues and also discuss lander-generated seismic signals, due to operation of the sampling arm or other systems, which may be of interest for prospective missions to other bodies. We review wind-seismic correlation, the "Martian solar day (sol) 80" candidate seismic event, and identify the seismic signature of a probable dust devil vortex on sol 482 : the seismometer data allow an estimate of the peak wind, occurring between coarsely spaced meteorology measurements. We present code to generate the plots in this paper to illustrate use of the data product.

  20. Excitation and Propagation of Short-Period Surface Waves in Young Seafloor

    DTIC Science & Technology

    2000-09-01

    These waves are essentially the equivalent of Lg in continental settings, although because there is no granite in the oceanic crust, they might better...attenuated, they stand out above the noise level as one of the most prominent signals on ocean -bottom seismometers (OBS). In the MELT Experiment, 51 ocean ... ocean -bottom seismometers Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is

  1. Improvement of Earthquake Epicentral Locations Using T-Phases: Testing by Comparison With Surface Wave Relative Event Locations

    DTIC Science & Technology

    2001-10-01

    deployment of 51 ocean -bottom seismometers (OBS) on the seafloor spanning 800 km across the East Pacific Rise provides a unique opportunity to test the...aftershock sequence of earthquakes at the northern end of the Easter microplate . In addition, for the larger earthquakes, we can compare relative... ocean -bottom seismometers OBJECTIVES The objectives of this research are To explore the synergy between hydroacoustic and seismic techniques

  2. Brady's Geothermal Field Nodal Seismometer Active Source Data Sample

    DOE Data Explorer

    Kurt Feigl

    2016-03-25

    This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.

  3. An Examination of the Ability of Ocean Obervatory Systems to Determine Merchant Ship Direction and Draft

    DTIC Science & Technology

    2013-09-01

    history of ocean measurements and of Ocean Bottom Seismometers in particular. This background will also discuss previous work on beamforming seismic...unsuccessful. The measured bearings changed in a seemingly random fashion despite high signal to noise (SNR). This result is in agreement with other...capabilities increase. One of the types of sensors used in OOSs is the Ocean Bottom Seismometer. These sensors are primarily used to measure

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembold, Randy Kai; Hart, Darren M.; Harris, James Mark

    Sandia National Laboratories has tested, evaluated and reported on the Geotech Smart24 data acquisition system with active Fortezza crypto card data signing and authentication in SAND2008-. One test, Input Terminated Noise, allows us to characterize the self-noise of the Smart24 system. By computing the power spectral density (PSD) of the input terminated noise time series data set and correcting for the instrument response of different seismometers, the resulting spectrum can be compared to the USGS new low noise model (NLNM) of Peterson (1996), and determine the ability of the matched system of seismometer and Smart24 to be quiet enough formore » any general deployment location. Four seismometer models were evaluated: the Streckeisen STS2-Low and High Gain, Guralp CMG3T and Geotech GS13 models. Each has a unique pass-band as defined by the frequency band of the instrument corrected noise spectrum that falls below the new low-noise model.« less

  5. Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otake, Yuji; Araya, Akito; Hidano, Kazuo

    We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet.more » Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the rotational pendulum for building a feedback control seismometer. Observations showed that the noise level of the seismometer was less than about 10{sup -8} m/s at 1 Hz. This fruitful value is close to the specifications of the most sensitive seismometer, such as STS-I. However, low-frequency noise of about 10{sup -7} m/s, caused by a buoyancy change at the pendulum weight arising from atmospheric pressure variation, could be recognized. To decrease the noise, a vacuum chamber to isolate the atmospheric pressure variation should be employed in the next step of the study.« less

  6. Remote Determination of the in situ Sensitivity of a Streckeisen STS-2 Broadband Seismometer

    NASA Astrophysics Data System (ADS)

    Uhrhammer, R. A.; Taira, T.; Hellweg, M.

    2015-12-01

    The sensitivity of a STS-2 broadband seismometer can be determined remotely by two basic methods: 1) via comparison of the inferred ground motions with a reference seismometer, and: 2) via excitation of the calibration coil with a simultaneously recorded stimulus signal. The first method is limited by the accuracy of the reference seismometer and the second method is limited by the accuracy of the motor constant (Gc) of the calibration coil. The accuracy of both methods is also influenced by the signal-to-noise ratio (SNR) in the presence of background seismic noise and the degree of orthogonality of the tri-axial suspension in the STS-2 seismometer. The Streckeisen STS-2 manual states that the signal coil sensitivity (Gs) is 1500 V/(m/s) (+/-1.5%) and it gives Gc to only one decimal place (ie, Gc = 2 g/A). Unfortunately the factory Gc value is not given with sufficient accuracy to be useful for determining the sensitivity of Gs to within 1.5%. Thus we need to determine Gc to enable accurate calibration of the STS-2 via remote excitation of the Gc with a known stimulus. The Berkeley Digital Seismic Network (BDSN) has 12 STS-2 seismometers with co-sited reference sensors (strong motion accelerometers) and they are all recorded by Q330HR data loggers with factory cabling. The procedure is to first verify the sensitivity of the STS-2 signal coils (Gs) via comparison of the ground motions recorded by the STS-2 with the ground motions recorded by the co-sited strong motion accelerometer for an earthquake with has sufficiently high SNR in a passband common to both sensors. The second step in the procedure is to remotely (from Berkeley) excite to calibration coil with a 1 Hz sinusoid which is simultaneously recorded and, using the above measured Gs values, solve for Gc of the calibration coils. The resulting Gc values are typically 2.20-2.50 g/A (accurate to 3+ decimal places) and once the Gc values are found, the STS-2 absolute sensitivity can be determined remotely to an accuracy of better than 1%. The primary advantage of using strong motion accelerometers as the reference instrument is that their absolute calibration can be checked via tilt tests if the need arises.

  7. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the array, there is a sudden cessation of seismicity not accounted for by known geologic structures. This borehole seismometer network is providing essential data for the detailed characterization of the Kilauea Lower East Rift Zone and the Puna geothermal field.

  8. Deep Internal Structure of Mars and the Geophysical Package of Netlander

    NASA Technical Reports Server (NTRS)

    Lognonne, P.; Giardini, D.; Banerdt, B.; Dehant, V.; Barriot, J. P.; Musmann, G.; Menvielle, M.

    2000-01-01

    Our present understanding of the interior structure of Mars is mostly based on the interpretation of gravity and rotation data, the chemistry of the SNC (shergottites, nakhlites, chassignites) meteoroids, and a comparison with the much better-known interior structure of the Earth. However geophysical information from previous missions have been insufficient to determine the deep internal structure of the planet. Therefore the state and size of the core and the depth and type of mantle discontinuities are unknown. Most previous seismic experiments have indeed failed, either due to a launch failure (as for the Optimism seismometer onboard the small surface stations of Mars 96) or after failure on Mars (as for the Viking 1 seismometer). The remaining Viking 2 seismometer did not produce a convincing marsquake detection, basically due to too strong wind sensitivity and too low resolution in the teleseismic frequency band. After almost a decade of continuous activity and proposals, the first network mission to Mars, NetLander (NL), is expected to be launched between 2005 and 2007. One of the main scientific objectives of this four-lander network mission will be the determination of the internal structure of the planet using a geophysical package. This package will have a seismometer, a magnetometer, and a geodetic experiment, allowing a complementary approach that will yield many new constraints on the mineralogy and temperature of the mantle and core of the planet.

  9. Broadband Seismometer at 2500m Depth in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Hello, Y.; Charvis, P.; Dugué, M.; Bertin, V.; Valdy, P.; Le van Suu, A.; Real, D.

    2003-04-01

    In the frame of the ANTARES project, devoted to solar neutrinos detection across a large (0.1 km3) water volume located in deep sea, sea bottom facilities were developed at a depth of 2500m. Power supply, instrumentation control and data transmission have been implemented offshore Toulon (France) through a 43km long marine cable. A broadband seismological sensor has been installed among the instrumentation to control of physical and chemical environment of the neutrino detectors. The instrument was designed by Guralp Systems on the basis of CMG-3T seismometer (band-pass 120s-50hz) connected to a CMG DM24 digitizer for mechanical control and signal digitisation. Seismometer was inserted in titanium housing which fulfil the safety requirements of deployment operation. Control of CMG DM24 through asynchronous RS232 serial line was implemented in the ANTARES acquisition software running on the sea bottom. An interface running at the surface allows control and storage of the data. In January, the sensor was launched with the ANTARES instrumental line. In a second step the sensor has been slightly moved away from the ANTARES structure (60m), partly buried in the ground, roughly levelled and oriented by the IFREMER submarine Nautile. During the same operation the instrumentation line was connected to the power supply and data acquisition control. Masses of the seismometer were unlocked from the surface. Data are now continuously collected from Toulon and transmitted to Geosciences Azur in quasi real time. After a test period of 3 months, the sensor should be recovered for upgrades. For the final deployment (10 years), the ANTARES time control signal should be used to synchronise the sensor internal clock. This is the first real time broadband seismometer deployed in Europe and it will increase, in the future, our capability of marine earthquake detection in the area.

  10. A Microseismometer for Terrestrial and Extraterrestrial Applications

    NASA Technical Reports Server (NTRS)

    Banerdt, W.; Kaiser, W.; Vanzandt, T.

    1993-01-01

    The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles, and tests show that these devices can exhibit performance comparable to state-of-the-art instruments.

  11. Period lengthening of the penetrator seismometer response and application to the future planetary explorations

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroaki; Yamada, Ryuhei; Kobayashi, Naoki; Murakami, Hideki; Takeuchi, Nozomu; Tanaka, Satoshi; Fujimura, Akio

    A short-period passive seismometer onboard the lunar penetrator is modified as two different types of long-period active sensors; one is a conventional force-balanced accelerometer, and the other is a so-called PID-controlled feedback velocity sensor. The former adopts the forcebalance principle, which means that the external force on the sensor mass is compensated by an electro-magnetic force in the opposite direction, using a displacement transducer to sense the mass motion. The latter has a broader frequency response in velocity output, by an additional installation of integrator/derivator circuits. The original short-period seismometer is a classical electro-magnetic type one with velocity output consisted of signal coils as a pendulum mass suspended by a pair of diaphragm springs and magnetic circuits fixed to the reference frame. Because it was developed for the former LUNAR-A penetrator mission, it has the shock-durability up to 10,000G at a high-speed impact process and it demonstrates to work well even under low temperature condition. When several little modifications are made for this short-period seismometer, the sensor performance in the frequency ranges of 10 to 20 seconds is considerably improved and appropriate for detection of the longer body waves and possible surface waves on any other terrestrial planets. However, the present lunar penetrator can not install both the active-type seismometers for a long-lived observation, because of the strict limitation of power consumption. If some more electrical power is supplied, we will be able to apply either of these improved versions for lunar soft-lander. And also, if the possible Martian penetrator with an after-body structure would be continuously operated by the solar power battery, we could do just the same. In this paper, we present some results of laboratory and field tests and compare them with the original short-period sensor, and then we describe the future prospects for application on the lunar and planetary explorations.

  12. A New Standard Installation Method of the Offline Seismic Observation Station in Heavy Snowfall Area of Tohoku Region

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Nakayama, T.; Hori, S.; Sato, T.; Chiba, Y.; Okada, T.; Matsuzawa, T.

    2015-12-01

    Soon after the 2011 Tohoku earthquake, seismic activity of Tohoku region, NE Japan is induced in the inland area of Akita prefecture and the border area between Fukushima and Yamagata prefectures. We plan to install a total of 80 offline seismic observation stations in these areas for studying the effect of megathrust earthquake on the activities of inland earthquakes. In our project, maintenance will be held twice-a-year for 4 years from 2015 by using 2.0Hz short-period 3-component seismometer, KVS-300 and ultra-low-power data logger, EDR-X7000 (DC12V 0.08W power supply). We installed seismometer on the rock surface or the slope of the natural ground at the possible sites confirmed with low noise level to obtain distinct seismic waveform data. We report an improvement in installation method of the offline seismic observation station in the heavy snowfall area of Tohoku region based on the retrieved data. In the conventional method, seismometer was installed in the hand-dug hole of a slope in case it is not waterproof. Data logger and battery were installed in the box container on the ground surface, and then, GPS antenna was installed on the pole fixed by stepladder. There are risks of the inclination of seismometer and the damage of equipment in heavy snowfall area. In the new method, seismometer is installed in the robust concrete box on the buried basement consists of precast concrete mass to keep its horizontality. Data logger, battery, and GPS antenna are installed on a high place by using a single pole with anchor bolt and a pole mount cabinet to enhance their safety. As a result, total costs of installation are kept down because most of the equipment is reusable. Furthermore, an environmental burden of waste products is reduced.

  13. Finite frequency P-wave traveltime measurements on ocean bottom seismometers and hydrophones in the western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsekhmistrenko, Maria; Sigloch, Karin; Hosseini, Kasra; Barruol, Guilhem

    2016-04-01

    From 2011 to 2014, the RHUM-RUM project (Reunion Hotspot Upper Mantle - Reunions Unterer Mantel) instrumented a 2000x2000km2 area of Indian Ocean seafloor, islands and Madagascar with broadband seismometers and hydrophones. The central component was a 13-month deployment of 57 German and French Ocean Bottom Seismometers (OBS) in 2300-5600 m depth. This was supplemented by 2-3 year deployments of 37 island stations on Reunion, Mauritius, Rodrigues, the southern Seychelles, the Iles Eparses and southern Madagascar. Two partner projects contributed another 30+ stations on Madagascar. Our ultimate objective is multifrequency waveform tomography of the entire mantle column beneath the Reunion hotspot. Ideally we would use all passbands that efficiently transmit body waves but this meets practical limits in the noise characteristics of ocean-bottom recordings in particular. Here we present the preliminary data set of frequency-dependent P-wave traveltime measurements on seismometers and hydrophones, obtained by cross-correlation of observed with predicted waveforms. The latter are synthesized from fully numerical Green's functions and carefully estimated, broadband source time functions. More than 200 teleseismic events during the 13-month long deployment yielded usable P-waveform measurements. We present our methods and discuss data yield and quality of ocean-bottom versus land seismometers, and of OBS versus broadband hydrophones. Above and below the microseismic noise band, data yields are higher than within it, especially for OBS. The 48 German OBS, equipped with Guralp 60 s sensors, were afflicted by relatively high self-noise compared to the 9 French instruments equipped with Nanometrics Trillium 240 s sensors. The HighTechInc (model HTI-01 and HTI-04-PCA/ULF) hydrophones (100 s corner period) functioned particularly reliably but their waveforms are relatively more challenging to model due to reverberations in the water column. We obtain ~15000 combined cross-correlations measurements that should be usable in multifrequency P-wave tomography, in passbands between 30 s and 2.7 s dominant period.

  14. Seismometer reading from impact made by Lunar Module ascent stage

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The seismometer reading from the impact made by the Lunar Module ascent stage when it struck the lunar surface. The impact was registered by the Passive Seismic Experiment Package (PSEP) which was deployed on the Moon by the Apollo 12 astronauts. The Lunar module's ascent stage was jettisoned and sent toward impact on the Moon after Astronauts Charles Conrad Jr. and Alan L. Bean returned to lunar orbit and rejoined Astronaut Richard F. Gordon Jr., in the Command/Service Modules.

  15. Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2010-09-01

    method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO) array (Thurber et al., 2004...limitations in mind, we apply our method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO...Proposal No. BAA09-69 ABSTRACT Surface array and deep borehole recordings of chemical explosions in the near-source (0-20 km) region are studied to

  16. Field measurement of penetrator seismic coupling in sediments and volcanic rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Frohlich, C.

    1979-01-01

    Field experiments were conducted to determine experimentally how well a seismometer installed using a penetrator would be coupled to the ground. A dry lake bed and a lava bed were chosen as test sites to represent geological environments of two widely different material properties. At each site, two half-scale penetrators were fired into the ground, a three-component geophone assembly was mounted to the aft end of each penetrator, and dummy penetrators were fired at various distances to generate seismic signals. The recorded signals were digitized, and cross-spectral analyses were performed to compare the observed signals in terms of power spectral density ratio, coherence and phase difference. The analyses indicate that seismometers deployed by penetrators will be as well coupled to the ground as are seismometers installed by conventional methods for the frequency range of interest in earthquake seismology, although some minor differences were observed at frequencies near the upper limit of the frequency band.

  17. Performance of MarSite Multi parameter Borehole Instrumentation

    NASA Astrophysics Data System (ADS)

    Guralp, Cansun; Tunc, Suleyman; Ozel, Oguz; Meral Ozel, Nurcan; Necmioglu, Ocal

    2017-04-01

    In this paper we present two year results obtained from the integrated multiparameter borehole system at Marsite. The very broad band (VBB) system have been operating since installation in November 2014; one year in a water filled borehole and one year in a dry Borehole. from January 2016. The real time data has been available to the community. The two Borehole environments are compared showing the superior performance of dry borehole environ- ment compared to water filled for a very broad band (VBB) seismometer. The practical considerations applied in both borehole installations are compared and the best borehole practical installation techniques are presented and discussed. The data is also compared with a surface 120 second broad band sensor and the seismic arrays with in MarSite region. The very long term performance, (one year data in a dry hole) of the VBB Borehole seismometer and the Dilatometer will be presented The high frequency performance of the VBB seismometer which extends to 150 Hz and the dilatometer are compared characterizing the results from the dilatometer.

  18. Deployment of the Oklahoma borehole seismic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P.E.; Rock, D.W.

    1989-01-20

    This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less

  19. Seismic and Tectonic Monitoring of the Endeavour Ridge Segment—Recent and Future Expansion of Ocean Networks Canada's NEPTUNE Observatory on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.; Scherwath, M.; Kao, H.; Coogan, L. A.; Rogers, G. C.; Wilcock, W. S. D.

    2016-12-01

    Ocean Networks Canada's (ONC) NEPTUNE observatory provides real-time access to sensors on the Endeavour Ridge Segment (Endeavour)—a focus site on the Juan de Fuca Ridge System that is complementary to one on Axial Volcano that is connected through the Ocean Observatories Initiative's (OOI) Cabled Array. While first instruments (including cameras, a short-period seismometer, and vent monitoring instruments) installed at the Main Endeavour vent field have been sending data since summer 2010, unreliable extension cables precluded continuous time-series from other nearby locations. With the successful installation of four extension cables, the summer of 2016 represents an important milestone in the instrumentation of the Endeavour Ridge Segment. We will present an overview of the data that are available in near real-time from Endeavour and new instrumentation that is scheduled for installation in 2017, and highlight first results derived from the new seismo-tectonic network now in operation. This network consists of three short-period seismometers (Mothra Field, Main Endeavour Field, Regional Circulation North), one broadband seismometer (western Ridge Flank), and four bottom pressure recorders (Mothra Field, Regional Circulation South, Main Endeavour Field, western Ridge Flank). The pressure recorders will provide both seismic and oceanographic data, and allow to measure differential vertical motion among the sites. We will also highlight a new technique to determine long period seafloor deformation from broadband seismometer mass-position measurements, using data from the Ridge Flank instrument as an example.

  20. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    NASA Astrophysics Data System (ADS)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Seismometer readings studied in Mission Control Center

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lammlein, also with Columbia.

  2. Evaluation of Two Guralp Preamplifiers for GS13 Seismometer Application.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    Sandia National Laboratories has tested and evaluated a new preamplifier, the Guralp Preamplifier for GS13, manufactured by Guralp. These preamplifiers are used to interface between Guralp digitizers and Geotech GS13 Seismometers. The purpose of the preamplifier evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The Guralp GS13 Preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  3. Seismometer readings studied in Mission Control Center

    NASA Image and Video Library

    1971-07-29

    The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lamneline, also with Columbia.

  4. Student Experiences: the 2013 Cascadia Initiative Expedition Team's Apply to Sail Program

    NASA Astrophysics Data System (ADS)

    Mejia, H.; Hooft, E. E.; Fattaruso, L.

    2013-12-01

    During the summer of 2013, the Cascadia Initiative Expedition Team led six oceanographic expeditions to recover and redeploy ocean bottom seismometers (OBSs) across the Cascadia subduction zone and Juan de Fuca plate. The Cascadia Initiative (CI) is an onshore/offshore seismic and geodetic experiment to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates with the overarching goal of understanding the entire subduction zone system. The Cascadia Initiative Expedition Team is a team of scientists charged with leading the oceanographic expeditions to deploy and recover CI OBSs and developing the associated Education and Outreach effort. Students and early career scientists were encouraged to apply to join the cruises via the Cascadia Initiative Expedition Team's Apply to Sail Program. The goal of this call for open participation was to help expand the user base of OBS data by providing opportunities for students and scientists to directly experience at-sea acquisition of OBS data. Participants were required to have a strong interest in learning field techniques, be willing to work long hours at sea assisting in OBS deployment, recovery and preliminary data processing and have an interest in working with the data collected. In total, there were 51 applicants to the Apply to Sail Program from the US and 4 other countries; 21 graduate students as well as a few undergraduate students, postdocs and young scientists from the US and Canada were chosen to join the crew. The cruises lasted from 6 to 14 days in length. OBS retrievals comprised the three first legs, of which the first two were aboard the Research Vessel Oceanus. During each of the retrievals, multiple acoustic signals were sent while the vessel completed a semi-circle around the OBS to accurately determine its position, a final signal was sent to drop the seismometer's anchor, and finally the ship and crew waited as the OBS traveled at around 40 meters a minute to the surface. The entire retrieval process could take anywhere from 2 hours to 4 hours for each seismometer. The third retrieval leg was aboard the Research Vessel Atlantis and utilized the submersible Remotely Operated Vehicle (ROV) Jason. The ROV was used to recover 12 of the 30 seismometers for this last retrieval mission. The final three legs were OBS deployments conducted with the assistance of the Research Vessel Oceanus. The seismometers were dropped in a desired location and allowed to sink to the ocean bottom. The ship would then obtain an exact location of the deployed seismometer using the same method described above. Participants will share their newfound knowledge of everyday life at sea and learning about the science behind deploying and retrieving OBSs. Even though participants were on different legs of the 2013 Cascadia Expedition, they all shared similar experiences. Some of the most memorable moments include amazing food, learning about the different components of an ocean bottom seismometer, and some of the most beautiful blue water.

  5. The MESUR Mission

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.

    1993-01-01

    The MESUR mission will place a network of small, robust landers on the Martian surface, making a coordinated set of observations for at least one Martian year. MESUR presents some major challenges for development of instruments, instrument deployment systems, and on board data processing techniques. The instrument payload has not yet been selected, but the straw man payload is (1) a three-axis seismometer; (2) a meteorology package that senses pressure, temperature, wind speed and direction, humidity, and sky brightness; (3) an alphaproton-X-ray spectrometer (APXS); (4) a thermal analysis/evolved gas analysis (TA/EGA) instrument; (5) a descent imager, (6) a panoramic surface imager; (7) an atmospheric structure instrument (ASI) that senses pressure, temperature, and acceleration during descent to the surface; and (8) radio science. Because of the large number of landers to be sent (about 16), all these instruments must be very lightweight. All but the descent imager and the ASI must survive landing loads that may approach 100 g. The meteorology package, seismometer, and surface imager must be able to survive on the surface for at least one Martian year. The seismometer requires deployment off the lander body. The panoramic imager and some components of the meteorology package require deployment above the lander body. The APXS must be placed directly against one or more rocks near the lander, prompting consideration of a micro rover for deployment of this instrument. The TA/EGA requires a system to acquire, contain, and heat a soil sample. Both the imagers and, especially, the seismometer will be capable of producing large volumes of data, and will require use of sophisticated data compression techniques.

  6. The development of a Planetary Broadband Seismometer (PBBS) for the Lunar Geophysical Network and the Ocean World

    NASA Astrophysics Data System (ADS)

    Chui, T. C.; Stone, K. J.; Paik, H. J.; Shelton, D. S.; Kedar, S.; Griggs, C. E.; Moody, M. V.; Hahn, I.; Schmerr, N. C.; Banerdt, W. B.; Neal, C. R.; Vance, S.; Williamson, P. R.

    2017-12-01

    The NRC decadal survey identified the Lunar Geophysical Network (LGN) as a high-yield New-Frontiers-class mission concept that will place a long-lived and globally distributed network of geophysical instruments on the surface of the Moon to understand the nature and evolution of the lunar interior from the crust to the core. This will allow the examination of the initial stages of planetary differentiation frozen in time some 3-3.5 billion years ago. The objectives of LGN hinge on the capabilities of an ultra-sensitive, very broad-band (VBB) seismometer. We will present a progress report on the development and testing of the PBBS which employs a novel Electrostatic Frequency Reduction (EFR) technique to reduce the resonance frequency of the suspended mass in a seismometer to near zero by a voltage adjustment. We will explain how EFR works, how it can be used to substantially increase the sensitivity of seismic detections and to maintain the sensitivity at the cryogenic temperatures of icy moons in the Ocean World.

  7. Detection and characterization of pulses in broadband seismometers

    USGS Publications Warehouse

    Wilson, David; Ringler, Adam; Hutt, Charles R.

    2017-01-01

    Pulsing - caused either by mechanical or electrical glitches, or by microtilt local to a seismometer - can significantly compromise the long‐period noise performance of broadband seismometers. High‐fidelity long‐period recordings are needed for accurate calculation of quantities such as moment tensors, fault‐slip models, and normal‐mode measurements. Such pulses have long been recognized in accelerometers, and methods have been developed to correct these acceleration steps, but considerable work remains to be done in order to detect and correct similar pulses in broadband seismic data. We present a method for detecting and characterizing the pulses using data from a range of broadband sensor types installed in the Global Seismographic Network. The technique relies on accurate instrument response removal and employs a moving‐window approach looking for acceleration baseline shifts. We find that pulses are present at varying levels in all sensor types studied. Pulse‐detection results compared with average daily station noise values are consistent with predicted noise levels of acceleration steps. This indicates that we can calculate maximum pulse amplitude allowed per time window that would be acceptable without compromising long‐period data analysis.

  8. A programmable broadband low frequency active vibration isolation system for atom interferometry.

    PubMed

    Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng

    2014-09-01

    Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.

  9. The SEIS Experiment: A Mars Seismic Package

    NASA Technical Reports Server (NTRS)

    Schibler, P.; Lognonne, P.; Giardini, D.; Banerdt, B.; Karczewski, J. F.; Mimoun, D.; Zweifel, P.; Pike, T.; Ammann, J.; Anglade, A.

    2003-01-01

    This experiment will integrate a VBB (Very Broad Band) two axis seismometer, a three axis Short Period seismometer and a series of environmental sensors for pressure, infra-sounds and temperature. IPGP (France) has the overall responsibility of the experiment and is responsible for the VBB and environmental sensors. ETHZ (Switzerland) is responsible for the electronics of the experiment and JPL (USA) for the SP (Short Period) sensors. SEIS instrument was first proposed and accepted for NetLander mission (and will also be in charge of data acquisition for SPICE experiment). This seismic package should also be proposed for future missions.

  10. Seismometer Self-Noise and Measuring Methods

    USGS Publications Warehouse

    Ringler, Adam; R. Sleeman,; Hutt, Charles R.; Gee, Lind S.

    2014-01-01

    Seismometer self-noise is usually not considered when selecting and using seismic waveform data in scientific research as it is typically assumed that the self-noise is negligibly small compared to seismic signals. However, instrumental noise is part of the noise in any seismic record, and in particular, at frequencies below a few mHz, the instrumental noise has a frequency-dependent character and may dominate the noise. When seismic noise itself is considered as a carrier of information, as in seismic interferometry (e.g., Chaput et al. 2012), it becomes extremely important to estimate the contribution of instrumental noise to the recordings.

  11. Environmental Impact Analysis Process. Final Environmental Impact Statement Supersonic Flight Operations in the Valentine Military Operations Area

    DTIC Science & Technology

    1983-11-04

    Arizona, and the Uinta Basin Seismological Observatory near Vernal, Utah. The seismometer locations at Edwards AFB were on a quartz monzonite outcrop and a...sandstone and limestone section covered the seismometer array area. The array area at the Uinta Basin site consisted of fluviatile, friable, cross...ONuSU"a 00121� SUSCOMIMM oil &MMN OOllTVlCl OqMCA OSM A O&O T U.&L COal .a n od - pNOW I" ""I564-746- Congress of the ’United * atets C P*C•TO

  12. New STS-1 Electronics: Development and Test Results

    NASA Astrophysics Data System (ADS)

    Uhrhammer, R. A.; Karavas, B.; Friday, J.; Vanzandt, T.; Hutt, C. R.; Wielandt, E.; Romanowicz, B.

    2007-12-01

    The STS-1 seismometer is currently the principal very broad-band (VBB) seismometer used in global or regional seismic networks operated by members of the Federation of Digital Broad-Band Seismograph Networks (FDSN). It is widely viewed as the finest VBB sensor in the world, Unfortunately, many of the STS-1's, which were manufactured and installed 10-20 years ago, are encountering both operational failures and age-related degradation. This problem is exacerbated by the fact that sensors are no longer being produced or supported by the original manufacturer, G. Streckeisen AG. In a first step towards assuring continued high quality of VBB data for decades to come, we have developed and tested new electronics and methods for mechanical repair for the STS-1 very broadband seismometer. This is a collaborative project with Tom VanZandt of Metrozet, LLC (Redondo Beach, CA) and Erhard Wielandt (original designer of the STS-1), and has been funded by a grant from NSF through the IRIS/GSN program. A primary goal of this effort was to develop a fully-tested, modern electronics module that will be a drop-in replacement for the original electronics. This new electronics design addresses environmental packaging problems that have led to operational degradation and failures in the existing instruments. This effort also provided the opportunity to implement a set of electronic improvements that will make the installation and operation of the sensors more efficient. Metrozet developed the first prototype new electronics for the STS-1, while the BSL engineering staff constructed a test-bed at the Byerly Vault (BKS) and developed the capability to simultaneously test 6-8 STS-1 components. BSL staff then tested successive versions of the electronics. The first generation prototype electronics did not include centering or calibration functionality. The second generation prototype included remote centering functionality as well as calibration functions. After some observations and refinements, this generation of electronics was operated on two seismometers concurrently and successfully run through swept sine and step calibration functions on four seismometers. During this final phase, the Metrozet electronics included the ability to initiate and operate the calibrations via a network (Ethernet) connection. Most of the calibration testing was performed remotely from Metrozet's Southern California office over the BSL network. Metrozet was able to remotely log into the Berkeley network, establish a connection to the test bed in the Byerly seismic vault and initiate control of the seismometer including remote centering and calibration functions. Finally, after BSL tests were completed and the development appeared complete and satisfactory, the new electronics were tested at the Albuquerque Seismological Laboratory's seismic vault, which is located in a quieter environment than BKS. The new electronics package was also field tested at the BDSN broadband station HOPS. We present detailed results of the calibrations.

  13. Ocean bottom seismometer: design and test of a measurement system for marine seismology.

    PubMed

    Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A; Owen, Tim; Cadena, Javier

    2012-01-01

    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

  14. Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology

    PubMed Central

    Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A.; Owen, Tim; Cadena, Javier

    2012-01-01

    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal–to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth’s crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure. PMID:22737032

  15. RoMi: Refraction Microtremor Using Rotational Seismometers

    NASA Astrophysics Data System (ADS)

    Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.

    2013-12-01

    We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Whispering-gallery-mode-based seismometer

    DOEpatents

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  17. Monitoring volcanic activity using correlation patterns between infrasound and ground motion

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Takeo, M.; Yokoo, A.; Oikawa, J.; Ohminato, T.

    2012-02-01

    This paper presents a simple method to distinguish infrasonic signals from wind noise using a cross-correlation function of signals from a microphone and a collocated seismometer. The method makes use of a particular feature of the cross-correlation function of vertical ground motion generated by infrasound, and the infrasound itself. Contribution of wind noise to the correlation function is effectively suppressed by separating the microphone and the seismometer by several meters because the correlation length of wind noise is much shorter than wavelengths of infrasound. The method is applied to data from two recent eruptions of Asama and Shinmoe-dake volcanoes, Japan, and demonstrates that the method effectively detects not only the main eruptions, but also minor activity generating weak infrasound hardly visible in the wave traces. In addition, the correlation function gives more information about volcanic activity than infrasound alone, because it reflects both features of incident infrasonic and seismic waves. Therefore, a graphical presentation of temporal variation in the cross-correlation function enables one to see qualitative changes of eruptive activity at a glance. This method is particularly useful when available sensors are limited, and will extend the utility of a single microphone and seismometer in monitoring volcanic activity.

  18. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Zhang, Rui; Liu, Gang; Jia, Zhige; Wang, Dijin; Zhou, Yu; Lin, Mu

    2016-12-01

    High-rate global navigation satellite systems (GNSS) can potentially be used as seismometers to capture short-period instantaneous dynamic deformation waves from earthquakes. However, the performance and seismic phase recognition of the GNSS seismometer in the real-time mode, which plays an important role in GNSS seismology, are still uncertain. By comparing the results of accuracy and precision of the real-time solution using a shake table test, we found real-time solutions to be consistent with post-processing solutions and independent of sampling rate. In addition, we analyzed the time series of real-time solutions for shake table tests and recent large earthquakes. The results demonstrated that high-rate GNSS have the ability to retrieve most types of seismic waves, including P-, S-, Love, and Rayleigh waves. The main factor limiting its performance in recording seismic phases is the widely used 1-Hz sampling rate. The noise floor also makes recognition of some weak seismic phases difficult. We concluded that the propagation velocities and path of seismic waves, macro characteristics of the high-rate GNSS array, spatial traces of seismic phases, and incorporation of seismographs are all useful in helping to retrieve seismic phases from the high-rate GNSS time series.

  19. Sensor Emplacement Techniques and Seismic Noise Analysis for USArray Transportable Array Seismic Stations

    NASA Astrophysics Data System (ADS)

    Busby, Robert; Frassetto, Andy; Hafner, Katrin; Woodward, Robert; Sauter, Allan

    2013-04-01

    In preparation for deployment of EarthScope's USArray Transportable Array (TA) in Alaska beginning in 2014, the National Science Foundation (NSF) is supporting exploratory work on seismic station design, sensor emplacement and communication concepts appropriate for the challenging high-latitude environment that is proposed for deployment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and the lower-48 U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the northern tundra. In this study we review our methods used for directly emplacing of broadband seismometers in comparison to the current methods used to deploy TA stations. These primarily focus on using an auger to drill three to five meters, beneath the active layer of the permafrost, or coring directly into surface bedrock to one meter depth using a portable drill. Both methods have proven logistically effective in trials. Subsequent station performance can be quantitatively assessed using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations equals or exceeds that of the quietest TA stations in the lower-48, particularly at long periods, and in exceptional cases approaches the performance of the GSN low noise model. The station at Poker Flat Research Range, Alaska co-locates a sensor in a 5 meter deep auger hole with a 2 meter deep TA tank installation typical of the lower-48. The augered seismometer is currently over 20 dB quieter at periods over 40 seconds than the TA tank installation. Similar performance has been observed at other TA stations, which also compare favorably to co-located permanent stations.

  20. Posthole Sensor Performance in the USArray Transportable Array - Results from Testing and Initial Deployments in Alaska and Canada

    NASA Astrophysics Data System (ADS)

    Frassetto, A.; Busby, R. W.; Hafner, K.; Sauter, A.; Woodward, R.

    2014-12-01

    To prepare for the deployment of EarthScope's USArray Transportable Array (TA) in Alaska and adjacent Canada over the next several years, IRIS has evaluated different strategies for emplacing posthole seismometers. The goal of this work has been to maintain or enhance a TA station's noise performance while reducing the weight and logistical considerations required for its installation. Motivating this research are developments in posthole broadband seismometer design and the unique conditions for operating in this region, where many potential sites are located on frost-fractured outcrops or underlain by permafrost, in either case only accessible by helicopter. Current emplacement methods use a portable rig to auger or hammer-drill a hole 2.5-5 meters deep, in unconsolidated materials and permafrost, or by diamond bit coring 1-3 meters into rock. These emplacements are used at new TA installations and upgrades to existing AK network stations, and we compare their performance to the lower-48 TA vault installations. Through July 2014 there are eight TA and six upgraded AK stations operating under USArray; including five since at least October 2012, providing a detailed record of seasonal and/or site-specific behavior. We also discuss testing of different downhole configurations for 13 stations deployed at Piñon Flat Observatory in California since April 2014. Station performance is presented and compared using probability density functions summed from hourly power spectral density calculations. These are computed for the continuous time series of seismic data recorded on each seismic channel. Our results show that the noise performance of seismometers in Alaska with cased- or core- hole installations sometimes exceeds that of the quietest TA stations in the lower-48, particularly for the horizontal channels at long periods. We analyze and discuss the performance of example stations, comparing to other nearby seismometers. We also examine the performance of AK stations before and after they have been converted from surface vault to posthole configuration. At Piñon Flat, different methods for packing the seismometer and clamping its cables within cased holes has guided development of field procedure. The new posthole emplacements generally improve upon the mean performance of the lower-48 TA vaults.

  1. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    NASA Astrophysics Data System (ADS)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic waves. Owing to the less attenuation of low frequency waves, advanced signals mainly ranged between 2 and 10 Hz were detected in several minutes prior to the arrival of the main surge of a debris flow. As the results, the prior time of the advanced signals could be used not only to extend the warning time, but also to identify the initial location of a developing debris flow.

  2. A new class of monolithic seismometers and accelerometers for commercial and industrial applications: the UNISA folded pendulum

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.

    2017-04-01

    In this paper we present monolithic implementations of tunable mechanical seismometers and accelerometers (horizontal, vertical and angular) based on the UNISA Folded Pendulum configuration, protected by three international patents and commercially available. Typical characteristics are measurement band 10-7 / 1kHz, sensitivity down to ≍ 10-15 m/ √ Hz, directivity > 104, weight < 1.5 kg, dimensions < 10 cm, coupled to a large insensitivity to environmental noises and capability of operating in ultra high vacuum and cryogenic environments. Typical applications of this class of sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering (buildings, bridges, dams, etc.), space (inertial guide).

  3. Mineral resources of the Cabinet Mountains Wilderness, Lincoln and Sanders Counties, Montana

    USGS Publications Warehouse

    Lindsey, David A.; Wells, J.D.; Van Loenen, R. E.; Banister, D.P.; Welded, R.D.; Zilka, N.T.; Schmauch, S.W.

    1978-01-01

    This report describes the differential array, of seismometers recently installed at the Hollister, California, Municipal Airport. Such an array of relatively closely spaced seismometers has already been installed in El Centro and provided useful information for both engineering and seismological applications from the 1979 Imperial Valley earthquake. Differential ground motions, principally due to horizontally propagating surface waves, are important in determining the stresses in such extended structures as large mat foundations for nuclear power stations, dams, bridges and pipelines. Further, analyses of the records of the 1979 Imperial Valley earthquake from the differential array have demonstrated the utility of short-baseline array data in tracking the progress of the rupture wave front of an earthquake.

  4. Accurate ocean bottom seismometer positioning method inspired by multilateration technique

    USGS Publications Warehouse

    Benazzouz, Omar; Pinheiro, Luis M.; Matias, Luis M. A.; Afilhado, Alexandra; Herold, Daniel; Haines, Seth S.

    2018-01-01

    The positioning of ocean bottom seismometers (OBS) is a key step in the processing flow of OBS data, especially in the case of self popup types of OBS instruments. The use of first arrivals from airgun shots, rather than relying on the acoustic transponders mounted in the OBS, is becoming a trend and generally leads to more accurate positioning due to the statistics from a large number of shots. In this paper, a linearization of the OBS positioning problem via the multilateration technique is discussed. The discussed linear solution solves jointly for the average water layer velocity and the OBS position using only shot locations and first arrival times as input data.

  5. Broadband Seismometers with Electrochemical Motion Sensors: Past, Present, Future.

    NASA Astrophysics Data System (ADS)

    Abramovich, I. A.; Kharlamov, A. V.

    2004-05-01

    First conceived in the fifties, electrochemical seismic sensors (ESS), despite their many attractive features, until relatively recently could not compete successfully with traditional electromechanical instruments. ESS are characterized by ruggedness, low to extremely low power consumption, no need in any maintenance (mass locking and centering), ability to operate normally at large installation tilts. The main shortcoming was ESS insuffi-cient parameter stability and limited dynamic range. The only way to overcome these deficiencies was to introduce a force-balancing feedback. A seemingly more suitable (both physics- and design-wise ) magnetohydrodynamic feedback was thorough investigated and while provided for adequate stability, proved highly ineffective in expanding the dy-namic range on higher frequencies. Finally, after many unsuccessful attempts, we man-aged to incorporate an electrodynamic feedback which solved both problems. In order to enable using such a feedback it was necessary to completely re-evaluate the hydrodynamic and electrochemical properties of the motion sensor and work around numerous parasitic effects which required re-evaluation of the sensor's mathematical model and exhaustive experimentation. This work resulted in the development of a family of high-performance seismometers. Further R&D effort is two-fold: improvement of the present sensors and development of a broadband seismometer with noise below the NLNM across the whole passband.

  6. Otoliths - Accelerometer and seismometer; Implications in Vestibular Evoked Myogenic Potential (VEMP).

    PubMed

    Grant, Wally; Curthoys, Ian

    2017-09-01

    Vestibular otolithic organs are recognized as transducers of head acceleration and they function as such up to their corner frequency or undamped natural frequency. It is well recognized that these organs respond to frequencies above their corner frequency up to the 2-3 kHz range (Curthoys et al., 2016). A mechanics model for the transduction of these organs is developed that predicts the response below the undamped natural frequency as an accelerometer and above that frequency as a seismometer. The model is converted to a transfer function using hair cell bundle deflection. Measured threshold acceleration stimuli are used along with threshold deflections for threshold transfer function values. These are compared to model predicted values, both below and above their undamped natural frequency. Threshold deflection values are adjusted to match the model transfer function. The resulting threshold deflection values were well within in measure threshold bundle deflection ranges. Vestibular Evoked Myogenic Potentials (VEMPs) today routinely uses stimulus frequencies of 500 and 1000 Hz, and otoliths have been established incontrovertibly by clinical and neural evidence as the stimulus source. The mechanism for stimulus at these frequencies above the undamped natural frequency of otoliths is presented where otoliths are utilizing a seismometer mode of response for VEMP transduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detection and interpretation of seismoacoustic events at German infrasound stations

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Koch, Karl; Ceranna, Lars

    2016-04-01

    Three infrasound arrays with collocated or nearby installed seismometers are operated by the Federal Institute for Geosciences and Natural Resources (BGR) as the German National Data Center (NDC) for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Infrasound generated by seismoacoustic events is routinely detected at these infrasound arrays, but air-to-ground coupled acoustic waves occasionally show up in seismometer recordings as well. Different natural and artificial sources like meteoroids as well as industrial and mining activity generate infrasonic signatures that are simultaneously detected at microbarometers and seismometers. Furthermore, many near-surface sources like earthquakes and explosions generate both seismic and infrasonic waves that can be detected successively with both technologies. The combined interpretation of seismic and acoustic signatures provides additional information about the origin time and location of remote infrasound events or about the characterization of seismic events distinguishing man-made and natural origins. Furthermore, seismoacoustic studies help to improve the modelling of infrasound propagation and ducting in the atmosphere and allow quantifying the portion of energy coupled into ground and into air by seismoacoustic sources. An overview of different seismoacoustic sources and their detection by German infrasound stations as well as some conclusions on the benefit of a combined seismoacoustic analysis are presented within this study.

  8. Lithospheric Shear Velocity Structure of South Island, New Zealand from Rayleigh Wave Tomography of Amphibious Array Data

    NASA Astrophysics Data System (ADS)

    Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.

    2015-12-01

    We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.

  9. Sensor Emplacement Techniques and Seismic Noise Analysis for USArray Transportable Array Seismic Stations

    NASA Astrophysics Data System (ADS)

    Frassetto, A.; Busby, R. W.; Hafner, K.; Woodward, R.; Sauter, A.

    2013-12-01

    In preparation for the upcoming deployment of EarthScope's USArray Transportable Array (TA) in Alaska, the National Science Foundation (NSF) has supported exploratory work on seismic station design, sensor emplacement, and communication concepts appropriate for this challenging high-latitude environment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and in the lower-48 of the U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the weight of the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the state. We will review the methods used for directly emplacing broadband seismometers in comparison to the current methods used for the lower-48 TA. These new methods primarily focus on using a portable drill to make a bored hole three to five meters, beneath the active layer of the permafrost, or by coring 1-2 meters deep into surface bedrock. Both methods are logistically effective in preliminary trials. Subsequent station performance has been assessed quantitatively using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations can sometimes exceed that of the quietest TA stations in the lower-48, particularly horizontal components at long periods. A comparison of the performance of the various installations is discussed.

  10. Optical Mass Displacement Tracking: A simplified field calibration method for the electro-mechanical seismometer.

    NASA Astrophysics Data System (ADS)

    Burk, D. R.; Mackey, K. G.; Hartse, H. E.

    2016-12-01

    We have developed a simplified field calibration method for use in seismic networks that still employ the classical electro-mechanical seismometer. Smaller networks may not always have the financial capability to purchase and operate modern, state of the art equipment. Therefore these networks generally operate a modern, low-cost digitizer that is paired to an existing electro-mechanical seismometer. These systems are typically poorly calibrated. Calibration of the station is difficult to estimate because coil loading, digitizer input impedance, and amplifier gain differences vary by station and digitizer model. Therefore, it is necessary to calibrate the station channel as a complete system to take into account all components from instrument, to amplifier, to even the digitizer. Routine calibrations at the smaller networks are not always consistent, because existing calibration techniques require either specialized equipment or significant technical expertise. To improve station data quality at the small network, we developed a calibration method that utilizes open source software and a commonly available laser position sensor. Using a signal generator and a small excitation coil, we force the mass of the instrument to oscillate at various frequencies across its operating range. We then compare the channel voltage output to the laser-measured mass displacement to determine the instrument voltage sensitivity at each frequency point. Using the standard equations of forced motion, a representation of the calibration curve as a function of voltage per unit of ground velocity is calculated. A computer algorithm optimizes the curve and then translates the instrument response into a Seismic Analysis Code (SAC) poles & zeros format. Results have been demonstrated to fall within a few percent of a standard laboratory calibration. This method is an effective and affordable option for networks that employ electro-mechanical seismometers, and it is currently being deployed in regional networks throughout Russia and in Central Asia.

  11. Multifrequency tomography of the La Reunion mantle plume with P and S waves using ocean bottom seismometers in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsekhmistrenko, M.; Sigloch, K.; Hosseini, K.

    2017-12-01

    The RHUM-RUM experiment (Reunion Hotspot Upper Mantle - Reunions Unterer Mantel) investigates the presence or absence of a whole mantle plume beneath the volcanic hotspot island of La Reunion. From 2011 to 2016, RHUM-RUM instrumented a 2000 km x 2000 km area of western Indian Ocean seafloor, islands and Madagascar with broadband seismometers and hydrophones. The central component was a 13-month deployment of 57 German and French Ocean Bottom Seismometers (OBS) in 2300-5600 m depth. This was supplemented by 2-3 years deployments of 37 island stations on Reunion, Mauritius, Rodrigues, the southern Seychelles, the Iles Eparses and southern Madagascar. Two partner projects contributed another 30+ stations on Madagascar. We present results of multifrequency P- and S-waveform tomography of the entire mantle column beneath the Reunion hotspot. We use all frequency passbands that efficiently transmit body waves and rise above the considerable noise floor of OBS measurements. More than 200 teleseismic events during the 13-month long OBS deployment yielded usable measurements, and another 400 events before and after. We present our methods, discuss data yield and quality of ocean-bottom versus island/land seismometers and hydrophones. 150,000 combined cross-correlations measurements were used in multifrequency P-wave tomography, in passbands between 30 s and 2.7 s dominant period. Cross-correlation coefficients at permanent and temporal land stations are generally higher than on OBS, which are more affected by both microseismic and self-noise. Hydrophones worked more reliably, but strong reverberations from the water column mean that they are still less usable than seismograms. All measurements of the RHUM-RUM array are embedded in a global P-wave inversion. Mantle structures obtained from this new, high resolution tomographic model of the La Reunion area are compared to existing tomographies. We also compare to local and global convection models in order to understand the relation between mantle flow and the development of mantle plumes through time.

  12. Passive microseismic monitoring at an Australian CO2 geological storage site

    NASA Astrophysics Data System (ADS)

    Siggins, Anthony

    2010-05-01

    Passive microseismic monitoring at an Australian CO2 geological storage site A.F. Siggins1 and T. Daley2 1. CO2CRC at CSIRO Earth Science and Resource Engineering, Clayton, Victoria, Australia 2. Lawrence Berkeley National Labs, Berkeley, CA, USA Prior to the injection of CO2, background micro-seismic (MS) monitoring commenced at the CO2CRC Otway project site in Victoria, south-eastern Australia on the 4th of October 2007. The seismometer installation consisted of a solar powered ISS MS™ seismometer connected to two triaxial geophones placed in a gravel pack in a shallow borehole at 10m and 40 m depth respectively. The seismometer unit was interfaced to a digital radio which communicated with a remote computer containing the seismic data base. This system was designed to give a qualitative indication of any natural micro-seismicity at the site and to provide backup to a more extensive geophone array installed at the reservoir depth of approximately 2000m. During the period, October to December 2007 in excess of 150 two-station events were recorded. These events could all be associated with surface engineering activities during the down-hole installation of instruments at the nearby Naylor 1 monitoring well and surface seismic weight drop investigations on site. Source location showed the great majority of events to be clustered on the surface. MS activity then quietened down with the completion of these tasks. Injection of a CO2 rich gas commenced in mid March 2008 continuing until late August 2009 with approximately 65,000 tonnes being injected at 2050m depth in to a depleted natural gas formation. Only a small number of subsurface MS events were recorded during 2008 although the monitoring system suffered from long periods of down-time due to power supply failures and frequent mains power outages in the region. In March 2009 the surface installation was upgraded with new hardware and software. The seismometer was replaced with a more sensitive ISS 32-bit GS™ unit. Internet access to the monitoring system and data base was then established with a Telstra Next G connection. Due to the higher sensitivity of the seismometer, many more low amplitude sub-surface events are now being recorded, possibly associated with deep truncated faults in the south west corner of the injection site although any causal link with the CO2 injection remains to be determined.

  13. A broad-band microseismometer for planetary operations

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Vanzandt, T.; Kaiser, W. J.; Kenny, T. W.

    1993-01-01

    There has recently been renewed interest in the development of instrumentation for making measurements on the surface of Mars. This is due to the Mars Environmental Survey (MESUR) Mission, for which approximately 16 small, long-lived (2-10 years), relatively inexpensive surface stations will be deployed in a planet-wide network. This will allow the investigation of processes (such as seismology and meteorology) which require the simultaneous measurement of phenomena at many widely spaced locations on the surface over a considerable length of time. Due to the large number of vehicles involved, the mass, power, and cost of the payload will be severely constrained. A seismometer has been identified as one of the highest priority instruments in the MESUR straw-man payload. The requirements for an effective seismic experiment on Mars place a number of constraints on any viable sensor design. First, a large number of sensors must be deployed in a long-lived global network in order to be able to locate many events reliably, provide good spatial sampling of the interior, and increase the probability of seismic detection in the event of localized seismicity and/or high attenuation. From a practical standpoint, this means that individual surface stations will necessarily be constrained in terms of cost, mass, and power. Landing and thermal control systems will probably be simple, in order to minimize cost, resulting in large impact accelerations and wide daily and seasonal thermal swings. The level of seismic noise will determine the maximum usable sensitivity for seismometer. Unfortunately, the ambient seismic noise level for Mars is not well known. However lunar seismic noise levels are several orders of magnitude below that of the Earth. Sensitivities on the order of 10(exp -11)g over a bandwidth of .04 to 20 Hz are thought to be necessary to fulfill the science objectives for a seimometer placed on the Martian surface. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, lower power and mass accelerometers. Conventional micro-machined accelerometers have been developed and are commercially available for high frequency and large acceleration measurements. The new seismometer we are developing incorporates certain principles of conventional silicon micromachined accelerometer technology. However, currently available silicon micromachined sensors offer inadequate sensitivity and bandwidth for the Mars seismometer application. Our implementation of an advanced silicon micromachined seismometer is based on principles recently developed at JPL for high-sensitivity position sensor technology.

  14. Background noise model development for seismic stations of KMA

    NASA Astrophysics Data System (ADS)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  15. Seismometer reading from impact made by Lunar Module ascent stage

    NASA Image and Video Library

    1969-11-20

    S69-59547 (20 Nov. 1969) --- The seismometer reading from the impact made by the Lunar Module ascent stage when it struck the lunar surface. The impact was registered by the Passive Seismic Experiment Package which was deployed on the moon by the Apollo 12 astronauts. PSEP, which is a component of the Apollo Lunar Surface Experiments Package, will detect surface tilt produced by tidal deformations, moonquakes, and meteorite impacts. The LM's ascent stage was jettisoned and sent journeying toward impact on the moon after astronauts Charles Conrad Jr. and Alan L. Bean returned to lunar orbit and rejoined astronaut Richard F. Gordon Jr. in the Command and Service Modules. Information from the PSEP is transmitted to Earth through the ALSEP's central station and monitored by equipment at the Manned Spacecraft Center.

  16. Cutaway of SEIS (Artist's Concept)

    NASA Image and Video Library

    2018-04-09

    This artist's rendering shows a cutaway of the Seismic Experiment for Interior Structure instrument, or SEIS, which will fly as part of NASA's Mars InSight lander. SEIS is a highly sensitive seismometer that will be used to detect marsquakes from the Red Planet's surface for the first time. There are two layers in this cutaway. The outer layer is the Wind and Thermal Shield -- a covering that protects the seismometer from the Martian environment. The wind on Mars, as well as extreme temperature changes, could affect the highly sensitive instrument. The inside layer is SEIS itself, a brass-colored dome that houses the instrument's three pendulums. These insides are inside a titanium vacuum chamber to further isolate them from temperature changes on the Martian surface. https://photojournal.jpl.nasa.gov/catalog/PIA22320

  17. Laser-Interferometric Broadband Seismometer for Epicenter Location Estimation

    PubMed Central

    Lee, Kyunghyun; Kwon, Hyungkwan; You, Kwanho

    2017-01-01

    In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal (Iy) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results. PMID:29065515

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Bob; Laughlin, Darren

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less

  19. The DIAS Outreach Seismology in Schools (Seismeolaí­ocht sa Scoil) Pilot Programme

    NASA Astrophysics Data System (ADS)

    Blake, T.; Jones, A. G.; Campbell, G.

