Development of genetically engineered bacteria for production of selected aromatic compounds
Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan
2001-01-01
The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.
Selective Sorbents For Purification Of Hydrocarbons
Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.
2006-04-18
A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form p-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by p-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
Selective sorbents for purification of hydrocarbons
Yang, Ralph T.; Hernandez-Maldonado, Arturo J.; Yang, Frances H.; Takahashi, Akira
2006-08-22
A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
Selective sorbents for purification of hydrocarbons
Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.
2006-05-30
A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
Selective sorbents for purification of hydrocartons
Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hermandez-Maldonado, Arturo J.
2006-12-12
A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite
Lee, J.; Mortland, M.M.; Boyd, S.A.; Chiou, C.T.
1989-01-01
The adsorption of aromatic compounds by smectite exchanged with tetramethylammonium (TMA) has been studied. Aromatic compounds adsorbed by TMA-smectite are assumed to adopt a tilted orientation in a face-to-face arrangment with the TMA tetrahedra. The sorptive characteristics of TMA-smectite were influenced strongly by the presence of water. The dry TMA-smectite showed little selectivity in the uptake of benzen, toluene and xylene. In the presence of water, TMA-smectite showed a high degree of selectivity based on molecular size/shape, resulting in high uptake of benzene and progressively lower uptake of larger aromatic molecules. This selectivity appeared to result from the shrinkage of interlamellar cavities by water.
Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds.
Cho, Jian-Yang; Tse, Man Kin; Holmes, Daniel; Maleczka, Robert E; Smith, Milton R
2002-01-11
Arylboron compounds have intriguing properties and are important building blocks for chemical synthesis. A family of Ir catalysts now enables the direct synthesis of arylboron compounds from aromatic hydrocarbons and boranes under "solventless" conditions. The Ir catalysts are highly selective for C-H activation and do not interfere with subsequent in situ transformations, including Pd-mediated cross-couplings with aryl halides. By virtue of their favorable activities and exceptional selectivities, these Ir catalysts impart the synthetic versatility of arylboron reagents to C-H bonds in aromatic and heteroaromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.
Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.
Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh
2011-07-15
Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified. Copyright © 2011 Elsevier B.V. All rights reserved.
Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.
Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark
2015-03-21
Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.
Bacterial Degradation of Aromatic Compounds
Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.
2009-01-01
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284
Selective Oxidation of Lignin Model Compounds.
Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John
2018-05-02
Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biodegradation of Aromatic Compounds by Escherichia coli
Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.
2001-01-01
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263
Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.
2013-01-01
Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911
Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors
Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...
2015-11-14
The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less
2012-01-01
Background The endocannabinoid system is involved in many physiological and pathological processes. Two receptors (cannabinoid receptor type 1 (CB1) and type 2 (CB2)) are known so far. Many unwanted psychotic side effects of inhibitors of this system can be addressed to the interaction with CB1. While CB1 is one of the most abundant neuroreceptors, CB2 is expressed in the brain only at very low levels. Thus, highly potent and selective compounds for CB2 are desired. N-aryl-((hetero)aromatic)-oxadiazolyl-propionamides represent a promising class of such selective ligands for the human CB2. Here, a library of various derivatives is studied for suitable routes for labelling with 18F. Such 18F-labelled compounds can then be employed as CB2-selective radiotracers for molecular imaging studies employing positron emission tomography (PET). Results By varying the N-arylamide substructure, we explored the binding pocket of the human CB2 receptor and identified 9-ethyl-9H-carbazole amide as the group with optimal size. Radioligand replacement experiments revealed that the modification of the (hetero)aromatic moiety in 3-position of the 1,2,4-oxadiazoles shows only moderate impact on affinity to CB2 but high impact on selectivity towards CB2 with respect to CB1. Further, we could show by autoradiography studies that the most promising compounds bind selectively on CB2 receptors in mouse spleen tissue. Molecular docking studies based on a novel three-dimensional structural model of the human CB2 receptor in its activated form indicate that the compounds bind with the N-arylamide substructure in the binding pocket. 18F labelling at the (hetero)aromatic moiety at the opposite site of the compounds via radiochemistry was carried out. Conclusions The synthesized CB2-selective compounds have high affinity towards CB2 and good selectivity against CB1. The introduction of labelling groups at the (hetero)aromatic moiety shows only moderate impact on CB2 affinity, indicating the introduction of potential labelling groups at this position as a promising approach to develop CB2-selective ligands suitable for molecular imaging with PET. The high affinity for human CB2 and selectivity against human CB1 of the herein presented compounds renders them as suitable candidates for molecular imaging studies. PMID:23067874
Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature
Baccar, Hamdi; Clément, Pierrick; Abdelghani, Adnane
2015-01-01
Summary Here we report on the gas sensing properties of multiwalled carbon nanotubes decorated with sputtered Pt or Pd nanoparticles. Sputtering allows for an oxygen plasma treatment that removes amorphous carbon from the surface of the carbon nanotubes and creates oxygenated surface defects in which metal nanoparticles nucleate within a few minutes. The decoration with the 2 nm Pt or the 3 nm Pd nanoparticles is very homogeneous. This procedure is performed at the device level (i.e., for carbon nanotubes deposited onto sensor substrates) for many devices in one batch, which illustrates the scalability for the mass production of affordable nanosensors. The response to selected aromatic and non-aromatic volatile organic compounds, as well as pollutant gases has been studied. Pt- and Pd-decorated multiwalled carbon nanotubes show a fully reversible response to the non-aromatic volatile organic compounds tested when operated at room temperature. In contrast, these nanomaterials were not responsive to the aromatic compounds studied (measured at concentrations up to 50 ppm). Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient. PMID:25977863
Biodegradation studies of selected hydrocarbons from diesel oil.
Sepic, E; Trier, C; Leskovsek, H
1996-10-01
In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.
NASA Astrophysics Data System (ADS)
Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang
2017-12-01
The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.
Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang
2017-12-05
The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.
On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids
Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton
2007-01-01
The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.
Gu, Li; Xue, Lichun; Song, Qi; Wang, Fengji; He, Huaqin; Zhang, Zhongyi
2016-12-01
During commercial transactions, the quality of flue-cured tobacco leaves must be characterized efficiently, and the evaluation system should be easily transferable across different traders. However, there are over 3000 chemical compounds in flue-cured tobacco leaves; thus, it is impossible to evaluate the quality of flue-cured tobacco leaves using all the chemical compounds. In this paper, we used Support Vector Machine (SVM) algorithm together with 22 chemical compounds selected by ReliefF-Particle Swarm Optimization (R-PSO) to classify the fragrant style of flue-cured tobacco leaves, where the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) were 90.95% and 0.80, respectively. SVM algorithm combined with 19 chemical compounds selected by R-PSO achieved the best assessment performance of the aromatic quality of tobacco leaves, where the PCC and MSE were 0.594 and 0.263, respectively. Finally, we constructed two online tools to classify the fragrant style and evaluate the aromatic quality of flue-cured tobacco leaf samples. These tools can be accessed at http://bioinformatics.fafu.edu.cn/tobacco .
Beta-galactosidase catalyzed selective galactosylation of aromatic compounds.
Bridiau, Nicolas; Taboubi, Selma; Marzouki, Nejib; Legoy, Marie Dominique; Maugard, Thierry
2006-01-01
A new approach to galacto-oligosaccharides and galacto-conjugates synthesis performed by the beta-galactosidase from Kluyveromyces lactis is reported. The enzymatic galactosylation of eight kinds of adsorbed aromatic primary alcohols, in particular the two drugs guaifenesin and chlorphenesin, gave the corresponding beta-D-galacto-pyranosides in yields ranging between approximately 10% and 96%. For the first time, we have showed that the adsorption of acceptor substrates onto solid supports such as silica gel influences the yield and the selectivity of galacto-conjugates synthesis. In particular, we observed that adsorption of acceptor favored the synthesis of digalactosylated compounds.
Bagheri, Minoo; Masoomi, Mohammad Yaser; Morsali, Ali; Schoedel, Alexander
2016-08-24
A dye-sensitized metal-organic framework, TMU-5S, was synthesized based on introducing the laser dye Rhodamine B into the porous framework TMU-5. TMU-5S was investigated as a ratiometric fluorescent sensor for the detection of explosive nitro aromatic compounds and showed four times greater selectivity to picric acid than any state-of-the-art luminescent-based sensor. Moreover, it can selectively discriminate picric acid concentrations in the presence of other nitro aromatics and volatile organic compounds. Our findings indicate that using this sensor in two dimensions leads to a greatly reduced environmental interference response and thus creates exceptional sensitivity toward explosive molecules with a fast response.
Activity of selected aromatic amino acids in biological systems.
Krzyściak, Wirginia
2011-01-01
Besides the structural function in proteins, aromatic amino acids are precursors of many important biological compounds essential for normal functioning of the human organism. Many of these compounds may be used as markers for identification of specific pathological states. Comprehensive knowledge about the metabolism of aromatic amino acids and mechanisms of action of their metabolites made it possible to develop effective treatments for many disorders. However, it should not be forgotten that in some pathological conditions, these compounds could not only be involved in the pathogenesis of many disease entities but could also be used as an important tool in prediction of many diseases. This paper contains a review of published literature on aromatic amino acids in the context of physiological processes of the human body and chosen social disorders, such as cancers; psychiatric disorders: depression, anxiety states, schizophrenia, bipolar affective disorders; neurodegenerative, and cardiovascular diseases; chronic kidney insufficiency or diabetes.
Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon
NASA Astrophysics Data System (ADS)
Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.
2008-03-01
The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarkson, Sonya M.; Giannone, Richard J.; Kridelbaugh, Donna M.
The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. WhileEscherichia colihas been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineeredE. colito catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway fromPseudomonasmore » putidaKT2440. Then, we used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCELignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. By constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. Finally, we constructed and optimized one such pathway inE. colito enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.« less
Clarkson, Sonya M; Giannone, Richard J; Kridelbaugh, Donna M; Elkins, James G; Guss, Adam M; Michener, Joshua K
2017-09-15
The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways. Copyright © 2017 American Society for Microbiology.
Fontana, Luiz F; da Silva, Frederico S; de Figueiredo, Natália G; Brum, Daniel M; Netto, Annibal D Pereira; de Gigueiredo Junior, Alberto G; Crapez, Mirian A C
2010-12-01
The distribution of selected aromatic compounds and microbiology were assessed in superficial sediments from Suruí Mangrove, Guanabara Bay. Samples were collected at 23 stations, and particle size, organic matter, aromatic compounds, microbiology activity, biopolymers, and topography were determined. The concentration of aromatic compounds was distributed in patches over the entire mangrove, and their highest total concentration was determinated in the mangrove's central area. Particle size differed from most mangroves in that Suruí Mangrove has chernies on the edges and in front of the mangrove, and sand across the whole surface, which hampers the relationship between particle size and hydrocarbons. An average @ 10% p/p of organic matter was obtained, and biopolymers presented high concentrations, especially in the central and back areas of the mangrove. The biopolymers were distributed in high concentrations. The presence of fine sediments is an important factor in hydrocarbon accumulation. With high concentration of organic matter and biopolymers, and the topography with chernies and roots protecting the mangrove, calmer areas are created with the deposition of material transported by wave action. Compared to global distributions, concentrations of aromatic compounds in Suruí Mangrove may be classified from moderate to high, showing that the studied area is highly impacted.
High temperature normal phase liquid chromatography of aromatic hydrocarbons on bare zirconia.
Paproski, Richard E; Liang, Chen; Lucy, Charles A
2011-11-04
The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail. Copyright © 2011 Elsevier B.V. All rights reserved.
Akocak, Suleyman; Lolak, Nabih; Nocentini, Alessio; Karakoc, Gulcin; Tufan, Anzel; Supuran, Claudiu T
2017-06-15
A series of sixteen novel aromatic and heterocyclic bis-sulfonamide Schiff bases were prepared by conjugation of well known aromatic and heterocyclic aminosulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor pharmacophores with aromatic and heterocyclic bis-aldehydes. The obtained bis-sulfonamide Schiff bases were investigated as inhibitors of four selected human (h) CA isoforms, hCA I, hCA II, hCA VII and hCA IX. Most of the newly synthesized compounds showed a good inhibitory profile against isoforms hCA II and hCA IX, also showing moderate selectivity against hCA I and VII. Several efficient lead compounds were identified among this bis-sulfonamide Schiff bases with low nanomolar to sub-nanomolar activity against hCA II (K i s ranging between 0.4 and 861.1nM) and IX (K i s between 0.5 and 933.6nM). Since hCA II and hCA IX are important drug targets (antiglaucoma and anti-tumor agents), these isoform-selective inhibitors may be considered of interest for various biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming
2015-06-01
In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)
MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.
Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.
1964-01-01
Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630
Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.
Hoffmann, Norbert
2012-11-01
Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.
NASA Astrophysics Data System (ADS)
Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten
2015-06-01
Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wear, Jr., John Edmund
The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less
Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.
Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan
2016-01-01
Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Focht, D.D.
Microorganisms are frequently able to degrade anthropogenic materials using pathways that evolved for the assimilation of related naturally-occurring compounds. Complications can arise, however, during the metabolism of mixtures when incompatible intermediates are formed from different components. The breakdown of chloro- and methyl-aromatics, for example, produces catechols which are oxidized differently: chlorocatechols are normally cleaved by ortho fission and methylcatechols by meta fission. If both systems act simultaneously, suicide substrates or dead-end metabolites are usually formed. Nevertheless, bacteria differ in their, ability to cope with such mixtures. A unique bacterium, Pseudomonas cepacia MB2 was isolated by selective enrichment on 2-methylbenzoate, yetmore » was also able to fortuitously utilize 3-chloro-2-methylbenzoate as a sole carbon source. This strain is unique in its ability to utilize an aromatic acid containing both a methyl and chloro substituent via the metafission pathway without the production of suicidal products.« less
Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds
Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...
2017-05-17
In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less
Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.
Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G
2003-01-24
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, K.; Dickhut, R.M.
1995-12-31
Photodegradation kinetics of selected polycyclic aromatic hydrocarbons (PAHs) in the presence of various particle and dissolved phases were examined in surface microlayer (SM) and surface water under direct solar irradiance during different seasons. Halflives of PAHs during different seasons in the various media were determined. The results showed shorter halflives measured at the surface for PAHs in the SM media than in surface water. Submergence depth also significantly affected rate constants, and halflives for PAH compounds were 1.4 to 5 times shorter at the surface than at 14cm depth below the surface. In bulk SM media, the annual average halflivesmore » varied from 1.3 to 43 hours (midday) with different PAH compounds, and in filtered SM from 1.8 to 56.9 hours (midday). The effects of particles and DOC on the photodegradation of PAHs were also inspected. The results showed particulates and DOC both enhanced or decreased the photodegradation rate constants for selected PAHs. Overall, PAH photoreactivity is related to the compound`s maximum net atomic charge (MNAC) on the most reactive carbon center of a specific PAH molecule.« less
40 CFR 721.775 - Brominated aromatic com-pound (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the...
Mechanochemical Nitration of Aromatic Compounds
NASA Astrophysics Data System (ADS)
Lagoviyer, Oleg S.; Krishtopa, Larisa; Schoenitz, Mirko; Trivedi, Nirupam J.; Dreizin, Edward L.
2018-04-01
Nitration of organic compounds is necessary to produce many energetic materials, such as TNT and nitrocellulose. The conventional nitration process uses a mixture of concentrated sulfuric and nitric acids as nitrating agents and multiple solvents. The chemicals are corrosive and require special handling and disposal procedures. In this study, aromatic nitration has been achieved using solvent-free mechanochemical processing of environmentally benign precursors. Mononitrotoluene was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a Lewis acid catalyst. Several parameters affecting the desired product yield were identified and varied. A number of byproducts, i.e., dimers of toluene were also produced, but the selectivity was observed to increase with increasing mononitrotoluene yield. Both absolute mononitrotoluene yields and selectivity of its production increased with the increase in the energy transferred to the material from the milling tools.
Shi, Weimin; Zhang, Xiaoya; Shen, Qi
2010-01-01
Quantitative structure-activity relationship (QSAR) study of chemokine receptor 5 (CCR5) binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas and toxicity of aromatic compounds have been performed. The gene expression programming (GEP) was used to select variables and produce nonlinear QSAR models simultaneously using the selected variables. In our GEP implementation, a simple and convenient method was proposed to infer the K-expression from the number of arguments of the function in a gene, without building the expression tree. The results were compared to those obtained by artificial neural network (ANN) and support vector machine (SVM). It has been demonstrated that the GEP is a useful tool for QSAR modeling. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals
Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.-G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.
1986-01-01
Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene to Jurassic sediments and a set of of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. Aromatized derivatives were the major components, consisting of one or two aromatic ring species with the abietane and occasionally pimarane skeletons. The saturated structures were comprised primarily of the abietane and pimarane skeletons having from three to five carbon (C1, C2, etc.) substituents. Kaurane and phyllocladane isomers were present in only minor amounts. Bicyclic sesquiterpenoids as saturated and partial or fully aromatized forms were also common in these samples, but only traces of sesterterpenoids and triterpenoid derivatives were found. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the transformation of terrestrial cyclic terpenoids during diagenesis, constituting a general pathway for all terpenoids. ?? 1986 Pergamon Journals Ltd.
Baker, E.G.; Elliott, D.C.
1993-01-19
The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.
Site-selective arene C-H amination via photoredox catalysis.
Romero, Nathan A; Margrey, Kaila A; Tay, Nicholas E; Nicewicz, David A
2015-09-18
Over the past several decades, organometallic cross-coupling chemistry has developed into one of the most reliable approaches to assemble complex aromatic compounds from preoxidized starting materials. More recently, transition metal-catalyzed carbon-hydrogen activation has circumvented the need for preoxidized starting materials, but this approach is limited by a lack of practical amination protocols. Here, we present a blueprint for aromatic carbon-hydrogen functionalization via photoredox catalysis and describe the utility of this strategy for arene amination. An organic photoredox-based catalyst system, consisting of an acridinium photooxidant and a nitroxyl radical, promotes site-selective amination of a variety of simple and complex aromatics with heteroaromatic azoles of interest in pharmaceutical research. We also describe the atom-economical use of ammonia to form anilines, without the need for prefunctionalization of the aromatic component. Copyright © 2015, American Association for the Advancement of Science.
Dubey, Abhishek; Mishra, Anurag; Min, Jin Wook; Lee, Min Hyung; Kim, Hyunuk; Stang, Peter J.; Chi, Ki-Whan
2014-01-01
A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics. PMID:26321767
Pharmacophore Modelling and Synthesis of Quinoline-3-Carbohydrazide as Antioxidants
El Bakkali, Mustapha; Ismaili, Lhassane; Tomassoli, Isabelle; Nicod, Laurence; Pudlo, Marc; Refouvelet, Bernard
2011-01-01
From well-known antioxidants agents, we developed a first pharmacophore model containing four common chemical features: one aromatic ring and three hydrogen bond acceptors. This model served as a template in virtual screening of Maybridge and NCI databases that resulted in selection of sixteen compounds. The selected compounds showed a good antioxidant activity measured by three chemical tests: DPPH radical, OH° radical, and superoxide radical scavenging. New synthetic compounds with a good correlation with the model were prepared, and some of them presented a good antioxidant activity. PMID:25954520
Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy
2017-05-22
Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leonard, J D; Hellou, J
2001-03-01
Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.
QSAR Study for Carcinogenic Potency of Aromatic Amines Based on GEP and MLPs
Song, Fucheng; Zhang, Anling; Liang, Hui; Cui, Lianhua; Li, Wenlian; Si, Hongzong; Duan, Yunbo; Zhai, Honglin
2016-01-01
A new analysis strategy was used to classify the carcinogenicity of aromatic amines. The physical-chemical parameters are closely related to the carcinogenicity of compounds. Quantitative structure activity relationship (QSAR) is a method of predicting the carcinogenicity of aromatic amine, which can reveal the relationship between carcinogenicity and physical-chemical parameters. This study accessed gene expression programming by APS software, the multilayer perceptrons by Weka software to predict the carcinogenicity of aromatic amines, respectively. All these methods relied on molecular descriptors calculated by CODESSA software and eight molecular descriptors were selected to build function equations. As a remarkable result, the accuracy of gene expression programming in training and test sets are 0.92 and 0.82, the accuracy of multilayer perceptrons in training and test sets are 0.84 and 0.74 respectively. The precision of the gene expression programming is obviously superior to multilayer perceptrons both in training set and test set. The QSAR application in the identification of carcinogenic compounds is a high efficiency method. PMID:27854309
Pseudomonas putida as a platform for the synthesis of aromatic compounds.
Molina-Santiago, Carlos; Cordero, Baldo F; Daddaoua, Abdelali; Udaondo, Zulema; Manzano, Javier; Valdivia, Miguel; Segura, Ana; Ramos, Juan-Luis; Duque, Estrella
2016-09-01
Aromatic compounds such as l-phenylalanine, 2-phenylethanol and trans-cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by 'green' alternatives produced in microbial cell factories. The solvent-tolerant Pseudomonas putida DOT-T1E strain was genetically modified to produce up to 1 g l-1 of l-phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the pheAfbr gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase (kdc) and an alcohol dehydrogenase (adh) enabled the strain to produce up to 180 mg l-1 2-phenylethanol. When phenylalanine ammonia lyase (pal) was introduced, the resulting strain produced up to 200 mg l-1 of trans-cinnamate. These results demonstrate that P. putida can serve as a promising microbial cell factory for the production of l-phenylalanine and related compounds.
Doi, Takuya; Kachikawa, Norihide; Yasui, Takashi; Yuchi, Akio
2017-01-01
The niobium(V) complex with tetraphenylporphin having OH - as an auxilliay ligand exists as a dimeric complex, [Nb 2 (tpp) 2 O 3 ] at a total concentration >10 -4.5 mol dm -3 , and reacts with an aliphatic or aromatic polyhydroxy compound to form a monomeric complex containing chelate rings by coordination of the deprotonated species, and to cause an appreciable UV-Vis spectral change. In contrast to phenylboronic acid (PBA), the reactivity of [Nb 2 (tpp) 2 O 3 ] is independent of pH at least between 4 and 8. Aliphatic comounds are more reactive than aromatic compounds in dioxane-water, while the reactivity order is reversed in the two-phase reaction. The sugar selectivity order of [Nb 2 (tpp) 2 O 3 ] in dioxane-water (10:1) (sorbose > fructose > mannose > arabinose, galactose > glucose) is appreciably different from that of PBA (fructose > sorbose > arabinose > galactose > mannose > glucose). This may be related to the difference in size of the Lewis acidic center.
Escribano, R; González-Arenzana, L; Portu, J; Garijo, P; López-Alfaro, I; López, R; Santamaría, P; Gutiérrez, A R
2018-06-01
Twenty-five enological yeasts belonging to nine different species (Candida zeylanoides, Cryptococcus uzbekistanensis, Debaryomyces hansenii, Lachancea thermotolerans, Metschnikowia pulcherrima, Torulaspora delbrueckii, Williopsis pratensis, Zygosaccharomyces bailii and Saccharomyces cerevisiae) were screened for aroma formation and fermentative behaviour as part of a non-Saccharomyces yeast selection programme. Pure cultures were inoculated in pasteurized grape juice in order to perform alcoholic fermentations. Some non-Saccharomyces species did not ferment, others did not get established and none of them completed alcoholic fermentations. The physico-chemical parameters of the wines and the abundance of aromatic compounds at the end of alcoholic fermentation highlighted the notable differences in the aroma-forming ability and fermentative behaviour of the different non-Saccharomyces species, but not within clones. Lower diversity was detected within non-Saccharomyces species than that reported in S. cerevisiae with regard to enological behaviour and aromatic profiles. Metschnikowia pulcherrima and L. thermotolerans are the two species with higher possibilities to become an inoculum. Few significant differences were found within clones of the same species, but very important parameters in wine quality, such as volatile acidity, ethyl acetate and acetoin, which would justify selection programmes within those species. The results also demonstrated that T. delbrueckii and L. thermotolerans are two close species in their aromatic profiles. © 2018 The Society for Applied Microbiology.
Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri
2013-01-18
A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.
Baker, Eddie G.; Elliott, Douglas C.
1993-01-01
The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.
Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar
2015-03-01
Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.
Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View
Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo
2009-01-01
Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534
Lee, Jin-Ho; Wendisch, Volker F
2017-09-10
Aromatic chemicals that contain an unsaturated ring with alternating double and single bonds find numerous applications in a wide range of industries, e.g. paper and dye manufacture, as fuel additives, electrical insulation, resins, pharmaceuticals, agrochemicals, in food, feed and cosmetics. Their chemical production is based on petroleum (BTX; benzene, toluene, and xylene), but they can also be obtained from plants by extraction. Due to petroleum depletion, health compliance, or environmental issues such as global warming, the biotechnological production of aromatics from renewable biomass came more and more into focus. Lignin, a complex polymeric aromatic molecule itself, is a natural source of aromatic compounds. Many microorganisms are able to catabolize a plethora of aromatic compounds and interception of these pathways may lead to the biotechnological production of value-added aromatic compounds which will be discussed for Corynebacterium glutamicum. Biosynthesis of aromatic amino acids not only gives rise to l-tryptophan, L-tyrosine and l-phenylalanine, but also to aromatic intermediates such as dehydroshikimate or chorismate from which value-added aromatic compounds can be derived. In this review, we will summarize recent strategies for the biotechnological production of aromatic and related compounds from renewable biomass by Escherichia coli, Pseudomonas putida, C. glutamicum and Saccharomyces cerevisiae. In particular, we will focus on metabolic engineering of the extended shikimate pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Yinhui; Chang, Zhengfeng; Yang, Xiaohong; Qi, Meiling; Wang, Jinliang
2018-08-03
Herein we report a propeller-like hexaphenylbenzene-based hydrocarbon material (denoted as BT) as the stationary phase for capillary gas chromatography (GC). The statically-coated BT capillary column showed a high column efficiency of 4340 plates m -1 and weak polarity. Owing to its unique conformation, π-electron toroidal delocalization and intrinsic microporosity, the BT stationary phase exhibited interesting selectivity for aromatic compounds over alkanes. Compared with the graphene (G) column, the BT column showed much prolonged retention and high selectivity for aromatic isomers, especially methylnaphthalenes, dimethylnaphthalenes and phenanthrene/anthracene, mainly because of its propeller-like conformation with rich intercalation effects. Moreover, it exhibited good column repeatability (intra-day, inter-day) and reproducibility (between-column) with RSD values on the retention times less than 0.08% for intra-day, 0.32% for inter-day and 3.8% for between-column, respectively. Also, it showed good potential for determination of minor isomer impurities in real samples. To the best of our knowledge, this work presents the first example of employing an neat aromatic hydrocarbon material as the GC stationary phase with high selectivity for analytes of a wide ranging polarity. Copyright © 2018 Elsevier B.V. All rights reserved.
PERFLUORINATED AROMATIC COMPOUND
octafluorobiphenyl, and perfluoroaliphatic aldehydes. Synthetic routes to perfluoro cyclohexyls via reactions of phenyl and pentafluorphenyl lithium with...other perfluorinated aromatic compounds were employed in the synthesis of perfluorinated aromatic model compounds and polymers. The hydrogenic analogues...hydrazides, and imides. Synthetic routes to perfluoro aralkyl compounds are being investigated. Starting materials are tetrafluorobenzene
Di, Yanqiang; Liu, Jiemin; Liu, Jianguo; Liui, Siyuan; Yan, Luchun
2013-10-01
Gas chromatography-mass spectrometry, olfactometry, and other related methods were applied for the qualitative and quantitative analysis of the characteristics of odorous gases in the pretreatment workshop. The composition of odorous gases emitted from municipal food waste was also investigated in this study. The results showed that the tested gases are mainly composed of aromatic gases, which account for 49% of the total volatile organic compounds (VOC) concentrations. The nitrogenous compounds comprise 15% of the total concentration and the other gases comprise the remaining 36%. The level of odor concentration ranged from 2523 odor units (OU) m(-3) to 3577 OU m(-3). The variation of the total chemical composition ranged from 19,725 microg m(-3) to 24,184 microg m(-3). Among the selected four sampling points, the discharge outlet was detected to have the highest concentration in terms of odor, total chemical, sulfur compounds, and aromatics. The correlation analysis showed that the odor concentrations were evidently related to the total chemical composition, sulfur compounds, and aromatics (P < 0.05, n = 5). The odor activity value analysis identified the top three compounds, hydrogen sulfide (91.8), ethyl sulfide (35.8), and trimethylamine (70.6), which contribute to air pollution complaint of waste materials.
Dearomative dihydroxylation with arenophiles
NASA Astrophysics Data System (ADS)
Southgate, Emma H.; Pospech, Jola; Fu, Junkai; Holycross, Daniel R.; Sarlah, David
2016-10-01
Aromatic hydrocarbons are some of the most elementary feedstock chemicals, produced annually on a million metric ton scale, and are used in the production of polymers, paints, agrochemicals and pharmaceuticals. Dearomatization reactions convert simple, readily available arenes into more complex molecules with broader potential utility, however, despite substantial progress and achievements in this field, there are relatively few methods for the dearomatization of simple arenes that also selectively introduce functionality. Here we describe a new dearomatization process that involves visible-light activation of small heteroatom-containing organic molecules—arenophiles—that results in their para-cycloaddition with a variety of aromatic compounds. The approach uses N-N-arenophiles to enable dearomative dihydroxylation and diaminodihydroxylation of simple arenes. This strategy provides direct and selective access to highly functionalized cyclohexenes and cyclohexadienes and is orthogonal to existing chemical and biological dearomatization processes. Finally, we demonstrate the synthetic utility of this strategy with the concise synthesis of several biologically active compounds and natural products.
Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors.
Hammuda, Arwa; Shalaby, Raed; Rovida, Stefano; Edmondson, Dale E; Binda, Claudia; Khalil, Ashraf
2016-05-23
A novel series of substituted chalcones were designed and synthesized to be evaluated as selective human MAO-B inhibitors. A combination of either methylsulfonyl or trifluoromethyl substituents on the aromatic ketone moiety with a benzodioxol ring on the other end of the chalcone scaffold was investigated. The compounds were tested for their inhibitory activities on both human MAO-A and B. All compounds appeared to be selective MAO-B inhibitors with Ki values in the micromolar to submicromolar range. Molecular modeling studies have been performed to get insight into the binding mode of the synthesized compounds to human MAO-B active site. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty
2010-01-01
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less
Synthesis and antibacterial activity of aromatic and heteroaromatic amino alcohols.
de Almeida, Camila G; Reis, Samira G; de Almeida, Angelina M; Diniz, Claudio G; da Silva, Vânia L; Le Hyaric, Mireille
2011-11-01
Two series of aromatic and heteroaromatic amino alcohols were synthesized from alcohols and aldehydes and evaluated for their antibacterial activities. All the octylated compounds displayed a better activity against the four bacteria tested when evaluated by the agar diffusion method and were selected for the evaluation of minimal inhibitory concentration. The best results were obtained for p-octyloxybenzyl derivatives against Staphylococcus epidermidis (minimal inhibitory concentrations = 32 μm). © 2011 John Wiley & Sons A/S.
Lim, Seung Joo; Fox, Peter
2014-02-01
The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.
Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu
2015-06-12
The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Nitroxyl-mediated oxidation of lignin and polycarboxylated products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, Shannon S.; Rafiee, Mohammad
Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers ormore » oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.« less
Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.
Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N
2003-12-10
The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.
Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Nicolás-Vázquez, María Inés; Miranda-Ruvalcaba, René; Benítez-Cardoza, Claudia Guadalupe; Reséndiz-Albor, Aldo Arturo; Méndez-Méndez, Juan Vicente; Rosales-Hernández, Martha C
2015-01-01
Among the multiple factors that induce Alzheimer's disease, aggregation of the amyloid β peptide (Aβ) is considered the most important due to the ability of the 42-amino acid Aβ peptides (Aβ1-42) to form oligomers and fibrils, which constitute Aβ pathological aggregates. For this reason, the development of inhibitors of Aβ1-42 pathological aggregation represents a field of research interest. Several Aβ1-42 fibrillization inhibitors possess tertiary amine and aromatic moieties. In the present study, we selected 26 compounds containing tertiary amine and aromatic moieties with or without substituents and performed theoretical studies that allowed us to select four compounds according to their free energy values for Aβ1-42 in α-helix (Aβ-α), random coil (Aβ-RC) and β-sheet (Aβ-β) conformations. Docking studies revealed that compound 5 had a higher affinity for Aβ-α and Aβ-RC than the other compounds. In vitro, this compound was able to abolish Thioflavin T fluorescence and favored an RC conformation of Aβ1-42 in circular dichroism studies, resulting in the formation of amorphous aggregates as shown by atomic force microscopy. The results obtained from quantum studies allowed us to identify a possible pharmacophore that can be used to design Aβ1-42 aggregation inhibitors. In conclusion, compounds with higher affinity for Aβ-α and Aβ-RC prevented the formation of oligomeric species.
Essential oil composition of stems and fruits of Caralluma europaea N.E.Br. (Apocynaceae).
Zito, Pietro; Sajeva, Maurizio; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Formisano, Carmen; Senatore, Felice
2010-01-27
The essential oil of the stems and fruits of Caralluma europaea (Guss.) N.E.Br. (Apocynaceae) from Lampedusa Island has been obtained by hydrodistillation and its composition analyzed. The analyses allowed the identification and quantification of 74 volatile compounds, of which 16 were aromatic and 58 non-aromatic. Stems and fruits contained 1.4% and 2.7% of aromatic compounds respectively, while non-aromatic were 88.3% and 88.8%. Non-aromatic hydrocarbons were the most abundant compounds in both organs, followed by fatty acids. Data showed differences in the profiles between stems and fruits which shared only eighteen compounds; stems accounted for 38 compounds while fruits for 53. Fruits showed a higher diversity especially in aromatic compounds with twelve versus four in stems. Among the volatiles identified in stems and fruits of C. europaea 26 are present in other taxa of Apocynaceae, 52 are semiochemicals for many insects, and 21 have antimicrobial activity. The possible ecological role of the volatiles found is briefly discussed.
Romano, Patrizia; Pietrafesa, Rocchina; Romaniello, Rossana; Zambuto, Marianna; Calabretti, Antonella; Capece, Angela
2015-01-01
The most diffused starter formulation in winemaking is actually represented by active dry yeast (ADY). Spray-drying has been reported as an appropriate preservation method for yeast and other micro-organisms. Despite the numerous advantages of this method, the high air temperatures used can negatively affect cell viability and the fermentative performance of dried cells. In the present study, 11 wine S. cerevisiae strains (both indigenous and commercial) were submitted to spray-drying; different process conditions were tested in order to select the conditions allowing the highest strain survival. The strains exhibited high variability for tolerance to spray-drying treatment. Selected strains were tested in fermentation at laboratory scale in different formulations (free fresh cells, free dried cells, immobilized fresh cells and immobilized dried cells), in order to assess the influence of starter formulation on fermentative fitness of strains and aromatic quality of wine. The analysis of volatile fraction in the experimental wines produced by selected strains in different formulations allowed identification of > 50 aromatic compounds (alcohols, esters, ketones, aldehydes and terpenes). The results obtained showed that the starter formulation significantly influenced the content of volatile compounds. In particular, the wines obtained by strains in dried forms (as both free and immobilized cells) contained higher numbers of volatile compounds than wines obtained from fresh cells. Copyright © 2014 John Wiley & Sons, Ltd.
Mechanochemical Preparation of Organic Nitro Compounds
selectivity were found to depend on the ratios of the reactants and the catalyst. A parametric study addressed the effects of milling time, temperature ...Aromatic compounds such as toluene are commercially nitrated using a combination of nitric acid with other strong acids. This process relies on the...was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a catalyst. Several parameters affecting the desired product yield and
Process for removing halogenated aliphatic and aromatic compounds from petroleum products
Googin, J.M.; Napier, J.M.; Travaglini, M.A.
1983-09-20
A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.
Process for removing halogenated aliphatic and aromatic compounds from petroleum products
Googin, John M.; Napier, John M.; Travaglini, Michael A.
1983-01-01
A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.
Search for β-Secretase Inhibitors from Natural Spices.
Matsumura, Shinichi; Murata, Kazuya; Yoshioka, Yuri; Matsuda, Hideaki
2016-04-01
The growing number of Alzheimer's disease (AD) patients prompted us to seek effective natural resources for the prevention of AD. We focused on the inhibition of β-secretase, which is known to catalyze the production of senile plaque. Sixteen spices used in Asian countries were selected for the screening. Among the extracts tested, hexane extracts obtained from turmeric, cardamom, long pepper, cinnamon, Sichuan pepper, betel, white turmeric and aromatic ginger showed potent inhibitory activities. Their active principles were identified as sesquiterpenoids, monoterpenoids, fatty acid derivatives and phenylpropanoids using GC-MS analyses. The chemical structures and IC50 values of the compounds are disclosed. The results suggest that long-term consumption'of aromatic compounds from spices could be effective in the prevention of AD.
Oxidation of aromatic contaminants coupled to microbial iron reduction
Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.
1989-01-01
THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Uchino, Shou-ichi; Iwayanagi, Takao; Ueno, Takumi; Hashimoto, Michiaki; Nonogaki, Saburo
1987-08-01
This paper deals with a negative two-layer photoresist system utilizing a photoinduced insolubilization process at the interface. The bottom layer is a phenolic resin either with or without aromatic azide and the top layer is a photosensitive layer comprised of an aromatic diazonium compound and a water soluble polymer. Upon exposure to light, the diazo compound decomposes to cause insolubilization at the interface between the two layers. The system exhibits high contrast due to the combination of interfacial insolubilization and contrast enhancement by photobleaching of the diazonium compound. Patterns of 0.5 um lines and spaces are obtained using an i-line stepper and a resist system containing 4-diazo-N,N-dimethylaniline chloride zinc chloride in the top layer and 3-(4-azidostyry1)- 5,5-dimethyl- 2-cyclohexen-1-one in the bottom layer. Resists with varying spectral responses from mid-UV to g-line can be designed by selecting the kind of diazo compound used in the top layer.
Beloborodova, N V; Arkhipova, A S; Beloborodov, D M; Boĭko, N B; Mel'ko, A I; Olenin, A Iu
2006-02-01
The investigation quantitatively determined the content of low-molecular-weight aromatic compounds of microbial origin in the sera of 34 individuals by chromatographic mass spectrometry. An "Agilent Technogies 6890N" gas chromatograph with a 5973 mass selective detector was applied; chromatographic separation of components was effected on an Hp-5MS quartz capillary column. Aromatic small molecules originating from microbes (SMOM) were determined in the sera of 7 patients with sepsis. The diagnosis of sepsis was documented by the presence of the systemic inflammation syndrome and by that of bacteriemia and/or artificial ventilation-associated pneumonia along with the level of procalcitonin of higher than 10 ng/ml. The levels of aromatic SMOM were compared in 10 healthy donors, 8 preoperative cardiosurgical patients, and 9 patients with different abnormalities without sepsis treated in an intensive care unit (ICU). Serum phenylacetic and 3-phenylpropionic acids were found to be prevalent in the healthy donors and postoperative cardiosurgical patients. In ICU patients with different complications without sepsis, more than half the compounds under study were undetectable, the others were found in very low concentrations, which may be accounted for by antibiotic therapy. At the same time, almost the whole spectrum of the test compounds (other than 3-phenylpropionic acid) with the highest concentrations of 3-phenyllactic, p-hydroxyphenylacetic, 3-(p-hydroxyphenyl)lactic and 2-hydroxybutanic acids, was detectable in septic patients receiving a more intensive therapy. The differences were statistically significant (by the Mann-Whitney U-test; p < 0.05). By taking into account the potentially high biological activity of the test compounds, studies are to be continued in this area.
Googin, J.M.; Napier, J.M.; Travaglini, M.A.
1982-03-31
A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.
40 CFR 721.775 - Brominated aromatic com-pound (generic name).
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...
40 CFR 721.775 - Brominated aromatic com-pound (generic name).
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...
40 CFR 721.775 - Brominated aromatic com-pound (generic name).
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...
Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Yang, Yi; Ma, Jun; Yu, Jing; Zhao, Xi
2018-06-04
Our recent study has demonstrated that iodide (I - ) can be easily and almost entirely oxidized to hypoiodous acid (HOI) but not to iodate by nonradical activation of peroxydisulfate (PDS) in the presence of a commercial carbon nanotube (CNT). In this work, the oxidation kinetics of phenolic compounds by the PDS/CNT system in the presence of I - were examined and potential formation of iodinated aromatic products was explored. Experimental results suggested that I - enhanced the transformation of six selected substituted phenols, primarily attributed to the generation of HOI that was considerably reactive toward these phenolic compounds. More significant enhancement was obtained at higher I - concentrations or lower pH values, while the change of PDS or CNT dosages exhibited a slight impact on the enhancing effect of I - . Product analyses with liquid chromatography tandem mass spectrometry clearly revealed the production of iodinated aromatic products when p-hydroxybenzoic acid (p-HBA, a model phenol) was treated by the PDS/CNT/I - system in both synthetic and real waters. Their formation pathways probably involved the substitution of HOI on aromatic ring of p-HBA, as well as the generation of iodinated p-HBA phenoxyl radicals and subsequent coupling of these radicals. Given the considerable toxicity and harmful effects of these iodinated aromatic products, particular attention should be paid when the novel PDS/CNT oxidation technology is applied for treatment of phenolic contaminants in iodide-containing waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hatakeyama, Takuji; Kondo, Yoshiyuki; Fujiwara, Yu-Ichi; Takaya, Hikaru; Ito, Shingo; Nakamura, Eiichi; Nakamura, Masaharu
2009-03-14
A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp(3)-carbon-halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.
Patel, Ravi; Bothra, Shilpa; Kumar, Rajender; Crisponi, Guido; Sahoo, Suban K
2018-04-15
The present work reports the interaction of various vitamin B 6 cofactors with the red emitting glutathione stabilized copper nanoclusters (GSH-CuNCs). Addition of pyridoxamine (PM) resulted a new turn-on band at 410nm due to the possible adsorption over the surface of GSH-CuNCs. The nano-assembly PM-GSH-CuNCs was applied for the selective detection of nitro-aromatic compounds. Upon addition of picric acid (PA), the fluorescence of PM-GSH-CuNCs was selectively quenched at 410nm and ~ 625nm among the other tested nitro-aromatic compounds. With a linearity range from 9.9μM to 43μM, the concentration of PA can be detected down to 2.74μM. The high selectivity exhibited by the nano-assembly allows to detect PA in real samples like tap water, river water and matchstick. Advantageously, the nano-assembly PM-GSH-CuNCs was chemically adsorbed over the cellulosic strips and applied for the naked-eye detection of PA down to 1μM. Copyright © 2017 Elsevier B.V. All rights reserved.
Device for aqueous detection of nitro-aromatic compounds
Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.
1994-04-26
This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.
Device for aqueous detection of nitro-aromatic compounds
Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.
1994-01-01
This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.
Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun
2015-12-01
A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying
2016-01-07
Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (∼2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s(-1), with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.
Microbial Transformation of Esters of Chlorinated Carboxylic Acids
Paris, D. F.; Wolfe, N. L.; Steen, W. C.
1984-01-01
Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp; Yanagihara, Kazuyoshi; Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045
2012-10-05
Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, suchmore » as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.« less
Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.
2003-06-03
A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.
Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA
2008-04-08
A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.
Ozone-induced changes in natural organic matter (NOM) structure
Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.
1999-01-01
Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.
ZnCl 2 induced catalytic conversion of softwood lignin to aromatics and hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Zhang, Libing; Deng, Tiansheng
2016-01-01
Selective cleavage of C-O-C bonds in lignin without disrupting C-C linkages can result in releasing aromatic monomers and dimers that can be subsequently converted into chemicals and fuels. Results showed that both biomass-derived lignin and lignin model compounds were depolymerized in a highly concentrated ZnCl2 solution. Zn2+ ions in highly concentrated ZnCl2 solutions appeared to selectively coordinate with C-O-C bonds to cause key linkages of lignin much easier to cleave. In 63 wt.% ZnCl2 solution at 200 °C for 6 h, nearly half of the softwood technical lignin was converted to liquid products, of which the majority was alkylphenols. Resultsmore » indicated that most β-O-4 and Cmethyl-OAr bonds of model compounds were cleaved undersame conditions, providing a foundation towards understanding lignin depolymerization in a concentrated ZnCl2 solution. The phenolic products were further converted into cyclic hydrocarbons via hydrodeoxygenation and coupling reactions by co-catalyst Ru/C.« less
Parker, Jane K; Lignou, Stella; Shankland, Kenneth; Kurwie, Phillipa; Griffiths, Huw D; Baines, David A
2018-03-14
The popularity of smoked foodstuffs such as sauces, marinades, and rubs is on the rise. However, during the traditional smoking process, in addition to the desirable smoky aroma compounds, harmful polycyclic aromatic hydrocarbons (PAHs) are also generated. In this work, a selective filter was developed that reduces PAH concentrations in a smoke by up to 90% while maintaining a desirable smoky flavor. Preliminary studies using a cocktail of 12 PAHs stirred with a zeolite showed the potential for this zeolite to selectively remove PAHs from a simple solution. However, pretreatment of the smoke prior to application removed the PAHs more efficiently and is more widely applicable to a range of food ingredients. Although volatile analysis showed that there was a concomitant reduction in the concentration of the smoky compounds such as 2-methoxyphenol (guaiacol), 2-methylphenol ( o-cresol), and the isoeugenols, sensory profiling showed that the difference in perception of flavor was minimal.
Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S
2015-01-01
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo
Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.
Paleogene stratigraphy of the Solomons Island, Maryland corehole
Gibson, Thomas G.; Bybell, Laurel M.
1994-01-01
Purge and trap capillary gas chromatography/mass spectrometry is a rapid, precise, accurate method for determining volatile organic compounds in samples of surface water and ground water. The method can be used to determine 59 selected compounds, including chlorofluorohydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons. The volatile organic compounds are removed from the sample matrix by actively purging the sample with helium. The volatile organic compounds are collected onto a sorbant trap, thermally desorbed, separated by a Megabore gas chromatographic capillary column, ionized by electron impact, and determined by a full-scan quadrupole mass spectrometer. Compound identification is confirmed by the gas chromatographic retention time and by the resultant mass spectrum. Unknown compounds detected in a sample can be tentatively identified by comparing the unknown mass spectrum to reference spectra in the mass-spectra computer-data system library compiled by the National Institute of Standards and Technology. Method detection limits for the selected compounds range from 0.05 to 0.2 microgram per liter. Recoveries for the majority of the selected compounds ranged from 80 to 120 percent, with relative standard deviations of less than 10 percent.
PERFLUORINATED AROMATIC COMPOUNDS
decafluorodiphenylamine, 3,3’,4,4’-tetra substituted- hexafluorobiphenyls, tetrafluororesorcinol, perfluoroaromatic thioethers, and dithiols. These...and other perfluorinated aromatic compounds are the intermediates employed in the synthesis of perfluorinated model compounds and polymers.
Toxicity and biodegradability of selected N-substituted phenols under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.; Razo-Flores, E.; Hwu, C.S.
1995-12-31
The anaerobic toxicity and biodegradability of N-substituted aromatics were evaluated in order to obtain information on their ultimate biotreatment. The toxicity of selected N-substituted aromatic compounds toward acetoclastic methanogens in granular sludge was measured in batch assays. This toxicity was highly correlated with compound hydrophobicity, indicating that partitioning into the bacterial membranes was an important factor in the toxicity. However, other factors, such as chemical interactions with key cell components, were suggested to be playing an important role. Nitroaromatic compounds were, on the average, over 300-fold more toxic than their amino-substituted counterparts. This finding suggests that the facile reduction ofmore » nitro-groups known to occur in anaerobic environments would result in a high level of detoxification. To test this hypothesis, continuous lab-scale upward-flow anaerobic sludge bed reactors treating 2-nitrophenol and 4-nitrophenol were established. The 4-nitrophenol was readily converted to the corresponding 4-aminophenol, whereas complete mineralization of 2-nitrophenol via intermediate formation of 2-aminophenol was obtained. These conversions led to a dramatic detoxification of the nitrophenols, because it was feasible to treat the highly toxic nitrophenolics at high organic loading rates.« less
Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu
2017-01-01
More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
NASA Astrophysics Data System (ADS)
Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying
2015-12-01
Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry. Electronic supplementary information (ESI) available: Detailed SEM and TEM images, XRD patterns, XPS, EDS, Raman spectra, gas chromatograms, TG analyses, UV-vis spectra, and reaction rate constant tables. See DOI: 10.1039/c5nr05016b
Greener iodination of arenes using sulphated ceria-zirconia catalysts in polyethylene glycol
An environmentally benign method for the selective monoiodination of diverse aromatic compounds has been developed using reusable sulphated ceria-zirconia under mild conditions. The protocol provides moderate to good yields of aryl iodides in PEG-200 as a greener solvent. The cat...
Zhang, Huiyan; Likun, Peter Keliona Wani; Xiao, Rui
2018-03-15
Catalytic fast pyrolysis (CFP) of bagasse and bio-plastic (chicken feather keratin) and their mixtures were conducted to produce aromatic hydrocarbons over a HZSM-5, USY, and dual-catalysts layout. The effects of temperature, co-feeding ratios, feed-to-catalyst ratios and dual catalysts on hydrocarbon yields and selectivities were investigated. The results show a general improvement in the aromatic hydrocarbons yields in all cases compared to non-catalytic and pure biomass pyrolysis. The aromatic hydrocarbons increased by 10 fold with the increase of temperature from 400°C to 700°C. The aromatic yields increased 1.5 times at co-feeding, 2.0 greater at feed/HZSM-5 ratio of 1:6, 1.2 times at feed/USY ratio of 1:16, and 2.66 times at USY/HZSM-5 scenario. The selectivities towards benzene increased, at higher co-feeding ratios, while that of toluene shows an opposite trend. Xylenes selectivities were less sensitive to the changes of co-feeding ratios. In contrast, the USY catalyst only produced little amount of toluene and xylenes. The dual catalyst design (USY/HZSM-5) resulted in the highest aromatic yields, than other catalyst design scenarios. The pyrolysis temperature is a significant parameter for hydrocarbon production. Co-feeding bagasse and bio-plastic enhanced biomass conversion to aromatic compounds. For any type of zeolite catalyst, there was an optimum feed-to-catalyst ratio that generated maximum hydrocarbons. Dual catalyst layout shows a new opportunity for efficient conversion of biomass materials into hydrocarbons. Copyright © 2017 Elsevier B.V. All rights reserved.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.
Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G
2016-05-17
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
Global simulation of aromatic volatile organic compounds in the atmosphere
NASA Astrophysics Data System (ADS)
Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea
2015-04-01
Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho-nitrophenols photolysis. The model results are compared with observations from different surface and aircraft campaigns in order to estimate the accuracy of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M.T.; Hudson, J.D.
1994-12-31
Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.
Examination of new chiral smectics with four aromatic rings
NASA Astrophysics Data System (ADS)
Żurowska, Magdalena; Czerwiński, Michał; Dziaduszek, Jerzy; Filipowicz, Marek
2018-05-01
This paper presents the results of the study of four chiral mesogens with the acronym (4X1X2). The investigated compounds might be of interest for use as components of multicomponent mixtures useful in technical devices. The compounds have high chemical stability. Their mesomorphic properties were tested by means of polarizing optical microscopy and differential scanning calorimetry. The helical pitch of the prepared compounds and mixtures was estimated using the selective reflection method. Their phase smectic layer structure and usefulness for formulation of multicomponent antiferroelectric mixtures were then reported.
Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis
Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; ...
2015-01-27
Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H +ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of arylmore » ether linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed
2015-05-15
The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation
NASA Astrophysics Data System (ADS)
Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong
2003-05-01
Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.
Ersan, Gamze; Apul, Onur G; Karanfil, Tanju
2016-07-01
The objective of this paper was to create a comprehensive database for the adsorption of organic compounds by carbon nanotubes (CNTs) and to use the Linear Solvation Energy Relationship (LSER) technique for developing predictive adsorption models of organic compounds (OCs) by multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). Adsorption data for 123 OCs by MWCNTs and 48 OCs by SWCNTs were compiled from the literature, including some experimental results obtained in our laboratory. The roles of selected OCs properties and CNT types were examined with LSER models. The results showed that the r(2) values of the LSER models displayed small variability for aromatic compounds smaller than 220 g/mol, after which a decreasing trend was observed. The data available for aliphatics was mainly for molecular weights smaller than 250 g/mol, which showed a similar trend to that of aromatics. The r(2) values for the LSER model on the adsorption of aromatic and aliphatic OCs by SWCNTs and MWCNTs were relatively similar indicating the linearity of LSER models did not depend on the CNT types. Among all LSER model descriptors, V term (molecular volume) for aromatic OCs and B term (basicity) for aliphatic OCs were the most predominant descriptors on both type of CNTs. The presence of R term (excess molar refractivity) in LSER model equations resulted in decreases for both V and P (polarizability) parameters without affecting the r(2) values. Overall, the results demonstrate that successful predictive models can be developed for the adsorption of OCs by MWCNTs and SWCNTs with LSER techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren
2016-10-05
In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. Copyright © 2016. Published by Elsevier B.V.
González, Beatriz; Vázquez, Jennifer; Cullen, Paul J.; Mas, Albert; Beltran, Gemma; Torija, María-Jesús
2018-01-01
Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes. PMID:29696002
Deep UV Raman spectroscopy for planetary exploration: The search for in situ organics
NASA Astrophysics Data System (ADS)
Abbey, William J.; Bhartia, Rohit; Beegle, Luther W.; DeFlores, Lauren; Paez, Veronica; Sijapati, Kripa; Sijapati, Shakher; Williford, Kenneth; Tuite, Michael; Hug, William; Reid, Ray
2017-07-01
Raman spectroscopy has emerged as a powerful, non-contact, non-destructive technique for detection and characterization of in situ organic compounds. Excitation using deep UV wavelengths (< 250 nm), in particular, offers the benefits of spectra obtained in a largely fluorescence-free region while taking advantage of signal enhancing resonance Raman effects for key classes of organic compounds, such as the aromatics. In order to demonstrate the utility of this technique for planetary exploration and astrobiological applications, we interrogated three sets of samples using a custom built Raman instrument equipped with a deep UV (248.6 nm) excitation source. The sample sets included: (1) the Mojave Mars Simulant, a well characterized basaltic sample used as an analog for Martian regolith, in which we detected ∼0.04 wt% of condensed carbon; (2) a suite of organic (aromatic hydrocarbons, carboxylic acids, and amino acids) and astrobiologically relevant inorganic (sulfates, carbonates, phosphates, nitrates and perchlorate) standards, many of which have not had deep UV Raman spectra in the solid phase previously reported in the literature; and (3) Mojave Mars Simulant spiked with a representative selection of these standards, at a concentration of 1 wt%, in order to investigate natural 'real world' matrix effects. We were able to resolve all of the standards tested at this concentration. Some compounds, such as the aromatic hydrocarbons, have especially strong signals due to resonance effects even when present in trace amounts. Phenanthrene, one of the aromatic hydrocarbons, was also examined at a concentration of 0.1 wt% and even at this level was found to have a strong signal-to-noise ratio. It should be noted that the instrument utilized in this study was designed to approximate the operation of a 'fieldable' spectrometer in order to test astrobiological applications both here on Earth as well as for current and future planetary missions. It is the foundation of SHERLOC, an arm mounted instrument recently selected by NASA to fly on the next rover mission to Mars in 2020.