    2008-12-01

    Ireland has technology to thank for the 'Celtic Tiger' Revolution, yet over the last half decade fewer and fewer Irish students are completing high school with a science focus. To counter this trend, and to ensure a supply of Irish geophysicists for the future, it is important to engage and fascinate young minds with the wonders of physics and of the Earth we live on. The Geophysics Section of the School of Cosmic Physics in the Dublin Institute for Advanced Studies (DIAS) has been running an Outreach programme for some years, but there was a more general public orientation to the programme. In an effort to bring DIAS's science directly to the schools, we have launched a pilot programme, coincidentally and fortuitously during the International Year of Planet Earth (IYPE), in Seismology in Schools (Seismeolaíocht sa Scoil) that introduces young students to the world of seismology and earthquake research. The launch of DIAS's Seismology in Schools programme has been aided considerably through IRIS's (The Incorporated Institutes for Research Seismology) contributions of their AMASEIS software, that is used to display the data output from the seismometer, and educational posters and demonstration software used to teach Earth Science to students, and through BGS's design and development of the educational seismometer, which is a Lehman pattern horizontal motion seismometer using a garden-gate offset suspension pendulum. Initially, we planned for a very tentative pilot with just two seismometers rotating around local schools, but the Directors of the Educational Centres across Ireland (ATECI, Association of Teachers/Education Centres in Ireland) have become key players in this pilot by purchasing a further 34 seismometers and promoting this initiative among their school. In addition, Geological Survey of Ireland (GSI) has purchased a further four seismometers as part of their contribution to IYPE. Currently 36 schools are participating in the enlarged pilot programme; 18 primary schools, 17 secondary schools and one vocational training scheme. In primary schools the focus is with 5th and 6th year class projects. In the secondary school system, the pilot programme is seen as an excellent Transition Year (aged 16) project. We have held "Train the Teacher" Workshops in April-May 2008, with the assistance of the Education Centres throughout the country, to roll out the pilot programme across Ireland. A maximum of ten teachers attended each training workshop, which included primary and secondary school teachers of both Physics and Geography. During the academic year 2008-2009 the students at the 36 schools will work with earthquake data, use the educational software and generally becoming more aware of the Earth as a dynamic planet. Teachers and students will implement a programme of reporting on the earthquakes they record throughout the year to DIAS and initiate the exchange of earthquake data between participating schools in Ireland by use of the internet. The pilot will continue until April 2009 when a final report will be written to evaluate the success and future direction of the initiative. Based on the overwhelming interest shown to date, we envisage enlarging the programme further and working toward twinning the Schools with counterparts around the world. The pilot programme is funded by internal DIAS funds and also by a grant from the government agency DSE (Discover Science & Engineering).

  20. Earthquake Facts

    MedlinePlus

    ... recordings of large earthquakes, scientists built large spring-pendulum seismometers in an attempt to record the long- ... are moving away from one another. The first “pendulum seismoscope” to measure the shaking of the ground ...

  1. Development of a Lunar Borehole Seismometer

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Siegler, M.; Malin, P. E.; Passmore, K.; Zacny, K.; Avenson, B.; Weber, R. C.; Schmerr, N. C.; Nagihara, S.

    2017-12-01

    Nearly all seismic stations on Earth are buried below the ground. Burial provides controlled temperatures and greater seismic coupling at little cost. This is also true on the Moon and other planetary bodies. Burial of a seismometer under just 1 meter of lunar regolith would provide an isothermal environment and potentially reduce signal scattering noise by an order of magnitude. Here we explain how we will use an existing NASA SBIR and PIDDP funded subsurface heat flow probe deployment system to bury a miniaturized, broadband, optical seismometer 1 meter below the lunar surface. The system is sensitive, low mass and low power. We believe this system offers a compelling architecture for NASA's future seismic exploration of the solar system. We will report on a prototype 3-axis, broadband seismometer package that has been tested under low pressure conditions in lunar-regolith simulant. The deployment mechanism reaches 1m depth in less than 25 seconds. Our designed and tested system: 1) Would be deployed at least 1m below the lunar surface to achieve isothermal conditions without thermal shielding or heaters, increase seismic coupling, and decrease noise. 2) Is small (our prototype probe is a cylinder 50mm in diameter, 36cm long including electronics, potentially as small as 10 cm with sensors only). 3) Is low-mass (each sensor is 0.1 kg, so an extra redundancy 4-component seismograph plus 1.5 kg borehole sonde and recorder weighs less than 2 kg and is feasibly smaller with miniaturized electronics). 4) Is low-power (our complete 3-sensor borehole seismographic system's power consumption is about half a Watt, or 7% of Apollo's 7.1 W average and 30% of the InSight SEIS's 1.5W winter-time heating system). 5) Is broadband and highly sensitive (the "off the shelf" sensors have a wide passband: 0.005-1000 Hz - and high dynamic range of 183 dB (or about 10-9g Hz-1/2, with hopes for simple modifications to be at least an order of magnitude better). Burial also aids the sensitivity, by decreasing scattered noise through the upper, extremely low density lunar regolith.

  2. Installation of seafloor cabled seismic and tsunami observation system developed by using ICT

    NASA Astrophysics Data System (ADS)

    Shinohara, M.

    2016-12-01

    A seafloor cabled system is useful for study of earth science and disaster mitigation, because real-time and long-term observation can be performed. Therefore seafloor cabled systems with seismometers and tsunami-meters have been used over the past 25 years around Japan. Because increase of a number of sensors is needed, a new system with low costs for production, deployment and operation is expected. In addition, the new system should have sufficient for flexibility of measurements after installation. To achieve these demands, we started development of a new system using Information and Communication Technologies (ICT) for data transmission and system control. The new system can be made compact since software processes various measurements. Reliability of the system is kept by using redundant system which is easily constructed using the ICT. The first system based on this concept was developed as Ocean Bottom Cabled Seismometer (OBCS) system and deployed in Japan Sea. Development of the second system started from 2012. The Ocean Bottom Cabled Seismometer and tsunami-meter (OBCST) system has both seismometers and tsunami-meters. Each observation node has an CPU and FPGAs. The OBCST system uses standard TCP/IP protocol with a speed of 1 Gbps for data transmission, system control and monitoring. IEEE-1588 (PTP) is implemented to synchronize a real-time clock, and accuracy is less than 300 ns. We developed two types of observation node. One equips a pressure gauge as tsunami sensor, and another has an external port for additional observation sensor using PoE. Deployment of the OBCST system was carried out in September 2015 by using a commercial telecommunication cable ship. The noise levels at the OBCST system are comparable to those at the existing cabled system off Sanriku. It is found that the noise levels at the OBCST system are low at frequencies greater than 2 Hz and smaller than 0.1 Hz. This level of ambient seismic noise is close to a typical system noise. From the pressure data, pressure gauge has a resolution of less than 1 hPa, which corresponds to a change of water height of less than 1 cm, and data from all the pressure gauges are consistent.

  3. Improving the resolution of the 2010 Haiti earthquake fault geometry using temporary seismometer deployments

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Haase, J. S.; Ellsworth, W. L.; Bouin, M.; Calais, E.; Armbruster, J. G.; Mercier De Lepinay, B. F.; Deschamps, A.; Saint Louis, M.; Meremonte, M. E.; Hough, S. E.

    2011-12-01

    Haiti has several active faults that are capable of producing large earthquakes such as the 2010 Mw 7.0 Haiti earthquake. This earthquake was not unexpected, given geodetic measurements showing strain accumulation on the Enriquillo Plantain Garden Fault Zone, the major fault system in southern Haiti (Manaker et al. 2008). GPS and INSAR data (Calais et al., 2010) show, however, that this rupture occurred on the previously unmapped Léogâne fault, a 60° north dipping oblique blind thrust located immediately north of the Enriquillo Fault. Following the earthquake, several groups installed temporary seismic stations to record aftershocks. Natural Resources Canada installed three broadband seismic stations, Géoazur installed 21 ocean bottom seismometers, L'Institut de Physique du Globe de Paris installed 5 broadband seismometers, and the United States Geological Survey deployed 17 short period and strong motion seismometers in and around Port-au-Prince. We use data from this complete set of stations, along with data from permanent regional stations, to relocate all of the events from March 17 to June 24, to determine the regional one-dimensional crustal structure and determine focal mechanisms. The aftershock locations from the combined data set clearly delineate the Léogâne fault. The strike and dip closely agrees with that of the global centroid moment tensor solution, but appears to be more steeply dipping than the finite fault inversions. The aftershocks also delineate a flat structure on the west side of the rupture zone and may indicate triggered seismicity on the Trois Baies fault, although the depths of these events are not as well constrained. There is no clear evidence for aftershocks on the other rupture segments inferred in the Hayes et al. (2010) mainshock rupture model. There is a cluster of aftershocks in the hanging wall near the western patch of high slip identified by Calais et al. (2010) and Meng et al. (2011), or central patch in the Hayes et al. (2010) model. We use first-motion focal mechanism solutions to clarify the relationship of the fault geometry to the mechanisms of the larger events.

  4. Detection of Repeating Earthquakes within the Cascadia Subduction Zone Using 2013-2014 Cascadia Initiative Amphibious Network Data

    NASA Astrophysics Data System (ADS)

    Kenefic, L.; Morton, E.; Bilek, S.

    2017-12-01

    It is well known that subduction zones create the largest earthquakes in the world, like the magnitude 9.5 Chile earthquake in 1960, or the more recent 9.1 magnitude Japan earthquake in 2011, both of which are in the top five largest earthquakes ever recorded. However, off the coast of the Pacific Northwest region of the U.S., the Cascadia subduction zone (CSZ) remains relatively quiet and modern seismic instruments have not recorded earthquakes of this size in the CSZ. The last great earthquake, a magnitude 8.7-9.2, occurred in 1700 and is constrained by written reports of the resultant tsunami in Japan and dating a drowned forest in the U.S. Previous studies have suggested the margin is most likely segmented along-strike. However, variations in frictional conditions in the CSZ fault zone are not well known. Geodetic modeling indicates that the locked seismogenic zone is likely completely offshore, which may be too far from land seismometers to adequately detect related seismicity. Ocean bottom seismometers, as part of the Cascadia Initiative Amphibious Network, were installed directly above the inferred seismogenic zone, which we use to better detect small interplate seismicity. Using the subspace detection method, this study looks to find new seismogenic zone earthquakes. This subspace detection method uses multiple previously known event templates concurrently to scan through continuous seismic data. Template events that make up the subspace are chosen from events in existing catalogs that likely occurred along the plate interface. Corresponding waveforms are windowed on the nearby Cascadia Initiative ocean bottom seismometers and coastal land seismometers for scanning. Detections that are found by the scan are similar to the template waveforms based upon a predefined threshold. Detections are then visually examined to determine if an event is present. The presence of repeating event clusters can indicate persistent seismic patches, likely corresponding to areas of stronger coupling. This work will ultimately improve the understanding of CSZ fault zone heterogeneity. Preliminary results gathered indicate 96 possible new events between August 2, 2013 and July 1, 2014 for four target clusters off the coast of northern Oregon.

  5. Telepresence teacher professional development for physics and math constructs focused on US and Thai classrooms' TC-1 slinky seismometer networks

    NASA Astrophysics Data System (ADS)

    Livelybrooks, D.; Parris, B. A.; Cook, A.; Kant, M.; Wogan, N.; Zeryck, A.; Tulyatid, D.; Toomey, D. R.

    2015-12-01

    As part of the Broader Impacts of the Cascadia Initiative, a seismic study of the Cascadia margin, and the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) collaboration we have developed school- and museum/library-based networks of TC-1 educational seismometers. The TC-1 is constructed such that its 'guts' are visible through an transparent acrylic outer cylinder, thus it is an excellent demonstration of how fundamental physics constructs can be leveraged to design and operate a vertical-channel seismometer capable of recording signals from large earthquakes world-wide. TC-1 (aka 'slinky seismometer') networks therefore serve as the application for projects-based learning (PBL) physics and data science instruction in Oregon and Thai classrooms. The TC-1 acts as a simple harmonic oscillator, employing electromagnetic induction of a moving magnet within a wire coil. Movement of the lower magnet within an electrically conductive pipe dampens motion such that P-, S- and Surface wave phases can be identified. Further, jAmaSeis software can be configured to simultaneously show live signals from three TC-1s and has tools necessary to pick phases for earthquake signals and, thus, locate earthquake epicenters. Leveraging a long-standing collaboration between the Royal Thai Distance Learning Foundation and the University of Oregon, we developed five, 2-hour, two-way teacher professional development sessions that were transmitted live to Thai K-12 teachers and others starting mid-August, 2015. As an example, one session emphasized hands-on activities to analyze the effect of spring stiffness, inertial mass and initial displacement on the resonance frequency of a simple oscillator. Another pedagogical goal was to elucidate how math is important to understanding the analysis of seismic data, for example, how cross-correlation is useful for distinguishing between genuine earthquake signals and, say, a truck rolling by a TC-1 station. UO graduate and undergraduate physics majors played critical roles in this outreach effort. We will report on: lessons learned around developing and staging international outreach sessions; how outreach development impacted UO students; and how this teacher professional development was received by our Thai colleagues.

  6. Promoting seismology education through collaboration between university research scientists and school teachers

    NASA Astrophysics Data System (ADS)

    Brunt, M. R.; Ellins, K. K.; Boyd, D.; Mote, A. S.; Pulliam, J.; Frohlich, C. A.

    2012-12-01

    Participation in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development project paved the way for several teachers to receive educational seismometers and join the IRIS Seismograph in Schools program. This, in turn, has led to secondary school teachers working with university seismologists on research projects. Examples are the NSF-EarthScope SIEDCAR (Seismic Investigation of Edge Driven Convection Associated with the Rio Grande Rift) project; field studies to compile felt-reports for Texas earthquakes, some which may have been induced by human activities; and a seismic study of the Texas Gulf Coast to investigate ocean-continent transition processes along a passive margin. Such collaborations are mutually beneficial in nature. They help scientists to accomplish their research objectives, involve teachers and their students in the authentic, inquiry-based science, promote public awareness of such projects, and open the doors to advancement opportunities for those teachers involved. In some cases, bringing together research scientists and teachers results in collaborations that produce publishable research. In order to effectively integrate seismology research into 7-12 grade education, one of us (Brunt) established the Eagle Pass Junior High Seismology Team in connection with IRIS Seismograph in Schools, station EPTX (AS-1 seismograph), to teach students about earthquakes using authentic real-time data. The concept has sparked interest among other secondary teachers, leading to the creation of two similarly organized seismology teams: WPTX (Boyd, Williams Preparatory School, Dallas) and THTX (Mote, Ann Richards School for Young Women Leaders, Austin). Although the educational seismometers are basic instruments, they are effective educational tools. Seismographs in schools offer students opportunities to learn how earthquakes are recorded and how modern seismometers work, to collect and interpret seismic data, and to experiment with ground shaking. Recognizing this value, researchers in Texas have proposed to create, maintain and promote a Texas Educational Seismic Network (TESN) as a legacy of the NSF-funded EarthScope program. If funding is obtained, 15 educational seismometers will be added to the existing network of 12 to include more university and two-year college (2YC) faculty, and secondary teachers as operators. University operators would partner with and support nearby secondary and 2YC operators.

  7. GONAF - A borehole Geophysical Observatory around the North Anatolian Fault in the Eastern Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Dresen, Georg; Ceken, Ulubey; Tuba Kadarioglu, Filiz; Feyiz Kartal, Recai; Kilic, Tugbay; Nurlu, Murat; Yanik, Kenan; Acarel, Digdem; Bulut, Fatih; Ito, Hisao; Johnson, Wade; Malin, Peter Eric; Mencin, Dave

    2017-04-01

    The Marmara section of the North Anatolian Fault Zone (NAFZ) runs under water and is located less than 20 km from the 15-million-person population center of Istanbul at its eastern portion. Based on historical seismicity data, recurrence times forecast an impending magnitude M>7 earthquake for this region. The permanent GONAF Geophysical Observatory at the North Anatolian Fault has been installed around this section to help capture the seismic and strain activity preceding, during, and after such an anticipated event. The GONAF observatory is currently comprised of seven 300 m deep vertical seismic profiling stations and four collocated 100 m deep borehole strainmeters. Five of the stations are located on the land surrounding the Princes Islands segment below the eastern Sea of Marmara and two are on the near-fault Princes Islands south of Istanbul. The 300 m boreholes have 1, 2, and 15 Hz 3-C seismometers near their bottoms. Above this are vertical, 1 Hz, seismometers at 210, 140, and 70 m depths. The strainmeter boreholes are located within a few meters of the seismometer boreholes and contain horizontal strain tensor sensors and 2 Hz 3-C seismometers at their bottoms. This selection of instruments and depths was done so as to ensure high-precision and broad-frequency earthquake monitoring and vertical profiling, all under low-noise conditions. GONAF is the first ICDP-driven project with a primarily focus on long-term monitoring of fault-zone dynamics. It has already contributed to earthquake hazard studies in the Istanbul area in several ways. Combining GONAF recordings with existing regional seismic stations now allows monitoring of the NAFZ offshore Istanbul down to magnitudes M<0. GONAF also improves the resolution of earthquake hypocenters and source parameters, better defining local fault branches, their seismicity, and earthquake potential. Using its vertical distribution of sensors, it has directly measured depth-dependent seismic site-effects for ground shaking studies. GONAF is starting to address fundamental questions related to earthquake nucleation, rupture dynamics, temporal changes of material properties and strain.

  8. Mining induced seismic event on an inactive fault in view of local surface and in mine underground networksS

    NASA Astrophysics Data System (ADS)

    Rudzinski, Lukasz; Lizurek, Grzegorz; Plesiewicz, Beata

    2014-05-01

    On 19th March 2013 tremor shook the surface of Polkowice town were "Rudna" mine is located. This event of ML=4.2 was third most powerful seismic event recorded in Legnica Głogów Copper District (LGCD). Citizens of the area reported that felt tremors were bigger and last longer than any other ones felt in last couple years. The event was studied with use of two different networks: underground network of "Rudna" mine and surface local network run by IGF PAS (LUMINEOS network). The first one is composed of 32 vertical seismometers at mining level, except 5 sensors placed in elevator shafts, seismometers location depth varies from 300 down to 1000 meters below surface. The seismometers used in this network are vertical short period Willmore MkII and MkIII sensors, with the frequency band from 1Hz to 100Hz. At the beginning of 2013th the local surface network of the Institute of Geophysics Polish Academy of Sciences (IGF PAS) with acronym LUMINEOS was installed under agreement with KGHM SA and "Rudna" mine officials. This network at the moment of the March 19th 2013 event was composed of 4 short-period one-second triaxial seismometers LE-3D/1s manufactured by Lenartz Electronics. Analysis of spectral parameters of the records from in mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. Location of the event was close to the Rudna Główna fault zone, the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained in form of Full Moment Tensor inversion from P wave amplitude pulses of underground records and waveform inversion of surface network seismograms. Final results of the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was thrust faulting on inactive tectonic fault. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations.

  9. Utah FORGE Site Location, Datasets, and Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Moore

    This submission includes the geographic extent shapefile of the Milford FORGE site located in Utah, along with a shapefile of seismometer positions throughout the area, and models of basin depth and potentiometric contours.

  10. BlueSeis3A - performance, laboratory tests and applications

    NASA Astrophysics Data System (ADS)

    Bernauer, F.; Wassermann, J. M.; de Toldi, E.; Guattari, F.; Ponceau, D.; Ripepe, M.; Igel, H.

    2017-12-01

    One of the most emerging developments in seismic instrumentation is the application of fiber optic gyroscopes as portable rotational ground motion sensors. In the framework of the European Research Council Project, ROMY (ROtational Motions in seismologY), BlueSeis3A was developed in a collaboration between researchers from Ludwig-Maximilians University of Munich, Germany, and the fiber optic sensors manufacturer iXblue, France. With its high sensitivity (20 nrads-1Hz-1/2) in a broad frequency range (0.001 Hz to 50 Hz) BlueSeis3A opens a variety of applications which were up to now hampered by the lack of such an instrument. In this contribution, we will first present performance characteristics of BlueSeis3A with a focus on timing stability and scale factor linearity. In a second part we demonstrate the benefit of directly measured rotational motion for dynamic tilt correction of measurements made with a classical seismometer. A well known tilt signal was produced with a shake table and recorded simultaneously with a classical seismometer and BlueSeis3A. The seismometer measurement could be improved significantly by subtracting the coherent tilt signal which was measured directly with the rotational motion sensor. As a last part we show the advantage of directly measured rotational motion for applications in civil engineering. Results from a measurement campaign in the Giotto bell tower in the city of Florence, Italy, show the possibility of direct observation of torsional modes by deploying a rotational motion sensor inside the structure.

  11. Study of Low-Frequency Earth motions from Earthquakes and a Hurricane using a Modified Standard Seismometer

    NASA Astrophysics Data System (ADS)

    Peters, R. D.

    2004-12-01

    The modification of a WWSSN Sprengnether vertical seismometer has resulted in significantly improved performance at low frequencies. Instead of being used as a velocity detector as originally designed, the Faraday subsystem is made to function as an actuator to provide a type of force feedback. Added to the instrument to detect ground motions is an array form of the author's symmetric differential capacitive (SDC) sensor. The feedback circuit is not conventional, but rather is used to eliminate long-term drift by placing between sensor and actuator an operational amplifier integrator having a time constant of several thousand seconds. Signal to noise ratio at low frequencies is increased, since the modified instrument does not suffer from the 20dB/decade falloff in sensitivity that characterizes conventional force-feedback seismometers. A Hanning-windowed FFT algorithm is employed in the analysis of recorded earthquakes, including that of the very large Indonesia earthquake (M 7.9) of 25 July 2004. The improved low frequency response allows the study of the free oscillations of the Earth that accompany large earthquakes. Data will be provided showing oscillations with spectral components in the vicinity of 1 mHz, that frequently have been observed with this instrument to occur both before as well as after an earthquake. Additionally, microseisms and other interesting data will be shown from records collected by the instrument as Hurricane Charley moved across Florida and up the eastern seaboard.

  12. Broadband Seismic Observations at the Hawaii-2 Observatory During ODP Leg 200

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Duennebier, F. K.; Harris, D.; Jolly, J.; Bolmer, S. T.; Bromirski, P. D.; Leg 200 Shipboard Scientific Party, .

    2003-12-01

    Ocean Drilling Project Leg 200 was the first leg in deep sea and ocean drilling history to conduct operations in the vicinity of a continuously operating broadband seafloor seismometer. In 1998 investigators from the University of Hawaii, Woods Hole Oceanographic Institution, and Incorporated Institutions for Seismology had installed a broadband, shallow buried seismometer at the site [Duennebier et al., 2002] and data has been acquired in real time in Oahu over the Hawaii-2 transoceanic cable. Hole 1224D was drilled, cased and cemented at the site so that a broadband borehole seismometer can be emplaced in the future. The noise from the JOIDES Resolution as it approached and left the site as well as during all on-site operations was observed. In addition we recorded shots with 80 cubic inch water guns during single channel seismic tests as well as whale songs and earthquake activity. The behavior of ambient noise levels near the microseism peak was also compared with local wind speed and sea state conditions as observed from the drill ship. This work was supported by a grant from JOI-USSAC. We would like to thank the Earthquake Research Institute at the University of Tokyo for a Visiting Professorship for RAS during which much of this work was carried out. [Duennebier, F.K., D.W. Harris, J. Jolly, J. Babinec, D. Copson, and K. Stiffel, The Hawaii-2 observatory seismic system, IEEE Journal of Oceanic Engineering, 27, 212-217, 2002.

  13. An ocean bottom seismometer study of shallow seismicity near the Mid- America Trench offshore Guatemala ( Pacific).

    USGS Publications Warehouse

    Ambos, E.L.; Hussong, D.M.; Holman, C.E.

    1985-01-01

    Five ocean bottom seismometers recorded seismicity near the Mid-America Trench offshore Guatemala for 27 days in 1979. The array was emplaced in the lower slope region, just above the topographic trench. Approximately 170 events were recorded by 3 or more seismometers, and almost half were located with statistical hypocentral errors of <10 km. Most epicenters were located immediately landward of the trench axis, and many were further confined to a zone NW of the array. In terms of depth, most events were located within the subducting Cocos plate rather than in the overlying plate or at the plate-plate boundary. Most magnitudes ranged between 3.0 and 4.0 mb, and the threshold magnitude of locatable events was about 2.8 mb. Two distinct composite focal mechanisms were determined. One appears to indicate high- angle reverse faulting in the subducting plate, in a plane parallel to trench axis strike. The other, constructed for some earthquakes in the zone NW of the array, seems to show normal faulting along possible fault planes oriented quasi-perpendicular to the trench axis. Projection of our seismicity sample and of well-located WWSSN events from 1954 to 1980 onto a plane perpendicular to the trench axis shows a distinct gap between the shallow seismicity located by our array, and the deeper Wadati-Benioff zone seismicity located by the WWSSN. We tentatively ascribe this gap to inadequate sampling.-from Authors

  14. Diverse Seismic Imaging Created by the Seismic Explosion Experiment of the TAIGER Project

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okaya, D.; Wu, F.; Yen, H.; Huang, B.; Liang, W.

    2008-12-01

    The TAIGER (TAiwan Integrated GEodynamics Research) project which examines the Taiwan orogeny includes five experiments: natural earthquake recording, man-made explosion recording, Magnetotelluic imaging, marine MCS and sea-land shooting, and deformation evolution modeling. During Feb-Mar 2008, the explosion experiment was carried out. Ten sources with 500~3000kg dynamite were detonated along two transects across northern and southern Taiwan. Over 600 PASSCAL Texans and 40 R-130 instruments record the signals over 100~300 km range. Additional arrays with 100 seismometers were deployed to collect north-south line and fan shoot data for 3D imaging. Furthermore, there are 9 ocean bottom seismometers (OBS) in the Taiwan Strait and two lines with 20 seismometers deployed on the mainland China side. A large volume of qualified data has been created. Except explosion signals, numerous local and regional earthquakes were also recorded even by the Texan instruments. The rich earthquake-explosion dataset now exists at the Institute of Earth Sciences, Academia Sinica operated by the Taiwan Earthquake Center (TEC). Preliminary examination of the data reveal crustal Pg, PmP, Pn and intermediate crustal reflection phases within the transect profiles and in the 3D cross-arrays. These data provide direct seismic imaging of the continental Moho under Taiwan and the sharp Moho root configuration associated with mountain building. Seismic tomography and raytrace methods reveal velocity structure consistent with convergence and vertical exhumation of the Central Ranges.

  15. Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory

    USGS Publications Warehouse

    Hutt, Charles R.; Ringler, Adam; Gee, Lind

    2017-01-01

    Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1  Hz">>1  Hz) or low‐frequency (<0.05  Hz"><0.05  Hz) bands. In this study, we use modern high‐quality broadband (BB) and very broadband (VBB) seismometers installed at depths ranging from 1.5 to 188 m at the Albuquerque Seismological Laboratory to evaluate noise attenuation as a function of depth over a broad range of frequencies (0.002–50 Hz). Many modern seismometer deployments use BB or VBB seismometers installed at various depths, depending on the application. These depths range from one‐half meter or less in aftershock study deployments, to one or two meters in the Incorporated Research Institutions for Seismology Transportable Array (TA), to a few meters (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for maximum burial depth within the budget when there is interest in using the data for low‐frequency applications. For long‐term deployments like the permanent observatories of the GSN and similar networks, 100–200 m depth in hard rock is desirable to achieve lowest noise, although 30–60 m may be acceptable.

  16. modeling lunar seisms in class

    NASA Astrophysics Data System (ADS)

    Blancou, Emmanuelle

    2017-04-01

    Students are taught that the internal structure of the Earth has been described by analyzing seismometer data collected at the surface of the Earth. With this in mind, a group of 17-years old students asked whether lunar seisms could be used to explore the internal structure of the Moon. Seismometers placed during Apollo 12, 14, 15 and 16 missions recorded many seismic events. The signals obtained on the Moon are different form those recorded on Earth and are due to meteorite impact, lunar tides and thermal variations. Students tried to model meteorite impacts and thermal moonquakes to determine whether they can be distinguished based on their seismic signature. To this aim, the impact of meteorites were modeled by a metallic ball falling in sand and thermal moonquakes were modeled by storing hydrates rocks on a freezer during a week and then upon a bain marie. Signal were collected in both conditions with microphones. Data showed distinctive feature depending on vibration origin.

  17. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  18. Reviews Website: Online Graphing Calculator Video Clip: Learning From the News Phone App: Graphing Calculator Book: Challenge and Change: A History of the Nuffield A-Level Physics Project Book: SEP Sound Book: Reinventing Schools, Reforming Teaching Book: Physics and Technology for Future Presidents iPhone App: iSeismometer Web Watch

    NASA Astrophysics Data System (ADS)

    2011-01-01

    WE RECOMMEND Online Graphing Calculator Calculator plots online graphs Challenge and Change: A History of the Nuffield A-Level Physics Project Book delves deep into the history of Nuffield physics SEP Sound Booklet has ideas for teaching sound but lacks some basics Reinventing Schools, Reforming Teaching Fascinating book shows how politics impacts on the classroom Physics and Technology for Future Presidents A great book for teaching physics for the modern world iSeismometer iPhone app teaches students about seismic waves WORTH A LOOK Teachers TV Video Clip Lesson plan uses video clip to explore new galaxies Graphing Calculator App A phone app that handles formulae and graphs WEB WATCH Physics.org competition finds the best websites

  19. Proceedings of the Guidelines for Seismometer Testing Workshop, Albuquerque, New Mexico, 9-10 May 2005 ("GST2")

    USGS Publications Warehouse

    Hutt, Charles R.; Nigbor, Robert L.; Evans, John R.

    2009-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international public/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. This document reports the Proceedings of the 2005 workshop and includes as Appendix 6 the report of the 1989 workshop. In a future document, we will attempt to collate and rationalize a single set of formal guidelines for testing and specifying seismic sensors, supplementing Advanced National Seismic System (ANSS) guidelines on instrumentation likely used by ANSS as its standard for verification, acceptance, and intermittent testing, as well as for responses to ANSS instrument requisitions.

  20. Joint IRIS/PASSCAL UNAVCO Seismic and GPS Installations, Testing, and Development

    NASA Astrophysics Data System (ADS)

    Fowler, J.; Alvarez, M.; Beaudoin, B.; Jackson, M.; Feaux, K.; Ruud, O.; Andreatta, V.; Meertens, C.; Ingate, S.

    2002-12-01

    Future large-scale deformation initiatives such as EarthScope (http://www.earthscope.org/) will provide an opportunity for collocation and integration of GPS receivers and broadband and short period seismic instruments. Example integration targets include PBO backbone and cluster sites with USArray Transportable (Bigfoot) and Permanent Array. A GPS seismic integration and testing facility at the IRIS/PASSCAL Instrument Center in Socorro, NM is currently performing side-by-side testing of different seismometers, GPS receivers, communications hardware, power systems and data streaming software. One configuration tested uses an integrated VSAT data communications system and a broadband seismometer collocated with a geodetic quality GPS system. Data are routed through a VSAT hub and distributed to the UNAVCO Data Archive in Boulder and the IRIS Data Management Center in Seattle. Preliminary results indicate data availability approaching 100% with a maximum latency of 5 sec.

  1. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake

    PubMed Central

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-01-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves. PMID:27874858

  2. Reviews

    NASA Astrophysics Data System (ADS)

    2008-03-01

    WE RECOMMEND Doomsday Men: the Real Dr Strangelove and the Dream of the Superweapon The relationship between scientists and ethics is explored in this fascinating history of superweaponry RAF Real-life Science A CD-ROM that combines physics activities and careers advice Seismology A booklet that covers seismology for the classroom thoroughly Ice, Rock, and Beauty: a Visual Tour of the New Solar System A beautiful book on a beautiful subject Leicester Height Measure A surprisingly multipurpose piece of equipment Learning Science Teaching: Developing a Professional Knowledge Base A study of how to become an expert science teacher Nova 5000EX A tablet PC ready-loaded with all of the software you need Seismometer Modelling Kit A useful and cheap demonstration of seismology Vibration Detector Basic equipment for measuring vibrations is very welcome Seismometer System This more advanced seismology kit is worth the price-tag WEB WATCH Gary Williams trawls the net for Earth science classroom aids

  3. First Observation of the Earth's Permanent Free Oscillations on Ocean Bottom Seismometers

    NASA Astrophysics Data System (ADS)

    Deen, M.; Wielandt, E.; Stutzmann, E.; Crawford, W.; Barruol, G.; Sigloch, K.

    2017-11-01

    The Earth's hum is the permanent free oscillations of the Earth recorded in the absence of earthquakes, at periods above 30 s. We present the first observations of its fundamental spheroidal eigenmodes on broadband ocean bottom seismometers (OBSs) in the Indian Ocean. At the ocean bottom, the effects of ocean infragravity waves (compliance) and seafloor currents (tilt) overshadow the hum. In our experiment, data are also affected by electronic glitches. We remove these signals from the seismic trace by subtracting average glitch signals; performing a linear regression; and using frequency-dependent response functions between pressure, horizontal, and vertical seismic components. This reduces the long period noise on the OBS to the level of a good land station. Finally, by windowing the autocorrelation to include only the direct arrival, the first and second orbits around the Earth, and by calculating its Fourier transform, we clearly observe the eigenmodes at the ocean bottom.

  4. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake.

    PubMed

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-11-22

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

  5. Prompt gravity anomaly induced to the 2011Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul; Juhel, Kevin; Barsuglia, Matteo; Ampuero, Jean-Paul; Harms, Jan; Chassande-Mottin, Eric; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2017-04-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order-of-magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems (EEWS) imposed by the propagation speed of seismic waves.

  6. Infrasound from thunder: A natural seismic source

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2007-07-01

    A small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones was built to investigate thunder-induced ground motions. Data from two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen as examples of data collected by the array. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters at the site. Although the depth of the borehole is relatively shallow compared to a seismic wave wavelength, velocity amplitude in the radial component decays as much as 63 percent with depth but vertical component amplitudes are unaffected consistent with air-coupled Rayleigh wave excitation. Naturally occurring thunder appears to be a useful seismic source to empirically determine site resonance characteristics for hazards assessments.

  7. Revised self-noise estimates for Güralp broadband seismometers concerning ambient noise levels of the UK mainland: implications for detectability of induced seismic events

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Hill, P.; Goessen, S.; Rietbrock, A.; Garth, T.

    2016-12-01

    The self-noise level of a broadband seismometer sensor is a commonly-used parameter used to evaluate instrument performance. There are several independent studies of various instruments' self-noise (e.g. Ringler & Hutt, 2010; Tasič & Runovc, 2012). However, due to ongoing developments in instrument design (i.e. mechanics and electronics), it is essential to regularly assess any changes in self-noise, which could indicate improvements/deterioration in instrument design and performance over time. We present new self-noise estimates for a range of Güralp broadband seismometers (3T, 3ESPC, 40T, 6T). We use the three-channel coherence analysis estimate of Sleeman et al. (2006) to measure self-noise of these instruments. Based on coherency analysis, we also perform a mathematical rotation of measured waveforms to account for any relative sensor misalignment errors, which can cause artefacts of amplified self-noise around the microseismic peak (Tasič & Runovc, 2012). The instruments were tested for a period of several months at a seismic vault located at the Eskdalemuir array in southern Scotland. We discuss the implications of these self-noise estimates within the framework of the ambient noise level across the mainland United Kingdom. Using attenuation relationships derived for the United Kingdom, we investigate the detection capability thresholds of the UK National Seismic Network within the framework of a Traffic Light System (TLS) that has been proposed for monitoring of induced seismic events due to shale gas extraction.

  8. Casual instrument corrections for short-period and broadband seismometers

    USGS Publications Warehouse

    Haney, Matthew M.; Power, John; West, Michael; Michaels, Paul

    2012-01-01

    Of all the filters applied to recordings of seismic waves, which include source, path, and site effects, the one we know most precisely is the instrument filter. Therefore, it behooves seismologists to accurately remove the effect of the instrument from raw seismograms. Applying instrument corrections allows analysis of the seismogram in terms of physical units (e.g., displacement or particle velocity of the Earth’s surface) instead of the output of the instrument (e.g., digital counts). The instrument correction can be considered the most fundamental processing step in seismology since it relates the raw data to an observable quantity of interest to seismologists. Complicating matters is the fact that, in practice, the term “instrument correction” refers to more than simply the seismometer. The instrument correction compensates for the complete recording system including the seismometer, telemetry, digitizer, and any anti‐alias filters. Knowledge of all these components is necessary to perform an accurate instrument correction. The subject of instrument corrections has been covered extensively in the literature (Seidl, 1980; Scherbaum, 1996). However, the prospect of applying instrument corrections still evokes angst among many seismologists—the authors of this paper included. There may be several reasons for this. For instance, the seminal paper by Seidl (1980) exists in a journal that is not currently available in electronic format and cannot be accessed online. Also, a standard method for applying instrument corrections involves the programs TRANSFER and EVALRESP in the Seismic Analysis Code (SAC) package (Goldstein et al., 2003). The exact mathematical methods implemented in these codes are not thoroughly described in the documentation accompanying SAC.

  9. The ADN project : an integrated seismic monitoring of the northern Ecuadorian subduction

    NASA Astrophysics Data System (ADS)

    Nocquet, Jean-Mathieu; Yepes, Hugo; Vallee, Martin; Mothes, Patricia; Regnier, Marc; Segovia, Monica; Font, Yvonne; Vaca, Sandro; Bethoux, Nicole; Ramos, Cristina

    2010-05-01

    The subduction of the Nazca plate beneath South America has caused one of the largest megathrust earthquake sequence during the XXth century with three M>7.7 earthquakes that followed the great 1906 (Mw = 8.8) event. Better understanding the processes leading to the occurrence of large subduction earthquakes requires to monitor the ground motion over a large range of frequencies. We present a new network (ADN) developed under a collaboration between the IRD-GeoAzur (Nice, France) and the IG-EPN (Quito, Ecuador). Each station of the ADN network includes a GPS recording at 5 Hz, an accelerometer and a broadband seismometer. CGPS data will quantify the secular deformation induced by elastic locking along the subduction interface, enabling a detailed modelling of the coupling distribution. CGPS will be used to monitor any transient deformation induced by Episodic Slip Event along the subduction, together with broadband seismometers that can detect any tremors or seismic signatures that may accompany them. In case of any significant earthquake, 5 Hz GPS and accelerometer will provide near field data for earthquake source detailed study. Finally, the broadband seismometers will be used for study of the microseismicity and structure of the subduction zone. The network includes 9 stations, operating since 2008 and covering the coastal area from latitude 1.5°S to the Colombian border. In this poster, we will present preliminary assessment of the data, first hypocenters location, magnitude and focal mechanism determination, as well as results about an episodic slip event detected in winter 2008.

  10. Exploring Venus Interior Structure by Detection of Infrasonic Waves

    NASA Astrophysics Data System (ADS)

    Mimoun, D.; Cutts, J.; Stevenson, D.; Garcia, R. F.

    2015-04-01

    Knowledge of the interior structure of Venus is currently impeded by the limited time that a seismometer can survive in the atmosphere of Venus. We propose to remotely detect quakes by infrasonic measurements at the top of the cloud layer.

  11. Active Control of a Pneumatic Isolation System,

    DTIC Science & Technology

    A pneumatically isolated test platform has been modified to provide active control to the local gravity vector. A combination of sensors , including... tiltmeters , angular accelerometers, seismometers, and a gyrocompass measure total platform motion between 0 and 100 Hz. Electrical-to-pressure

  12. Seismology in Schools an integrated approach to funding developing and implementing a coordinated programme for teachers and high school students

    NASA Astrophysics Data System (ADS)

    Blake, T. A.; Jones, A. G.; Campbell, G.

    2010-12-01

    Statistics in Ireland show that physics at Advanced Level in Secondary Schools is declining in popularity and is the most likely subject to be cut first from the curriculum in a curriculum readjustment by school authorities. In an attempt to attract students to study Earth science and seismology the School of Cosmic Physics, DIAS embarked on an outreach programme in 2007 to promote Earth science, particularly seismology, in schools at both Primary and Secondary Levels. Since its inception, DIAS's Seismology in Schools programme has been very well received, with seismometers installed in over fifty schools across the State. Although this number may appear small, given that the population of Ireland is 4M this number of 1 per 80,000 compares favourably with the U.K. (70 in a population of 70M, 1 per 1M) and the U.S.A. (200 in a population of 300M, 1 per 1.5M) with an penetration of 15-20 times greater. The phenomenal success of our Seismology in Schools programme has been helped significantly by the support we have received from the British Geological Survey (BGS) and IRIS (Incorporated Research Institutions for Seismology) in terms of hardware, software and advice. Similarly, the programme would be a pale reflection of what it is today if the Directors of the Educational Centres (ATECI, Association of Teacher's/Education Centres in Ireland) across Ireland had not become enthused and funded the purchase of 34 additional seismometers, and the Geological Survey of Ireland purchased a further six. Also, funding support from Discover Science and Engineering (DSE) was absolutely critical for us to roll out this hugely enlarged programme of 50 seismometers from the originally envisioned four. As this programme is an initiation into seismology for students, it is important to stress that the seismometer is not used in the schools as a professional recording instrument but helps students visualize what seismology and the recording of earthquakes comprises. Essential to the success of the programme was targeting teachers who would be committed to its implementation and promotion in the school. Strong emphasis by DIAS was placed on providing teacher training days on the set-up and operation of the seismometer, and they were also trained in various animation software programmes used to enhance the learning capacities of the students in the classroom. Regular contact is maintained with the teachers in the programme throughout the academic year to support and encourage their work in the classroom. Teachers receive an SMS alert message from DIAS when an earthquake of Mag 5 has been recorded by the Irish National Seismic network which will then form part of the next lesson plan for Geography and Maths in the curriculum. Most participating schools have become affiliated to the IRIS International Schools Seismic Network site, and students upload the waveform seismic data in SAC format for the recorded seismic events at their school to share with schools internationally. Future developments in the programme will include the investigation of twinning of schools on different continents who are actively pursuing a seismology in schools programme.

  13. Seafloor tilt induced by ocean tidal loading inferred from broadband seismometer data from the Cascadia subduction zone and Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Davis, Earl E.; Heesemann, Martin; Lambert, Anthony; He, Jianheng

    2017-04-01

    Mass-balancing voltages from four buried broadband seismometers connected to the NEPTUNE Canada seafloor cable are being recorded at 24-bit resolution. Sites are located on the Vancouver Island continental shelf, the nearby Cascadia accretionary prism, the eastern flank of the Juan de Fuca Ridge, and the western flank close to the Juan de Fuca Ridge axis. Tidal variations are present throughout the records. Variations in vertical acceleration at three of the sites match predicted gravitational attraction variations very well; those at the fourth site show a small residual that is probably caused by sensitivity to tilt resulting from sensor inclination. Horizontal accelerations, which at tidal periods are sensitive primarily to tilt, are anomalously large relative to standard-earth model results. After removal of predicted tidal body and ocean attraction and loading terms, the residuals are seen to follow ocean pressure variations. Responses range from 0.4 μrad dbar-1 (0.04 μrad kPa-1) at 10° true (down under positive load) at the continental shelf site, to 0.6 μrad dbar-1 at 243° at the Cascadia prism, 0.4 μrad dbar-1 at 90° at the eastern Juan de Fuca Ridge flank, and 0.2 μrad dbar-1 at 116° true on the western ridge flank. Except at the continental shelf site, tilts are roughly perpendicular to structural strike. The tilt observations can be explained by loading-induced deformation in the presence of local lithologic gradients or by the influence of faults or structurally controlled anisotropic elastic properties. The observations highlight the utility of using mass position data from force-feedback broad-band seismometers for geodynamic studies.

  14. OBS records of Whale vocalizations from Lucky-strike segment of the Mid-Atlantic Ridge during 2007-2008

    NASA Astrophysics Data System (ADS)

    Chauhan, A.; Rai, A.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2009-12-01

    Passive seismic experiments to study seismicity require a long term deployment of ocean-bottom seismometers (OBSs). These instruments also record a large amount of non-seismogenic signals such as movement of large ships, air-gun shots, and marine mammal vocalizations. We report a bi-product of our passive seismic experiment (BBMOMAR) conducted around the Lucky-strike hydrothermal field of the slow-spreading mid-Atlantic ridge. Five multi-component ocean-bottom seismometers (recording two horizontal, one vertical and one pressure channel) were deployed during 2007-2008. During 13 months of deployment, abundant vocalizations of marine mammals have been recorded by all the five equipments. By analyzing the frequency content of data and their pattern of occurrence, we conclude that these low-frequency vocalizations (~20-40 Hz) typically corresponds to blue and fin-whales. These signals if not identified, could be mis-interpreted as underwater seismic/hydrothermal activity. Our data show an increase in the number of vocalizations recorded during the winter season relative to the summer. As part of the seismic monitoring of the Lucky-strike site, we anticipate to extend this study to the 2008-2009 and 2009-2010 periods, after the recovery and deployment of the array during the BATHYLUCK09 cruise. Long-term and continuous records of calls of marine mammals provide valuable information that could be used to identify the species, study their seasonal behaviour and their migration paths. Our study suggestes that passive experiments such as ocean-bottom seismometers deployed at key locations, could provide useful secondary infromation about oceanic species besides recording seismicity, which is otherwise not possible without harming or interfering with their activity.

  15. Post-seismic relaxation following the 2009 April 6, L'Aquila (Italy), earthquake revealed by the mass position of a broad-band seismometer

    NASA Astrophysics Data System (ADS)

    Pino, Nicola Alessandro

    2012-06-01

    Post-seismic relaxation is known to occur after large or moderate earthquakes, on time scales ranging from days to years or even decades. In general, long-term deformation following seismic events has been detected by means of standard geodetic measurements, although seismic instruments are only used to estimate short timescale transient processes. Albeit inertial seismic sensors are also sensitive to rotation around their sensitive axes, the recording of very slow inclination of the ground surface at their standard output channels is practically impossible, because of their design characteristics. However, modern force-balance, broad-band seismometers provide the possibility to detect and measure slow surface inclination, through the analysis of the mass position signal. This output channel represents the integral of the broad-band velocity and is generally considered only for state-of-health diagnostics. In fact, the analysis of mass position data recorded at the time of the 2009 April 6, L'Aquila (MW= 6.3) earthquake, by a closely located STS-2 seismometer, evidenced the occurrence of a very low frequency signal, starting right at the time of the seismic event. This waveform is only visible on the horizontal components and is not related to the usual drift coupled with the temperature changes. This analysis suggests that the observed signal is to be ascribed to slowly developing ground inclination at the station site, caused by post-seismic relaxation following the main shock. The observed tilt reached 1.7 × 10-5 rad in about 2 months. This estimate is in very good agreement with the geodetic observations, giving comparable tilt magnitude and direction at the same site. This study represents the first seismic analysis ever for the mass position signal, suggesting useful applications for usually neglected data.

  16. Mapping the mantle transition zone beneath the central Mid-Atlantic Ridge using Ps receiver functions.

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Rychert, C.; Harmon, N.; Kendall, J. M.

    2017-12-01

    Determining the mechanisms taking place beneath ridges is important in order to understand how tectonic plates form and interact. Of particular interest is establishing the depth at which these processes originate. Anomalies such as higher temperature within the mantle transition zone may be inferred seismically if present. However, most ridges are found in remote locations beneath the oceans restricting seismologists to use far away land-based seismometers, which in turn limits the imaging resolution. In 2016, 39 broadband ocean-bottom seismometers were deployed across the Mid-Atlantic Ridge, along the Romanche and Chain fracture zones as part of the PI-LAB research project (Passive Imaging of the Lithosphere and Asthenosphere Boundary). The one-year long seismic data is now retrieved and analysed to image the mantle transition zone beneath the ridge. We determine P-to-s (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities using the extended multitaper deconvolution. The data from ocean-bottom seismometers have tilt and compliance noise corrections and is filtered between 0.05-0.2 Hz to enhance the signal. 51 teleseismic earthquakes generated hundreds of good quality waveforms, which are then migrated to depth in 3-D. The topography at the d410 deepens towards the west of the Romanche and Chain fracture zone by 15 km, whereas the topography of d660 shallows beneath the ridge between the two zones. Transition zone thickness thins from 5 to 20 km. Thermal anomalies determined from temperature relationships with transition zone thickness and depth variations of the d410 and d660 suggests hotter temperatures of about 200 K. Overall, the result suggests mid-ocean ridges may have associated thermal signatures as deep as the transition zone.

  17. Investigation of River Seismic Signal Induced by Sediment Transport and Water Flow: Controlled Dam Breaking Experiments

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Chen, S. C.; Chao, W. A.

    2015-12-01

    Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.

  18. Australian Seismometers in Schools: Apps, Archiving and Adventures

    NASA Astrophysics Data System (ADS)

    Balfour, N.; Salmon, M.; Sambridge, M.

    2014-12-01

    Global earthquake activity provides an opportunity to actively engage students and teachers in the Earth Sciences. With earthquakes often hitting the news headlines the Australian Seismometers in Schools (AuSIS) program utilizes the resulting public awareness and curiosity, providing tools and support for teachers and students to find out more. Most teachers are unaware of the wealth of resources available and often lack confidence to teach earth science, as they have little to no formal training. With the introduction of earth science to the national curriculum it has become imperative teachers receive this support. AuSIS connects students and teachers with earthquake data relevant to them that is both real-time and easily accessible. The biggest challenge faced is often how to engage with remote and rural communities over the vast Australian continent. Our approach has been to take information to the teachers, providing workshops at national science teacher conferences and developing guides that provide step-by-step instructions for classroom activities. These professional development workshops include hands-on demonstrations as well as online discovery. The data recorded at schools on our network of seismometers is publicly accessible and is shared with scientists, amateur seismologists and students alike, this provides students with a sense of involvement in the scientific community. We link teachers with additional online resources and utilize social media to alert them to interesting earth science facts and earthquake activity. For continued exploration we provide easy access to our data and earthquake information through a mobile app and website. Our website combines both local and global earthquake catalogs to provide a one-stop shop of earthquake information of interest to the teachers and students. We also encourage online interactions with teachers through a forum on our website and through social media aimed to provide continued support.

  19. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    NASA Astrophysics Data System (ADS)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  20. Infrasound signal detection and characterization using ground-coupled airwaves on a single seismo-acoustic sensor pair

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Fee, D.; Haney, M. M.; Lyons, J. J.; Matoza, R. S.

    2016-12-01

    A ground-coupled airwave (GCA) occurs when an incident atmospheric pressure wave encounters the Earth's surface and part of the energy of the wave is transferred to the ground (i.e. coupled to the ground) as a seismic wave. This seismic wave propagates as a surface Rayleigh wave evidenced by the retrograde particle motion detected on a three-component seismometer. Acoustic waves recorded on a collocated microphone and seismometer can be coherent and have a 90-degree phase difference, predicted by theory and in agreement with observations. If the sensors are separated relative to the frequencies of interest, usually 10s to 100s of meters, then recorded wind noise becomes incoherent and an additional phase shift is present due to the separation distance. These characteristics of GCAs have been used to distinguish wind noise from other sources as well as to determine the acoustic contribution to seismic recordings. Here we aim to develop a minimalist infrasound signal detection and characterization technique requiring just one microphone and one three-component seismometer. Based on GCA theory, determining a source azimuth should be possible using a single seismo-acoustic sensor pair by utilizing the phase difference and exploiting the characteristic particle motion. We will use synthetic seismo-acoustic data generated by a coupled Earth-atmosphere 3D finite difference code to test and tune the detection and characterization method. The method will then be further tested using various well-constrained sources (e.g. Chelyabinsk meteor, Pagan Volcano, Cleveland Volcano). Such a technique would be advantageous in situations where resources are limited and large sensor networks are not feasible.

  1. Data Quality Control Tools Applied to Seismo-Acoustic Arrays in Korea

    NASA Astrophysics Data System (ADS)

    Park, J.; Hayward, C.; Stump, B. W.

    2017-12-01

    We assess data quality (data gap, seismometer orientation, timing error, noise level and coherence between co-located sensors) for seismic and infrasound data in South Korea using six seismo-acoustic arrays, BRDAR, CHNAR, KSGAR, KMPAR, TJIAR, and YPDAR, cooperatively operated by Southern Methodist University and Korea Institute for Geosciences and Mineral Resources. Timing errors associated with seismometers can be found based on estimated changes in instrument orientation calculated from RMS errors between the reference array and each array seismometer using waveforms filtered from 0.1 to 0.35 Hz. Noise levels of seismic and infrasound data are analyzed to investigate local environmental effects and seasonal noise variation. In order to examine the spectral properties of the noise, the waveform are analyzed using Welch's method (Welch, 1967) that produces a single power spectral estimate from an average of spectra taken at regular intervals over a specific time period. This analysis quantifies the range of noise conditions found at each of the arrays over the given time period. We take an advantage of the fact that infrasound sensors are co-located or closely located to one another, which allows for a direct comparison of sensors, following the method by Ringler et al. (2010). The power level differences between two sensors at the same array in the frequency band of interest are used to monitor temporal changes in data quality and instrument conditions. A data quality factor is assigned to stations based on the average values of temporal changes estimated in the frequency and time domains. These monitoring tools enable us to automatically assess technical issue related to the instruments and data quality at each seismo-acoustic array as well as to investigate local environmental effects and seasonal variations in both seismic and infrasound data.

  2. The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy)

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Collettini, C.; Cattaneo, M.; Monachesi, G.

    2014-04-01

    As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200-250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified.

  3. Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers

    PubMed Central

    Yin, Ren-Cheng

    2018-01-01

    The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building. PMID:29734736

  4. Rotational motions for teleseismic surface waves

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.

    2011-08-01

    We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.

  5. On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudron, Corentin; Taisne, Benoit; Garces, Milton

    The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less

  6. Observations of seismicity and ground motion in the northeast U.S. Atlantic margin from ocean bottom seismometer data

    USGS Publications Warehouse

    Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.

    2017-01-01

    Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.

  7. Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers.

    PubMed

    Hsu, Ting-Yu; Yin, Ren-Cheng; Wu, Yih-Min

    2018-05-05

    The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building.

  8. Turning the InSight Lander Science Deck

    NASA Image and Video Library

    2015-05-27

    The science deck of NASA's InSight lander is being turned over in this April 29, 2015, photo from InSight assembly and testing operations inside a clean room at Lockheed Martin Space Systems, Denver. The large circular component on the deck is the protective covering to be placed over InSight's seismometer after the seismometer is placed directly onto the Martian ground. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19670

  9. On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption

    DOE PAGES

    Caudron, Corentin; Taisne, Benoit; Garces, Milton; ...