Becker, Carol J.
2010-01-01
The U.S. Geological Survey worked in cooperation with the U.S. Environmental Protection Agency and the Kickapoo Tribe of Oklahoma on two separate reconnaissance projects carried out concurrently. Both projects entailed the use of passive samplers as a sampling methodology to investigate the detection of selected organic compounds at stream sites in jurisdictional areas of several tribes in central Oklahoma during January-February 2009. The focus of the project with the U.S. Environmental Protection Agency was the detection of pesticides and pesticide metabolites using Semipermeable Membrane Devices at five stream sites in jurisdictional areas of several tribes. The project with the Kickapoo Tribe of Oklahoma focused on the detection of pesticides, pesticide metabolites, polycyclic aromatic hydrocarbons, polychlorinated biphenyl compounds, and synthetic organic compounds using Semipermeable Membrane Devices and Polar Organic Chemical Integrative Samplers at two stream sites adjacent to the Kickapoo tribal lands. The seven stream sites were located in central Oklahoma on the Cimarron River, Little River, North Canadian River, Deep Fork, and Washita River. Extracts from SPMDs submerged at five stream sites, in cooperation with the U.S. Environmental Protection Agency, were analyzed for 46 pesticides and 6 pesticide metabolites. Dacthal, a pre-emergent herbicide, was detected at all five sites. Pendimethalin, also a pre-emergent, was detected at one site. The insecticides chlorpyrifos and dieldrin were detected at three sites and p,p'-DDE, a metabolite of the insecticide DDT, also was detected at three sites. SPMDs and POCIS were submerged at the upstream edge and downstream edge of the Kickapoo tribal boundaries. Both sites are downstream from the Oklahoma City metropolitan area and multiple municipal wastewater treatment plants. Extracts from the passive samplers were analyzed for 62 pesticides, 10 pesticide metabolites, 3 polychlorinated biphenyl compounds, 35 polycyclic aromatic hydrocarbons, and 49 synthetic organic compounds. Ten pesticides and four pesticide metabolites were detected at the upstream site and seven pesticides and four pesticide metabolites were detected at the downstream site. Pesticides detected at both sites were atrazine, chlorpyrifos, dacthal, dieldrin, metolachlor, pendimethalin, and trans-nonachlor. Additionally at the upstream site, heptachlor, pentachlorophenol, and prometon were detected. The pesticide metabolites p,p'-DDE, cis-chlordane, and trans-chlordane also were detected at both sites. Polychlorinated biphenyl compounds aroclor-1016/1242, aroclor-1254, and aroclor-1260 were detected at both sites. The upstream site had 16 polycyclic aromatic hydrocarbon detections and the downstream site had 8 detections. Because of chromatographic interference during analysis, a positive identification of 17 polycyclic aromatic hydrocarbons could not be made. Consequently, there may have been a greater number of these compounds detected at both sites. A total of 36 synthetic organic compounds were detected at the two sites adjacent to the Kickapoo tribal lands. The upstream site had 21 synthetic organic compound detections: three detergent metabolites, two fecal indicators, three flame retardants, seven industrial compounds, five compounds related to personal care products, and beta-sitosterol, a plant sterol. Fifteen synthetic organic compounds were detected at the downstream site and included: one fecal indicator, three flame retardants, six industrial compounds, and five compounds related to personal care products.
GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES
The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....
Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E
2018-04-24
The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Matthew A; McCormick, Robert L; Burke, Stephen
A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recentlymore » through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.« less
Comparison of the chemical composition of dissolved organic matter in three lakes in Minnesota
Cao, Xiaoyan; Aiken, George R.; Butler, Kenna D.; Mao, Jingdong; Schmidt-Rohr, Klaus
2018-01-01
New information on the chemical composition of dissolved organic matter (DOM) in three lakes in Minnesota has been gained from spectral editing and two-dimensional nuclear magnetic resonance (NMR) methods, indicating the effects of lake hydrological settings on DOM composition. Williams Lake (WL), Shingobee Lake (SL), and Manganika Lake (ML) had different source inputs, and the lake water residence time (WRT) of WL was markedly longer than that of SL and ML. The hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions combined comprised >50% of total DOM in these lakes, and contained carboxyl-rich alicyclic molecules (CRAM), aromatics, carbohydrates, and N-containing compounds. The previously understudied TPIA fractions contained fewer aromatics, more oxygen-rich CRAM, and more N-containing compounds compared to the corresponding HPOA. CRAM represented the predominant component in DOM from all lakes studied, and more so in WL than in SL and ML. Aromatics including lignin residues and phenols decreased in relative abundances from ML to SL and WL. Carbohydrates and N-containing compounds were minor components in both HPOA and TPIA and did not show large variations among the three lakes. The increased relative abundances of CRAM in DOM from ML, SL to WL suggested the selective preservation of CRAM with increased residence time.
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Rasulev, Bakhtiyor; Kusić, Hrvoje; Leszczynska, Danuta; Leszczynski, Jerzy; Koprivanac, Natalija
2010-05-01
The goal of the study was to predict toxicity in vivo caused by aromatic compounds structured with a single benzene ring and the presence or absence of different substituent groups such as hydroxyl-, nitro-, amino-, methyl-, methoxy-, etc., by using QSAR/QSPR tools. A Genetic Algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. The most predictive model is shown to be the 3-variable model which also has a good ratio of the number of descriptors and their predictive ability to avoid overfitting. The main contributions to the toxicity were shown to be the polarizability weighted MATS2p and the number of certain groups C-026 descriptors. The GA-MLRA approach showed good results in this study, which allows the building of a simple, interpretable and transparent model that can be used for future studies of predicting toxicity of organic compounds to mammals.
Zhao, Liu-Bin; Huang, Yi-Fan; Liu, Xiu-Min; Anema, Jason R; Wu, De-Yin; Ren, Bin; Tian, Zhong-Qun
2012-10-05
We propose that aromatic nitro and amine compounds undergo photochemical reductive and oxidative coupling, respectively, to specifically produce azobenzene derivatives which exhibit characteristic Raman signals related to the azo group. A photoinduced charge transfer model is presented to explain the transformations observed in para-substituted ArNO(2) and ArNH(2) on nanostructured silver due to the surface plasmon resonance effect. Theoretical calculations show that the initial reaction takes place through excitation of an electron from the filled level of silver to the lowest unoccupied molecular orbital (LUMO) of an adsorbed ArNO(2) molecule, and from the highest occupied molecular orbital (HOMO) of an adsorbed ArNH(2) molecule to the unoccupied level of silver, during irradiation with visible light. The para-substituted ArNO(2)(-)˙ and ArNH(2)(+)˙ surface species react further to produce the azobenzene derivatives. Our results may provide a new strategy for the syntheses of aromatic azo dyes from aromatic nitro and amine compounds based on the use of nanostructured silver as a catalyst.
Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao
2015-01-01
Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100
Hyatt, Janice L; Stacy, Vanessa; Wadkins, Randy M; Yoon, Kyoung Jin P; Wierdl, Monika; Edwards, Carol C; Zeller, Matthias; Hunter, Allen D; Danks, Mary K; Crundwell, Guy; Potter, Philip M
2005-08-25
Benzil has been identified as a potent selective inhibitor of carboxylesterases (CEs). Essential components of the molecule required for inhibitory activity include the dione moiety and the benzene rings, and substitution within the rings affords increased selectivity toward CEs from different species. Replacement of the benzene rings with heterocyclic substituents increased the K(i) values for the compounds toward three mammalian CEs when using o-nitrophenyl acetate as a substrate. Logarithmic plots of the K(i) values versus the empirical resonance energy, the heat of union of formation energy, or the aromatic stabilization energy determined from molecular orbital calculations for the ring structures yielded linear relationships that allowed prediction of the efficacy of the diones toward CE inhibition. Using these data, we predicted that 2,2'-naphthil would be an excellent inhibitor of mammalian CEs. This was demonstrated to be correct with a K(i) value of 1 nM being observed for a rabbit liver CE. In addition, molecular simulations of the movement of the ring structures around the dione dihedral indicated that the ability of the compounds to inhibit CEs was due, in part, to rotational constraints enforced by the dione moiety. Overall, these studies identify subdomains within the aromatic ethane-1,2-diones, that are responsible for CE inhibition.
Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M
2007-01-01
The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?
ERIC Educational Resources Information Center
Leung, Sam H.
2000-01-01
Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)
Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao
2017-11-02
Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.
Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.
2004-01-01
An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.
Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu
2014-03-01
Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. Copyright © 2013 Elsevier Ltd. All rights reserved.
Boppana, Kiran; Dubey, P K; Jagarlapudi, Sarma A R P; Vadivelan, S; Rambabu, G
2009-09-01
Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.; ...
2016-04-13
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Detection of chlorinated aromatic compounds
Ekechukwu, A.A.
1996-02-06
A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.
Detection of chlorinated aromatic compounds
Ekechukwu, Amy A.
1996-01-01
A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.
Pereira, W.E.
1982-01-01
Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.
Chen, Feng; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Lund, Henrik; Schneider, Matthias; Surkus, Annette-Enrica; He, Lin; Junge, Kathrin; Beller, Matthias
2016-07-20
Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phen@α-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.
Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).
González, Javier M; Fisher, S Zoë
2015-02-01
Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.
Kolarič, Anja; Švajger, Urban; Tomašič, Tihomir; Brox, Regine; Frank, Theresa; Minovski, Nikola; Tschammer, Nuska; Anderluh, Marko
2018-05-11
Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists.
Funk, Oliver F; Kettmann, Viktor; Drimal, Jan; Langer, Thierry
2004-05-20
Both quantitative and qualitative chemical function based pharmacophore models of endothelin-A (ET(A)) selective receptor antagonists were generated by using the two algorithms HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling software. The input for HypoGen is a training set of 18 ET(A) antagonists exhibiting IC(50) values ranging between 0.19 nM and 67 microM. The best output hypothesis consists of five features: two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features: three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI). It is the result of an input of three highly active, selective, and structurally diverse ET(A) antagonists. The predictive power of the quantitative model could be approved by using a test set of 30 compounds, whose activity values spread over 6 orders of magnitude. The two pharmacophores were tested according to their ability to extract known endothelin antagonists from the 3D molecular structure database of Derwent's World Drug Index. Thereby the main part of selective ET(A) antagonistic entries was detected by the two hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database. Six compounds were chosen from the output hit lists for in vitro testing of their ability to displace endothelin-1 from its receptor. Two of these are new potential lead compounds because they are structurally novel and exhibit satisfactory activity in the binding assay.
Krasavin, Mikhail; Shetnev, Anton; Sharonova, Tatyana; Baykov, Sergey; Tuccinardi, Tiziano; Kalinin, Stanislav; Angeli, Andrea; Supuran, Claudiu T
2018-02-01
A series of novel aromatic primary sulfonamides decorated with diversely substituted 1,2,4-oxadiazole periphery groups has been prepared using a parallel chemistry approach. The compounds displayed a potent inhibition of cytosolic hCA II and membrane-bound hCA IX isoforms. Due to a different cellular localization of the two target enzymes, the compounds can be viewed as selective inhibition tools for either isoform, depending on the cellular permeability profile. The SAR findings revealed in this study has been well rationalized by docking simulation of the key compounds against the crystal structures of the relevant hCA isoforms. Copyright © 2017. Published by Elsevier Inc.
Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.
Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less
Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts
Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...
2016-11-01
Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razo-Flores, E.; Lettinga, G.; Field, J.A.
The fate of four nitroaromatic compounds (5-nitrosalicylate, 5NSA; 4-nitrobenzoate, 4NBc; 2,4-dinitrotoluene, 2,4DNT; nitrobenzene, NB) was studied in 160 mL laboratory-scale upward-flow anaerobic sludge bed reactors supplied with a mixture of volatile fatty acids and/or glucose as electron donors. All the nitroaromatics were transformed stoichiometrically to their corresponding aromatic amines. After prolonged reactor operation, 5NSA and 4NBc were completely mineralized to CH[sub 4] and CO[sub 2], whereas 2,4DNT was partially transformed to a nonidentified and nondegradable metabolite. Batch nitro-reduction experiments indicated that the position of the nitro group in relation to the other substituents in the aromatic ring plays a keymore » role in the rate of the nitro-group reduction. The results obtained indicate that certain nitroaromatic compounds can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria.« less
Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl
2017-07-05
This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.
Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon
2016-05-01
Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies.
Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maioriello, J.; Larsen, J.W.
1988-12-31
A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less
Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.A.; Razo-Flores, E.; Field, J.A.
1995-11-01
N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R
2013-10-01
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.
Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.
2013-01-01
Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.
In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less
In a solvent-free microwave-expedited process, aromatic nitro compounds are readily reduced to the corresponding amino compounds in good yield with hydrazine hydrate supported on alumina in presence of FeCl3, 6H2), Fe(III) oxide hydroxide or Fe(III) oxides.
Dittmann, Jens; Heyser, Wolfgang; Bücking, Heike
2002-10-01
The capability of different white rot (WR, Heterobasidion annosum, Phanerochaete chrysosporium, Trametes versicolor) and ectomycorrhizal (ECM, Paxillus involutus, Suillus bovinus) fungal species to degrade different aromatic compounds and the absorption of 3-chlorobenzoic acid (3-CBA) by ECM pine seedlings was examined. The effect of aromatic compounds on the fungal biomass development varied considerably and depended on (a) the compound, (b) the external concentration, and (c) the fungal species. The highest effect on the fungal biomass development was observed for 3-CBA. Generally the tolerance of WR fungi against aromatic compounds was higher than that of the biotrophic fungal species. The capability of different fungi to degrade aromatic substances varied between the species but not generally between biotrophic and saprotrophic fungi. The highest degradation capability for aromatic compounds was detected for T. versicolor and H. annosum, whereas for Phanerochaete chrysosporium and the ECM fungi lower degradation rates were found. However, Paxillus involutus and S. bovinus showed comparable degradation rates at low concentrations of benzoic acid and 4-hydroxybenzoic acid. In contrast to liquid cultures, where no biodegradation of 3-CBA by S. bovinus was observed, mycorrhizal pines inoculated with S. bovinus showed a low capability to remove 3-CBA from soil substrates. Additional X-ray microanalytical investigations showed, that 3-CBA supplied to mycorrhizal plants was accumulated in the root cell cytoplasm and is translocated across the endodermis to the shoot of mycorrhizal pine seedlings.
[Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].
Zhang, Xiaoyan; Peng, Xue; Masai, Eiji
2014-08-04
Lignin is complex heteropolymer produced from hydroxycinnamyl alcohols through radical coupling. In nature, white-rot fungi are assumed initially to attack native lignin and release lignin-derived-low-molecular-weight compounds, and soil bacteria play an importent role for completely degradation of these compounds. Study on the soil bacteria degrading lignin-derived-low-molecular-weight compounds will give way to understand how aromatic compounds recycle in nature, and to utilize lignin compounds as the renewable materials for valuable materials production. Sphingobium sp. SYK-6 that grows on lignin biphenyl (5,5'-dehydrodivanillate) had been isolated from pulp effluent in 1987. We have researched this bacterium more than 25 years, a serious aromatic metabolic pathway has been determined, and related genes have been isolated. As the complete genome sequence of SYK-6 has been opened to the public in 2012, the entire aromatic compounds degradation mechanisms become more clear. Main contents in our review cover: (1) genome information; (2) aryl metabolism; (3) biphenyl metabolism; (4) ferulate metabolism; (5) tetrahydrofolate-dependent O-demethylation system for lignin compound degrdation; (6) protocatechuate 4,5-cleavage pathway; (7) multiple pathways for 3-O-methylgallate metabolism.
Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I
2014-09-01
Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of a grapevine shoot waste extract on red wine aromatic properties.
Ruiz-Moreno, María J; Raposo, Rafaela; Puertas, Belén; Cuevas, Francisco J; Chinnici, Fabio; Moreno-Rojas, José M; Cantos-Villar, Emma
2018-04-26
The use of a grapevine shoot extract (VIN) is being studied as an alternative to sulfur dioxide (SO 2 ). VIN stabilizes anthocyanins and preserves polyphenolic compounds, and thus improves chromatic wine properties. In the current work, selected aroma compounds (esters, C13-norisoprenoids, oxidation and vine shoot related compounds), sensory analysis and the olfactometric profile were determined in the wines treated with VIN at two concentrations. Treatment with VIN hardly modified the content of esters and oxidation-related compounds in the wines. However, the high β-damascenone and isoeugenol content, and the increase in astringency at tasting in VIN wines were noteworthy, as were some odorant zones. All above were established as VIN markers after the chemometric data analysis. These date revealed that only the lowest dose tested may be recommended as a suitable alternative to SO 2 . Although some aromatic properties of these wines may change, these changes are not considered to affect negatively to the quality of the wines. These results are useful for wineries, which face to uncover aroma-related processes in the challenge of producing SO 2 free wines without detriment of its sensory properties. This article is protected by copyright. All rights reserved.
Venkateswar Reddy, M; Mawatari, Yasuteru; Yajima, Yuka; Seki, Chigusa; Hoshino, Tamotsu; Chang, Young-Cheol
2015-09-01
In the present study five different types of alkylphenols, each of the two different types of mono and poly-aromatic hydrocarbons were selected for degradation, and conversion into poly-3-hydroxybutyrate (PHB) using the Bacillus sp. CYR1. Strain CYR1 showed growth with various toxic organic compounds. Degradation pattern of all the organic compounds at 100 mg/l concentration with or without addition of tween-80 were analyzed using high pressure liquid chromatography (HPLC). Strain CYR1 showed good removal of compounds in the presence of tween-80 within 3 days, but it took 6 days without addition of tween-80. Strain CYR1 showed highest PHB production with phenol (51 ± 5%), naphthalene (42 ± 4%), 4-chlorophenol (32 ± 3%) and 4-nonylphenol (29 ± 3%). The functional groups, structure, and thermal properties of the produced PHB were analyzed. These results denoted that the strain Bacillus sp. CYR1 can be used for conversion of different toxic compounds persistent in wastewaters into useable biological polyesters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan
2008-05-21
An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ijam, M.J.; Al-Qatami, S.Y.; Arif, S.F.
For several decades removal of aromatics from crude oil fractions has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. A study for the UV and IR spectra of the aromatic hydrocarbons showed them to consist mainly of bi-, tri-, tetra-, and penta-substituted benzene, bicyclic and tricyclic compounds. Detailed studies have been reported of molecular structure and substituent effects have been reportedmore » on the retention characteristics of aromatic hydrocarbons on alumina, silica and various chemically bonded silicas containing {minus}C{sub 18}, {minus}NH{sub 2}, {minus}R(NH){sub 2}, {minus}CN, RCN, and phenyl-mercuric acetate for compound class (ring-numbered) high performance liquid chromatography separation. With the aid of a Finnegan type 9612-4000 GC/MS apparatus, the mixture of neutral + basic aromatic hydrocarbons was qualitatively identified and revealed the presence of more than 112 peaks. The neutral + basic aromatic hydrocarbons consist mainly of: 3.68% monoaromatics (C{sub 3} - C{sub 6} alkyl benzenes), 52.81% bicycloaromatics (C{sub 0} - C{sub 4} alkylnaphthalenes), 6.20% tricycloaromatics (C{sub 0} - C{sub 4} alkyl phenanthrenes), and 37.32% nonhydrocarbons aromatic compounds. The components in major HPLC peaks corresponding to bicycloaromatics were further separated into small groups (3-4 components in each) by HPLC using an ODS-reverse phase-C{sub 18} column. To separate a single component from the mixture is a difficult problem. The individual compounds in the separated fractions were identified by GC/MS (Hewlett Packard 5993 system).« less
Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre
2017-05-05
A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-01-01
Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049
Ahmaditaba, Mohammad Ali; Houshdar Tehrani, Mohammad Hassan; Zarghi, Afshin; Shahosseini, Sorayya; Daraei, Bahram
2018-01-01
A new series of peptide-like derivatives containing different aromatic amino acids and possessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para position of an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. The synthetic reactions were based on the solid phase peptide synthesis method using Wang resin. One of the analogues, i.e., compound 2d, as the representative of these series was recognized as the most effective and the highest selective COX-2 inhibitor with IC50 value of 0.08 μM and COX-2 selectivity index of 351.2, among the other synthesized compounds. Molecular docking study was operated to determine possible binding models of compound 2d to COX-2 enzyme. The study showed that the p-azido-phenyl fragment of 2d occupied inside the secondary COX-2 binding site (Arg513, and His90). The structure-activity relationships acquired disclosed that compound 2d with 4-(azido phenyl) group as pharmacophore and histidine as amino acid gives the essential geometry to provide inhibition of the COX-2 enzyme with high selectivity. Compound 2d can be a good candidate for the development of new hits of COX-2 inhibitors.
Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction
NASA Astrophysics Data System (ADS)
Wojnárovits, László; Takács, Erzsébet
2013-06-01
The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.
Jo, W K; Choi, S J
1996-08-01
This study identified in-auto and in-bus exposures to six selected aromatic volatile organic compounds (VOCs) for commutes on an urban-suburban route in Korea. A bus-service route was selected to include three segments of Taegu and one suburban segment (Hayang) to satisfy the criteria specified for this study. This study indicates that motor vehicle exhaust and evaporative emissions are major sources of both auto and bus occupants' exposures to aromatic VOCs in both Taegu and Hayang. A nonparametric statistical test (Wilcoxon test) showed that in-auto benzene levels were significantly different from in-bus benzene levels for both urban-segment and suburban-segment commutes. The test also showed that the benzene-level difference between urban-segment and suburban-segment commutes was significant for both autos and buses. An F-test showed the same statistical results for the comparison of the summed in-vehicle concentration of the six target VOCs (benzene, toluene, ethylbenzene, and o,m,p-xylenes) as those for the comparison of the in-vehicle benzene concentration. On the other hand, the in-vehicle benzene level only and the sum were not significantly different among the three urban-segment commutes and between the morning and evening commutes. The in-auto VOC concentrations were intermediate between the results for the Los Angeles and Boston. The in-bus VOC concentrations were about one-tenth of the Taipei, Taiwan results.
Kamte, Stephane L Ngahang; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Nya, Prosper C Biapa; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Ta, Léon Azefack; Giordani, Cristiano; Barboni, Luciano; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo; Maggi, Filippo
2017-07-06
Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants ( Azadirachta indica , Aframomum melegueta , Aframomum daniellii , Clausena anisata , Dichrostachys cinerea , and Echinops giganteus ) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica , A . daniellii , and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC 50 ) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.
Ngahang Kamte, Stephane L.; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Biapa Nya, Prosper C.; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Tapondjou, Léon Azefack; Giordani, Cristiano; Benelli, Giovanni; Hofer, Anders
2017-01-01
Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils. PMID:28684709
Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives
NASA Astrophysics Data System (ADS)
Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna
2017-08-01
Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.
Lee, Jiunn-Fwu; Mortland, Max M.; Chiou, Cary T.; Kite, Daniel E.; Boyd, Stephen A.
1990-01-01
A high-charge smectite from Arizona [cation-exchange capacity (CEC) = 120 meq/100 g] and a low-charge smectite from Wyoming (CEC = 90 meq/100 g) were used to prepare homoionic tetramethylammonium (TMA)-clay complexes. The adsorption of benzene, toluene, and o-xylene as vapors by the dry TMA-clays and as solutes from water by the wet TMA-clays was studied. The adsorption of the organic vapors by the dry TMA-smectite samples was strong and apparently consisted of interactions with both the aluminosilicate mineral surfaces and the TMA exchange ions in the interlayers. In the adsorption of organic vapors, the closer packing of TMA ions in the dry high-charge TMA-smectite, compared with the dry low-charge TMA-smectite, resulted in a somewhat higher degree of shape-selective adsorption of benzene, toluene, and xylene. In the presence of water, the adsorption capacities of both samples for the aromatic compounds were significantly reduced, although the uptake of benzene from water by the low-charge TMA-smectite was still substantial. This lower sorption capacity was accompanied by increased shape-selectivity for the aromatic compounds. The reduction in uptake and increased selectivity was much more pronounced for the water-saturated, high-charge TMA-smectite than for the low-charge TMA-smectite. Hydration of the TMA exchange ions and/or the mineral surfaces apparently reduced the accessibility of the aromatic molecules to interlamellar regions. The resulting water-induced sieving effect was greater for the high-charge TMA-smectite due to the higher density of exchanged TMA-ions. The low-charge Wyoming TMA-smectite was a highly effective adsorbent for removing benzene from water and may be useful for purifying benzene-contaminated water.
Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik
2017-06-16
Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.
MOLECULAR BASIS OF BIODEGRADATION OF CHLOROAROMATIC COMPOUNDS
Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacter...
Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat
2014-01-01
Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606
The aromatic amino acids biosynthetic pathway: A core platform for products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lievense, J.C.; Frost, J.W.
The aromatic amino acids biosynthetic pathway is viewed conventionally and primarily as the source of the amino acids L-tyrosine, L-phenylalanine. The authors have recognized the expanded role of the pathway as the major source of aromatic raw materials on earth. With the development of metabolic engineering approaches, it is now possible to biosynthesize a wide variety of aromatic compounds from inexpensive, clean, abundant, renewable sugars using fermentation methods. Examples of already and soon-to-be commercialized biosynthesis of such compounds are described. The long-term prospects are also assessed.
Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.
Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E
2014-01-01
Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
Fine, Dennis D; Ko, Saebom; Huling, Scott
2013-12-15
Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis. Published by Elsevier B.V.
Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds
We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...
1992-08-25
concentrations of these compounds may be toxic or Inhibitory to the microflora, especially if the microorganisms have not been exposed to these compounds before...Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination plumes, gradually...sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory -- is more favorable
He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying
2016-07-01
Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.
Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard
2012-12-01
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.
Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Št'avíková, Lenka; Roth, Michal
2013-02-01
Increasing production and disposal of organic light-emitting diode (OLED) displays for smartphones and tablets may have impact on the environment depending on the aqueous solubility of the pertinent chemicals. Here, aqueous solubilities are presented for several compounds, mostly aromatic amines, used as hole transport materials in the OLED displays. Solute selection includes 1,4-bis(diphenylamino)benzene, tetra-N-phenylbenzidine, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, 1,3,5-tris(diphenylamino)benzene, and 9,10-bis(phenylethynyl)anthracene. The solubilities are those in pressurized hot water (PHW), i.e., measured at elevated temperature (up to 260 °C) and pressure. The semi-quantitative estimates of room-temperature solubilities of the solutes have been obtained from extrapolations of the solubilities in PHW. For the compounds studied, the estimated aqueous solubilities at room temperature do not exceed 2×10(-11) g of the solute per 1 kg of water. Aqueous solubilities of triphenylamine have also been measured and used to upgrade a recent group-contribution model of aqueous solubilities of organic nonelectrolytes with the parameters for the nitrogen atom in aromatic amines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin
2017-06-14
It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.
Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin
NASA Astrophysics Data System (ADS)
Scheer, Adam Michael
Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition products are directly and selectively detected. A number of these products are the lignin model compounds listed above, providing a direct link between the model compound studies and the pyrolysis of actual biomass.
Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring
Weng, Wei; Zhang, Zhengcheng; Amine, Khalil
2015-12-01
An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.
Incombustible resin composition
NASA Technical Reports Server (NTRS)
Akima, T.
1982-01-01
Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.
Reactions of aromatic diazonium salts with unsaturated compounds in the presence of nucleophiles
NASA Astrophysics Data System (ADS)
Grishchuk, B. D.; Gorbovoi, P. M.; Ganushchak, N. I.; Dombrovskii, A. V.