    2015-07-14

    The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less

  10. Detecting Earthquakes--Part 2.

    ERIC Educational Resources Information Center

    Isenberg, C.; And Others

    1983-01-01

    Basic concepts associated with seismic wave propagation through the earth and the location of seismic events were explained in part 1 (appeared in January 1983 issue). This part focuses on the construction of a student seismometer for detecting earthquakes and underground nuclear explosions anywhere on the earth's surface. (Author/JN)

  11. Field Test of a Three-Channel Seismic Event Discriminator

    DTIC Science & Technology

    1975-03-01

    vault contains three corner piers, in addition to the primary central pier. Using the corner piers, a pair of 19-foot long-period mercury tiltmeters ...seismometers were the sensors used in testing the seismic event- discriminator system. The recording equipment consisted of an eight- channel pressure

  12. Significant breakthroughs in monitoring networks of the volcanological and seismological French observatories

    NASA Astrophysics Data System (ADS)

    lemarchand, A.; Francois, B.; Bouin, M.; Brenguier, F.; Clouard, V.; Di Muro, A.; Ferrazzini, V.; Shapiro, N.; Staudacher, T.; Kowalski, P.; Agrinier, P.

    2013-12-01

    Others authors: S. Tait (1), D. Amorese (4,1), JB de Chabalier (1), A. Anglade (4,1), P. Kowalski (5,1),the teams in the IPGP Volcanological and Seismological observatories In the last few years, French West Indies observatories, in collaboration with the Seismic Research Center (University of West Indies-Trinidad), have modernized the Lesser Antilles Arc seismic and deformation monitoring network. 16 new permanent stations have been installed to strengthen and expand its detection capabilities. The global network of the IPGP-SRC consortium is now composed of 21 modernized stations, all equipped with broadband seismometers, strong motion sensors, GNSS sensors and satellite communication for real-time data transfer to the observatories of Trinidad (SRC), Guadeloupe (OVSG), Martinique (OVSM). To improve the sensitivity and reduce ambient noise, special efforts were made to enhance the design of the seismic vault and the original Stuttgart shielding (D. Kurrle R. Widmer-Schnidrig, 2005) of the broadband seismometers (240 and 120 sec). This renewed network feeds the Caribbean Tsunami Warning System supported by UNESCO and establishes a monitoring tool that produces high quality data for studying subduction and volcanism interactions in the Lesser Antilles arc. Since 2010, the UnderVolc research program has been an opportunity to reinforce the existing volcanic seismic network of Piton de la Fournaise on La Réunion Island (Indian Ocean). 20 broadband seismometers, 20 short-period sensors, and 26 GNSS receivers now cover the volcano. The program successfully developed many new data treatment tools. They have proven to be well-adapted for monitoring volcanic activity such as the tracking of seismic velocity changes inferred from seismic noise, or the injection of dike and the resulting deformations. This upgrade has now established the monitoring network of La Réunion hot spot to high quality standards which will foster the scientific attractiveness of OVPF-IPGP. During the course of this project, trade-off was chosen to accommodate the broadband seismometer state-of-art installation to unstable substrate made of lava flows. Wifi transmission has been developed for real or near real-time data transmission. Both projects have been an opportunity to migrate the seismic data processing to SeisComP3 with new developed plugins to compute the duration magnitude and locate (modified HYPO71PC ) ever small events such as volcanic ones. The new plugins are integrated in Seiscomp3 releases. Several tools for data management and treatment (Earthworm and WebObs [Beauducel et al., 2004]) are continuously improved. GPS data, real-time and validated seismic data (only broadband) are now available at the IPGP data center.

  13. Seismometers on Europa: Insights from Modeling and Antarctic Ice Shelf Analogs (Invited)

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Brunt, K. M.; Cammarano, F.; Hurford, T. A.; Lekic, V.; Panning, M. P.; Rhoden, A.; Sauber, J. M.

    2013-12-01

    The outer satellites of the Solar System are a diverse suite of objects that span a large spectrum of sizes, compositions, and evolutionary histories; constraining their internal structures is key for understanding their formation, evolution, and dynamics. In particular, Jupiter's icy satellite Europa has compelling evidence for the existence of a global subsurface ocean beneath a surface layer of water ice. This ocean decouples the ice shell from the solid silicate mantle, and amplifies tidally driven large-scale surface deformation. The complex fissures and cracks seen by orbital flybys suggest brittle failure is an ongoing and active process in the ice crust, therefore indicating a high level of associated seismic activity. Seismic probing of the ice, oceanic, and rocky layers would provide altogether new information on the structure, evolution, and even habitability of Europa. Any future missions (penetrators, landers, and rovers) planning to take advantage of seismometers to image the Europan interior would need to be built around predictions for the expected background noise levels, seismicity, wavefields, and elastic properties of the interior. A preliminary suite of seismic velocity profiles for Europa has been calculated using moment of inertia constraints, planetary mass and density, estimates of moon composition, thermal structure, and experimentally determined relationships of elastic properties for relevant materials at pressure, temperature and depth. While the uncertainties in these models are high, they allow us to calculate a first-order seismic response using 1-D and 3-D high frequency wave propagation codes for global and regional scale structures. Here, we show how future seismic instruments could provide detailed elastic information and reduced uncertainties on the internal structure of Europa. For example, receiver functions and surface wave orbits calculated for a single seismic instrument would provide information on crustal thickness and the depth of an ocean layer. Likewise, evaluation of arrival times of reflected wave multiples observed at a single seismic station would record properties of the mantle and core of Europa. Cluster analysis of waveforms from various seismic source mechanisms could be used to classify different types of seismicity originating from the ice and rocky parts of the moon. We examine examples of single station results for analogous seismic experiments on Earth, e.g., where broadband, 3-component seismometers have been placed upon the Ross Ice Shelf of Antarctica. Ultimately this work reveals that seismometer deployments will be essential for understanding the internal dynamics, habitability, and surface evolution of Europa, and that seismic instruments need to be a key component of future missions to surface of Europa and outer satellites.

  14. Installation of seafloor cabled seismic and tsunami observation system developed by using ICT

    NASA Astrophysics Data System (ADS)

    Shinohara, Masanao; Yamada, Tomoaki; Sakai, Shin'ichi; Shiobara, Hajime; Kanazawa, Toshihiko

    2017-04-01

    A seafloor cabled system is useful for study of earth science and disaster mitigation, because real-time and long-term observation can be performed. Therefore seafloor cabled systems with seismometers and tsunami-meters have been used over the past 25 years around Japan. Because increase of a number of sensors is needed, a new system with low costs for production, deployment and operation is expected. In addition, the new system should have sufficient for flexibility of measurements after installation. To achieve these demands, we started development of a new system using Information and Communication Technologies (ICT) for data transmission and system control. The new system can be made compact since software processes various measurements. Reliability of the system is kept by using redundant system which is easily constructed using the ICT. The first system based on this concept was developed as Ocean Bottom Cabled Seismometer (OBCS) system and deployed in Japan Sea. Development of the second system started from 2012. The Ocean Bottom Cabled Seismometer and Tsunami-meter (OBCST) system has both seismometers and tsunami-meters. Each observation node has a CPU and FPGAs. The OBCST system uses standard TCP/IP protocol with a speed of 1 Gbps for data transmission, system control and monitoring. IEEE-1588 (PTP) is implemented to synchronize a real-time clock, and accuracy is less than 300 ns. We developed two types of observation node. One equips a pressure gauge as tsunami sensor, and another has an external port for additional observation sensor using PoE. Deployment of the OBCST system was carried out in September 2015 by using a commercial telecommunication cable ship. The noise levels at the OBCST system are comparable to those at the existing cabled system off Sanriku. It is found that the noise levels at the OBCST system are low at frequencies greater than 2 Hz and smaller than 0.1 Hz. This level of ambient seismic noise is close to a typical system noise. From the pressure data, pressure gauge has a resolution of less than 1 hPa, which corresponds to a change of water height of less than 1 cm, and data from all the pressure gauges are consistent. From the deployment, the system has been collecting data on seafloor until the present. Tsunami waves on November 22nd, 2016, which were generated by an earthquake with magnitude of 7.4 off Fukushima were clearly observed by all tsunami sensors in the system.

  15. A New Long-Period Vertical-Component Seismometer

    DTIC Science & Technology

    1965-11-01

    34Geneva Conference of Experts" that considerable reiearch would be required into the detection uf both short-perind body waves and of Iong-peried...on these recommendatioils is shown sketched in Figures 14 iAi 15. These sketches show the propoted desigm actual size. hlie instrument is intend d to

  16. Taking the Earth's Pulse

    USGS Publications Warehouse

    Woodward, Robert L.; Benz, Harley Mitchell; Shedlock, Kaye M.; Brown, William M.

    2000-01-01

    During the past 35 years, scientists have developed a vast network of seismometers that record earthquakes, volcanic eruptions, and nuclear explosions throughout the world. Seismographic data support disaster response, scientific research, and global security. With this network, the United States maintains world leadership in monitoring the greatest natural and technological events that threaten our planet's population.

  17. Taking the Earth's pulse

    USGS Publications Warehouse

    Woodward, Robert L.; Benz, Harly M.; Brown, William M.

    1997-01-01

    During the past 35 years, scientists have developed a vast network of seismometers that record earthquakes, volcanic eruptions, and nuclear explosions throughout the world. Seismographic data support disaster response, scientific research, and global security. With this network, the United States maintains world leadership in monitoring the greatest natural and technological events that threaten our planet's population.

  18. Tethered Aerostat Effects on Nearby Seismometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Daniel

    This report assesses seismic interference generated by a tethered aerostat. The study was motivated by a planned aerostat deployment within the footprint of the Dry Alluvium Geology seismic network. No evidence was found for seismic interference generated by the aerostat, and thus the e ects on the Dry Alluvium Geology sensors will be negligible.

  19. Apollo 12, A New Vista for Lunar Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Man's second lunar landing, Apollo 12, provided a wealth of scientific information about the moon. The deployment of the magnetometer, seismometer, and ionosphere detector, and other activities on the lunar surface are described. A number of color photographs show the astronauts setting up equipment on the moon as well as close-ups of the lunar…

  20. Viking Seismometer PDS Archive Dataset

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2016-12-01

    The Viking Lander 2 seismometer operated successfully for over 500 Sols on the Martian surface, recording at least one likely candidate Marsquake. The Viking mission, in an era when data handling hardware (both on board and on the ground) was limited in capability, predated modern planetary data archiving, and ad-hoc repositories of the data, and the very low-level record at NSSDC, were neither convenient to process nor well-known. In an effort supported by the NASA Mars Data Analysis Program, we have converted the bulk of the Viking dataset (namely the 49,000 and 270,000 records made in High- and Event- modes at 20 and 1 Hz respectively) into a simple ASCII table format. Additionally, since wind-generated lander motion is a major component of the signal, contemporaneous meteorological data are included in summary records to facilitate correlation. These datasets are being archived at the PDS Geosciences Node. In addition to brief instrument and dataset descriptions, the archive includes code snippets in the freely-available language 'R' to demonstrate plotting and analysis. Further, we present examples of lander-generated noise, associated with the sampler arm, instrument dumps and other mechanical operations.

  1. Fiber-Optic Network Observations of Earthquake Wavefields

    NASA Astrophysics Data System (ADS)

    Lindsey, Nathaniel J.; Martin, Eileen R.; Dreger, Douglas S.; Freifeld, Barry; Cole, Stephen; James, Stephanie R.; Biondi, Biondo L.; Ajo-Franklin, Jonathan B.

    2017-12-01

    Our understanding of subsurface processes suffers from a profound observation bias: seismometers are sparse and clustered on continents. A new seismic recording approach, distributed acoustic sensing (DAS), transforms telecommunication fiber-optic cables into sensor arrays enabling meter-scale recording over tens of kilometers of linear fiber length. We analyze cataloged earthquake observations from three DAS arrays with different horizontal geometries to demonstrate some possibilities using this technology. In Fairbanks, Alaska, we find that stacking ground motion records along 20 m of fiber yield a waveform that shows a high degree of correlation in amplitude and phase with a colocated inertial seismometer record at 0.8-1.6 Hz. Using an L-shaped DAS array in Northern California, we record the nearly vertically incident arrival of an earthquake from The Geysers Geothermal Field and estimate its backazimuth and slowness via beamforming for different phases of the seismic wavefield. Lastly, we install a fiber in existing telecommunications conduits below Stanford University and show that little cable-to-soil coupling is required for teleseismic P and S phase arrival detection.

  2. Some possible causes of and corrections for STS-1 response changes in the Global Seismographic Network

    USGS Publications Warehouse

    Hutt, C.R.; Ringler, A.T.

    2011-01-01

    The Global Seismographic Network (GSN) (Figure 1) plays a key role in providing seismic data for global earthquake monitoring (e.g., Benz et al. 2005), earthquake science (e.g., Tsai et al. 2005), and studies of Earth structure (e.g., Dalton et al. 2008). One of the key GSN design goals is to "provide high fidelity digital recordings of all teleseismic ground motions (adequate to resolve at or near ambient noise up to the largest teleseismic signals over the bandwidth from free oscillations (10-4 Hz) to teleseismic body waves (up to approximately 15 Hz))" (GSN ad hoc Design Goals Subcommittee 2002). To help meet this goal, Streckeisen STS-1 seismometers were deployed at 80 GSN stations. Some of the GSN sensors have been deployed for more than 25 years. Several recent studies (Davis et al. 2005; Ekström et al. 2006; Davis and Berger 2007) have examined the question of overall calibration of the GSN. Ekström et al. (2006) indicated that a number of sites showed anomalous responses and suggested a gradual decay in the sensitivity. We have investigated the anomalous responses at several GSN sites. At least some of the problems observed by Ekström et al. (2006) may be attributed to humid air leaking into the feedback electronics of the STS-1 seismometers, which produces lower than normal sensitivities near the long-period corner of the instrument (360 seconds period). It appears that even though the feedback electronics boxes are designed to be sealed, water vapor can penetrate their interior after they have been exposed to highly humid seismometer vault air for extended periods. Highly humid air was also found to be present inside some STS-1 bell-jars (especially horizontal instruments) after loss of vacuum, resulting in corrosion and leakage between electrical conductors in connectors.

  3. Challenge for the accurate CMT estimation of the offshore earthquakes using ocean bottom pressure gauges as seismometers

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.

    2017-12-01

    When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.

  4. Challenge for the accurate CMT estimation of the offshore earthquakes using ocean bottom pressure gauges as seismometers

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.

    2016-12-01

    When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.

  5. Cascadia Seismicity Related to Seamount Subduction as detected by the Cascadia Initiative Amphibious Data

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2016-12-01

    Unlike other subduction zones, the Cascadia subduction zone (CSZ) is notable for the absence of detected and located small and moderate magnitude interplate earthquakes, despite the presence of recurring episodic tremor and slip (ETS) downdip and evidence of pre-historic great earthquakes. Thermal and geodetic models indicate that the seismogenic zone exists primarily, if not entirely, offshore; therefore the perceived unusual seismic quiescence may be a consequence of seismic source location in relation to land based seismometers. The Cascadia Initiative (CI) amphibious community seismic experiment includes ocean bottom seismometers (OBS) deployed directly above the presumed locked seismogenic zone. We use the CI dataset to search for small magnitude interplate earthquakes previously undetected using the on-land sensors alone. We implement subspace detection to search for small earthquakes. We build our subspace with template events from existing earthquake catalogs that appear to have occurred on the plate interface, windowing waveforms on CI OBS and land seismometers. Although our efforts will target the entire CSZ margin and full 4-year CI deployment, here we focus on a previously identified cluster off the coast of Oregon, related to a subducting seamount. During the first year of CI deployment, this target area yields 293 unique detections with 86 well-located events. Thirty-two of these events occurred within the seamount cluster, and 13 events were located in another cluster to the northwest of the seamount. Events within the seamount cluster are separated into those whose depths place them on the plate interface, and a shallower set ( 5 km depth). These separate event groups track together temporally, and seem to agree with a model of seamount subduction that creates extensive fracturing around the seamount, rather than stress concentrated at the seamount-plate boundary. During CI year 2, this target area yields >1000 additional event detections.

  6. Manta A New BroadBand OBS

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Philippe, O.

    2017-12-01

    Manta is a new BroadBand OBS developed at Geoazur and commercialized by Osean. The design is inspired by 3-years autonomy MUG-OBS a Multiparameter Ocean Bottom System which carry a lot of sort of sensor types. As Mug-OBS, Manta-OBS rated 6000m is designed to resist a trawling. All the components are non corrosive such polyethylene, titanium and buoyancy is ensured by syntactic foam. Equipped in standard version with a Trillium compact OBS Manta has an autonomy of 18 months, but can accept on its 4 input channels any kind of signal as low as from an hydrophone or larger from other type of a seismometer or accelerometer. Tri-axial geophones unit (2 Hz or 4.5 Hz ) can replace the seismometer and will expend the lifespan for the instrument. The seismometer is encapsulated in a central well established by four panels of the main structure to protect it from sea current convection and is decoupled from main chassis. An health bulletin is recoverable by acoustic any time to facilitate the installation and during a visit when instrument is deployed. Main parameters for acquisition can be changed by acoustics command from surface at any time. Once at the bottom, release for the main sensor installation is programmed on a timer but controlled by the tilt of the OBS. If the tilt is too important based on programmed limits, sensor will not released automatically, but this can be forced by acoustic command after returning the tilt informations to the boat operator. Manta is equipped with flash light and AIS system for easy location at recovery, and can also send it's position by Iridium satellite in case of an unexpected ascent such caused by a possible trawling if deployed in shallow water. Clock drift calculation is automatically made against GPS time signal once the OBS return at the surface. The recovery of the OBS is initiated by an acoustic command. These new features made Manta a very versatile instrument for monitoring earthquakes.

  7. Education and Public Outreach for the Cascadia Initiative--Engaging communities in their own Geologic Back Yards

    NASA Astrophysics Data System (ADS)

    Livelybrooks, D.; Toomey, D. R.; Brennan, D.; Mulder, G.

    2013-12-01

    The Cascadia Initiative is a four-year, amphibious project employing arrays of seismometers, pressure gauges, and GPS monitors. Its goals are to study the structure of the Juan de Fuca and Gorda plates, deformation of the leading edge of the North American plate, the nature of the locked zone between plates where large earthquakes occur, and inboard slow slip events. For the past three summers, members of the Cascadia Initiative Expedition Team (CIET), Oregon community college students and faculty, and other undergraduate and graduate students have participated in 3-6 cruises annually to deploy and recover ocean-bottom seismometers (OBSs) off the coast of California, Oregon, Washington and Vancouver Island. Additionally, Oregon K-12 educators have engaged in using low-cost and research-grade seismometers to characterize school site shaking hazards as a way to influence school leadership and address seismic hazards. As part of CIET's unique ';CC@Sea' program, community college students and instructors have developed videos, talks and posters based on their experiences, and present these to CC core science classes and other campus groups (e.g. ROV clubs) to help catalyze interest in geoscience and other STEM careers. These presentations include both scientific goals and experiential impressions, and serve to capture the teamwork and multiple skill sets found among ship and scientific crews at sea. As part of a Title IIb math-science partnership program, a team of middle- and high-school teachers is developing classroom projects around school seismic hazards, a very real possibility for we who live near the Cascadia subduction zone. Students will analyze data, report their findings, and provide recommendations focused on mitigating hazards to school administrators and school boards. This presentation will summarize how CIET's K-14 EPO efforts support student, teacher and the broader community engagement at the nexus of the geosciences and public policy. A K-12 teacher serves as a seismic signal source

  8. Modernization of the Slovenian National Seismic Network

    NASA Astrophysics Data System (ADS)

    Vidrih, R.; Godec, M.; Gosar, A.; Sincic, P.; Tasic, I.; Zivcic, M.

    2003-04-01

    The Environmental Agency of the Republic of Slovenia, the Seismology Office is responsible for the fast and reliable information about earthquakes, originating in the area of Slovenia and nearby. In the year 2000 the project Modernization of the Slovenian National Seismic Network started. The purpose of a modernized seismic network is to enable fast and accurate automatic location of earthquakes, to determine earthquake parameters and to collect data of local, regional and global earthquakes. The modernized network will be finished in the year 2004 and will consist of 25 Q730 remote broadband data loggers based seismic station subsystems transmitting in real-time data to the Data Center in Ljubljana, where the Seismology Office is located. The remote broadband station subsystems include 16 surface broadband seismometers CMG-40T, 5 broadband seismometers CMG-40T with strong motion accelerographs EpiSensor, 4 borehole broadband seismometers CMG-40T, all with accurate timing provided by GPS receivers. The seismic network will cover the entire Slovenian territory, involving an area of 20,256 km2. The network is planned in this way; more seismic stations will be around bigger urban centres and in regions with greater vulnerability (NW Slovenia, Krsko Brezice region). By the end of the year 2002, three old seismic stations were modernized and ten new seismic stations were built. All seismic stations transmit data to UNIX-based computers running Antelope system software. The data is transmitted in real time using TCP/IP protocols over the Goverment Wide Area Network . Real-time data is also exchanged with seismic networks in the neighbouring countries, where the data are collected from the seismic stations, close to the Slovenian border. A typical seismic station consists of the seismic shaft with the sensor and the data acquisition system and, the service shaft with communication equipment (modem, router) and power supply with a battery box. which provides energy in case of mains failure. The data acquisition systems are recording continuous time-series sampled at 200 sps, 20 sps and 1sps.

  9. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further needs.

  10. Analysis of Regolith Properties Using Seismic Signals Generated by InSight's HP3 Penetrator

    NASA Astrophysics Data System (ADS)

    Kedar, Sharon; Andrade, Jose; Banerdt, Bruce; Delage, Pierre; Golombek, Matt; Grott, Matthias; Hudson, Troy; Kiely, Aaron; Knapmeyer, Martin; Knapmeyer-Endrun, Brigitte; Krause, Christian; Kawamura, Taichi; Lognonne, Philippe; Pike, Tom; Ruan, Youyi; Spohn, Tilman; Teanby, Nick; Tromp, Jeroen; Wookey, James

    2017-10-01

    InSight's Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of ˜1 mm per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels. Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight's Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence.

  11. Reproducibility and Repeatability of Site-noise and Instrument Self-noise from Multiple Installations of Broadband Seismometers

    NASA Astrophysics Data System (ADS)

    Holland, A. A.; Ringler, A. T.; Wilson, D.

    2016-12-01

    We attempt to estimate lower bounds on the repeatability for a number of common instrumentation parameters and provide estimates on the errors associated with the instrument installation itself. These parameters include the self-noise, the orientation, and the sensitivity. We installed three Trillium Compact instruments within 30 cm of each other in the same seismic vault at the Albuquerque Seismological Laboratory. We then repeatedly uninstall and reinstall one of the Trillium Compact instruments multiple times, while leaving the other two in place as reference installations. Using these trials we are then able to examine how repeatable several parameters are between the two reference instruments and the other instrument. We also completely uninstalled and reinstalled the three seismometers once during the testing, in order to examine the reproducibility of the entire experiment. Results indicate that relative sensitivity is highly repeatable, which is partly why we chose this particular sensor for this evaluation. We find that self-noise in the band of 0.1 to 30 s period of an instrument is repeatable to within about 2 dB. Increasing the period of interest from 30 to 100 s period we observe that the self-noise of an instrument can only be repeated to within about 3 dB and that the relative self-noise is not repeatable amongst the sensors. We also find that even though the seismometers are centimeters apart on a single marked line, that the relative orientation between installations is only repeatable to within 1-2 degrees. However, the relative orientations are reproducible, that is, with each installation the relative orientations are within the same amount of uncertainty. Some other broadband or very broadband instruments may not show as much repeatability between installations for some of the metrics we examined. From these tests we can say that instrument self-noise tests are reproducible to within a few dB.

  12. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    NASA Astrophysics Data System (ADS)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the past.

  13. Improving the Magnetic Damping of an AS-1 Seismometer

    NASA Astrophysics Data System (ADS)

    Marton, F.; Echreshzadeh, M.; Tokman, T. L.; Palaric, K. D.; Filippone, N. V.; Balzarette, M.; Sivo, J.

    2016-12-01

    Last year, students working on the SeismoSTEM project at Bergen Community College in New Jersey successfully manufactured and assembled an AS-1 seismometer1. For 2016, our objective has been to improve the magnetic damping mechanism invented by Chris Chapman2. As the mass on the boom is displaced by seismic waves, the spring will cause the mass to oscillate, therefore, damping is required. To achieve this, a paddle-shaped piece of copper, along with steel plates holding strong neodymium magnets are used. A localized eddy current is then induced, which then creates an opposing magnetic field. The challenges we faced for the summer internship was the fact that there was either too much or too little damping to distinguish the waves of an earthquake. However, we resolved the issue by designing our own prototype for moving the steel plates away and toward the copper paddle, to achieve critical damping. This was successfully completed by attaching two L-shaped pieces of aluminum, along with a cylindrical piece, to form a yoke. We then drilled a hole through the cylindrical piece and a plastic block for a bolt to slide through. Finally, the head of the bolt would then be used as a knob to shift the two plates away from and toward the paddle simultaneously. Although this was our solution for moving the plates horizontally, we also needed to find a way to lock the plates in place once we found the correct amount of damping. We accomplished this task by drilling two slotted holes on two symmetrical sheets of aluminum, which will allow us to slide the plates, and finally, lock them into place to avoid wobbling. References: 1Tokman, T.L. et al., What's shaking? Manufacturing & assembling an AS-1 educational seismometer for undergraduate stem research, Geological Society of America Abstracts with Programs. Vol. 47, No. 7, p.524, 2015. 2http://www.jclahr.com/science/psn/chapman/as1%20damping/

  14. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.

  15. Interferometric imaging of the San Andreas Fault at Parkfield Using a Massive VSP

    NASA Astrophysics Data System (ADS)

    Chavarria, J.; Goertz, A.; Karrenbach, M.; Paulsson, B.

    2006-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) has the goal of investigating the physical processes controlling earthquakes in central California at Parkfield. The observatory consists of a deep well, that intersected the San Andreas Fault at seismogenic depths of ~3.2 km, where recurring microearthquake activity takes place. Previous to the drilling of Phase II, that intersected the fault at the end of Summer 2005, a long array of seismometers was deployed in the deeper part of the well to characterize the fault structure and to aid the monitoring activities of the natural seismicity. The Massive VSP array consisted of 80 three component seismometers that were deployed during April and May 2005. During this period of time we recorded active data from 13 explosions used to refine the velocity models that improved the locations of target events. In addition to this, we continuously monitored passive data from the natural earthquake activity in the area that was dominated by the Parkfield 2004 event aftershock sequence. During the recording time of this project we were able to record one of the target earthquakes of the SAFOD project as well as recently discovered non-volcanic tremor. The data recorded by this deep array of seismometers has provided important information to characterize the structure of the fault at scale that is comparable to the scale of the geologic observations. These observations, derived during drilling of the well, consist of cores and cuttings as well as geophysical logs. With the use of the borehole array of seismometers we have been able to directly correlate this lithologic information with seismic phases observed in the VSP data. This has lead to better understanding the nature of the scattering that takes place in this complex fault zone. Seismic reflections in the dataset were analyzed with Kirchhoff imaging methods to determine a partial image of the San Andreas Fault at depth. Due to the low density distribution of sources in the study area the illumination volume is limited but still shows clear signals originating from sub-vertical structures associated to the strands of the San Andreas fault inferred from high resolution earthquake location. The existing Kirchhoff imaging methods have been complemented with the use of interferometric imaging by which we extract the Green's function of the data recorded by the array. This takes place with the use of correlation analysis of both active and passive data resulting in a dataset where each downhole receiver acts as a virtual source. This analysis has provided a refined image of the structure of the San Andreas Fault at seismogenic depths with which a better understanding of the system can be achieved.

  16. Upper Mantle Seismic Anisotropy Beneath West Antarctica from Shear Wave Splitting Analysis of POLENET/ANET Data

    NASA Astrophysics Data System (ADS)

    Accardo, N.; Wiens, D. A.; Hernandez, S.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.

    2011-12-01

    We constrain azimuthal anisotropy in the Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS, and PKS phases recorded at 30 broad-band seismometers deployed in West Antarctica, and the Transantarctic Mountains as a part of POLENET/ANET. The first seismometers were deployed in late 2007 and additional seismometers were deployed in 2008 and 2009. The seismometers generally operate year-round using solar power, insulated boxes, and either rechargeable AGM or primary lithium batteries. We used an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. Robust windows around the individual phases were chosen using the Teanby cluster-analysis algorithm. We visually inspected all results and assigned a quality rating based on factors including signal-to-noise ratios, particle motions, and error contours. The best results for each station were then stacked to get an average splitting direction and delay time. The delay times range from 0.33 to 1.33 s, but generally average about 1 s. We conclude that the splitting results from anisotropy in the upper mantle, since the large splitting times cannot be accumulated in the relatively thin crust (20-30 km) of the region. Overall, fast directions in West Antarctica are at large angles to the direction of Antarctic absolute plate motion in either hotspot or no-net rotation frameworks, showing that the anisotropic fabric does not result from shear associated with the motion of Antarctica over the mantle. The West Antarctic fast directions are also much different than those found in East Antarctica by previous studies. We suggest that the East Antarctic splitting results from anisotropy frozen into the cold cratonic continental lithosphere, whereas West Antarctic splitting is related to Cenozoic tectonism. Stations within the West Antarctic Rift System (WARS), a region of Cenozoic extension, show fast directions subparallel to the inferred WARS extension direction. Stations located in the Ellsworth-Whitmore Mountains (EWM) show fast directions parallel to those found within WARS. Furthermore, results from WARS and from EWM all show relatively large splitting times of 0.6 - 1.33 s. These results suggest upper mantle anisotropy that results from mantle flow and deformation related to the extensional deformation of the region. Two stations were installed in the Pensacola Mountains which are located grid-north of the EWM. The results from this region deviate from the dominant fast orientation seen in WARS but appear to be approximately perpendicular to the strike of the mountain range. Stations in Marie Byrd Land (MBL) show inconsistent fast directions and a wide range of delay times (0.3 - 0.9 s), perhaps as a result of complex mantle fabric related to a possible MBL hotspot.

  17. An Investigation of Fin and Blue Whales in the NE Pacific Ocean using Data from Cascadia Initiative Ocean Bottom Seismometers

    DTIC Science & Technology

    2015-09-30

    environmental noise (principally from wind /waves), and then estimating the sound level in the fin whale band in the result. There was also a...Acoustic density estimation of leopard seals. Abstracts, Birds and Mammals Session, Open Science Conference of the Scientific Committee on Antarctic

  18. Computers at the Albuquerque Seismological Laboratory

    USGS Publications Warehouse

    Hoffman, J.

    1979-01-01

    The Worldwide Standardized Seismograph Network (WWSSN) is managed by the U.S Geological Survey in Albuquerque, N. Mex. It consists of a global network of seismographs housed in seismic observatories throughout the world. An important recent addition to this network are the Seismic Research Observatories (SRO) which combine a borehole seismometer with a modern digital data recording system. 

  19. Next Generation Robust Low Noise Seismometer for Nuclear Monitoring

    DTIC Science & Technology

    2008-09-01

    of four fine platinum mesh electrodes, two anodes, and two cathodes, separated by thin polymer mesh or laser-perforated mica spacers. The stack is...cell (Abramocvich and Daragan, 1992-94): ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −− )exp(1 00 kT qU l eSDc =I (6) 2008 Monitoring Research Review: Ground-Based

  20. Analysis of Lunar Seismic Signals: Determination of Instrumental Parameters and Seismic Velocity Distributions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Horvath, P.

    1979-01-01

    Inverse filters were designed to correct the effect of instrumental response, coupling of the seismometer to the ground, and near surface structures. The least squares technique was used to determine the instrumental constants and the transfer functions of the long period lunar seismographs. The influence of noise and the results of these calculations are discussed.

  1. An Investigation of Fin and Blue Whales in the NE Pacific Ocean using Data from Cascadia Initiative Ocean Bottom Seismometers

    DTIC Science & Technology

    2014-09-30

    the east and northeast by the ocean currents associated with the West Wind drift and Subarctic Current. Over 150 fin whale tracks ranging in duration...Mellinger, T.L. Rogers, R.P. Dziak, and M. Park. (2012). Acoustic density estimation of leopard seals. Abstracts, Birds and Mammals Session, Open

  2. Zero-phase FIR filters: Blessing or curse?

    NASA Astrophysics Data System (ADS)

    Scherbaum, Frank

    These are exciting times for observational seismology. State-of-the-art broadband seismometers now easily cover a frequency band of more than one hundred seconds to several tens of Hertz in a single sensor. Commonly available data loggers provide a dynamic range exceeding 120 dB. Ground motion amplitudes differing by more than 6 orders of magnitude can be simultaneously recorded without distortion.

  3. Shake It All About! Using Earthquake Science to Enhance Geology and Physics Teaching in the UK

    ERIC Educational Resources Information Center

    Murphy, Phillip; Murphy, Elizabeth

    2014-01-01

    A three-year project aimed at embedding seismology into schools in northern England to support the teaching of the earth science strands in the National Curriculum for England and Wales is described. Seismometers were deployed in a range of high schools across the Yorkshire and Humberside region. Deployment was supported by a programme of staff…

  4. A Laser Interferometric Miniature Seismometer

    DTIC Science & Technology

    2008-09-01

    zero bias, convert the photodiode currents to voltages with transimpedance amplifiers based on operational amplifiers (op amps) and produce a...light is collected at the photodiodes and transimpedance amplifiers convert the photocurrent to a voltage, and the seismic signal is the difference... transimpedance amplifiers . CONCLUSIONS AND RECOMMENDATIONS Achieving LNM resolution in a seismic sensor is a very strong challenge. While we have built

  5. Seismology and Research in Schools: One School's Experience

    ERIC Educational Resources Information Center

    Tedd, Joe; Tedd, Bernie

    2018-01-01

    The UK School Seismology Project started in 2007. King Edward VI High School for Girls was one of the fortunate schools to obtain a school seismometer system, free of charge, as an early adopter of the resource. This report outlines our experiences with the system over the past 10 years and describes our recent research on the relationship between…

  6. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  7. Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil

    NASA Astrophysics Data System (ADS)

    Loureiro, A.; Schnürle, P.; Klingelhöfer, F.; Afilhado, A.; Pinheiro, J.; Evain, M.; Gallais, F.; Dias, N. A.; Rabineau, M.; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, A.; Matias, L.; Moulin, M.; Aslanian, D.; Vinicius Aparecido Gomes de Lima, M.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros Junior, P.; Biari, Y.; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.; Salsa Team

    2018-07-01

    Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.

  8. Seismic structure from multi-channel seismic reflection and wide-angle data of Transect 0E in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.

    2005-12-01

    We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.

  9. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  10. Monitoring microearthquakes with the San Andreas fault observatory at depth

    USGS Publications Warehouse

    Oye, V.; Ellsworth, W.L.

    2007-01-01

    In 2005, the San Andreas Fault Observatory at Depth (SAFOD) was drilled through the San Andreas Fault zone at a depth of about 3.1 km. The borehole has subsequently been instrumented with high-frequency geophones in order to better constrain locations and source processes of nearby microearthquakes that will be targeted in the upcoming phase of SAFOD. The microseismic monitoring software MIMO, developed by NORSAR, has been installed at SAFOD to provide near-real time locations and magnitude estimates using the high sampling rate (4000 Hz) waveform data. To improve the detection and location accuracy, we incorporate data from the nearby, shallow borehole (???250 m) seismometers of the High Resolution Seismic Network (HRSN). The event association algorithm of the MIMO software incorporates HRSN detections provided by the USGS real time earthworm software. The concept of the new event association is based on the generalized beam forming, primarily used in array seismology. The method requires the pre-computation of theoretical travel times in a 3D grid of potential microearthquake locations to the seismometers of the current station network. By minimizing the differences between theoretical and observed detection times an event is associated and the location accuracy is significantly improved.

  11. Tracking blue whales in the eastern tropical Pacific with an ocean-bottom seismometer and hydrophone array.

    PubMed

    Dunn, Robert A; Hernandez, Olga

    2009-09-01

    Low frequency northeastern Pacific blue whale calls were recorded near the northern East Pacific Rise (9 degrees N latitude) on 25 ocean-bottom-mounted hydrophones and three-component seismometers during a 5-day period (November 22-26, 1997). Call types A, B, C, and D were identified; the most common pattern being approximately 130-135 s repetitions of the AB sequence that, for any individual whale, persisted for hours. Up to eight individual blue whales were recorded near enough to the instruments to determine their locations and were tracked call-by-call using the B components of the calls and a Bayesian inversion procedure. For four of these eight whales, the entire call sequences and swim tracks were determined for 20-26-h periods; the other whales were tracked for much shorter periods. The eight whales moved into the area during a period of airgun activity conducted by the academic seismic ship R/V Maurice Ewing. The authors examined the whales' locations and call characteristics with respect to the periods of airgun activity. Although the data do not permit a thorough investigation of behavioral responses, no correlation in vocalization or movement with airgun activity was observed.

  12. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling

    NASA Astrophysics Data System (ADS)

    Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta

    2011-03-01

    One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.

  13. New seismic instrumentation packaged for all terrestrial environments (including the quietest observatories!).

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce

    2017-04-01

    The march to make every type of seismometer, weak to strong motion, reliable and economically deployable in any terrestrial environment continues with the availability of three new sensors and seismic systems including ones with over 200dB of dynamic range. Until recently there were probably 100 pier type broadband sensors for every observatory type pier, not the types of deployments geoscientists are needing to advance science and monitoring capability. Deeper boreholes are now the recognized quieter environments for best observatory class instruments and these same instruments can now be deployed in direct burial environments which is unprecedented. The experiences of facilities in large deployments of broadband seismometers in continental scale rolling arrays proves the utility of packaging new sensors in corrosion resistant casings and designing in the robustness needed to work reliably in temporary deployments. Integrating digitizers and other sensors decreases deployment complexity, decreases acquisition and deployment costs, increases reliability and utility. We'll discuss the informed evolution of broadband pier instruments into the modern integrated field tools that enable economic densification of monitoring arrays along with supporting new ways to approach geoscience research in a field environment.

  14. Discriminating different type waves from pressure and ground motion observation in the seafloor by DONET cabled observation network.

    NASA Astrophysics Data System (ADS)

    Araki, E.; Kawaguchi, K.; Kaneda, Y.

    2011-12-01

    We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to observe both in the similar level of sensitivity and dynamic range in wide frequencies from near DC to over 100 Hz. In the case of DONET, the broadband seismometer and the differential pressure gauge have similar level of sensitivity in 0.005 - 10 Hz, and similarly the accelerometer and the hydrophone cover between 1-100Hz, in total covering most frequencies of our interest, 0.005 Hz to 100 Hz. With both ground motion and seafloor pressure measurement, we may distinguish types of waves relatively easily, and it is also possible to filter particular types of waves from the array dataset to help our data analysis. For example, it has been commonly practiced to distinguish up-going and down-going seismic phases from pressure and ground motion, but this is relatively difficult only with sparse seismometer array. This technique may also be applied to correct teleseismic record with sea surface reflection in receiver function analysis for exploring deep crustal structure.

  15. LOBSTER - The Next Generation

    NASA Astrophysics Data System (ADS)

    Schwenk, Arne

    2016-04-01

    Since 1997 K.U.M. GmbH designs and manufactures Ocean Bottom Seismometer. During the last three years we designed a new instrument which is presented here. Higher resolution, higher accuracy and less power consumption led to an unique instrument, the worlds smallest broadband longterm OBS. Key data are: 32 bit, 143dB, 300mW, 120 sec, 200kg deployment weight, size of half a palette.

  16. A Software Toolbox for Systematic Evaluation of Seismometer-Digitizer System Responses

    DTIC Science & Technology

    2011-09-01

    characteristics (e.g., borehole vs. surface installation) instead of the actual seismic noise characteristics. Their results suggest that our best...Administration Award No. DE-FG02-09ER85548 ABSTRACT Measurement of the absolute amplitudes of a seismic signal requires accurate knowledge of...estimates seismic noise power spectral densities, and NOISETRAN, which generates a pseudo-amplitude response (PAR) for a seismic station, based on

  17. Effects of Aging Hardware on Data Quality

    DTIC Science & Technology

    2011-09-01

    the calibration period, or calper.) If co-located seismometers are from different manufacturers (e.g., Geotech , Guralp, or Kinemetrics) or of...evaluation for scaling issues Seismometer—manufacturer, model, and design DWR—manufacturer, model Geotech KS54000 broadband (acceleration/velocity...Science Horizons AIM24S3 Geotech GS21 short period Science Horizons AIM24S1 The first seismic system configuration shown in Table 1 ( Geotech

  18. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  19. Engaging High School Science Teachers in Field-Based Seismology Research: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2015-12-01

    Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the PI to the classroom of one of the teacher participants during spring 2015 to give a series of talks on Connecticut earthquakes and geology. This presentation will focus on the challenges and opportunities of running small, PI-driven, field-based RET programs.

  20. Melt distribution along the axis of ultraslow spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Schlindwein, V. S. N.; Schmid, F.; Meier, M.

    2017-12-01

    Ultraslow spreading mid-ocean ridges (<15 mm/y full spreading rate) differ from faster spreading ridges by their uneven melt distribution. Crustal thickness varies along axis from zero to more than 8 km at volcanic centers. These volcanic centers receive more melt than the regional average and may be sustained for millions of years. The segmentation pattern and active volcanism at ultraslow spreading ridges greatly differs from faster spreading ridges. Using networks of ocean bottom seismometers at three differing ridge segments, we could show that the maximum depth of brittle faulting, equivalent approximately to temperatures of 600-700°C, varies drastically along axis. Ridge sections that lack an igneous crust exhibit a thick lithosphere as evidenced by the deepest mid-ocean ridge earthquakes observed so far at more than 30 km depth. Beneath areas of basalt exposure, in particular beneath pronounced volcanic centers, the axial lithosphere may be more than 15 km thinner allowing for melt flow at the base of the lithosphere towards the volcanoes, a process that has been postulated to explain the uneven along-axis melt distribution. Spreading events at ultraslow spreading ridges are unusual as we found from two spreading episodes at 85°E Gakkel Ridge and Segment 8 volcano on the Southwest Indian Ridge. These eruptions were preceded or accompanied by large (M>5) and long-lasting earthquake swarms and active magmatism lasted over 3-16 years. A massive hydrothermal event plume and sounds from deep submarine explosive volcanism were observed at Gakkel Ridge. At the Segment 8 volcano, we imaged a melt reservoir extending to about 8 km depth below the volcano that potentially fed a sill intrusion recorded by an ocean bottom seismometers about 30 km away at a neighboring subordinate volcanic center. To better understand the segmentation and melt transport at ultraslow spreading rigdes, we recently conducted a segment-scale seismicity survey of Knipovich Ridge in the Norwegian-Greenland Sea. Here we deployed 28 ocean bottom seismometers along 160 km of ridge axis for one year, the currently largest mid-ocean ridge microseismicity experiment.

  1. 3D tomographic seismic imaging of the southern rupture barrier of the great Sumatra-Andaman 2005 earthquake

    NASA Astrophysics Data System (ADS)

    Vermeesch, P. M.; Henstock, T. J.; Lange, D.; McNeill, L. C.; Barton, P. J.; Tang, G.; Bull, J. M.; Tilmann, F.; Dean, S. M.; Djajadihardja, Y.; Permana, H.

    2009-04-01

    In 2008 a 3D onshore-offshore controlled-source seismic experiment was carried out in an area of 300 km x 400 km, centered on the southern termination of the great Sumatra-Andaman 2005 earthquake rupture. In the first part of cruise SO198 on R/V Sonne ~10000 airgun shots were fired into an array of 47 Ocean Bottom Seismometers (OBSs). A further ~50000 shots were fired into an array of 10 long-deployment OBSs. All shots were recorded on ~15 seismometers on the islands and more than 20 seismometers along the coast of Sumatra. An initial velocity model has been derived from 70132 first-arrival traveltimes from 45 OBSs, using the First-Arrival Seismic Tomography (FAST) inversion code developed by Zelt and Barton (1998). Root Mean Square traveltime misfit reduces from 1311 ms in the 1D starting model to 81 ms after 20 non-linear iterations. Offsets range between 0 and 265 km, with rays penetrating up to 28 km depth in the final model, hereby imaging the top of the subducting oceanic plate and revealing its complex 3D topography. Ray coverage is still being extended by including first-arrival traveltime picks from the landstations on the coast of Sumatra and the islands and from the 10 long-term deployment OBSs that will be recovered in January. The robustness and resolution of the final 3D model is examined by exploring different starting models, different inversion parameters and by carrying out checkerboard tests and synthetic tests. The resulting crustal 3D velocity model will allow us to explore the nature and physical cause of the rupture barrier of the 2005 great earthquake. Comparison with a similar dataset and subsequent 3D velocity model acquired at the boundary between the 2004 and 2005 earthquakes will provide important insights into the segmentation of the Sumatra subduction zone and the dynamics of its great earthquakes. Zelt, C. A. and P. J. Barton (1998). Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faroe Basin. Journal of Geophysical Research 103: 7187-7210.

  2. Looking inside the microseismic cloud using seismic interferometry

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Rhode, A.; Morency, C.; Templeton, D. C.; Pyle, M. L.

    2015-12-01

    Microseismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Thousands of microquakes are often associated with an active site. This cloud of microseismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the faulting region, itself. The virtual seismometer method (VSM) is a technique of seismic interferometry that provides precise estimates of the GF between earthquakes. In many ways the converse of ambient noise correlation, it is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. In a region with 1000 microseisms, we can calculate roughly 500,000 waveforms sampling the active zone. At the same time, VSM collapses the computation domain down to the size of the cloud of microseismicity, often by 2-3 orders of magnitude. In simple terms VSM involves correlating the waveforms from a pair of events recorded at an individual station and then stacking the results over all stations to obtain the final result. In the far-field, when most of the stations in a network fall along a line between the two events, the result is an estimate of the GF between the two, modified by the source terms. In this geometry each earthquake is effectively a virtual seismometer recording all the others. When applied to microquakes, this alignment is often not met, and we also need to address the effects of the geometry between the two microquakes relative to each seismometer. Nonetheless, the technique is quite robust, and highly sensitive to the microseismic cloud. Using data from the Salton Sea geothermal region, we demonstrate the power of the technique, illustrating our ability to scale the technique from the far-field, where sources are well separated, to the near field where their locations fall within each other's uncertainty ellipse. VSM provides better illumination of the complex subsurface by generating precise, high frequency estimates of the GF and resolution of seismic properties between every pair of events. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  3. Redesign of the Electronics and the Mechanical Sensor of the STS-1 Very Broadband Seismometer

    NASA Astrophysics Data System (ADS)

    Romanowicz, B.; van Zandt, T.; Friday, J.; Karavas, W.; Porritt, R.; Uhrhammer, R.; Wielandt, E.

    2008-12-01

    The STS-1 VBB, widely viewed as the finest VBB sensor in the world, is currently the principal broad-band seismometer used by the Global Seismographic Network (GSN), GEOSCOPE, and several other global or regional seismic networks. Its continued operation is critical to future, fundamental research in a number of important disciplines within seismology. These include modal studies of the earth, the determination of source processes of very large earthquakes, and tsunami warning. We have recently completed the development of a replacement electronics module for the Streckeisen STS-1 Very Broad-Band (VBB) seismometer. This module maintains the outstanding analog performance of the original sensor electronics, while providing a number of unique performance enhancements that will improve the operability of STS-1 sensors within a modern, digital seismic network. We describe the attributes of this new electronics module, which has now reached production stage. As a second step in this collaboration between the Berkeley Seismological Laboratory and Metrozet (Inc), we have started the development of a commercially-viable replacement to the aging, but state-of-the-art mechanical sensor. We discuss the goals of this new project. The design of the new sensor aims at maintaining many of the unique features that have made the original sensor the world's finest instrument for low frequency seismic recording. It will, however, implement a number of enhancements that promise to improve operating performance and ease-of-use. These include the use of capacitive position sensing to reduce high frequency self-noise, an increase in the upper corner frequency of the sensor, much tighter tolerance (sensor-to-sensor) in scalar response values, and a new, highly-integrated package for deploying the sensors as a standard triaxial set. Importantly, the replacement sensor development is driven by principles of "design-for manufacturing". As such, the new sensor will include a number of features that will allow a modern, "deterministic manufacturing process" to replace what was historically an iterative, "workshop" approach to manufacture the STS-1. This is crucial to reducing the cost, and manufacturing lead time, of the new sensor.

  4. Detection of baleen whales on an ocean-bottom seismometer array in the Lau Basin

    NASA Astrophysics Data System (ADS)

    Brodie, D.; Dunn, R.

    2011-12-01

    Long-term deployment of ocean-bottom seismometer arrays provides a unique opportunity for identifying and tracking whales in a manner not usually possible in biological studies. Large baleen whales emit low frequency (>5Hz) sounds called 'calls' or 'songs' that can be detected on either the hydrophone or vertical channel of the instrument at distances in excess of 50 km. The calls are distinct to individual species and even geographical groups among species, and are thought to serve a variety of purposes. Distinct repeating calls can be automatically identified using matched-filter processing, and whales can be located in a manner similar to that of earthquakes. Many baleen whale species are endangered, and little is known about their geographic distribution, population dynamics, and basic behaviors. The Lau back-arc basin, a tectonically active, elongated basin bounded by volcanic shallows, lies in the southwestern Pacific Ocean between Fiji and Tonga. Although whales are known to exist around Fiji and Tonga, little is understood about the population dynamics and migration patterns throughout the basin. Twenty-nine broadband ocean-bottom seismometers deployed in the basin recorded data for approximately ten months during the years 2009-2010. To date, four species of whales have been identified in the data: Blue (one call type), Humpback (two call types, including long-lasting 'songs'), Bryde's (one call type), and Fin whales (three call types). Three as-yet-unknown call types have also been identified. After the calls were identified, idealized spectrograms of the known calls were matched against the entire data set using an auto-detection algorithm. The auto-detection output provides the number of calls and times of year when each call type was recorded. Based on the results, whales migrate seasonally through the basin with some overlapping of species. Initial results also indicate that different species of whales are more common in some parts of the basin than others, suggesting preferences in water depth and distance to land. In future work, whales will be tracked through the basin using call localization information to illustrate migration patterns of the various species.

  5. Microseismic Events Detection on Xishancun Landslide, Sichuan Province, China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Chu, R.; Wei, Z.

    2016-12-01

    On landslide, the slope movement and the fracturing of the rock mass often lead to microearthquakes, which are recorded as weak signals on seismographs. The distribution characteristics of temporal and spatial regional unstability as well as the impact of external factors on the unstable regions can be understand and analyzed by monitoring those microseismic events. Microseismic method can provide some information inside the landslide, which can be used as supplementary of geodetic methods for monitoring the movement of landslide surface. Compared to drilling on landslide, microseismic method is more economical and safe. Xishancun Landslide is located about 60km northwest of Wenchuan earthquake centroid, it keep deforming after the earthquake, which greatly increases the probability of disasters. In the autumn of 2015, 30 seismometers were deployed on the landslide for 3 months with intervals of 200 500 meters. First, we used regional earthquakes for time correction of seismometers to eliminate the influence of inaccuracy GPS clocks and the subsurface structure of stations. Due to low velocity of the loose medium, the travel time difference of microseismic events on the landslide up to 5s. According to travel time and waveform characteristics, we found many microseismic events and converted them into envelopes as templates, then we used a sliding-window cross-correlation technique based on waveform envelope to detect the other microseismic events. Consequently, 100 microseismic events were detected with the waveforms recorded on all seismometers. Based on the location, we found most of them located on the front of the landslide while the others located on the back end. The bottom and top of the landslide accumulated considerable energy and deformed largely, radiated waves could be recorded by all stations. What's more, the bottom with more events seemed very active. In addition, there were many smaller events happened in middle part of the landslide where released less energy, generated signals could be recorded only by a few stations. Based on the distribution of those microseismic events, we found four unstable regions which agreed well with deformed areas monitored by Geodesy methods. The distribution of those microseismic events, should be related to internal structure and movement of the landslide.

  6. Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves

    USGS Publications Warehouse

    Xu, Y.; Koper, K.D.; Sufri, O.; Zhu, L.; Hutko, Alexander R.

    2009-01-01

    [1] The Mw 7.9 Wenchuan earthquake of 12 May 2008 was the most destructive Chinese earthquake since the 1976 Tangshan event. Tens of thousands of people were killed, hundreds of thousands were injured, and millions were left homeless. Here we infer the detailed rupture process of the Wenchuan earthquake by back-projecting teleseismic P energy from several arrays of seismometers. This technique has only recently become feasible and is potentially faster than traditional finite-fault inversion of teleseismic body waves; therefore, it may reduce the notification time to emergency response agencies. Using the IRIS DMC, we collected 255 vertical component broadband P waves at 30-95?? from the epicenter. We found that at periods of 5 s and greater, nearly all of these P waves were coherent enough to be used in a global array. We applied a simple down-sampling heuristic to define a global subarray of 70 stations that reduced the asymmetry and sidelobes of the array response function (ARF). We also considered three regional subarrays of seismometers in Alaska, Australia, and Europe that had apertures less than 30?? and P waves that were coherent to periods as short as 1 s. Individual ARFs for these subarrays were skewed toward the subarrays; however, the linear sum of the regional subarray beams at 1 s produced a symmetric ARF, similar to that of the groomed global subarray at 5 s. For both configurations we obtained the same rupture direction, rupture length, and rupture time. We found that the Wenchuan earthquake had three distinct pulses of high beam power at 0, 23, and 57 s after the origin time, with the pulse at 23 s being highest, and that it ruptured unilaterally to the northeast for about 300 km and 110 s, with an average speed of 2.8 km/s. It is possible that similar results can be determined for future large dip-slip earthquakes within 20-30 min of the origin time using relatively sparse global networks of seismometers such as those the USGS uses to locate earthquakes in near-real time. Copyright 2009 by the American Geophysical Union.

  7. SIIOS in Alaska - Testing an `In-Vault' Option for a Europa Lander Seismometer.

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Weber, R. C.; DellaGiustina, D. N.; Bailey, H.; Schmerr, N. C.; Pettit, E. C.; Dahl, P.; Albert, D.; Avenson, B.; Byrne, S.; Siegler, M.; Bland, M. T.; Patterson, G. W.; Selznick, S.

    2017-12-01

    The surface environment of Europa within the radiation-heavy jovian system, poses extreme technical challenges for potential landed missions. The need for radiation shielding and protection from the cold requires instruments to be housed within a thermally insulated and radiation protected `vault'. Unfortunately, this is non-ideal for seismometers as instrument-to-surface coupling is an important factor in the quality of returned data. Delivering a seismic package to an icy world would therefore benefit from the development of a cold-tolerant, radiation-hardened sensor that can survive outside of a protective vault. If such an instrument package were not technologically mature enough, or if lander safety considerations prevent deployment on lander legs, an in-vault location is still a viable option. For such a case, a better understanding of the transmission of seismic signals received through the lander legs is necessary for interpretation of the received signals. The performance, mass, and volume of the `Seismometer to investigate ice and ocean structure' (SIIOS) already meet or exceed flight requirements identified in lander studies for the icy moon Europa. We are testing this flight-candidate in several configurations around and within a lander mock-up, assuming a 1x1 meter vault with extended legs. We compare the received signals from a SIIOS device on the ice with those received by an identical sensor directly above it in the `vault'. We also compare the data from these single-point receivers to that received by two short base-line arrays - A 4-point "in-vault" array and another 4-point array arranged at the ice surface at the base of the lander legs. Our field-testing is performed at Gulkana Glacier, Alaska. The summer melt season provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing seismic contrasts analogous to the ice-water layers and possible sub-surface lakes expected at Europa. We demonstrate the sensitivity of SIIOS to detect a variety of passive and active sources from both on-ice and lander-mounted locations, and compare the accuracy of ice-water boundary identification and event location from each configuration.