1994-03-01
The review surveys the reactions of aromatic diazonium salts with diene and monounsaturated compounds in the presence of nucleophiles. Certain further reactions of the reaction products and their application are considered. The bibliography includes 63 references.
NASA Astrophysics Data System (ADS)
Asharani, I. V.; Thirumalai, D.; Sivakumar, A.
2017-11-01
Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.
Polyimidazoles via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)
1992-01-01
Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.
Polyimidazoles via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)
1991-01-01
Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.
1992-08-25
High initial concentrations of these compounds may be toxic or inhibitory to the microflora, especially if the microorganisms have not been exposed to...these compounds before. Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination...acceptors such as nitrate or sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
Linkens, Kathryn; Schmidt, Hayden R; Sahn, James J; Kruse, Andrew C; Martin, Stephen F
2018-05-10
Substituted norbenzomorphans are known to display high affinity and selectivity for the two sigma receptor (σR) subtypes. In order to study the effects of simplifying the structures of these compounds, a scaffold hopping strategy was used to design several novel sets of substituted isoindolines, tetrahydroisoquinolines and tetrahydro-2-benzazepines. The binding affinities of these new compounds for the sigma 1 (σ1R) and sigma 2 (σ2R) receptors were determined, and some analogs were identified that exhibit high affinity (K i ≤ 25 nM) and significant selectivity (>10-fold) for σ1R or σ2R. The preferred binding modes of selected compounds for the σ1R are predicted by modeling studies, and the nature of substituents on the aromatic ring and the nitrogen atom of the bicyclic skeleton appears to affect the preferred binding orientation of σ1R-preferring ligands. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Leaching of styrene and other aromatic compounds in drinking water from PS bottles.
Ahmad, Maqbool; Bajahlan, Ahmad S
2007-01-01
Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 microg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 microg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.
Kuramochi, Hidetoshi; Maeda, Kouji; Kawamoto, Katsuya
2007-04-01
The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated.
He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H
2015-06-01
The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Construction of PAH-degrading mixed microbial consortia by induced selection in soil.
Zafra, German; Absalón, Ángel E; Anducho-Reyes, Miguel Ángel; Fernandez, Francisco J; Cortés-Espinosa, Diana V
2017-04-01
Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils through the biostimulation and bioaugmentation processes can be a strategy for the clean-up of oil spills and environmental accidents. In this work, an induced microbial selection method using PAH-polluted soils was successfully used to construct two microbial consortia exhibiting high degradation levels of low and high molecular weight PAHs. Six fungal and seven bacterial native strains were used to construct mixed consortia with the ability to tolerate high amounts of phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP) and utilize these compounds as a sole carbon source. In addition, we used two engineered PAH-degrading fungal strains producing heterologous ligninolytic enzymes. After a previous selection using microbial antagonism tests, the selection was performed in microcosm systems and monitored using PCR-DGGE, CO 2 evolution and PAH quantitation. The resulting consortia (i.e., C1 and C2) were able to degrade up to 92% of Phe, 64% of Pyr and 65% of BaP out of 1000 mg kg -1 of a mixture of Phe, Pyr and BaP (1:1:1) after a two-week incubation. The results indicate that constructed microbial consortia have high potential for soil bioremediation by bioaugmentation and biostimulation and may be effective for the treatment of sites polluted with PAHs due to their elevated tolerance to aromatic compounds, their capacity to utilize them as energy source. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.
Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed
2015-07-15
Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C
1999-07-15
The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.
Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry
NASA Technical Reports Server (NTRS)
Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan
2013-01-01
Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.
Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang
2017-12-31
Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment processes. Alcohol and ketone removals were probably related to the reduction in protein-like materials. Alkane removal was probably related to the reduction in fulvic acid-like and humic acid-like materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin
2016-07-20
The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.
Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V
2013-04-16
The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
NASA Astrophysics Data System (ADS)
Laudien, Robert; Schultze, Rainer; Wieser, Jochen
2010-10-01
In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.
Martinelli, Carmela; Farinola, Gianluca M.; Pinto, Vita; Cardone, Antonio
2013-01-01
In this review, the main synthetic aspects and properties of fluorinated arylenevinylene compounds, both oligomers and polymers, are summarized and analyzed. Starting from vinyl organotin derivatives and aryl halides, the Stille cross-coupling reaction has been successfully applied as a versatile synthetic protocol to prepare a wide series of π-conjugated compounds, selectively fluorinated on the aromatic and/or vinylene units. The impact of fluoro-functionalization on properties, the solid state organization and intermolecular interactions of the synthesized compounds are discussed, also in comparison with the non-fluorinated counterparts. Luminescent and photovoltaic applications are also discussed, highlighting the role of fluorine on the performance of devices. PMID:28809206
Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E
2016-06-01
The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Sunyoung; Diab, Sonia; Queval, Pierre; Sebban, Muriel; Chataigner, Isabelle; Piettre, Serge R
2013-05-27
Non-stabilized azomethine ylide 4a reacts smoothly at room temperature with a variety of uncomplexed aromatic heterocycles and carbocycles on the condition that the ring contains at least one or two electron-withdrawing substituents, respectively. Aromatic substrates, including pyridine and benzene derivatives, participate as 2π components in [3+2] cycloaddition reactions and interact with one, two, or three equivalent(s) of the ylide, depending on their structure and substitution pattern. Thus, this process affords highly functionalized polycyclic structures that contain between one and three pyrrolidinyl ring(s) in useful yields. These results indicate that the site selectivity of the cycloaddition reactions strongly depends on both the nature and the positions of the substituents. In most cases, the second 1,3-dipolar reaction occurs on the opposite face to the one that contains the first pyrrolidinyl ring. DFT calculations on model compounds indicate that a concerted mechanism features a low activation barrier. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units
Gall, Daniel L.; Kontur, Wayne S.; Lan, Wu; Kim, Hoon; Li, Yanding; Ralph, John
2017-01-01
ABSTRACT New environmentally sound technologies are needed to derive valuable compounds from renewable resources. Lignin, an abundant polymer in terrestrial plants comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units, is a potential natural source of aromatic compounds. In addition, the plant secondary metabolite tricin is a recently discovered and moderately abundant flavonoid in grasses. The most prevalent interunit linkage between guaiacyl, syringyl, and tricin units is the β-ether linkage. Previous studies have shown that bacterial β-etherase pathway enzymes catalyze glutathione-dependent cleavage of β-ether bonds in dimeric β-ether lignin model compounds. To date, however, it remains unclear whether the known β-etherase enzymes are active on lignin polymers. Here we report on enzymes that catalyze β-ether cleavage from bona fide lignin, under conditions that recycle the cosubstrates NAD+ and glutathione. Guaiacyl, syringyl, and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results demonstrate an in vitro enzymatic system that can recycle cosubstrates while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin. IMPORTANCE Many bacteria are predicted to contain enzymes that could convert renewable carbon sources into substitutes for compounds that are derived from petroleum. The β-etherase pathway present in sphingomonad bacteria could cleave the abundant β–O–4-aryl ether bonds in plant lignin, releasing a biobased source of aromatic compounds for the chemical industry. However, the activity of these enzymes on the complex aromatic oligomers found in plant lignin is unknown. Here we demonstrate biodegradation of lignin polymers using a minimal set of β-etherase pathway enzymes, the ability to recycle needed cofactors (glutathione and NAD+) in vitro, and the release of guaiacyl, syringyl, and tricin as depolymerized products from lignin. These observations provide critical evidence for the use and future optimization of these bacterial β-etherase pathway enzymes for industrial-level biotechnological applications designed to derive high-value monomeric aromatic compounds from lignin. PMID:29180366
Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter
Lindsey, M.E.; Tarr, M.A.
2000-01-01
Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.
EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
USDA-ARS?s Scientific Manuscript database
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...
Investigation of Source of Irritant Gas Produced by PATRIOT Missile System Air Conditioners
1986-03-31
is the mass fragment CF3 . It is a common fragment of perfluorinated hydrocarbons, and is found to be present in most of the compounds detected by...used would allow detection of the target par3meters acrolein, aromatics, a broad range of organic compounds ,. formaldehyde, and hydrogen cyanide...organic compounds were observed. Thus, aromatic organic compounds were not produced by or from any of the four new units tested. 4 1CZ 3) With the
The chemical structure of macromolecular fractions of a sulfur-rich oil
NASA Astrophysics Data System (ADS)
Richnow, Hans H.; Jenisch, Angela; Michaelis, Walter
1993-06-01
A selective stepwise chemical degradation has been developed for structural studies of highmolecularweight (HMW) fractions of sulfur-rich oils. The degradation steps are: (i) desulfurization (ii) cleavage of oxygen-carbon bonds (iii) oxidation of aromatic structural units. After each step, the remaining macromolecular matter was subjected to the subsequent reaction. This degradation scheme was applied to the asphaltene, the resin and a macromolecular fraction of low polarity (LPMF) of the Rozel Point oil. Total amounts of degraded low-molecular-weight compounds increased progressively in the order asphaltene < resin < LPMF. Desulfurization yielded mainly phytane, steranes and triterpanes. Oxygen-carbon bond cleavage resulted in hydrocarbon fractions predominated by n-alkanes and acyclic isoprenoids. The oxidation step afforded high amounts of linear carboxylic acids in the range of C 11 to C 33. The released compounds provide a more complete picture of the molecular structure of the oil fractions than previously available. Labelling experiments with deuterium atoms allowed to characterize the site of bonding and the type of linkage for the released compounds. Evidence is presented that subunits of the macromolecular network are attached simultaneously by oxygen and sulfur (n-alkanes, hopanes) or by sulfur and aromatic units ( n-alkanes, steranes).
Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun
2018-08-01
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
DNA tests for strawberry: mesifurane "sherry" aroma - FaOMT-SI/NO
USDA-ARS?s Scientific Manuscript database
The amazing flavor and texture in strawberries is caused by a complex balance of numerous sugars and aromatic compounds. One of the most important aromatic compounds contributing to the flavor we have come to love in strawberries is mesifurane. Mesifurane produces a sweet sherry-like aroma and incre...
Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...
NASA Astrophysics Data System (ADS)
Redayan, Muayed Ahmed; Salih Hussein, Maha; Tark lafta, Ashraf
2018-05-01
The present work comprise synthesis of new derivatives for Schiff bases bearing benzimidazole ring. Compounds 1(a-d) were prepared by reaction of o-pheneylenediamine with a various of amino acids (glycine, alanine, phenyl alanine and tyrosine) in the presence 6N HCl to yielded derivatives of benzimidazole compounds containing free –NH2 group. Then these compounds used to prepare different Schiff bases through reaction with various of aromatic aldehydes. The chemical structure of synthesized compounds were confirmed by FTIR,1H,13C-NMR, and 13C-NMR dept135 spectroscopy. Some selected compounds were evaluated in vitro for their antibacterial activity against two types of Gram-positive bacteria namely (Staphylococcous aureus, Bacillus subtilis) and Gram-negative bacteria namely (Pseudomonas aeruginosa, Escherichia coli). Most of the results of the antibacterial activity of these compounds were good when compared with the standard antibiotic ampicillin and ciprofloxacin.
"Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.
Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias
2015-01-01
Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
Epigenetic Programming of Breast Cancer and Nutrition Prevention
2011-05-01
is to test the role of xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin -like and...tumor promoter 2,3,7,8 tetrachlorobenzo-p- dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE...phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonizes at physiologically relevant doses (1 mol /L) the TCDD-induced
Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution
Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.
2000-01-01
The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).
Vieira, Gabriela A L; Magrini, Mariana Juventina; Bonugli-Santos, Rafaella C; Rodrigues, Marili V N; Sette, Lara D
2018-05-03
Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL -1 ) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. Copyright © 2018. Published by Elsevier Editora Ltda.
Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China.
Yang, C-X; Wang, T; Gao, L-N; Yin, H-J; Lü, X
2017-12-01
Lignin is an aromatic heteropolymer forming a physical barrier and it is a big challenge in biomass utilization. This paper first investigated lignin-degradation bacteria from rotten wood in Qinling Mountain. Nineteen potential strains were selected and ligninolytic enzyme activities were determined over 84 h. Strains that had higher enzyme activities were selected. Further, the biodegradation of wheat straw lignin and alkali lignin was evaluated indicating that Burkholderia sp. H1 had the highest capability. It was confirmed by gel permeation chromatography and field emission scanning electron microscope that alkali lignin was depolymerized into small fragments. The degraded products were analysed using gas chromatography-mass spectrometry. The total ion chromatograph of products treated for 7 days showed the formation of aromatic compounds, an important intermediate from lignin degradation. Interestingly, they disappeared in 15 days while the aldehyde and ester compounds increased. The results suggest that the lignin-degrading bacteria are abundant in rotten wood and strain H1 has high potential to break down lignin. The diversity of lignin-degrading bacteria in Qinling Mountain is revealed. The study of Burkholderia sp. H1 expands the range of bacteria for lignin degradation and provides novel bacteria for application to lignocellulosic biomass. © 2017 The Society for Applied Microbiology.
Houk, V S; Claxton, L D
1986-03-01
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bjørseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonkopii, V.; Zagrebin, A.; Sherstneva, L.
1995-12-31
The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besidesmore » that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.« less
Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air
NASA Astrophysics Data System (ADS)
Sundararaman, Ramanathan
Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk MgO catalysts for decomposition of sulfones showed that these catalysts are effective in decomposing oxidized sulfur compounds such as dibenzothiophene sulfone and 3-methyl benzothiophene sulfone to biphenyl and isopropyl benzene respectively and SO2. Study of catalyst structure-activity relationship revealed that in the range of 40--140 nm of MgO, crystallite size plays a critical role on activity of the catalyst for sulfone decomposition. In testing other alkali oxides, it was demonstrated that CaO was effective as a reagent in decomposing oxidized sulfur compounds in a crude oil at a much lower temperature than used for MgO based catalyst. Preliminary data on potential regeneration scheme of spent CaO is also discussed.
Clayton, J.L.; King, J.D.
1987-01-01
GC-MS analyses were performed on core samples collected from a shale outcrop of the Permian Phosphoria Formation in Utah, U.S.A., to study effects of weathering on selected biological marker and aromatic (phenanthrene) hydrocarbon compounds. Among the biological markers, the most important weathering effects are a decrease in the 20S 20R diastereomer ratio of the C29 steranes and loss of low molecular weight triaromatic steroids. A decrease in the C19 through C22 tricylcic terpanes occurs relative to the total C19-C26 tricyclic fraction. Pronounced loss of methyl-substituted phenanthrenes occurs relative to phenanthrene. No major effect on the overall distribution of pentacyclic terpanes is evident. ?? 1987.
Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)
Hoffman, D.J.
1979-01-01
Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.
Hridya, V K; Jayabalan, M
2009-12-01
Polyurethane potting compound based on aromatic isocyanurate of polymeric MDI, poly propylene glycol (PPG400) and trimethylol propane (TMP) has significant favourable properties, good pot life and setting characteristics. The cured potting compound of this formulation has appreciable thermal stability and mechanical properties. In vitro biostability of cured potting compound has been found to be excellent without any significant degradation in simulated physiological media and chemical environment. Studies on blood-material interaction and cytotoxicity reveal in vitro blood compatibility and compatibility with cells of this potting compound.
Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J
2011-08-15
The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Lequan; Qiao, Botao; Chen, Zhengjian; Zhang, Juan; Deng, Youquan
2009-02-14
Chemoselective hydrogenation of aromatic nitro compounds were first efficiently achieved over Au/Fe(OH)(x) at 100-120 degrees C for 1.5-6 h (depending on different substrates) in the presence of CO and H(2)O.
DNA adducts are the covalent addition products resulting from binding of reactive chemical species to DNA bases. The cancer initiating role of DNA adducts is well-established, and is clearly reflected in the high cancer incidence observed in individuals with deficiencies in any o...
Galano, Annia
2007-03-08
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.
Job, D; Dunford, H B
1976-07-15
A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.
Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece
2007-01-01
Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted to a pH of 7, dosed with sodium hypochlorite, and incubated for 168 hours (seven days) at 25 ?C to form disinfection by-products (DBPs). Concentrations of the DBPs-trihalomethanes, haloacetic acids, haloacetonitriles, and chlorate-were measured. Concentrations of these compounds, with few exceptions, were higher in water from Coastal Plain wells than from wells in glacial and bedrock aquifers. The organic-carbon fractions were dosed with sodium hypochlorite, incubated for 168 hours at 25 ?C, and analyzed for trihalomethanes, haloacetic acids, haloacetonitriles, and chlorate. Concentrations of trihalomethanes and haloacetic acids were higher in most of the hydrophobic organic-acid fractions than in the hydrophilic fractions, with the highest concentrations in samples from Coastal Plain aquifers. Traces of haloacetonitriles were measured, mostly in the hydrophilic fraction. The aromaticity of the precursor DOC, as estimated by measurements of the absorbance of ultraviolet light at 254 nanometers, apparently is a factor in the DBP formation potentials determined, as aromaticity was greater in the samples that developed high concentrations of DBPs. VOCs may have contributed to the organic carbon present in some of the samples, but much of the DOC present in water from the 20 wells appeared to be natural in origin. The sediments of the Coastal Plain aquifers, in particular, contain substantial amounts of organic matter, which contribute ammonia, organic nitrogen, and aromatic DOC compounds to the ground water. Thus, the geologic characteristics of the aquifers appear to be a major factor in the potential for ground water to form DBPs when chlorinated.
Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI).
Wang, Chengjin; Klamerth, Nikolaus; Huang, Rongfu; Elnakar, Haitham; Gamal El-Din, Mohamed
2016-04-19
This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.0% and 78.4% removal of naphthenic acids (NAs) at the dose of 200 mg/L and 400 mg/L Fe(VI) respectively, and NAs with high carbon number and ring number were removed preferentially. (1)H nuclear magnetic resonance ((1)H NMR) spectra indicated that the oxidation of fluorescing aromatics resulted in the opening of some aromatic rings. Electron paramagnetic resonance (EPR) analysis detected signals of organic radical intermediates, indicating that one-electron transfer is one of the probable mechanisms in the oxidation of NAs. The inhibition effect of OSPW on Vibrio fischeri and the toxicity effect on goldfish primary kidney macrophages (PKMs) were both reduced after ferrate(VI) oxidation. The fluorescing aromatics in OSPW were proposed to be an important contributor to this acute toxicity. Degradation of model compounds with ferrate(VI) was also investigated and the results confirmed our findings in OSPW study.
Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao
2016-07-25
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) includingmore » 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less
Boos, Terrence L; Greiner, Elisabeth; Calhoun, W Jason; Prisinzano, Thomas E; Nightingale, Barbara; Dersch, Christina M; Rothman, Richard B; Jacobson, Arthur E; Rice, Kenner C
2006-06-01
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.
Hochreiter, Joseph J.
1982-01-01
This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed Environmental Protection Agency ' priority pollutants, ' including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds. Trace levels (1-50 micrograms per liter) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, were found in about 60% of the water samples taken. DDT, DDD, DDE, PCB 's and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 micrograms per kilogram at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.
NASA Astrophysics Data System (ADS)
Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise
2017-02-01
A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.
Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B
2011-03-01
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.
Polybenzimidazole via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)
1994-01-01
Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.
Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.
Forsey, Steven P; Thomson, Neil R; Barker, James F
2010-04-01
The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene
Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists.
Fujimoto, Tatsuhiko; Kunitomo, Jun; Tomata, Yoshihide; Nishiyama, Keiji; Nakashima, Masato; Hirozane, Mariko; Yoshikubo, Shin-Ichi; Hirai, Keisuke; Marui, Shogo
2011-11-01
During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nagle, Doug D.
2013-01-01
Samples from sites SWR11–3, SWR11–4, and SWR11–5 were analyzed for 83 volatile and semivolatile organic compounds. Eight polycyclic aromatic hydrocarbon compounds, benzo[a]pyrene, benzo[b]fluoranthene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene, were detected at all three sites. Of the 86 volatile and semivolatile organic compounds that were analyzed in stormwater samples from heating and cooling sites, 15 (18 percent) were detected at site SWR11–3, 12 (14 percent) were detected at site SWR11–4, and 17 (20 percent) were detected at site SWR11–5.
Davis, S C; Makarov, A A; Hughes, J D
1999-01-01
Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.
BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...
Biodegradation of Nitriles in Shale Oil
Aislabie, Jackie; Atlas, Ronald M.
1988-01-01
Enrichment cultures were obtained, after prolonged incubation on a shale oil as the sole source of nitrogen, that selectively degraded nitriles. Capillary gas chromatographic analyses showed that the mixed microbial populations in the enrichments degraded the homologous series of aliphatic nitriles but not the aliphatic hydrocarbons, aromatic hydrocarbons, or heterocyclic-nitrogen compounds found in this oil. Time course studies showed that lighter nitriles were removed more rapidly than higher-molecular-weight nitriles. A Pseudomonas fluorescens strain isolated from an enrichment, which was able to completely utilize the individual nitriles undecyl cyanide and undecanenitrile as sole sources of carbon and nitrogen, was unable to attack stearonitrile when provided alone as the growth substrate. A P. aeruginosa strain, also isolated from one of the enrichments, used nitriles but not aliphatic or aromatic hydrocarbons when the oil was used as a sole nitrogen source. However, when the shale oil was used as the sole source of carbon, aliphatic hydrocarbons in addition to nitriles were degraded but aromatic hydrocarbons were still not attacked by this P. aeruginosa strain. PMID:16347731
NASA Astrophysics Data System (ADS)
Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe
2015-04-01
Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve identification and characterization of aromatic and condensed aromatic compounds in WSOC [2]. We proposed threshold values of Xc≥ 2.5000 and Xc≥ 2.7143 as ambiguous minimum criteria for the presence of aromatic structure and condensed aromatic compounds, respectively. The advantage of employing this parameter is that Xc would have a constant value for each proposed core structure regardless the degree of alkylation, and thus visual representation and structural interpretations of the spectra become advantageous for characterizing and comparing complex samples. Diesel particulate matter (DPM) and two atmospheric aerosols collected in the industrial area affected by biomass burning events were used to study the applicability of the proposed criteria for the improved identification of aromatic and condensed aromatic structures in complex mixtures in the FT-ICR mass spectra. References [1] Koch.BP, Dittmar.T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926-932 [2] Yassine.MM, Harir.M, Dabek-Zlotorzynska.E, Schmitt-Kopplin.Ph. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014. 28. 2445-2454
Gaviño, Maria; Hermosin, Bernardo; Vergès-Belmin, Véronique; Nowik, Witold; Saiz-Jimenez, Cesareo
2004-05-01
The organic fraction of black crusts from Saint Denis Basilica, France, is composed of a complex mixture of aliphatic and aromatic compounds. These compounds were studied by two different analytical approaches: tetramethyl ammonium hydroxide (TMAH) thermochemolysis in combination with gas chromatography-mass spectrometry (GC-MS), and solvent extraction, fractionation by silica column, and identification of the fraction components by GC-MS. The first approach, feasible at the microscale level, is able to supply fairly general information on a wide range of compounds. Using the second approach, we were able to separate the complex mixture of compounds into four fractions, enabling a better identification of the extractable compounds. These compounds belong to different classes: aliphatic hydrocarbons (nalkanes, n-alkenes), aliphatic and aromatic carboxylic acids (n-fatty acids, alpha,omega-dicarboxylic acids, and benzenecarboxylic acids), polycyclic aromatic hydrocarbons (PAH), and molecular biomarkers (isoprenoid hydrocarbons, diterpenoids, and triterpenoids). With each approach, similar classes of compounds were identified, although TMAH thermochemolysis failed to identify compounds present at low concentrations in black crusts. The two proposed methodological approaches are complementary, particularly in the study of polar fractions.
Bendini, Alessandra; Vallverdú-Queralt, Anna; Valli, Enrico; Palagano, Rosa; Lamuela-Raventos, Rosa Maria; Toschi, Tullia Gallina
2017-08-01
The sensory and head-space profiles of Italian and Spanish commercial tomato sauces were investigated. The Flash Profiling method was used to evaluate sensory characteristics. Samples within each set were ranked according to selected descriptors. One hundred volatile compounds were identified by solid-phase microextraction-gas chomatography-mass spectrometry. For Italian samples, the sensory notes of basil/aromatic herbs, acid and cooked tomato were among those perceived most by the assessors, whereas, in Spanish samples, the sensory attributes of garlic/onion and onion/sweet pepper and, in Italian samples, cooked tomato were among those found most frequently. Data were elaborated using multivariate statistical approaches and interesting correlations were observed among the different sensory attributes and related volatile compounds. Spanish samples were characterized by the highest content of volatiles linked to the thermal treatment of tomatoes and to raw and sautéed garlic and onion, whereas the Italian samples were characterized by terpenic compounds typical of basil and volatile molecules derived from fresh tomato. These results confirm the influence of both formulation and production processes on the aromatic profile (sensory attributes and volatile compounds) of tomato products, which is probably related to the different eating habits and culinary traditions in Italy and Spain. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, G.; Padro, C.L.; Resasco, D.E.
The n-hexane aromatization has been studied on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts at 773 K using sulfur-free and 0.6 ppm sulfur containing feedstocks. Examination of the product distribution as a function of conversion suggests that the formation of benzene is preceded by the formation of hexenes. In contrast with previous reports, it has been found that the Pt/KL catalyst exhibits much higher aromatization activity than the Pt/Mg(Al)O catalyst. On Pt/KL the main product is benzene, with hexenes and lighter compounds as the principal by-products. By contrast, on the Pt/Mg(Al)O, the main products were hexenes. Since hexenes are primary productsmore » and benzene is a secondary product, the exceptional aromatization activity of Pt/KL is explained in terms of its ability to convert hexene into benzene. In the presence of sulfur, the Pt/KL exhibits a rapid loss in n-hexane conversion and benzene selectivity. Under these conditions, the sulfided Pt/KL catalyst presents a catalytic behavior typical of Pt/Mg(Al)O and Pt/SiO{sub 2}, generating larger amounts of hexenes. The observed results are consistent with the hypothesis that the most important role of the zeolite is to inhibit bimolecular interactions that lead to coke formation. The formation of coke has the net effect of selectively deactivating aromatization sites which require a large ensemble of atoms to constitute the active site but not affecting the dehydrogenation activity which is less ensemble-sensitive. Therefore, those particles that are not protected against coking inside the channels of the zeolite rapidly become unselective. In support of this hypothesis, the hydrogenolysis reaction which also requires a large ensemble of atoms, decreases in parallel with the aromatization reaction. The high sensitivity of Pt/KL to sulfur may be due to a combination of effects which may involve growth of metal particles outside the zeolite which would become unselective and partial poisoning of the particles inside the zeolite, causing a similar selective deactivation.« less
Remedial Investigation/Feasibility Study/Interim Response Actions
1988-03-25
organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7
Microbial reductive dehalogenation.
Mohn, W W; Tiedje, J M
1992-01-01
A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492
Ambient aromatic hydrocarbon measurements at Welgegund, South Africa
NASA Astrophysics Data System (ADS)
Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.
2014-07-01
Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were observed. Air mass back trajectory analysis indicated that the lack of seasonal cycles could be attributed to patterns determining the origin of the air masses sampled. Aromatic hydrocarbon concentrations were in general significantly higher in air masses that passed over anthropogenically impacted regions. Inter-compound correlations and ratios gave some indications of the possible sources of the different aromatic hydrocarbons in the source regions defined in the paper. The highest contribution of aromatic hydrocarbon concentrations to ozone formation potential was also observed in plumes passing over anthropogenically impacted regions.
USDA-ARS?s Scientific Manuscript database
Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...
Alkylation of organic aromatic compounds
Smith, L.A. Jr.
1989-07-18
Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.
Alkylation of organic aromatic compounds
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1994-01-01
Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.
Alkylation of organic aromatic compounds
Smith, Jr., Lawrence A.
1989-01-01
Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.
Alkylation of organic aromatic compounds
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1994-06-14
Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.
Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura
NASA Astrophysics Data System (ADS)
Smolarek, Justyna; Marynowski, Leszek
2013-09-01
Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.
Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.
2013-01-01
A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance) were detected in more than half of the extracts from passive samplers, but they were not detected in any discrete water sample. The Yeast Estrogen Screen assay identified measurable estrogenicity in one passive sampler extract from the most downstream wetland site in both the April and November–December 2011 deployments and in passive sampler extracts from one residential and one upstream site in the November–December 2011 deployment only. Surface-water levels in the restored wetland cells were monitored continuously using submersible pressure transducers in hand-driven well points screened in the surface water. Surface-water levels in the wetland cells responded quickly to precipitation and substantially receded within 2 days following the largest rainfall events. Seasonal patterns in water levels generally showed higher and more variable surface-water levels in the wetland cells during spring and early summer. Water levels in the wetland cells fell below the elevation of the control structures and ceased to flow over the spillways during extended dry periods (primarily late summer and early fall). Daily loads of seven organic wastewater compounds, as indicators of septic system effluent, were estimated for samples collected at wetland outlet spillways when flow measurements could be made. Median daily loads of the indicator organic wastewater compounds increased in downstream order, and the largest median loads were measured at the most downstream site. Median daily loads were higher for samples collected in spring and summer than those collected in fall, as the higher seasonal water levels increased streamflow at the wetland outlet spillways. Wetland sediment samples were analyzed for 84 organic wastewater compounds, polycyclic aromatic hydrocarbons, and semivolatile organic compounds to investigate the fate of contaminants in Great Marsh. The top five detected compounds by total mass in wetland sediment samples were beta-sitosterol, beta-stigmastanol, cholesterol, bis(2-ethylhexyl) phthalate, and phenol. Polycyclic aromatic hydrocarbons also were frequently detected in wetland sediment samples. Source apportionment of polycyclic aromatic hydrocarbon detections indicated atmospheric sources of pyrogenic compounds, rather than residential sources. Comparisons of polycyclic aromatic hydrocarbon concentrations in wetland sediment samples to sediment quality target guidelines indicated the potential for harmful effects on sediment-dwelling organisms at several sites. Biodegradation of select endocrine-disrupting compounds (17α-ethinylestradiol, 4-nonylphenol, triclocarban, and bisphenol A) in shallow wetland sediments was evaluated in laboratory experiments by using carbon-14 radiolabeled model contaminants. Substantial biodegradation of certain organic wastewater compounds were demonstrated, primarily in oxic (oxygen containing) environments. One of four modeled compounds, bisphenol A, was biodegraded in anoxic (oxygen free) environments. Only sediments collected nearest residential areas exhibited degradation of the synthetic birth control pharmaceutical, 17α-ethinylestradiol, possibly owing to adaptation and acclimation of the indigenous microbial community to septic discharge and the resultant selection of a microbial capability for biodegradation of 17α-ethinylestradiol.
Ultraviolet Resonance Raman Enhancements in the Detection of Explosives
2009-06-01
nitramines (e.g., RDX , HMX ) and aromatic compounds (e.g., DNT, TATB, TNT). 1. Types of Explosives and Chemical Composition Due to stability...resonance Raman spectra of TNT, RDX , HMX , and PETN using 40 UV wavelengths from 210 to 280 nm using a 90 collection geometry [32]. This study includes...Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition . Other than
2010-11-01
carbon flipid fraction lipid foc fraction organic carbon fprotein fraction protein GCMS Gas Chromatography -Mass Spectrometry HP Hunter’s...Internal standards were added to the extracts before gas chromatography -mass spectrometry (GCMS) analysis. GCMS was done using a JEOL GCmate...min. The MS was operated in selected ion monitoring (SIM) and EI+ modes. Calibration standards 6 containing at least 25 aromatic compounds
Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun
2015-07-13
There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
The Lincoln Creosote Site (Site) is located in Bossier City, Louisiana, and consists of a 20-acre industrial area that includes the former location of a wood treatment plant. Wood products such as railroad ties and utility poles were pressure treated at the plant, using creosote, chromated copper-arsenate (CCA) and pentachlorophenol (PCP) as wood preservatives. The compounds used for wood treatment contained metals, a number of semi-volatile organic base-neutral extractable compounds such as polynuclear aromatic hydrocarbon (PAHs). EPA`s selected removal action called for excavation of residential soils containing concentrations of wood treatment product residuals.
Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media
NASA Astrophysics Data System (ADS)
Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.
2015-06-01
Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.
NASA Astrophysics Data System (ADS)
Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia
2018-01-01
Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.
NASA Astrophysics Data System (ADS)
Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.
2018-02-01
Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.
Zakzeski, Joseph; Weckhuysen, Bert M
2011-03-21
The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J
2017-03-01
Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong
2018-05-01
New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.
Yao, Yung-Chen; Tsai, Jiun-Horng
2013-01-01
A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, J. B.; Richter, H.
This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process whilemore » their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.« less
Aromatic-degrading Sphingomonas isolates from the deep subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, J.K.; Romine, M.F.; Balkwill, D.L.
An obligately aerobic chemoheterotrophic bacterium (strain F199) previously isolated from Southeast Coastal Plain subsurface sediments and shown to degrade toluene, naphthalene, and other aromatic compounds was characterized by analysis of its 16S rRNA nucleotide base sequence and cellular lipid composition. Strain F199 contained 2-OH14:0 and 18:1{omega}7c as the predominant cellular fatty acids and sphingolipids that are characteristic of the genus Sphingomonas. Phylogenetic analysis of its 16SrRNA sequence indicated that F199 was most closely related to Sphingomonas capsulata among the bacteria currently in the Ribosomal Database. Five additional isolates from deep Southeast Coastal Plain sediments were determined by 16S rRNA sequencemore » analysis to be closely related to F199. These strains also contained characteristic sphingolipids. Four of these five strains could also grow on a broad range of aromatic compounds and could mineralize [{sup 14C}]toluene and [{sup 14C}]naphthalene. S. capsulata (ATCC 14666), Sphingomonas paucimobiolis (ATCC 29837), and one of the subsurface isolates were unable to grow on any of the aromatic compounds or mineralize toluene or naphthalene. These results indicate that bacteria within the genus Sphingomonas are present in Southeast Coastal Plain subsurface sediments and that the capacity for degrading a broad range of substituted aromatic compounds appears to be common among Sphingomonas species from this environment. 41 refs., 2 figs., 5 tabs.« less
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-01-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-10-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2018-02-01
Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Formation of highly oxygenated organic molecules from aromatic compounds
NASA Astrophysics Data System (ADS)
Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs
2018-02-01
Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.
NASA Astrophysics Data System (ADS)
Fee, Anna
2017-04-01
Anna Fee (1), Markus Kalberer (1), Roberto Fraile (2), Amaya Castro (2), Ana. I. Calvo (2), Carlos Blanco-Alegre (2), Fernanda Oduber (2) and Mário Cerqueira (3). 1 Department of Chemistry, University of Cambridge, UK. 2 Department of Applied Chemistry and Physics, IMARENAB, University of León, Spain. 3 Department of Environmental Planning, University of Aveiro, Portugal. A wide range of atmospheric compounds which are present in rainwater are often also present in aerosol. They can be taken up during cloud droplet formation (in-cloud scavenging) or washed out during precipitation (below-cloud scavenging). Such compounds including aromatic hydrocarbons and organic nitrogen containing compounds are hazardous to health. In this study, the organic chemical composition of rainwater and aerosol from rain events in León, Spain, is being analysed using high resolution mass spectrometry. Collected rainwater along with high volume and low volume filters from rain events which occurred during spring, summer and winter of 2016 have been selected for analysis. Rainwater samples were prepared using Polymeric Reversed Phase Solid Phase Extraction (SPE) and filters have been extracted in water with and without SPE. Three different SPE polymer based sorbents were tested; one for extracting neutral compounds and two which are more suitable for extracting organic compounds containing sulphate and other polar functional groups. The sorbent for extracting neutral compounds was found to yield a higher number of compounds from the sample extraction than the other two varieties. Kendrick masses, Van Krevelen plots and carbon oxidation states have been investigated to identify compounds and patterns. Preliminary results show a predominance in peaks with O/C ratios between 0.2 and 0.7 and H/C ratios between 1 and 2 in both rain and aerosol samples which indicates substituted aromatic compounds. Cellulose material and fatty acids may also be present. The rain samples also have a significant number of peaks with O/C ratios of 0.0 and H/C ratios between 0.5 and 1 which appear to be absent from the aerosol. These may be due to condensed aromatic rings and considering local meteorological factors will aid interpretation. More preliminary results show that on average 70% of assigned compounds in the rainwater contain nitrogen and 28% contain sulphur. In the aerosol, 54% of compounds contain nitrogen and 41% contain sulphur. Further analysis is also predicted to reveal significant seasonal trends between rainwater and aerosol samples.
Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
Nelson, M J; Montgomery, S O; Mahaffey, W R; Pritchard, P H
1987-01-01
Biodegradation of trichloroethylene (TCE) by bacterial strain G4 resulted in complete dechlorination of the compound, as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation was identified as phenol. Strain G4 degraded TCE in the presence of chloramphenicol only when preinduced with phenol. Toluene, o-cresol. and m-cresol could replace the phenol requirement. Two of the inducers of TCE metabolism, phenol and toluene, apparently induced the same aromatic degradative pathway that cleaved the aromatic ring by meta fission. Cells induced with either phenol or toluene had similar oxidation rates for several aromatic compounds and had similar levels of catechol-2,3-dioxygenase. The results indicate that one or more enzymes of an inducible pathway for aromatic degradation in strain G4 are responsible for the degradation of TCE. PMID:3606099
Portable spotter for fluorescent contaminants on surfaces
Schuresko, Daniel D.
1980-01-01
A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.
Electrochemical methods for monitoring of environmental carcinogens.
Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J
2001-04-01
The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.
Fraser, Ann M; Mechaber, Wendy L; Hildebrand, John G
2003-08-01
Coupled gas chromatography with electroantennographic detection (GC-EAD) using antennae of adult female Manduca sexta was employed to screen for olfactory stimulants present in headspace collections from four species of larval host plants belonging to two families: Solanaceae--Lycopersicon esculentum (tomato), Capiscum annuum (bell pepper), and Datura wrightii; and Martyniaceae--Pronboscideaparviflora. Headspace volatiles were collected from undamaged foliage of potted, living plants. GC-EAD revealed 23 EAD-active compounds, of which 15 were identified by GC-mass spectrometry. Identified compounds included aliphatic, aromatic, and terpenoid compounds bearing a range of functional groups. Nine EAD-active compounds were common to all four host plant species: (Z)-3-hexenyl acetate, nonanal, decanal, phenylacetaldehyde, methyl salicylate, benzyl alcohol, geranyl acetone, (E)-nerolidol, and one unidentified compound. Behavioral responses of female moths to an eight-component synthetic blend of selected tomato headspace volatiles were tested in a laboratory wind tunnel. Females were attracted to the blend. A comparison of responses from antennae of males and females to bell pepper headspace volatiles revealed that males responded to the same suite of volatiles as females, except for (Z)-3-hexenyl benzoate. EAD responses of males also were lower for (Z)-and (E)-nerolidol and one unidentified compound. Electroantennogram EAG dose-response curves for the 15 identified EAD-active volatiles were recorded. At the higher test doses (10-100 microg), female antennae yielded larger EAG responses to terpenoids and to aliphatic and aromatic esters. Male antennae did respond to the higher doses of (Z)-3-hexenyl benzoate, indicating that they can detect this compound. On the basis of ubiquity of the EAD-active volatiles identified to date in host plant headspace collections, we suggest that M. sexta uses a suite of volatiles to locate and identify appropriate host plants.
Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds
Stahl, Shannon S; Rahimi, Alireza
2015-03-03
Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.
Prediction of biodegradability of aromatics in water using QSAR modeling.
Cvetnic, Matija; Juretic Perisic, Daria; Kovacic, Marin; Kusic, Hrvoje; Dermadi, Jasna; Horvat, Sanja; Bolanca, Tomislav; Marin, Vedrana; Karamanis, Panaghiotis; Loncaric Bozic, Ana
2017-05-01
The study was aimed at developing models for predicting the biodegradability of aromatic water pollutants. For that purpose, 36 single-benzene ring compounds, with different type, number and position of substituents, were used. The biodegradability was estimated according to the ratio of the biochemical (BOD 5 ) and chemical (COD) oxygen demand values determined for parent compounds ((BOD 5 /COD) 0 ), as well as for their reaction mixtures in half-life achieved by UV-C/H 2 O 2 process ((BOD 5 /COD) t1/2 ). The models correlating biodegradability and molecular structure characteristics of studied pollutants were derived using quantitative structure-activity relationship (QSAR) principles and tools. Upon derivation of the models and calibration on the training and subsequent testing on the test set, 3- and 5-variable models were selected as the most predictive for (BOD 5 /COD) 0 and (BOD 5 /COD) t1/2 , respectively, according to the values of statistical parameters R 2 and Q 2 . Hence, 3-variable model predicting (BOD 5 /COD) 0 possessed R 2 =0.863 and Q 2 =0.799 for training set, and R 2 =0.710 for test set, while 5-variable model predicting (BOD 5 /COD) 1/2 possessed R 2 =0.886 and Q 2 =0.788 for training set, and R 2 =0.564 for test set. The selected models are interpretable and transparent, reflecting key structural features that influence targeted biodegradability and can be correlated with the degradation mechanisms of studied compounds by UV-C/H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Octaviani, Mega; Tost, Holger; Lammel, Gerhard
2017-04-01
Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.
Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett
2013-04-01
Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.
Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan
2009-05-01
Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.
NASA Astrophysics Data System (ADS)
Karl, T.; Jobson, T.; William, K.; Williams, E.; Stutz, J.; Goldan, P.; Fall, R.; Fehsenfeld, F.; Lindinger, W.
2002-12-01
We used Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Anthropogenic aromatics, alkenes, methanol, acetaldehyde, formaldehyde, acetone/propanal, a C7-Ketone, HCN and acrylonitrile were the most prominent compounds observed. Propene was the most abundant light-weight hydrocarbon detected by this technique, and was highly correlated with its oxidation products, formaldehyde and acetaldehyde, with typical propene-acetaldehyde ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained dataset helped in identifying different anthropogenic sources (e.g. industrial from urban emissions) and testing current emission inventories. In addition, a comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by `soft' chemical ionization using proton-transfer via H3O+.
Zhang, Lexin; Jiao, Tifeng; Ma, Kai; Xing, Ruirui; Liu, Yamei; Xiao, Yong; Zhou, Jingxin; Zhang, Qingrui; Peng, Qiuming
2016-01-01
In this work, some amide compounds with different aromatic substituent headgroups were synthesized and their gelation self-assembly behaviors in 22 solvents were characterized as new gelators. The obtained results indicated that the size of aromatic substituent headgroups in molecular skeletons in gelators showed crucial effect in the gel formation and self-assembly behavior of all compounds in the solvents used. Larger aromatic headgroups in molecular structures in the synthesized gelator molecules are helpful to form various gel nanostructures. Morphological investigations showed that the gelator molecules can self-assembly and stack into various organized aggregates with solvent change, such as wrinkle, belt, rod, and lamella-like structures. Spectral characterizations suggested that there existed various weak interactions including π-π stacking, hydrogen bonding, and hydrophobic forces due to aromatic substituent headgroups and alkyl substituent chains in molecular structures. In addition, the drug release capacities experiments demonstrated that the drug release rate in present obtained gels can be tuned by adjusting the concentrations of dye. The present work would open up enormous insight to design and investigate new kind of soft materials with designed molecular structures and tunable drug release performance. PMID:28773663
The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells
Wilson, David; McIntyre, Lachlan; Smith, Jennifer J.; Tribolet, Leon; Loukas, Alex; Liddell, Michael J.; Daly, Norelle L.
2017-01-01
Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments. PMID:29077051
The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells.
Wilson, David; Boyle, Glen M; McIntyre, Lachlan; Nolan, Matthew J; Parsons, Peter G; Smith, Jennifer J; Tribolet, Leon; Loukas, Alex; Liddell, Michael J; Rash, Lachlan D; Daly, Norelle L
2017-10-27
Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA 366 , containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA 366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments.
Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Wang, Huihui; Li, Jingying
2014-01-01
A study for the simultaneous determination of 21 primary aromatic amines derived from the reduction of the azo colorants in plastic components of electrical and electronic products was conducted. Organic solvents were used to dissolve or swell the plastics to release the azo dyes existing in the plastic components. The azo colorants were reduced to aromatic amines under strong reducing condition of dithionite. Aromatic amines were extracted with methyl tert-butyl ether. Methanol-water (1: 1, v/v) was used to concentrate the extract to constant-volume for HPLC-MS analysis. The analytes were separated on a ZORBAX Eclipse XDB C18 column using the gradient elution with acetonitrile and 0.1% (v/v) formic acid aqueous solution at a flow rate of 0.6 mL/min. The analyte confirmation was performed using retention time and characteristic ions in selected ion monitoring (SIM) mode. The correlation coefficients (r) of all the standard curves were more than 0.998, and the limits of quantification of the analytes were 0.5 mg/kg. The recoveries were 60.1% - 129.5% for the 21 aromatic amines with the RSDs not more than 14.0% except for a few compounds. The results showed that the banned azo colorants in the plastic products can be analyzed qualitatively and quantitatively through reductive conversion into aromatic amines. In addition, this method has high accuracy and good precision.
USDA-ARS?s Scientific Manuscript database
INTRODUCTION Aromatic rice or fragrant rice, (Oryza sativa L.), has a strong popcorn-like aroma due to the presence of a five-membered N-heterocyclic ring compound known as 2-acetyl-1-pyrroline (2-AP). To date, existing methods for detecting this compound in rice require the use of several kernels. ...
2,4,5-trihydroxy-3-methylacetophenone: A cellulosic chromophore as a case study of aromaticity
Nele Sophie Zwirchmayr; Thomas Elder; Markus Bacher; Andreas Hofinger-Horvath; Paul Kosma; Thomas Rosenau
2017-01-01
The title compound (2,4,5-trihydroxy-3-methylacetophenone, 1) was isolated as chromophore from aged cellulosic pulps. The peculiar feature of the compound is its weak aromatic system that can be converted into nonaromatic (quinoid or cyclic aliphatic) tautomers, depending on the conditions and reaction partners. In alkaline media, the participation of quinoid canonic...
USDA-ARS?s Scientific Manuscript database
Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...
Aerobic Biodegradation of Trichloroethylene.
1987-07-01
into C02 and unidentified nonvolatile products. Phenol, 41 toiin- andq- cresol were found to replace the site water requirement for TCE metabolism...identified as phenol. Other aromatic compounds that could support TCE degradation were toluene, o- cresol , and m- cresol . The degradation could be...Production...... .. .. .. . 17 4. Test for the Catechol Ortho °Ring-Fission Pathway . 18 5. Oxidation of Aromatic Compounds ............. .18 6
Mir, Rafia; Jallu, Shais; Singh, T P
2015-06-01
The aromatic compounds such as aromatic amino acids, vitamin K and ubiquinone are important prerequisites for the metabolism of an organism. All organisms can synthesize these aromatic metabolites through shikimate pathway, except for mammals which are dependent on their diet for these compounds. The pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismate through seven enzymatically catalyzed steps and chorismate serves as a precursor for the synthesis of variety of aromatic compounds. These enzymes have shown to play a vital role for the viability of microorganisms and thus are suggested to present attractive molecular targets for the design of novel antimicrobial drugs. This review focuses on the seven enzymes of the shikimate pathway, highlighting their primary sequences, functions and three-dimensional structures. The understanding of their active site amino acid maps, functions and three-dimensional structures will provide a framework on which the rational design of antimicrobial drugs would be based. Comparing the full length amino acid sequences and the X-ray crystal structures of these enzymes from bacteria, fungi and plant sources would contribute in designing a specific drug and/or in developing broad-spectrum compounds with efficacy against a variety of pathogens.
The influence of the Tbeta level upon fluorescence and laser properties of aromatic compounds.
Nijegorodov, N; Winkoun, D P; Nkoma, J S
2004-07-01
The fluorescence and laser properties of seven specially chosen aromatic compounds are studied at 293 degrees C. The quantum yield of fluorescence, gamma, decay times, tauf, of the deaerated and non-deaerated solutions are measured. The oscillator strength, fe, fluorescence rate constants, kf, natural lifetimes, tauT0, and intersystem crossing rate constants, kST, are calculated. Some laser parameters are calculated or measured experimentally. It is found that the position of the Tbeta level plays an important role in the fluorescence and laser properties of aromatic compounds. If the Tbeta level is situated below the Sp level, it decreases the quantum yield of fluorescence and the decay time and increases the threshold of laser action. If, due to some structural changes of a molecule, the Tbeta level is situated higher than the Sp level, then the quantum yield of fluorescence and the decay times are increasing and the threshold of laser action is decreasing. Such influence of the position of the Tbeta level upon fluorescence and laser properties of aromatic compound is explained by the fact that the Sp level mixes with the Tbeta level more readily than with other taupipi* levels.
Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production
Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle
2014-01-01
The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996
Nguyen, Ngoc-Lan Thi; Vo, Hong-Thom; Duus, Fritz; Luu, Thi Xuan Thi
2017-09-04
The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3-methylimidazolium chloride and aluminum chloride were found to be the most efficient and recyclable reaction framework. Ultrasound sonication appeared to be the most useful and green activation method to afford the sulfoxides in yields better than or equivalent to those obtained under the longer-lasting conventional stirring conditions.
Salagoity-Auguste, M H; Tricard, C; Sudraud, P
1987-04-17
Aromatic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and coumarins (esculetin, umbelliferone, scopoletin and methylumbelliferone) are natural wood compounds. Storage of wines and brandies in oak barrels increases notably aldehydes and coumarins (particularly scopoletin) concentrations. These compounds were separated by high-performance liquid chromatography, on hydrocarbon bonded reversed-phase packings, with a water-acetonitrile elution gradient. They were first extracted from wines and brandies by diethyl ether and then injected on chromatographic column. A double detection was used to determine simultaneously aromatic aldehydes and coumarins by UV absorption and fluorescence respectively.
Escobar-Arnanz, J; Mekni, S; Blanco, G; Eljarrat, E; Barceló, D; Ramos, L
2018-02-09
Discarded vehicle tires have become an increasing concern worldwide due to the enormous amount of wastes generated and the increasing evidence of health problems associated to their disposal and accidental combustion. Previous studies conducted involving either simulated or open uncontrolled tire fires have identified aromatics belonging to two main classes, volatile organic compounds and polycyclic aromatic compounds (PAHs), as the most relevant chemicals generated in these burning processes. As a consequence, and due to their recognized toxicity, most studies reported up to now have mainly focused on these two categories of compounds being information concerning the possible occurrence of other aromatic classes rather limited. In this study, the enhanced separation power and structural confirmation capabilities provided by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToF MS) has been used, for the first time, for the non-targeted analysis of soils impacted by a tire fire and an ash collected at the scene of the fire. In total, 118 volatile and semi-volatile aromatic compounds have been differentiated. Among them, 104 compounds have been either positively or tentatively identified. PAHs with 3-5 rings and their alkyl-derivatives were the most numerous and relevant classes in the investigated samples. A significant number of sulfur, oxygen- and nitrogen-containing PAHs were also detected in the samples. The application of a script function to the raw GC×GC-ToF MS data allowed the fast filtering and automatic recognition of compounds containing halogens in their structure. This part of the study evidenced that only a limited number of regulated persistent organic pollutants were present in the investigated samples. However, it also revealed the presence of emerging organophosphorous flame retardants, whose levels in tire fire impacted soils are reported for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
Volatile profiles of aromatic and non-aromatic rice
USDA-ARS?s Scientific Manuscript database
Rice is enjoyed by many people as a staple food because of its flavor and texture. Some scented varieties command a premium in the marketplace because of their distinctive aroma and flavor. The compound most commonly associated with the popcorn or nutty scent of aromatic rice is 2-acetyl-1-pyrroline...
Photocatalytic oxidation of aromatic amines using MnO2@g ...
An efficient and direct oxidation of aromatic amines to aromatic azo-compounds has been achieved using a MnO2@g-C3N4 catalyst under visible light as a source of energy at room temperature Prepared for submission to the journal, Advanced Materials Letters.
An analytical method was developed to determine simultaneously, the inorganic anion CrO2-4, and organic aromatic compounds including benzoate, 2-Cl-benzoate, phenol, m-cresol and o-/p-cresol by capillary electrophoresis (CE). Chromate and the aromatics were separated in a relativ...
Alkylation of organic aromatic compounds
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1993-09-07
Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.
Alkylation of organic aromatic compounds
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1993-01-01
Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.
Synthesis and antimalarial activity study of some new Mannich bases of 7-chloro-4-aminoquinoline.
Roy, Susanta; Chetia, Dipak; Rudrapal, Mithun; Prakash, Anil
2013-05-01
New derivatives of 7-chloro-4-aminoquinoline Mannich base were prepared by selectively modifying the aliphatic diethyl amino function of isoquine with different aliphatic/aromatic heterocyclic primary amino moieties at Mannich side chain. The synthesized compounds were characterized by their analytical and spectral data, and screened for in-vitro antimalarial activity against a chloroquine-sensitive 3D7 strain of Plasmodium falciparum. All the compounds showed in-vitro antimalarial activity at the tested dose; which, however, was considerably less than that of the standard reference drug, chloroquine. Among synthesized compounds, compounds with cyclohexyl (2f), methyl (2c) substitutions showed better activity than compounds substituted with n-octyl (2a), propyl (2b), 3-aminopropyl (2d) and furan-2- ylmethyl (2e) moieties at aminomethyl side chain. The results clearly demonstrate that the compound substituted with saturated cycloalkyl moiety (cyclohexyl) exhibited to some extent increased activity as compared to the compound containing heterocyclic moiety (furan-2-ylmethyl), and compounds with short chain alkyl substitutions (methyl, propyl) were found to be more active than that of compounds with long chain alkyl substitution (n-octyl).
Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.
Zhang, Jun; Zuo, Wei; Tian, Yu; Chen, Lin; Yin, Linlin; Zhang, Jie
2017-01-03
The sulfur distributions and evolution of sulfur-containing compounds in the char, tar and gas fractions were investigated during the microwave and conventional pyrolysis of sewage sludge. Increased accumulation of sulfur in the char and less production of H 2 S were obtained from microwave pyrolysis at higher temperatures (500-800 °C). Three similar conversion pathways were identified for the formation of H 2 S during microwave and conventional pyrolysis. The cracking of unstable mercaptan structure in the sludge contributed to the release of H 2 S below 300 °C. The decomposition of aliphatic-S compounds in the tars led to the formation of H 2 S (300-500 °C). The thermal decomposition of aromatic-S compounds in the tars generated H 2 S from 500 to 800 °C. However, the secondary decomposition of thiophene-S compounds took place only in conventional pyrolysis above 700 °C. Comparing the H 2 S contributions from microwave and conventional pyrolysis, the significant increase of H 2 S yields in conventional pyrolysis was mainly attributed to the decomposition of aromatic-S (increasing by 10.4%) and thiophene-S compounds (11.3%). Further investigation on the inhibition mechanism of H 2 S formation during microwave pyrolysis confirmed that, with the special heating characteristics and relative shorter residence time, microwave pyrolysis promoted the retention of H 2 S on CaO and inhibited the secondary cracking of thiophene-S compounds at higher temperatures.
ERIC Educational Resources Information Center
Smith, Walter T., Jr.; Patterson, John M.