  8. OBSIP: An Evolving Facility for the Future of Geoscience

    NASA Astrophysics Data System (ADS)

    Evers, B.; Lodewyk, J. A.

    2013-12-01

    The Ocean Bottom Seismograph Instrument Pool 'OBSIP' was founded in 1999 as a National Science Foundation (NSF) sponsored instrument facility that provides ocean bottom seismometers and technical support for research in the areas of marine geology, seismology, and geodynamics. OBSIP provides both short period instruments (for active source seismic refraction studies) and long period instruments (for long term passive experiments). OBSIP is comprised of three Institutional Instrument Contributors - Lamont Doherty Earth Observatory (LDEO), Scripps Institution of Oceanography (SIO), and Woods Hole Oceanographic Institution (WHOI), each of whom contribute instruments and technical support to the pool. In 2012, NSF funded the Incorporated Research Institutions of Seismology (IRIS) to develop an OBSIP Management Office. Through the management office, IRIS will bring is extensive experience in managing facilities (PASSCAL instrument center), supporting large research experiments (Earthscope), and providing high quality data through the DMC to OBSIP. In the past year, OBSIP has provided instruments for eight experiments and supported over 20 research cruises recovering and/or deploying instruments. The most extensive OBSIP experiment in the past few years has been the Cascadia Initiative. The Cascadia Initiative is an onshore/offshore seismic and geodetic experiment deployed in the Pacific Northwest to study questions surrounding the evolution of the Juan de Fuca plate and the Gorda plate. As part of the American Recovery and Reinvestment Act, OBSIP IIC's built 60 new ocean bottom seismometers. Both LDEO and SIO designed new seismometer packages to withstand trawling by local fisherman for deployment in shallow areas. The Cascadia Initiative has required close cooperation between the OBSIP, the Deep Submergence Facility, the University National Oceanographic Laboratory System (who coordinates ship schedules for the cruises), and the Cascadia Initiative Expedition Team. At the recent OBSIP Workshop, members from the scientific community met to share scientific results and determine how OBS instrumentation can better serve the scientific community. The OBSIP Management Office is developing a comprehensive Data Quality Plan that includes all steps of the data collection process, from instrument design to quality controlling data after it is uploaded to the Data Management Center. OBSIP continues to evolve as it works to better serve the scientific community and the public.

  9. Marcellus Shale fracking waste caused earthquakes in Ohio

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-08-01

    Before January 2011, Youngstown, Ohio, had never had an earthquake since observations began in 1776. In December 2010 the Northstar 1 injection well came online; this well was built to pump wastewater produced by hydraulic fracturing projects in Pennsylvania into storage deep underground. In the year that followed, seismometers in and around Youngstown recorded 109 earthquakes—the strongest of the set being a magnitude 3.9 earthquake on 31 December 2011.

  10. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  11. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar.

    PubMed

    Occhipinti, Giovanni; Aden-Antoniow, Florent; Bablet, Aurélien; Molinie, Jean-Philippe; Farges, Thomas

    2018-01-24

    Surface waves emitted after large earthquakes are known to induce atmospheric infrasonic waves detectable at ionospheric heights using a variety of techniques, such as high frequency (HF) Doppler, global positioning system (GPS), and recently over-the-horizon (OTH) radar. The HF Doppler and OTH radar are particularly sensitive to the ionospheric signature of Rayleigh waves and are used here to show ionospheric perturbations consistent with the propagation of Rayleigh waves related to 28 and 10 events, with a magnitude larger than 6.2, detected by HF Doppler and OTH radar respectively. A transfer function is introduced to convert the ionospheric measurement into the correspondent ground displacement in order to compare it with classic seismometers. The ground vertical displacement, measured at the ground by seismometers, and measured at the ionospheric altitude by HF Doppler and OTH radar, is used here to compute surface wave magnitude. The ionospheric surface wave magnitude (M s iono ) proposed here introduces a new way to characterize earthquakes observing the signature of surface Rayleigh waves in the ionosphere. This work proves that ionospheric observations are useful seismological data to better cover the Earth and to explore the seismology of the Solar system bodies observing the ionosphere of other planets.

  12. SIIOS in Alaska: Testing an "In-Vault" Option for a Europa Lander Seismometer Experiment

    NASA Technical Reports Server (NTRS)

    Bray, Veronica J.; Weber, Renee C.; DellaGiustina, Daniella N.; Bailey, S. H. (Hop); Schmerr, Nicholas C.; Pettit, Erin C.; Avenson, Brad; Marusiak, Angela G.; Dahl, Peter; Carr, Christina; hide

    2017-01-01

    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich silicate interiors, likely providing the three ingredients needed for life as we know it: liquid water, essential chemicals, and a source of energy. The possibility of life forming in their subsurface oceans relies in part on transfer of oxidants from the irradiated ice surface to the sheltered ocean below. Constraining the mechanisms and location of material exchange between the ice surface, the ice shell, and the subsurface ocean, however, is not possible without knowledge of ice thickness and liquid water depths. In a future lander-based experiment seismic measurements will be a key geophysical tool for obtaining this critical knowledge. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) field-tests flight-ready technologies and develops the analytical methods necessary to make a seismic study of Europa and Enceladus a reality. We have been performing small-array seismology with a flight-candidate sensor in analog environments that exploit passive sources. Determining the depth to a subsurface ocean and any intermediate bodies of water is a priority for Ocean Worlds missions as it allows assessment of the habitability of these worlds and provides vital information for evaluating the spacecraft technologies required to access their oceans.

  13. Analysis and localization of blue whale vocalizations in the Solomon Sea using waveform amplitude data.

    PubMed

    Frank, Scott D; Ferris, Aaron N

    2011-08-01

    During the Woodlark Basin seismic experiment in eastern Papua New Guinea (1999-2000), an ocean-bottom seismic array recorded marine mammal vocalizations along with target earthquake signals. The array consisted of 14 instruments, 7 of which were three-component seismometers with a fourth component hydrophone. They were deployed at 2.0-3.2 km water depth and operated from September 1999 through February 2000. While whale vocalizations were recorded throughout the deployment, this study focuses on 3 h from December 21, 1999 during which the signals are particularly clear. The recordings show a blue whale song composed of a three-unit phrase. That song does not match vocalization characteristics of other known Pacific subpopulations and may represent a previously undocumented blue whale song. Animal tracking and source level estimates are obtained with a Bayesian inversion method that generates probabilistic source locations. The Bayesian method is augmented to include travel time estimates from seismometers and hydrophones and acoustic signal amplitude. Tracking results show the whale traveled northeasterly over the course of 3 h, covering approximately 27 km. The path followed the edge of the Woodlark Basin along a shelf that separates the shallow waters of the Trobriand platform from the deep waters of the basin.

  14. Transition of the Taiwan-Ryukyu collision-subduction process as revealed by ocean-bottom seismometer observations

    NASA Astrophysics Data System (ADS)

    Chin, Shao-Jinn; Lin, Jing-Yi; Chen, Yen-Fu; Wu, Wen-Nan; Liang, Chin-Wei

    2016-10-01

    Located at the arc-continental collision region between the Eurasian (EP) and Philippine Sea Plates (PSP), Taiwan is usually considered to have a complex tectonic environment, particularly along the eastern coast of the island. To gain a better understanding of the geological evolution of the east Taiwan area, the data from 8 Ocean Bottom Seismometers (OBS) acquired during the Across Taiwan Strait Explosion Experiment in 2012 and 14 inland seismic stations were used to determine a more detailed and accurate distribution of marine earthquakes. Based on the 333 relocated earthquakes and available geophysical data, we suggest two main tectonic boundaries for eastern Taiwan. South of 23.25°N, the homogeneous distribution of earthquakes in the crustal portion for both the inland and offshore areas suggests an ongoing collisional process. North of this location, between approximately 23.25°N and 23.8°N, the abrupt increasing of seismicity depth infers that the underthrusted arc/fore-arc material is deforming due to the collisional compression at depth. In this segment, the subsidence of the arc/fore-arc area determines the transition from collision to subduction. North of 23.8°N, the northwestern dipping PSP is well illustrated by the seismicity both onshore and offshore, indicating a dominant subduction process.

  15. Restoration of clipped seismic waveforms using projection onto convex sets method

    PubMed Central

    Zhang, Jinhai; Hao, Jinlai; Zhao, Xu; Wang, Shuqin; Zhao, Lianfeng; Wang, Weimin; Yao, Zhenxing

    2016-01-01

    The seismic waveforms would be clipped when the amplitude exceeds the upper-limit dynamic range of seismometer. Clipped waveforms are typically assumed not useful and seldom used in waveform-based research. Here, we assume the clipped components of the waveform share the same frequency content with the un-clipped components. We leverage this similarity to convert clipped waveforms to true waveforms by iteratively reconstructing the frequency spectrum using the projection onto convex sets method. Using artificially clipped data we find that statistically the restoration error is ~1% and ~5% when clipped at 70% and 40% peak amplitude, respectively. We verify our method using real data recorded at co-located seismometers that have different gain controls, one set to record large amplitudes on scale and the other set to record low amplitudes on scale. Using our restoration method we recover 87 out of 93 clipped broadband records from the 2013 Mw6.6 Lushan earthquake. Estimating that we recover 20 clipped waveforms for each M5.0+ earthquake, so for the ~1,500 M5.0+ events that occur each year we could restore ~30,000 clipped waveforms each year, which would greatly enhance useable waveform data archives. These restored waveform data would also improve the azimuthal station coverage and spatial footprint. PMID:27966618

  16. Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)

    NASA Astrophysics Data System (ADS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2015-06-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  17. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    NASA Technical Reports Server (NTRS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  18. Inversion of ocean-bottom seismometer (OBS) waveforms for oceanic crust structure: a synthetic study

    NASA Astrophysics Data System (ADS)

    Li, Xueyan; Wang, Yanbin; Chen, Yongshun John

    2016-08-01

    The waveform inversion method is applied—using synthetic ocean-bottom seismometer (OBS) data—to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribution of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complexity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situations; further studies are required to investigate this issue.

  19. RHUM-RUM, a Large-Scale Effort to Seismologically Image a Mantle Plume Under the Reunion Hotspot: Experiment Presentation and Initial Results

    NASA Astrophysics Data System (ADS)

    Sigloch, K.; Barruol, G.

    2014-12-01

    RHUM-RUM is a German-French geophysical experiment based on the seafloor and on islands surrounding the hotspot of La Réunion, western Indian Ocean. Its primary objective is to clarify the presence or absence of a mantle plume beneath the Reunion hotspot, which is thought to have first pierced the surface 65 million years ago with the eruption of the Deccan Traps on India. RHUM-RUM's central component is a one-year deployment (Oct 2012 - Nov 2013) of 57 broadband ocean-bottom seismometers (OBS) and hydrophones on an area of 2000x2000 km2 surrounding the hotspot. All OBS have been successfully recovered. We also have been operating 37 land seismometers on the islands of La Réunion, Mauritius, Rodrigues, southern Seychelles, îles Eparses, and on Madagascar between 2011 and 2014. As the data collection stage is drawing to a close, we discuss data yield and quality with respect to RHUM-RUM's primary purpose (passive seismological imaging through all depth levels of the mantle) and secondary applications ("environmental seismology" in a sparsely instrumented area, e.g., tracking of tropical cyclones). We give an overview of the research questions investigated by the RHUM-RUM group, and present preliminary results.

  20. Moon meteoritic seismic hum: Steady state prediction

    USGS Publications Warehouse

    Lognonne, P.; Feuvre, M.L.; Johnson, C.L.; Weber, R.C.

    2009-01-01

    We use three different statistical models describing the frequency of meteoroid impacts on Earth to estimate the seismic background noise due to impacts on the lunar surface. Because of diffraction, seismic events on the Moon are typically characterized by long codas, lasting 1 h or more. We find that the small but frequent impacts generate seismic signals whose codas overlap in time, resulting in a permanent seismic noise that we term the "lunar hum" by analogy with the Earth's continuous seismic background seismic hum. We find that the Apollo era impact detection rates and amplitudes are well explained by a model that parameterizes (1) the net seismic impulse due to the impactor and resulting ejecta and (2) the effects of diffraction and attenuation. The formulation permits the calculation of a composite waveform at any point on the Moon due to simulated impacts at any epicentral distance. The root-mean-square amplitude of this waveform yields a background noise level that is about 100 times lower than the resolution of the Apollo long-period seismometers. At 2 s periods, this noise level is more than 1000 times lower than the low noise model prediction for Earth's microseismic noise. Sufficiently sensitive seismometers will allow the future detection of several impacts per day at body wave frequencies. Copyright 2009 by the American Geophysical Union.

  1. Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Constantin, C.; Wilson, C. F.

    2013-12-01

    We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.

  2. Ocean Bottom Seismic Scattering

    DTIC Science & Technology

    1989-11-01

    EPR, the Clipperton and Orozco fracture zones , and along the coast of Mexico, were recorded for a two month period using ocean bottom seismometers...67. Tuthill, J.D., Lewis, B.R., and Garmany, J.D., 1981, Stonely waves, Lopez Island noise, and deep sea noise from I to 5 hz, Marine Geophysical...Patrol Pell Marine Science Library d/o Coast Guard R & D Center University of Rhode Island Avery Point Narragansett Bay Campus Groton, CT 06340

  3. Bottom Interaction in Ocean Acoustic Propagation

    DTIC Science & Technology

    2014-09-30

    deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et al...was carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second

  4. Overview of Seismic Noise and it’s Relevance to Personnel Detection

    DTIC Science & Technology

    2008-04-01

    production sites. Young et al. (1996) measured seismic noise with seismometers at the surface and within boreholes at three sites, and generated...ER D C/ CR R EL T R -0 8 -5 Overview of Seismic Noise and its Relevance to Personnel Detection Lindamae Peck April 2008 C ol d R...April 2008 Overview of Seismic Noise and its Relevance to Personnel Detection Lindamae Peck Cold Regions Research and Engineering Laboratory

  5. A Software Toolbox for Systematic Evaluation of Seismometer-Digitizer System Responses

    DTIC Science & Technology

    2010-09-01

    characteristics (e.g., borehole vs. surface installation) than the actual seismic noise characteristics. These results suggest that our best results of NOISETRAN...Award No. DE-FG02-09ER85548/Phase_I ABSTRACT Measurement of the absolute amplitudes of a seismic signal requires accurate knowledge of...power spectral density (PSD) estimator for background noise spectra at a seismic station. SACPSD differs from the current PSD used by NEIC and IRIS

  6. Bottom Interaction in Ocean Acoustic Propagation

    DTIC Science & Technology

    2015-09-30

    the deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et...carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second experiment

  7. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2009-09-30

    array processing techniques. The regional seismic arrays that have been built in the last fifteen years should be a rich data source for the study of...far-regional phase behavior. The arrays are composed of high-quality borehole seismometers that make high fidelity, low-noise recordings. However...that propagate from the different seismic regions of South-Central Asia, utilizing recordings from the Makanchi (MKAR) and Karatau (KKAR) arrays in

  8. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2008-09-30

    developing array -based methods that can more accurately characterize far-regional (14*-29*) seismic wavefield structure. Far- regional (14*-29*) seismograms...arrivals with the primary arrivals. These complexities can be region and earthquake specific. The regional seismic arrays that have been built in the last...fifteen years should be a rich data source for the study of far-regional phase behavior. The arrays are composed of high-quality borehole seismometers

  9. Tectonic tremor

    USGS Publications Warehouse

    Shelly, David R.

    2016-01-01

    Tectonic, non-volcanic tremor is a weak vibration of ground, which cannot be felt by humans but can be detected by sensitive seismometers. It is defined empirically as a low-amplitude, extended duration seismic signal associated with the deep portion (∼20–40 km depth) of some major faults. It is typically observed most clearly in the frequency range of 2–8 Hz and is depleted in energy at higher frequencies relative to regular earthquakes.

  10. Comprehensive Final Report for the Marine Seismic System Program

    DTIC Science & Technology

    1985-08-01

    Executive summary g ■ -■• < ".• v>:.* From 1981 through 1983, the Defense Advanced Research Projects Agency funded the National Science...S. Government. Per Mr. J. A. Ballard, NORDA/Code 360 Accesion For NTIS CRA&I DUG TAB Unannou.iCed Justification G D By Distib...n>r" Analysis of Ambient Seismic Noise Recorded by Downhole and Ocean-Bottom Seismometers on Dee: Sea Drilling Project Leg 78B Richard G

  11. A complete tomography of the Earth's interior with floating seismometers in the oceans: the EarthScope-Oceans

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Nolet, G.

    2016-12-01

    While the tomography techniques of imaging the earth's interior have been improved significantly over the past three decades the resolution of the resulting 3D images of the earth's interior, particularly the lower mantle, has been severely limited by the lack of seismic stations in the oceans which cover the 2/3 of the earth's surface. But this is going to be changed by the recently developed floating hydrophones called "Mermaids" which, freely floating under the sea surface, can operate as seismometers (see abstract by Nolet et al. in session DI010). These `Mermaids' have recorded (1) teleseismic waves, crucial to provide resolution for tomographic images of the deep mantle beneath oceanic areas, as well as (2) swarms of earthquakes too small to be observed on land, indicative of tectonic motions on oceanic ridges. Transmission is in quasi-real time by satellite (Iridium). A new version of the Mermaid, of much larger capacity, with a lifetime of five to six years is available for deployment. SUSTC in Shenzhen, China, in close collaboration with Geoazur (France), will launch the first stage of a large scale, global network of floating seismometers in the oceans named EarthScope-Oceans in 2017 by setting afloat 50 Mermaids in the Indian Ocean. Japan and other European nations may join the effort, which should reach 500 sensors by 2019 covering the entire world oceans. After that, the robots will be equipped with sophisticated software currently under development, which adds the capacity to juggle up to eight sensors and that has a reprogramming ability even during missions. We then expect the network to become multi-disciplinary and be able to host instruments not only for global seismology but also for biologists, oceanographers, geochemists, meteorologists and others. This new monitoring network will greatly improve our knowledge of acoustic noise pollution, of cetacean populations and their interaction with noise and meteorological conditions in all of the oceans by providing large and continuous data coverage. It will transform the discipline of seismic tomography at sea and improve our understanding of geodynamical processes operating in the deep mantle of the Earth by filling the data gap that currently exists in the oceanic domain.

  12. Geoazur's contribution in instrumentation to monitor seismic activity of the Earth

    NASA Astrophysics Data System (ADS)

    Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.

    2011-12-01

    Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global seismic imaging of the earth. To complete our pool of instruments we have developed a floating underwater robot that can detect seismic P waves from earthquakes at large distances and transmit these data by the Iridium satellite network in Rudics mode. The robot is named MERMAID for `Mobile Earthquake Recording in Marine Areas by Independent Divers'.

  13. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    NASA Astrophysics Data System (ADS)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated in the visual form using the Seistrain/geosearch program. Data were fully screened for the period 5.-13.9.2008. 360 teleseismic, regional and local events were identified. Results of the detection and analysis will be presented and consequences for further SAMS development will be discussed.

  14. Constructing new seismograms from old earthquakes: Retrospective seismology at multiple length scales

    NASA Astrophysics Data System (ADS)

    Entwistle, Elizabeth; Curtis, Andrew; Galetti, Erica; Baptie, Brian; Meles, Giovanni

    2015-04-01

    If energy emitted by a seismic source such as an earthquake is recorded on a suitable backbone array of seismometers, source-receiver interferometry (SRI) is a method that allows those recordings to be projected to the location of another target seismometer, providing an estimate of the seismogram that would have been recorded at that location. Since the other seismometer may not have been deployed at the time the source occurred, this renders possible the concept of 'retrospective seismology' whereby the installation of a sensor at one period of time allows the construction of virtual seismograms as though that sensor had been active before or after its period of installation. Using the benefit of hindsight of earthquake location or magnitude estimates, SRI can establish new measurement capabilities closer to earthquake epicenters, thus potentially improving earthquake location estimates. Recently we showed that virtual SRI seismograms can be constructed on target sensors in both industrial seismic and earthquake seismology settings, using both active seismic sources and ambient seismic noise to construct SRI propagators, and on length scales ranging over 5 orders of magnitude from ~40 m to ~2500 km[1]. Here we present the results from earthquake seismology by comparing virtual earthquake seismograms constructed at target sensors by SRI to those actually recorded on the same sensors. We show that spatial integrations required by interferometric theory can be calculated over irregular receiver arrays by embedding these arrays within 2D spatial Voronoi cells, thus improving spatial interpolation and interferometric results. The results of SRI are significantly improved by restricting the backbone receiver array to include approximately those receivers that provide a stationary phase contribution to the interferometric integrals. We apply both correlation-correlation and correlation-convolution SRI, and show that the latter constructs virtual seismograms with fewer non-physical arrivals. Finally we reconstruct earthquake seismograms at sensors that were previously active but were subsequently removed before the earthquakes occurred; thus we create virtual earthquake seismograms at those sensors, truly retrospectively. Such SRI seismograms can be used to create a catalogue of new, virtual earthquake seismograms that are available to complement real earthquake data in future earthquake seismology studies. [1]E. Entwistle, Curtis, A., Galetti, E., Baptie, B., Meles, G., Constructing new seismograms from old earthquakes: Retrospective seismology at multiple length scales, JGR, in press.

  15. Remote Calibration Procedure and Results for the Ctbto AS109 STS-2HG at Ybh

    NASA Astrophysics Data System (ADS)

    Uhrhammer, R. A.; Taira, T.; Hellweg, M.

    2013-12-01

    Berkeley Digital Seismic Station (BDSN) YBH, located in Yreka, CA, USA, is certified as Auxiliary Seismic Station 109 (AS109) by the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO). YBH, sited in an abandoned hard rock mining drift, houses a Streckeisen STS-2HG triaxial broadband seismometer (the AS109 sensor) and a co-sited three-component set of Streckeisen STS-1 broadband seismometers and a Kinemetrics Episensor strong motion accelerometer (the BDSN sensors). CTBTO requested that we preform a remote calibration test of the STS-2HG (20,000 V/(m/s) nominal sensitivity) to verify its response and sensitivity. The remote calibration test was done successfully on June 17, 2013 and we report here on the procedure and results of the calibration. The calibration of the STS-2HG (s/n 30235) was accomplished using two Random Telegraph (RT) stimuli which were applied to the triaxial U,V,W component calibration coils through an appropriate series resistance to limit the drive current. The first was a four hour RT at 1.25 Hz (to determine the low-frequency response) and the second was a one hour RT at 25 Hz (to determine the high-frequency response). The RT stimulus signals were generated by the Kinemetrics Q330 data logger and both the stimuli and the response were recorded simultaneously with synchronous sampling at 100 sps. The RT calibrations were invoked remotely from Berkeley. The response to the 1.25 Hz RT stimulus was used to determine the seismometer natural period, fraction of critical damping and sensitivity of the STS-2HG sensors and the response to the 25 Hz RT stimulus was used to determine their corresponding high-frequency response. The accuracy of the sensitivity as determined by the response to the RT stimuli is limited by the accuracy of the calibration coil motor constant (2 g/A) provided on the factory calibration sheet. As a check on the accuracy of the sensitivity determined from the response to the RT stimuli, we also compare the ground motions inferred from the STS-2HG with the corresponding ground motions inferred from the co-sited STS-1's and the Episensor strong motion accelerometer using seismic signals which have adequate signal-to-noise ratios in passband common to both instruments.

  16. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    NASA Astrophysics Data System (ADS)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by discretizing the air above the area. With the topography of 10m grid, we discussed the diffraction effect on the infrasonic waves propagation. Acknowledgments: We used the records acquired by the Japan Meteorological Agency, the Hot Spring Research Institute of Kanagawa Prefecture (HSRI), and the numerical map published by the Geospatial Information Authority of Japan.

  17. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.

  18. Five years on: Revisiting GSN data quality

    NASA Astrophysics Data System (ADS)

    Gee, L. S.; Nettles, M.; Ekstrom, G.; Davis, J. P.; Ringler, A. T.; Storm, T. L.; Wilson, D.; Anderson, K. R.

    2014-12-01

    In 2010, the Lamont Waveform Quality Center (WQC) conducted an in-depth review of ten stations in the Global Seismographic Network (GSN). IU stations (CASY, DAV, KIP, KONO, WCI), IC stations (SSE, XAN), and II stations (ALE, DGAR, RPN) were analyzed using a scaling analysis based on data-synthetic comparisons, evaluation of noise levels, assessment of inter-sensor coherence, and polarization analysis. These reports (available from http://www.ldeo.columbia.edu/~ekstrom/Projects/WQC.html) highlighted a number of significant problems in GSN data quality, including the frequency-dependent loss of gain in the STS-1 seismometer (Ekström et al., 2006) that has been attributed to the presence of humidity in the electronics, cables, and connectors (Yuki and Ishihara, 2002; Hutt and Ringler, 2011). The reports from the WQC spurred a number of changes in the operation of the GSN, including the adoption of the policy of annual calibrations and the development of new tools and metrics to monitor, evaluate, and communicate data quality. In parallel, the USGS' Albuquerque Seismological Laboratory (ASL) and UCSD's Project IDA worked with the IRIS Consortium to upgrade GSN stations with new data acquisition systems, to refurbish the STS-1 seismometers with new electronics, and to expand the deployment of secondary broadband sensors. We revisit the 2010 reports, using the tools of the WQC as well as a number of newly developed tools such as the USGS' Data Quality Analyzer and IRIS' MUSTANG, and provide an update on GSN data quality. Our initial focus is on CASY and KIP, the first two stations reviewed by the WQC. Our goal is to evaluate progress in the last five years and assess our ability to quantify data quality as well as to identify potential problems that could compromise data quality in the future. Ekström, G., C. A. Dalton, and M. Nettles (2006). Observations of time-dependent errors in long-period instrument gain at global seismic stations. Seismological Research Letters, 77 (1), 12-22. Hutt, C.R. and A.T. Ringler (2011). Some possible causes of and corrections for STS-1 response changes in the Global Seismographic Network, Seis. Res. Lett., 82 (4), 560-571. Yuki, Y., and Y. Ishihara (2002). Methods for maintaining the performance of STS-1 seismometer. Frontier Research on Earth Evolution 2, 1-5.

  19. InSight: Single Station Broadband Seismology for Probing Mars' Interior

    NASA Technical Reports Server (NTRS)

    Panning, Mark P.; Banerdt, W. Bruce; Beucler, Eric; Boschi, Lapo; Johnson, Catherine; Lognonne, Philippe; Mocquet, Antoine; Weber, Renee C.

    2012-01-01

    InSight is a proposed Discovery mission which will deliver a lander containing geophysical instrumentation, including a heat flow probe and a seismometer package, to Mars. The aim of this mission is to perform, for the first time, an in-situ investigation of the interior of a truly Earth- like planet other than our own, with the goal of understanding the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars.

  20. An Investigation of the Dynamic Response of a Seismically Stable Platform

    DTIC Science & Technology

    1982-08-01

    PAD. The controls on the -9system are of two types. A low frequency tilt control, with a 10 arc second sensitivity, 2-axis tiltmeter as sensor ...Inertial Sensors Structural Analysis Holloman AFB, NiM. Support to this effort includes structural analyses toward active servo frequency band. This report...controlled to maintain a null position of a sensitive height sensor . The 6-degree-of- freedom high frequency controls are based on seismometers as sensors

  1. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    USGS Publications Warehouse

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    During the cruise about 850 km of multichannel and single-channel seismic data were recorded. Seismic measurements at nine ocean-bottom seismometer (OBS) stations were recorded for several of the multichannel tracklines (see Fig. 3 in report). The following report describes the field operations and equipment systems employed, gives two examples of ship-board seismic records, and outlines a few preliminary results.

  2. Report of the Task Group on Independent Research and Development

    DTIC Science & Technology

    1967-02-01

    in 1959 when the technology used in prospecting for oil by seismic means was employed to detect and sug- gest the source of earth shocks generated by...result of TI’ s work in seismology for oil exploration. The use of seismometers for intrusion detection stemmed from the large, unde- sirable signals...produced by any human movement during oil -field seismic tests. The first military contract for six test models of these devices was received in 1963

  3. Long period seismic noise modulated by atmospheric tides

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Helffrich, George

    2016-04-01

    The amplitudes of long-period (LP) seismic noise often exhibit a daily modulation, which is particularly visible on data recorded by temporary stations and horizontal components. These daily variations of the LP noise have been associated with temperature fluctuations. Temperature has been suggested to affect the noise recorded by seismometers by means of thermal convection around the sensor or by causing thermally induced tilts. Recently, we observed a semi-diurnal (12.0 hr) modulation of LP seismic noise amplitudes in seismometers in Portugal, SW Europe. This modulation was associated with the variation of atmospheric pressure, the only environmental signal to display a dominant 12-hr periodicity (at some locations). In this presentation we will present an analysis of this semi-diurnal modulation of long-period seismic noise. We show that the modulation: 1) is not instrument dependent, being recorded in a variety of sensors; 2) is observed in stations in mainland Portugal, Madeira island (N Atlantic), Florida (USA) and Mozambique, where it is strongest; 3) is seen only at a minority of sites without a clear geographical association, thus appearing to be strongly site-dependent; 5) is stronger during the Summer than during the Winter; and 6) is more clearly seen on vertical components. We will use data from the Transportable Array (EarthScope, USA) to investigate the admittance between LP seismic noise variations and co-located atmospheric pressure measurements.

  4. An Experimental Study of the Low-cost MEMS-type Seismometer for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Yin, RenCheng; Wu, Yih-Min; Hsu, Ting-Yu

    2016-04-01

    The Earthquake Early Warning (EEW) research group at National Taiwan University (NTU) and a technology company have been developing a Micro Electro Mechanical Systems (MEMS) type of accelerometer named Palert designed for EEW purpose. The main advantage of Palert is that it is a relatively low-cost seismometer. On the other hand, due to the high price of commercial hardware of Structural Health Monitoring (SHM) systems, the application of SHM to buildings is limited. Therefore, the low price of Palert devices makes it affordable to general purpose application and would lead to popularization of SHM for buildings. This study serves as a pre-study for this purpose and the feasibility for SHM application for Palert is also verified. In order to monitor the health of the building, the method proposed by Nakata et al. is used to estimate fundamental normal-mode frequency of a steel building in the laboratory of the National Center for Research on Earthquake Engineering (NCREE). The results show that the Palert is reliable to measure the building's response for the most of the normal buildings with less than ten stories. The fundamental normal-mode frequencies estimated using the Palert are quite comparable to the ones estimated using the high-performance accelerometers and data acquisition system. The Palert illustrates the possibility to be used to monitor the health of a building but further studies are still necessary.

  5. Response spectra analysis of the modal summation technique verified by observed seismometer and accelerometer waveform data of the M6.5 Pidie Jaya Earthquake

    NASA Astrophysics Data System (ADS)

    Irwandi; Rusydy, Ibnu; Muksin, Umar; Rudyanto, Ariska; Daryono

    2018-05-01

    Wave vibration confined in the boundary will produce stationary wave solution in discrete states called modes. There are many physics applications related to modal solutions such as air column resonance, string vibration, and emission spectrum of the atomic Hydrogen. Naturally, energy is distributed in several modes so that the complete calculation is obtained from the sum of the whole modes called modal summation. The modal summation technique was applied to simulate the surface wave propagation above crustal structure of the earth. The method is computational because it uses 1D structural model which is not necessary to calculate the overall wave propagation. The simulation results of the magnitude 6.5 Pidie Jaya earthquake show the response spectral of the Summation Technique has a good correlation to the observed seismometer and accelerometer waveform data, especially at the KCSI (Kotacane) station. On the other hand, at the LASI (Langsa) station shows the modal simulation result of response is relatively lower than observation. The lower value of the reaction spectral estimation is obtained because the station is located in the thick sedimentary basin causing the amplification effect. This is the limitation of modal summation technique, and therefore it should be combined with different finite simulation on the 2D local structural model of the basin.

  6. Ship Noise in the SW Indian Ocean Recorded by Ocean Bottom Seismic and Hydroacoustic Sensors

    NASA Astrophysics Data System (ADS)

    Barruol, G.; Dreo, R.; Fontaine, F. R.; Scholz, J. R.; Sigloch, K.

    2016-12-01

    In the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel, www.rhum-rum.net), a network of 57 ocean-bottom seismometers (OBS) has been installed on the ocean floor around La Réunion Island, but also on the neighbouring Southwest and Central Indian Ridges. The OBS were equipped by wide- and broad-band three-components seismic and hydroacoustic sensors. They were deployed in Nov. 2012, and depending on the configuration, they recorded for 8 to 13 months. Interestingly, part of the network was located beneath a NE-SW trending lane of very dense ship traffic connecting SE-Asia and the South-Atlantic region. By combining the vessel position - provided by AIS GPS data - and our geophysical data recorded on the ocean floor, we analyze the seismic and hydroacoustic ship signatures. From spectral analyzes, we show clear signals over the whole high-frequency range available from our instruments (between 1 and 50 Hz). The RHUM-RUM network covering latitude between 17 and 34° South, this allows to detect numerous vessels and to compare the noise characteristics (frequency content, polarization) of each vessel. We also investigate the possibility of using the polarization of the noise emitted by ships passing above an ocean-bottom seismometer, to help retrieving the orientation of the OBS horizontal components on the ocean floor in the geographic reference frame.

  7. Newberry Seismic Deployment Fieldwork Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquakemore » detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.« less

  8. Study of observed microearthquakes at Masada Deep Borehole

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Malin, P. E.

    2017-12-01

    Seismological measurements, conducted at great depths of several hundred of meters or even a few km, can provide useful information that one cannot get while conducting the measurements on the surface. We take advantage of Masada Deep borehole (MDBI), an abandoned oil well, for the installation of a seismometer at a large depth of 1,256 m (1,516 bsl). The station is located in the near vicinity of the East Masada fault, part of the Western Boundary Fault of the Dead Sea basin. We present seismic observations of microearthquakes which occurred along the Dead Sea fault (DSF). Many of them were not recorded by the Israel Seismic Network (ISN). The quiet site of the station has an obvious advantage in detection and identification of earthquakes and explosions. For example, the station detects about 30% more quarry explosions as compared to observations of the ISN. We demonstrate that borehole seismograms are clearer than the on-surface observations of nearby seismometer. We lowered the magnitude scale of observed events down to about M≈-3. Many of the earthquakes, sometimes clusters, occurred underneath the MDBI at depths of 10-25 km, having special signature. Using the cross-correlation technique we present several series of seismic activity either underneath the station or along the DSF. Frequency-magnitude relationship, known also as Gutenberg-Richter relationship, is somewhat higher than the determined value for the whole Dead Sea Fault.

  9. Receiver function analysis applied to refraction survey data

    NASA Astrophysics Data System (ADS)

    Subaru, T.; Kyosuke, O.; Hitoshi, M.

    2008-12-01

    For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.

  10. Washington State Play Fairway Analysis - Passive Monitoring of St. Helens Shear Zone for Tomography and Precision Microseismic Event Detection

    DOE Data Explorer

    Swyer, Michael (ORCID:0000000309776975); Cladouhos, Trenton; Crosbie, Kayla; Ulberg, Carl (ORCID:000000016198809X)

    2017-10-03

    Data resources were derived from a passive seismic survey of the northern St. Helens Shear Zone on geothermal leases 12-24 km north of Mount St. Helens for phase 2 of the Geothermal Play-Fairway Analysis of Washington State Prospects. A 20 seismic station array of broadband seismometers was deployed with irregular spacing (1-4 km) over an area of 12 km to image seismogenic features and their damage zones in the shallow crust.

  11. Hig Resolution Seismometer Insensitive to Extremely Strong Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovich, Igor A.

    A highly sensitive broadband seismic sensor has been developed successfully to be used in beam focusing systems of particale accelerators. The sensor is completely insensitive to extremely strong magnetic fields and to hard radiation conditions that exist at the place of their installation. A unique remote sensor calibration method has been invented and implemented. Several such sensors were sold to LAPP (LAPP-IN2P3/CNRS-Université de Savoie; Laboratoire d'Annecy-le-Vieux de Physique des Particules)

  12. The AFGL (Air Force Geophysics Laboratory) Absolute Gravity Measuring System. A Final Report and Operating/Maintenance Manual.

    DTIC Science & Technology

    1983-10-28

    Attempts to remove disturbing magnetic effects included: (1) demagnetizing as many parts of the system as was practical, (2) changing the size of...differences between the two bodies and/or residual magnetism . Repeated demagnetization of various compo-A nents showed little or no improvements. All...of seismic noise was a long period com- mercial seismometer. Aside from the bulk required to incorporate this system, * as seen in Figure 4 (2), [in

  13. Marine Seismic System Deployment (MSS). Phase 2. Investigation of Techniques and Deployment Scenarios for Installation of Triaxial Seismometer in a Borehole in the Deep Ocean

    DTIC Science & Technology

    1981-01-09

    CHALLENGER for an estimated period of six days. The design for the test Borehole Instrumentation Package (BIP) reentry-sub and associated handling...equipment has been completed ard hmi been submitted for vendor bid. Details of the specialized support equipment for installation on the GLOMAR CHALLENGER ...developed under the direction of the Deep Sea Drilling Project (DSDP) by the dynamically positioned drilling vessel GLOMAR CHALLENGER . Deployment of the

  14. Gravity research at Cottrell observatory

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.; Anderson, J. D.; Lau, E. L.

    1977-01-01

    The Cottrell gravity research observatory and work in progress are described. Equipment in place and equipment to be installed, the cryogenic gravity meter (CGM), concrete pads to support the vertical seismometer, CGM, and guest experiments, techniques of data analysis, and improvements needed in the CGM are discussed. Harmonic earth eigenvibrations with multipole moments are examined and their compatibility with a fictitious black hole binary system (of which the primary central mass is assigned a value one million solar masses) located 400 light-years away is shown by calculations.

  15. JPL-20180505-INSIGHf-0001-NASA InSight on Its Way to Mars

    NASA Image and Video Library

    2018-05-05

    Making history as the first interplanetary launch from the West Coast, NASA's InSight spacecraft is now soaring towards Mars. The spacecraft, which lifted off from Vandenberg Air Force Base in Central California, will be the first mission to study the deep interior of Mars. Its instruments include a seismometer to detect marsquakes for the first time and a heat flow p[robe that will embed itself as deep as about 16 feet (5 meters) below the surface of Mars.

  16. ULF/VLF (0.001 to 50 Hz) Seismo-Acoustic Noise in the Ocean. Proceedings of a Workshop Held at Austin, Texas on November 29-December 1, 1988

    DTIC Science & Technology

    1989-08-03

    holes drilled in the seafloor from the D/V JOIDES Resolution through petrological , geochemical and paleomagnetic studies of the samples and logging...seismome- ters and/or hydrophones (or differential pressure gauges , DPG). Testing of the new instruments at very early stages is important to ensure...resolved using ocean bottom seismometers, suspended hydrophones and differential pressure gauges assisted by an orbiting radar altimeter (GEOSAT

  17. Observations of Seafloor Ambient Noise with an Ocean Bottom Seismometer Array

    DTIC Science & Technology

    1989-12-01

    April and May of 1987. The array was situated near Deep Sea Drilling Project (DSDP) Hole 469 at a depth of 3.8 km (Figure 2.1). The area is a 400 m...any array processing method can be gauged by its resolution, bias 34 and stability. These quantities are sensitive to errors such as uncertain...Spectral Ocean Wave Model, Bull. Amer. Meteor. Soc, 67,498-512,1986. Cox, C. S., T. Deaton, and S. C. Webb, A deep-sea differential pressure gauge

  18. The crustal structure in the transition zone between the western and eastern Barents Sea

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Mjelde, Rolf; Faleide, Jan Inge; Høy, Tore; Flueh, Ernst; Thybo, Hans

    2018-04-01

    We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modeling uses the joint refraction/reflection tomography approach where co-located multi-channel seismic reflection data constrain the sedimentary structure. Further, forward gravity modeling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure.

  19. Ocean Bottom Seismometer Augmentation of the Philippine Sea Experiment (OBSAPS) Cruise Report

    DTIC Science & Technology

    2011-09-01

    single 77.5Hz M-sequence on six OBSAPS receivers: (from bottom to top) the vertical geophone on the North OBS ( blue ), the hydrophone module on the...wet end electronics (pressure sensor, hydrophone and octopus ) to the spare J15-3 S/N 14 and re-deployed the transducer and tow body assembly. We then...our wet end electronics (hydrophone, pressure sensor and octopus ) to the S/N 11 unit and re-deployed. The repaired J15-3 S/N 11 unit performed

  20. Long term seismic noise acquisition and analysis with tunable monolithic horizontal sensors at the INFN Gran Sasso National Laboratory

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2012-04-01

    In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long term test are a preliminary seismic characterization of the site in the frequency band 10-5÷1Hz and the acquisition of all the relevant information for the optimization of the sensors.

  1. Large-band seismic characterization of the INFN Gran Sasso National Laboratory

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2013-04-01

    In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long-term large-band measurements are for the seismic characterization of the site in the frequency band 10-6÷10Hz and the acquisition of all the relevant information for the optimization of the sensors.

  2. Long term seismic noise acquisition and analysis with tunable monolithic horizontal sensors at the INFN Gran Sasso National Laboratory

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2012-10-01

    In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long term test are a preliminary seismic characterization of the site in the frequency band 10-7÷1Hz and the acquisition of all the relevant information for the optimization of the sensors.

  3. The SEIS Experiment for the Insight Mission: Development and management plan

    NASA Astrophysics Data System (ADS)

    Laudet, P.

    2015-10-01

    SEIS is a Mars seismometer, provided by CNES to JPL to be the threshold instrument of the next Mars mission, InSight, to be launched by NASA in March 2016. Discovery missions leads to a very strict frame of development, where schedule is driving development and qualification plans. We will explain how this constraint has been taken into account during development phases, until delivery of flight model, with a context of international cooperation without exchange of founds between partners.

  4. Downhole geophysical observatories: best installation practices and a case history from Turkey

    NASA Astrophysics Data System (ADS)

    Prevedel, Bernhard; Bulut, Fatih; Bohnhoff, Marco; Raub, Christina; Kartal, Recai F.; Alver, Fatih; Malin, Peter E.

    2015-09-01

    Downhole sensors of different types and in various environments provide substantial benefit to signal quality. They also add the depth dimension to measurements performed at the Earths' surface. Sensor types that particularly benefit from downhole installation due to the absence of near-surface noise include piezometers, seismometers, strainmeters, thermometers, and tiltmeters. Likewise, geochemical and environmental measurements in a borehole help eliminate near-surface weathering and cultural effects. Installations from a few hundred meter deep to a few kilometer deep dramatically reduce surface noise levels—the latter noticeably also reduces the hypocentral distance for shallow microearthquakes. The laying out of a borehole network is always a compromise of local boundary conditions and the involved drilling costs. The installation depth and procedure for a long-term downhole observatory can range from time limited installations, with a retrieval option, to permanently cemented sensors. Permanently cemented sensors have proven to be long-term stable with non-deteriorating coupling and borehole integrity. However, each type needs to be carefully selected and planned according to the research aims. A convenient case study is provided by a new installation of downhole seismometers along the shoreline of the eastern Marmara Sea in Turkey. These stations are being integrated into the regional net for monitoring the North Anatolian Fault Zone. Here we discuss its design, installation, and first results. We conclude that, despite the logistical challenges and installation costs, the superior quality of downhole data puts this technique at the forefront of applied and fundamental research.

  5. Continuous seismic monitoring of Nishinoshima volcano, Izu-Ogasawara, by using long-term ocean bottom seismometers

    NASA Astrophysics Data System (ADS)

    Shinohara, Masanao; Ichihara, Mie; Sakai, Shin'ichi; Yamada, Tomoaki; Takeo, Minoru; Sugioka, Hiroko; Nagaoka, Yutaka; Takagi, Akimichi; Morishita, Taisei; Ono, Tomozo; Nishizawa, Azusa

    2017-11-01

    Nishinoshima in Izu-Ogasawara started erupting in November 2013, and the island size increased. Continuous monitoring is important for study of the formation process. Since it is difficult to make continuous observations on a remote uninhabited island, we started seismic observations near Nishinoshima using ocean bottom seismometers (OBSs) from February 2015. Our OBSs have a recording period of 1 year, and recovery and re-deployment of OBSs were repeated to make continuous observations. The OBSs were deployed with distances of less than 13 km from the crater. Events with particular characteristics were frequently recorded during the eruption period and are estimated to correlate with the release of plumes from the crater by comparison with temporal on-site records using a video camera and microphones. We estimated the number of events using the amplitude average of records to monitor volcanic activity. There were approximately 1800 detected events per day from February to July 2015. The number started to decrease from July 2015, and reached less than 100 per day in November 2015. The surface activity of the volcano was estimated to have ceased in November 2015. Characteristic events began re-occurring in the middle of April 2017. The number of events reached approximately 1400 events per day at the end of May 2017. Seafloor seismic observations using OBSs are a powerful tool for continuous monitoring of island volcanic activity.[Figure not available: see fulltext.

  6. Nearshore wave-induced cyclical flexing of sea cliffs

    USGS Publications Warehouse

    Adams, P.N.; Storlazzi, C.D.; Anderson, R. Scott

    2005-01-01

    [1] Evolution of a tectonically active coast is driven by geomorphically destructive energy supplied by ocean waves. Wave energy is episodic and concentrated; sea cliffs are battered by the geomorphic wrecking ball every 4-25 s. We measure the response of sea cliffs to wave assault by sensing the ground motion using near-coastal seismometers. Sea cliffs respond to waves in two distinct styles. High-frequency motion (20 Hz) reflects the natural frequency of the sea cliff as it rings in response to direct wave impact. Low-frequency motion in the 0.1-0.05 Hz (10-20 s) band consistently agrees with the dominant nearshore wave period. Integrating microseismic velocities suggests 50 ??m and 10 ??m displacements in horizontal and vertical directions, respectively. Displacement ellipsoids exhibit simultaneous downward and seaward sea cliff motion with each wave. Video footage corroborates the downward sea cliff flex in response to the imposed water load on the wave cut platform. Gradients in displacement amplitudes documented using multiple seismometers suggest longitudinal and shear strain of the flexing sea cliff on the order of 0.5-4 ?? strains during each wave loading cycle. As this sea cliff flexure occurs approximately 3 million times annually, it has the potential to fatigue the rock through cyclical loading. Local sea cliff retreat rates of 10 cm/yr imply that a given parcel of rock is flexed through roughly 109 cycles of increasing amplitude before exposure to direct wave attack at the cliff face. Copyright 2005 by the American Geophysical Union.

  7. A Real-time, Borehole, Geophysical Observatory Above The Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Becker, K.; O'Brien, J. K.; von der Heydt, K.; Heesemann, M.; Davis, E. E.

    2017-12-01

    In July 2016, a team from WHOI and RSMAS installed a suite of seismic, geodetic and geothermal sensors in IODP borehole U1364A on the Cascadia Accretionary Prism offshore Vancouver Island. The borehole observatory was connected to the Clayoquot Slope node of the Ocean Networks Canada NEPTUNE Observatory in June 2017. The 3 km long extension cable provides power, timing, and internet connectivity. The borehole sits 4 km above the subduction zone thrust interface, and when drilled in 2010 was instrumented with an ACORK (Advanced Circulation Obviation Retrofit Kit) that allows monitoring and sampling of fluids from multiple zones within the 330 m drilled formation. The borehole ground-motion sensors consist of a broadband seismometer and two geodetic-quality (nano-radian resolution) two-axis tilt sensors clamped to the borehole casing wall at a depth of 277 m below the seafloor. The tilt sensors were selected to detect non-seismic, strain-related transients. A 24-thermistor cable extends from the seafloor to just above the seismometer and tilt-sensor package. The seismic and geodetic data have been flowing from the observatory (network code NV, station code CQS64, location codes B1, B2, and B3) since June and are available from the IRIS DMC. Initial inspection of the seismic and geodetic data shows that all sensors are operating well. We will report on station performance and detection thresholds using an anticipated 5 month duration data set.

  8. Studies of earthquakes and microearthquakes using near-field seismic and geodetic observations

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas Bartholomew

    The Centroid-Moment Tensor (CMT) method allows an optimal point-source description of an earthquake to be recovered from a set of seismic observations, and, for over 30 years, has been routinely applied to determine the location and source mechanism of teleseismically recorded earthquakes. The CMT approach is, however, entirely general: any measurements of seismic displacement fields could, in theory, be used within the CMT inversion formulation, so long as the treatment of the earthquake as a point source is valid for that data. We modify the CMT algorithm to enable a variety of near-field seismic observables to be inverted for the source parameters of an earthquake. The first two data types that we implement are provided by Global Positioning System receivers operating at sampling frequencies of 1,Hz and above. When deployed in the seismic near field, these instruments may be used as long-period-strong-motion seismometers, recording displacement time series that include the static offset. We show that both the displacement waveforms, and static displacements alone, can be used to obtain CMT solutions for moderate-magnitude earthquakes, and that performing analyses using these data may be useful for earthquake early warning. We also investigate using waveform recordings - made by conventional seismometers deployed at the surface, or by geophone arrays placed in boreholes - to determine CMT solutions, and their uncertainties, for microearthquakes induced by hydraulic fracturing. A similar waveform inversion approach could be applied in many other settings where induced seismicity and microseismicity occurs..

  9. Data Release Report for Source Physics Experiments 2 and 3 (SPE-2 and SPE-3) Nevada National Security Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, Margaret; Obi, Curtis

    2015-01-26

    The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100more » m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and far-field data that are available.« less

  10. Shallow velocity structure of Stromboli Volcano, Italy, derived from small-aperture array measurements of Strombolian tremor

    USGS Publications Warehouse

    Chouet, B.; De Luca, G.; Milana, G.; Dawson, P.; Martini, M.; Scarpa, R.

    1998-01-01

    The properties of the tremor wave field at Stromboli are analyzed using data from small-aperture arrays of short-period seismometers deployed on the north flank of the volcano. The seismometers are configued in two semi-circular arrays with radii of 60 and 150 m and a linear array with length of 600 m. The data are analyzed using a spatiotemporal correlation technique specifically designed for the study of the stationary stochastic wave field of Rayleigh and Love waves generated by volcanic activity and by scattering sources distributed within the island. The correlation coefficients derived as a function of frequency for the three components of motion clearly define the dispersion characteristics for both Rayleigh and Love waves. Love and Rayleigh waves contribute 70% and 30%, respectively, of the surface-wave power. The phase velocities of Rayleigh waves range from 1000 m/sec at 2 Hz to 350 m/sec at 9 Hz, and those for Love waves range from 700 to 400 m/sec over the same frequency band. These velocities are similar to those measured near Puu Oo on the east rift of Kilauea Volcano, Hawaii, although the dispersion characteristics of Rayleigh waves at Stromboli show a stronger dependence on frequency. Such low velocities are consistent with values expected for densely cracked solidified basalt. The dispersion curves are inverted for a velocity model beneath the arrays, assuming those dispersions represent the fundamental modes of Rayleigh and Love waves.

  11. Assessing the short-term clock drift of early broadband stations with burst events of the 26 s persistent and localized microseism

    NASA Astrophysics Data System (ADS)

    Xie, J.; Ni, S.; Chu, R.; Xia, Y.

    2017-12-01

    Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 second, especially in early days of global seismic network. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC/TS in southern California, USA as an example, the 26 s PL signal can be easily observed in the ambient Noise Cross-correlation Function (NCF) between GSC/TS and a remote station. The variation of travel-time of this 26 s signal in the NCF is used to infer clock error. A drastic clock error is detected during June, 1992. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of ±25 s. Using 26 s PL source, the clock can be validated for historical records of sparsely distributed stations, where usual NCF of short period microseism (<20 s) might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. The location change of the 26 s PL source may influence the measured clock drift, using regional stations with stable clock, we estimate the possible location change of the source.

  12. An efficient repeating signal detector to investigate earthquake swarms

    NASA Astrophysics Data System (ADS)

    Skoumal, Robert J.; Brudzinski, Michael R.; Currie, Brian S.

    2016-08-01

    Repetitive earthquake swarms have been recognized as key signatures in fluid injection induced seismicity, precursors to volcanic eruptions, and slow slip events preceding megathrust earthquakes. We investigate earthquake swarms by developing a Repeating Signal Detector (RSD), a computationally efficient algorithm utilizing agglomerative clustering to identify similar waveforms buried in years of seismic recordings using a single seismometer. Instead of relying on existing earthquake catalogs of larger earthquakes, RSD identifies characteristic repetitive waveforms by rapidly identifying signals of interest above a low signal-to-noise ratio and then grouping based on spectral and time domain characteristics, resulting in dramatically shorter processing time than more exhaustive autocorrelation approaches. We investigate seismicity in four regions using RSD: (1) volcanic seismicity at Mammoth Mountain, California, (2) subduction-related seismicity in Oaxaca, Mexico, (3) induced seismicity in Central Alberta, Canada, and (4) induced seismicity in Harrison County, Ohio. In each case, RSD detects a similar or larger number of earthquakes than existing catalogs created using more time intensive methods. In Harrison County, RSD identifies 18 seismic sequences that correlate temporally and spatially to separate hydraulic fracturing operations, 15 of which were previously unreported. RSD utilizes a single seismometer for earthquake detection which enables seismicity to be quickly identified in poorly instrumented regions at the expense of relying on another method to locate the new detections. Due to the smaller computation overhead and success at distances up to ~50 km, RSD is well suited for real-time detection of low-magnitude earthquake swarms with permanent regional networks.

  13. Simultaneous observations of ice motion, calving and seismicity on the Yahtse Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Bartholomaus, T. C.; O'Neel, S.; West, M. E.

    2010-12-01

    We observe ice motion, calving and seismicity simultaneously and with high-resolution on an advancing tidewater glacier in Icy Bay, Alaska. Icy Bay’s tidewater glaciers dominate regional glacier-generated seismicity in Alaska. Yahtse emanates from the St. Elias Range near the Bering-Bagley-Seward-Malaspina Icefield system, the most extensive glacier cover outside the polar regions. Rapid rates of change and fast flow (>16 m/d near the terminus) at Yahtse Glacier provide a direct analog to the disintegrating outlet systems in Greenland. Our field experiment co-locates GPS and seismometers on the surface of the glacier, with a greater network of bedrock seismometers surrounding the glacier. Time-lapse photogrammetry, fjord wave height sensors, and optical survey methods monitor iceberg calving and ice velocity near the terminus. This suite of geophysical instrumentation enables us to characterize glacier motion and geometry changes while concurrently listening for seismic energy release. We are performing a close examination of calving as a seismic source, and the associated mechanisms of energy transfer to seismic waves. Detailed observations of ice motion (GPS and optical surveying), glacier geometry and iceberg calving (direct observations and timelapse photogrammetry) have been made in concert with a passive seismic network. Combined, the observations form the basis of a rigorous analysis exploring the relationship between glacier-generated seismic events and motion, glacier-fiord interactions, calving and hydraulics. Our work is designed to demonstrate the applicability and utility of seismology to study the impact of climate forcing on calving glaciers.