1984-01-01
Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…
Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé
2012-12-01
There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Miller, Jim J; Beasley, Bruce W; Hazendonk, Paul; Drury, Craig F; Chanasyk, David S
2017-05-01
Long-term application of feedlot manure to cropland may increase the quantity of soil organic carbon (C) and change its quality, which may influence soil water repellency. The objective was to determine the influence of feedlot manure type (stockpiled vs. composted), bedding material (straw [ST] vs. woodchips [WD]), and application rate (13, 39, or 77 Mg ha) on repellency of a clay loam soil after 17 annual applications. The repellency was determined on all 14 treatments using the water repellency index ( index), the water drop penetration time (WDPT) method, and molarity of ethanol (MED) test. The C composition of particulate organic matter in soil of five selected treatments after 16 annual applications was also determined using C nuclear magnetic resonance-direct polarization with magic-angle spinning (NMR-DPMAS). Manure type had no significant ( > 0.05) effect on index and WDPT, and MED classification was similar. Mean index and WDPT values were significantly greater and MED classification more hydrophobic for WD than ST. Application rate had no effect on the index, but WDPT was significantly greater and MED classification more hydrophobic with increasing application rate. Strong ( > 0.7) but nonsignificant positive correlations were found between index and WDPT versus hydrophobic (alkyl + aromatic) C, lignin at 74 ppm (O-alkyl), and unspecified aromatic compounds at 144 ppm. Specific aromatic compounds also contributed more to repellency than alkyl, O-alkyl, and carbonyl compounds. Overall, all three methods consistently showed that repellency was greater for WD- than ST-amended clay loam soil, but manure type had no effect. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Jobelius, Carsten; Frimmel, Fritz H; Zwiener, Christian
2014-05-01
The anaerobic microbial degradation of aromatic and heterocyclic compounds is a prevalent process in contaminated groundwater systems. The introduction of functional groups into the contaminant molecules often results in aromatic and heterocyclic and succinic acids. These metabolites can be used as indicators for prevailing degradation processes. Therefore, there is a strong interest in developing analytical methods for screening and identification of these metabolites. In this study, neutral loss scans (NLS) by liquid chromatography-electrospray ionization/tandem mass spectrometry with losses of CO2 (NL ∆m/z = 44) and C2H4(CO2)2 (NL ∆m/z = 116) were applied for the first time successfully to screen selectively for acidic and succinic metabolites of aromatic and heterocyclic contaminants in two fulvic acid fractions from a contaminated site and a downstream region of a tar oil-polluted groundwater. Identification of these preselected signals was performed by high-resolution mass spectrometry with a liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry instrument. High-resolution mass and mass fragmentation data were then compared with a list of known metabolites from a literature search or matched with chemical databases supported with in silico fragmentation. Based on authentic analytical standards, several compounds from NLS were identified (e.g., 4-hydroxy-3-methylbenzoic acid, benzylsuccinic acid, naphthyl-2-methylsuccinic acid, 2-carboxyindane, and 2-carboxybenzothiophene) and tentatively identified (e.g., benzofuranmethylsuccinic acid and dihydrocarboxybenzothiophene) as aromatic, phenolic, heterocyclic, and succinic acids. The acidic metabolites were found exclusively in the contaminated region of the aquifer which indicates active biodegradation processes and no relevant occurrence of acidic metabolites in the downstream region.
Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA
Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten
2017-03-27
1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less
Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten
1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less
Tandem mass spectrometry: analysis of complex mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, K.E.
1985-01-01
Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction productsmore » of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.« less
Huang, Zhi H.; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.
2002-06-04
A crosslinked polyamide material and a process for preparing the crosslinked polyamide material are disclosed. The crosslinked polyamide material comprises a crosslinked chemical combination of (1) a polyamide of the formula: ##STR1## wherein n is between about 50 and 10,000, wherein each R is between 1 and 50 carbon atoms alone and is optionally substituted with heteroatoms, oxygen, nitrogen, sulfur, or phosphorus and combinations thereof, wherein multiple of the R are in vertically aligned spaced relationship along a backbone forming the polyamide, and wherein two or more of the R contain an amino group; and (2) a crosslinking agent containing at least two functional groups capable of reacting with the amino groups of the polyamide. In one embodiment of the invention, the crosslinking agent is an aliphatic or aromatic isocyanate compound having 2 or more --N.dbd.C.dbd.O groups. In another embodiment of the invention, the crosslinking agent is an aliphatic aldehyde or aromatic aldehyde compound having 2 or more --CHO groups. In still another embodiment of the invention, the crosslinking agent is selected from a phosphine having the general formula (A).sub.2 P(B) and mixtures thereof, wherein A is hydroxyalkyl, and B is hydroxyalkyl, alkyl, or aryl. In yet another embodiment of the invention, the crosslinking agent is selected from the group consisting of epoxy resins having more than one epoxide group per molecule.
Chen, Wen-Ling; Cheng, Jiun-Yi; Lin, Xiao-Qian
2018-05-08
Pharmaceuticals and personal care products (PPCPs) are an emerging concern because of the large amount of PPCPs that is discharged and its potential ecological effects on the aquatic environment. Chlorination has proven efficient for removing some aromatic PPCPs from wastewater, but the formation of by-products has not been thoroughly investigated partly because of analytical difficulties. This study developed a method for systematically screening and identifying the transformation products (TPs) of multiple aromatic PPCPs through high-resolution mass spectrometry (HRMS). We spiked an environmentally relevant concentration (5000 ng/L) of three anti-inflammatory drugs, four parabens, bisphenol A, oxybenzone, and triclosan in the Milli-Q water and water containing natural organic matter (NOM). Low-dose chlorination (0.2-0.7 mg/L) was performed. We compared the chemical profiles of the chlorinated and untreated water and selected the ions to be identified based on the results of t-test and the ratio of signal intensities. Compound matching and isotopic pattern comparison were applied to characterising the molecular formulae of TPs. The fragmentation of the PPCPs and TPs was used in elucidating the structures of the TPs. The confirmation of TPs was achieved by comparing the retention time and fragment patterns of TPs with the isomer standards. In the chlorinated water, the aromatic PPCPs were substantially removed, except for the anti-inflammatory drugs (removal rates -5.2%-26%). Even with moderate chlorine dosages, all of the aromatic PPCPs, except for acetylsalicylic acid, were transformed into chlorinated derivatives in the Milli-Q water, and so were some PPCPs in the NOM-added water. The results of structure elucidation and compound confirmation as well as the increases in log K ow suggested that chlorination could transform aromatic PPCPs into more persistent, bioaccumulative, and toxic TPs. The presence of these TPs in the effluents where the PPCPs are removed through chlorination may pose increased risks to aquatic organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa
2010-01-01
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327
Di(hydroxyphenyl)- benzimidazole monomers
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)
1993-01-01
Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.
Kakinuma, Hiroyuki; Oi, Takahiro; Hashimoto-Tsuchiya, Yuko; Arai, Masayuki; Kawakita, Yasunori; Fukasawa, Yoshiki; Iida, Izumi; Hagima, Naoko; Takeuchi, Hiroyuki; Chino, Yukihiro; Asami, Jun; Okumura-Kitajima, Lisa; Io, Fusayo; Yamamoto, Daisuke; Miyata, Noriyuki; Takahashi, Teisuke; Uchida, Saeko; Yamamoto, Koji
2010-04-22
Derivatives of a novel scaffold, C-phenyl 1-thio-D-glucitol, were prepared and evaluated for sodium-dependent glucose cotransporter (SGLT) 2 and SGLT1 inhibition activities. Optimization of substituents on the aromatic rings afforded five compounds with potent and selective SGLT2 inhibition activities. The compounds were evaluated for in vitro human metabolic stability, human serum protein binding (SPB), and Caco-2 permeability. Of them, (1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (3p) exhibited potent SGLT2 inhibition activity (IC(50) = 2.26 nM), with 1650-fold selectivity over SGLT1. Compound 3p showed good metabolic stability toward cryo-preserved human hepatic clearance, lower SPB, and moderate Caco-2 permeability. Since 3p should have acceptable human pharmacokinetics (PK) properties, it could be a clinical candidate for treating type 2 diabetes. We observed that compound 3p exhibits a blood glucose lowering effect, excellent urinary glucose excretion properties, and promising PK profiles in animals. Phase II clinical trials of 3p (TS-071) are currently ongoing.
Ahmed, Trifa M; Lim, Hwanmi; Bergvall, Christoffer; Westerholm, Roger
2013-10-01
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Combined strategy for phytotoxicity enhancement of benzoxazinones.
Macías, Francisco A; Chinchilla, Nuria; Arroyo, Elena; Molinillo, José M G; Marín, David; Varela, Rosa M
2010-02-10
Fifteen new derivatives of D-DIBOA, including aromatic ring modifications and the addition of side chains in positions C-2 and N-4, were synthesized and their phytotoxicity, selectivity, and structure-activity relationships evaluated. The most active compounds among the derivatives at the C-2 position were 6-Cl-2-Et-D-DIBOA and 6-F-2-Et-D-DIBOA. Of the derivatives at N-4, the most active compounds were 6-Cl-4-Pr-D-DIBOA and 6-Cl-4-Val-D-DIBOA. These four compounds showed high levels of inhibition in root length at very low concentrations in all species. The most remarkable result is the 70% inhibition observed for the root length of cress at 100 nM caused by the latter two compounds. These results support our previous research and conclusions regarding the steric, electronic, and solubility requirements to achieve the maximum phytotoxic activity.
Studabaker, William B; Puckett, Keith J; Percy, Kevin E; Landis, Matthew S
2017-04-07
Development of the Athabasca Oil Sands Region in northeastern Alberta, Canada has contributed polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic compounds (PACs), which include alkyl PAHs and dibenzothiophenes, to the regional environment. A new analytical method was developed for quantification of PAHs and PACs in the epiphytic lichen bioindicator species Hypogymnia physodes for use in the development of receptor models for attribution of PAH and PAC concentrations to anthropogenic and natural emission sources. Milled lichens were extracted with cyclohexane, and extracts were cleaned on silica gel using automated solid phase extraction techniques. Quantitative analysis was performed by gas chromatography with selected ion monitoring (GC-SIM-MS) for PAHs, and by GC with time-of-flight mass spectrometry (GC-TOF-MS) for PACs. PACs were quantitated in groups using representative reference compounds as calibration standards. Analytical detection limits were ≤2.5ngg -1 for all individual compounds. Precision as measured by laboratory duplicates was variable; for individual analytes above 5ngg -1 the mean absolute difference between duplicates was typically <20%. Selection of single-analyte markers for source attribution should include consideration of data quality indicators. Use of TOF-MS to spectrally characterize PAC group constituents identified significant challenges for the accurate quantitation of PACs with more than two carbons in their side chain(s). Total PAH concentrations in lichen samples ranged from 12 to 482ngg -1 . Total PACs in each sample varied from a fraction of total PAHs to more than four times total PAHs. Results of our analyses of H. physodes are compared with other studies using other species of lichens as PAH receptors and with passive monitoring data using polyurethane foam (PUF) samplers in the Athabasca Oil Sands Region (AOSR). This study presents the first analytical methodology developed for the determination of PACs in an epiphytic lichen bioindicator species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.
1998-01-01
Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748
de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap
2002-04-15
The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin.
Besser, John M.; Schmitt, Christopher J.; Harshbarger, John C.; Peterman, Paul H.; Lebo, Jon A.
1991-01-01
Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with organic solvents to produce a crude extract, which was separated on alumina into two fractions: predominantly polycyclic aromatic hydrocarbons; and predominantly nitrogencontaining polycyclic aromatic compounds. Crude extracts were redissolved in acetone and analyzed by gas chromatography and gas chromatography-mass spectrometry. The acetone-redissolved crude extracts from the four industrialized sites contained 5.6–313.3 μg total polycyclic aromatic compounds/g sediment and 3.0–36.4 μg other compounds/g sediment. In addition to the typical EPA priority pollutants, a substantial amount (228.7 μg/g sediment) of alkyl-polycyclic-aromatic compounds was detected in sediments from one of the industrialized sites. Extracts from the reference site contained 1.55 μg total polycyclic aromatic compounds/ g sediment. Medaka (Oryzias latipes) were exposed to multiple pulse doses of acetone-redissolved extracts and fractions. Medaka were also exposed to a known carcinogen, methylazoxymethanol acetate, to verify that chemicals produced tumors in the test fish. Acetone-redissolved extracts and fractions from contaminated sediments were toxic to medaka. Fin erosion and non-neoplastic liver abnormalities were more prevalent in medaka after exposure to acetoneredissolved extracts and fractions from contaminated sediments. Neoplasms previously associated with chemical exposure in wild fishes were induced in medaka exposed to acetone-redissolved extracts and fractions from two of the contaminated sites, but not from the reference site or controls. These findings further support the hypothesis that chemical contaminants in sediments are involved in epizootics of neoplasms in wild fishes at contaminated sites.
de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap
2002-01-01
The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin. PMID:11931668
Microwave-assisted extraction of polycyclic aromatic compounds from coal.
Kerst, M; Andersson, J T
2001-08-01
Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.
Organic composition of fogwater in the Texas-Louisiana gulf coast corridor
NASA Astrophysics Data System (ADS)
Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.
Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.
Dahal, Upendra P.; Joswig-Jones, Carolyn; Jones, Jeffrey P.
2011-01-01
Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation and aromatic hydroxylation. The results demonstrated that type II binding QCA analogs were metabolically less stable (2 to 12 fold) at sub-saturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation>benzylic hydroxylation> O-demethylation> aromatic hydroxylation. Finally, for the QCA analogs with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine) indicating electronegativity of the nitrogen can change regioselectivity in CYP metabolism. PMID:22087535
Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi
2015-02-01
A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi
2015-01-01
Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262
HETEROCYCLIC COMPOUNDS, PHOSPHENE OXIDES, BENZENE, CHROMIUM COMPOUNDS, CHEMICAL REAC, SYNTHESIS (CHEMISTRY), CHEMICAL ANALY, SPECTRA (INFRARED), ABSORPTION, DISPLACE, POLYMERIZATION, ORGANIC NITROGEN, AROMATIC COMPOUNDS.
Studies of the effect of selected nondonor solvents on coal liquefaction yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.
The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol andmore » two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.« less
Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.
Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai
2010-08-01
This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.
Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Altin, Dag; Brakstad, Odd Gunnar
2015-12-30
To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes. Presence of oil-containing feces resulted in higher degradation of n-alkanes. The effect of clean feces on aromatic compounds are suggested to be due to higher concentrations of nutrients in the seawater where aromatic degradation takes place, while the lower degradation of n-alkanes are suggested to be due to a preference by bacteria for feces over these compounds. Large aggregates were observed in oil dispersions with clean feces, which may cause sedimentation of un-weathered lipophilic oil compounds towards the seafloor if formed during oil spills. Copyright © 2015 Elsevier Ltd. All rights reserved.
D'Abrosca, Brigida; Buommino, Elisabetta; D'Angelo, Grazia; Coretti, Lorena; Scognamiglio, Monica; Severino, Valeria; Pacifico, Severina; Donnarumma, Giovanna; Fiorentino, Antonio
2013-11-15
Two new acylated styrylpyrones, one 5-methoxy-1(3H)-isobenzofuranone glucoside and a hydroxymethyl-orcinol derivative, along with sixteen known aromatic metabolites, including lignans, quinic acid derivatives low-molecular weight phenol glucosides, have been isolated from the methanol extract of Helichrysum italicum, a medicinal plant typical of the Mediterranean vegetation. The structures of these compounds have been elucidated on the basis of extensive 2D-NMR spectroscopic analyses, including COSY, TOCSY, HSQC, CIGAR-HMBC, H2BC and HSQC-TOCSY, along with Q-TOF HRMS(2) analysis. Selected compounds were evaluated for their anti-biofilm properties against Pseudomonas aeruginosa. Copyright © 2013. Published by Elsevier Ltd.
Spectroscopic study of proflavine adsorption on the carbon nanotube surface.
Buchelnikov, Anatoly S; Dovbeshko, Galina I; Voronin, Dmitry P; Trachevsky, Vladimir V; Kostjukov, Viktor V; Evstigneev, Maxim P
2014-01-01
Despite the fact that non-covalent interactions between various aromatic compounds and carbon nanotubes are being extensively investigated now, there is still a lack of understanding about the nature of such interactions. The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotube.
Polyimidazoles Via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Connell, John W.; Hergenrother, Paul M.
1990-01-01
Experiments show variety of polyimidazoles prepared by aromatic nucleophilic displacement, from reactions of bisphenol imidazoles with activated difluoro compounds. Polyimidazoles have good mechanical properties making them suitable for use as films, moldings, and adhesives.
[Preliminary determination of organic pollutants in agricultural fertilizers].
Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin
2005-05-01
Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.
Subcritical water extraction of organic matter from sedimentary rocks.
Luong, Duy; Sephton, Mark A; Watson, Jonathan S
2015-06-16
Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z.; Yoshimura, Takashi; Wakatsuki, Yasuo
1994-11-30
The reduction of aromatic compounds into their dihydro derivatives by dissolving metal/alcohol systems (the Birch reduction) is a useful methodology in organic synthesis. Of particular importance is the reduction of aromatic carbonyl compounds such as aromatic acids, esters, amides, and monoaryl ketones, which usually generates in situ useful metal enolate intermediates that upon further reaction with electrophiles yield a variety of cyclohexadiene derivatives. One of the possible processes to generate these metal enolate intermediates is thought to be the monoprotonation of dianionic species at the para position of the aromatic rings. On the other hand, the reduction of diaryl ketonesmore » by alkali metals in liquid ammonia or by lanthanide metals in THF/HMPA or DME has been well known to afford the corresponding ketone dianions. The first X-ray structure of metal ketone dianion complexes, [Yb([mu]-[eta][sup 1],[eta][sup 2]-OCPh[sub 2]) (HMPA)[sub 2
Metal Triflates for the Production of Aromatics from Lignin.
Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G
2016-10-20
The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aromatic derivatives of 1H-2,3-dihydropyrazolo(4,5-b)-1,5-diazepine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlov, V.D.; Kiroga, Kh.; Kolos, N.N.
1987-09-01
Aromatic derivatives of 1H-2,3-dihydropyrazole(4,5-b)-1,5-diazepine were obtained by the reaction of 1-phenyl-3-methyl-4,5-diaminopyrazole with chalcones and acetylarenes, catalyzed by acetic or sulfuric acid. The seven-membered ring in these compounds has a conformation of the boat type. The IR, UV, PMR, and mass spectra of the compounds are discussed.
Sorption of the Aircraft Deicing Fluid Component Methyl-Benzotriazole in Soil
1999-03-01
Atlas , Ronald M., Bartha , Richard, Microbial Ecology : Fundamentals and Applications. Benjamin Cummings: Redwood City, 1993. Ball, William P., Roberts...cell; transfer of substances from one medium to another [ Atlas and Bartha , 533; Fetter, 117]. (2) The process by which a compound in solution or...oxygen, low redox potential. [ Atlas and Bartha , 534; Schwarzenbach et al, 410] Aromatic compound - Carbon skeletons containing aromatic benzene ring and
1991-03-01
Sulfides BT Bioaccumulation Trigger L LP Ccn tract Laboratory Methods COC Chemical of Concern Corps U.S. Army Corps of Engineers cm centimeter cy cubic... Hydrocarbon (Compound) LOD Limit of Detection LPAH Low Molecular Weight Polynuclear Aromatic Hydrocarbon (Compound) MCLP Modified Contract Laboratory Method...Aromatic Hydrocarbons (HPAHs) (8 samples); * Benzofluoranthenes (7 samples); * Anthracene (6 samples); * Benzo(a)anthracene (6 samples); * Dibenzo(a,h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, S.C.; Bartle, K.D.; Holden, K.M.L.
1994-12-31
A series of heteroatom-rich coal and coal-derived liquids have been analysed using gas chromatography (GC) in combination with three different element-selective detectors. Selected chromatograms, including a supercritical extract (Mequinenza lignite) and aromatic fractions isolated from coal tar pitch samples are presented. In each case a series of sulphur- and/or nitrogen-containing compounds have been identified using either flame photometric detection (GC/FID/FPD) or nitrogen-phosphorous detection (GC/FID/NPD) and the information compared with that obtained from a GC coupled to an atomic emission detector (GC-AED). Preliminary results have demonstrated the relative response characteristics of each detector and their respective ability to acquire qualitative andmore » quantitative information in interfering background matrices. Further, due to the unique capabilities of GC-AED, a number of dual heteroatomic (sulphur-oxygen and nitrogen-oxygen) compounds have been identified.« less
Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup
NASA Astrophysics Data System (ADS)
Sabbah, Hassan; Bonnamy, Anthony; Papanastasiou, Dimitris; Cernicharo, Jose; Martín-Gago, Jose-Angel; Joblin, Christine
2017-07-01
We developed a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) that combines laser desorption/ionization techniques with ion trap mass spectrometry. We report here on the ability of the apparatus to detect aromatic species in complex materials of astrophysical interest and characterize their structures. A limit of detection of 100 femto-grams has been achieved using pure polycyclic aromatic hydrocarbon (PAH) samples, which corresponds to 2 × 108 molecules in the case of coronene (C24H12). We detected the PAH distribution in the Murchison meteorite, which is made of a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene and its methylated derivatives in this sample.
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
NASA Technical Reports Server (NTRS)
Hsu, L. C. (Inventor)
1979-01-01
Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.
Knape, Kirsten; Linder, Tobias; Wolschann, Peter; Beyer, Anton; Stary-Weinzinger, Anna
2011-01-01
Pharmacological inhibition of cardiac hERG K+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences. PMID:22194911
ERIC Educational Resources Information Center
Topal, Giray; Oral, Behcet; Ozden. Mustafa
2007-01-01
Aromaticity concept is given incorrect or incomplete to the student in secondary education and knowledge based on this basic concept has been caused to another misconception in future. How are the achievement levels relating to the comprehension of various characteristics of aromatic compounds for the first and third grade students attending…
Yoshikawa, Kazuko; Okahuji, Mariko; Iseki, Kanako; Ito, Takuya; Asakawa, Yoshinori; Kawano, Sachiko; Hashimoto, Toshihiro
2014-04-01
Two novel aromatic glucosides, named marylaurencinosides D (1) and E (2), were isolated from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'. In addition, eight known aromatic compounds (3-10) were isolated. These structures were determined on the basis of NMR experiments as well as chemical evidence.
Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.
Dral, Pavlo O; Kivala, Milan; Clark, Timothy
2013-03-01
Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.
Sahin, Zafer; Ertas, Merve; Berk, Barkın; Biltekin, Sevde Nur; Yurttas, Leyla; Demirayak, Seref
2018-05-01
Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects. Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition. In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC 50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC 50 :0.42 nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site. Copyright © 2018 Elsevier Ltd. All rights reserved.
La Regina, Giuseppe; Silvestri, Romano; Artico, Marino; Lavecchia, Antonio; Novellino, Ettore; Befani, Olivia; Turini, Paola; Agostinelli, Enzo
2007-03-08
A series of new pyrrole derivatives have been synthesized and evaluated for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. N-Methyl,N-(benzyl),N-(pyrrol-2-ylmethyl)amine (7) and N-(2-benzyl),N-(1-methylpyrrol-2-ylmethyl)amine (18) were the most selective MAO-B (7, SI = 0.0057) and MAO-A (18, SI = 12500) inhibitors, respectively. Docking and molecular dynamics simulations gave structural insights into the MAO-A and MAO-B selectivity. Compound 18 forms an H-bond with Gln215 through its protonated amino group into the MAO-A binding site. This H-bond is absent in the 7/MAO-A complex. In contrast, compound 7 places its phenyl ring into an aromatic cage of the MAO-B binding pocket, where it forms charge-transfer interactions. The slightly different binding pose of 18 into the MAO-B active site seems to be forced by a bulkier Tyr residue, which replaces a smaller Ile residue present in MAO-A.
Genuino, Homer C.; Thiyagarajan, Shanmugam; van der Waal, Jan C.; van Haveren, Jacco; Weckhuysen, Bert M.
2016-01-01
Abstract Bio‐based furanics can be aromatized efficiently by sequential Diels–Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H‐Y and Pd/C, the hydrogenated DA adduct of 2‐methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3‐methylphthalic anhydride and o‐ and m‐toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products. The zeolite component was found to dominate selectivity. Indeed, a linear correlation is found between 3‐methylphthalic anhydride yield and the product of (strong acid/total acidity) and mesopore volume of H‐Y, highlighting the need for balanced catalyst acidity and porosity. The efficient coupling of the dehydration and dehydrogenation steps by varying the zeolite‐to‐Pd/C ratio allowed the competitive decarboxylation reaction to be effectively suppressed, which led to an improved 3‐methylphthalic anhydride/total aromatics selectivity ratio of 80 % (89 % total aromatics yield). The incorporation of Pd nanoparticles in close proximity to the acid sites in bifunctional Pd/H‐Y catalysts also afforded a flexible means to control aromatic products selectivity, as further demonstrated in the aromatization of hydrogenated DA adducts from other diene/dienophile combinations. PMID:27557889
The evolution of floral scent and insect chemical communication.
Schiestl, Florian P
2010-05-01
Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.
Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J
2015-09-15
A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
da Silveira, Géssica Domingos; Faccin, Henrique; Claussen, Luis; Goularte, Rayane Bueno; Do Nascimento, Paulo C; Bohrer, Denise; Cravo, Margareth; Leite, Leni F M; de Carvalho, Leandro Machado
2016-07-29
We present a sensitive liquid chromatography-atmospheric pressure photoionization tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the determination of selected organosulfur compounds in Brazilian asphalt cements. It was possible to detect 14 organosulfur compounds of different classes where sulfoxides and sulfones presented higher sensibility in ionization than thiophenes and aromatic sulfides. A dopant-assisted APPI method was also tested, however, when chromatographic flow rate was optimized a decrease in signal was observed for all compounds. PAHs were tested and ruled out as possible interfering compounds and the matrix effect of asphalt cements was within an acceptable range for the quantification of organosulfur compounds. The proposed method was found to have satisfactory linearity and accuracy with recoveries between 83.85 and 110.28% for thianaphthene and 3-methylbenzothiophene, respectively. Therefore, the method allowed the characterization of organosulfur compounds in Brazilian asphalt cements and demonstrated changes in the amount quantified in asphaltenic and maltenic fractions after the RTFOT+SUNTEST aging process. Copyright © 2016 Elsevier B.V. All rights reserved.
Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice.
Stalmach, Angelique; Edwards, Christine A; Wightman, Jolynne D; Crozier, Alan
2013-01-01
After acute ingestion of 350 ml of Concord grape juice, containing 528 μmol of (poly)phenolic compounds, by healthy volunteers, a wide array of phase I and II metabolites were detected in the circulation and excreted in urine. Ingestion of the juice by ileostomists resulted in 40% of compounds being recovered intact in ileal effluent. The current study investigated the fate of these undigested (poly)phenolic compounds on reaching the colon. This was achieved through incubation of the juice using an in vitro model of colonic fermentation and through quantification of catabolites produced after colonic degradation and their subsequent absorption prior to urinary excretion by healthy subjects and ileostomy volunteers. A total of 16 aromatic and phenolic compounds derived from colonic metabolism of Concord grape juice (poly)phenolic compounds were identified by GC-MS in the faecal incubation samples. Thirteen urinary phenolic acids and aromatic compounds were excreted in significantly increased amounts after intake of the juice by healthy volunteers, whereas only two of these compounds were excreted in elevated amounts by ileostomists. The production of phenolic acids and aromatic compounds by colonic catabolism contributed to the bioavailability of Concord grape (poly)phenolic compounds to a much greater extent than phase I and II metabolites originating from absorption in the upper gastrointestinal tract. Catabolic pathways are proposed, highlighting the impact of colonic microbiota and subsequent phase II metabolism prior to excretion of phenolic compounds derived from (poly)phenolic compounds in Concord grape juice, which pass from the small to the large intestine.