  14. The characteristics of seismological data from offshore observatory in the northeastern South Korea

    NASA Astrophysics Data System (ADS)

    Cho, H. M.; Kim, G.; Che, I. Y.; Lim, I. S.; Kim, Y.; Shin, I. C.

    2017-12-01

    The real-time seismic observation in the ocean is challenging but provides unprecedented data appropriate for seismological research in the ocean from local to global scale. The offshore seismic observatory in the northeastern South Korea operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) integrates the seismic, hydro-acoustic, and infrasound data and transmits the integrated data with oceanographic sensing and SOH (State of Health) to KIGAM in real-time. The observatory is equipped with ocean bottom broadband seismometer (120 s - 50 Hz) laid on the sea-floor approximately 80 meters below sea level. This study focuses on the properties of the data from the sea-floor, noise level evaluation of the observatory in the shallow water, and assessing event detection threshold of the offshore site. We computes the power spectral density (PSD) to describe the background seismic noise and its variations with seasonal change and meteorological condition. The seismic noise probability density functions from the PSDs shows that broadband seismic noise is generally high compared with the Peterson's NLNM and NHNM model. The statistical analysis of the seismic noise is given. We compares the noise level with that of the nearby onshore broadband seismometer. The quality of waveform data from the local, regional, and teleseismic earthquake are evaluated and compared with corresponding onshore data. The S-wave amplification is prominent on the sea-floor observations from local earthquake. The detection threshold on the local earthquake is estimated.

  15. Studying deep seafloor processes based on the analysis of Ocean Bottom Seismometer records

    NASA Astrophysics Data System (ADS)

    Geli, L. B.; Evangelia, B.; Bayrakci, G.; Tary, J. B.; Klingelhoefer, F.

    2017-12-01

    Ocean Bottom Seismometers (OBSs) are ultra-sensible instruments capable to detect micrometric motions of seafloor sediments. OBSs commonly record Short Duration Events (SDEs) characterized by durations of less than 0.8 s, by frequencies ranging between 4 and 30 Hz, by highly variable amplitudes and by one single wavetrain, e.g. with undistinguishable P and S arrivals. SDEs may occur either on a regular, permanent basis, at a rate of a few hundred times per day; either as swarms of SDEs, occurring over time spans of a few hours. Seafloor sediment motion may result from a large variety of causes, among which four are described here: i) seabottom currents (including tidal currents); ii) bioturbation processes through which living organisms buried within the uppermost centimeters of sediments expel fluids from tiny cavities just below the seafloor; iii) fluid (water or gas) migration processes, possibly triggered by earthquakes shaking the seafloor sediments; iv) marine mammals, such as finback whales, which also produce signals recorded by hydrophones in the water column. Hence, OBSs are powerful tools that could contribute addressing a number of critical challenges in ocean sciences, provided that we can discriminate between the different causes, e.g.: i) the coupling between ocean current and sediment properties; ii) the role of bioturbation processes in global carbon budgets; iii) the amount of methane and carbon dioxide released by earthquakes into the water column; iv) the tracking of marine mammals, etc.

  16. Thunder-induced ground motions: 1. Observations

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.

  17. VoiLA: A multidisciplinary study of Volatile recycling in the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Collier, J.; Blundy, J. D.; Goes, S. D. B.; Henstock, T.; Harmon, N.; Kendall, J. M.; Macpherson, C.; Rietbrock, A.; Rychert, C.; Van Hunen, J.; Wilkinson, J.; Wilson, M.

    2017-12-01

    Project VoiLA will address the role of volatiles in controlling geological processes at subduction zones. The study area was chosen as it subducts oceanic lithosphere formed at the slow-spreading Mid Atlantic Ridge. This should result in a different level and pattern of hydration to compare with subduction zones in the Pacific which consume oceanic lithosphere generated at faster spreading rates. In five project components, we will test (1) where volatiles are held within the incoming plate; (2) where they are transported and released below the arc; (3) how the volatile distribution and pathways relate to the construction of the arc; and (4) their relationship to seismic and volcanic hazards and the fractionation of economic metals. Finally, (5) the behaviour of the Lesser Antilles arc will be compared with that of other well-studied systems to improve our wider understanding of the role of water in subduction processes. To address these questions the project will combine seismology; petrology and numerical modelling of wedge dynamics and its consequences on dehydration and melting. So-far island-based fieldwork has included mantle xenolith collection and installation of a temporary seismometer network. In 2016 and 2017 we conducted cruises onboard the RRS James Cook that collected a network of passive-recording and active-recording ocean-bottom seismometer data within the back-arc, fore-arc and incoming plate region. A total of 175 deployments and recoveries were made with the loss of only 6 stations. The presentation will present preliminary results from the project.

  18. Forensic Seismology: constraints on terrorist bombings

    NASA Astrophysics Data System (ADS)

    Wallace, T. C.; Koper, K. D.

    2002-05-01

    Seismology has long been used as a tool to monitor and investigate explosions, both accidental and intentional. Seismic records can be used to provide a precise chronology of events, estimate the energy release in explosions and produce constraints to test various scenarios for the explosions. Truck bombs are a popular tool of terrorists, and at least two such attacks have been recorded seismically. On August 7, 1998 a truck bomb was detonated near the US embassy in Nairobi, Kenya. The bomb seriously damaging a dozen buildings, injuring more than 4000 people and causing 220 fatalities. The explosion was recorded on a short-period seismometer located north of the blast site; the blast seismogram contained body waves, Rayleigh waves and vibrations associated with the air blast. Modeling of the body and surfaces wave allowed an estimate of the origin time of the bombing, which it turn could be used as a constraint the timing of the air blasts. The speed of the air waves from an explosion depend on the air temperature and the size, or yield, of the explosion. In an effort to fully utilize the seismic recordings from such attacks, we analyzed the seismic records from a series of controlled truck bomb explosions carried out at White Sand Missile Range in New Mexico. We developed a new set of scaling laws that relate seismic and acoustic observations directly to the explosive mass (yield). These relationships give a yield of approximately 3000 kg of TNT equivalent for the Nairobi bomb. The terrorist bombing of the Murrah Federal Building in Oklahoma City in 1995 was also recorded on seismometers. One of these records showed 2 discrete surface wavetrains separated by approximately 10 seconds. Some groups seized on the seismic recordings as evidence that there were 2 explosions, and that the US government was actually behind the bombing. However, the USGS monitored the demolition of the remainder of the Murrah Building and showed that the collapse also produced 2 surface waves. The interpretation is that one group was the fundamental mode Rayleigh wave while the other was either a higher-mode surface wave or a scattered S-wave (Lg like) packet (Holzer et al, 1996). This example illustrates the utility of forensic seismology for testing various hypothesis for the explosions. As the number of permanent and temporarily installed seismometers increase in the next decade, the number of "exotic" sources recorded and investigated is grow dramatically. These studies can be very useful for investigating terrorist attacks, and developing scenarios for the crimes.

  19. Live from the Seafloor: Seismic Signals associated with the 2015 Eruption of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S. D.; Tolstoy, M.; Garcia, C.; Tan, Y. J.; Waldhauser, F.

    2015-12-01

    Axial seamount is the most active volcanic feature on the Juan de Fuca Ridge having previously erupted in 1998 and 2011. In 2014, the Ocean Observatories Initiative installed a multidisciplinary, cabled observatory on Axial seamount that includes a compact network of 7 seismometers spanning the southern half of the summit caldera with another seismometer located at the base of the volcano. Real-time data from the seismic network has been archived at the IRIS Data Management Center from mid-November 2014. We have implemented an automated algorithm to detect earthquakes, pick P and S wave phases, determine hypocenters and estimate magnitudes. Over 5 months to mid-April earthquake rates increased from an average of ~100 per day to >500 per day. Most of the earthquakes were small (MW ≤ 1.5) and occurred in swarms beneath the east and west walls of the caldera at depths clustering around 1.5 km. On April 23, 2015 at 1700-2100 GMT there was a sizeable swarm of earthquakes near the east wall of the caldera with most activity north of the network. The main seismic crisis, which coincided with ~2 m of deflation at the center of the caldera (Nooner et al., this meeting), commenced at 0500 GMT on April 24. For the first 2 hours epicenters were confined near the east wall north of the network. The southern limit of seismicity then migrated ~3 km south over one hour to beneath the network where very high levels of seismicity (~500 per hour) persisted until 1500 GMT. During the seismic crisis, the caldera seismometers were swamped by nearby earthquakes, including ~100 per hour with MW ≥ 2; additional analysis is required to determine if seismicity also migrated outside the caldera. In the following weeks, earthquake rates beneath the caldera decreased to <10 per day. An exciting discovery during this period was the detection of a large number of impulsive water borne signals, each comprising a train of water column multiples with arrival times consistent with sound sources on the seafloor 15-20 km to the north of the network. These events commenced at the end of the seismic crisis, peaked at a rate of >2000 per day on April 26 and continued at decreasing levels until mid-May. Recent seafloor mapping and observations have confirmed that these impulsive events mark the site of an eruption on the north rift of the volcano (Kelley et al., this meeting).

  20. Current Research at the Endeavour Ridge 2000 Integrated Studies Site

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Kelley, D. S.; Ridge 2000 Community, R.

    2004-12-01

    Integrated geophysical, geological, chemical, and biological studies are being conducted on the Endeavour segment with primary support from NSF, the W.M. Keck Foundation, and NSERC (Canada). The research includes a seismic network, physical and chemical sensors, high-precision mapping and time-series sampling. Several research expeditions have taken place at the Endeavour ISS in the past year. In June 2003, an NSF-sponsored cruise with R.V. al T.G.Thompson/ROV al Jason2 installed microbial incubators in drill-holes in the sides of active sulfide chimneys and sampled rocks, fluids, and microbes in the Mothra and Main Endeavour Field (MEF). In July 2003, with al Thompson/Jason2, an NSF-LEXEN project at Baby Bare on Endeavour east flank conducted sampling through seafloor-penetrating probes, plus time-series sampling of fluids, microbes, and rocks at the MEF. In September 2003, with al Thompson/ROV al ROPOS, the Keck Proto-Neptune project installed a seismic network consisting of 1 broadband and 7 short-period seismometers, installation of chemical/physical sensors and time-series samplers for chemistry and microbiology in the MEF and Clam Bed sites, collection of rocks, fluids, animals, and microbes. In May/June 2004, an NSF-sponsored al Atlantis/Alvin cruise recovered sulfide incubators installed in 2003, redeployed a sulfide incubator, mapped MEF and Mothra vent fields with high-resolution Imagenix sonar, sampled fluids from MEF, Mothra, and Clam Bed, recovered year-long time-series fluid and microbial samplers from MEF and Clam Bed, recovered and installed hot vent temperature-resistivity monitors, cleaned up the MEF and deployed new markers at major sulfide structures. In August 2004, there were two MBARI/Keck-sponsored cruises with R.V. al Western Flyer/ROV al Tiburon. The first cruise completed the seismic network with addition of two more broadband seismometers and serviced all 7 short-period seismometers. al Tiburon then performed microbial and chemical investigations at MEF, Mothra, Sasquatch, and Middle Valley, collecting fluid, particle, and animal samples for culture and phylogenetic analysis. al Tiburon continued in late August/September with detailed petrological sampling. A Keck-sponsored al Thompson/ROPOS cruise in September continued work on chemical/physical sensor deployments and time-series chemical and microbial sampling. A graduate student workshop at Friday Harbor beginning October 2004 will analyze the first year of data from the seismic network and begin to correlate seismic activity with hydrothermal activity. The Endeavour ISS is still in a phase of data collection and sensor development, but moving toward data integration.

  1. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    NASA Astrophysics Data System (ADS)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S-waves velocity models of the sedimentary strata and the upper consolidated crust. Velocity values in the upper consolidated crust beneath the South-Okhotsk Basin (Vp = 5.50-5.80 km/s, Vp/Vs = 1.74-1.76) allow interpretation of this 2.5-3.5-km-thick layer to be consistent with a felsic (granodioritic) crust. These results suggest that the Earth's crust in this region can be considered continental in nature, rather than previously accepted oceanic crust. Even though, the crust is thinned and stretched at this location.

  2. Shear Wave Structure of Umbria and Marche, Italy, Strong Motion Seismometer Sites Affected by the 1997-98 Umbria-Marche, Italy, Earthquake Sequence

    USGS Publications Warehouse

    Kayen, Robert; Scasserra, Giuseppe; Stewart, Jonathan P.; Lanzo, Giuseppe

    2008-01-01

    A long sequence of earthquakes, eight with magnitudes between 5 and 6, struck the Umbria and Marche regions of central Italy between September 26, 1997 and July 1998. The earthquake swarm caused severe structural damage, particularly to masonry buildings, and resulted in the loss of twelve lives and about 150 injuries. The source of the events was a single seismogenic structure that consists of several faults with a prevailing northwest-southeast strike and crosses the Umbria-Marche border. The focal mechanism of the largest shocks indicates that the events were the product of shallow extensional normal faulting along a NE-SW extension perpendicular to the trend of the Apennines. The network of analog seismometer stations in the Umbria and Marche regions recorded motions of the main September and October 1997 events and a dense array of mobile digital stations, installed since September 29, recorded most of the swarm. The permanent national network Rete Accelerometrica Nazionale (RAN) is administered and maintained by Dipartimento delle Protezione Civile (DPC: Civil Protection Department); the temporary array was managed by Servizio Sismico Nazionale (SSN) in cooperation with small agencies and Universities. ENEA, the operator of many seismometer stations in Umbria, is the public Italian National Agency for New Technologies, Energy and the Environment. Many of the temporary and permanent stations in the Italian seismic network have little or no characterization of seismic velocities. In this study, we investigated 17 Italian sites using an active-source approach that employs low frequency harmonic waves to measure the dispersive nature of surface waves in the ground. We used the Spectral Analysis of Surface Wave (SASW) approach, coupled with an array of harmonic-wave electro-mechanical sources that are driven in-phase to excite the ground. An inversion algorithm using a non-linear least-squares best-fit method is used to compute shear wave velocities for up to 100 meters of the soil column. A draft report was published in the summer of 2008, followed by a comment period, lengthy discussions with Italian colleagues, and improved knowledge of the subsurface at the sites from soil logs. Four of the sites were reprocessed in order to correct issues with phase unwrapping of the field dispersion curves that complicated the velocity profile calculations at the lowest velocity sites. This report presents the final results from the reprocessing effort.

  3. Density of the lunar interior.

    NASA Technical Reports Server (NTRS)

    Gast, P. W.; Giuli, R. T.

    1972-01-01

    It is attempted to derive the constraints that can be placed on the density of the lunar interior. The moment of inertia of the moon and its mean density are being considered in the investigation together with the mass and density of the lunar crust that have been inferred from the seismic refraction data recorded by the passive seismometer. The calculations presented show that the density of the lunar interior can easily approach values as high as 3.5 for a fraction of the lunar mass which lies in the range from 1/2 to 2/3.

  4. Statistical description of tectonic motions

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    1991-01-01

    The behavior of stochastic processes was studied whose power spectra are described by power-law behavior. The details of the analysis and the conclusions that were reached are presented. This analysis was extended to compare detection capabilities of different measurement techniques (e.g., gravimetry and GPS for the vertical, and seismometers and GPS for horizontal), both in general and for the specific case of the deformations produced by a dislocation in a half-space (which applies to seismic of preseismic sources). The time-domain behavior of power-law noises is also investigated.

  5. Site Effects on Regional Seismograms Recorded in the Vicinity of Weston Observatory

    DTIC Science & Technology

    1993-09-30

    flanks of the active volcanoes of Mauna Loa and Kilauea . The distances between the sites ranged from a few km to over 100 km. Although there is little...on the island of Hawaii using S-wave coda spectral ratios for frequencies between 1.5 and 15-Hz. They used 40 vertical I-Hz seismometers, and recorded...for the island of Hawaii , Bull. Seis Soc. Am-, 12 No- 3 1151-1185. Mayeda, K., S. Koyanagi, and K. Aki (1991). Site amplification from S-wave coda in

  6. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  7. Seismic search for strange quark nuggets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrin, Eugene T.; Rosenbaum, Doris C.; Teplitz, Vigdor L.

    2006-02-15

    Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to 1 ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.

  8. Empirical transfer functions for stations in the Central California seismological network

    USGS Publications Warehouse

    Bakun, W.H.; Dratler, Jay

    1976-01-01

    A sequence of calibration signals composed of a station identification code, a transient from the release of the seismometer mass at rest from a known displacement from the equilibrium position, and a transient from a known step in voltage to the amplifier input are generated by the automatic daily calibration system (ADCS) now operational in the U.S. Geological Survey central California seismographic network. Documentation of a sequence of interactive programs to compute, from the calibration data, the complex transfer functions for the seismographic system (ground motion through digitizer) the electronics (amplifier through digitizer), and the seismometer alone are presented. The analysis utilizes the Fourier transform technique originally suggested by Espinosa et al (1962). Section I is a general description of seismographic calibration. Section II contrasts the 'Fourier transform' and the 'least-squares' techniques for analyzing transient calibration signals. Theoretical consideration for the Fourier transform technique used here are described in Section III. Section IV is a detailed description of the sequence of calibration signals generated by the ADCS. Section V is a brief 'cookbook description' of the calibration programs; Section VI contains a detailed sample program execution. Section VII suggests the uses of the resultant empirical transfer functions. Supplemental interactive programs by which smooth response functions, suitable for reducing seismic data to ground motion, are also documented in Section VII. Appendices A and B contain complete listings of the Fortran source Codes while Appendix C is an update containing preliminary results obtained from an analysis of some of the calibration signals from stations in the seismographic network near Oroville, California.

  9. Crustal Structure of the Yakutat Microplate: Constraints from STEEP Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; van Avendonk, H.; Gulick, S. P.; Worthington, L.; Pavlis, T.

    2008-12-01

    In Fall 2008 we will conduct a seismic program focusing on the Yakutat microplate. As part of this study we plan to acquire two wide-angle profiles: an onshore-offshore northwest-southeast oriented profile extending from the Bering glacier onto the continental shelf and across the Dangerous River Zone, and an offshore northeast-southwest oriented profile extending from the ocean basin across the Transition fault and into Yakutat Bay. The sound source will be the R/V Langseth's tuned 6600 cu. in., 36 air gun array. Ocean bottom seismometers will be positioned at ~15 km spacing, and Texan seismometers at 1-4 km spacing across the Bering Glacier. Coincident deep-penetrating seismic reflection data will be acquired on the marine portion of both profiles using a 8-km, 640-channel solid hydrophone streamer. Existing models for the Yakutat microplate disagree as to whether it is a continental fragment attached to normal oceanic crust or an oceanic plateau, and if the deep structure changes from west to east across the Dangerous River Zone. In the continental fragment model uplift is concentrated along crustal-scale thrust faulting at the ocean crust boundary (Dangerous River Zone?) resulting in focused and rapid erosion. In the oceanic plateau model more distributed, regional uplift is expected which will produce widespread exhumation with net erosion potentially coupled with glacial cycles. Thus distinguishing between these models, which we expect to accomplish with our planned seismic program, is vital for linking tectonics to erosion on both spatial and temporal scales.

  10. Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.

    2016-12-01

    Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.

  11. Microseismicity Linked to Gas Migration and Leakage on the Western Svalbard Shelf

    NASA Astrophysics Data System (ADS)

    Franek, Peter; Plaza-Faverola, Andreia; Mienert, Jürgen; Buenz, Stefan; Ferré, Bénédicte; Hubbard, Alun

    2017-12-01

    The continental margin off Prins Karls Forland, western Svalbard, is characterized by widespread natural gas seepage into the water column at and upslope of the gas hydrate stability zone. We deployed an ocean bottom seismometer integrated into the MASOX (Monitoring Arctic Seafloor-Ocean Exchange) automated seabed observatory at the pinch-out of this zone at 389 m water depth to investigate passive seismicity over a continuous 297 day period from 13 October 2010. An automated triggering algorithm was applied to detect over 220,000 short duration events (SDEs) defined as having a duration of less than 1 s. The analysis reveals two different types of SDEs, each with a distinctive characteristic seismic signature. We infer that the first type consists of vocal signals generated by moving mammals, likely finback whales. The second type corresponds to signals with a source within a few hundred meters of the seismometer, either due east or west, that vary on short (˜tens of days) and seasonal time scales. Based on evidence of prevalent seafloor seepage and subseafloor gas accumulations, we hypothesize that the second type of SDEs is related to subseafloor fluid migration and gas seepage. Furthermore, we postulate that the observed temporal variations in microseismicity are driven by transient fluid release and due to the dynamics of thermally forced, seasonal gas hydrate decomposition. Our analysis presents a novel technique for monitoring the duration, intensity, and periodicity of fluid migration and seepage at the seabed and can help elucidate the environmental controls on gas hydrate decomposition and release.

  12. A combined method to calculate co-seismic displacements through strong motion acceleration baseline correction

    NASA Astrophysics Data System (ADS)

    Zhan, W.; Sun, Y.

    2015-12-01

    High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.

  13. Trillium Horizon, A Small Portable Observatory Grade Seismometer For Direct Bury And Vault Use

    NASA Astrophysics Data System (ADS)

    Moores, A.; Parker, T.; Bainbridge, G.

    2017-12-01

    As of August 2017 almost 5 years of data have been collected from broadband seismic sensors designed for direct burial applications. These first posthole instruments have been deployed in a wide range of extremely challenging environments such as dynamic ice and snow environments, extreme wet and dry conditions in soils of high clay content, and steep creeping terrain. In all use cases the direct burial approach has consistently provided high quality data when compared to shallow vault installations. In this presentation we extract and analyze operational performance data, including tilt information from mass position time series recorded at direct burial installations and at temporary shallow vault deployments. This data shows that while higher tilt tolerance is required for data quality outcome certainty in some installations, the majority of installations can be addressed by a smaller instrument with a narrower tilt range hence reducing size and cost. The lessons learned from this real world field data have guided the development of a new smaller, less expensive instrument, Trillium Horizon.Based on this analysis and and user feedback from many direct burial deployments, the Trillium Horizon seismometer has been developed as a simple versatile instrument to span the majority of deployment scenarios and specific use cases including shallow direct bury deployments, traditional piers, and problematic wet vault installs. With its small size, robust waterproof case and connector, +/-1.5° tilt range, dual-purpose cable, and accessories for both posthole and vault installation, Trillium Horizon is optimized for usability as well as performance.

  14. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  15. A single geophone to locate seismic events on Mars

    NASA Astrophysics Data System (ADS)

    Roques, Aurélien; Berenguer, Jean-Luc; Bozdag, Ebru

    2016-04-01

    Knowing the structure of Mars is a key point in understanding the formation of Earth-like planets as plate tectonics and erosion have erased the original suface of the Earth formation. Installing a seismometer on Mars surface makes it possible to identify its structure. An important step in the identification of the structure of a planet is the epicenter's location of a seismic source, typically a meteoric impact or an earthquake. On Earth, the classical way of locating epicenters is triangulation, which requires at least 3 stations. The Mars InSight Project plans to set a single station with 3 components. We propose a software to locate seismic sources on Mars thanks to the 3-components simulated data of an earthquake given by Geoazur (Nice Sophia-Antipolis University, CNRS) researchers. Instrumental response of a sensor is crucial for data interpretation. We study the oscillations of geophone in several situations so as to awaken students to the meaning of damping in second order modeling. In physics, car shock absorbers are often used to illustrate the principle of damping but rarely in practical experiments. We propose the use of a simple seismometer (a string with a mass and a damper) that allows changing several parameters (inductive damping, temperature and pressure) so as to see the effects of these parameters on the impulse response and, in particular, on the damping coefficient. In a second step, we illustrate the effect of damping on a seismogram with the difficulty of identifying and interpreting the different phase arrival times with low damping.

  16. HyBIS - a low cost, multi-purpose, modular vehicle for detailed ocean mapping

    NASA Astrophysics Data System (ADS)

    Huehnerbach, V.; Murton, B.; Berndt, C.; Garrard, J.; Wollatz-Vogt, M.; Wetzel, G.; Matthiessen, T.

    2013-12-01

    HyBIS is a low-cost, multi-purpose, highly maneuverable, fibre-optic controlled survey and sampling robotic underwater vehicle (RUV) capable of diving to 6000m. Built in the UK by Hydro-Lek Ltd. in collaboration with the National Oceanography Centre, Southampton, it has proven itself during recent discoveries of the deepest hydrothermal vents in the world, at 5100m deep in the Cayman Trough in the Caribbean and habitat mapping of seamounts in the Atlantic and Indian oceans . The vehicle has a modular design, with the top module being a command and power system that comprises power management, cameras, lights, hydraulics, thrusters and telemetry. The lower module can alternatively be a clam-shell sampling grab, a manipulator-arm and tool sled, a winch for instrument recovery, or an ocean bottom seismometer deployment module. Unlike a conventional ROV, HyBIS does not have any floatation, rather it is suspended by its umbilical cable directly from the ship. The advantage of direct suspension is that HyBIS can recover or deploy a payload of up to 700kg, although this comes at the price of reduced maneuverability compared to a 'normal' ROV. During its four years of service, HyBIS has, so far, accumulated an impressive list of achievements: recording over 450 hours of HD video footage, thousands of HD still images, collected geological, biological samples, as well as fluids and gas from over 40 different sites. It has also recovered two different seabed landers containing scientific equipment worth over £300k, and placed Ocean Bottom Seismometers onto the seafloor.

  17. Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand

    USGS Publications Warehouse

    Johnson, J. H.; Savage, M.K.; Townend, J.

    2011-01-01

    We have created a benchmark of spatial variations in shear wave anisotropy around Mount Ruapehu, New Zealand, against which to measure future temporal changes. Anisotropy in the crust is often assumed to be caused by stress-aligned microcracks, and the polarization of the fast quasi-shear wave (??) is thus interpreted to indicate the direction of maximum horizontal stress, but can also be due to aligned minerals or macroscopic fractures. Changes in seismic anisotropy have been observed following a major eruption in 1995/96 and were attributed to changes in stress from the depressurization of the magmatic system. Three-component broadband seismometers have been deployed to complement the permanent stations that surround Ruapehu, creating a combined network of 34 three-component seismometers. This denser observational network improves the resolution with which spatial variations in seismic anisotropy can be examined. Using an automated shear wave splitting analysis, we examine local earthquakes in 2008. We observe a strong azimuthal dependence of ?? and so introduce a spatial averaging technique and two-dimensional tomography of recorded delay times. The anisotropy can be divided into regions in which ?? agrees with stress estimations from focal mechanism inversions, suggesting stress-induced anisotropy, and those in which ?? is aligned with structural features such as faults, suggesting structural anisotropy. The pattern of anisotropy that is inferred to be stress related cannot be modeled adequately using Coulomb modeling with a dike-like inflation source. We suggest that the stress-induced anisotropy is affected by loading of the volcano and a lithospheric discontinuity. Copyright 2011 by the American Geophysical Union.

  18. The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon Flat Observatory, California

    USGS Publications Warehouse

    Gomberg, Joan S.; Agnew, Duncan Carr

    1996-01-01

    The dynamic strains associated with seismic waves may play a significant role in earthquake triggering, hydrological and magmatic changes, earthquake damage, and ground failure. We determine how accurately dynamic strains may be estimated from seismometer data and elastic-wave theory by comparing such estimated strains with strains measured on a three-component long-base strainmeter system at Pin??on Flat, California. We quantify the uncertainties and errors through cross-spectral analysis of data from three regional earthquakes (the M0 = 4 ?? 1017 N-m St. George, Utah; M0 = 4 ?? 1017 N-m Little Skull Mountain, Nevada; and M0 = 1 ?? 1019 N-m Northridge, California, events at distances of 470, 345, and 206 km, respectively). Our analysis indicates that in most cases the phase of the estimated strain matches that of the observed strain quite well (to within the uncertainties, which are about ?? 0.1 to ?? 0.2 cycles). However, the amplitudes are often systematically off, at levels exceeding the uncertainties (about 20%); in one case, the predicted strain amplitudes are nearly twice those observed. We also observe significant ?????? strains (?? = tangential direction), which should be zero theoretically; in the worst case, the rms ?????? strain exceeds the other nonzero components. These nonzero ?????? strains cannot be caused by deviations of the surface-wave propagation paths from the expected azimuth or by departures from the plane-wave approximation. We believe that distortion of the strain field by topography or material heterogeneities give rise to these complexities.

  19. Talamanca Transect and Tremor Array: Ongoing Seismological Investigations in Costa Rica

    NASA Astrophysics Data System (ADS)

    Thorwart, M.; Alvarado, G.; Arroyo, I.; Dinc-Akdogan, N.; Dzierma, Y.; Flueh, E.; Goltz, C.; Gossler, J.; Mora, M.; Rabbel, W.

    2005-12-01

    Under the roof of the collaborative research centre SFB 574, the Central American subduction zone is being investigated in a seismological research project conducted by Costa Rican and German partners. The general goal of the SFB574 project is to study the origin and influence of volatiles and fluids in subduction zones. The seismological subproject serves to defining the structural and seismo-tectonical frame work of these investigations. In early 2005 two seismic arrays have been installed: (a) A teleseismic transsect across the Talamanca mountain range consisting of 20 broadband sensors with about 10 km station spacing. The primary goal of this array is to image crustal structure, the Moho and the structure of the subducted slab and mantle wedge. Variations in Vp/Vs ratio are expected to provide information on fluids at deep lithospheric levels. (b) An array of six 1Hz-borehole seismometers has been permanently installed in 100 m deep boreholes on Nicoya peninsula. The borehole installation is intended to provide a low-noise environment for recording non-volcanic tremor signals. These non-volcanic tremors are hypothetically understood as indicators of episodic fluid release by dehydratisation processes within the subducting slab. In autumn 2005 the field setup will be complemented by an amphibious network of 30 land and 20 ocean bottom seismometers on- and offshore N Costa Rica and S Nicaragua. The poster presents field layout and first results of the combined SFB574 seismological survey. The SFB574 project is funded by the German science foundation (DFG). Support by the GFZ instrument pool is gratefully acknowledged.

  20. Lunar Structure from Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Nunn, Ceri; Igel, Heiner

    2017-04-01

    As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. We explore the use of coda wave interferometry to reconstruct the near surface structure within the strongly scattering lunar crust.

  1. Lopez Island Ocean Bottom Seismometer Intercomparison Experiment.

    DTIC Science & Technology

    1980-10-01

    dividing the, record into N 4-see-long records (where N-30) and averaging4 - ].- ~ I I I I I I r r I I I I I I I I SEC - II L L I I L I I I I I I 80 1...about 1 m (Sutton et al., 1980). The OBS’s were located within tens of meters ot eacti other in deep waiter . The hydrophones are well correlated, showing...1 - 21)2 ) (5) where D is a damping constant which is the actual damping constant divided by the critical damping constant C I/cc. Lvsmer’s analog

  2. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  3. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2005-01-01

    The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study [Julian, et al., 2003; Julian, et al., 2004] comparing data from 1996 and 2003 found significant variations in the ratio of the seismic wave-speeds, Vp/Vs, at shallow depths over this time interval. This report describes results of a more detailed study of each year from 1996 through 2004.

  4. PBO Integrated Real-Time Observing Sites at Volcanic Sites

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Jackson, M.; Borsa, A.; Feaux, K.; Smith, S.

    2009-05-01

    The Plate Boundary Observatory, an element of NSF's EarthScope program, has six integrated observatories in Yellowstone and four on Mt St Helens. These observatories consist of some combination of borehole strainmeters, borehole seismometers, GPS, tiltmeters, pore pressure, thermal measurements and meteorological data. Data from all these instruments have highly variable data rates and formats, all synchronized to GPS time which can cause significant congestion of precious communication resources. PBO has been experimenting with integrating these data streams to both maximize efficiency and minimize latency through the use of software that combines the streams, like Antelope, and VPN technologies.

  5. A study of surface and subsurface ground motions at Calico Hills, Nevada Test Site

    USGS Publications Warehouse

    King, Kenneth W.

    1982-01-01

    A study of earthquake ground motions recorded at depth in a drill hole and at the ground surface has derived the surface to subsurface transfer functions such as might be expected at a potential nuclear waste repository in a similar setting. The site under investigation has small seismic velocity contrasts in the layers of rock between the surface and the subsurface seismometer location. The subsurface seismic motions were similar in spectral characteristics to the surface motions and were lower in amplitude across the recorded band-width by a factor of 1.5.

  6. Dynamic characterization of the Chamousset rock column before its fall

    NASA Astrophysics Data System (ADS)

    Levy, C.; Baillet, L.; Jongmans, D.

    2009-04-01

    The rockfall of Chamousset (volume of 21000m3 ) occurred on November 10, 2007, affecting the 300 m high Urgonian cliff of the southern Vercors massif, French Alps. This event took place when the Vercors plateau was covered by snow. The unstable column was previously detected by observations on the development of a 30 m long fracture back on the plateau. Two aerial Lidar scans of the cliff were acquired before and after the failure, allowing the geometry of the column and of the broken plane to be determined. A temporary seismic array along with two extensometers was installed from July to November 2007. The seismic array consisted of 7 short period seismometers (1 three-components and 6 vertical-component). One vertical seismometer was installed on the column while the other 6 were deployed on the plateau with an array aperture of about 70 m. During the last two months of record, short period seismometers were replaced by 4.5 Hz geophones. The monitoring system recorded in a continuous mode (1000 Hz of frequency sampling) but it stopped to work two weeks before the fall, after the solar panels were covered by snow. During the running period, the seismic array recorded hundreds of local seismic events, from short (less than 0.5 s) impulsive signals to events with a long duration (a few tens of seconds). Our study was first focused on the dynamic response of the column and on the seismic noise frequency content. Fourier spectra of the seismic noise signals recorded on the column and the corresponding spectral ratios showed the presence of several resonance frequencies of the column. The first resonance frequency was measured at 3.6 Hz in July 2007 and it decreases regularly with time to reach 2.6 Hz two weeks before the fall. In parallel, extensometer measurements show that the fracture aperture increased with time during the same period. The dynamic response of a block which separates from a rock mass was 2D numerically modelled. Finite element computations showed that the progressive block decoupling, resulting from a crack propagation inside the mass, generates a decrease of the natural frequency, as it was measured on the site. These results highlight the interest to study the dynamic response of an unstable column for hazard assessment purposes. In a second phase, we studied the recorded impulsive signals in which we were able to identify P and S waves. Seismic experiments were performed in September 2008 on the plateau in order to constrain the ground velocity structure. Preliminary event location shows that the signal sources were located along the broken plane and probably result from micro-cracks along rock bridges.

  7. Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.

    2015-08-01

    In 2016 NASA will launch the InSight discovery-class mission, which aims to study the detailed internal structure of Mars for the first time. Short- and long-period seismometers form a major component of InSight's payload and have the potential to detect seismic waves generated by meteorite impacts. Large globally detectable impact events producing craters with diameters of ∼ 100 m have been investigated previously and are likely to be rare (Teanby, N.A., Wookey, J. [2011]. Phys. Earth Planet. Int. 186, 70-80), but smaller impacts producing craters in the 0.5-20 m range are more numerous and potentially occur sufficiently often to be detectable on regional scales (≲1000 km). At these distances, seismic waves will have significant high frequency content and will be suited to detection with InSight's short-period seismometer SEIS-SP. In this paper I estimate the current martian crater production function from observations of new craters (Malin, M.C. et al. [2006]. Science 314, 1573-1577; Daubar, I.J. et al. [2013]. Icarus 225, 506-516), model results (Williams, J.P., Pathare, A.V., Aharonson, O. [2014]. Icarus 235, 23-36), and standard isochrons (Hartmann, W.K. [2005]. Icarus 174, 294-320). These impact rates are combined with an empirical relation between impact energy, source-receiver distance, and peak seismogram amplitude, derived from a compilation of seismic recordings of terrestrial and lunar impacts, chemical explosions, and nuclear tests. The resulting peak seismogram amplitude scaling law contains significant uncertainty, but can be used to predict impact detection rates. I estimate that for a short-period instrument, with a noise spectral density of 10-8 ms-2 Hz-1/2 in the 1-16 Hz frequency band, approximately 0.1-30 regional impacts per year should be detectable with a nominal value of 1-3 impacts per year. Therefore, small regional impacts are likely to be a viable source of seismic energy for probing Mars' crustal and upper mantle structure. This is particularly appealing as such impacts should be easily located with orbital imagery, increasing their scientific value compared to other types of events with unknown origins. Finally, comparison of the empirical results presented here with the modelling study of Teanby and Wookey (Teanby, N.A., Wookey, J. [2011]. Phys. Earth Planet. Int. 186, 70-80) provides constraints on the seismic efficiency, suggesting that values of ∼ 5 × 10-4 may be appropriate for impact generated seismic waves. Comparing explosion and impact datasets indicate that buried explosions are ∼ 10 times more efficient at generating seismic waves than impacts.

  8. Response to long-period seismic waves recorded by broadband seismometer and pore pressure sensor at IODP Site C0002, Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kitada, K.; Araki, E.; Kimura, T.; Saffer, D. M.

    2013-12-01

    Long term in situ monitoring of seismic activity, slow slip event, and pore fluid behavior around mega earthquake zone is important for understanding the processes of earthquake generation and strain accumulation. In order to characterize the response to long-period seismic waves, we compared waveforms and hydroseismograms recorded by broadband seismometer and pore pressure transducers, respectively, which were installed at IODP Site C0002 in the Nankai Trough Kumano Basin. The borehole monitoring system sensor array at Site C0002 is designed to collect multiparameter observations covering a dynamic range of events, including local microearthquakes, low frequency earthquakes, and large-scale earthquakes similar to the Tonankai earthquake. The suite of sensors for the downhole portion of the observatory includes a broadband seismometer (CMG3TBD, Guralp Systems Ltd.) with sampling rate of 100Hz at the depth of 907mbsf, and four pressure ports connected to pressure gauges located at 948mbsf, 917mbsf, 766mbsf, and at the seafloor. The sampling rate of the data logger was set to 1Hz after successful connection to the DONET seafloor cable network for real-time monitoring on 24 Jan 2013. Since then, we processed 12 earthquakes between a moment magnitude of 6.5 to 8.3. In addition to the comparison of long-period surface waves waveform and pressure data, we compared the records with theoretical strain seismograms. The latter were calculated by normal mode summation using the earth model PREM of Dziewonski and Anderson (1981). A Butterworth bandpass filter was applied to the records with cut-off frequencies of 0.003 and 0.1 Hz. Our initial results indicate that the hydroseismograms correspond well with the vertical rather than the horizontal (radial and transverse) components in seismic data. The observed hydroseismogram have a good correlation with the predicted volumetric strain seismogram, especially for the Okhotsk (2013/05/24 14:17UT, Mw8.3, 632km depth), the Chishima (2013/04/19 03:05UT, Mw7.2, 109km depth) and the Tokachi (2013/02/02 14:17UT, Mw6.9, 139km depth) earthquakes which occurred around NE offshore Hokkaido, Japan. The amplitude ratio between the waveforms showed a variety of the values ranging from about 0.05 to 0.2 hPa/nano-strain, suggesting the influence of small scale structure on seismic wave propagation at regional and teleseismic distances. These comparisons are important not only to assess the potential of pore pressure for long-period seismology studies, but also to better understand the response of the borehole to crustal deformation.

  9. Relocation of earthquakes at southwestern Indian Ocean Ridge and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Luo, W.; Zhao, M.; Haridhi, H.; Lee, C. S.; Qiu, X.; Zhang, J.

    2015-12-01

    The southwest Indian Ridge (SWIR) is a typical ultra-slow spreading ridge (Dick et al., 2003) and further plate boundary where the earthquakes often occurred. Due to the lack of the seismic stations in SWIR, positioning of earthquakes and micro-earthquakes is not accurate. The Ocean Bottom Seismometers (OBS) seismic experiment was carried out for the first time in the SWIR 49 ° 39 'E from Jan. to March, 2010 (Zhao et al., 2013). These deployed OBS also recorded the earthquakes' waveforms during the experiment. Two earthquakes occurred respectively in Feb. 7 and Feb. 9, 2010 with the same magnitude of 4.4 mb. These two earthquakes were relocated using the software HYPOSAT based on the spectrum analysis and band-pass (3-5 Hz) filtering and picking up the travel-times of Pn and Sn. Results of hypocentral determinations show that there location error is decreased significantly by joined OBS's recording data. This study do not only provide the experiences for the next step deploying long-term wide-band OBSs, but also deepen understanding of the structure of SWIR and clarify the nature of plate tectonic motivation. This research was granted by the Natural Science Foundation of China (41176053, 91028002, 91428204). Keywords: southwest Indian Ridge (SWIR), relocation of earthquakes, Ocean Bottom Seismometers (OBS), HYPOSAT References:[1] Dick, H. J. B., Lin J., Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412. [2] Zhao M. H., et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39' E). Geochemistry Geophysics Geosystems, 14(10): 4544-4563.

  10. Determining OBS Instrument Orientations: A Comparison of Algorithms

    NASA Astrophysics Data System (ADS)

    Doran, A. K.; Laske, G.

    2015-12-01

    The alignment of the orientation of the horizontal seismometer components with the geographical coordinate system is critical for a wide variety of seismic analyses, but the traditional deployment method of ocean bottom seismometers (OBS) precludes knowledge of this parameter. Current techniques for determining the orientation predominantly rely on body and surface wave data recorded from teleseismic events with sufficiently large magnitudes. Both wave types experience lateral refraction between the source and receiver as a result of heterogeneity and anisotropy, and therefore the arrival angle of any one phase can significantly deviate from the great circle minor arc. We systematically compare the results and uncertainties obtained through current determination methods, as well as describe a new algorithm that uses body wave, surface wave, and differential pressure gauge data (where available) to invert for horizontal orientation. To start with, our method is based on the easily transportable computer code of Stachnik et al. (2012) that is publicly available through IRIS. A major addition is that we utilize updated global dispersion maps to account for lateral refraction, as was done by Laske (1995). We also make measurements in a wide range of frequencies, and analyze surface wave trains of repeat orbits. Our method has the advantage of requiring fewer total events to achieve high precision estimates, which is beneficial for OBS deployments that can be as short as weeks. Although the program is designed for the purpose of use with OBS instruments, it also works with standard land installations. We intend to provide the community with a program that is easy to use, requires minimal user input, and is optimized to work with data cataloged at the IRIS DMC.

  11. Seismicity and geodynamics in the central part of the Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2013-12-01

    The Vanuatu Arc (VA) in the southwest Pacific ocean (167°E, 13-20°S), is highly seismically active, with more than 35 events of magnitude Mw ≥ 7 since 1973 (USGS catalog). The geodynamics are dominated by the east-dipping subduction of the Australian Plate under the North Fiji Basin microplate. Convergence rates are estimated to be between 130 and 170 mm/yr, except in the central part of the VA where convergence slows to 30-40 mm/yr. This slowing appears to be the result of blockage by the subducting d'Entrecastaux ridge. To quantify the tectonics of this blocked section, we deployed 30 seismometers in 2008-2009 and 8 GPS stations since 2008, in the forearc region of the central VA. The seismometers recorded more than 100 events/day. Detailed analysis of the earthquake catalog reveals: 1) a seismic gap between 40 and 60 km deep under the two largest islands of the VA (Santo and Malekula); 2) subduction plane and intraplate faulting within the down-going plate; and 3) reduced activity beneath Malekula island , perhaps indicating a locked patch on the subduction plane. We infer the geometry of the subduction interface by combining our catalog with unpublished data from the 2000 Santo Mw 6.9 earthquake and aftershocks and the USGS and Global CMT catalogs. The subduction interface appears to be composed of two different panels: a shallow one with a small dip angle and a deeper one with higher dip starting at a depth of ~50 km. We compare finite-element modeling of these panels to the geodetic data to test the connectedness of the two panels and their degree of locking.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eylon Shalev; Peter E. Malin; Wendy McCausland

    In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2-more » Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.« less

  13. Data Release Report for Source Physics Experiments 2 and 3 (SPE-2 and SPE-3) Nevada National Security Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, Margaret; Obi, Curtis

    2015-04-30

    The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100more » m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and farfield data that are available.This revised document includes reports on baseline shift corrections for the SPE-2 and SPE-3 shots that were missing from the original January 2015 version.« less

  14. Acoustic signature of thunder from seismic records

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Vernon, Frank L.

    1991-06-01

    Thunder, the sound wave through the air associated with lightning, transfers sufficient energy to the ground to trigger seismometers set to record regional earthquakes. The acoustic signature recorded on seismometers, in the form of ground velocity as a function of time, contains the same type features as pressure variations recorded with microphones in air. At a seismic station in Kislovodsk, USSR, a nearly direct lightning strike caused electronic failure of borehole instruments while leaving a brief impulsive acoustic signature on the surface instruments. The peak frequency of 25-55 Hz is consistent with previously published values for cloud-to-ground lightning strikes, but spectra from this station are contaminated by very strong wind noise in this band. A thunderstorm near a similar station in Karasu triggered more than a dozen records of individual lightning strikes during a 2-hour period. The spectra for these events are fairly broadband, with peaks at low frequencies, varying from 6 to 13 Hz. The spectra were all computed by multitaper analysis, which deals appropriately with the nonstationary thunder signal. These independent measurements of low-frequency peaks corroborate the occasional occurrences in traditional microphone records, but a theory concerning the physical mechanism to account for them is still in question. Examined separately, the individual claps in each record have similar frequency distributions, discounting a need for multiple mechanisms to explain different phases of the thunder sequence. Particle motion, determined from polarization analysis of the three-component records, is predominantly vertical downward, with smaller horizontal components indicative of the direction to the lightning bolt. In three of the records the azimuth to the lightning bolt changes with time, confirming a significant horizontal component to the lightning channel itself.

  15. Seismicity and tectonic tremor accompany the 2014 Gisborne Slow Slip Event: Insights from the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) Experiment, New Zealand

    NASA Astrophysics Data System (ADS)

    Todd, E. K.; Schwartz, S. Y.; Sheehan, A. F.; Mochizuki, K.

    2016-12-01

    The northern Hikurangi Margin is host to some of the shallowest slow slip events (SSEs) in the world. Slow slip offshore Gisborne, New Zealand has been observed at depths as shallow as 2 km and may extend all the way to the trench. Gisborne SSEs are accompanied by tectonic tremor and increased levels of seismicity, but this activity has only been observed at the onshore, downdip edge of the slow slip patch. Between May 2014 and June 2015, 24 absolute pressure gauges, 10 broadband seismometers, and 5 short period seismometers were deployed offshore Gisborne along the east coast of the North Island of New Zealand as part of the HOBITSS Experiment. These instruments were in place during a large Gisborne SSE (peak slip 20 cm) in September and October 2014. Using this new ocean-derived dataset in conjunction with existing land data from the New Zealand National Seismograph Network operated by GeoNet (http://geonet.org.nz), we present an in-depth, systematic investigation of tremor and microseismicity associated with this shallow Gisborne SSE to further examine the spatial heterogeneity of slip processes on the shallow megathrust. Tremor and earthquakes are collocated with the geodetically inverted slow slip patch with tremor occurring offshore and earthquakes concentrated downdip of a shallowly subducted seamount near the region of peak displacement during the SSE. This discovery indicates that the region of the megathrust slipping in these SSEs is capable of multiple types of slip and understanding the spatiotemporal relationships between these strain release modes has implications for local seismic hazards.

  16. Seismic While Drilling Case Study in Shengli Oilfield, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, H.; Tong, S.; Zou, Z.

    2015-12-01

    Seismic while drilling (SWD) is a promising borehole seismic technique with reduction of drilling risk, cost savings and increased efficiency. To evaluate the technical and economic benefits of this new technique, we carried out SWD survey at well G130 in Shengli Oilfield of Eastern China. Well G130 is an evaluation well, located in Dongying depression at depth more than 3500m. We used an array of portable seismometers to record the surface SWD-data, during the whole drilling progress. The pilot signal was being recorded continuously, by an accelerometer mounted on the top of the drill string. There were also two seismometers buried in the drill yard, one near diesel engine and another near derrick. All the data was being recorded continuously. According to mud logging data, we have processed and analyzed all the data. It demonstrates the drill yard noise is the primary noise among the whole surface wavefield and its dominant frequency is about 20Hz. Crosscorrelation of surface signal with the pilot signal shows its SNR is severely low and there is no any obvious event of drill-bit signals. Fortunately, the autocorrelation of the pilot signal shows clear BHA multiple and drill string multiple. The period of drill string multiple can be used for establishing the reference time (so-called zero time). We identified and removed different noises from the surface SWD-data, taking advantages of wavefield analysis. The drill-bit signal was retrieved from surface SWD-data, using seismic interferometry. And a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth was established. The subsurface images derived from these data compare well with the corresponding images of 3D surface seismic survey cross the well.

  17. Shoreline-crossing shear-velocity structure of the Juan de Fuca plate and Cascadia subduction zone from surface waves and receiver functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying

    2017-04-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  18. Shoreline-Crossing Shear-Velocity Structure of the Juan de Fuca Plate and Cascadia Subduction Zone from Surface Waves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2016-12-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  19. Seismogenic Fault Geometry of 2010 Mw 7.1 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Kuo, Y.; Ku, C.; Taylor, F. W.; Huang, B.; Chen, Y.; Chao, W.; Huang, H.; Kuo, Y.; Wu, Y.; Suppe, J.

    2010-12-01

    The Solomon Islands is located in southwestern Pacific, where the Indo-Australian Plate is subducting northeastward beneath the Pacific Plate. Due to subduction of rugged seafloor topography, including seamounts, the seismic activity and tectonic behavior may be complicated. Seismicity in this region was anomalously low until 2007 when a megathrust rupture (Mw 8.1) occurred. More recently, on 3 January 2010, a Mw7.1 earthquake occurred beneath the extreme outer forearc next to the trench. It came with one foreshock (Mw 6.6, 50 minutes ahead) and two large aftershocks (Mw 6.8 and 6.0) greater than magnitude 6 within a week. It is interesting to note that these four focal mechanisms are very much similar and appear to have occurred along the interplate thrust zone between the Indo-Australian plate and Solomon Islands forearc. This Earthquake nucleated approximately 50 km to the southeast of the M8.1 Earthquake occurring in April of 2007, which is located to the other side of Rendova Island. Because a tsunami followed the 2010 earthquake, it is likely that submarine surface deformation accompanied the event. By the results of D-InSAR on ALOS and ERS, plus limited points of ground displacement from GPS and strong motion seismometers, the continuous ground displacement field is constructed and normalized. Our preliminary result shows the ground movement in the Rendova Island can reach tens of centimeters, implying shallow earthquake source consistent with the suggestion by triggering tsunami. Besides, the earthquake sequence retrieved from our local seismometer observation network allows us to further define underground fault geometry. The spatial distribution of the epicenter also concludes the seamount located in the middle divides two seismogenic asperities which generate 2007 and 2010 earthquakes respectively.

  20. Field Testing GEOICE: A Next-Generation Polar Seismometer

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Winberry, J. P.; Huerta, A. D.; Chung, P.; Parker, T.; Anderson, K. R.; Bilek, S. L.; Carpenter, P.

    2015-12-01

    We report on the development of a new NSF MRI-community supported seismic observatory designed for studies in ice-covered regions - the Geophysical Earth Observatory for Ice Covered Environs (GEOICE). This project is motivated by the need to densify and optimize the collection of high-quality seismic data relevant to key solid Earth and cryosphere science questions. The GEOICE instruments and their power and other ancillary systems are being designed to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field. The system is capable of advanced data handling and telemetry while being able to withstand conditions associated with icy environments, including cold/wet conditions and high-latitude solar limitations. The instrument capability will include a hybrid seismograph pool of broadband and intermediate elements for observation of both long-period signals (e.g, long-period surface waves and slow sources) and intermediate-to-short-period signals (e.g., teleseismic body waves, local seismicity, and impulsive or extended glaciogenic signals).Key features will include a design that integrates the seismometer and digitizer into a single, environmentally and mechanically robust housing; very low power requirements (~1 watt) for the intermediate-band systems; and advanced power systems that optimize battery capacity and operational limits. The envisioned ~100 element GEOICE instruments will nearly double the current polar inventory of stations and will be maintained and supported at the IRIS PASSCAL Instrument Center to ensure full and flexible peer-reviewed community use. Prototype instruments are currently deployed in Antarctica and Alaska, with a larger Antarctic deployment planned for the 2015-2016 season. The results of these field tests will help to refine instrumentation design and lead to the production of robust and capable next-generation seismic sensors.

  1. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    USGS Publications Warehouse

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  2. Margin-Wide Earthquake Subspace Scanning Along the Cascadia Subduction Zone Using the Cascadia Initiative Amphibious Dataset

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2017-12-01

    Understanding the spatial extent and behavior of the interplate contact in the Cascadia Subduction Zone (CSZ) may prove pivotal to preparation for future great earthquakes, such as the M9 event of 1700. Current and historic seismic catalogs are limited in their integrity by their short duration, given the recurrence rate of great earthquakes, and by their rather high magnitude of completeness for the interplate seismic zone, due to its offshore distance from these land-based networks. This issue is addressed via the 2011-2015 Cascadia Initiative (CI) amphibious seismic array deployment, which combined coastal land seismometers with more than 60 ocean-bottom seismometers (OBS) situated directly above the presumed plate interface. We search the CI dataset for small, previously undetected interplate earthquakes to identify seismic patches on the megathrust. Using the automated subspace detection method, we search for previously undetected events. Our subspace comprises eigenvectors derived from CI OBS and on-land waveforms extracted for existing catalog events that appear to have occurred on the plate interface. Previous work focused on analysis of two repeating event clusters off the coast of Oregon spanning all 4 years of deployment. Here we expand earlier results to include detection and location analysis to the entire CSZ margin during the first year of CI deployment, with more than 200 new events detected for the central portion of the margin. Template events used for subspace scanning primarily occurred beneath the land surface along the coast, at the downdip edge of modeled high slip patches for the 1700 event, with most concentrated at the northwestern edge of the Olympic Peninsula.

  3. Offshore seismicity at Hikurangi Margin from Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS), New Zealand

    NASA Astrophysics Data System (ADS)

    Yarce, J.; Sheehan, A. F.; Nakai, J. S.; Todd, E. K.; Schwartz, S. Y.; Mochizuki, K.

    2016-12-01

    The Hikurangi margin off the north island of New Zealand is the target of the "Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip" (HOBITSS) experiment, which successfully recorded a slow slip event in 2014. In the HOBITSS experiment 10 broadband and 5 short period ocean bottom seismometers along with 24 absolute pressure gauges where deployed for one year (May 2014 to June 2015) offshore the east coast of the North Island of New Zealand, near Gisborne. A catalog of local earthquakes is being constructed using STA/LTA detection, event association, and manual picking of P and S wave arrivals from both HOBITSS and GeoNet data. Our examination of initial hypocenters from the first 10 weeks of data yields 849 local earthquakes with a concentration of epicenters offshore over the forearc basin and deformed accretionary wedge. A bimodal distribution of hypocenter depths is identified with peaks at 10 and 35 km. Deeper events (between 50 and 80 km) are found to the west of our seismometer array, presumably on the interface of the subducted Pacific plate beneath the Australian plate. On the eastern edge of the array, on the incoming Pacific plate, seismicity is scarce with shallow hypocenters. For the one-year period, GEONET reports 2109 earthquakes, while our 15 weeks of manual picking has resulted in 1400 events, which suggests an increase of detections of a factor of 2-3 due to the offshore array. Epicentral location and depth results will be explored using different location algorithms such as Bayesloc and Nonlinloc with regionally appropriate local velocity models. The results presented here will be combined with others to build a more complete picture of the relationship between fast (earthquake) and slow slip.

  4. NEXT GENERATION ANALYSIS SOFTWARE FOR COMPONENT EVALUATION - Results of Rotational Seismometer Evaluation

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Merchant, B. J.; Abbott, R. E.

    2012-12-01

    The Component Evaluation project at Sandia National Laboratories supports the Ground-based Nuclear Explosion Monitoring program by performing testing and evaluation of the components that are used in seismic and infrasound monitoring systems. In order to perform this work, Component Evaluation maintains a testing facility called the FACT (Facility for Acceptance, Calibration, and Testing) site, a variety of test bed equipment, and a suite of software tools for analyzing test data. Recently, Component Evaluation has successfully integrated several improvements to its software analysis tools and test bed equipment that have substantially improved our ability to test and evaluate components. The software tool that is used to analyze test data is called TALENT: Test and AnaLysis EvaluatioN Tool. TALENT is designed to be a single, standard interface to all test configuration, metadata, parameters, waveforms, and results that are generated in the course of testing monitoring systems. It provides traceability by capturing everything about a test in a relational database that is required to reproduce the results of that test. TALENT provides a simple, yet powerful, user interface to quickly acquire, process, and analyze waveform test data. The software tool has also been expanded recently to handle sensors whose output is proportional to rotation angle, or rotation rate. As an example of this new processing capability, we show results from testing the new ATA ARS-16 rotational seismometer. The test data was collected at the USGS ASL. Four datasets were processed: 1) 1 Hz with increasing amplitude, 2) 4 Hz with increasing amplitude, 3) 16 Hz with increasing amplitude and 4) twenty-six discrete frequencies between 0.353 Hz to 64 Hz. The results are compared to manufacture-supplied data sheets.

  5. Assessing the short-term clock drift of early broadband stations with burst events of the 26 s persistent and localized microseism

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie

    2018-01-01

    Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.

  6. Microseismic Properties of Typhoons in the Western Pacific

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Koper, K. D.; Burlacu, R.

    2017-12-01

    We analyzed the ambient seismic noise recorded in 2012 by a temporary array of 240 seismometers deployed in Yunnan, China as part of Phase I of the ChinArray project. The stations were installed with a quasi-uniform spacing of about 70 km by the Yunnan Earthquake Administration. Each station consisted of a three-component Guralp-3ESP seismometer and a Reftek 130 data acquisition system with a sampling interval of 0.01 s. To identify the structure and source of the ambient noise, we applied frequency-dependent polarization analysis to the individual stations and f-k analysis for three sub-arrays consisting of 14-25 stations. The most prominent microseismic signals we observed were surface waves generated at periods of 3-7 s by 15 typhoons that occurred in the Western Pacific, mostly during the summer of 2012. The U.S. Navy's Joint Typhoon Warning Center divides a tropical cyclone into four levels, Tropical Depression (TD), Tropical Storm (TS), Typhoon (TY) and Super Typhoon (ST) based on the estimated wind speed. Four of the 15 analyzed typhoons reached ST intensity. The maximum microseism signals tended to last throughout the lifetime of a typhoon. Sometimes, we observed the splitting of a single microseism spectral peak into two parallel peaks. We compared the seismic observations to storm track data for typhoons Guchol, Jelawat, and Son-Tinh, and with oceanic models of wave-wave interaction. We find that microseismic power is correlated with changes in the direction or speed, or both, of the typhoon track. High wind speed or changing wind speed within the typhoon does not have a clear relationship with the microseismic power.

  7. Relocation of micro-earthquakes in the Yeongdeok offshore area, Korea using local and Ocean bottom seismometers

    NASA Astrophysics Data System (ADS)

    HAN, M.; Kim, K. H.; Park, S. C.; Lin, P. P.; Chen, P.; Chang, H.; Jang, J. P.; Kuo, B. Y.; Liao, Y. C.

    2016-12-01

    Seismicity in the East Sea of Korea has been relatively high during the last four decades of instrumental earthquake observation period. Yeongdeok offshore area is probably the most seismically active area in the East Sea. This study analyzes seismic signals to detect micro-earthquakes and determine their precise earthquake hypocenters in the Yeoungdeok offshore area using data recorded by the Korea National Seismic Network (KNSN) and a temporary ocean bottom seismographic network (OBSN-PNU) operated by Korea Meteorological Administration and Pusan National University, respectively. Continuous waveform data recorded at four seismic stations in the study area of KNSN between January 2007 and July 2016 are inspected to detect any repeating earthquakes by applying a waveform cross-correlation detector. More than 1,600 events are triggered. Events outside the study area or in poor waveform quality are removed from further analysis. Approximately 500 earthquakes are selected, most of which have gone unreported because their magnitudes are lower than the detection threshold of the routine earthquake monitoring. Events in the study area are also under bad azimuthal coverage because all stations are located on land and thus biased to the west. OBSN-PNU comprised three ocean bottom seismometers and operated to observe micro-earthquakes in the study area between February and August 2016. The same technique applied to the KNSN data has been applied to the OBSN-PNU data to detect micro-earthquakes. Precise earthquake hypocenters are determined using phase arrival times and waveform similarities. Resultant hypocenters are clustered to form a few lineaments. They are compared to the local geological and geophysical features to understand micro-earthquake activity in the area.

  8. An Electrochemical, Low-Frequency Seismic Micro-Sensor Based on MEMS with a Force-Balanced Feedback System

    PubMed Central

    Li, Guanglei; Wang, Junbo; Chen, Deyong; Chen, Lianhong; Xu, Chao

    2017-01-01

    Electrochemical seismic sensors are key components in monitoring ground vibration, which are featured with high performances in the low-frequency domain. However, conventional electrochemical seismic sensors suffer from low repeatability due to limitations in fabrication and limited bandwidth. This paper presents a micro-fabricated electrochemical seismic sensor with a force-balanced negative feedback system, mainly composed of a sensing unit including porous sensing micro electrodes immersed in an electrolyte solution and a feedback unit including a feedback circuit and a feedback magnet. In this study, devices were designed, fabricated, and characterized, producing comparable performances among individual devices. In addition, bandwidths and total harmonic distortions of the proposed devices with and without a negative feedback system were quantified and compared as 0.005–20 (feedback) Hz vs. 0.3–7 Hz (without feedback), 4.34 ± 0.38% (without feedback) vs. 1.81 ± 0.31% (feedback)@1 Hz@1 mm/s and 3.21 ± 0.25% (without feedback) vs. 1.13 ± 0.19% (feedback)@5 Hz@1 mm/s (ndevice = 6, n represents the number of the tested devices), respectively. In addition, the performances of the proposed MEMS electrochemical seismometers with feedback were compared to a commercial electrochemical seismic sensor (CME 6011), producing higher bandwidth (0.005–20 Hz vs. 0.016–30 Hz) and lower self-noise levels (−165.1 ± 6.1 dB vs. −137.7 dB at 0.1 Hz, −151.9 ± 7.5 dB vs. −117.8 dB at 0.02 Hz (ndevice = 6)) in the low-frequency domain. Thus, the proposed device may function as an enabling electrochemical seismometer in the fields requesting seismic monitoring at the ultra-low frequency domain. PMID:28902150

  9. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet)

    NASA Astrophysics Data System (ADS)

    Savvaidis, A.; Young, B.; Mukherjee, T.; Hennings, P.; Rathje, E.; Zalachoris, G.; Young, M.; Walter, J. I.; DeShon, H. R.; Frohlich, C.

    2016-12-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Full deployment and data streaming is expected by December 2016, and will be discussed during this presentation.

  10. Developing Authentic Research Experiences in the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Hall, M. K.

    2004-12-01

    The excitement of an authentic science experiment in one's own backyard piques interest, but teachers need resources and professional development experiences to capitalize upon this excitement and create opportunities for their students' learning. Three obstacles must be overcome for success in carrying out authentic research in the classroom. First, scientists and teachers must work together to identify relevant and developmentally appropriate research questions for the target audience. Second, teachers need professional development experiences that engage them in authentic research and that provide support for introducing a similar research experience in their own classroom. Third, the outcome of the research experience must have value to the scientist, teacher and student to motivate sustained participation by all. I have directed two projects that have opened the door for teachers to conduct authentic research with their students: monitoring earthquakes with educational seismometers and investigating local environmental problems with a GIS. Classroom seismometers permit students and the public to see first-hand Earth's dynamic response to both human and natural events in their hometown and around the country. From plotting earthquakes occurring throughout the school year to reveal plate tectonic relationships, or conducting seismic hazard analysis of the local region, to analyzing patterns of foreshocks and aftershocks of major earthquakes, students have been actively engaged and motivated in their learning. GIS opens the opportunity to investigate problems of land, water and other resource uses, but presents special problems in acquiring appropriate and useful data. I will discuss the lessons learned from working with teachers in educational seismology and GIS programs and how those lessons can be applied to developing research experiences for teachers and students.

  11. Earthquake recordings from the 2002 Seattle Seismic Hazard Investigation of Puget Sound (SHIPS), Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Meagher, Karen L.; Brocher, Thomas M.; Yelin, Thomas; Norris, Robert; Hultgrien, Lynn; Barnett, Elizabeth; Weaver, Craig S.

    2003-01-01

    This report describes seismic data obtained during the fourth Seismic Hazard Investigation of Puget Sound (SHIPS) experiment, termed Seattle SHIPS . The experiment was designed to study the influence of the Seattle sedimentary basin on ground shaking during earthquakes. To accomplish this, we deployed seismometers over the basin to record local earthquakes, quarry blasts, and teleseisms during the period of January 26 to May 27, 2002. We plan to analyze the recordings to compute spectral amplitudes at each site, to determine the variability of ground motions over the basin. During the Seattle SHIPS experiment, seismometers were deployed at 87 sites in a 110-km-long east-west line, three north-south lines, and a grid throughout the Seattle urban area (Figure 1). At each of these sites, an L-22, 2-Hz velocity transducer was installed and connected to a REF TEK Digital Acquisition System (DAS), both provided by the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) of the Incorporated Research Institutes for Seismology (IRIS). The instruments were installed on January 26 and 27, and were retrieved gradually between April 18 and May 27. All instruments continuously sampled all three components of motion (velocity) at a sample rate of 50 samples/sec. To ensure accurate computations of amplitude, we calibrated the geophones in situ to obtain the instrument responses. In this report, we discuss the acquisition of these data, we describe the processing and merging of these data into 1-hour long traces and into windowed events, we discuss the geophone calibration process and its results, and we display some of the earthquake recordings.

  12. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet), USA.

    NASA Astrophysics Data System (ADS)

    Savvaidis, Alexandros; Young, Bissett; Hennings, Peter; Rathje, Ellen; Zalachoris, George; Young, Michael H.; Walter, Jacob I.; DeShon, Heather R.; Frohlich, Cliff

    2017-04-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Deployment and data streaming started on September 2016, and will be discussed during this presentation.

  13. Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis

    NASA Astrophysics Data System (ADS)

    Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.

    2016-12-01

    Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.

  14. Lunar Structure from Ambient Noise and Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Nunn, C.; Igel, H.

    2016-12-01

    As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. We explore the use of ambient noise and coda wave interferometry to reconstruct the near surface structure within the strongly scattering lunar crust.

  15. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  16. Fiber-optic extrinsic Fabry-Perot vibration-isolated interferometer for use in absolute gravity meters.

    PubMed

    Canuteson, E L; Zumberge, M

    1996-07-01

    In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.

  17. Eddy-current non-inertial displacement sensing for underwater infrasound measurements.

    PubMed

    Donskoy, Dimitri M; Cray, Benjamin A

    2011-06-01

    A non-inertial sensing approach for an Acoustic Vector Sensor (AVS), which utilizes eddy-current displacement sensors and operates well at Ultra-Low Frequencies (ULF), is described here. In the past, most ULF measurements (from mHertz to approximately 10 Hertz) have been conducted using heavy geophones or seismometers that must be installed on the seafloor; these sensors are not suitable for water column measurements. Currently, there are no readily available compact and affordable underwater AVS that operate within this frequency region. Test results have confirmed the validity of the proposed eddy-current AVS design and have demonstrated high acoustic sensitivity. © 2011 Acoustical Society of America

  18. Characterizing Orthostatic Tremor Using a Smartphone Application.

    PubMed

    Balachandar, Arjun; Fasano, Alfonso

    2017-01-01

    Orthostatic tremor is one of the few tremor conditions requiring an electromyogram for definitive diagnosis since leg tremor might not be visible to the naked eye. An iOS application (iSeismometer, ObjectGraph LLC, New York) using an Apple iPhone 5 (Cupertino, CA, USA) inserted into the patient's sock detected a tremor with a frequency of 16.4 Hz on both legs. The rapid and straightforward accelerometer-based recordings accomplished in this patient demonstrate the ease with which quantitative analysis of orthostatic tremor can be conducted and, importantly, demonstrates the potential application of this approach in the assessment of any lower limb tremor.

  19. Searching for tremor in seismic noise on the 84 OBS (Ocean Bottom Seismometers) and 40 Land Seismometers, 3 months deployment in the Lesser Antilles subduction

    NASA Astrophysics Data System (ADS)

    Becel, A.; Diaz, J.; Laigle, M.; L. A. S. T., T.

    2008-12-01

    THALES, L.A.S.T., stands for Lesser Antilles Subduction zone Team of the THALES WAS RIGHT project (Coord. A. Hirn) of the European Union FP6, which gathers the scientific teams of a cluster of surveys and cruises in 2007. This cluster comprises the German cruise TRAIL with the vessel F/S Merian (PI E. Flueh and H. Kopp, IFM-GEOMAR), the French cruise SISMANTILLES 2 with the IFREMER vessel N/O Atalante (PI M. Laigle, IPG Paris and JF. Lebrun, Univ. Antilles Guyane), and French cruise OBSANTILLES with the IRD vessel N/O Antea (PI P. Charvis, Geoazur, Nice, France). Presentation T53A-1109 at last year, 2007 AGU Fall Meeting, of THALES, L.A.S.T. summarized the goals and first results of these experiments dedicated specifically to image at depth the seismic structure and activity of this subduction zone segment, which comprised: - MCS, multi-channel reflection seismic profiles as well as coincident multi-beam bathymetry that have been collected for 3700 km along a grid comprising 300 km along strike from North of Guadeloupe to Martinique islands and extending 150 km offshore over the forearc and accretionary wedge. - 84 OBSs at the nodes of this grid of profiles and 40 land stations. These instruments recorded the marine shots for a coincident refraction survey. They recorded local seismicity for precise location and focal mechanisms. The recovery of the continuous recording at this dense and extensive set of temporary sensors (1), recently completed allows to initiate an analysis of the continuously recorded seismic noise. Changes and transients of the noise character, and their possible correlations among instruments in the array will be searched for in the view of checking evidence of possible seismic tremor episodes or seismic transients, as have been described elsewhere with the specific aspect that most observations were acquired at sea-bottom as the forearc extends here broadly offshore. Preliminary results will be documented. (1) During these cruises and surveys, 84 Ocean Bottom multi-components Seismometers (OBS) have been brought together from several pools (Geosciences Azur, INSU-IPGP, IFM-GEOMAR, AWI), with up to 40 land stations (CSIC Barcelona, IPG-Paris, INSU-RLBM and LITHOSCOPE), for 3 months in early 2007, with a lesser number of instruments for similar period before and after. Support for the surveys came principally by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) to IPGP, by the EU SALVADOR Programme of IFM-GEOMAR, the OBSISMER CPER project of IPGP, Région Martinique and EU-FEDER, as well as by the EU project THALES WAS RIGHT on the Antilles and Hellenic active subductions to which contribute IPG- Paris and Geosciences Azur (France), IFM-GEOMAR (Germany), ETH Zurich (Switzerland), CSIC Barcelona (Spain), Univ. Trieste (Italy) and NOA Athens (Greece).

  20. Designs and test results for three new rotational sensors

    USGS Publications Warehouse

    Jedlicka, P.; Kozak, J.T.; Evans, J.R.; Hutt, C.R.

    2012-01-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  1. Working with strainmeter data

    USGS Publications Warehouse

    Hodgkinson, Kathleen M.; Agnew, Duncan; Roeloffs, Evelyn A.

    2013-01-01

    The Plate Boundary Observatory (PBO), the geodetic component of the U.S. National Science Foundation–funded Earthscope program, includes 75 borehole and 6 laser strainmeters (http://pbo.unavco.org). The strainmeters are installed at several locations: on the Cascadia forearc in Washington state and on Vancouver Island, Canada; in arrays of two to nine instruments along the North American–Pacific plate boundary in California; at Mount St. Helens; and in Yellowstone National Park. For deformation signals seconds to weeks in duration, strainmeters have a resolution and a signal-to-noise ratio superior to those of seismometers and GPS. However, this high sensitivity can introduce nontectonic signals into strain data, presenting data interpretation challenges, especially for borehole strainmeters.

  2. Application of the fibre-optic interferometer as a rotational seismograph type AFORS

    NASA Astrophysics Data System (ADS)

    Kurzych, Anna; Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Teisseyre, Krzysztof P.; Kowalski, Jerzy K.

    2014-12-01

    In this article we show a fibre-optic device based on the Sagnac effect designed for measuring rotational motions which appear during seismic events. The experimental investigations of presented Autonomous Fiber-Optical Rotational Seismographs indicate that such devices keep the accuracy no less than 5.1·10-9 to 5.5·10-8 rad/s in the frequency band from 0.83 Hz to 106.15 Hz. Furthermore, their operations are controlled fully remotely via Internet. We present the comparison of results obtained by such system in the field test with a mechanical rotational seismometer which is mounted simultaneously in the seismological observatory in Książ, Poland.

  3. Love waves trains observed after the MW 8.1 Tehuantepec earthquake by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Belfi, J.; Beverini, N.; Di Virgilio, A.; Giacomelli, U.; De Luca, G.; Igel, H.

    2017-12-01

    We report the observation and analysis of the MW 8.1 Tehuantepec earthquake-induced rotational ground motion as observed by the Gingerino ring laser gyroscope (RLG).This instrument is located inside the National laboratory of the "Istituto Nazionale di Fisica Nucleare" in Gran Sasso (Italy) in a deep underground environment.We compare the vertical rotation rate with the horizontal acceleration measured by a co-located broadband seismometer. This analysis, performed by means of a wavelet-based correlation method, permits to identify the G1,G2,G3,G4 onsets of the surface Love waves in the 120 to 280 seconds period range.

  4. Tremor Frequency Assessment by iPhone® Applications: Correlation with EMG Analysis.

    PubMed

    Araújo, Rui; Tábuas-Pereira, Miguel; Almendra, Luciano; Ribeiro, Joana; Arenga, Marta; Negrão, Luis; Matos, Anabela; Morgadinho, Ana; Januário, Cristina

    2016-10-19

    Tremor frequency analysis is usually performed by EMG studies but accelerometers are progressively being more used. The iPhone® contains an accelerometer and many applications claim to be capable of measuring tremor frequency. We tested three applications in twenty-two patients with a diagnosis of PD, ET and Holmes' tremor. EMG needle assessment as well as accelerometry was performed at the same time. There was very strong correlation (Pearson >0.8, p < 0.001) between the three applications, the EMG needle and the accelerometry. Our data suggests the apps LiftPulse®, iSeismometer® and Studymytremor® are a reliable alternative to the EMG for tremor frequency assessment.

  5. Designs and test results for three new rotational sensors

    NASA Astrophysics Data System (ADS)

    Jedlička, P.; Kozák, J. T.; Evans, J. R.; Hutt, C. R.

    2012-10-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  6. Design of an unmanned Martian polar exploration system

    NASA Technical Reports Server (NTRS)

    Baldwin, Curt; Chitwood, Denny; Demann, Brian; Ducheny, Jordan; Hampton, Richard; Kuhns, Jesse; Mercer, Amy; Newman, Shawn; Patrick, Chris; Polakowski, Tony

    1994-01-01

    The design of an unmanned Martian polar exploration system is presented. The system elements include subsystems for transportation of material from earth to Mars, study of the Martian north pole, power generation, and communications. Early next century, three Atlas 2AS launch vehicles will be used to insert three Earth-Mars transfer vehicles, or buses, into a low-energy transfer orbit. Capture at Mars will be accomplished by aerobraking into a circular orbit. Each bus contains four landers and a communications satellite. Six of the twelve total landers will be deployed at 60 deg intervals along 80 deg N, and the remaining six landers at 5 deg intervals along 30 deg E from 65 deg N to 90 deg N by a combination of retrorockets and parachutes. The three communications satellites will be deployed at altitudes of 500 km in circular polar orbits that are 120 deg out of phase. These placements maximize the polar coverage of the science and communications subsystems. Each lander contains scientific equipment, two microrovers, power supplies, communications equipment, and a science computer. The lander scientific equipment includes a microweather station, seismometer, thermal probe, x-ray spectrometer, camera, and sounding rockets. One rover, designed for short-range (less than 2 km) excursions from the lander, includes a mass spectrometer for mineral analysis, an auger/borescope system for depth profiling, a deployable thermal probe, and charge coupled device cameras for terrain visualization/navigation. The second rover, designed for longer-range (2-5 km) excursions from the lander, includes radar sounding/mapping equipment, a seismometer, and laser ranging devices. Power for all subsystems is supplied by a combination of solar cells, Ni-H batteries, and radioisotope thermoelectric generators. Communications are sequenced from rovers, sounding rockets, and remote sensors to the lander, then to the satellites, through the Deep Space Network to and from earth.

  7. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  8. Applying a Hidden Markov Model-Based Event Detection and Classification Algorithm to Apollo Lunar Seismic Data

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, B.; Hammer, C.

    2014-12-01

    The seismometers that the Apollo astronauts deployed on the Moon provide the only recordings of seismic events from any extra-terrestrial body so far. These lunar events are significantly different from ones recorded on Earth, in terms of both signal shape and source processes. Thus they are a valuable test case for any experiment in planetary seismology. In this study, we analyze Apollo 16 data with a single-station event detection and classification algorithm in view of NASA's upcoming InSight mission to Mars. InSight, scheduled for launch in early 2016, has the goal to investigate Mars' internal structure by deploying a seismometer on its surface. As the mission does not feature any orbiter, continuous data will be relayed to Earth at a reduced rate. Full range data will only be available by requesting specific time-windows within a few days after the receipt of the original transmission. We apply a recently introduced algorithm based on hidden Markov models that requires only a single example waveform of each event class for training appropriate models. After constructing the prototypes we detect and classify impacts and deep and shallow moonquakes. Initial results for 1972 (year of station installation with 8 months of data) indicate a high detection rate of over 95% for impacts, of which more than 80% are classified correctly. Deep moonquakes, which occur in large amounts, but often show only very weak signals, are detected with less certainty (~70%). As there is only one weak shallow moonquake covered, results for this event class are not statistically significant. Daily adjustments of the background noise model help to reduce false alarms, which are mainly erroneous deep moonquake detections, by about 25%. The algorithm enables us to classify events that were previously listed in the catalog without classification, and, through the combined use of long period and short period data, identify some unlisted local impacts as well as at least two yet unreported deep moonquakes.

  9. S-net project: Construction of large scale seafloor observatory network for tsunamis and earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Kanazawa, T.; Uehira, K.; Shimbo, T.; Shiomi, K.; Kunugi, T.; Aoi, S.; Matsumoto, T.; Sekiguchi, S.; Yamamoto, N.; Takahashi, N.; Shinohara, M.; Yamada, T.

    2016-12-01

    National Research Institute for Earth Science and Disaster Resilience ( NIED ) has launched the project of constructing an observatory network for tsunamis and earthquakes on the seafloor. The observatory network was named "S-net, Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench". The S-net consists of 150 seafloor observatories which are connected in line with submarine optical cables. The total length of submarine optical cable is about 5,700 km. The S-net system extends along Kuril and Japan trenches around Japan islands from north to south covering the area between southeast off island of Hokkaido and off the Boso Peninsula, Chiba Prefecture. The project has been financially supported by MEXT Japan. An observatory package is 34cm in diameter and 226cm long. Each observatory equips two units of a high sensitive water-depth sensor as a tsunami meter and four sets of three-component seismometers. The water-depth sensor has measurement resolution of sub-centimeter level. Combination of multiple seismometers secures wide dynamic range and robustness of the observation that are needed for early earthquake warning. The S-net is composed of six segment networks that consists of about 25 observatories and 800-1,600km length submarine optical cable. Five of six segment networks except the one covering the outer rise area of the Japan Trench has been already installed. The data from the observatories on those five segment networks are being transferred to the data center at NIED on a real-time basis, and then verification of data integrity are being carried out at the present moment. Installation of the last segment network of the S-net, that is, the outer rise one is scheduled to be finished within FY2016. Full-scale operation of the S-net will start at FY2017. We will report construction and operation of the S-net submarine cable system as well as the outline of the obtained data in this presentation.

  10. Investigating the seismic signal of elephants: using seismology to mitigate elephant human conflict

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Manzi, M.; Naidoo, A.; Raveloson, A.

    2015-12-01

    Human interactions with wild elephants are often a source of conflict, as elephants invade inhabited lands looking for sustenance. In order to mitigate these interactions, a number of elephant defense systems are under development. These include electric fences, bees and the playback of warning calls recorded from elephants. With the discovery that elephants use seismic signals to communicate (O'Connell-Rodwell et al., 2006, Behav. Ecol. Sociobiol.), it is hoped that seismic signals can also be used to help reduce conflict. Our current research project investigates the spectral content of the elephant seismic signal that travels through the ground using a variety of geophones and seismometers. Our experimental setup used a Geometrics Geode 24 channel seismic system with an array of 24 geophones spaced 1 m apart in an area of compact soil overlying weathered granites. Initially we used 14 Hz vertical geophones. The ground and ambient noise conditions were characterized by recording several hammer shots. These were used to identify the air wave, wind noise, and the direct wave, which had a dominant frequency of ~50 Hz. Several trained elephants that 'rumble' on command were then deployed ~5 m perpendicular to a line of 24 (14 Hz) vertical geophones between the 1 and 10 m geophone positions. We recorded a number of different elephants and configurations, and digitally recorded video for comparison. An additional deployment of 20 (14 Hz) horizontal geophones was also used. For all data, the sample interval was 0.25 ms and the recording length was 16 s as the timing of the rumbles could not be precisely controlled. We were able to identify the airwave due to the elephant's rumble with velocities between 305-310 m/s and the ground seismic signal due to the rumble with frequencies between 20-30 Hz. Our next experiment will include broadband seismometers at a further distance, to more fully characterize the frequency content of the elephant signal.

  11. Tuned in to the Earth from the classroom with `O3E' european project

    NASA Astrophysics Data System (ADS)

    Berenguer, J.; Courboulex, F.; Tocheport, A.; Eva, C.; Ferretti, G.; Solarino, S.; Giardini, D.; Sornette, A.; Ponzone, M.; Cremonini, R.; Virieux, J.

    2010-12-01

    In lines with diverse initiatives regarding scientific culture and education, the ‘O3E’ experience (http://O3E.geoazur.eu) has set up a permanent educational network of schools in the Alpine and Mediterranean areas, building an exchange of knowledge on natural risks prevention. The “O3E” innovative project (European Educational Observatory for Environment) is established after 12 years (1996-2008) of regional and national original programs for education (“Seismometers at School” in France and Swiss, “Edurisk” in Italy and “ClimAtscope” in Switzerland). The project is born to promote a responsible behavior of citizens in front of the evolution of a society where scientific information is promptly available. Since 2008, a school network in the Alpine and Mediterranean areas has been equipped with environmental sensors of an educational vocation. The data on the ground motion (seismometers), the temperatures and precipitations (weather stations), the flows of rivers (hydrogeology) recorded in the schools and processed by the students are collected on dedicated servers and then made available through internet to the entire community. This network “O3E”, once installed, is the starting point of activities for students. Indeed, various general objectives are pursued: - To promote the applied sciences and new technologies. - To put in network the actors of Education and formative teaching. - To develop the sense of the autonomy and the responsibility in the young people. - To reinforce and develop relationships with regional partners of the educational and university fields. - To support a rational awakening for the prevention of the natural risks Teachers from this network can share experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture especially in young populations. Some student’s and teacher’s productions will be shown to appreciate this essential effort.

  12. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  13. Building an educational seismic network in Romanian schools

    NASA Astrophysics Data System (ADS)

    Zaharia, Bogdan; Tataru, Dragos; Grecu, Bogdan; Ionescu, Constantin; Bican-Brisan, Nicoleta; Neagoe, Cristian

    2014-05-01

    Understanding the earthquake phenomena and their effects is an important step toward the education of population and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this sense, The Romanian Educational Seismic Network project represents an efficient communication tool, allowing teaching and learning about the earthquakes and seismic wave impact through experimental practices and educational activities. The seismic network consist of nine SEP seismometers installed in high-schools from the most important seismic areas (Vrancea, Banat, Făgăraş, Dobrogea), vulnerable cities (Bucharest, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău) and is coordinated by the National Institute of Earth Physics from Bucharest. Once installed, the seismic network is the starting point of activities for students through an e-learning platform. Some objectives are aimed: - To train students and teachers how to make analysis and interpretation of seismological data; - To make science more interesting for students; - To improve the participation rates in physical sciences for students; - To raise awareness of geoscience as a scientific discipline for pre-university students; - To promote the installation and effective use of educational seismographs and seismic data; - To reinforce and develop relationships between participating schools and research institutes; - To create an earthquake database this will be used by students and teachers for educational purposes. Different types of practical activities using educational seismometer, designed by researchers for students, are described in educational materials and in the web platform project. Also we encourage the teachers from the participating schools to share their experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture. Additionally, educating the children, as the future of any community at risk, can be considered as an effective strategy to communicate safety messages to the entire community.

  14. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    NASA Astrophysics Data System (ADS)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances fracturing and earthquake production.

  15. Seismic Disaster Mitigation in Urban Area by using Building Vibration Observation of Weak Earthquake Ground Motion: an Approach of the IT Kyoshin Seismometer for Buildings

    NASA Astrophysics Data System (ADS)

    Takano, K.; Ito, T.

    2010-12-01

    There are a lot of buildings which is not experienced severe earthquakes in urban area. In Hanshin-Awaji (Kobe) Earthquake, it was presumed that 80 percent or more of the person was dead immediately after the earthquake by building collapse. Also in Haiti, a lot of buildings deprived of the life of persons. In order to prevent the earthquake damage of urban area, it is the most effective to make the building earthquake-proof. However, there are still a lot of buildings not made earthquake-proof in Japan though 15 years passed since Kobe Earthquake. In order to promote making of the building earthquake-proof, various approaches such as visualization of seismic hazard, education of disaster prevention and legal system for promotion are needed. We have developed the IT Kyoshin(strong motion) Seismometer for Building which is the observation system of the usual weak earthquake ground motion by installing a lot of acceleration sensors in building, and have been setting it up in some buildings of the University of Tokyo. We have also developed the visualization tool that can reproduce the building vibration during earthquake from the observed data. By this tool, we can successfully show where is more shaking in the building or what is the feature of building vibration easily. Such information contributes to not only promotion of making building earthquake-proof but also promotion of disaster prevention action such as fixation of bookshelf, making the safety area in building, etc. In addition, we proposed a concrete technique of the health investigation of buildings by using weak earthquake ground motion. Because there are 20 to 30 felt earthquakes in year in Tokyo area, it is possible to observe these building vibrations by using weak earthquake ground motions. In addition, we have developed the high sensitive ITK sensor which can observe from the microtremor to the felt earthquake in the place without the felt earthquake either.

  16. Ocean waves monitor system by inland microseisms

    NASA Astrophysics Data System (ADS)

    Lin, L. C.; Bouchette, F.; Chang, E. T. Y.

    2016-12-01

    Microseisms are continuous ground oscillations which have been wildly introduced for decades. It is well known that the microseismicity in the frequency band from 0.05 to about 1 Hz partly results from ocean waves, which has been first explained by Longuet-Higgins [1950]. The generation mechanism for such a microseismicity is based on nonlinear wave-wave interactions which drive pressure pulses within the seafloor. The resulting ground pressure fluctuations yield ground oscillations at a double frequency (DF) with respect to that of current ocean waves. In order to understand the characteristics of DF microseisms associated with different wave sources, we aim to analyze and interpret the spectra of DF microseisms by using the simple spectrum method [Rabinovich, 1997] at various inland seismometer along the Taiwan coast. This is the first monitoring system of ocean waves observed by inland seismometers in Taiwan. The method is applied to identify wave sources by estimating the spectral ratios of wave induced microseisms associated with local winds and typhoons to background spectra. Microseism amplitudes above 0.2 Hz show a good correlation with wind-driven waves near the coast. Comparison of microseism band between 0.1 and 0.2 Hz with buoys in the deep sea shows a strong correlation of seismic amplitude with storm generated waves, implying that such energy portion originates in remote regions. Results indicate that microseisms observed at inland sites can be a potential tool for the tracking of typhoon displacements and the monitoring of extreme ocean waves in real time. Real- time Microseism-Ocean Waves Monitoring Website (http://mwave.droppages.com/) Reference Rabinovich, A. B. (1997) "Spectral analysis of tsunami waves: Separation of source and topography effects," J. Geophys. Res., Vol. 102, p. 12,663-12,676. Longuet-Higgins, M.S. (1950) "A theory of origin of microseisms," Philos. Trans. R. Soc., A. 243, pp. 1-35.

  17. Potential improvements in horizontal very broadband seismic data in the IRIS/USGS component of the Global Seismic Network

    USGS Publications Warehouse

    Ringler, Adam; Steim, J.M.; Zandt, T; Hutt, Charles R.; Wilson, David; Storm, Tyler

    2016-01-01

    The Streckeisen STS‐1 has been the primary vault‐type seismometer used in the over‐150‐station Global Seismographic Network (GSN). This sensor has long been known for its outstanding vertical, very long‐period (e.g., >100  s period), and low‐noise performance, although the horizontal long‐period noise performance is less well known. The STS‐1 is a limited, important resource, because it is no longer made or supported by the original manufacturer. We investigate the incoherent noise of horizontal‐component sensors, where coherent signals among sensors have been removed, giving an upper bound on the self‐noise of both the STS‐1 and STS‐2 horizontal components. Our findings suggest that a well‐installed STS‐2 could potentially produce data with similar or better incoherent noise levels to that of a horizontal‐component STS‐1. Along with our experimental investigation, we compare background noise levels for a calendar year at Incorporated Research Institutions for Seismology/U.S. Geological Survey network stations, which comprise approximately two‐thirds of the GSN, with collocated STS‐1 and STS‐2 seismometers. The use of an STS‐2‐class of sensor (flat to velocity to 120 s period) to acquire low‐frequency data in surface‐vault installations would allow network operators to focus more attention on improving vertical data. In order to deal with the difference in instrument response shapes between the two instruments, we detail two different time‐domain filters that would allow users to convert broadband STS‐2 data into very broadband data with a response similar to that of an STS‐1 (flat to velocity to 360 s period). We conclude that the complexity of the current primary horizontal vault sensors in the GSN may not be necessary until we are better able to isolate surface horizontal sensors from various noise sources.

  18. Community earthquake education in Nevada: The Great Nevada ShakeOut and beyond

    NASA Astrophysics Data System (ADS)

    Kell, A. M.; DePolo, D. M.; Rennie, T.; Kent, G.; Louie, J. N.; Smith, K. D.

    2011-12-01

    In the Nevada Seismological Laboratory, we have numerous opportunities to engage our community across all ages and particularly K-12 students in earth science. Our outreach includes seismic hazard awareness and earth science education, which is facilitated through a variety of means including facility tours, on-camera presentations (lab, in-the-field and in-studio), teacher workshops, installations at schools, and newspaper opportunities. During on-site visits, we describe the relationship between plate tectonics and earthquakes in our region, and how we record earthquake events within the Nevada Seismic Network. Depending on age levels, we describe how seismic waves travel through the Earth and how they are recorded by our network of seismometers and displayed by our bank of helicorders. During the Mar.-June 2008 Mogul earthquake swarm, several elementary schools hosted temporary seismometers. Their installation gave us opportunities for classroom presentations, and students could observe the installations. Beginning in 2010, we joined California a comprehensive statewide program, the Great Nevada ShakeOut, for earthquake education applied to all levels of educational institutions, government, businesses and interested community members. This is run in sync with the Great California ShakeOut, which is slated for the 3rd Thursday in October every year (e.g., 10:20 AM on 10/20/2011). In this program, we provide educators with information on how to react in the first moments of a significant earthquake. The teachers then rehearse the drill at the same time across the state while playing a recording of sounds one would expect to hear during such an event. With providing education to students on what hazards may exist in their own homes and the simple reaction of "Drop, Cover, Hold On", we hope to have the message carried outside of the classroom into their homes. We understand that by engaging the interest and encouraging excitement of our younger population, we can reach a much broader audience, and hopefully mitigate loss of life and property damage from a large earthquake.

  19. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.

  20. Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2007-12-01

    Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.

  1. OBSIP: Advancing Capabilities and Expanding the Ocean Bottom Seismology Community

    NASA Astrophysics Data System (ADS)

    Aderhold, K.; Evers, B.

    2016-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) is a National Science Foundation sponsored instrument facility that provides ocean bottom seismometers (OBS) and technical support for research in the areas of marine geology, seismology, and geodynamics. OBSIP is comprised of an OBSIP Management Office (OMO) and three Institutional Instrument Contributors (IICs), who each contribute instruments and technical support to the pool. OBSIP operates both short period and broadband OBS instruments with a variety of capabilities to operate in shallow or deep water over both short and long term durations. Engineering developments at the IICs include capability for freshwater deployments, increased recording duration (15+ months), more efficient recovery systems, and sensor upgrades for a less heterogeneous fleet. OBSIP will provide instruments for three experiments in 2016 with deployments along a 1500 km transect in the South Atlantic, a large active-source experiment on the Chilean megathrust, and the very first seismometers ever deployed in Yellowstone Lake. OBSIP OMO strives to lower the barrier to working with OBS data by performing quality checks on data, investigating and responding to community questions, and providing data products like horizontal orientation calculations. This has resulted in a significant increase in new users to OBS data, especially for the open data sets from community seismic experiments. In 2015 the five-year Cascadia Initiative community seismic experiment concluded with over 250 OBS deployments and recoveries in an extensive grid off-shore Washington, Oregon, and California. The logistics of the Cascadia Initiative were challenging, but lessons were learned and efficiencies have been identified for implementation in future experiments. Large-scale community seismic experiments that cross the shoreline like the Cascadia Initiative and the Eastern North American Margin experiment have led to the proposal of even more ambitious endeavors like the Subduction Zone Observatory. OBSIP also is working to develop international collaboration and networking between OBS operators and researchers through special interest group meetings and the biannual OBS Symposium, to be held again in Fall 2017.

  2. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    NASA Astrophysics Data System (ADS)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (<2 km) velocity structure is dominated by low- and high-velocity anomalies of several sediment-filled grabens and horsts of Attico-Cycladic metamorphic basement, which correlate well with Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  3. Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analyses of tremor wavefields

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Dawson, P.

    2003-01-01

    The properties of the surface wavefield at Kilauea Volcano are analysed using data from small-aperture arrays of short-period seismometers deployed in and around the Kilauea caldera. Tremor recordings were obtained during two Japan-US cooperative experiments conducted in 1996 and 1997. The seismometers were deployed in three semi-circular arrays with apertures of 300, 300 and 400 m, and a linear array with length of 1680 m. Data are analysed using a spatio-temporal correlation technique well suited for the study of the stationary stochastic wavefields of Rayleigh and Love waves associated with volcanic activity and scattering sources distributed in and around the summit caldera. Spatial autocorrelation coefficients are obtained as a function of frequency and are inverted for the dispersion characteristics of Rayleigh and Love waves using a grid search that seeks phase velocities for which the L-2 norm between data and forward modelling operators is minimized. Within the caldera, the phase velocities of Rayleigh waves range from 1400 to 1800 m s-1 at 1 Hz down to 300-400 m s-1 at 10 Hz, and the phase velocities of Love waves range from 2600 to 400 m s-1 within the same frequency band. Outside the caldera, Rayleigh wave velocities range from 1800 to 1600 m s-1 at 1 Hz down to 260-360 m s-1 at 10 Hz, and Love wave velocities range from 600 to 150 m s-1 within the same frequency band. The dispersion curves are inverted for velocity structure beneath each array, assuming these dispersions represent the fundamental modes of Rayleigh and Love waves. The velocity structures observed at different array sites are consistent with results from a recent 3-D traveltime tomography of the caldera region, and point to a marked velocity discontinuity associated with the southern caldera boundary.

  4. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    NASA Astrophysics Data System (ADS)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  5. The VBB SEIS experiment of InSight

    NASA Astrophysics Data System (ADS)

    De Raucourt, Sebastien; Gabsi, Taoufik; Tanguy, Nebut; Mimoun, David; Lognonne, Philippe; Gagnepain-Beyneix, Jeannine; Banerdt, William; Tillier, Sylvain; Hurst, Kenneth

    2012-07-01

    SEIS is the core payload of InSight, one of the three missions selected for competitive phase A in the frame of the 2010 Discovery AO. It aims at providing unique observation of the interior structure of Mars and to monitor seismic activity of Mars. SEIS will provide the first seismic model from another planet than Earth. SEIS is an hybrid seismometer composed of 3 SPs and 3 VBBs axes providing ground motion measurement from Dc to 50Hz. A leveling system will ensure the coupling between the ground and the sensors as well as the horizontality of the VBB sphere. This assembly will be deployed on the ground of Mars and will be shielded by a strong thermal insulation and a wind shield. The 24 bits low noise acquisition electronics will remain in the warm electronic box of the lander with the sensors feedback and leveling system electronics. The VBB sphere enclosed three single axis sensors. Those sensors are based on an inverted leaf spring pendulum, which convert ground acceleration into mobile mass displacement. A capacitive displacement sensor monitors this mass displacement to provide a measurement. A force feedback allows transfer function and sensitivity tuning. The VBB sensor has a very strong heritage from previous project and benefits from recent work to improve its performances. Both the mechanical design and the displacement sensors have optimized to improve performances while reducing technological risk and keeping a high TRL. From those development a self-noise well below 10 ^{-9} m.s ^{-2}/sqrt Hz is expected. Environmental sensitivity of SEIS has been minimized by the design of a very efficient wind and thermal shield. Remaining noise is expected to be very close to the VBB self-noise. Associated sources and budget will be discussed. If InSight is selected to fly in 2016, this experiment will provide very high quality seismic signal measurement with a wider bandwidth, higher sensitivity and lower noise than previous Mars seismometer (Viking and Optimism/Mars 96).

  6. Orienting Ocean Bottom Seismic Sensors from Ship Noise Polarization Analysis

    NASA Astrophysics Data System (ADS)

    Barruol, Guilhem; Dreo, Richard; Fontaine, Fabrice R.; Scholz, John R.; Sigloch, Karin; Geay, Bruno; Bouillon, Alexandre

    2017-04-01

    For the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel, www.rhum-rum.net), a network of 57 ocean-bottom seismometers (OBS) was installed on the ocean floor around La Réunion Island in the SW Indian Ocean. Part of the network happened to be located beneath a route of heavy ship traffic connecting SE-Asia and the South-Atlantic region. We analysed the ship noise recorded on the OBS and show that it can be used for determining the horizontal orientations of the seismic instruments as they were recording on the ocean floor. The OBS, provided by the German DEPAS and the French INSU OBS national pools, were equipped with wide-band or broad-band three-components seismic and hydro-acoustic sensors. They were deployed in Nov. 2012 by R/V Marion Dufresne and recovered by R/V Meteor one year later. Depending on the configuration, the OBS recorded for 8 to 13 months. By combining the trajectories of passing ships - provided by AIS (Automatic Identification system) GPS data - with our geophysical data recorded on the ocean floor, we show that both hydro-acoustic and seismic spectral analyses exhibit clear signals associated with vessels between 1 and 50 Hz, in the high-frequency range of our instruments. Large cargo vessels are detected several hours before and after their closest point of approach (CPA) and show clear Doppler effects which put quantitative constraints on their distances and speeds. By analysing the continuous noise polarization on the three seismic components, we show that the polarization of the noise emitted by ships passing in the neighbourhood of an ocean-bottom seismometer can be used for retrieving the orientation of the OBS horizontal components on the ocean floor with respect to the geographic reference frame. We find good agreement between OBS orientations thus calculated from ship noise and the OBS orientations determined independently from teleseismic body and surface wave polarization methods (Scholz et al., GJI, 2017).

  7. Self-Noise of the STS-2 and sensitivity of its computation to errors in alignment of sensors

    NASA Astrophysics Data System (ADS)

    Gerner, Andreas; Sleeman, Reinoud; Grasemann, Bernhard; Lenhardt, Wolfgang

    2016-04-01

    The assessment of a seismometer's self-noise is an important part of establishing its health, quality, and suitability. A spectral coherence technique proposed by Sleeman et al. (2006) using synchronously recorded data of triples of collocated and co-aligned seismometers has shown to be a very robust and reliable way to estimate the self-noise of modern broadband seismic sensors. It has been demonstrated in previous works that the resulting self-noise spectra, primarily in the frequency range of Earth's microseisms, are considerably affected by small errors in the alignment of sensors. Further, due to the sensitivity of the 3-channel correlation technique to misalignment, numerical rotation of the recorded traces prior to self-noise computation can be performed to find best possible alignment by searching for minimum self-noise values. In this study we focus on the sensitivity of the 3-channel correlation technique to misalignment, and investigate the possibility of complete removal of the microseism signal from self-noise estimates for the sensors' three components separately. Data from a long-term installation of four STS-2 sensors, specifically intended for self-noise studies, at the Conrad Observatory (Austria) in a collaboration between the KNMI (Netherlands) and the ZAMG (Austria) provides a reliable basis for an accurate sensitivity analysis and self-noise assessment. Our work resulted in undisturbed self-noise estimates for the vertical components, and our current focus is on improving alignment of horizontal axes, and verification of the manufacturer's specification regarding orthogonality of all three components. The tools and methods developed within this research can help to quickly establish consistent self-noise models, including estimates of orthogonality and alignment, which facilitates comparison of different models and provides us with a means to test quality and accuracy of a seismic sensor over its life span.

  8. Initial Results from the 2002 Gulf of California Conjugate Margin Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Holbrook, S.; Lizarralde, D.; Kent, G.; Harding, A.; Fletcher, J.; Gonzalez-Fernandez, A.; Umhoefer, P.; Axen, G.

    2003-04-01

    The Gulf of California, which marks the ongoing separation of Baja California from mainland Mexico, is one of the few locales where active continental breakup can be studied along unambiguous flow lines that join clear conjugate margin pairs. In Fall 2002, we conducted an onshore-offshore seismic experiment across the conjugate rifted margins of the Gulf of California in several rift segments. The joint U.S.-Mexico project, sponsored principally by the MARGINS program of the U.S. National Science Foundation, aimed to image crustal structure across conjugate margins of four major basins to determine the modes of extension and the influence of sedimentation and magmatism on breakup. Here we present an overview of the experiment, which was substantially altered at sea due to concerns for marine-mammal safety, and present some preliminary findings. Three flow-line transects were acquired, in the Alarcon Basin, the Guaymas Basin, and between Cabo and Tres Marias Islands. In addition, a fourth transect across the Baja Peninsula was acquired. Data acquired included (1) multichannel seismic reflection data using the R/V Ewing’s 20-gun array and 480-channel, 6-km-long streamer, (2) wide-angle reflection/refraction data recorded on ocean-bottom seismometers, from 206 deployments conducted by the R/V New Horizon, and (3) onshore-offshore data recorded on portable seismometers deployed up to 100 km inland on all transects. Initial results from the experiment include (1) clear evidence for asymmetric basement structure on the conjugate rifted margins and across the active mid-ocean spreading center, of the Guaymas Basin, (2) the suggestion of substantial magmatism in an early failed rift of the Alarcon Basin, and (3) active subduction beneath the margin at the Tres Marias islands. In addition, we will discuss new procedures for mitigating effects on marine mammals that may have a significant impact on future U.S.-sponsored seismic reflection activities.

  9. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio-Atlantic ridge.

  10. BASE Flexible Array Preliminary Lithospheric Structure Analysis

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Sheehan, A. F.; Anderson, M. L.; Siddoway, C. S.; Erslev, E.; Harder, S. H.; Miller, K. C.

    2009-12-01

    The Bighorns Arch Seismic Experiment (BASE) is a Flexible Array experiment integrated with EarthScope. The goal of BASE is to develop a better understanding of how basement-involved foreland arches form and what their link is to plate tectonic processes. To achieve this goal, the crustal structure under the Bighorn Mountain range, Bighorn Basin, and Powder River Basin of northern Wyoming and southern Montana are investigated through the deployment of 35 broadband seismometers, 200 short period seismometers, 1600 “Texan” instruments using active sources and 800 “Texan” instruments monitoring passive sources, together with field structural analysis of brittle structures. The novel combination of these approaches and anticipated simultaneous data inversion will give a detailed structural crustal image of the Bighorn region at all levels of the crust. Four models have been proposed for the formation of the Bighorn foreland arch: subhorizontal detachment within the crust, lithospheric buckling, pure shear lithospheric thickening, and fault blocks defined by lithosphere-penetrating thrust faults. During the summer of 2009, we deployed 35 broadband instruments, which have already recorded several magnitude 7+ teleseismic events. Through P wave receiver function analysis of these 35 stations folded in with many EarthScope Transportable Array stations in the region, we present a preliminary map of the Mohorovicic discontinuity. This crustal map is our first test of how the unique Moho geometries predicted by the four hypothesized models of basement involved arches fit seismic observations for the Bighorn Mountains. In addition, shear-wave splitting analysis for our first few recorded teleseisms helps us determine if strong lithospheric deformation is preserved under the range. These analyses help lead us to our final goal, a complete 4D (3D spatial plus temporal) lithospheric-scale model of arch formation which will advance our understanding of the mechanisms accommodating and driving basement-involved arch formation as well as continental lithospheric rheology.

  11. Smartphones - the Geophysics Lab in Your Students' Pocket

    NASA Astrophysics Data System (ADS)

    Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.

    2017-12-01

    Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone_array.pdf Video: https://youtu.be/SL5dr4o5oTI

  12. Japan Data Exchange Network JDXnet and Cloud-type Data Relay Server for Earthquake Observation Data

    NASA Astrophysics Data System (ADS)

    Takano, K.; Urabe, T.; Tsuruoka, H.; Nakagawa, S.

    2015-12-01

    In Japan, high-sensitive seismic observation and broad-band seismic observation are carried out by several organization such as Japan Meteorological Agency (JMA) , National Research Institute for Earth Science and Disaster Prevention (NIED), nine National Universities, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) , etc. The total number of the observation station is about 1400 points. The total volume of the seismic waveform data collected from all these observation station is about 1MByte for 1 second (about 8 to 10Mbps) by using the WIN system(Urabe 1991). JDXnet is the Japan Data eXchange network for earthquake observation data. JDXnet was started from 2007 by cooperation of the researchers of each organization. All the seismic waveform data are available at the all organizations in real-time. The core of JDXnet is the broadcast type real-time data exchange by using the nationwide L2-VPN service offered in JGN-X of NICT and SINET4 of NII. Before the Tohoku earthquake, the nine national universities had collected seismic data to each data center and then exchanged with other universities and institutions by JDXnet. However, in this case, if the center of the university was stopped, all data of the university could not use even though there are some alive observation stations. Because of this problem, we have prepared the data relay server in the data center of SINET4 ie the cloud center. This data relay server collects data directly from the observation stations of the universities and delivers data to all universities and institutions by JDXnet. By using the relay server on cloud center, even if some universities are affected by a large disaster, it is eliminated that the data of the living station is lost. If the researchers set up seismometers and send data to the relay server, then data are available to all researchers. This mechanism promotes the joint use of the seismometers and joint research activities in nationwide researchers.

  13. Local Seismicity Recorded by ChilePEPPER: Implications for Dynamic Accretionary Prism Response and Long-term Prism Evolution

    NASA Astrophysics Data System (ADS)

    de Moor, A.; Trehu, A. M.; Tryon, M. D.

    2015-12-01

    To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response

  14. Teleseismic P-wave tomography of the Sunda-Banda Arc subduction zone

    NASA Astrophysics Data System (ADS)

    Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.

    2017-12-01

    The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-wave velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-wave travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition zone. The resolution added by the targeted USC deployment is clear when comparing models that use only BMKG data to models that incorporate the YS network as well.

  15. New strong motion network in Georgia: basis for specifying seismic hazard

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented with strong motion sensors and possible earthquake precursors will be studied using complex methods of observation and data analysis.

  16. Installation of EarthScope Borehole Strainmeters in Turkey to complement GONAF.

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Gottlieb, M. H.; Mencin, D.; Van Boskirk, E.; Ozener, H.; Bohnhoff, M.; Bulut, F.; Bal, O.; Acarel, D.; Aydin, H.; Mattioli, G. S.

    2015-12-01

    Twice in the past 1000 years a sequence of damaging earthquakes has propagated over a period of a few decades along the North Anatolian Fault (NAF) in Turkey towards Istanbul, with the final earthquake in the sequence catastrophically damaging the city. This occurred most recently in 1509, causing 10,000 casualties in a population of about 200,000. The population is now 20 million, the building stock more fragile, and the last earthquake of the current sequence is considered imminent. Since July 2014, UNAVCO has installed 2 EarthScope borehole geophysical instrument strings, which include Gladwin Tensor strainmeters and passive, short-period 3-component seismometers, into boreholes provided by internationally supported Geophysical Observatory at the North Anatolian Fault (GONAF) and Bogazici University Kandilli Observatory. Funding for instruments and staff participation was provided by NSF. If the project remains on schedule, we anticipate that 4 additional BSM strings will be installed by the fall 2015. Our joint international project gives an opportunity to enhance the detection capability of a suite of deep seismometers (GONAF) installed near Istanbul and will permit us to image dynamic rupture along the NAF and to monitor and better understand the tectonic processes leading to failure. The tectonic and geodynamic environment of the NAF near Istanbul in many ways resembles the San Andreas Fault setting of San Francisco; these instruments will enhance the ability to monitor ultra-slow process near the probable source zone of the Mw>7 earthquake beneath the Marmara Sea on the NAF This project has provided UNAVCO an opportunity to gain experience in strainmeters installations outside of North America. The techniques developed to adapt to the challenges of installing borehole strainmeters on islands and other remote locations with limited resources will greatly enhance our ability to install these BSM instruments in similar locations in the future.