δ 13C of free and macromolecular aromatic structures in the murchison meteorite
NASA Astrophysics Data System (ADS)
Sephton, M. A.; Pillinger, C. T.; Gilmour, I.
1998-05-01
Analyses of the organic compounds in the Murchison meteorite have led to a greater understanding of the nature of extraterrestrial organic materials. However, the relationship between low and high molecular weight material remains poorly understood. To investigate this relationship, untreated Murchison was subjected to supercritical fluid extraction (SFE) to obtain the free organic components in the meteorite. Toluene and other volatile aromatic hydrocarbons dominated the extract, and the carbon isotopic composition of these molecules was determined by gas chromatography-isotope ratio-mass spectrometry (GCIRMS). δ 13C values of the aromatic hydrocarbons ranged from -28.8 to -5.8‰. These compounds displayed a 13C-enrichment with increasing carbon number suggesting an origin by cracking. The high molecular weight organic material in the meteorite was isolated and subjected to hydrous pyrolysis. This procedure produced a number of aromatic products, the majority of which were volatile aromatic hydrocarbons, particularly toluene. SFE was used to extract and successfully retain them. This enabled the first carbon isotopic analysis of this poorly understood material to be performed at the molecular level by GCIRMS. δ 13C values for aromatic pyrolysis products occupied a range from -24.6 to -5.6‰. The trend of 13C-enrichment with increasing carbon number, observed in the free compounds, was also evident in the macromolecular fragments. Furthermore, the organic fragments of the macromolecular material were consistently 13C-enriched when compared to structurally identical free molecules. This suggested that the free aromatic hydrocarbons in Murchison were produced by the preterrestrial degradation of the organic macromolecular material. This natural degradation event was extended by the hydrous pyrolysis experiment.
White wines aroma recovery and enrichment: Sensory-led aroma selection and consumer perception.
Lezaeta, Alvaro; Bordeu, Edmundo; Agosin, Eduardo; Pérez-Correa, J Ricardo; Varela, Paula
2018-06-01
We developed a sensory-based methodology to aromatically enrich wines using different aromatic fractions recovered during fermentations of Sauvignon Blanc must. By means of threshold determination and generic descriptive analysis using a trained sensory panel, the aromatic fractions were characterized, selected, and clustered. The selected fractions were grouped, re-assessed, and validated by the trained panel. A consumer panel assessed overall liking and answered a CATA question on some enriched wines and their ideal sample. Differences in elicitation rates between non-enriched and enriched wines with respect to the ideal product highlighted product optimization and the role of aromatic enrichment. Enrichment with aromatic fractions increased the aromatic quality of wines and enhanced consumer appreciation. Copyright © 2018. Published by Elsevier Ltd.
Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.
ERIC Educational Resources Information Center
Bretherick, Leslie
1989-01-01
Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)
Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence
NASA Technical Reports Server (NTRS)
Bhartia, R.; McDonald, G. D.; Salas, E.; Conrad, P.
2004-01-01
The in situ detection of organic material on an extraterrestrial surface requires both effective means of searching a relatively large surface area or volume for possible organic carbon, and a more specific means of identifying and quantifying compounds in indicated samples. Fluorescence spectroscopy fits the first requirement well, as it can be carried out rapidly, with minimal or no physical contact with the sample, and with sensitivity unmatched by any other organic analytical technique. Aromatic organic compounds with know fluorescence signatures have been identified in several extraterrestrial samples, including carbonaceous chondrites, interplanetary dust particles, and Martian meteorites. The compound distributions vary among these sources, however, with clear differences in relative abundances by number of aromatic rings and by degree of alkylation. This relative abundance information, therefore, can be used to infer the source of organic material detected on a planetary surface.
Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors.
Wang, Wen-Long; Huang, Chao; Gao, Li-Xin; Tang, Chun-Lan; Wang, Jun-Qing; Wu, Min-Chen; Sheng, Li; Chen, Hai-Jun; Nan, Fa-Jun; Li, Jing-Ya; Li, Jia; Feng, Bainian
2014-04-15
A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34±0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.
1981-01-01
A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.
Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.
Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo
2017-03-01
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Tough, high performance, addition-type thermoplastic polymers
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.
Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.
Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R
2017-11-21
Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl- and halogen-substituted alkynes. Through a combined experimental and computational approach, we have elucidated mechanistic insight and key principles that govern the regioselectivity outcome of the benzannulation of structurally diverse alkynes. We have applied these methods to prepare sterically hindered, shape-persistent aromatic systems, heterocyclic aromatic compounds, functionalized 2-aryne precursors, polyheterohalogenated naphthalenes, ortho-arylene foldamers, and graphene nanoribbons. As a result of these new synthetic avenues, aromatic structures with interesting properties were uncovered such as ambipolar charge transport in field effect transistors based on our graphene nanoribbons, conformational aspects of ortho-arylene architectures resulting from intramolecular π-stacking, and modulation of frontier molecular orbitals via protonation of heteroatom containing aromatic systems. Given the availability of many substituted 2-(phenylethynyl)benzaldehydes and the regioselectivity of the benzannulation reaction, naphthalenes can be prepared with control of the substitution pattern at seven of the eight substitutable positions. Researchers in a range of fields are likely to benefit directly from newly accessible molecular and polymeric systems derived from polyfunctionalized naphthalenes.
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...
Photo-oxidation method using MoS2 nanocluster materials
Wilcoxon, Jess P.
2001-01-01
A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.
Controlled release chamber for dispensing aromatic substances.
Cilek, J E; Hallmon, C F
2008-12-01
A novel device for the containment and precise release of aromatic substances is described. The device consists of a threaded-tubular polyvinyl chloride chamber (and screw-top cap) with ports for introduction and release of gaseous compounds. This chamber is inexpensive, easy to assemble, and useful for evaluating the combined release of carbon dioxide and aromatic hygroscopic substances as mosquito attractants in field studies.
Poly(arylene ether)s That Resist Atomic Oxygen
NASA Technical Reports Server (NTRS)
Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.
1994-01-01
Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xinbo; Wang, Danjun; College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000
2014-09-15
Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalystmore » is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.R.; Henderson, T.R.; Royer, R.E.
The influence of diesel fuel composition on mutagenicity of exhaust particle associated organic compounds has been investigated using nine fuels varying in aromatic content and distillation properties. The tests were conducted with Oldsmobile Delta-88 and Peugot 504 diesel cars operated according to the EPA Federal Test Procedure. The particulate exhaust from each test was collected on a filter, extracted in dichloromethane and the resulting extract evaluated for mutagenicity in Salmonella strain TA-100. Mutagenicity of extracts of particles collected from the Oldsmobile were highest in the higher aromatic content fuels (greater than 30%) but similar for intermediate (20%) and low (13%)more » aromatic content fuels. No influence of aromaticity on mutagenicity was observed in samples collected from the Peugeot under the same conditions. Thus, fuel aromatic content may enhance the production of mutagenic combustion products at higher concentrations, but may be dependent upon engine type. A good correlation was observed between mutagenicity of the particle extracts and the initial boiling point of the fuel (r . 0.89). Gas chromatography/mass spectrometric analysis of the aromatic fraction of the fuels showed that the fuel producing the most mutagenic combustion products was highest in phenanthrene type compounds.« less
The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.
1994-01-01
Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.
Hadibarata, Tony; Syafiuddin, Achmad; Al-Dhabaan, Fahad A; Elshikh, Mohamed Soliman; Rubiyatno
2018-05-01
Herein, we systematically reported the capability of T. harzianum RY44 for decolorization of Mordant orange-1. The fungi strains were isolated from the Universiti Teknologi Malaysia tropical rain forest. For initial screening, the decolorization was conducted using 50 strains of the fungi for 20 days incubation time and the best performance was selected. Then, the decolorization capability and fungal biomass were evaluated using different dye concentrations, namely, 0, 50, 75 and 100 ppm. Effects of the carbon sources (fructose, glucose, and galactose), nitrogen sources (ammonium nitrate, ammonium sulfate and yeast extract), surfactant (tween 80), aromatic compounds (benzoic acid, catechol and salicylic acid), and pH on the decolorization efficiency were examined. This study has found that the employed carbon sources, nitrogen sources, and aromatic compounds strongly enhance the decolorization efficiency. In addition, increasing the surfactant volume and pH generally decreased the decolorization efficiencies from 19.5 to 9.0% and 81.7 to 60.5%, respectively. In the mechanism philosophy, the present work has found that Mordant orange-1 were initially degraded by T. harzianum RY44 to benzoic acid and finally transformed into salicylic acid.
Flores, Gema; Blanch, Gracia Patricia; Ruiz del Castillo, Maria Luisa
2008-04-01
A fully automated method for the determination of medium volatility compounds in aromatic samples was developed. Specifically, the determination of methyl jasmonate in jasmine fragrances was performed by using the through oven transfer adsorption-desorption (TOTAD) interface for the on-line coupling between RPLC-GC. A study of the most relevant variables involved in the performance of the TOTAD interface for medium volatility compounds was carried out by testing different values of helium flow (100, 300, 400, and 500 mL/min), transfer speed (0.1, 0.3, 0.5, and 2.0 mL/min), and methanol/water percentages (86:14, 85:15, 83:17, 80:20, and 70:30). The method developed provided satisfactory repeatability (RSD for retention times of 0.15% and for peak areas of 9.4%) and recovery (71%) as well as excellent LOD (0.01 mg/L) for methyl jasmonate in commercial jasmine essence under the experimental conditions selected as optimum. Additional advantages of the automated RPLC-TOTAD-GC method proposed in the present work are its rapidness, reliability, and the possibility of directly introducing the sample with no further pretreatment.
NASA Astrophysics Data System (ADS)
Ermolaeva, V. N.; Chukanov, N. V.; Pekov, I. V.; Kogarko, L. N.
2009-12-01
Solid bituminous substances (SBS) are common components of the late hydrothermal mineral assemblages of peralkaline pegmatites. SBS are formed in a reductive setting as a result of progressive sorption of minor carbon-bearing molecules (CO, CO2, CH4, C2H6, C2H4, etc.), their polymerization, transformation into aromatic compounds (reformation), and selective oxidation on microporous zeolite-like Ti-, Nb-, and Zrsilicates serving as sorbents and catalysts. The oxygen-bearing aromatic compounds with hydrophile functional groups (-OH, -C=O, -COOH, -COO) act as complexing agents with respect to Th, REE, U, Zr, Ti, Nb, Ba, Sr, Ca, resulting in transfer of these bitumenophile elements under low-temperature hydrothermal conditions in the form of water-soluble macroassociates of the micelle type. Th, REE, and to a lesser extent, U, Zr, Ti, and Nb concentrate at the late stage of the hydrothermal process as microphases impregnating SBS or macroscopic segregations of Th and REE minerals. At the final stage, homogeneous SBS break down into organic (partly together with Ca, Sr, Ba, and Pb) and mineral (with Th, Ln, Y, Ti, Nb, Ca, Na, K, Si) microphases.
Schantz, Michele M; Benner, Bruce A; Heckert, N Alan; Sander, Lane C; Sharpless, Katherine E; Vander Pol, Stacy S; Vasquez, Y; Villegas, M; Wise, Stephen A; Alwis, K Udeni; Blount, Benjamin C; Calafat, Antonia M; Li, Zheng; Silva, Manori J; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G; Sjödin, Andreas
2015-04-01
Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers' Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers' Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants.
Schantz, Michele M.; Benner, Bruce A.; Heckert, N. Alan; Sander, Lane C.; Sharpless, Katherine E.; Vander Pol, Stacy S.; Vasquez, Y.; Villegas, M.; Wise, Stephen A.; Alwis, K. Udeni; Blount, Benjamin C.; Calafat, Antonia M.; Li, Zheng; Silva, Manori J.; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G.; Sjödin, Andreas
2016-01-01
Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers’ Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers’ Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899
Zhang, Dainan; Duan, Dandan; Huang, Youda; Xiong, Yongqiang; Yang, Yu; Ran, Yong
2016-12-01
To better understand interaction mechanism of sediment organic matter with hydrophobic organic compounds, sorption of phenanthrene (Phen) and nonylphenol (NP) by bulk sediments and their fractions was investigated. Three surface sediments were selectively fractionated into different organic fractions, including the demineralized carbon (DM), lipid free carbon (LF), lipid (LP), and nonhydrolyzable carbon (NHC) fractions. The structure and microporosity of the isolated fractions were characterized by NMR and CO 2 adsorption techniques, and used as sorbents for Phen and NP. The calculated micropore volumes (V o ) and specific surface area (SSA) values are positively related to the concentrations of aromatic C and char for the DM, LF and NHC fractions, suggesting that aromatic moieties and char component significantly contribute to the microporosity. The LF fractions exhibit greater sorption affinity than the DM fractions do, indicating that the presence of LP could block the accessibility of sorption sites for Phen and NP. Significant and positive correlations among log K' FOC values for Phen and NP and aromatic carbon and char contents, and V o and SSA values suggest the aromatic moieties and microporosity dominate their sorption of HOCs by sediment organic matter (SOM). As the NHC fractions have much stronger sorption than other fractions do, they dominate the overall sorption by the bulk samples. This study indicated that the important roles of aromatic moieties, accessibility, and microporosity in the sorption of HOCs by SOM. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B.D.; Apel, W.A.; Walton, M.R.
Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolicmore » process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.« less
Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang
2018-01-01
The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide an alternative way to meet the requirement of wine consumers for diversified aromatic quality. PMID:29674999
Evaluation of coal-related model compounds using a tandem mass spectrometry.
Li, Guo-Sheng; Dong, Xueming; Fan, Xing; You, Chun-Yan; Wu, Ge; Zhao, Yun-Peng; Lu, Yao; Wei, Xian-Yong; Ma, Feng-Yun
2018-05-08
Gas chromotography/mass spectrometry (GC/MS) is a routine and basic instrumental method for the analysis of complex coal conversion products in chemical industry. To further enhance practical potentials of GC/MS in chemical industry, a tandem MS method for the selection of ion pair applied in monitoring coal conversions was established by using GC/quadrupole time-of-flight MS (GC/Q-TOF MS). The corresponding fragmentation pathways were explored and suitable ion pairs were screened. Fourteen coal-related model compounds (CRMCs) were analyzed using a GC/Q-TOF MS with different collision induced dissociation (CID) energies (5-20 eV). The fragmentation pathways can offer a better understanding of chemical bond breaking, hydrogen transfer, rearrangement reactions and elimination of neutral fragments for CRMCs during the CID process. The precursor ions of aromatic hydrocarbons without alkyl chain were hard to fragment with a CID energy of 20 eV. But aromatic hydrocarbons with branched chains were prone to fragment via the loss of alkyl chains and further fragmented through ring-open reactions. Compared to C alk -C ar bond, C ar -C ar bond was hard to fragment duo to its high bond dissociation energy. The existence of heteroatoms facilitated fragmentation that was conducive to screening ion pair. The CID technique of GC/Q-TOF MS will contribute to the studies on the organic composition of coals and building monitoring methods for coal conversions via fragmentation and ion pair selection. This article is protected by copyright. All rights reserved.
Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang
2009-02-01
Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.
Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P
2012-02-20
The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites. Copyright © 2011 Elsevier B.V. All rights reserved.
Sodium Perborate Oxidation of an Aromatic Amine
ERIC Educational Resources Information Center
Juestis, Laurence
1977-01-01
Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)
Automated analysis of oxidative metabolites
NASA Technical Reports Server (NTRS)
Furner, R. L. (Inventor)
1974-01-01
An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.
Capozzi, Vittorio; Makhoul, Salim; Aprea, Eugenio; Romano, Andrea; Cappellin, Luca; Sanchez Jimena, Ana; Spano, Giuseppe; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco
2016-04-12
In light of the increasing attention towards "green" solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.
Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less
Remediation of aged diesel contaminated soil by alkaline activated persulfate.
Lominchar, M A; Santos, A; de Miguel, E; Romero, A
2018-05-01
The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.
Biologically important compounds in synfuels processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B R; Ho, C; Griest, W H
1980-01-01
Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less
Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T
1999-10-01
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.
Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco
2014-09-09
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
Yeast strains as potential aroma enhancers in dry fermented sausages.
Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela
2015-11-06
Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages. Copyright © 2015 Elsevier B.V. All rights reserved.
Selected organic pollutant emissions from unvented kerosene space heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traynor, G.W.; Apte, M.G.; Sokol, H.A.
1990-08-01
An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emissions rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emissions. Each heater was operated in a 27-m{sup 3} chamber with a prescribed on/off pattern. Organic compounds were collected on Teflon-impregnated glass filters backed by XAD-2 resin and analyzed by gas chromatography/mass spectrometry. Pollutant source strengths were calculated by use of a mass balance equation. The results show that kerosene heaters can emit polycyclic aromatic hydrocarbons (PAHs); nitrated PAHs; alkylbenzenes, phthalates; hydronaphthalenes; aliphatic hydrocarbons,more » alcohols, and ketones; and other organic compounds, some of which are known mutagens.« less
Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.
1995-01-01
Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.
de Souza, Viviane P; Oliveira, Cristiane K; de Souza, Thiago M; Menezes, Paulo H; Alves, Severino; Longo, Ricardo L; Malvestiti, Ivani
2016-11-16
Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.
Park, Shin Yeong; Lee, Hyo Jin; Khim, Jong Seong; Kim, Gi Beum
2017-01-30
We examined the degree of DNA damage caused by fractions of crude oil in accordance with the boiling points, polarity and log K ow . Relatively high DNA damage was observed in the aromatic fraction (290-330°C) and resin and polar fraction (350-400°C). The resin and polar fraction showed relatively high genotoxicity compared with the aliphatic and aromatic fraction at the 1-4 log K ow range. At the 6-7 log K ow range, the aromatic fraction showed relatively high DNA damage compared with the aliphatic and resin and polar fraction. In particular, every detailed fraction in accordance with the log K ow values (aliphatic and aromatic (310-320°C) and resins and polar fractions (370-380°C)) showed one or less than one DNA damage. However, the fractions before separation in accordance with log K ow values (aliphatic and aromatic (310-320°C) and resin and polar (370-380°C) fractions) showed high DNA damage. Thus, we confirm the synergistic action between the detailed compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia
NASA Astrophysics Data System (ADS)
Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.
2017-05-01
This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.
Process for detoxifying coal tars
Longwell, John P.; Peters, William A.
1983-01-01
A process for treating liquid hydrocarbons to remove toxic, mutagenic and/or carcinogenic aromatic hydrocarbons comprises feeding the hydrocarbons into a reactor where vapors are thermally treated in contact with a catalyst consisting essentially of calcium oxide or a calcium oxide containing mineral. Thermally treating liquid hydrocarbons in contact with calcium oxide preferentially increases the cracking of aromatics thus producing a product having a reduced amount of aromatic compounds.
Polyphenylquinoxalines via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)
1990-01-01
Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents using alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.
Polyphenylquinoxalines via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)
1991-01-01
Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, H.M.
The Baltic Sea (Central Europe) is surrounded by coastal regions with long histories of industrialization. The heavy metal profiles in the sediments in the center of the Arkona Basin, one of the depressions of the southern Baltic Sea area, clearly reflect the historical anthropogenic influence. The Arkona Basin-is the final sink for materials derived from the Oder river which drains a highly polluted industrial area of Eastern Europe. Surficial muddy sediments from a close-meshed field of sampling-points were analyzed for distribution patterns of aliphatics and quantities and ratios of selected polycyclic aromatic hydrocarbons (PAH). These compounds are thought to reflectmore » anthropogenic pollution related to emissions from traffic, heating, etc. We use these marker substances to test if the basin sediments reflect riverine input, and if additional sources can be identified.« less
Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabbah, Hassan; Bonnamy, Anthony; Joblin, Christine
We developed a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) that combines laser desorption/ionization techniques with ion trap mass spectrometry. We report here on the ability of the apparatus to detect aromatic species in complex materials of astrophysical interest and characterize their structures. A limit of detection of 100 femto-grams has been achieved using pure polycyclic aromatic hydrocarbon (PAH) samples, which corresponds to 2 × 10{sup 8} molecules in the case of coronene (C{sub 24}H{sub 12}). We detected the PAH distribution in the Murchison meteorite, which is made of a complex mixture of extraterrestrialmore » organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene and its methylated derivatives in this sample.« less
Gao, Tingting; Andino, Jean M; Alvarez-Idaboy, J Raul
2010-09-07
Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C(4)mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C(4)mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C(4)mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C(4)mimBF(4)) were also studied. In comparing C(4)mimCl, C(4)mimBr, and C(4)mimBF(4), the computational results suggest that C(4)mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C(4)mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C(4)mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C(4)mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C(4)mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C(4)mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.
Miljić, Uroš; Puškaš, Vladimir; Vučurović, Vesna; Muzalevski, Ana
2017-06-01
The aim of this study was to assess and compare fermentation characteristics and aromatic profile of plum wines produced with indigenous microbiota and pure cultures of different selected yeast. Experiments were carried out with plum (Prunus domestica L.) varieties of different fruit ripening times (Čačanska rana, Čačanska lepotica, and Požegača). Wine fermentations were conducted by the activity of indigenous microbiota, commercially available Saccharomyces cerevisiae and Saccharomyces bayanus yeast strains and joint activity of Schizosaccharomyces pombe and S. cerevisiae (sequential inoculation). Statistically significant differences in fermentative characteristics and the content of certain volatile compounds were observed as a result of metabolic activity of various indigenous and/or selected yeasts during fermentation of plum pomace. Minimal duration of fermentation (4 to 5 d) and fastest ethanol production rate (from 12.3 to 15.5 g/L/d) were the characteristics of the studied S. cerevisiae strains. Isobutanol, 3-methyl-1-butanol, 1-heptanol, and 1-octanol were the most prevalent higher alcohols in the tested plum wine samples. The predominant ester in plum wines was ethyl acetate, ethyl lactate, amyl acetate, isoamyl acetate, and ethyl palmitate, esters responsible for the floral and fruity olfactory tones, were also present in large amounts. Also, the use of S. cerevisiae strains resulted in the production of plum wines with better sensory characteristics than ones produced with other investigated yeasts. Obtained results are significant since there is limited data on the compounds responsible for the unique flavor of plum wine, as well as on the impact of different yeast starter cultures application on the overall quality of fruit wines. © 2017 Institute of Food Technologists®.
Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf
2015-02-03
A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.
Fluorescence evolution of leachates during treatment processes from two contrasting landfills.
Sun, W L; Liu, T T; Cui, F; Ni, J R
2008-10-01
Landfill leachates are composed of a complex mixture of organic matter, including a wide range of potentially fluorescent organic compounds. The fluorescence excitation-emission matrix (FEEM) of leachates during treatment processes is investigated. Particular attention is paid to the fluorescence evolution of leachates during treatment processes. Two typical types of landfill, landfill A (a direct municipal solid waste (MSW) landfill) and landfill B (disposal of bottom ashes from MSW incinerators), in a city in Southern China were selected. The results show that two characteristic and intense excitation-emission peaks located at Ex/Em = 310-330 nm/395-410 nm (peak alpha) and Ex/Em = 250-260 nm/450-460 nm (peak alpha') are observed. As the aromatic chemicals, capable of emitting fluorescence, are more recalcitrant to biodegradation than aliphatic chemicals, enhancement of the dissolved organic carbon normalized fluorescence intensities is demonstrated during treatment processes of leachate A and leachate B. This is confirmed by the variation of ultraviolet absorptivity of leachates at 254 nm. Peak alpha' and peak alpha are attributed to a mixture of xenobiotic organic compounds with low molecular weight and relatively stable aromatic fulvic-like matters with high molecular weight, respectively. Humic substances are more resistant to biodegradation than xenobiotic organic compounds, so a significant reduction in the Ialpha'/Ialpha values (fluorescence intensity ratios of peak alpha' and peak a) of leachate A was observed during treatment processes. However, no evident variation for the Ialpha/Ialpha values of leachate B was found during treatment processes owing to the low concentrations of xenobiotic organic compounds in leachate B after incineration.
Anti-Amyloidogenic Properties of Some Phenolic Compounds
Porzoor, Afsaneh; Alford, Benjamin; Hügel, Helmut M.; Grando, Danilla; Caine, Joanne; Macreadie, Ian
2015-01-01
A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer’s disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties. PMID:25898401
Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen
2014-01-01
Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623
Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.
Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias
2014-10-01
The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Enzymes Involved in a Novel Anaerobic Cyclohexane Carboxylic Acid Degradation Pathway
Kung, Johannes W.; Meier, Anne-Katrin; Mergelsberg, Mario
2014-01-01
The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478
The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...
Chemical quality of water, sediment, and fish in Mountain Creek Lake, Dallas, Texas, 1994-97
Van Metre, Peter C.; Jones, S.A.; Moring, J. Bruce; Mahler, B.J.; Wilson, Jennifer T.
2003-01-01
The occurrence, trends, and sources of numerous inorganic and organic contaminants were evaluated in Mountain Creek Lake, a reservoir in Dallas, Texas. The study, done in cooperation with the Southern Division Naval Facilities Engineering Command, was prompted by the Navy’s concern for potential off-site migration of contaminants from two facilities on the shore of Mountain Creek Lake, the Naval Air Station Dallas and the Naval Weapons Industrial Reserve Plant. Sampling of stormwater (including suspended sediment), lake water, bottom sediment (including streambed sediment), and fish was primarily in Mountain Creek Lake but also was in stormwater outfalls from the Navy facilities, nearby urban streams, and small streams draining the Air Station.Volatile organic compounds, predominantly solvents from the Reserve Plant and fuel-related compounds from the Air Station, were detected in stormwater from both Navy facilities. Fuel-related compounds also were detected in Mountain Creek Lake at two locations, one near the Air Station inlet where stormwater from a part of the Air Station enters the lake and one at the center of the lake. Concentrations of volatile organic compounds at the two lake sites were small, all less than 5 micrograms per liter.Elevated concentrations of cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, from 2 to 4 times concentrations at background sites and urban reference sites, were detected in surficial bottom sediments in Cottonwood Bay, near stormwater outfalls from the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, compared to background and urban reference sites, were detected in surficial sediments in Cottonwood Bay. Elevated concentrations of polycyclic aromatic hydrocarbons, indicative of urban sources, also were detected in Cottonwood Creek, which drains an urbanized area apart from the Navy facilities. Elevated concentrations of polychlorinated biphenyls were detected in two inlets near the Air Station shoreline. Polycyclic aromatic hydrocarbon and heavy metal concentrations near the Air Station shoreline were not elevated compared to urban reference sites.Much larger concentrations of selected heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were detected in deeper, older sediments than in surficial sediments in Cottonwood Bay. The decreases in concentrations coincide with changes in wastewater discharge practices at the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls also were detected in older sediments in the Air Station inlet.On the basis of dated sediment cores and contaminant discharge histories, contaminant accumulation rates in Cottonwood Bay were much greater historically than recently. Most heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls that accumulated in the central and eastern parts of Cottonwood Bay appear to have come from the west lagoon on the Reserve Plant. Treated sewage and industrial-process wastewater were discharged to the west lagoon from about 1941 to 1974. Estimated annual contaminant accumulation rates in Cottonwood Bay decreased by from 1 to 2 orders of magnitude after 1974, when most point-source discharges to the west lagoon ceased.Polychlorinated biphenyls were detected in 61 of 62 individual fish-tissue samples. The largest average concentrations were in eviscerated channel catfish and the smallest were in largemouth bass fillets. Polychlorinated biphenyl and selenium concentrations from analyses of this study were large enough to prompt the Texas State Department of Health to issue a fish-possession ban for Mountain Creek Lake in 1996.Suspended sediments in stormwater at the lagoon outfalls and at sites on Cottonwood Creek were sampled and analyzed for major and trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. The suspended sediments from the outfalls contained about the same mixture of heavy metals and organic compounds, in elevated concentrations compared to reference sites, as bottom sediments from the lagoons and surficial bottom sediments in Cottonwood Bay.Diagnostic ratios of polycyclic aromatic hydrocarbons indicate that uncombusted fuel sources contribute to older sediments and that pyrogenic sources of polycyclic aromatic hydrocarbons dominate recently deposited sediments in Cottonwood Bay and along the Air Station shoreline.