  17. Polish Geophysical Solid Earth Infrastructure Contributing to EPOS

    NASA Astrophysics Data System (ADS)

    Debski, W.; Mutke, G.; Suchcicki, J.; Jozwiak, W.; Wiejacz, P.; Trojanowski, J.

    2012-04-01

    In this poster we present the current state of the main polish solid-earth-orientated infrastructures and shortly described history of their development, current state, and some plans for their future development. The presen- tation concentrates only on the classical infrastructure leaving aside for the while the the geodetic-orientated infrastructure, like GPS network and the GPS processing data centers, gravimetric infrastructure and others of this type. Polish broadband seismic infrastructure consists of 7 permanent broadband stations incorporated into the VEBSN initiative running at the polish territory and one operated in collaboration with NORSAR is settled at the Hornsund (Svalbard) polish polar station. All stations are equipped with STS-2 seismometers and polish MK-6 seismic stations providing 120 dB dynamics 100Hz sampling and data transmission in a real time to processing center. Besides this permanent broadband seismic network (PLSN) the Central Institute of Mining is running the permanent regional, short period network at the Upper Silesia area dedicated to the detailed monitoring of seismicity induced by the black coal mining activity in this area. The network consists of As the mining activity is the main source of seismicity in Poland also all mines are running underground short period networks, like for example Rudna-Polkowice copper mine seismic network consisting of 64 underground located short period seimometers. In that area, especially around the Zelazny Most: the huge post-floating artificial lake the, IGF PAS is running the local seismic array consisting of 4 short period seismometers. Besides these permanent network IGF PAN is running the portable seismic network for detailed mapping a possible natural seismic activity in selected regions of Poland. Important contribution to classical geophysical observation in the electro-magnetic field are provided by three permanent geomagnetic observatories (one at Hornsund) and supporting set of 10 portable, high-accuracy magnetoteluric stations.

  18. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  19. The NEPTUNE Canada Seismograph Network

    NASA Astrophysics Data System (ADS)

    Rogers, G. C.; Meldrum, R.; Baldwin, R.; Rosenberger, A.; Mulder, T.

    2009-12-01

    NEPTUNE Canada is the world’s first large regional cable-linked, multi-disciplinary scientific seafloor observatory. In the fall of 2007 an 800 kilometer ring of powered fibre optic cable was laid on the seafloor over the northern part of the Juan de Fuca plate and connected to a shore facility near Port Alberni on Vancouver Island. Five nodes were attached to the cable in the early in the summer of 2009 paving the way for junction boxes and scientific instruments installed in the late summer and fall. The NEPTUNE Canada Seismograph Network will consist initially of four broadband and four short period seismic systems. In the summer of 2009, three broadband OBS packages were deployed forming a large triangle with apexes at ODP 1027 in mid plate and two sites on the continental slope, ODP 889 and Barkley Canyon. In summer 2010 an additional broadband package will be installed on the Endeavour segment of the Juan de Fuca Ridge, and four short period instruments will be installed nearby forming a small array, 6 km in maximum dimension, to record earthquake activity in the vicinity of the many multidisciplinary ridge experiments. The broadband systems comprise a broadband seismometer and strong motion accelerometer in a surficially buried spherical titanium case, with a current meter, hydrophone and differential pressure gauge deployed nearby. The short period systems will include 3-component corehole seismometers on long term loan from the Monterey Bay Aquarium Research Institute (MBARI). All systems will have backup capacity for modest cable outages. The NEPTUNE Canada Seismograph Network relies heavily on knowledge gained from the previous seismographs temporarily deployed in the region by MBARI and the University of Washington and will re-occupy the broadband site and three short period sites at the ridge. NEPTUNE Canada seismic data will be archived by, and available from, both the Geological Survey of Canada and IRIS.

  20. Monitoring environmental effects of shale gas exploitation at Wysin in Poland.

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Mirek, Janusz; Bialon, Wojciech; Cielesta, Szymon; Lasak, Mateusz; Cesca, Simone; Lopez Comino, Jose Angel; Dahm, Torsten; Scarpa, Roberto; Gunning, Andrew; Montcoudiol, Nelly; Isherwood, Catherine; Jaroslawski, Janusz; Guzikowski, Jakub

    2017-04-01

    Environmental effects of shale gas exploration and exploitation are extensively studied in the framework of "Shale Gas Exploration and Exploitation Induced Risks" project (SHEER, H2020-LCE 16-2014-1). One of the main component of this study is on-site monitoring of the effects at Wysin shale-gas play of Polish Oil and Gas Company in Poland. This includes monitoring of seismicity and water and air quality. Surface seismic monitoring network consists of 6 surface broadband (BB) seismometers and 25 surface short-period (SP) seismometers The SPs are assembled into three small aperture arrays with 9, 8 and 8 stations, respectively, distributed in a triangle geometry at a distance of about 2-4 km from the hydrofracturing rig. Each array is complemented with one BB station. The three remaining BBs are located up to about 5 km from the rig. In addition 3 borehole broadband seismometers are located in three shallow boreholes. The groundwater monitoring makes use of four wells, which reach a main underground water reservoir. Three complementary datasets are collected: continuous monitoring of borehole data, laboratory analyses of water samples and field monitoring of water quality parameters. The continuous monitoring makes use of down-hole probes, which have been installed in each borehole. The probes record absolute pressure, temperature and electrical conductivity. In addition, a barometric probe has been installed above ground to record atmospheric pressure in order to allow conversion of absolute pressure to a water level. After collection, water samples are sent to an accredited laboratory for analysis. The field monitoring is undertaken during the sampling visits. Whilst the borehole is being purged, physico-chemical parameters are monitored using a multi-parameter probe. This measures and records temperature, specific conductivity, pH, dissolved oxygen and oxidation-reduction potential within the water. Hydrocarbon gas content within the water is below detection limits for methane, ethane, ethene and propane gases. Air pollution monitoring is performed by means of an automatic station. The station is situated east from the Wysin rig at the distance of some 1200 m. This distance is appropriate in order not to measure a direct emission of pollutants. The station monitors the content of NO, NO2, NOx, CO, PM10, O3, CO2, CH4, NMHC and Radon. At the beginning of SHEER project in May 2015, there was one vertical well at the site, reaching gas-bearing shale formations at the nearly 4km depth. Further on two horizontal wells, each of about 1.7km length, were drilled (late Autumn 2015) and fracked (June - August, 2016). This time table has provided the opportunity to record background seismicity and baseline levels of water and air quality, and then to record the immediate and delayed effects of hydrofracturing operations. The monitoring will continue at least 1.5 year after completion of technological activity at the site. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  1. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert the measured compliances in this frequency band using a genetic algorithm that solves for the S-wave velocity, P-wave velocity, and density in a layered structure. By including constraints on the Vp distribution from active-source studies, these parameters appear well constrained down to about 4 km depth from our dataset. There is a clear difference in observed compliance values between stations close to the deformation front (~10 km) and those further up the continental slope (~30-40 km) indicating a region of unconsolidated, high-porosity sediment similar to the off-Tohoku region. The low S-wave velocities and high Vp/Vs ratios in the up-dip region correspond to unconsolidated high-porosity sediments. We calculated the effect of this material property contrast on the inter-seismic strain accumulation in the up-dip region of the subduction zone using a finite element model and find that the sediments can increase the amount of inter-seismic strain accumulated in the up-dip region by >100% relative to a homogenous elastic model.

  2. Next-generation marine instruments to join plume debate

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Nolet, G.; Babcock, J.

    2003-12-01

    Whether hot spot volcanism is the consequence of plate tectonics or has a deep origin in a mantle plume is debated. G.~Foulger (Geol.~Soc.~London Lett.~Online, accessed 9/3/2003), writes that carefully truncated cross sections, with color scales cranked up, give noisy images the illusion of strong anomalies traversing the mantle. Don Anderson, the big daddy of non-plume hypotheses (R.~Kent, Geol.~Soc.~London Lett.~Online, accessed 9/3/2003) has written that the resolution of regional tomography experiments must be improved in order to successfully determine whether (...) the deep mantle is the controlling factor in the formation of proposed hot spots (Keller et al., GRL 27 (24), 2000). In particular for Iceland, at issue is the inherently limited aperture of any land-based seismometer array on the island: (...) the resolution of such images could be increased (...) by using ocean bottom seismometers (...) (ibidem). These problems are not unique to the plume debate. Coverage, resolution and robustness of models of the wave speed distribution in the interior of the Earth obtained by seismic tomographic inversions are limited by the areal distribution of seismic stations. Two thirds of Earth's surface are virtually inaccessible to passive-source seismometry, save indeed for expensive ocean-bottom seismometers or moored hydrophones. Elsewhere at this meeting, Montelli et al. describe how an improved theoretical treatment of the generation and survival of travel-time anomalies and sophisticated parameterization techniques yield unprecedented resolution of the seismic expression of a variety of ``plumes'' coming from all depths within the mantle. On the other hand, the improved resolution required to settling the debate on the depth to the seismic origin of various hot spots will also result from the collection of previously inaccessable data. Here, we show our progress in the development of an independent hydro-acoustical recording device mounted on SOLO floats. Our instrument is able to maintain a constant water column depth below the sound channel and will surface only periodically for position determination and satellite data communication. Using these low-cost, non-recovered floating sensors, the aperture of arrays mounted on oceanic islands can be increased manifold. Furthermore, adding such instruments to poorly instrumented areas will improve the resolution of deep Earth structure more dramatically than the addition of stations in already densely sampled continental areas. Our progress has been made in the design of intelligent algorithms for the automatic identification and discrimination of seismic phases that are expected to be recorded. We currently recognize teleseismic arrivals in the presence of local P, S, and T phases, ship and whale noise, and other contaminating factors such as airgunning. Our approach combines continuous time-domain processing, spectrogram analysis, and custom-made wavelet methods new to global seismology. The lifespan and cost of the instrument are critically dependent on its ability to limit its power consumption by using a minimum amount of processing steps. Hence, we pay particular attention to the numerical implementation and efficiency of our algorithms, which are shown to be accurate while approaching a theoretical limit of efficiency. We show examples on data from ridge-tethered hydrophones and expect preliminary results from a first test deployment in October.

  3. Bench Checkout of InSight's Seismometer Instrument

    NASA Image and Video Library

    2017-08-28

    The Seismic Experiment for Interior Structure (SEIS) instrument for NASA's InSight mission to Mars undergoes a checkout for the spacecraft's assembly, test and launch operations (ATLO) in this photo taken July 20, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The SEIS was provided by France's national space agency (CNES) with collaboration from the United States, the United Kingdom, Switzerland and Germany. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21846

  4. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  5. Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi

    2017-12-01

    We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.

  6. Temporal variations in Global Seismic Stations ambient noise power levels

    USGS Publications Warehouse

    Ringler, A.T.; Gee, L.S.; Hutt, C.R.; McNamara, D.E.

    2010-01-01

    Recent concerns about time-dependent response changes in broadband seismometers have motivated the need for methods to monitor sensor health at Global Seismographic Network (GSN) stations. We present two new methods for monitoring temporal changes in data quality and instrument response transfer functions that are independent of Earth seismic velocity and attenuation models by comparing power levels against different baseline values. Our methods can resolve changes in both horizontal and vertical components in a broad range of periods (∼0.05 to 1,000 seconds) in near real time. In this report, we compare our methods with existing techniques and demonstrate how to resolve instrument response changes in long-period data (>100 seconds) as well as in the microseism bands (5 to 20 seconds).

  7. Deep seafloor arrivals: an unexplained set of arrivals in long-range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Dzieciuch, Matthew A; Worcester, Peter F; Andrew, Rex K; Buck, Linda J; Mercer, James A; Colosi, John A; Howe, Bruce M

    2009-08-01

    Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.

  8. Feasibility study of earthquake early warning (EEW) in Hawaii

    USGS Publications Warehouse

    Thelen, Weston A.; Hotovec-Ellis, Alicia J.; Bodin, Paul

    2016-09-30

    The effects of earthquake shaking on the population and infrastructure across the State of Hawaii could be catastrophic, and the high seismic hazard in the region emphasizes the likelihood of such an event. Earthquake early warning (EEW) has the potential to give several seconds of warning before strong shaking starts, and thus reduce loss of life and damage to property. The two approaches to EEW are (1) a network approach (such as ShakeAlert or ElarmS) where the regional seismic network is used to detect the earthquake and distribute the alarm and (2) a local approach where a critical facility has a single seismometer (or small array) and a warning system on the premises.The network approach, also referred to here as ShakeAlert or ElarmS, uses the closest stations within a regional seismic network to detect and characterize an earthquake. Most parameters used for a network approach require observations on multiple stations (typically 3 or 4), which slows down the alarm time slightly, but the alarms are generally more reliable than with single-station EEW approaches. The network approach also benefits from having stations closer to the source of any potentially damaging earthquake, so that alarms can be sent ahead to anyone who subscribes to receive the notification. Thus, a fully implemented ShakeAlert system can provide seconds of warning for both critical facilities and general populations ahead of damaging earthquake shaking.The cost to implement and maintain a fully operational ShakeAlert system is high compared to a local approach or single-station solution, but the benefits of a ShakeAlert system would be felt statewide—the warning times for strong shaking are potentially longer for most sources at most locations.The local approach, referred to herein as “single station,” uses measurements from a single seismometer to assess whether strong earthquake shaking can be expected. Because of the reliance on a single station, false alarms are more common than when using a regional network of seismometers. Given the current network, a single-station approach provides more warning for damaging earthquakes that occur close to the station, but it would have limited benefit compared to a fully implemented ShakeAlert system. For Honolulu, for example, the single-station approach provides an advantage over ShakeAlert only for earthquakes that occur in a narrow zone extending northeast and southwest of O‘ahu. Instrumentation and alarms associated with the single-station approach are typically maintained and assessed within the target facility, and thus no outside connectivity is required. A single-station approach, then, is unlikely to help broader populations beyond the individuals at the target facility, but they have the benefit of being commercially available for relatively little cost. The USGS Hawaiian Volcano Observatory (HVO) is the Advanced National Seismic System (ANSS) regional seismic network responsible for locating and characterizing earthquakes across the State of Hawaii. During 2014 and 2015, HVO tested a network-based EEW algorithm within the current seismic network in order to assess the suitability for building a full EEW system. Using the current seismic instrumentation and processing setup at HVO, it is possible for a network approach to release an alarm a little more than 3 seconds after the earthquake is recorded on the fourth seismometer. Presently, earthquakes having M≥3 detected with the ElarmS algorithm have an average location error of approximately 4.5 km and an average magnitude error of -0.3 compared to the reviewed catalog locations from the HVO. Additional stations and upgrades to existing seismic stations would serve to improve solution precision and warning times and additional staffing would be required to provide support for a robust, network-based EEW system. For a critical facility on the Island of Hawaiʻi, such as the telescopes atop Mauna Kea, one phased approach to mitigate losses could be to immediately install a single station system to establish some level of warning. Subsequently, supporting the implementation of a full network-based EEW system on the Island of Hawaiʻi would provide additional benefit in the form of improved warning times once the system is fully installed and operational, which may take several years. Distributed populations across the Hawaiian Islands, including those outside the major cities and far from the likely earthquake source areas, would likely only benefit from a network approach such as ShakeAlert to provide warnings of strong shaking.

  9. The United States Flag Stands On The Surface Of Mars

    NASA Image and Video Library

    1996-12-12

    The flag of the United States stands on the surface of Mars. It is mounted on the housing of NASA's Viking 1's nuclear power system. Also seen are the U.S. Bicentennial symbol and a student designed Viking emblem. The bright flat surface near the center is the seismometer container. This picture was taken on July 23 at about 2:30 p.m. Mars time. The view is west of the spacecraft and includes a series of low hills. The blocky hill in the center appears to be part of a crater rim. The dark, rocky stripes may be material ejected from the crater. The light areas are dune-like and may be accumulations of windblown sand or dust. http://photojournal.jpl.nasa.gov/catalog/PIA00388

  10. Activity in the Mission Control Center during Apollo 14

    NASA Image and Video Library

    1971-02-04

    S71-17609 (4 Feb. 1971) --- These two individuals are examining a seismic reading in the Mission Control Center's ALSEP Room during the Apollo 14 S-IVB impact on the moon. Dr. Maurice Ewing (left) is the director of the Lamont-Doherty Geological Observatory at Columbia University. David Lammlein, a Columbia graduate student, is on the right. The Apollo 14 Saturn IVB stage impacted on the lunar surface at 1:40:54 a.m. (CST), Feb. 4, 1971, about 90 nautical miles south-southwest of the Apollo 12 passive seismometer. The energy release was comparable to 11 tons of TNT. Dr. Gary Latham of the Lamont-Doherty Geological Observatory is the principal investigator for the Passive Seismic Experiment, a component of the Apollo Lunar Surface Experiments Package.

  11. McVCO handbook 1999

    USGS Publications Warehouse

    McChesney, P.J.

    1999-01-01

    McVCO is a microcontroller-based frequency generator that replaces the voltage controlled oscillator (VCO) used in the analog telemetry of seismic data. It accepts low-level signals from a seismometer and produces a frequency modulated subcarrier suitable for radio or telephone links to a data collection site. McVCO was designed for the purpose of improving the analog telemetry of signals within the Pacific Northwest Seismograph Network (PNSN). Its development received support from the University of Washington Geophysics Program, and both the Volcano Hazards and Earthquake Hazards programs of the United States Geological Survey (USGS). This handbook covers operation of McVCO, provides a technical reference for those who require a closer look at how McVCO works, and covers a collection of topics that need explicit treatment or that spring from deployment of the instrument.

  12. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  13. Venus Interior Structure Mission (VISM): Establishing a Seismic Network on Venus

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Saunders, R. S.; Senske, D.; Nock, K.; Tralli, D.; Lundgren, P.; Smrekar, S.; Banerdt, B.; Kaiser, W.; Dudenhoefer, J.

    1993-01-01

    Magellan radar data show the surface of Venus to contain a wide range of geologic features (large volcanoes, extensive rift valleys, etc.). Although networks of interconnecting zones of deformation are identified, a system of spreading ridges and subduction zones like those that dominate the tectonic style of the Earth do not appear to be present. In addition, the absence of a mantle low-viscosity zone suggests a strong link between mantle dynamics and the surface. As a natural follow-on to the Magellan mission, establishing a network of seismometers on Venus will provide detailed quantitative information on the large scale interior structure of the planet. When analyzed in conjunction with image, gravity, and topography information, these data will aid in constraining mechanisms that drive surface deformation.

  14. Observations and modeling of the elastogravity signals preceding direct seismic waves

    NASA Astrophysics Data System (ADS)

    Vallée, Martin; Ampuero, Jean Paul; Juhel, Kévin; Bernard, Pascal; Montagner, Jean-Paul; Barsuglia, Matteo

    2017-12-01

    After an earthquake, the earliest deformation signals are not expected to be carried by the fastest (P) elastic waves but by the speed-of-light changes of the gravitational field. However, these perturbations are weak and, so far, their detection has not been accurate enough to fully understand their origins and to use them for a highly valuable rapid estimate of the earthquake magnitude. We show that gravity perturbations are particularly well observed with broadband seismometers at distances between 1000 and 2000 kilometers from the source of the 2011, moment magnitude 9.1, Tohoku earthquake. We can accurately model them by a new formalism, taking into account both the gravity changes and the gravity-induced motion. These prompt elastogravity signals open the window for minute time-scale magnitude determination for great earthquakes.

  15. Very-long-period volcanic earthquakes beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Hill, D.P.; Dawson, P.; Johnston, M.J.S.; Pitt, A.M.; Biasi, G.; Smith, K.

    2002-01-01

    Detection of three very-long-period (VLP) volcanic earthquakes beneath Mammoth Mountain emphasizes that magmatic processes continue to be active beneath this young, eastern California volcano. These VLP earthquakes, which occured in October 1996 and July and August 2000, appear as bell-shaped pulses with durations of one to two minutes on a nearby borehole dilatometer and on the displacement seismogram from a nearby broadband seismometer. They are accompanied by rapid-fire sequences of high-frequency (HF) earthquakes and several long- period (LP) volcanic earthquakes. The limited VLP data are consistent with a CLVD source at a depth of ???3 km beneath the summit, which we interpret as resulting from a slug of fluid (CO2- saturated magmatic brine or perhaps basaltic magma) moving into a crack.

  16. Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”

    USGS Publications Warehouse

    Yamaoka, Koshun; Geshi, Nobuo; Hashimoto, Tasheki; Ingebritsen, Steven E.; Oikawa, Teruki

    2016-01-01

    Mt. Ontake volcano erupted at 11:52 on September 27, 2014, claiming the lives of at least 58 hikers. This eruption was the worst volcanic disaster in Japan since the 1926 phreatic eruption of Mt. Tokachidake claimed 144 lives (Table 1). The timing of the eruption contributed greatly to the heavy death toll: near midday, when many hikers were near the summit, and during a weekend of clear weather conditions following several rainy weekends. The importance of this timing is reflected by the fact that a somewhat larger eruption of Mt. Ontake in 1979 resulted in injuries but no deaths. In 2014, immediate precursors were detected with seismometers and tiltmeters about 10 min before the eruption, but the eruption started before a warning was issued.

  17. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

  18. The Viking seismometry

    NASA Technical Reports Server (NTRS)

    Lazarewicz, A. R.; Anderson, D. L.; Anderson, K.; Daonty, A. M.; Duennebier, F. K.; Gains, N. R.; Knight, T. C. D.; Kovach, R. L.; Latham, G. V.; Miller, W. F.

    1981-01-01

    Efforts were made to determine the seismicity of Mars as well as define its internal structure by detecting vibrations generated by marsquakes and meteoroid impacts. The lack of marsquakes recognized in the Viking data made it impossible to make any direct inferences about the interior of Mars and only allowed the setting of upper bounds on the seismic activity of the planet. After obtaining more than 2100 hours worth of data during the quite periods at rates of one sample per second or higher, the Viking 2 seismometer was turned off as a consequence of a landing system failure. During the periods when adequate data were obtained, one event of possible seismic or meteoroid impact origin was recognized; however, there is a significant probability that this event was generated by a wind gust.

  19. Geotechnical and Surface Wave Investigation of Liquefaction and Strong Motion Instrumentation sites of the Denali Fault, Mw 7.9, Earthquake

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Thompson, E.; Minasian, D.; Collins, B.; Moss, R.; Sitar, N.; Carver, G.

    2003-12-01

    Following the Mw 7.9 earthquake on the Denali and Totschunda faults on 3 November 2002, we conducted two investigations to map the regional extent and severity of liquefaction ground failures and assess the geotechnical properties of these sites, as well as profile the soil properties beneath three seismometers located at Alyeska Pump Stations 9, 10, and 11. The most noteworthy observations are that liquefaction damage was focused towards the eastern end of the rupture area. For example, liquefaction features in the river bars of the Tanana River, north of the fault-break, are sparsely located from Fairbanks to Delta, but are pervasive throughout the eastern area of the break to Northway Junction, the eastern limit of our survey. Likewise, for the four glacier-proximal rivers draining toward the north, little or no liquefaction was observed on the western Delta and Johnson Rivers, whereas the eastern Robertson River and non-glacial Tok River, and especially the Nabesna River, had observable-to-abundant fissures and sand vents. Several rivers systems were studied in detail. The Nabesna River emerges from its glacier, and drains and fines northward as it crosses the fault zone resulting in an asymmetrical liquefaction pattern. South of the fault, falling liquefaction resistance of soil (fining from sandy gravel to gravely sand) and rising loads from ground motions (approaching the fault) abruptly intersect such that there is a well defined, narrow, soil transition from undisturbed-to-fully liquefied approximately 5 kilometers from the fault. North of the fault, both liquefaction resistance (continued fining) and ground motions fall in tandem, leaving a much broader zone of liquefaction. The Delta River liquefaction occurrence is more complex, where side-entering glacial rivers form non-liquefiable gravel fans and alter the composition and compactness of the main-stem deposits. Immediately upstream of the gravelly Canwell glacier tributary, and immediately at the fault crossing, liquefaction features are abundant. To characterize soil properties, we used a portable continuous sine wave-spectral analysis of surface waves (CSS-SASW) apparatus to profile the shear wave velocity of the ground, and an auger to profile the corresponding texture of the river deposits. We occupied 25 liquefaction evaluation test sites along with the three Alyeska seismometer sites. On the Nabesna, Delta and other rivers, we only find liquefaction features in soil deposits where normalized shear wave velocities fall below 225 m/s. Severity of fissures and lateral spreads dramatically increase in soils as the velocities fall, especially below 170 m/s. In some cases, the most pronounced ground failures are far from the fault zone (60-100 km) in extremely loose, low velocity fine sands. Geotechnical testing performed on field samples revealed that liquefied soils ranged from well graded sandy gravels in close proximity to the fault (< 5km) to silty sands and low plasticity silts at greater distances. At the Alyeska pump station seismometer sites, we are able to invert profiles of shear wave velocity to depths of 140-200 meters. The averaged NEHRP (30 meter) velocities for pump stations 9, 10, and 11 are 376 m/s, 316 m/s, and 362 m/s, respectively.

  20. Coda-wave and ambient noise interferometry using an offset vertical array at Iwanuma site, northeast Japan

    NASA Astrophysics Data System (ADS)

    Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.

    2013-12-01

    Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.

  1. GEOSCOPE Observatory Recent Developments

    NASA Astrophysics Data System (ADS)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming from 23 stations to GEOSCOPE Data Center are available automatically using the seedlink protocol developed by GEOFON (GFZ, Germany). Seedlink also enables to make these data accessible in real time to Tsunami Warning Centers and to other data centers. - Validated continuous waveforms and metadata of all stations are available by using the NetDC system (Networked Data Centers) and Data Handler Interface (DHI, IRIS-DMC) via DHI Clients. Data can be requested from GEOSCOPE Data Center and from other networked centers associated to the FDSN. - A selection of seismograms corresponding to large earthquakes through the GEOSCOPE web portal. - The power spectrum estimates of the seismic noise averaged over sequences of 24 hours for each station. The noise level of the last 10 years of continuous data has been computed and is accessible via the web. The noise level of real time data is computed at day-8. GEOSCOPE data center is networked to the French virtual data center, FOSFORE/RESIF, in order to give a unique access to French seismological data. In Europe, EIDA (European Integrated Data Archive) is operational since June 2009. GEOSCOPE/IPGP is one of the four primary nodes archiving and distributing data inside EIDA. All GEOSCOPE data are available via the European Seismic Portal (http://www.seismicportal.eu).

  2. Searching for conditions of observation of subduction seismogenic zone transients on Ocean Bottom Seismometers deployed at the Lesser Antilles submerged fore-arc

    NASA Astrophysics Data System (ADS)

    Bécel, Anne; Laigle, Mireille; Diaz, Jordi; Hirn, Alfred; Flueh, Ernst; Charvis, Philippe

    2010-05-01

    In the frame of the European Union « THALES WAS RIGHT » and French ANR CATTELL SUBSISMANTI funding, an unprecedented array of 80 OBS, Ocean Bottom Seismometers of Géoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven could gathered. They have been deployed for continuous recording over four months on the fore-arc domain of the Lesser Antilles subduction zone offshore Martinique, Dominica, Guadeloupe and Antigua Islands, by scientific cruises of N/O ATALANTE, F/S M. A. MERIAN and N/O ANTEA. One of the aims of this OBS array was the feasibility study of detecting at sea-bottom the seismological part of recently discovered phenomena such as NVT non-volcanic tremors and LP, for Long-Period events. The ability of detecting such transient signals is of importance, since they are possibly related to potential mega-thrust earthquakes and their preparation zone. At the Lesser Antilles subduction zone, the fore-arc domain overlying the seismogenic part of the interplate is located offshore, covered by as much as 4000 m of water. In this case, transient signals can be accessible only from OBS observations. Hence, there is a major difference, in the sense of the instrumental and logistical effort, with the subductions under NW US-Canada and under Central Japan where these signals have been discovered. There, the subduction zones have an emerged fore-arc that has allowed the chance discovery of those phenomena by regular instrument maintained routinely on land. Over 20 of the instruments were BB-OBS, with broadband seismic sensors, possibly the largest such gathering at the time of the experiment among the OBS types. Among those broadband OBS designed or used by different Institutions, there were at least three different seismometer brands and acoustical sensors, as well as different mechanical mounting and technical solutions for coupling them to ground. This did not facilitate data recovery and processing, but on the other hand, as planned by interweaving the different instruments deployments, it provided diverse views, as through different glasses. This ultimately proved valuable to help extract the harder facts from their diverse appearances when seen through different instruments and in different types of sites. After analyzing the data for spurious and instrument-related peculiarities, and possible interpretation pitfalls, it remains that the noise level shows an overwhelming influence of the marine domain due to both its own sources, hydrosphere motions, and to meteorological-climatological actions. As well, the response of the laterally variable fore-arc basin on top of which measurements have to be made is much adverse to quality recording, with respect to seismological observatories on land which can be buried deep into basement rocks. The study of this noise itself may allow us to initiate a discussion of the interactions of the oceanic and atmospheric processes with the Solid Earth. Transients at depth in the subduction zone have been tentatively discussed in terms of its seismogenic evolution. If such transient events would indeed have a component over a very broad spectral range from NVT to LP and ULP events as it has been suggested very recently in Japan (Ide et al., 2008), the conditions and the best observation windows in which they can be best searched for are now documented for ocean bottom recording in the case of the Lesser Antilles subduction zone.

  3. The GEOSCOPE Program : state of the art in 2004

    NASA Astrophysics Data System (ADS)

    Roult, G.; Lepine, J.; Rivera, L.; Stutzmann, E.; Group, G.

    2004-12-01

    The GEOSCOPE program was launched in 1982 by the National Institute of Sciences of Universe (INSU), a department of the French National Center of Scientific Research (CNRS), at the instigation of the Institute of Physics of the Earth of Paris (IPGP). The purpose of the GEOSCOPE program was the installation of about 25 stations well distributed worldwide (in particular in the southern hemisphere), in the standard configuration defined by the FDSN (very broad-band 24 bit, continuous recording at 20sps). The GEOSCOPE program is operating 28 digital very-broadband stations. Data from large events are teletransmitted for some stations (by phone line or through internet) and made available within one day. A satellite transmission system is now working, in cooperation with the french military agency CEA/DASE, in cooperation with CTBTO (Dzumac in New Caledonia). An agreement between GEOSCOPE and CTBTO allows us to get data continuously and with a low gain. The next CTBTO stations to be installed are ATD (Djibouti) and MBO (Senegal) in 2005. In terms of siting locations, the aim of the GEOSCOPE program is almost fulfilled; we plan to install a new station in MARQ (Marquesas Islands), one in Russia at high latitude at VOR (Vorkouta), one in Patagonia (COY in Chile), in order to fill some geographical gaps in the southern hemisphere. We installed in 2004 a joint station with IRIS and the CTBTO at TRIS (Tristan Da Cunha), in the southern Atlantic ocean. DCC in Antarctica is a joint EOST-Strasbourg/Concordia-Italy station. Our goal is now to replace our old digitizers by Quanterra ones, and to transmit all data in near real-time. At present 4 stations are sending their data in quasi-real time (DZM, ECH, SSB, FDF and RER). An inversion method for the fundamental mode Rayleigh wave spectra has made possible the rapid determination of the mechanism and the seismic moments. This determination is done routinely for all events with Ms > 6.5 from the teletransmitted stations data. The estimate Power Spectral Density plots have been computed for each station and are available on the Web site. Some small to medium earthquakes are not detected and thus are not referenced in the earthquake catalogues. Most of these events are in the southern hemisphere where the lack of seismic stations creates a detection sensitivity gap. We estimate that more than a hundred southern hemisphere events per year with magnitude between 4.5 and 5.5 go undetected by the worldwide networks. We use a surface wave analysis method to effectively detect and locate these earthquakes, particularly near-ridge events. Most GEOSCOPE stations are equipped with STS1 seismometers, only a few ones with STS2 seismometers. We are planning to move some stations from the northern hemisphere to the southern one, inorder to fill a geographical instrumental gap. We are equipping all stations with seismometers but also with microthermometers, microbarometers, in order to clean the seismic signal and to study potential correlations between the seismic signal and these environmental parameters. Some of our stations have long seismic time series (SSB in France and TAM in Algeria). Removing the atmospheric pressure effect is absolutely necessary for scientists using low frequency free oscillation modes, helping studies on the 'hum'.

  4. Impactor mass and source cutoff frequency estimations for three large impacts detected by the Apollo seismometers

    NASA Astrophysics Data System (ADS)

    Gudkova, T.; Lognonné, P.; Gagnepain-Beyneix, J.

    2010-12-01

    Let us consider the source excitation process for an impact. Following [1], we assume a simple model for the seismic source function, namely, a time-dependent force acting downward on the surface of the planet during the impact: f(t)=G g(t)=G g(t)*δ(t),g(t)=1+cosω1t for t in the interval (-π/ω1,π/ω1), g(t)=0 otherwise, where g(t) is the time dependence of the source, G is used to denote the amplitude of the applied force. This takes into account the fact that part of the seismic force could be associated with ejecta material [2]. We introduce the time constant,τ, equal to 2τ/ω1 to denote the time-duration of the excitation process. For SIVB’s and LM impacts we have τ=0.6 sec and 0.45 sec, respectively and a very good fit explaining practically for all the data and a very high quality factor. In contrast, for the seismic force as a point force (without ejecta generation) we find not only an unrealistically low Q values, but, moreover, a much lower variance reduction. The same fit was done for large meteoroids impacts (impacts on day the 13th and the 25th of January and the 14th of November 1976) (τ = 0.7, 0.8 and 1.05 sec, respectively). We get a very good fit explaining practically for all the data with 98% variance reduction and a very high quality factor. In contrast, the results with the seismic force as a point source are not satisfactory. For all these impacts, we have determined the values of the seismic impulse by matching the energy in the observed and modeled waveforms. To get the mass of a meteoroid we should correct for the ejecta effects, which lead to a mv product smaller by a ratio 1.5 to 1.7 as compared to the seismic impulse. This gave estimates on the mass and size of the meteoroids. Current estimates of the size of the meteoroids (diameter of 2-3 meters) indicate that they could create craters of about 50-70 meters in diameter: it might therefore be possible for the NASA Lunar Reconnaissance Orbiter mission to detect these craters. These impacts were insufficient to generate surface waves above the detection threshold of the Apollo seismometer. Future seismometers must have performances at least 10 times better than Apollo in order to get these surface waves from comparable impacts. Such a resolution will also allow the detection of several impacts of low mass (1-10 kg) at a few 10s to hundred km of each station, which might be used to perform local studies of the crust. Acknowledgements. This work was supported by Programme National de Planetologie from INSU, the French Space Agency (R&T program).and Grant No. 09-02-00128 and 09-05-91056 from the Russian Fund for Fundamental Research. References [1] McGarr, A., Latham, G.V., and Gault, D.E. 1969. JGR, Vol.74 (25), pp.5981-5994. [2] Lognonné, Ph., Le Feuvre, M., Johnson, C.L., and Weber, R.C. 2009. JGR, Vol. 114, E12003. [3] Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D., and Spohn, T. 2006. PEPI, Vol.159, pp.140-166. [4] T.V.Gudkova, Ph. Lognonné, and J. Gagnepain-Beyneix 2010. submitted to Icarus, 2010.

  5. Overview of SAFOD Phases 1 and 2: Drilling, Sampling and Measurements in the San Andreas Fault Zone at Seismogenic Depth

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hickman, S.; Ellsworth, W.

    2005-12-01

    In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.

  6. The multiparameter station at Galeras Volcano (Colombia): concept and realization

    NASA Astrophysics Data System (ADS)

    Seidl, Dieter; Hellweg, Margaret; Calvache, Marta; Gomez, Diego; Ortega, Adriana; Torres, Roberto; Böker, Franz; Buttkus, Burkhard; Faber, Eckhard; Greinwald, Siegfried

    2003-07-01

    Volcanoes are complex systems, in which the interaction of many different physical and chemical factors and processes contribute to changes in activity. In the past 40 years, our ability to observe and quantify short-term changes in a volcano's activity has improved due to the installation of seismometers and tiltmeters and the continuous records they provide. However, due to instrumental limitations, the observations have mainly been used phenomenologically, to draw inferences about possible changes on the basis of previous experience. Since 1995, the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) and the Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear (INGEOMINAS) have been working to develop and deploy a multiparameter (MP) station on Galeras Volcano, Colombia. This station is designed to concurrently measure various geophysical and geochemical parameters. It includes three broadband seismometers at the crater rim, as well as a more remotely located, broadband seismic reference. At other locations in the crater or on the rim, electromagnetic probes, an infrasound sensor and a weather station are operating. The data from these sensors are digitized at each site with 24-bit digitizers and transmitted by spread-spectrum radio, via repeater when necessary, to the Observatorio Vulcanológico y Sismológico (OVP) in the city of Pasto. There they are received and displayed on a networked personal computer and recorded continuously. The data flow into the routine analysis procedures of the OVP and the continuous data are archived on CD. In addition to the other sensors, a system of specially developed sensors continuously monitors the chemistry and physics of the gases at fumaroles on the active cone. The data from this system are also transmitted in realtime to OVP and recorded. The continuous recordings of the MP station are supplemented by regular thermographic measurements of the surface temperature in the crater using an infrared camera. Joint analysis and interpretation of the data streams from the many sensors of the MP station will improve our understanding of the physical processes occurring in Galeras Volcano.

  7. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi

    2016-04-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for developments of monitoring data download system.

  8. Recent Evolutions of the GEOSCOPE Broadband Seismic Observatory

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Vallee, M.; Zigone, D.; Bonaime, S.; Thore, J. Y.; Pesqueira, F.; Pardo, C.; Bernard, A.; Maggi, A.; Vincent, D.; Sayadi, J.

    2017-12-01

    The GEOSCOPE observatory provides 36 years of continuous broadband data to the scientific community. The 32 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the IPGP data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. Recent improvements include a new station in Wallis and Futuna (FUTU, South-Western Pacific Ocean) and the re-installation of WUS station in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the IPGP data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). All GEOSCOPE data are in miniseed format but using various conventions. An important technical work is done to homogenize the data miniseed formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated use of the SCARDEC method. Earthquake parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated, which also includes information for a non-seismologist audience (past seismicity, foreshocks and aftershocks, 3D representations of the fault motion…). This information is also disseminated in real-time through mailing lists and social networks. Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes.

  9. Depth-dependence of time-lapse seismic velocity change detected by a joint interferometric analysis of vertical array data

    NASA Astrophysics Data System (ADS)

    Sawazaki, K.; Saito, T.; Ueno, T.; Shiomi, K.

    2015-12-01

    In this study, utilizing depth-sensitivity of interferometric waveforms recorded by co-located Hi-net and KiK-net sensors, we separate the responsible depth of seismic velocity change associated with the M6.3 earthquake occurred on November 22, 2014, in central Japan. The Hi-net station N.MKGH is located about 20 km northeast from the epicenter, where the seismometer is installed at the 150 m depth. At the same site, the KiK-net has two strong motion seismometers installed at the depths of 0 and 150 m. To estimate average velocity change around the N.MKGH station, we apply the stretching technique to auto-correlation function (ACF) of ambient noise recorded by the Hi-net sensor. To evaluate sensitivity of the Hi-net ACF to velocity change above and below the 150 m depth, we perform a numerical wave propagation simulation using 2-D FDM. To obtain velocity change above the 150 m depth, we measure response waveform from the depths of 150 m to 0 m by computing deconvolution function (DCF) of earthquake records obtained by the two KiK-net vertical array sensors. The background annual velocity variation is subtracted from the detected velocity change. From the KiK-net DCF records, the velocity reduction ratio above the 150 m depth is estimated to be 4.2 % and 3.1 % in the periods of 1-7 days and 7 days - 4 months after the mainshock, respectively. From the Hi-net ACF records, the velocity reduction ratio is estimated to be 2.2 % and 1.8 % in the same time periods, respectively. This difference in the estimated velocity reduction ratio is attributed to depth-dependence of the velocity change. By using the depth sensitivity obtained from the numerical simulation, we estimate the velocity reduction ratio below the 150 m depth to be lower than 1.0 % for both time periods. Thus the significant velocity reduction and recovery are observed above the 150 m depth only, which may be caused by strong ground motion of the mainshock and following healing in the shallow ground.

  10. Ground Motion Response to a ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays

    DOE PAGES

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; ...

    2018-03-17

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench, including 340 m in a well. The conventional seismometer array consisted of 238 three- component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 meters in length and geophones were spaced atmore » approximately 60- meter intervals. Both DAS and conventional geophones recorded continuously over 15 days during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise (SNR) ratios in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources, because the earthquake signal contains more low frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. In conclusion, the combination of good SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.« less

  11. Small aperture seismic arrays for studying planetary interiors and seismicity

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.

  12. P-wave velocity structure offshore central Sumatra: implications for compressional and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M. T.; Barton, P. J.

    2014-12-01

    The Sunda subduction zone features significant along-strike structural variability including changes in accretionary prism and forearc morphology. Some of these changes have been linked to changes in megathrust faulting styles, and some have been linked to other thrust and strike-slip fault systems across this obliquely convergent margin (~54-58 mm/yr convergence rate, 40-45 mm/yr subduction rate). We examine these structural changes in detail across central Sumatra, from Siberut to Nias Island, offshore Indonesia. In this area the Investigator Fracture Zone and the Wharton Fossil Ridge, features with significant topography, are being subducted, which may affect sediment thickness variation and margin morphology. We present new seismic refraction P-wave velocity models using marine seismic data collected during Sonne cruise SO198 in 2008. The experiment geometry consisted of 57 ocean bottom seismometers, 23 land seismometers, and over 10,000 air gun shots recorded along ~1750 km of profiles. About 130,000 P-wave first arrival refractions were picked, and the picks were inverted using FAST (First Arrivals Refraction Tomography) 3-D to give a velocity model, best-resolved in the top 25 km. Moho depths, crustal composition, prism geometry, slab dip, and upper and lower plate structures provide insight into the past and present tectonic processes at this plate boundary. We specifically examine the relationships between velocity structure and faulting locations/ styles. These observations have implications for strain-partitioning along the boundary. The Mentawai Fault, located west of the forearc basin in parts of Central Sumatra, has been interpreted variably as a backthrust, strike-slip, and normal fault. We integrate existing data to evaluate these hypotheses. Regional megathrust earthquake ruptures indicate plate boundary segmentation in our study area. The offshore forearc west of Siberut is almost aseismic, reflecting the locked state of the plate interface, which last ruptured in 1797. The weakly-coupled Batu segment experiences sporadic clusters of events near the forearc slope break. The Nias segment in the north ruptured in the 2005 M8.7 earthquake. We compare P-wave velocity structure to the earthquake data to examine potential links between lithospheric structure and seismogenesis.

  13. Comparing horizontal-to-vertical spectral ratios with sediment-to-bedrock spectral ratios in a region with a thin layer of unconsolidated sediments

    NASA Astrophysics Data System (ADS)

    Schleicher, L.; Pratt, T. L.

    2017-12-01

    Underlying sediment can amplify ground motions during earthquakes, making site response estimates key components in seismic evaluations for building infrastructure. The horizontal-to-vertical spectral ratio (HVSR) method, using either earthquake signals or ambient noise as input, is an appealing method for estimating site response because it uses only a single seismic station rather than requiring two or more seismometers traditionally used to compute a horizontal sediment-to-bedrock spectral ratio (SBSR). A number of studies have had mixed results when comparing the accuracy of the HVSR versus SBSR methods for identifying the frequencies and amplitudes of the primary resonance peaks. Many of these studies have been carried out in areas of complex geology, such as basins with structures that can introduce 3D effects. Here we assess the effectiveness of the HVSR method by a comparison with the SBSR method and models of transfer functions in an area dominated by a flat and thin, unconsolidated sediment layer over bedrock, which should be an ideal setting for using the HVSR method. In this preliminary study, we analyze teleseismic and regional earthquake recordings from a temporary seismometer array deployed throughout Washington, DC, which is underlain by a wedge of 0 to 270 m thick layer of unconsolidated Atlantic Coastal Plain sedimentary strata. At most sites, we find a close match in the amplitudes and frequencies of large resonance peaks in horizontal ground motions at frequencies of 0.7 to 5 Hz in site response estimates using the HVSR and SBSR methods. Amplitudes of the HVSRs tend to be slightly lower than SBSRs at 3 Hz and less, but the amplitudes of the fundamental resonance peaks often match closely. The results suggest that the HVSR method could be a successful approach to consider for computing site response estimates in areas of simple shallow geology consisting of thin sedimentary layers with a strong reflector at the underlying bedrock surface. [This publication represents the views of the authors and does not necessarily represent the views of the Defense Nuclear Facilities Safety Board.

  14. Ground Motion Response to a ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays

    NASA Astrophysics Data System (ADS)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; Fratta, Dante; Feigl, Kurt L.; Thurber, Clifford H.; Mellors, Robert J.

    2018-03-01

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench, including 340 m in a well. The conventional seismometer array consisted of 238 three-component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 meters in length and geophones were spaced at approximately 60-m intervals. Both DAS and conventional geophones recorded continuously over 15 days during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise (SNR) ratios in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources, because the earthquake signal contains more low frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. The combination of good SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.

  15. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    Typically there are very high noise levels at long periods on the horizontal components of ocean bottom seismographs due to the turbulent interaction of bottom currents with the seismometer package on the seafloor. When there is a slight tilt of the instrument, some of the horizontal displacement caused by bottom currents leaks onto the vertical component record, which can severely increase the apparent vertical noise. Another major type of noise, compliance noise, is created when pressure variations associated with water (gravity) waves deform the seabed. Compliance noise increases with decreasing water depth, and at water depths of less than a few hundred meters, compliance noise typically obscures most earthquake signals. Following Crawford and Webb (2000), we have developed a methodology for reducing these noise sources by 1-2 orders of magnitude, revealing many events that could not be distinguished before noise reduction. Our methodology relies on transfer functions between different channels. We calculate the compliance noise in the vertical displacement record by applying a transfer function to the differential pressure gauge record. Similarly, we calculate the tilt-induced bottom current noise in the vertical displacement record by applying a transfer function to the horizontal displacement records. Using data from the Cascadia experiment and other experiments, we calculate these transfer functions at a range of stations with varying tilts and water depths. The compliance noise transfer function depends strongly on water depth, and we provide a theoretical and empirical description of this dependence. Tilt noise appears to be very highly correlated with instrument design, with negligible tilt noise observed for the 'abalone' instruments from the Scripps Institute of Oceanography and significant tilt observed for the Woods Hole Oceanographic Institution instruments in the first year deployment of the Cascadia experiment. Tilt orientation appears relatively constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  16. Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.

    2005-12-01

    The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.

  17. Constraints on the 3D Sediment and Crustal Architecture of the Weakly Extended Malawi Rift from the Onshore/Offshore Wide-Angle Refraction Experiment

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Shillington, D. J.; Scholz, C. A.; McCartney, T.; Ebinger, C. J.; Gaherty, J. B.; Nyblade, A.; Eatmon, A.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Current models of continental rifting increasingly point to the important role of weakening mechanisms like the addition of magmatic products in overcoming the disparity between the magnitude of tectonic forces available for rifting and the forces required to break strong, cold lithosphere. However, many rifts have limited volcanism. To understand the controls on rifting in magma-poor systems, we conduct 3D first arrival time tomography from active-source wide-angle refraction data collected in the Malawi Rift to constrain crustal structure along and across the rift. The Malawi Rift represents a weakly extended rift system located within the southernmost portion of the EARS. The only surface magmatism present occurs within the Rungwe Volcanic Province (RVP) located at the northern termination of the Malawi Rift. We utilize active-source data collected in Lake Malawi as a part of SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania). Over 86,000 unique air gun shots were recorded on an array of 33 offshore "lake" bottom seismometers and 55 onshore seismometers. The resulting ray-coverage encompasses the entire northern section of the Malawi Rift spanning the North and Central basins of Lake Malawi, portions of the surround plateaus, as well as the RVP. First arrivals are picked for all shot-receiver pairs with sufficient signal-to-noise ratio and included in a 3D first-arrival tomography model. Direct arrivals (Ps and Pg) and reflections (PmP) are observed on the majority of instruments, with clear arrivals observed to offsets >220 km. Data and preliminary models indicate variations in fault structure and overall sediment thickness between and within rift basins. The North Basin is characterized by a series of synthetic intrabasin faults and sediments thickening to the east along the Livingstone border fault. The Central Basin is characterized by sediments thickening to the west along the Nkhata border fault in the south near Usisya, Malawi and then transitioning to eastward thickening at the northern termination of the Central Basin near the Manda, Tanzania.

  18. Three-dimensional S-wave tomography under Axial Seamount

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Wilcock, W. S. D.; Arnulf, A. F.; Tolstoy, M.; Waldhauser, F.

    2017-12-01

    Axial Seamount is a submarine volcano located at the intersection of the Juande Fuca Ridge and the Cobb-Eickelberg hotspot 500 km off the coast of thenorthwestern United States. The seamount, which rises 1 km above the seafloor, ischaracterized by a shallow caldera that is elongated in the N-S direction, measure 8km by 3 km and sits on top of a 14 km by 3 km magma reservoir. Two eruptive eventsin 1998 and 2011 motivated the deployment in 2014 of a real time cabled observatorywithin the Axial caldera, as part of the Ocean Observatories Initiative (OOI).Theobservatory includes a network of seven seismometers that span the southern half ofthe caldera. Five months after the observatory came on-line in November 2014, thevolcano erupted on April 24, 2015. Well over 100,000 events were located in thevicinity of the caldera, delineating an outward dipping ring fault that extends fromnear the surface to the magma body at 2 km depth and which accommodatesinflation and deflation of the volcano.The initial earthquake locations have beenobtained with a one-dimensional velocity model but the travel time residuals suggeststrong heterogeneities. A three-dimensional P-wave velocity model, obtained bycombining multichannel and ocean bottom seismometer refraction data, is being usedto refine locations but the three-dimensional S-wave structure is presently unknown.In most mid-ocean ridge settings, the distribution of earthquakes is not conducive forjoint inversions for S-wave velocity and hypocentral parameters because there are fewcrossing ray paths but at Axial the presence of a ring fault that is seismically active atall depths on both the east and west side of the caldera, provides a reasonablegeometry for such efforts. We will present the results of joint inversions that assumethe existing three-dimensional P wave velocity model and solve for VP/VS structure andhypocentral parameters using LOTOS, an algorithm that solves the forward problemusing ray bending.The resulting model of S-wave velocities will provide newconstraints on the volcanic structure of the caldera, the distribution and characteristicsof fractures, and the effects of hydrothermal circulation. The model will also lead toimproved earthquakes locations that are critical for a fine scale interpretation of thefault system.

  19. Recent evolutions of the GEOSCOPE broadband seismic observatory

    NASA Astrophysics Data System (ADS)

    Vallee, M.; Leroy, N.; Bonaime, S.; Zigone, D.; Stutzmann, E.; Thore, J. Y.; Pardo, C.; Bernard, A.; Pesqueira, F.; Maggi, A.; Vincent, D.

    2016-12-01

    The GEOSCOPE observatory provides 34 years of continuous broadband data to the scientific community. The 31 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the GEOSCOPE data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. In 2016, a new station has been installed in Wallis and Futuna (FUTU, South-Western Pacific Ocean), and final work is done to reinstall WUS station in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the GEOSCOPE data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr ). An important technical work is now done to homogenize the data formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE broadband seismic observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method. By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated for each earthquake, which also includes information for a non-seismologist audience (past seismicity, foreshocks and afterschocks, 3D representations of the fault motion…). Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes

  20. Aftershocks of the India Republic Day Earthquake: the MAEC/ISTAR Temporary Seismograph Network

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Horton, S.; Johnston, A.; Patterson, G.; Bollwerk, J.; Rydelek, P.; Steiner, G.; McGoldrick, C.; Budhbhatti, K. P.; Shah, R.; Macwan, N.

    2001-05-01

    The MW=7.7 Republic Day (26 January, 2001) earthquake on the Kachchh in western India initiated a strong sequence of small aftershocks. Seventeen days following the mainshock, we deployed a network of portable digital event recorders as a cooperative project of the Mid America Earthquake Center in the US and the Institute for Scientific and Technological Advanced Research. Our network consisted of 8 event-triggered Kinemetrics K2 seismographs with 6 data channels (3 accelerometer, 3 Mark L-28/3d seismometer) sampled at 200 Hz, and one continuously-recording Guralp CMG40TD broad-band seismometer sampled at 220 Hz. This network was in place for 18 days. Underlying our network deployment was the notion that because of its tectonic and geologic setting the Republic Day earthquake and its aftershocks might have source and/or propagation characteristics common to earthquakes in stable continental plate-interiors rather than those on plate boundaries or within continental mobile belts. Thus, our goals were to provide data that could be used to compare the Republic Day earthquake with other earthquakes. In particular, the objectives of our network deployment were: (1) to characterize the spatial distribution and occurrence rates of aftershocks, (2) to examine source characteristics of the aftershocks (stress-drops, focal mechanisms), (3) to study the effect of deep unconsolidated sediment on wave propagation, and (4) to determine if other faults (notably the Allah Bundh) were simultaneously active. Most of our sites were on Jurassic bedrock, and all were either free-field, or on the floor of light structures built on rock or with a thin soil cover. However, one of our stations was on a section of unconsolidated sediments hundreds of meters thick adjacent to a site that was subjected to shaking-induced sediment liquefaction during the mainshock. The largest aftershock reported by global networks was an MW=5.9 event on January 28, prior to our deployment. The largest aftershock we recorded was MW=5.3. Our network recorded signals from nearly 2000 earthquakes, all on-scale.

  1. A numerical study of some potential sources of error in side-by-side seismometer evaluations

    USGS Publications Warehouse

    Holcomb, L. Gary

    1990-01-01

    This report presents the results of a series of computer simulations of potential errors in test data, which might be obtained when conducting side-by-side comparisons of seismometers. These results can be used as guides in estimating potential sources and magnitudes of errors one might expect when analyzing real test data. First, the derivation of a direct method for calculating the noise levels of two sensors in a side-by-side evaluation is repeated and extended slightly herein. This bulk of this derivation was presented previously (see Holcomb 1989); it is repeated here for easy reference.This method is applied to the analysis of a simulated test of two sensors in a side-by-side test in which the outputs of both sensors consist of white noise spectra with known signal-tonoise ratios (SNR's). This report extends this analysis to high SNR's to determine the limitations of the direct method for calculating the noise levels at signal-to-noise levels which are much higher than presented previously (see Holcomb 1989). Next, the method is used to analyze a simulated test of two sensors in a side-by-side test in which the outputs of both sensors consist of bandshaped noise spectra with known signal-tonoise ratios. This is a much more realistic representation of real world data because the earth's background spectrum is certainly not flat.Finally, the results of the analysis of simulated white and bandshaped side-by-side test data are used to assist in interpreting the analysis of the effects of simulated azimuthal misalignment in side-by-side sensor evaluations. A thorough understanding of azimuthal misalignment errors is important because of the physical impossibility of perfectly aligning two sensors in a real world situation. The analysis herein indicates that alignment errors place lower limits on the levels of system noise which can be resolved in a side-by-side measurement It also indicates that alignment errors are the source of the fact that real data noise spectra tend to follow the earth's background spectra in shape.

  2. Detecting Seismic Infrasound Signals on Balloon Platforms

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis of the data obtained from these sensors and use these data to characterize the infrasound signal created by earthquakes. These data will also inform the design of future experiments, which will involve tropospheric and stratospheric flights above naturally occurring areas with high seismicity.

  3. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    NASA Astrophysics Data System (ADS)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation seasonally. We will extend our analysis to the full four-year data set and consider how variations in noise affect the threshold of earthquake detectability by comparing noise levels with expected body wave amplitudes and seismic catalogues.

  4. Seismic Interferometry at a Large, Dense Array: Capturing the Wavefield at the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.

    2016-12-01

    Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  5. Martian Ambient Seismic Noise: from the first modeling to the future data of the InSight Seismic experiment.

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Banerdt, W. B.; Mimoun, D.; Kobayashi, N.; Panning, M. P.; Pike, W. T.; Giardini, D.; Christensen, U. R.; Nishikawa, Y.; Murdoch, N.; Kawamura, T.; Kedar, S.; Spiga, A.

    2014-12-01

    The InSight NASA Discovery mission is expected to deploy a 3 axis VBB and a 3 axis SP seismometer on Mars by late september 2016. This seismic station will explore the Martian ambient noise, in addition to more classical science goals related to the detection of Marsquakes, Meteoritic Impacts and Tides. Mars, in contrast with the Earth (with both atmosphere and ocean) and the Moon (with no atmosphere nor ocean) is expected to have ambient noise only related to its atmosphere. Mars seismic data are therefore expecting to reveal the atmospheric coupling for a different atmospheric dynamics than Earth, especially in the 0.1-1 Hz bandwidth, dominated by oceanic microseisms on Earth. We rapidly present the expected performances of the SEIS experiment onboard InSight. This experiment is based on two 3 axis seismometers, one covering the tide and low seismic frequencies (up to 10 Hz) and a second one covering the high frequencies (from 0.1 Hz to 50 Hz). Both sensors are mounted on a sensors plateform, deployed by a robotic arm 1-2 meters from the lander and covered by thermal protection and a wind protection. The expected performances indicates that signal as low as 10**(-9) m/s**2/Hz**(1/2) will be detected in the 0.005-2 Hz bandwidth. We then focus on the modeling of this ambient atmospheric noise.This modeling has been done not only from constraints gathered by the atmospheric sensors of previous Mars missions (e.g. Viking and Pathfinder) but also by numerical modeling of the atmospheric perturbations, both at global scale and mesoscale. Theoretical estimation of the ambient noise has then been obtained for the pressure-correlated surface loading and the stochastic excitation of surface waves, at both long and very long period (e.g. Mars hum) and at medium or short period (e.g. regional and local generated surface waves). Results shows that most of these source of ambient noise will be detected, likely during the day for those generated locally and possibly during the night for those of global origin.

  6. Ground Motion Response to a ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench, including 340 m in a well. The conventional seismometer array consisted of 238 three- component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 meters in length and geophones were spaced atmore » approximately 60- meter intervals. Both DAS and conventional geophones recorded continuously over 15 days during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise (SNR) ratios in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources, because the earthquake signal contains more low frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. In conclusion, the combination of good SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.« less

  7. Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data

    NASA Astrophysics Data System (ADS)

    Chabert, Anne; Minshull, Tim A.; Westbrook, Graham K.; Berndt, Christian; Thatcher, Kate E.; Sarkar, Sudipta

    2011-12-01

    The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites along the continental margin, using ray-trace forward modeling. Two southern sites were located in the vicinity of a 30 km long zone where methane gas bubbles escaping from the seafloor were observed during the cruise. The three remaining sites were located along an E-W orientated line in the north of the margin. At the deepest northern site, Vp anomalies indicate the presence of hydrate in the sediment immediately overlying a zone containing free gas up to 100-m thick. The acoustic impedance contrast between the two zones forms a bottom-simulating reflector (BSR) at approximately 195 m below the seabed. The two other sites within the gas hydrate stability zone (GHSZ) do not show the clear presence of a BSR or of gas hydrate. However, anomalously low Vp, indicating the presence of free gas, was modeled for both sites. The hydrate content was estimated from Vp and Vs, using effective-medium theory. At the deepest northern site, modeling suggests a pore-space hydrate concentration of 7-12%, if hydrate forms as part of a connected framework, and about 22% if it is pore-filling. At the two other northern sites, located between the deepest site and the landward limit of the GHSZ, we suggest that hydrate is present in the sediment as inclusions. Hydrate may be present in small quantities at these two sites (4-5%) of the pore space. The variation in lithology for the three sites indicated by high-resolution seismic profiles may control the distribution, concentration and formation of hydrate and free gas.

  8. Noise Characteristics of EarthScope Transportable Array Posthole Sensor Emplacements in Alaska and Canada

    NASA Astrophysics Data System (ADS)

    Aderhold, K.; Frassetto, A.; Busby, R. W.; Enders, M.; Bierma, R. M.; Miner, J.; Woodward, R.

    2016-12-01

    From 2011 to 2015, IRIS has built or upgraded 67 broadband seismic stations in Alaska and western Canada as part of the EarthScope Transportable Array (TA) program. An additional 72 stations will be completed by the fall of 2016. Nearly all use new posthole seismometers, emplaced at 3 m depth in cased holes within fractured bedrock outcrops, permafrost, or soil. Based on initial tests in Alaska, New Mexico, and California, this emplacement technique was chosen to streamline logistics in challenging, remote conditions as well as optimize station performance. A versatile drill capable of operating with a hammer bit or auger was developed specifically for the TA and is light enough to be transported by helicopter in a single load. The drilling system is ideal for TA deployment logistics in Alaska, but could be adapted to many regional or permanent network operations because it is easily transported on a flatbed truck and manuevered into tight working locations. The TA will complete another 73 installations in 2017 and operate the full network of 268 real-time stations through at least 2019. The removal of some TA stations is planned for 2020, but upgrades to existing stations are permanent contributions to these networks. The TA stations are a proof of concept for a new approach to emplacement of seismometers across a large network and will enable high-quality scientific research as well as advances in hazard monitoring. To evaluate the new and upgraded stations, we use probability density functions of hourly power spectral density computed by the IRIS DMC MUSTANG metric service for the continuous data recorded through 2016. Our results show that the noise performance of TA postholes in Alaska and Canada show significant improvement over the tank vaults of the lower-48 TA. With an ideal posthole drilled into bedrock or permafrost, noise levels can approach the quality of GSN stations particularly on the horizontal channels at long periods [>70 seconds]. Stations also display a strong but expected regional and seasonal variation. We provide notable examples of station performance, focusing on regional trends as well as the performance of stations upgraded from surface vault to posthole configuration.

  9. An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2016-12-01

    The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early warning for large regional events on North America's west coast.

  10. Significance and interest of dense seismic arrays for understanding the mechanics of clayey landslides: a test case of 150 nodes at Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Malet, Jean-Philippe; Hibert, Clément; Vergne, Jérôme

    2017-04-01

    Clayey landslides present various seismic sources generated by the slope deformation (rockfall, slidequakes, tremors, fluid transfers). However, the characterization of the micro-seismicity and the construction of advanced catalogs (classification of the seismic source, time, and location) are complex for such objects because of the variety of recorded signals, the low signal to noise ratios, the highly attenuating medium, and the small size of the object that limits the picking of the P and S-waves. A full understanding of the seismic sources is hence often difficult because of the few number of seismometers, the large distance source-to-sensor (> 50m) and because of the lack of a continous spatially distributed record of the slope deformation. Recent progress in the geophysical instrumentation allowed the deployment of a dense network of 150 ZLand nodes (Tesla Corp.) combined with a Ground-Based InSAR sensor (IDS, IBIS-FM) for a period of ca. 2 months at the Super-Sauze clayey landslide (South French Alps). The Zland nodes are vertical wireless seismometers with 12 days autonomy. Three nodes were co-located at 50 locations in the most active part of the landslide and above the main scarp with a sensor-to-sensor distance of ca. 50m and a sample frequency of 400Hz. The Ground-Based InSAR sensor was installed in front of the landslide at a distance of ca. 800m and acquired an image every 15 minutes. The seismic events are detected automatically based on their spectrogram content with Signal-to-Noise Ratio (SNR) larger than 1.5 and automatically classified using the Random Forest algorithm. The landslide endogenous sources are then located by optimization of the inter-trace correlation of the first arrivals. This experiment aims to document the deformation of the landslide by combining surface and in depth information and provides a new insight into the seismic sources interpretation. The spatial distribution of the deformation is compared to the location of the endogenous seismic events in order to analyze seismic vs. aseismic deformation.

  11. Exploring Seismic Noise with the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R. W.; Simpson, D. W.

    2009-12-01

    The large number of seismic stations that comprise the EarthScope USArray Transportable Array (TA) seismic network provide an unparalleled opportunity for studying how seismic noise evolves with time over a large portion of the North American continent. Power spectra for every station in the TA data are computed automatically, for every hour of every station-day, by the Quality Analysis Control Kit (QUACK) system at the IRIS Data Management Center. The power spectra utilize hour-long data segments, with 50% overlap between segments, providing spectral values in the band between 20 Hz and 172 s. Thus, at any in-band frequency one can construct a continuous two-year time history of seismic noise for every TA station. When the time variation of the power spectra values across the array are rendered as individual movie frames one can examine the evolution of seismic noise across the full spatio-temporal extent of the TA. Overall, the background noise levels (especially at periods below 10 s) are remarkably uniform across the entire array. Numerous expected features are present, including diurnal and annual variations, enhanced noise levels at coastal stations, transients related to large storms, and episodes when the observations of background noise are dominated by earthquake energy. Upgrades to the TA station instrumentation will provide the capability to measure additional physical factors relevant to seismic noise. All TA stations deployed after August 2009 include MEMS barometers that can measure atmospheric pressure from DC to approximately 0.1 Hz. In additional, several stations have been temporarily equipped with infrasound sensors. Previous research has highlighted the direct effect of atmospheric pressure fluctuations on very long period vertical seismometers. The relationship to noise observed on horizontal seismometers is more complex. However, with a large number of uniform installations it may be possible to make further progress. We will present analyses of the spatio-temporal evolution of noise observed on the TA stations and present preliminary results from the barometers and infrasound sensors that have been deployed with TA stations so far. We will discuss opportunities for augmenting TA stations with additional sensors that may further elucidate seismic noise processes.

  12. Testing various modes of installation for permanent broadband stations in open field environment

    NASA Astrophysics Data System (ADS)

    Vergne, Jérôme; Charade, Olivier; Arnold, Benoît; Louis-Xavier, Thierry

    2014-05-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, we plan to install more than one hundred new permanent broadband stations in metropolitan France within the next 6 years. Whenever possible, the sensors will be installed in natural or artificial underground cavities that provide a stable thermal environment. However such places do not exist everywhere and we expect that about half the future stations will have to be set up in open fields. For such sites, we are thus looking for a standard model of hosting infrastructure for the sensors that would be easily replicated and would provide good noise level performances at long periods. Since early 2013, we have been operating a prototype station at Clévilliers, a small location in the sedimentary Beauce plain, where we test three kinds of buried seismic vaults and a down-hole installation. The cylindrical seismic vaults are 3m deep and 1m wide and only differ by the type of coupling between the casing and the concrete slab where we installed insulated Trillium T120PA seismometers. The down-hole installation consists in a 3m deep well hosting a Trillium Posthole seismometer. For reference, another sensor has been installed in a ~50cm deep hole, similarly to the way we test every new potential site. Here we compare the noise level in each infrastructure at different frequencies. We observe quite similar performances for the vertical component recorded in the different wells. Conversely, the noise levels on the horizontal components at periods greater than 10s vary by more than 20dB depending on the installation condition. The best results are obtained in the completely decoupled vault and for the down-hole setting, both showing performances comparable to some of our permanent stations installed in tunnels. The amplitude of the horizontal noise also appears to be highly correlated to wind speed recorded on site, even at long periods. The variable response of each vault to such external forcing can partly explain the variations of the seismic noise levels.

  13. Is the Isabella anomaly a fossil slab or the foundered lithospheric root of the Sierra Nevada batholith?

    NASA Astrophysics Data System (ADS)

    Hoots, C. R.; Schmandt, B.; Clayton, R. W.; Hansen, S. M.; Dougherty, S. L.

    2015-12-01

    The Isabella Anomaly is a volume of relatively high seismic velocity upper mantle beneath the southern Great Valley in California. We deployed ~45 broadband seismometers in central California to test two main hypotheses for the origin of the Isabella Anomaly. One suggests that the Isabella Anomaly is the foundered lithospheric root of the southern Sierra Nevada batholith, which delaminated on account of eclogite-rich composition and translated westward as it began to sink into the asthenosphere. The other hypothesis suggests that the Isabella Anomaly is a fossil slab fragment attached to the Monterey microplate that lies offshore of central California and thus it is mechanically coupled to the Pacific plate. Prior seismic imaging with ~70 km station spacing cannot resolve the landward termination of Monterey microplate lithosphere beneath coastal California or where/if the Isabella Anomaly is attached to North America lithosphere beneath the Great Valley. The new temporary broadband array consists of 40 broadband seismometers with ~7 km spacing extending from the central California coast to the western Sierra Nevada batholith, plus some outliers to fill gaps in the regional network coverage. The temporary array was initially deployed in early 2014 and will continue to record until October 2015 so the complete data are not yet available. Preliminary Ps scattered wave images show an abrupt ~6 km increase in Moho depth eastward across the San Andreas fault, a strong positive impedance contrast that dips westward from ~7-25 km beneath Great Valley, and a sharp Moho with a slight westward dip beneath the western edge of the Sierra Nevada batholith. Apparently low impedance contrast characterizes the Moho beneath the eastern Great Valley and foothills, consistent with near mantle velocities in the lower crust. Processing of the cumulative data that will be available in October 2015 and incorporation of new tomography models into scattered wave imaging are needed before assessing the significance of potential uppermost mantle interfaces that may represent edges of the Isabella Anomaly. Results from Ps and Sp scattered wave imaging, ambient noise surface wave tomography, teleseismic body-wave tomography, and teleseismic shear wave splitting will be presented.

  14. Benchmarking passive seismic methods of estimating the depth of velocity interfaces down to ~300 m

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; Gorbatov, Alexei

    2016-04-01

    In shallow passive seismology it is generally accepted that the spatial autocorrelation (SPAC) method is more robust than the horizontal-over-vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in western Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Depths of this interface intersected in drill holes are between ~27 m and ~300 m. Seismometers were deployed in a three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium Compact 120 s broadband instruments. Data were acquired at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighbourhood algorithm, implemented in the geopsy modelling package (Wathelet, 2005, GRL v35). The HVSR technique yielded depth estimates of the target interface (Vs > 1000 m/s) generally within ±20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments which in turn overlie the target basement. Half of the SPAC estimates showed significantly higher errors than were obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low levels of anthropogenic noise at the benchmark sites. At a few sites SPAC waveform curves showed clear overtones suggesting that more reliable SPAC estimates may be obtained utilizing a multi-modal inversion. Nevertheless, our study indicates that reliable basin thickness estimates in the Australian conditions tested can be obtained utilizing HVSR data from a single seismometer, without a priori knowledge of the surface-wave velocity of the basin material, thereby negating the need to deploy cumbersome arrays.

  15. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays

    NASA Astrophysics Data System (ADS)

    Wang, Herbert F.; Zeng, Xiangfang; Miller, Douglas E.; Fratta, Dante; Feigl, Kurt L.; Thurber, Clifford H.; Mellors, Robert J.

    2018-06-01

    The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) × 500 m (width) × 400 m (depth) volume of the laboratory overlies a geothermal reservoir. The distributed acoustic sensing (DAS) array consisted of about 8400 m of fiber-optic cable in a shallow trench and 360 m in a well. The conventional seismometer array consisted of 238 shallowly buried three-component geophones. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100 m in length and geophones were spaced at approximately 60 m intervals. Both DAS and conventional geophones recorded continuously over 15 d during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on 2016 March 21. Its epicentre was approximately 150 km south-southeast of the laboratory. Several DAS line segments with co-located geophone stations were used to compare signal-to-noise ratios (SNRs) in both time and frequency domains and to test relationships between DAS and geophone data. The ratios were typically within a factor of five of each other with DAS SNR often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured for an earthquake can be better than for active sources because the earthquake signal contains more low-frequency energy and the noise level is also lower at those lower frequencies. Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms with particle-velocity waveforms recorded by geophones. Similar agreement was found between DAS and geophone observations and synthetic strain seismograms. The combination of good SNR in the seismic frequency band, high-spatial density, large N and highly accurate time control among individual sensors suggests that DAS arrays have potential to assume a role in earthquake seismology.

  16. Giant-FOG: A new player in ground motion instrumentation

    NASA Astrophysics Data System (ADS)

    Guattari, F.; de Toldi, E.; Bigueur, A.; Decitre, J. B.; Ponceau, D.; Sèbe, O.; Frenois, A.; Schindelé, F.; Moluçon, C.; Gaffet, S.; Ducloux, E.; Lefèvre, H.

    2017-12-01

    Based on recent experiences developing very low noise fiber-optic gyroscopes (FOG), first performance results on very large fiber-optic coils of up to 1m diameter are presented. The goal for constructing large FOGs is to evaluate experimentally the physical limits of this kind of technology and to reach the lowest possible noise. While these experiments are probing the fundamental limits of the FOG technology, they also serves as a first step for a cost effective very low noise laboratory rotational seismometer, which could be a game changer in instrumentation of ground motion. Build a Giant-FOG has several difficulties: The first is winding of the coil, the second concerns the mechanical substrate, and third is related to the measurement. - To our knowledge, a winding machine, large enough to wind coil of a 1 meter diameter, does not exist, but thanks to the iXblue expertise in the manufacturing of winding machines and calibration tables, a hydride system has been designed, merging these two technology to fulfill the requirement of winding a large coil on an adequate rotational platform. The characterization of the wobbles of the system will be presented, since this is a critical parameter for the winding and ultimately the performance. - To achieve the highest attainable measurement sensitivity to the real ground rotation, the design of the mechanical substrate of the coil is critical to reduce as much as possible the sensor sensitivities to environmental noises. A preliminary assessment of the global noise performance of the 1m diameter FOG sensor will be presented. - To demonstrate the on-site performance, the low noise inter-disciplinary underground laboratory (LSBB, Rustrel, France), with a dense array of precisely oriented broad-band seismometers, provides the possibility to compare Large FOG rotation records with Array Derivated Rotation measurement method. Results of different prototypes during the development process will be presented to underline the applicability of each technological response to the Large-FOG requirements. Finally we conclude with presentation of the achieved results with a 1m scale diameter FOG having more than 10km of fiber length.

  17. Tsunami hazards to U.S. coasts from giant earthquakes in Alaska

    USGS Publications Warehouse

    Ryan, Holly F.; von Huene, Roland E.; Scholl, Dave; Kirby, Stephen

    2012-01-01

    In the aftermath of Japan's devastating 11 March 2011Mw 9.0 Tohoku earthquake and tsunami, scientists are considering whether and how a similar tsunami could be generated along the Alaskan-Aleutian subduction zone (AASZ). A tsunami triggered by an earthquake along the AASZ would cross the Pacific Ocean and cause extensive damage along highly populated U.S. coasts, with ports being particularly vulnerable. For example, a tsunami in 1946 generated by a Mw 8.6 earthquake near Unimak Pass, Alaska (Figure 1a), caused significant damage along the U.S. West Coast, took 150 lives in Hawaii, and inundated shorelines of South Pacific islands and Antarctica [Fryer et al., 2004; Lopez and Okal, 2006]. The 1946 tsunami occurred before modern broadband seismometers were in place, and the mechanisms that created it remain poorly understood.

  18. News and Views: Teenage team traces terminal tracks; Outreach after IYA2009 - a school project; School seismometers; Clocking pulsars

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Digital cameras - inspired, of course, by astronomical research - are now ubiquitous. It seems that nothing happens anywhere in the world without it being recorded by a teenager and promptly uploaded to the net. This truism now extends to the edge of the atmosphere: a group of high-school students has recorded a video of the re-entry and disintegration of the Japanese spacecraft Hayabusa, from a plane over the Australian outback. International Year of Astronomy 2009 was a catalyst for astronomical societies and groups worldwide to do a bit more to engage the general public - but in many cases IYA2009 was only the start of a new enthusiasm for astronomy. This is the case for one state secondary school, whose outreach work is going from strength to strength.

  19. Activity in the Mission Control Center during Apollo 14

    NASA Image and Video Library

    1971-02-04

    S71-17610 (4 Feb. 1971) --- Partial view of activity in the Mission Operations Control Room in the Mission Control Center at the time the Apollo 14 S-IVB stage impacted on the lunar surface. The flight director's console is in the foreground. Eugene F. Kranz, chief of the MSC Flight Control Division, is in the right foreground. Seated at the console is Glynn S. Lunney, head of the Flight Director Office, Flight Control Division. Facing the camera is Gerald D. Griffin, flight director of the Third (Gold) Team. A seismic reading from the impact can be seen in the center background. The S-IVB impacted on the lunar surface at 1:40:54 a.m. (CST), Feb. 4, 1971, about 90 nautical miles south-southwest of the Apollo 12 passive seismometer. The energy release was comparable to 11 tons of TNT.

  20. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  1. Drill Bit Noise Illuminates the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Snieder, Roel; Sava, Paul; Taylor, Tom; Malin, Peter; Chavarria, Andres

    2008-09-01

    Extracting the vibration response of the subsurface from noise is a rapidly growing field of research [Curtis et al., 2006; Larose et al., 2006]. We carried out broadside imaging of the San Andreas fault zone (SAFZ) using drill bit noise created in the main hole of the San Andreas Fault Observatory at Depth (SAFOD), near Parkfield, Calif. Imaging with drill bit noise is not new, but it traditionally requires the measurement of the vibrations of the drill stem [Rector and Marion, 1991]; such measurements provide the waves radiated by the drill bit. At SAFOD, these measurements were not available due to the absence of an accelerometer mounted on the drill stem. For this reason, the new technique of deconvolution interferometry was used [Vasconcelos and Snieder, 2008]. This technique extracts the waves propagating between seismometers from recordings of incoherent noise.

  2. A Method for Estimating Meteorite Fall Mass from Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Laird, C.; Fries, M.; Matson, R.

    2017-01-01

    Techniques such as weather RADAR, seismometers, and all-sky cameras allow new insights concerning the physics of meteorite fall dynamics and fragmentation during "dark flight", the period of time between the end of the meteor's luminous flight and the concluding impact on the Earth's surface. Understanding dark flight dynamics enables us to rapidly analyze the characteristics of new meteorite falls. This analysis will provide essential information to meteorite hunters to optimize recovery, increasing the frequency and total mass of scientifically important freshly-fallen meteorites available to the scientific community. We have developed a mathematical method to estimate meteorite fall mass using reflectivity data as recorded by National Oceanic and Atmospheric Administration (NOAA) Next Generation RADAR (NEXRAD) stations. This study analyzed eleven official and one unofficial meteorite falls in the United States and Canada to achieve this purpose.

  3. Borehole Volumetric Strainmeter Calibration From a Nearby Seismic Broadband Array at Etna Volcano

    NASA Astrophysics Data System (ADS)

    Currenti, G.; Zuccarello, L.; Bonaccorso, A.; Sicali, A.

    2017-10-01

    Strainmeter and broadband seismic signals have been analyzed jointly with the aim of calibrating a borehole strainmeter at Etna volcano by using a seismo-geodetic technique. Our results reveal a good coherence between the dynamic strains estimated from seismometer data and strains recorded by a dilatometer in a low-frequency range [0.03-0.06 Hz] at the arrival of teleseismic waves. This significant coherence enabled estimating the calibration coefficient and making a comparison with calibration results derived from other methods. In particular, we verified that the proposed approach provides a calibration coefficient that matches the results obtained from the comparison of the recorded strain both with theoretical strain tides and with normal-mode synthetic straingrams. The approach presented here has the advantage of exploiting recorded seismic data, avoiding the use of computed strain from theoretical models.

  4. Test report on the model 44000 seismometer system

    NASA Astrophysics Data System (ADS)

    1988-08-01

    Teledyne Geotech has completed long period subsurface vault tests on four individual 44000 modules; two horizontal and two vertical. Each type of module is tested in tandem by comparing the outputs of aligned sensors. The latest data is outstanding, particularly that of the horizontal. At a period of 20 seconds, both vertical and horizontal channels show incoherent noise power of approximately-180 dB relative to 1 (m/sec-sq)sq/Hz. At a period of 64 seconds, the horizontal data is some 20 dB quieter than any previous borehole data and furthermore shows no increase with period, even at periods as long as 250 seconds. This performance is remarkable for a non-borehole installation. The vertical data shows excellent performance, although some temperature effects seem to be present. A detailed explanation of the experimental history and current tests follows.

  5. Combining Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swart, Peter K.; Dixon, Tim

    2014-09-30

    A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO 2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO 2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilizationmore » and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.« less

  6. Business grants

    NASA Astrophysics Data System (ADS)

    Twelve small businesses who are developing equipment and computer programs for geophysics have won Small Business Innovative Research (SBIR) grants from the National Science Foundation for their 1989 proposals. The SBIR program was set up to encourage the private sector to undertake costly, advanced experimental work that has potential for great benefit.The geophysical research projects are a long-path intracavity laser spectrometer for measuring atmospheric trace gases, optimizing a local weather forecast model, a new platform for high-altitude atmospheric science, an advanced density logging tool, a deep-Earth sampling system, superconducting seismometers, a phased-array Doppler current profiler, monitoring mesoscale surface features of the ocean through automated analysis, krypton-81 dating in polar ice samples, discrete stochastic modeling of thunderstorm winds, a layered soil-synthetic liner base system to isolate buildings from earthquakes, and a low-cost continuous on-line organic-content monitor for water-quality determination.

  7. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  8. How to recognize a “Beast Quake” and a “Dance Quake”

    USGS Publications Warehouse

    Malone, Stephen; Hall, Kelley; Simmons, Lynn; Vidale, John

    2015-01-01

    Any good seismologist–carryball (i.e., American football) fan remembers the “beast quake” of 2011. Seahawks fans’ exuberant reactions to a Marshawn Lynch (in beast mode) run caused the stadium to shake enough to be well recorded on a strong‐motion seismograph a block away (Vidale, 2011). With the Seahawks at home for the National Football Conference (NFC) Championship playoffs, both last year and this year, the Pacific Northwest Seismic Network (PNSN) received permission to install some seismometers in the stadium. Motivations for the experiment included testing the field and telemetry equipment, examining analysis and display techniques, and practicing quick reactions to mobilize field experiments. With PNSN students and staff who are also Seahawks fans, it was not hard to get volunteers to do the installations and monitor the on‐field actions and the resulting seismograms.

  9. Experimental investigations regarding the use of sand as an inhibitor of air convection in deep seismic boreholes

    USGS Publications Warehouse

    Holcomb, L. Gary; Sandoval, Leo; Hutt, Bob

    1998-01-01

    Tilt has been the nemesis of horizontal long period seismology since its inception. Modern horizontal long period seismometers with their long natural periods are incredibly sensitive to tilt. They can sense tilts smaller than 10-11 radians. To most readers, this is just a very very small number, so we will begin with an example, which should help to illustrate just how small 10-11 radians is.Suppose we have an absolutely rigid rod which is approximately 4170 kilometers long; this just happens to be the Rand McNally map scaled crow flight distance between Los Angeles and Boston. Tilting this rod 10-11 radians corresponds to raising one end of the rod 0.0000417 meters. Alas, this is just another very very small number! However, this corresponds to slipping a little less than one third a sheet of ordinary copying paper under one end of this perfectly rigid rod. To clarify, we mean, take a sheet of paper just like the paper this report is printed on and split it a little less than one third in the thickness direction, then put it under the end of the 4170 kilometer long rod! This will tilt the rod 10-11 radians.Real world seismometers are nowhere near the length of this rod. A KS-54000 is about two meters long. Tilting a rod only two meters long 10~n radians corresponds to moving one end of this rod a mere 0.00000000002 meters or 0.02 millimicrons. As one of the authors old math teachers used to say, "That's PDS" (PDS = Pretty Damn Small). Unfortunately, the long period seismologist does not have the luxury of ignoring PDS numbers when it suits him as the mathematician frequently does. He must live in the real world in which tilts this small create severe contamination of long period seismic data.At periods longer than 20 seconds, tilt noise contaminates the long period data from all instruments installed on or near the earth's surface. Many years of experimentation revealed that installing the sensors at depth in deep mines drastically reduced the level of tilt noise in long period data. However, low levels of tilt noise persisted even at great depth; this noise was caused by air convection in the vault in which the sensors were installed. Over the years, methods were developed to control the air motion with mechanical barriers (boxes) around the sensors and by stratifying (creating a situation in which the air temperature increases with height) the air in the vault near the seismometer. These methods decreased tilt noise in deep mines to very low levels. However, deep mines, that are economically and environmentally suitable and accessible to seismology, are not plentiful and are not evenly distributed over the earth's surface. Therefore, the borehole deployable Teledyne Geotech KS-36000 and later the KS-54000 sensor systems were developed to fulfill the need for instruments that could be installed at depth wherever high quality long period data was desired. Early in the development program, it became evident to the Teledyne Geotech personnel that air convection within the borehole was going to be a significant problem in KS deployments. Experimental and theoretical investigations conducted by Teledyne Geotech (see Douze and Sherwin, 1975, and Sherwin and Cook, 1976) produced a list of recommended installation procedures for reducing the effects of air convection. These procedures consisted of wrapping the sensor in a relatively thin layer of foam insulation, filling the free space volume in the vicinity of the centralizer-bail assembly with foam insulation, and the installation of styrofoam hole plugs immediately above the cable strain relief assembly at the top of the sensor package and at the top of the borehole. This technology has performed quite satisfactorily for over 20 years but evidence of tilt noise in the system output has persisted throughout the KS deployment program (the evidence was that the horizontal components were usually noisier than the vertical components) even in deep boreholes. Some deep borehole sites have been plagued by quite high levels of horizontal noise. Therefore, there has been a definite need for a new technique for controlling low level tilt noise in deep boreholes and the use of sand has been under consideration for several years.Figure 1 contains conceptual illustrations of both the conventional holelock installed KS sensor system and the same sensor installed in sand. This figure demonstrates the major differences between the two installation methods. The curved arrows in the borehole on the left in the figure denote possible air convection cells which are believed to be the source of tilt noise in some of the conventional installations. This air motion is eliminated in a sand installation by filling most of the free air volume surrounding the seismometer with sand as shown in the right hand portion of the figure. The sand actually performs two functions; it prevents air motion and provides a remarkably ridgid clamping of the seismometer in the borehole. This report presents the results of quantitative experimental investigations into the effectiveness of controlling low level air convection in seismic borehole installations with sand. The main body of the experimental effort consisted of installing two KS-540001 sensor systems in closely spaced shallow boreholes, allowing the sensors to reach equilibrium operation, and then pouring sand into both boreholes to observe any changes caused by pouring sand into the holes. The hypothesis of the experiment was that the sand would fill up the entire free air volume between the sensor package and the borehole walls thereby preventing movement of the air in the vicinity of the sensor package. The validity of this hypothesis had been qualitatively proven by earlier experiments at ASL and by the sand installations at the IRIS/ASL stations ANMO in 1995 and COLA in 1996. This experiment documents the degree of improved noise levels to be expected if KS instruments are installed in sand instead of in the conventional manner.

  10. Experimental study on the impact-induced seismic wave propagating through granular materials: Implications for a future asteroid mission

    NASA Astrophysics Data System (ADS)

    Yasui, M.; Matsumoto, E.; Arakawa, M.; Matsue, K.; Kobayashi, N.

    2014-07-01

    Introduction: A seismic wave survey is a direct method to investigate the sub-surface structures of solid bodies, so we measured and analyzed these seismic waves propagating through these interiors. Earthquake and Moonquake are the only two phenomena that have been observed to explore these interiors until now, while the future surveys on the other bodies, (solid planets and/or asteroids) are now planned. To complete a seismic wave survey during the mission period, an artificial method that activates the seismic wave is necessary and one candidate is a projectile collision on the target body. However, to utilize the artificial seismic wave generated on the target body, the relationship between the impact energy and the amplitude and the decay process of the seismic wave should be examined. If these relationships are clarified, we can estimate the required sensitivity of seismometers installed on the target body and the possible distance from the seismic origin measurable for the seismometer. Furthermore, if we can estimate the impact energy from the observed seismic wave, we expect to be able to estimate the impact flux of impactors that collided on the target body. McGarr et al. (1969) did impact experiments by using the lexan projectile and two targets, quartz sand and sand bonded by epoxy cement, at 0.8-7 km/s. They found a difference of seismic wave properties between the two targets, and calculated the conversion efficiency to discuss the capability of detection of seismic waves on the Moon. However, they did not examine the excitation and propagation properties of the seismic waves in detail. In this study, we carried out impact experiments in the laboratory to observe the seismic waves by accelerometers, and examined the effects of projectile properties on the excitation and propagation properties of the seismic waves. Experimental methods: We made impact experiments by using a one-stage gas gun at Kobe University. Projectiles were a polycarbonate cylinder with a diameter of 10 mm and a height of 10 mm, and stainless steel and alumina balls with a diameter of 3 mm. The stainless steel and alumina projectiles were accelerated with a sabot made of polyethylene. The impact velocity was from 20 to 100 m/s. The target was a non-cohesive glass bead with a mean particle diameter of 200 μ m prepared by putting the particles into a container with a diameter of 300 mm and a height of 100 mm, up to 80 mm depth. The target porosity was about 40%. A chamber that we set the target in was evacuated below 1000 Pa. Three accelerometers (response frequency < 10 kHz) were set on the target surface at different distances from the impact point. The observed seismic waves were recorded on a data logger (A/D conversion rate 100 kHz). Experimental results: First, we examined the propagation velocity of the seismic wave by using the traveling time from the impact point to the site of the accelerometer, then the impact velocity was obtained to be 105 ± 15 m/s. Next, we discovered that the maximum acceleration, g_max, had a good relationship to the normalized distance, x/R (x: distance from impact point, R: crater radius) and it was fitted by the following equation, g_max=268(x/R)^{-2.8}, irrespective of projectile types. These results mean that the seismic wave attenuates with a similar waveform scaled by the crater radius on the same target. The duration keeping the maximum acceleration was measured to have a half width of g_max peak on the waveform, and it was estimated to be ˜0.3 ms. This value is almost consistent with the penetration time of projectiles estimated by the model proposed by Niimi et al. (2011). McGarr et al. (1969) studied the momentum conversion efficiency from the projectile momentum to the target momentum transferred by the seismic wave and obtained it as the ratio of the momentum calculated by the particle motion, I, to the projectile momentum, I_p. In our study, the I/I_p was obtained to be 0.23-1.56. This range was almost consistent with that of McGarr et al. (1969), 0.39-1.62. We can conclude that I/I_p is independent of the impact velocity. Implications for planetary exploration: According to the previous results, we can discuss the sensitivity of the seismometer to detect the seismic wave induced by an artificial impactor on asteroids. We calculated the maximum acceleration on asteroids with two different sizes, such as the sizes of Eros and 1999JU3, by assuming that the projectile made of copper with a mass of 2 kg impacted at 2 km/s. In this calculation, we used the crater scaling law and the attenuation equation of g_max obtained in our study. As a result, the seismometer could detect the seismic wave only around the crater cavity on an Eros-sized asteroid while it could detect the wave globally on a 1999JU3-sized asteroid.

  11. Upper crustal structure of Madeira Island revealed from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo

    2015-06-01

    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  12. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    NASA Astrophysics Data System (ADS)

    O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-07-01

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  13. Deep bore hole instrumentation along San Francisco Bay Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakun, W.; Bowman, J.; Clymer, R.

    1998-10-01

    The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program,more » and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.« less

  14. On the use of volumetric strain meters to infer additional characteristics of short-period seismic radiation

    USGS Publications Warehouse

    Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.

    1989-01-01

    Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors

  15. Towards the miniaturization of monolithic folded pendulums: a new approach to the implementation of small and light sensors for ground, space, and marine applications

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.

    2018-03-01

    The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.

  16. Infrasonic component of volcano-seismic eruption tremor

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David

    2014-03-01

    Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.

  17. Earthquake prediction with electromagnetic phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp; Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo; Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQsmore » prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.« less

  18. Effects of horizontal acceleration on the superconducting gravimeter CT #036 at Ishigakijima, Japan

    NASA Astrophysics Data System (ADS)

    Imanishi, Yuichi; Nawa, Kazunari; Tamura, Yoshiaki; Ikeda, Hiroshi

    2018-01-01

    In the gravity sensor of a superconducting gravimeter, a superconducting sphere as a test mass is levitated in a magnetic field. Such a sensor is susceptible to applied horizontal as well as vertical acceleration, because the translational degrees of freedom of the mass are not perfectly limited to the vertical direction. In the case of the superconducting gravimeter CT #036 installed at Ishigakijima, Japan, horizontal ground acceleration excited by the movements of a nearby VLBI antenna induces systematic step noise within the gravity recordings. We investigate this effect in terms of the static and dynamic properties of the gravity sensor using data from a collocated seismometer. It is shown that this effect can be effectively modeled by the coupling between the horizontal and vertical components in the gravity sensor. It is also found that the mechanical eigenfrequency for horizontal translation of the levitating sphere is approximately 3 Hz.[Figure not available: see fulltext.

  19. Seismic activity in the Sunnyside mining district, Utah, during 1967

    USGS Publications Warehouse

    Barnes, Barton K.; Dunrud, C. Richard; Hernandez, Jerome

    1969-01-01

    A seismic monitoring network near Sunnyside, Utah, consisting of a triangular array of seismometer stations that encompasses most of the mine workings in the district, recorded over 50,000 local earth tremors during 1967. About 540 of the tremors were of sufficient magnitude to be accurately located. Most of these were located within 2-3 miles of mine workings and were also near known or suspected faults. The district-wide seismic activity generally consisted of two different patterns--a periodic increase in the daily number of tremors at weekly intervals, and also a less regular and longer term increase and decrease of seismic activity that occurred over a period of weeks or even months. The shorter and more regular pattern can be correlated with the mine work week and seems to result from mining. The longer term activity, however, does not correlate with known mining causes sad therefore seems to be .caused by natural stresses.

  20. The SAFOD Pilot Hole seismic array: Wave propagation effects as a function of sensor depth and source location

    NASA Astrophysics Data System (ADS)

    Chavarria, J. Andres; Malin, Peter E.; Shalev, Eylon

    2004-05-01

    In July 2002 we installed a vertical array of seismometers in the San Andreas Fault Observatory at Depth (SAFOD) Pilot Hole (PH). The bottom of this 32 level, 1240 m long array of 3- components is located at a depth of ~2100 m below ground. Surface-explosion and microearthquake seismograms recorded by the array give valuable insights into the structure of the SAFOD site. The ratios of P- and S-wave velocities (Vp/Vs) along the array suggest the presence of two faults intersecting the PH. The Vp/Vs ratios also depend on source location, with high values to the NW, and lower ones to the SE, correlating with high and low creep rates along the SAF, respectively. Since higher ratios can be produced by increasing fluid saturation, we suggest that this effect might account for both our observations and their correlation with the creep distribution.

  1. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com; Peña Arellano, F. E.; Rodionov, A. V.

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organizedmore » Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.« less

  2. Seismic and infrasonic signals associated with an unusual collapse event at the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Green, D. N.; Neuberg, J.

    2005-04-01

    In March 2004, during a period of no magma extrusion at Soufrière Hills volcano, Montserrat, an explosive event occurred with little precursory activity. Recorded broadband seismic signals ranged from an ultra-long-period signal with a dominant period of 120 s to impulsive, short-duration events containing frequencies up to 30 Hz. Synthetic displacement functions were fit to the long-period data after application of the seismometer response. These indicate a shallow collapse of the volcanic edifice occurred, initiated ~300 m below the surface, lasting ~100 s. Infrasonic tremor and pulses were also recorded in the 1-20 Hz range. The high-frequency seismicity and infrasound are interpreted as the subsequent collapse of a gravitationally unstable buttress of remnant dome material which impacted upon the edifice surface. This unique dataset demonstrates the benefits of deploying multi-parameter stations equipped with broadband instruments.

  3. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry)more » are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.« less

  4. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  5. Silicon micromachined accelerometer/seismometer and method of making the same

    NASA Technical Reports Server (NTRS)

    Martin, Richard D. (Inventor); Pike, W. Thomas (Inventor)

    2001-01-01

    A silicon-based microaccelerometer for seismic application is provided using a low-resonant frequency (10 Hz), large proof mass (1 gram), and high Q suspension to achieve high sensitivity of less than 1 ng with a bandwidth a 0.05 to 50 Hz. The proof mass is cut away from a planar substrate in the form of a disk using abrasive cutting, which disk closely fits but does not touch a surrounding angular frame. The spring of the microaccelerometer between the angular frame and the proof mass is provided from two continuous, 3 microns thick membranes. The fixed capacitive electrodes are provided on separate, subsequently bonded substrates, and movable capacitive plates are provided on the membranes. By fabricating capacitive plates on the separate substrates, the gap between the fixed and movable capacitive plates in the differential capacitive sensor is closely controlled. The use of continuous membranes for the spring produces a shock resistant, robust sensor.

  6. Progress Towards the Development of a Long-Lived Venus Lander Duplex System

    NASA Technical Reports Server (NTRS)

    Dyson, Roger W.; Bruder, Geoffrey A.

    2010-01-01

    NASA has begun the development of a combined Stirling cycle power and cooling system (duplex) to enable the long-lived surface exploration of Venus and other harsh environments in the solar system. The duplex system will operate from the heat provided by decaying radioisotope plutonium-238 or its substitute. Since the surface of Venus has a thick, hot, and corrosive atmosphere, it is a challenging proposition to maintain sensitive lander electronics under survivable conditions. This development effort requires the integration of: a radioisotope or fission heat source; heat pipes; high-temperature, corrosion-resistant material; multistage cooling; a novel free-displacer Stirling convertor for the lander; and a minimal vibration thermoacoustic Stirling convertor for the seismometer. The first year effort includes conceptual system design and control studies, materials development, and prototype hardware testing. A summary of these findings and test results is presented in this report.

  7. A compact semiconductor digital interferometer and its applications

    NASA Astrophysics Data System (ADS)

    Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.

    2015-05-01

    The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.

  8. Mantle structure beneath the western edge of the Colorado Plateau

    USGS Publications Warehouse

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.

    2008-01-01

    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  9. Intermittent inflations recorded by broadband seismometers prior to caldera formation at Miyake-jima volcano in 2000

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Ohminato, Takao; Ida, Yoshiaki; Fujita, Eisuke

    2012-12-01

    Very-long-period (VLP) pulses with widths of 20 s on velocity seismograms were observed during volcanic activity at Miyake-jima Volcano, Japan in 2000. The VLP events occurred repeatedly during a few days prior to caldera formation and essentially vanished following the onset of caldera collapse. Waveform inversions of the pulse-like signals point to a source offset 3.5 km beneath and 1 km south of the summit. A candidate for the source mechanism is the inflation of an elliptical cylinder with axis tilted 20-30° from vertical and major axis of the elliptical cross section oriented northeast-southwest. The inferred mechanism appears consistent with a step-like pressurization of a magma reservoir impacted by a falling rock mass in response to gravitational instability. The repeated occurrences of the rock collapses lead to the caldera formation at Miyake-jima.

  10. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  11. Evidence for infragravity wave-tide resonance in deep oceans.

    PubMed

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  12. Progress Towards the Development of a Long-Lived Venus Lander Duplex System

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger, W.; Bruder, Geoffrey A.

    2011-01-01

    NASA has begun the development of a combined Stirling cycle power and cooling system (duplex) to enable the long-lived surface exploration of Venus and other harsh environments in the solar system. The duplex system will operate from the heat provided by decaying radioisotope plutonium-238 or its substitute. Since the surface of Venus has a thick, hot, and corrosive atmosphere, it is a challenging proposition to maintain sensitive lander electronics under survivable conditions. This development effort requires the integration of: a radioisotope or fission heat source; heat pipes; high-temperature, corrosion-resistant material; multistage cooling; a novel free-displacer Stirling convertor for the lander; and a minimal vibration thermoacoustic Stirling convertor for the seismometer. The first year effort includes conceptual system design and control studies, materials development, and prototype hardware testing. A summary of these findings and test results is presented in this report.

  13. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  14. Parallelization of the Coupled Earthquake Model

    NASA Technical Reports Server (NTRS)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  15. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.

    2015-12-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web application system. We also discuss our future plans for developments of monitoring data download system.*1 Long-Term Borehole Monitoring Data Site http://join-web.jamstec.go.jp/borehole/borehole_top_e.html

  16. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina peninsular and the South China is occurring. Moreover, a low-velocity layer on the top of the lower-crust was also modeled, and its intersection with the fractured zone formed a weak zone where stresses concentrated, and led to those abovementioned earthquakes along the LFZ.

  17. Sequence of slow slip events and low frequency earthquakes in the shallow part of the Nankai Trough seismogenic zone observed by seafloor observation network.

    NASA Astrophysics Data System (ADS)

    Araki, E.; Saffer, D. M.; Kopf, A.; To, A.; Ide, S.; Nakano, M.; Kimura, T.; Machida, Y.

    2016-12-01

    Seismic behavior of the thrust zone in trench side of the seismically coupled plate interface in the Nankai Trough is poorly understood because shore based seismic and geodetic observation does not have enough sensitivity to detect slow activity in the area. In these years, we constructed dense seafloor observation network in combination with pore-fluid pressure, strain, and seismic sensing in IODP deep boreholes (C0002G and C0010A) and 20+ seafloor broadband seismometers cabled to the observation network called DONET for long-term continuous observation in the To-Nankai area of the Nankai Trough, south of Japan. Analysis of the seismic records from DONET seafloor seismometer and pore-fluid pressure records from the boreholes in the period from Jan. 2011 to Apr. 2016 revealed the activities of the slow slip events (SSE), low frequency tremor (LFT), and very low frequency earthquakes (VLFE) in the observation network, detecting seven sequence of pore-fluid pressure transients in these boreholes representing SSEs and many LFT and VLFEs from seismic records. Some of the SSE sequence accompanies active LFT swarms in the regions offshore of the locked seismogenic zone. Some of the pressure transient initiate precedent to the LFT swarms, as well as some does not accompany obvious LFT activity, as if the SSE occurs "silently", suggesting LFT does not express SSE but LFT seems activated by the SSE. This is also supported by change of SSE pressure transient rate in accordance with LFT activity, observed in sequences in Mar. 2011, Oct. 2015, and April 2016. In the Oct. 2015 sequence, observed pressure transient in two boreholes indicates the slip propagates updip in the shallow subduction zone. In many sequences including this sequence, we ientify that the LFT swarm tends to migrate updip direction. The pressure transient in Apr. 2016 also followed this tendency, initiating from co-seismic compression by Apr. 1 earthquake occurred downdip side of the boreholes, followed by further compression due to the after slip, and slow release of the pressure suggesting SSE along with very active LFT and VLFE activities migrating offshore direction in the following two weeks period. The SSE seemed further activated by teleseismic events Kumamoto earthquake in Apr. 17.

  18. Influence of Traffic Vehicles Against Ground Fundamental Frequency Prediction using Ambient Vibration Technique

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Noh, M. S. Md; Mokhatar, S. N.; Anuar, M. A. Mohd; Ibrahim, A.; Ibrahim, Z.; Daud, M. E.

    2018-04-01

    Ambient vibration (AV) technique is widely used nowadays for ground fundamental frequency prediction. This technique is easy, quick, non-destructive, less operator required and reliable result. The input motions of ambient vibration are originally collected from surrounding natural and artificial excitations. But, careful data acquisition controlled must be implemented to reduce the intrusion of short period noise that could imply the quality of frequency prediction of an investigated site. In this study, investigation on the primary noise intrusion under peak (morning, afternoon and evening) and off peak (early morning) traffic flows (only 8 meter from sensor to road shoulder) against the stability and quality of ground fundamental frequency prediction were carried out. None of specific standard is available for AV data acquisition and processing. Thus, some field and processing parameters recommended by previous studies and guideline were considered. Two units of 1 Hz tri-axial seismometer sensor were closely positioned in front of the main entrance Universiti Tun Hussein Onn Malaysia. 15 minutes of recording length were taken during peak and off peak periods of traffic flows. All passing vehicles were counted and grouped into four classes. Three components of ambient vibration time series recorded in the North-South: NS, East-West: EW and vertical: UD directions were automatically computed into Horizontal to Vertical Spectral Ratio (HVSR), by using open source software of GEOPSY for fundamental ground frequency, Fo determination. Single sharp peak pattern of HVSR curves have been obtained at peak frequencies between 1.33 to 1.38 Hz which classified under soft to dense soil classification. Even identical HVSR curves pattern with close frequencies prediction were obtained under both periods of AV measurement, however the total numbers of stable and quality windows selected for HVSR computation were significantly different but both have satisfied the requirement given by SESAME (2004) guideline. Besides, the second peak frequencies from the early morning HVSR curve was clearly indicated between 8.23 to 8.55 Hz at very low amplitude (Ao < 2), but it should be neglected according to the similar guideline criteria. In conclusion, the ground fundamental frequency using HVSR method was successfully determined by 1 Hz seismometer instrument with recommended to specific parameters consideration on field as well as data processing, without disruption from the nearest traffic excitations.

  19. Time-Lapse Monitoring of an Engineering Scaled Excavation at Federal District, Brazil by Passive Ambient NoiseInterferometry

    NASA Astrophysics Data System (ADS)

    Cárdenas-Soto, M., Sr.; Hussain, Y.; Martinez-Carvajal, H., Sr.; Martino, S., Sr.; Rocha, M., Sr.

    2016-12-01

    Understanding the dynamics of stress relief mechanisms that lead to complete material collapse of unstable slopes is challenging. This research is focused on the novel use of Passive Ambient Noise Interferometry (PANI), a new technique that has revolutionized the seismology. In this technique the impulse response or Green function between two sensors is calculated by cross-correlation of the noise rescored at these stations. We applied PANI to monitor the deformational behavior of a prototype field experiment under semi controlled conditions for their use in landsliding early warning systems.The experimental setup consists of a 2 m engineering-scaled excavation,where induced failure was monitored by ambient vibrations propagating in tropical clayey deposits. The experimental setup consisted of dense network of 20 three components short period seismometers (Sercel L4C-3D) installed in three circular arrays with their distances from face of normal slope as 10, 20 and 30 meters, respectively.The frequency response of these seismometers is in range of 2-100 Hz. Recording was done in continuous mode at sampling rate of 1000 Hz with datalogger (RefTek DAS-130/3). Sensors were time synchronized by twenty 130 GPS/01. In this stage, the stress was applied on the one flank of this normal slope dug in the experimental field of University of Brasilia, by a hydraulic jack through a metallic plate. This incremental loading was kept on rising until the slope failure took place. This loading mechanism provided an opportunity to monitoring the changes in Rayleigh wave velocity before, during and after the complete failure. After initial processing, the green function (GF) or impulse response was calculated between each pair of sensors by cross correlation at time step of 4 second. All individual GFs, for entire monitoring period (30 minutes) were stacked to obtained a single reference GF. Stretching (dt/t) in waveform is calculated by subtracting individual GF from average GF, that gave Rayleigh wave velocity changes (dv/v=-dt/t). These changes correlated well with initiation and propagation of fracture at the face of this normal slope. It is concluded that cost effective technique, PANI has a good potential for the monitoring of time lapse changes of evolving fractures.

  20. Deep structure of the Algerian margin offshore Great Kabylie: Preliminary results of an offshore-onshore seismic profile (SPIRAL campaign)

    NASA Astrophysics Data System (ADS)

    Chafik, Aidi; Abd el Karim, Yelles; Marie-Odile, Beslier; Frauke, Klingelhoefer; Philippe, Schnurle; Rabah, Bracene; Hamou, Djellit; Audrey, Galve; Laure, Schenini; Françoise, Sage; Abdallah, Bounif Mohand ou; Philippe, Charvis

    2013-04-01

    In October-November 2009 the Algerian-French SPIRAL research program (Sismique Profonde et Investigation Régionale du Nord de l'ALgérie) was conducted onboard the R/V Atalante in order to understand the deep structure and tectonic history of the Algerian Margin using multichannel and wide-angle seismic data. An extensive dataset was acquired along five regional transects off Algeria, from Arzew Bay to the west, to Annaba to the east. The profiles range from 80 to 180 km long and around 40 ocean-bottom seismometers were deployed on each profile. All profiles were extended on land up to 125 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. We present the preliminary results from modeling of deep and superficial structures in the central Algerian margin, more precisely in the region of the Great Kabylie where a N-S transect of combined wide-angle data using a set of 40 OBS (ocean bottom seismometer) and 24 on-land seismological stations and reflection seismic data was acquired. The profile with a total length of about 260 km (140 km offshore and approximately 124 km onshore), crosses from the north to south the Algeria-Provence Basin, the central Algerian Margin and onshore the geological unit of the Great Kabylie that represents the Kabylides block and the transitional zone between the internal zone (Kabylides) and the external zone in the central Algeria. The network (OBS and seismological stations), recorded 1031 low frequency air gun shots in order to ensure good penetration in the crust. Travel time tomography of first arrivals time of OBS data has yielded a preliminary model of P wave velocities along the profile. In the oceanic domain, a relatively thin crust of about 5 km thickness was imaged overlying a mantle characterized by seismic velocities of about 8 km/s, and covered by a thin sedimentary layer of about 2 km thickness. For the study of the sedimentary cover near the margin several MCS profiles were acquired in this region during the Spiral survey and previously by the Maradja cruise. This data sets allows to image reactivation of the Algerian Margin in this region.

Top