Organics Captured from Comet Wild 2 by the Stardust Spacecraft
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Aleon, Jerome; Araki, Tohru; Bajt, Sasa; Baratta, Giuseppe A.; Borg, Janet; Brucato, John R.; Burchell, Mark J.; Busemann, Henner; Butterworth, Anna;
2007-01-01
Organics found in Comet Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some are similar, but not identical, to those in interplanetary dust particles (IDPs) and carbonaceous meteorites. A new class of aromatic-poor organic material is also present. The organics are rich in O and N compared to meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than meteorites and IDPs. D and 15N suggest that some organics have an interstellar/protostellar heritage. While the variable extent of modification of these materials by impact capture is not yet fully constrained, a remarkably diverse suite of organic compounds is present and identifiable within the returned samples.
Influence of Selected Organic Micropollutants on Organisms
NASA Astrophysics Data System (ADS)
Włodarczyk-Makuła, Maria
2017-03-01
This article describes the toxicity of organic micropollutants on tested microorganisms. Itis a current issue because organic micropollutants are identified in all elements of environmental (surface water, ground water, soils) and in food products. The organic micropollutants include: polychlorinated dibenzodioxyns PCDD, polychlorinated dibenzofurans PCDF, polychlorinated biphenyls PCB, polycyclic aromatic hydrocarbons PAH, halogenated compounds and by-products of water treatment. Some organic compounds cause hazard for health and human life due to their estrogenic biological activity, carcinogenic, mutagenic or teratogenic activity. The influence on organisms indicators of these compounds based on literature data were presented. The level of TEQ (toxic equivalency) in response to organic chlorine derivatives (PCDDs, PCDF, PCBs) is usually determined by toxic equivalency factor (TEF). The International Agency for Research on Cancer classifies organic micropollutants as carcinogenic to humans (Group 1), possibly carcinogenic (Group 2A) or probably carcinogenic to humans (Group 2B).
Aromaticity and Antiaromaticity in Zintl Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhong -Ming; Liu, Chao; Popov, Ivan Aleksandrovich
Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this study, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.
Aromaticity and Antiaromaticity in Zintl Clusters
Sun, Zhong -Ming; Liu, Chao; Popov, Ivan Aleksandrovich; ...
2018-05-18
Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this study, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.
NASA Technical Reports Server (NTRS)
Lewis, D. A.; O'Donnell, James H.; Hedrick, J. L.; Ward, T. C.; Mcgrath, J. E.
1989-01-01
The effects of Co-60 gamma radiation on a series of poly(arylene ether sulfones) prepared by nucleophilic activated aromatic substitution are investigated experimentally. The preparation of the test compounds is described, and the test results are presented in extensive tables and graphs. Radiation-induced degradation, as measured by SO2 production, was found to be lowest in compounds based on biphenol rather than bisphenol A; these findings were also well correlated with ultimate-tensile-strain measurements.
Huczyński, Adam; Rutkowski, Jacek; Borowicz, Izabela; Wietrzyk, Joanna; Maj, Ewa; Brzezinski, Bogumil
2013-09-15
Seven Mannich base derivatives of polyether antibiotic Lasalocid acid (2a-2g) were synthesized and screened for their antiproliferative activity against various human cancer cell lines. A novel chemoselective one-pot synthesis of these Mannich bases was developed. Compounds 2a-2c and 2g with sterically smaller dialkylamine substituent, displayed potent antiproliferative activity (IC50: 3.2-7.3 μM), and demonstrated higher than twofold selectivity for specific type of cancer. The nature of Mannich base substituent on C-2 atom at the aromatic ring may be critical in the search for selectivity towards a particular cancer cell. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T
2008-10-15
Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.
Effect of scopoletin on monoamine oxidases and brain amines.
Basu, Mahua; Mayana, Kamlesh; Xavier, S; Balachandran, S; Mishra, Nibha
2016-02-01
Naturally, occurring compounds with MAO inhibitory property may provide promising lead molecules against neurodegenerative disorders. We report MAO inhibitory activity of a naturally occurring coumarin (validated chemical scaffold as MAO inhibitors), scopoletin. It selectively (and reversibly) inhibits human (Ki = 20.7 μM) and mouse (Ki = 22 μM) MAO-B, ∼3.5 times more selective towards MAO-B than MAO-A. Docking studies revealed its molecular recognition and explained the selectivity mechanism towards MAO isoforms. Scopoletin occupied the hydrophobic aromatic pockets showing favorable interactions for MAO-B; experimental Ki agreed with the predicted Ki. In vivo, scopoletin (80 mg/kg, i.p.) treatment significantly increases dopamine level and decreases its metabolite DOPAC in striatum. Overall, scopoletin is a partially selective MAO-B inhibitor that increases brain dopamine level. Copyright © 2016. Published by Elsevier Ltd.
Polybenzimidazoles Via Aromatic Nucleophilic Displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1997-01-01
Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
Polybenzimidazoles via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)
1995-01-01
Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
Opportunities and challenges in biological lignin valorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.
Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via ‘upper pathways’ into central intermediates, which canmore » then be funneled through ‘lower pathways’ into central carbon metabolism in a process we dubbed ‘biological funneling’. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme–microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.« less
Trimerization of aromatic nitriles
NASA Technical Reports Server (NTRS)
Hsu, L. C. (Inventor)
1977-01-01
Triazine compounds and cross-linked polymer compositions were made by heating aromatic nitriles to a temperature in the range of about 100 C to about 700 C, in the presence of a catalyst or mixture of catalysts. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers were made which were trimerized with or without a filler by the aforementioned catalytic trimerization process.
DOT National Transportation Integrated Search
2012-06-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...
CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS
Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam fro...
Electrodeposition of magnesium and magnesium/aluminum alloys
Mayer, Anton
1988-01-01
Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.
Electrodeposition of magnesium and magnesium/aluminum alloys
Mayer, A.
1988-01-21
Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.
Shimizu, Masaki; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro
2009-05-01
The direct oxidative coupling of 2-amino- and 2-hydroxybenzoic acids with internal alkynes proceeds efficiently in the presence of a rhodium/copper catalyst system under air to afford the corresponding 8-substituted isocoumarin derivatives, some of which exhibit solid-state fluorescence. Depending on conditions, 4-ethenylcarbazoles can be synthesized selectively from 2-(arylamino)benzoic acids. The oxidative coupling reactions of heteroarene carboxylic acids as well as aromatic diacids with an alkyne are also described.
Keyte, Ian J; Albinet, Alexandre; Harrison, Roy M
2016-10-01
Vehicular emissions are a key source of polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAH) and nitrated (NPAH) derivatives, in the urban environment. Road tunnels are a useful environment for the characterisation of on-road vehicular emissions, providing a realistic traffic fleet and a lack of direct sunlight, chemical reactivity and non-traffic sources. In the present investigation the concentrations of selected PAHs, OPAHs and NPAHs have been measured in the Parc des Princes Tunnel in Paris (PdPT, France), and at the Queensway Road Tunnel and an urban background site in Birmingham (QT, U.K). A higher proportion of semi-volatile (3-4 ring) PAH, OPAH and NPAH compounds are associated with the particulate phase compared with samples from the ambient environment. A large (~85%) decline in total PAH concentrations is observed between 1992 and 2012 measurements in QT. This is attributed primarily to the introduction of catalytic converters in the U.K as well as increasingly stringent EU vehicle emissions legislation. In contrast, NPAH concentrations measured in 2012 are similar to those measured in 1996. This observation, in addition to an increased proportion of (Phe+Flt+Pyr) in the observed PAH burden in the tunnel, is attributed to the increased number of diesel passenger vehicles in the U.K during this period. Except for OPAHs, comparable PAH and NPAH concentrations are observed in both investigated tunnels (QT and PdP). Significant differences are shown for specific substances between PAC chemical profiles in relation with the national traffic fleet differences (33% diesel passenger cars in U.K. vs 69% in France and up to 80% taking into account all vehicle categories). The dominating and sole contribution of 1-Nitropyrene observed in the PdPT NPAH profile strengthens the promising use of this compound as a diesel exhaust marker for PM source apportionment studies. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism.
Moctezuma, Edgar; Leyva, Elisa; Aguilar, Claudia A; Luna, Raúl A; Montalvo, Carlos
2012-12-01
The advanced oxidation of paracetamol (PAM) promoted by TiO(2)/UV system in aqueous medium was investigated. Monitoring this reaction by HPLC and TOC, it was demonstrated that while oxidation of paracetamol is quite efficient under these conditions, its mineralization is not complete. HPLC indicated the formation of hydroquinone, benzoquinone, p-aminophenol and p-nitrophenol in the reaction mixtures. Further evidence of p-nitrophenol formation was obtained following the reaction by UV-vis spectroscopy. Continuous monitoring by IR spectroscopy demonstrated the breaking of the aromatic amide present in PAM and subsequent formation of several aromatic intermediate compounds such as p-aminophenol and p-nitrophenol. These aromatic compounds were eventually converted into trans-unsaturated carboxylic acids. Based on these experimental results, an alternative deacylation mechanism for the photocatalytic oxidation of paracetamol is proposed. Our studies also demonstrated IR spectroscopy to be a useful technique to investigate oxidative mechanisms of pharmaceutical compounds. Copyright © 2012 Elsevier B.V. All rights reserved.
González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F
2017-02-07
By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.
Wu, Hai-Xia; Wu, Jia-Wei; Niu, Zhi-Gang; Shang, Xiu-Li; Jin, Jun
2013-01-01
We report on the efficient removal of heavy metal ions and aromatic compounds from simulated wastewater with a nanocomposite. The nanocomposite was obtained via thermal decomposition of the precursor Fe(acac)3 onto the surface of graphene, modified by diethylenetriamine pentaacetic anhydride through dopamine. It was found that the maximum adsorption capacity of the nanocomposite toward Cu(2+) and naphthalene was 207.9 and 72.2 mg g(-1) respectively, displaying a high efficiency for the removal of heavy metal ions as well as aromatic compounds at pH 7.0 and 293 K. The Langmuir for naphthalene and the Freundlich for the Cu(2+) adsorption isotherms were applicable for describing the removal processes. Furthermore, the nanocomposite was carefully examined by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, and UV-vis spectroscopy. This work provides a very efficient, fast and convenient approach to exploring a promising nanocomposite for water treatment.
Chavez, María I; Soto, Mauricio; Cimino, Franco A; Olea, Andrés F; Espinoza, Luis; Díaz, Katy; Taborga, Lautaro
2018-05-29
A series of new and known geranylated phenol/methoxyphenol derivatives has been tested in vitro as inhibitor agents of mycelial growth of Phytophthora cinnamomi . The activity of tested compounds is correlated with the nature, number, and position of the substituent group on the aromatic ring. Results indicate that the most active geranylated derivatives are those having two hydroxyl groups (or one ⁻OH and one ⁻OCH₃) attached to the aromatic ring. Interestingly, these derivatives are as active as Metalaxil ® , a commonly used commercial fungicide. Thus, our results suggest that some of these compounds might be of agricultural interest due to their potential use as fungicides against P. cinnamomi . The effect of structure on fungicide activity is discussed in terms of electronic distribution on both the aromatic ring and side geranyl chain. All tested compounds have been synthesized by direct coupling of geraniol and the respective phenol. Interestingly, new digeranylated derivatives were obtained by increasing the reaction time.
Spraul, Bryan K; Suresh, S; Jin, Jianyong; Smith, Dennis W
2006-05-31
A series of 19 p-substituted aromatic trifluorovinyl ether compounds were prepared from versatile intermediate p-Br-C(6)H(4)-O-CF=CF(2) and underwent thermal radical mediated cyclodimerization to new difunctional compounds containing the 1,2-disubstituted perfluorocyclobutyl (PFCB) linkage. The synthetic scope demonstrates the functional group transformation tolerance of the fluorovinyl ether, and the dimers are useful as monomers for traditional step-growth polymerization methods. (19)F NMR spectra confirmed that p-substitution affects the trifluorovinyl ether group chemical shifts. The first kinetic studies and substituent effects on thermal cyclodimerization were performed, and the results indicated that electron-withdrawing groups slow the rate of cyclodimerization. The data were further analyzed using the Hammett equation, and reaction constants (rho) of -0.46 at 120 degrees C and -0.59 at 130 degrees C were calculated. This study presents the first liner free energy relationship reported for the cyclodimerization of aromatic trifluorovinyl ethers to PFCB compounds.
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; ...
2017-02-21
Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao
Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent abilitymore » to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao
Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS
Rogoff, Martin H.
1962-01-01
Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381
Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry.
Hayen, Heiko; Michels, Antje; Franzke, Joachim
2009-12-15
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better.
Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D
2013-09-04
Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).
Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H.; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji
2016-01-01
Abstract Enzymatic catalysis is an ecofriendly strategy for the production of high‐value low‐molecular‐weight aromatic compounds from lignin. Although well‐definable aromatic monomers have been obtained from synthetic lignin‐model dimers, enzymatic‐selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β‐O‐4‐cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate‐binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio‐based industries, we chemically generate value‐added GHP derivatives for bio‐based polymers. Together with these chemical conversions for the valorization of lignin‐derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in “white biotechnology” for sustainable biorefineries. PMID:27878983
Optical properties of humic substances and CDOM: effects of borohydride reduction.
Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V
2010-07-15
Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.
Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.
Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila
2016-02-11
Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.
Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter
2016-03-01
Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment.
AROMATIC AMINES IN AND NEAR THE BUFFALO RIVER
Three sediment samples taken from the Buffalo River and two soil samples taken near its bank have been analyzed for 2-propanol-extractable, basic organic compounds by using GC/MS. Eleven aromatic amines related to the commercial production of malachite green and crystal violet we...
Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.
Majerz, Irena; Dziembowska, Teresa
2018-04-01
The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.« less
Wagner, Karl A; Flora, Jason W; Melvin, Matt S; Avery, Karen C; Ballentine, Regina M; Brown, Anthony P; McKinney, Willie J
2018-06-01
U.S. FDA draft guidance recommends reporting quantities of designated harmful and potentially harmful constituents (HPHCs) in e-cigarette e-liquids and aerosols. The HPHC list comprises potential matrix-related compounds, flavors, nicotine, tobacco-related impurities, leachables, thermal degradation products, and combustion-related compounds. E-cigarettes contain trace levels of many of these constituents due to tobacco-derived nicotine and thermal degradation. However, combustion-related HPHCs are not likely to be found due to the relatively low operating temperatures of most e-cigarettes. The purpose of this work was to use highly sensitive, selective, and validated analytical methods to determine if these combustion-related HPHCs (three aromatic amines, five volatile organic compounds, and the polycyclic aromatic hydrocarbon benzo[a]pyrene) are detectable in commercial refill e-liquids, reference e-cigarette e-liquids, and aerosols generated from rechargeable e-cigarettes with disposable cartridges (often referred to as "cig-a-likes"). In addition, the transfer efficiency of these constituents from e-liquid to aerosol was evaluated when these HPHCs were added to the e-liquids prior to aerosol formation. This work demonstrates that combustion-related HPHCs are not present at measurable levels in the commercial and reference e-liquids or e-cigarette aerosols tested. Additionally, when combustion-related HPHCs are added to the e-liquids, they transfer to the aerosol with transfer efficiencies ranging from 49% to 99%. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro
2016-10-01
Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
Kim, Seungjin; Hwang, Jeongmin; Chung, Jinwook; Bae, Wookeun
2014-06-30
The effect of non-aromatic compounds on the trichloroethylene (TCE) degradation of toluene-oxidizing bacteria were evaluated using Burkholderia cepacia G4 that expresses toluene 2-monooxygenase and Pseudomonas putida that expresses toluene dioxygenase. TCE degradation rates for B. cepacia G4 and P. putida with toluene alone as growth substrate were 0.144 and 0.123 μg-TCE/mg-protein h, respectively. When glucose, acetate and ethanol were fed as additional growth substrates, those values increased up to 0.196, 0.418 and 0.530 μg-TCE/mg-protein h, respectively for B. cepacia G4 and 0.319, 0.219 and 0.373 μg-TCE/mg-protein h, respectively for P. putida. In particular, the addition of ethanol resulted in a high TCE degradation rate regardless of the initial concentration. The use of a non-aromatic compound as an additional substrate probably enhanced the TCE degradation because of the additional supply of NADH that is consumed in co-metabolic degradation of TCE. Also, it is expected that the addition of a non-aromatic substrate can reduce the necessary dose of toluene and, subsequently, minimize the potential competitive inhibition upon TCE co-metabolism by toluene. Copyright © 2014 Elsevier B.V. All rights reserved.
Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.
1998-01-01
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543
The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.
Gitipour; Bowers; Bodocsi
1997-12-15
This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.
Transformations of Aromatic Compounds by Nitrosomonas europaea
Keener, William K.; Arp, Daniel J.
1994-01-01
Benzene and a variety of substituted benzenes inhibited ammonia oxidation by intact cells of Nitrosomonas europaea. In most cases, the inhibition was accompanied by transformation of the aromatic compound to a more oxidized product or products. All products detected were aromatic, and substituents were often oxidized but were not separated from the benzene ring. Most transformations were enhanced by (NH4)2SO4 (12.5 mM) and were prevented by C2H2, a mechanism-based inactivator of ammonia monooxygenase (AMO). AMO catalyzed alkyl substituent hydroxylations, styrene epoxidation, ethylbenzene desaturation to styrene, and aniline oxidation to nitrobenzene (and unidentified products). Alkyl substituents were preferred oxidation sites, but the ring was also oxidized to produce phenolic compounds from benzene, ethylbenzene, halobenzenes, phenol, and nitrobenzene. No carboxylic acids were identified. Ethylbenzene was oxidized via styrene to two products common also to oxidation of styrene; production of styrene is suggestive of an electron transfer mechanism for AMO. Iodobenzene and 1,2-dichlorobenzene were oxidized slowly to halophenols; 1,4-dichlorobenzene was not transformed. No 2-halophenols were detected as products. Several hydroxymethyl (-CH2OH)-substituted aromatics and p-cresol were oxidized by C2H2-treated cells to the corresponding aldehydes, benzaldehyde was reduced to benzyl alcohol, and o-cresol and 2,5-dimethylphenol were not depleted. PMID:16349282
NASA Astrophysics Data System (ADS)
Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.
A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations of other target compounds. Quinoline and isoquinoline can be used to indicate indoor levels of ETS.
Type of litter determines the formation and properties of charred material during wildfires
NASA Astrophysics Data System (ADS)
Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin
2014-05-01
Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some litters, were higher than 0.5, suggesting that low degree of carbonization/aromatization. Although burning also led to compounds of higher thermal recalcitrance (increases in T50 values), values recorded in some litters were lower than those measured in highly polycondensed aromatic compounds. The differences found among the different forest floor cannot be only attributable to the initial SOM composition of the litter. Other aspects, such as the different thermal sensitivity, flammability and different conditions during wildfire (temperatures, combustion duration, oxygen concentrations) could also have contributed.
Aroma characterization based on aromatic series analysis in table grapes
Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping
2016-01-01
Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, ‘Kyoho’ grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes. PMID:27487935
Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário
2016-12-01
The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. Copyright © 2016 Elsevier Ltd. All rights reserved.
Avagyan, Rozanna; Åberg, Magnus; Westerholm, Roger
2016-11-01
Wood combustion has been shown to contribute significantly to emissions of polycyclic aromatic hydrocarbons and hydroxylated polycyclic aromatic hydrocarbons, compounds with toxic and carcinogenic properties. However, only a small number of hydroxylated polycyclic aromatic hydrocarbons have been determined in particles from wood combustion, usually compounds with available reference standards. In this present study, suspect and non-target screening strategies were applied to characterize the wood smoke particles from four different wood types and two combustion conditions with respect to hydroxylated polycyclic aromatic hydrocarbons and other organic compounds. In the suspect screening, 32 peaks corresponding to 12 monohydroxylated masses were tentatively identified by elemental composition assignments and matching of isotopic pattern and fragments. More than one structure was suggested for most of the measured masses. Statistical analysis was performed on the non-target screening data in order to single out significant peaks having intensities that depend on the wood type and/or combustion condition. Significant peaks were found in both negative and positive ionization modes, with unique peaks for each wood type and combustion condition, as well as a combination of both factors. Furthermore, structural elucidation of some peaks was done by comparing the spectra in the samples with spectra found in the spectral databases. Six compounds were tentatively identified in positive ionization mode, and 19 in negative ionization mode. The results in this present study demonstrate that there are significant overall differences in the chemistry of wood smoke particles that depends on both the wood type and the combustion condition used. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah
2015-01-01
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
Lapadatescu, Carmen; Giniès, Christian; Le Quéré, Jean-Luc; Bonnarme, Pascal
2000-01-01
Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with l-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors (14C- and 13C-labelled l-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that l-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from l-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via β-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a β-oxidation degradation intermediate. To our knowledge, this is the first time that a β-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from l-phenylalanine is proposed. PMID:10742235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.R.; Henderson, T.R.; Royer, R.E.
The influence of diesel fuel composition on mutagenicity of exhaust particle associated organic compounds has been investigated using nine fuels varying in aromatic content and distillation properties. The tests were conducted with Oldsmobile Delta-88 and Peugot 504 diesel cars operated according to the EPA Federal Test Procedure. The particulate exhaust from each test was collected on a filter, extracted in dichloromethane and the resulting extract evaluated for mutagenicity in Salmonella strain TA-100. Mutagenicity of extracts of particles collected from the Oldsmobile were highest in the higher aromatic content fuels (> 30%) but similar for intermediate (20%) and low (13%) aromaticmore » content fuels. No influence of aromaticity on mutagenicity was observed in samples collected from the Peugeot under the same conditions. Thus, fuel aromatic content may enhance the production of mutagenic combustion products at higher concentrations, but may be dependent upon engine type. A good correlation was observed between mutagenicity of the particle extracts and the initial boiling point of the fuel (r = 0.89). Gas chromatography/mass spectrometric analysis of the aromatic fraction of the fuels showed that the fuel producing the most mutagenic combustion products was highest in phenanthrene type compounds.« less
The formation of quasi-alicyclic rings in alkyl-aromatic compounds
NASA Astrophysics Data System (ADS)
Straka, Pavel; Buryan, Petr; Bičáková, Olga
2018-02-01
The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.
2002-01-01
The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.
Pyrolysis of humic and fulvic acids
Wershaw, R. L.; Bohner, G.E.
1969-01-01
Pyrolysis of humic and fulvic acids isolated from a North Carolina soil yields a variety of aromatic, heterocyclic and straight chain organ compounds. The pyrolysis products identified by gas chromatography and mass spectrometry indicate that humic and fulvic acids have aromatic and polysaccharide structures in their molecules. ?? 1969.
Inhibition of Mutated Isocitrate Dehydrogenase 1 in Cancer.
Wu, Fangrui; Cheng, Gang; Yao, Yuan; Kogiso, Mari; Jiang, Hong; Li, Xiao-Nan; Song, Yongcheng
2018-05-23
R132H mutation of isocitrate dehydrogenase 1 (IDH1) are found in ~75% of low-grade gliomas and secondary glioblastomas as well as in several other types of cancer. More chemotypes of inhibitors of IDH1(R132H) are therefore needed. To develop a new class of IDH1(R132H) inhibitors as potent antitumor agents. A biochemical assay was developed to find inhibitors of IDH1(R132H) mutant enzyme. Chemical synthesis and structure activity relationship studies were used to find compounds with improved potency. Antitumor activities of selected compounds were evaluated. A series of aromatic sulfonamide compounds were found to be novel, potent inhibitors of IDH1(R132H) with Ki values as low as 0.6 µM. Structure activity relationships of these compounds are discussed. Enzyme kinetics studies showed that one compound is a competitive inhibitor against the substrate α-KG and a non-competitive inhibitor against the cofactor NADPH. Several inhibitors were found to have no activity against wild-type IDH1, showing a high selectivity. Two potent inhibitors exhibited strong activity against proliferation of BT142 glioma cells with IDH1 R132H mutation, while these compounds did not significantly affect growth of glioma cells without IDH1 mutation. This novel series of IDH1(R132H) inhibitors have potential to be further developed for the treatment of glioma with IDH1 mutation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs
2015-11-15
Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution accounted for only 20% of the reaction, and for one NOM extract (Pony Lake fulvic acid) it accounted for <10%. This shows that for natural organic matter samples, oxidation (ET) is far more important than bromine incorporation (EAS). Copyright © 2015 Elsevier Ltd. All rights reserved.
Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed
2016-06-01
With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.
Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.
Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander
2016-11-01
Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m -3 ) and will be retained in the particle phase under atmospherically relevant conditions.
Denham, K; Milofsky, R E
1998-10-01
A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.
Biodegradation of oil tank bottom sludge using microbial consortia.
Gallego, José Luis R; García-Martínez, María Jesús; Llamas, Juan F; Belloch, Carmen; Peláez, Ana I; Sánchez, Jesús
2007-06-01
We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur-aromatic compounds (31-55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.
Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun
2012-11-16
An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.
Song, Jie; Baker, Nicola; Rothert, Monja; Henke, Björn; Jeacock, Laura; Horn, David; Beitz, Eric
2016-02-01
The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.
Sarikaya, Busra; Ceruso, Mariangela; Carta, Fabrizio; Supuran, Claudiu T
2014-11-01
A series of new Schiff bases was obtained from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide and aromatic/heterocyclic aldehydes incorporating both hydrophobic and hydrophilic moieties. The obtained sulfonamides were investigated as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, as well as the transmembrane, tumor-associated CA IX and XII. Most derivatives were medium potency or weak hCA I/II inhibitors, but several of them showed nanomolar affinity for CA IX and/or XII, making them an interesting example of isoform-selective compounds. The nature of the aryl/hetaryl moiety present in the initial aldehyde was the main factor influencing potency and isoform selectivity. The best and most CA IX-selective compounds incorporated moieties such as 4-methylthiophenyl, 4-cyanophenyl-, 4-(2-pyridyl)-phenyl and the 4-aminoethylbenzenesulfonamide scaffold. The best hCA XII inhibitors, also showing selectivity for this isoform, incorporated 2-methoxy-4-nitrophenyl-, 2,3,5,6-tetrafluorophenyl and 4-(2-pyridyl)-phenyl functionalities and were also derivatives of 4-aminoethylbenzenesulfonamide. The sulfanilamide and 3-fluorosulfanilamide derived Schiff bases were less active compared to the corresponding 4-aminoethyl-benzenesulfonamide derivatives. As hCA IX/XII selective inhibition is attractive for obtaining antitumor agents/diagnostic tools with a new mechanism of action, compounds of the type described here may be considered interesting preclinical candidates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.
Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi
2015-11-01
Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.
2009-01-01
Based on our comprehensive theoretical investigation and known experimental results for small boron clusters, we predict the existence of a novel aromatic inorganic molecule, B12H6. This molecule, which we refer to as borozene, has remarkably similar properties to the well-known benzene. Borozene is planar, possesses a large first excitation energy, D3hsymmetry, and more importantly is aromatic. Furthermore, the calculated anisotropy of the magnetic susceptibility of borozene is three times larger in absolute value than for benzene. Finally, we show that borozene molecules may be fused together to give larger aromatic compounds with even larger anisotropic susceptibilities. PMID:20596438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolicmore » compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less
Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan
2017-04-15
An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed
2018-03-21
Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.